WO2011147548A1 - Sol und verfahren zur herstellung einer kristallinen mischoxidschicht, substrat mit mischoxidschicht sowie verwendung hiervon - Google Patents

Sol und verfahren zur herstellung einer kristallinen mischoxidschicht, substrat mit mischoxidschicht sowie verwendung hiervon Download PDF

Info

Publication number
WO2011147548A1
WO2011147548A1 PCT/EP2011/002485 EP2011002485W WO2011147548A1 WO 2011147548 A1 WO2011147548 A1 WO 2011147548A1 EP 2011002485 W EP2011002485 W EP 2011002485W WO 2011147548 A1 WO2011147548 A1 WO 2011147548A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
salt
sol
mol
mixed oxide
Prior art date
Application number
PCT/EP2011/002485
Other languages
English (en)
French (fr)
Inventor
Stefan GÖTZENDÖRFER
Peer Löbmann
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Publication of WO2011147548A1 publication Critical patent/WO2011147548A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G37/00Compounds of chromium
    • C01G37/006Compounds containing, besides chromium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/42Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on chromites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/6325Organic additives based on organo-metallic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1283Control of temperature, e.g. gradual temperature increase, modulation of temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/113Deposition methods from solutions or suspensions by sol-gel processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present invention relates to a sol containing at least one copper (II), one chromium (III) and one magnesium (II) salt. Likewise, the present invention relates to a method for producing a mixed oxide and a substrate on which this mixed oxide is applied. Likewise, uses of such a substrate are given.
  • Crystalline mixed oxides with delafossite structure could be used as transparent p-conductive layers (TCO) or thermoelectrics. Due to its high electrical conductivity, especially doped CuCr0 2 is a very versatile promising material. However, the high chromium content of this oxide is limited by the absorption of light in the visible region of its transparency '. Therefore, in order to increase the transmission, it was sought to replace as high a proportion of the chromium (III) ions as possible without adversely affecting the electrical properties of the oxide.
  • Kikuchi Thin Solid Films Vol. 516, Issue 18, 5941-5947; K. Hayashi, K. Sato, T. Nozaki, T. Kajitani, Jpn. J. Appl. Phys. 2008, 47, 59] which corresponds to a share of 2 atomic%.
  • the doping with magnesium can lower the specific resistance of the CuCr0 2 by more than three orders of magnitude [D. Li, X. Fang, Z. Deng, W. Dong, R. Tao, S. Zhou, J. Wang, T. Wang, Y. Zhao, X. Zhu, J. Alloys Compd. 2009
  • These foreign phases may be copper (II) oxide [Y. Ono, K. Satoh, T. Nozaki, T. Kajitani, Jpn. J. Appl. Phys. 2007, 46, 1071] or around the spinel phases CuCr 2 O 4 [D. Li, X. Fang, Z. Deng, W. Dong, R. Tao, S. Zhou, J. Wang, T. Wang, Y. Zhao, X. Zhu, J. Alloys Compd. 2009
  • Tao et al. [Z. Deng, X.-D. Fang, R.-H. Tao, W. -W. Dong, Chinese Patent 2007, CN 200710191278.1; D. Li, X.-D. Fang, C.-H. Deng, R.-H. Tao, W.-W. Dong, Chinese Patent 2007, CN 200710192050.4] are so far the only ones who have already worked with higher magnesium levels. In the field of gas sensors a material with a magnesium content of up to x 0.30 was known, [Z. Deng, X.-D. Fang, R.-H. Tao, W.-W. Dong, Chinese Patent 2007, CN
  • This object is related to the sol with the features of claim 1, with respect to the manufacturing method of a crystalline mixed oxide with the features of claim 8, with respect to a substrate on which an inventively producible mixed oxide layer is deposited, with the features of claim 13 and with respect to the purposes of a such substrate solved with the features of claim 16.
  • the respective dependent claims represent advantageous developments.
  • the invention thus provides a sol which contains a phase dispersed in a dispersion medium.
  • the dispersed phase contains
  • the proportion of the Cr (III) salt based on the molar amount of Cu (II) salt between 0.50 to 0.90, preferably between 0.55 and 0.85, more preferably between 0 , 50 and 0.80, more preferably between 0.50 and 0.70.
  • the proportion of the Mg (II) salt is between 0.10 and 0.60, preferably between 0.20 and 0.55, more preferably between 0.30 and 0.50.
  • the proportion of the Mg (II) salt relative to the molar amount of copper (II) salt is 0.26, 0.27, 0.28, 0.29, 0, 30, 0, 31, 0.32, 0, 33, 0, 34, 0.35, 0, 36, 0, 37, 0, 38, 0.39, 0.40, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.50, 0.51, 0.52, 0.53, 0.54 or 0.55.
  • the dispersion medium is in particular a monohydric alkyl alcohol or a mixture of monohydric alkyl alcohols, preferably ethanol in question.
  • the at least one sol to set ⁇ material selected from the group consisting of 2- ethoxyacetic acid, 2- (2-methoxyethoxy) acetic acid and / or triethanolamine contains.
  • Preferred concentrations of the copper (II) salt a) in the dispersion medium are between 0.01 mol / 1 and 5 mol / 1, preferably between 0.05 mol / 1 and 1 mol / 1, more preferably between 0.10 and 0.60 mol / 1.
  • concentrations of the other salts are given in accordance with the proportions used.
  • Also according to the invention is a process for producing a crystalline mixed oxide layer of the general formula CuCri_ x Mg x 0 2
  • Particularly preferred values for x are 0.26, 0, 27, 0.28, 0, 29, 0, 30, 0, 31, 0, 32, 0.33, 0, 34, 0.35, 0.36 , 0.37, 0.38, 0.39, 0.40, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0 , 49, 0.50, 0.51, 0.52, 0.53, 0.54 or 0.55.
  • the substrate is selected from the group consisting of silicon substrates, silica glass substrates or borosilicate glass substrates.
  • a sintering step is carried out in an inert gas atmosphere.
  • the sintering step at temperatures between 500 ° C and 1000 ° C, preferably between 550 ° C and 850 ° C, more preferably carried out between 600 and 750 ° C.
  • step b) iteratively rewet the substrate at least once as subsequently a renewed oxidation step a) is carried out.
  • a substrate comprising a coating, which at least partially covers the substrate is composed of a mixed oxide of the general formula
  • a delafossit phase is the dominant phase, and the mixed oxide can optionally also be present in pure phase.
  • the existing foreign phases can be easily tolerated.
  • the value of x is within the following limits: 0.30 ⁇ x ⁇ 0.60, preferably 0.31 ⁇ x ⁇ 0.50.
  • the following values for x come in Fra ⁇ ge: 0.26, 0.27, 0.28, 0.29, 0.30, 0.31, 0.32, 0.33, 0, 34, 0, 35, 0.36, 0.37, 0.38, 0.39, 0.40, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.50, 0.51, 0.52, 0.53, 0.54 or 0.55.
  • Preferred layer thicknesses of the mixed oxide layer deposited on the substrate are in particular between 10 nm and 2000 nm, preferably between 50 nm and 1000 nm, particularly preferably between 150 nm and 600 nm.
  • the substrate is suitable for use as Thermoelectric, for the recovery of electrical energy from waste heat, as electrode material in electrochemical cells, as constituent of catalysts for hydrogen production or nitrogen oxide decomposition, as part of a pn transition, as
  • Component of electronic components Component of electronic components, light-emitting diodes and displays, or as a luminescent material.
  • Thin films applied to borosilicate glass by dip coating on the sol-gel method can be the phases CuO ( ⁇ ), MgO ⁇ T) and the Delafossitphase CuCri_ x Mg x 0 prove 2 (°), and Figure 2 shows the resistivity and opti ⁇ cal transmission of CuCri- x Mg x 0 2 - thin films , which were applied to Borosilicatglas by dip coating on the sol-gel method.
  • Example 3 Cation ratio Cu: Cr: Mq - 1.00: 0.50: 0.50
  • the applied thin films were first oxidized in the muffle furnace at 400 ° C to 500 ° C in air, so that the organic components were decomposed and in the X-ray diffractogram exclusively the phases
  • CuO and CuCr 2 0 4 or MgCr 2 0 4 could be detected. These oxide layers were subjected to a second sintering step at 600 to 700 ° C. in a continuous inert gas stream (argon or nitrogen).
  • Thin films of stoichiometry CuCri_ x Mg x O 2 with 0.30 ⁇ x 0.50 thus achieve similar resistance values to comparable doped CuCrO 2 layers. Due to their lower chromium content, however, they achieve a significantly higher optical transmission with the same layer thickness. In addition, the ⁇ ses composite oxide has the advantage of being produced on the low-cost, flexible and industrially established sol-gel method. Thin films of stoichiometry CuCr 1 - x g x 0 2 at 0.30 x 0.50 could also be produced by other coating methods such as Pulsed Laser Deposition, Chemical Vapor Deposition or various sputtering methods.
  • the delafossite layers could be used as thermoelectrics to recover electrical energy from waste heat.
  • they could be used as transparent p-type semiconductors, which would enable the production of transparent p-n semiconductor junctions for solar cells, light-emitting diodes, displays and other electronic components.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Die vorliegende Erfindung betrifft einen Sol, der mindestens ein Kupfer- (II) -, ein Chrom- (III)- sowie ein Magnesium- (II) -Salz enthält. Ebenso betrifft die vorliegende Erfindung ein Verfahren zur Herstellung eines Mischoxids sowie ein Substrat, auf dem dieses Mischoxid aufgebracht ist. Ebenso werden Verwendungszwecke eines derartigen Substrates angegeben.

Description

Sol und Verfahren zur Herstellung einer kristallinen Mischoxidschicht, Substrat mit Mischoxidschicht sowie
Verwendung hiervon
Die vorliegende Erfindung betrifft einen Sol, der mindestens ein Kupfer- (II) -, ein Chrom- (III)- sowie ein Magnesium- ( II ) -Salz enthält. Ebenso betrifft die vorliegende Erfindung ein Verfahren zur Herstellung eines Mischoxids sowie ein Substrat, auf dem dieses Mischoxid aufgebracht ist. Ebenso werden Verwendungszwecke eines derartigen Substrates angegeben.
Kristalline Mischoxide mit Delafossit-Struktur könnten als transparente p-leitfähige Schichten (TCO) o- der Thermoelektrika eingesetzt werden. Für die Anwendung als TCO ist aufgrund seiner hohen elektrischen Leitfähigkeit insbesondere dotiertes CuCr02 ein viel- versprechendes Material. Doch der hohe Chromanteil dieses Oxides limitiert durch die Absorption von Licht im sichtbaren Bereich dessen Transparenz'. Deshalb wurde zur Erhöhung der Transmission nach einer Möglichkeit gesucht, einen möglichst hohen Anteil dei Chrom ( III ) -Ionen zu ersetzen, ohne die elektrischen Eigenschaften des Oxids zu beeinträchtigen.
Zwar lassen sich Verbesserungen der optischen Eigenschaften von CuCr02 durch teilweisen Ersatz des Cr3+ durch andere dreiwertige Kationen, die keine Absorptionen im sichtbaren Bereich aufweisen, erzielen. [S. Götzendörfer, R. Bywalez, P. Löbmann, J. Sol-Gel Sei Technol. 2009, 52, 113]. Doch zum gleichzeitigen Erreichen von spezifischen Widerständen -a 1,0 Ω cm ist der Einbau von zweiwertigen Kationen A2+ auf Cr3+- Gitterplätzen unerlässlich . Bislang beschränken sich die uns bekannten Veröffentlichungen in der Fachliteratur hierzu auf die Kationen
• Ca2+ [K. Hayashi, K. Sato, T. Nozaki, T. Kajitani, Jpn. J. Appl. Phys. 2008, 47, 59; T. Okuda, T. 0- noe, Y. Beppu, N. Terada, T. Doi, S. Miyasaka, Y. Tokura, J. Magn. Magn. Mater, 2007, 310, 890]
• Co2+ [K. Hayashi, K. Sato, T. Nozaki, T. Kajitani, Jpn. J. Appl. Phys. 2008, 47, 59]
• Mg2+ [K. Hayashi, K. Sato, T. Nozaki, T. Kajitani, Jpn. J. Appl. Phys. 2008, 47, 59/ T. Okuda, N. Ju- fuku, S. Hidaka, N. Terada, Phys. Rev. B 2005, 72, 144403; T. Okuda, T. Onoe, Y. Beppu, N. Terada, T. Doi, S. Miyasaka, Y. Tokura, J. Magn. Magn. Mater, 2007, 310, 890; R. Nagarajan, A.D. Draeseke, A.W. Sleight, J. Täte, J. Appl. Phys. 2001, 89, 8022; T.-W. Chiu, K. Tonooka, N. Kikuchi, Thin Solid Films Vol. 516, Issue 18, 5941-5947; D. Li, X.
Fang, Z. Deng, W. Dong, R. Tao, S. Zhou, J. Wang, T. Wang, Y. Zhao, X. Zhu, J. Alloys Compd. 2009, doi:10.1016/j. jallcom.2009.06.174; W.T. Lim, L. Stafford, P.W. Sadik, D.P. Norton, S.J. Pearton, Y.L. Wang, F. Ren, Appl . Phys . Lett . 2007, 90, 142101; S.H. Lim, S. Desu, A.C. Rastogi, J. Phys. Chem. Solids 2008, doi : 10.1016/ . jpcs .2008.03.007 ; A.C. Rastogi, S.H. Lim, S.B. Desu, J. Appl. Phys. 2008, 104, 023712; Y. Ono, K. Satoh, T. Nozaki, T. Kajitani, Jpn. J. Appl. Phys. 2007, 46, 1071; Q. Xu, H. Schmidt, S. Zhou, K. Potzger, M. Helm, H. Hochmuth, M. Lorenz, C. Meinecke, M. Grundmann, Thin Solid Films 2008, 516 8543; K. Tonooka, N. Kikuchi, Thin Solid Films 2006, 515, 2415; P.W. Sadik, M. Ivill, V. Craciun, D.P. Norton, Thin Solid Films 2009, 517, 3211;
• Mn2+ [K. Hayashi, K. Sato, T. Nozaki, T. Kajitani, Jpn. J. Appl. Phys. 2008, 47, 59; Q. Xu, H.
Schmidt, S. Zhou, K. Potzger, M. Helm, H. Hochmuth, M. Lorenz, C. Meinecke, M. Grundmann, Thin Solid Films 2008, 516 8543]
• Ni2+ [K. Hayashi, K. Sato, T. Nozaki, T. Kajitani, Jpn. J. Appl. Phys. 2008, 47, 59; S.Y. Zheng, G.S. Jiang, J.R. Su, C.F. Zhu, Mater. Lett. 2006, 60, 3871] und Zn2+ [K. Hayashi, K. Sato, T. Nozaki, T. Kajitani, Jpn. J. Appl. Phys. 2008, 47, 59], die als Dotierstoffe in CuCri_xAxC>2 bis zu einer Konzentration von maximal x = 0.08 zum Einsatz kommen, [T.-W. Chiu, K. Tonooka, N. Kikuchi, Thin Solid Films Vol. 516, Issue 18, 5941-5947; K. Hayashi, K. Sato, T. Nozaki, T. Kajitani, Jpn. J. Appl. Phys. 2008, 47, 59] was einem Anteil von 2 Atom-% entspricht.
Beispielsweise kann die Dotierung mit Magnesium den spezifischen Widerstand des CuCr02 um mehr als drei Größenordnungen absenken [D. Li, X. Fang, Z. Deng, W. Dong, R. Tao, S. Zhou, J. Wang, T. Wang, Y. Zhao, X. Zhu, J. Alloys Compd. 2009,
doi:10.1016/j . jallcom.2009.06.174; R. Nagarajan, A.D. Draeseke, A.W. Sleight, J. Täte, J. Appl. Phys. 2001, 89, 8022; T. Okuda, N. Jufuku, S. Hidaka, N. Terada, Phys. Rev. B 2005, 72, 144403].
Oftmals geht dies jedoch ab einer gewissen Dotierkonzentration zu Lasten der optischen Transmission, [R. Nagarajan, A.D. Draeseke, A.W. Sleight, J. Täte, J. Appl. Phys. 2001, 89, 8022; P.W. Sadik, M. Ivill, V.
Craciun, D.P. Norton, Thin Solid Films 2009, 517, 3211; K. Tonooka, N. Kikuchi, Thin Solid Films 2006, 515, 2415] was meist mit der Entstehung von absorbierenden Fremdphasen erklärt wird. [S.H. Lim, S. Desu, A.C. Rastogi, J. Phys. Chem. Solids 2008,
doi: 10.1016/j .jpcs.2008.03.007; T. Okuda, T. Onoe, Y. Beppu, N. Terada, T. Doi, S. Miyasaka, Y. Tokura, J. Magn. Magn . Mater, 2007, 310, 890; Y. Ono, K. Satoh, T. Nozaki, T. Kajitani, Jpn . J. Appl. Phys. 2007, 46, 1071; P.W. Sadik, M. Ivill, V. Craciun, D.P. Norton,
Thin Solid Films 2009, 517, 3211].
Bei diesen Fremdphasen kann es sich um Kupfer (II)- oxid [Y. Ono, K. Satoh, T. Nozaki, T. Kajitani, Jpn. J. Appl. Phys. 2007, 46, 1071] oder um die Spinellphasen CuCr204 [D. Li, X. Fang, Z. Deng, W. Dong, R. Tao, S. Zhou, J. Wang, T. Wang, Y. Zhao, X. Zhu, J. Alloys Compd. 2009,
doi: 10.1016/j .jallcom.2009.06.174; S.H. Lim, S. Desu, A.C. Rastogi, J. Phys. Chem. Solids 2008,
doi:10.1016/j .jpcs.2008.03.007; A.C. Rastogi, S.H.
Lim, S.B. Desu, J. Appl. Phys. 2008, 104, 023712;
P.W. Sadik, M. Ivill, V. Craciun, D.P. Norton, Thin
Solid Films 2009, 517, 3211] oder ACr204 [Y. Ono, K. Satoh, T. Nozaki, T. Kajitani, Jpn. J. Appl. Phys.
2007, 46, 1071; M . Poienar, F. Damay, C. Martin, V. Hardy, A. Maignan, G. Andre, Phys . Rev. B 2009, 79, 014412; P.W. Sadik, M. Ivill, V. Craciun, D.P. Norton, Thin Solid Films 2009, 517, 3211; Q. Xu, H.
Schmidt, S. Zhou, K. Potzger, M. Helm, H. Hochmuth, M. Lorenz, C. Meinecke, M. Grundmann, Thin Solid
Films 2008, 516 8543] handeln.
Tao et al. [Z. Deng, X.-D. Fang, R.-H. Tao, W . -W . Dong, Chinese Patent 2007, CN 200710191278.1; D. Li, X.-D. Fang, C.-H. Deng, R.-H. Tao, W.-W. Dong, Chinese Patent 2007, CN 200710192050.4] sind bislang die einzigen, die bereits mit höheren Magnesiumanteilen gearbeitet haben. Auf dem Anwendungsgebiet Gassenso- rik wurde ein Material mit einem Magnesiumanteil mit bis zu x von 0,30 bekannt, [Z. Deng, X.-D. Fang, R.- H. Tao, W.-W. Dong, Chinese Patent 2007, CN
200710191278.1] bei transparenten p-leitfähigen
Schichten, die mittels Pulsed Laser Deposition hergestellt wurden, jedoch nur bis x = 0,25 [D. Li, X.-D. Fang, C.-H. Deng, R.-H. Tao, W.-W. Dong, Chinese Patent 2007, CN 200710192050.4]. Mit dem dort beschriebenen Herstellungsverfahren ist es jedoch nicht möglich, noch höhere Magnesiumanteile in ihre Dünnschichten einzubringen oder mit noch höheren Magnesi¬ umanteilen akzeptable Widerstands- und Transmissionswerte zu erreichen.
Ausgehend von den aus dem Stand der Technik bekannten Materialien war es Aufgabe der vorliegenden Erfin- dung, Mischoxidmaterialien bereitzustellen, die gleichzeitig eine sehr gute p-Leitfähigkeit sowie akzeptable Transparenz aufweisen. Ebenso war es Aufgabe der vorliegenden Erfindung, einen Sol bereitzustellen, aus dem die Mischoxidmaterialien hergestellt werden können. Zudem ist es Aufgabe der vorliegenden
Erfindung, ein entsprechendes Herstellungsverfahren sowie Verwendungszwecke eines Substrates, auf dem eine entsprechende Mischoxid-Schicht abgeschieden ist, anzugeben .
Diese Aufgabe wird bezüglich des Sols mit den Merkmalen des Patentanspruchs 1, bezüglich des Herstellungsverfahrens einer kristallinen Mischoxidschicht mit den Merkmalen des Patentanspruchs 8, bezüglich eines Substrates, auf dem eine erfindungsgemäß herstellbare Mischoxidschicht abgeschieden ist, mit den Merkmalen des Patentanspruchs 13 sowie bezüglich der Verwendungszwecke eines derartigen Substrates mit den Merkmalen des Patentanspruchs 16 gelöst. Die jeweilig abhängigen Patentansprüche stellen dabei vorteilhafte Weiterbildungen dar.
Erfindungsgemäß wird somit ein Sol angegeben, der eine in einem Dispersionsmedium dispergierte Phase enthält. Die dispergierte Phase enthält dabei
a) mindestens ein Cu- (II) -Salz,
b) mindestens ein Cr- (III) -Salz in einem Mengenanteil von 0,40 bis 1,20 bezogen auf die Stoffmenge an Cu- (II) -Salz, sowie
c) mindestens ein Mg- (II) -Salz in einem Mengenanteil von 0,01 bis 0,7 bezogen auf die Stoffmenge an Cu- (II) -Salz .
Bevorzugt ist dabei, wenn der Mengenanteil des Cr- (III) -Salzes bezogen auf die Stoffmenge an Cu-(II)- Salz zwischen 0,50 bis 0,90, bevorzugt zwischen 0,55 und 0,85, weiter bevorzugt zwischen 0,50 und 0,80, besonders bevorzugt zwischen 0,50 und 0,70 beträgt.
Weiter ist es vorteilhaft, wenn der Mengenanteil des Mg- (II) -Salzes bezogen auf die Stoffmenge an Cu-(II)- Salz zwischen 0,10 und 0,60, bevorzugt zwischen 0,20 und 0,55, besonders bevorzugt zwischen 0,30 und 0,50 beträgt. Insbesondere ist es bevorzugt, wenn der Mengenanteil des Mg- (II) -Salzes bezogen auf die Stoffmenge an Kupfer- (II) -Salz 0,26, 0,27, 0,28, 0,29, 0, 30, 0,31, 0,32, 0, 33, 0, 34, 0,35, 0, 36, 0, 37, 0, 38, 0,39, 0,40, 0,41, 0,42, 0,43, 0,44, 0,45, 0,46, 0,47, 0,48, 0, 49, 0,50, 0,51, 0,52, 0,53, 0,54 oder 0,55 beträgt .
Die oben erwähnte Seite gemäß der Merkmale a) , b) und/oder c) sind dabei in einer bevorzugten Ausführungsform jeweils unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Acetaten, Acetylacetona- ten, 2, 2' , 2"— itrilotriethanolaten, Propionaten und/oder Capronaten.
Als Dispersionsmedium kommt insbesondere ein einwertiger Alkylalkohol oder ein Gemisch aus einwertigen Alkylakoholen, bevorzugt Ethanol in Frage.
Weiter ist bevorzugt, wenn der Sol mindestens ein Zu¬ satzstoff, ausgewählt aus der Gruppe bestehend aus 2— Ethoxyessigsäure, 2— (2-Methoxyethoxy) -essigsäure und/oder Triethanolamin, enthält.
Bevorzugte Konzentrationen des Kupfer— (II) -Salzes a) im Dispersionsmedium liegen dabei zwischen 0,01 mol/1 und 5 mol/1, bevorzugt zwischen 0,05 mol/1 und 1 mol/1, besonders bevorzugt zwischen 0,10 und 0,60 mol/1. Die Konzentrationen der anderen Salze ergeben sich entsprechend der eingesetzten Mengenverhältnisse .
Erfindungsgemäß wird ebenso ein Verfahren zur Herstellung einer kristallinen Mischoxidschicht der allgemeinen Formel CuCri_xMgx02
auf einem Substrat angegeben, wobei 0,26 ^ x < 0,7, bei dem das Substrat mit einem Sol nach einem der vorhergehenden Ansprüche zumindest teilweise benetzt und das benetzte Substrat anschließend erhitzt wird.
Besonders bevorzugte Werte für x betragen dabei 0,26, 0, 27, 0,28, 0, 29, 0, 30, 0, 31, 0, 32, 0,33, 0, 34, 0,35, 0,36, 0,37, 0,38, 0,39, 0,40, 0,41, 0,42, 0,43, 0,44, 0,45, 0,46, 0,47, 0,48, 0, 49, 0,50, 0,51, 0,52, 0,53, 0,54 oder 0,55.
In einer bevorzugten Ausführungsform ist das Substrat ausgewählt aus der Gruppe bestehend aus Siliziumsubstraten, Kieselglassubstraten oder Borosilicatglas- subStraten.
Weiter ist es bei der Verfahrensführung bevorzugt, wenn nach der Benetzung des Substrates
a) eine Oxidation des Sols in einer oxidierenden At- mosphäre sowie im Anschluss und
b) ein Sinterschritt in einer Inertgasatmosphäre durchgeführt wird.
In einer bevorzugten Ausführungsform des Verfahrens wird
a) die Oxidation bei Temperaturen zwischen 300 °C und 600 °C, bevorzugt zwischen 350 °C und 525 °C, besonders bevorzugt zwischen 400 °C und 500 °C und/oder
b) der Sinterschritt bei Temperaturen zwischen 500 °C und 1000 °C, bevorzugt zwischen 550 °C und 850 °C, besonders bevorzugt zwischen 600 und 750 °C durchgeführt .
Vorteilhaft ist ebenso dass vor Schritt b) iterativ mindestens eine erneute Benetzung des Substrates so- wie anschließend ein erneuter Oxidationsschritt a) durchgeführt wird.
Weiter wird erfindungsgemäß ein Substrat, umfassend eine das Substrat zumindest teilweise bedeckende Be- schichtung aus einem Mischoxid der allgemeinen Formel
CuCr!-xMgx02
mit 0,26 ^ x ^ 0,7 angegeben. Bei dem gemäß der allgemeinen Formel angegebenen Mischoxid ist eine Dela- fossitphase die dominante Phase, das Mischoxid kann ggf. auch phasenrein vorliegen. Für den Fall, das Fremdphasen neben der Delafossitphase enthalten sind, werden jedoch die optoelektronischen Eigenschaften nicht gestört; deshalb können die vorhandenen Fremdphasen problemlos toleriert werden.
Insbesondere ist es bevorzugt, wenn in der oben angegebenen Formel der Wert für x innerhalb der folgenden Grenzen liegt: 0,30 ^ x ^ 0,60, bevorzugt 0,31 ^ x ^ 0, 50.
Insbesondere kommen für x die folgenden Werte in Fra¬ ge: 0,26, 0,27, 0,28, 0,29, 0,30, 0,31, 0,32, 0,33, 0, 34, 0,35, 0,36, 0, 37, 0, 38, 0,39, 0,40, 0,41, 0,42, 0,43, 0,44, 0,45, 0,46, 0,47, 0,48, 0,49, 0,50, 0,51, 0,52, 0,53, 0,54 oder 0,55.
Bevorzugte Schichtdicken der auf dem Substrat abgeschiedenen Mischoxidschicht liegen dabei insbesondere zwischen 10 nm und 2000 nm, bevorzugt zwischen 50 nm und 1000 nm, besonders bevorzugt zwischen 150 nm und 600 nm.
Erfindungsgemäß werden ebenso Verwendungszwecke eines zuvor angesprochenen Substrates beschrieben. Insbesondere eignet sich das Substrat zur Verwendung als Thermoelektrikum, zur Gewinnung von elektrischer E- nergie aus Abwärme, als Elektrodenmaterial in elektrochemischen Zellen, als Bestandteil- von Katalysatoren zur Wasserstofferzeugung oder Stickoxid—Zer- setzung, als Bestandteil eines p-n-Überganges, als
Bestandteil von elektronischen Bauteilen, Leuchtdioden und Displays, oder als Lumineszenz—Material .
Die vorliegende Erfindung wird anhand der nachfolgen- den Beispiele näher erläutert, ohne die Erfindung auf die dort angegebenen speziellen Parameter zu beschränken. Ebenso wird die vorliegende Erfindung anhand der nachfolgenden Figuren näher beschrieben. Dabei zeigen
Figur 1 Röntgendiffraktogramme von CuCri-.xMgxC>2 -
Dünnschichten, die über das Sol-Gel- Verfahren mittels Tauchbeschichtung auf Borosilicatglas aufgetragen wurden. Es lassen sich die Phasen CuO (■) , MgO <T) und die Delafossitphase CuCri_xMgx02 (°) nachweisen, und Figur 2 den spezifischen Widerstand und die opti¬ sche Transmission von CuCri-xMgx02- Dünnschichten, die über das Sol-Gel- Verfahren mittels Tauchbeschichtung auf Borosilicatglas aufgetragen wurden.
Basierend auf einer Synthese für CuCr02 [S. Götzendörfer, C. Polenzky, S. Ulrich, P. Löbmann, Thin Solid Films 2009, 518, 1153] wurden Experimente mit Be- schichtungssolen mit Magnesiumgehalten durchgeführt, die deutlich über eine gewöhnliche Dotierung hinaus- gehen. Es handelte sich um die in den folgenden Beispielen hergestellten Sole:
Beispiel 1: Kationenverhältnis Cu:Cr:Mg = 1,00:0,70:0,30
10,75 g (0,0538 mol) Kupfer ( II ) -acetat-monohydrat werden zu 28,13 g (0,189 mol) Triethanolamin und
198,3 g Ethanol gegeben. Nach 12 Stunden Rühren bei Raumtemperatur werden dem Gemisch noch 9,32 g (0,0377 mol) Chrom ( III ) -acetat-monohydrat und 3,48 g (0,0162 mol) Magnesium ( II) -acetat-tetrahydrat hinzugefügt.
Nach weiteren 12 Stunden Rühren bei Raumtemperatur erhält man das gebrauchsfertige Sol.
Beispiel 2: Kationenverhältnis Cu:Cr:Mg = 1,00:0,60:0,40
In einem Gemisch aus 28,70 g (0,192 mol) Triethanola¬ min und 197,5 g Ethanol werden 10,97 g (0,0549 mol) Kupfer (II) -acetat-monohydrat durch zwölfstündiges
Rühren bei Raumtemperatur gelöst. Danach werden 8,15 g (0,0330 mol) Chrom(III) -acetat-monohydrat und 4,73 g (0,0221 mol) Magnesium (II ) -acetat-tetrahydrat zugegeben. Weitere 12 Stunden Rühren bei Raumtemperatur ergeben das gebrauchsfertige Sol.
Beispiel 3: Kationenverhältnis Cu:Cr:Mq - 1,00:0,50:0,50
11,20 g (0,0561 mol) Kupfer (II) -acetat-monohydrat werden durch Rühren bei Raumtemperatur binnen 12
Stunden in einem Gemisch bestehend aus 29,29 g (0,196 mol) Triethanolamin und 196,5 g Ethanol gelöst. Nach Zugabe von 6,93 g (0,0280 mol) Chrom(III) -acetat- monohydrat und 6,03 g (0,0281 mol) Magnesium ( II ) - acetat-tetrahydrat wird das Sol nochmals 12 Stunden bei Raumtemperatur gerührt. Anschließend ist das Sol gebrauchsfertig. Die so hergestellten Sole erwiesen sich über mehrere Monate als stabil und wurden zur Herstellung der erfindungsgemäßen Oxidmaterialien auf Substraten durch Tauchbeschichtung verwendet.
Die aufgetragenen Dünnfilme wurden zunächst im Muffelofen bei 400 °C bis 500 °C an Luft oxidiert, so dass die organischen Bestandteile zersetzt wurden und im Röntgendiffraktogramm ausschließlich die Phasen
CuO und CuCr204 beziehungsweise MgCr204 nachgewiesen werden konnten. Diese Oxidschichten wurden in einem kontinuierlichen Inertgasstrom (Argon oder Stickstoff) einem zweiten Sinterschritt bei 600 bis 700 "C unterzogen.
Höhere Schichtdicken konnten durch Mehrfachbeschich- tung erreicht werden, wobei nach dem Auftrag jeder Einzelschicht ein oxidativer Ofenschritt durchgeführt wurde. Das Sintern unter Inertgas erfolgte hingegen nur einmalig nach Oxidation der letzten Schicht.
In den mittels Tauchbeschichtung hergestellten Dünnschichten der Stöchiometrie CuCri-xMgx02 konnte mit steigendem Magnesiumgehalt x eine leichte Zunahme der
Fremdphasen CuO und MgO gegenüber der CuCr02-Probe beobachtet werden (siehe Abbildung 1) . Dennoch werden die Röntgendiffraktogramme auch bei x = 0,50 unverändert von der Delafossitphase dominiert.
Entgegen den Beobachtungen in der Literatur beeinträchtigen geringfügige Verunreinigungen wie CuO, MgO und MgCr204 die optoelektronischen Eigenschaften der von uns hergestellten Dünnschichten nicht. Die Trans- mission der Proben im sichtbaren Wellenlängenbereich
(400 — 700 nm) verschlechtert sich mit zunehmendem Magnesiumgehalt nur langsam, sie liegt für Filme der Stöchiometrie CuCr0,7oMgo,3o02 bei 41,7% (Filmdicke gesamt 460 nm) , für CuCr0, 6oMg0, 40O2 bei 36,8% (Filmdicke gesamt 500 nm) und für CuCr0,50Mg0,5o02 bei 31,3% (Film- dicke gesamt 580 nm) und damit sogar noch für die
Probe mit x = 0,50 mit reinem CuCr02 (Filmdicke gesamt 400 nm) gleichauf (siehe Abbildung 2) .
Beim spezifischen Widerstand lassen sich mit dem Ma- terial CuCri-xMgx02 mit 0,30 ^ x 0,5 Werte von 0,150
Ω cm (x = 0,30) bis 0,371 Ω cm (x = 0,50) erreichen.
Gegenüber CuCr02 stellt dies eine Absenkung um drei Größenordnungen dar. Dass es sich bei den Proben um Halbleiter mit Lochleitung handelt, konnte durch Messung der Seebeck-Koeffizienten nachgewiesen werden. Diese sind durchweg positiv und liegen zwischen +50 μν/Κ und +180 μν/Κ. Insgesamt konnten durch das Sol- Gel-Verfahren Schichten mit einem deutlich höheren Magnesiumanteil als bei Tao et al. [D. Li, X.-D.
Fang, C . -H . Deng, R.-H. Tao, W . -W . Dong, Chinese Patent 2007, CN 200710192050.4] hergestellt werden, die sehr gute p-Leitfähigkeit mit akzeptabler Transparenz vereinen .
Dünnschichten der Stöchiometrie CuCri_xMgx02 mit 0,30 < x 0,50 erreichen somit ähnliche Widerstandswerte auf wie vergleichbar hergestellte dotierte CuCr02- Schichten. Aufgrund ihres geringeren Chromgehalts er- reichen sie bei gleicher Schichtdicke jedoch eine deutlich höhere optische Transmission. Zudem hat die¬ ses Mischoxid den Vorteil, über das kostengünstige, flexible und industriell etablierte Sol-Gel-Verfahren herstellbar zu sein. Dünnschichten der Stöchiometrie CuCr1-x gx02 mit 0,30 x 0,50 könnten sich auch über andere Beschich- tungsverfahren wie beispielsweise Pulsed Laser Depo- sition, Chemical Vapour Deposition oder verschiedene Sputterverfahren herstellen lassen. Darüber hinaus wäre auch eine Herstellung über das Sol-Gel-Verfahren mit modifizierten Solsynthesen denkbar. Ein Verstoß gegen ein Patent auf dieses Material ließe sich aber mit relativ geringem apparativem Aufwand beispielsweise mittels Energiedispersiver Röntgenspektrosko- pie, Röntgen-Photoelektronenspektroskopie oder jedem anderen Verfahren, dass eine quantitative Bestimmung der atomaren Zusammensetzung von keramischen Festkörpern ermöglicht, nachweisen.
Die Delafossit-Schichten könnten als Thermoelektrika zur Gewinnung von elektrischer Energie aus Abwärme verwendet werden. Darüber hinaus könnten sie als transparente p-Halbleiter zum Einsatz kommen, was die Herstellung von transparenten p-n-Halbleiterübergän- gen für Solarzellen, Leuchtdioden, Displays und weitere elektronische Bauteile ermöglichen würde.

Claims

Patentansprüche
Sol, enthaltend eine in mindestens einem Disper- giermedium dis'pergierte Phase, die
a) mindestens ein Cu- (II) -Salz,
b) mindestens ein Cr- (III) -Salz in einem Mengenanteil von 0,40 bis 1,20 bezogen auf die Stoffmenge an Cu- (II) -Salz, sowie
c) mindestens ein Mg- (II) -Salz in einem Mengenanteil von 0,01 bis 0,7 bezogen auf die
Stoffmenge an Cu- (II) -Salz
enthält .
Sol nach Anspruch 1, dadurch gekennzeichnet, dass der Mengenanteil des Cr- ( III ) -Salzes bezogen auf die Stoffmenge an Cu- (II) -Salz zwischen 0,50 bis 0,90, bevorzugt zwischen 0,55 und 0,85, weiter bevorzugt zwischen 0,50 und 0,80, besonders bevorzugt zwischen 0,50 und 0,70 beträgt.
Sol nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Mengenanteil des Mg- ( II ) -Salzes bezogen auf die Stoffmenge an Cu- (II) -Salz zwischen 0,10 und 0,60, bevorzugt zwischen 0,20 und 0,55, besonders bevorzugt zwischen 0,30 und 0,50 beträgt.
Sol nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Salze a) , b) und/oder c) unabhängig voneinander ausgewählt sind aus der Gruppe bestehend aus Acetaten, Ace- tylacetonaten, 2,2' , 2"-Nitrilotriethanolaten, Propionaten und/oder Capronaten.
Sol nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Dispersionsmedium ein einwertiger Alkylalkohol oder ein Gemisch aus einwertigen Alkylakoholen, bevorzugt Ethanol ist .
Sol nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens ein Zusatzstoff, ausgewählt aus der Gruppe bestehend aus 2—Ethoxyessigsäure, 2— (2-Methoxyethoxy) - essigsaure und/oder Triethanolamin, enthalten ist .
Sol nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Konzentration des Kupfer— (II) -Salzes a) im Dispersionsmedium zwischen 0,01 mol/1 und 5 mol/1, bevorzugt zwischen 0,05 mol/1 und 1 mol/1, besonders bevorzugt zwischen 0,10 und 0,60 mol/1 beträgt.
Verfahren zur Herstellung einer kristallinen Mischoxidschicht der allgemeinen Formel
CuCri_xMgx02
auf einem Substrat, wobei 0,26 ^ x ^ 0,7, bei dem das Substrat mit einem Sol nach einem der vorhergehenden Ansprüche zumindest teilweise benetzt und das benetzte Substrat anschließend erhitzt wird.
Verfahren nach vorhergehendem Anspruch, dadurch gekennzeichnet, dass das Substrat ausgewählt ist aus der Gruppe bestehend aus Siliziumsubstraten, Kieselglassubstraten oder Borosilicatglas- substraten . Verfahren nach einem der beiden vorhergehenden Ansprüche, dadurch gekennzeichnet dass nach der Benetzung des Substrates
a) eine Oxidation des Sols in einer oxidierenden Atmosphäre sowie im Anschluss und
b) ein Sinterschritt in einer Inertgasatmosphäre durchgeführt wird.
Verfahren nach vorhergehendem Anspruch, dadurch gekennzeichnet, dass
a) die Oxidation bei Temperaturen zwischen
300 °C und 600 °C, bevorzugt zwischen 350 °C und 525 °C, besonders bevorzugt zwischen 400 °C und 500 °C und/oder
b) der Sinterschritt bei Temperaturen zwischen 500 °C und 1000 °C, bevorzugt zwischen 550 °C und 850 °C, besonders bevorzugt zwischen 600 und 750 °C
durchgeführt wird.
Verfahren nach einem der beiden vorhergehenden Ansprüche, dadurch gekennzeichnet, dass vor Schritt b) iterativ mindestens eine erneute Benetzung des Substrates sowie anschließend ein erneuter Oxidationsschritt a) durchgeführt wird.
Substrat, umfassend eine das Substrat zumindest teilweise bedeckende Beschichtung aus einem Mischoxid der allgemeinen Formel
CuCri_xMgx02
mit 0,26 ^ x ^ 0,7 herstellbar nach einem Verfahren nach einem der Ansprüche 8 bis 12. Substrat nach vorhergehenden Anspruch, dadurch gekennzeichnet, dass 0,30 ^ x ^ 0,60, bevorzugt 0,31 < x < 0,50.
15. Substrat nach einem der beiden vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schichtdicke zwischen 10 nm und 2000 nm, bevorzugt zwischen 50 nm und 1000 nm, besonders bevorzugt zwischen 150 nm und 600 nm beträgt.
16. Verwendung eines Substrates nach einem der Ansprüche 13 oder 14 als Thermoelektrikum, zur Gewinnung von elektrischer Energie aus Abwärme, als Elektrodenmaterial in elektrochemischen Zellen, als Bestandteil von Katalysatoren zur Wasserstofferzeugung oder Stickoxid—Zersetzung, als Bestandteil eines p-n-Überganges, als Bestandteil von elektronischen Bauteilen, Leuchtdioden und Displays, oder als Lumineszenz—Mate ial .
PCT/EP2011/002485 2010-05-28 2011-05-18 Sol und verfahren zur herstellung einer kristallinen mischoxidschicht, substrat mit mischoxidschicht sowie verwendung hiervon WO2011147548A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010021921A DE102010021921A1 (de) 2010-05-28 2010-05-28 Sol und Verfahren zur Herstellung einer kristallinen Mischoxidschicht, Substrat mit Mischoxidschicht sowie Verwendung hiervon
DE102010021921.5 2010-05-28

Publications (1)

Publication Number Publication Date
WO2011147548A1 true WO2011147548A1 (de) 2011-12-01

Family

ID=44342977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/002485 WO2011147548A1 (de) 2010-05-28 2011-05-18 Sol und verfahren zur herstellung einer kristallinen mischoxidschicht, substrat mit mischoxidschicht sowie verwendung hiervon

Country Status (2)

Country Link
DE (1) DE102010021921A1 (de)
WO (1) WO2011147548A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3472251A4 (de) * 2016-06-15 2020-03-11 Brisbane Materials Technology Pty Ltd Selbsthärtende mischmetalloxide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010003620A1 (de) * 2008-07-08 2010-01-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Sol und verfahren zur herstellung einer delafossit-mischoxidschicht-struktur auf einem substrat sowie mit einem mischoxid beschichtetes substrat

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101308109A (zh) 2007-12-07 2008-11-19 中国科学院安徽光学精密机械研究所 p型铜铁矿基氧化物臭氧气敏半导体材料及其制备方法
CN100560799C (zh) 2007-12-27 2009-11-18 中国科学院安徽光学精密机械研究所 P型铜铁矿结构透明导电氧化物薄膜的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010003620A1 (de) * 2008-07-08 2010-01-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Sol und verfahren zur herstellung einer delafossit-mischoxidschicht-struktur auf einem substrat sowie mit einem mischoxid beschichtetes substrat

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
A.C. RASTOGI, S.H. LIM, S.B. DESU, J. APPL. PHYS., vol. 104, 2008, pages 023712
D. LI, X. FANG, Z. DENG, W. DONG, R. TAO, S. ZHOU, J. WANG, T. WANG, Y. ZHAO, X. ZHU, J. ALLOYS COMPD., 2009
K. HAYASHI, K. SATO, T. NOZAKI, T. KAJITANI, JPN. J. APPL. PHYS., vol. 47, 2008, pages 59
K. TONOOKA, N. KIKUCHI, THIN SOLID FILMS, vol. 515, 2006, pages 2415
M. POIENAR, F. DAMAY, C. MARTIN, V. HARDY, A. MAIGNAN, G. ANDRE, PHYS. REV. B, vol. 79, 2009, pages 014412
P.W. SADIK, M. IVILL, V. CRACIUN, D.P. NORTON, THIN SOLID FILMS, vol. 517, 2009, pages 3211
Q. XU, H. SCHMIDT, S. ZHOU, K. POTZGER, M. HELM, H. HOCHMUTH, M. LORENZ, C. MEINECKE, M. GRUNDMANN, THIN SOLID FILMS, vol. 516, 2008, pages 8543
R. NAGARAJAN, A.D. DRAESEKE, A.W. SLEIGHT, J. TATE, J. APPL. PHYS., vol. 89, 2001, pages 8022
S. GÖTZENDÖRFER, C. POLENZKY, S. ULRICH, P. LÖBMANN, THIN SOLID FILMS, vol. 518, 2009, pages 1153
S. GÖTZENDÖRFER, C. POLENZKY, S. ULRICH, P. LÖBMANN: "Preparation of CuAlO2 and CuCrO2 thin films by sol-gel processing", THIN SOLID FILMS, vol. 518, 9 April 2009 (2009-04-09), pages 1153 - 1156, XP002656539 *
S. GÖTZENDÖRFER, R. BYWALEZ, P. LÖBMANN, GEL SCI TECHNOL., vol. 52, 2009, pages 113
S.H. LIM, S. DESU, A.C. RASTOGI, J. PHYS. CHEM. SOLIDS, 2008
S.Y. ZHENG, G.S. JIANG, J.R. SU, C.F. ZHU, MATER. LETT., vol. 60, 2006, pages 3871
T. OKUDA, N. JUFUKU, S. HIDAKA, N. TERADA, PHYS. REV. B, vol. 72, 2005, pages 144403
T. OKUDA, T. 0- NOE, Y. BEPPU, N. TERADA, T. DOI, S. MIYASAKA, Y. TOKURA, J. MAGN. MAGN. MATER, vol. 310, 2007, pages 890
T. OKUDA, T. ONOE, Y. BEPPU, N. TERADA, T. DOI, S. MIYASAKA, Y. TOKURA, J. MAGN. MAGN. MATER, vol. 310, 2007, pages 890
T.-W. CHIU, K. TONOOKA, N. KIKUCHI, THIN SOLID FILMS, vol. 516, no. 18, pages 5941 - 5947
W.T. LIM, L. STAFFORD, P.W. SADIK, D.P. NORTON, S.J. PEARTON, Y.L. WANG, F. REN, APPL. PHYS. LETT., vol. 90, 2007, pages 142101
Y. ONO, K. SATOH, T. NOZAKI, T. KAJITANI, JPN. J. APPL. PHYS., vol. 46, 2007, pages 1071

Also Published As

Publication number Publication date
DE102010021921A1 (de) 2011-12-01

Similar Documents

Publication Publication Date Title
DE112010004154T9 (de) Verfahren zum Herstellen einer Halbleiter-Dünnschicht und einerphotovoltaischen Einheit, welche die Dünnschicht enthält
EP2398935B1 (de) Indiumalkoxid-haltige zusammensetzungen, verfahren zu ihrer herstellung und ihre verwendung
DE102014100684A1 (de) Ionenleitende Glaskeramik mit granatartiger Kristallstruktur
DE102007025577B4 (de) Verfahren zur Herstellung von Titanoxidschichten mit hoher photokatalytischer Aktivität
EP2864267B1 (de) Thermochromes glas mit beschichtung von farbneutralem vanadiumdioxid
WO2011020792A1 (de) Verfahren zur herstellung metalloxid-haltiger schichten
EP2116513A1 (de) Indiumzinnoxohydrat-, Indiumzinnoxid-Pulver und Dispersion hiervon
EP2467514A1 (de) Verfahren zur herstellung indiumoxid-haltiger schichten
DE102010043668A1 (de) Verfahren zur Herstellung von Indiumoxid-haltigen Schichten, nach dem Verfahren hergestellte Indiumoxid-haltige Schichten und ihre Verwendung
WO2012010427A1 (de) Indiumoxoalkoxide für die herstellung indiumoxid-haltiger schichten
Ghanem et al. Synthesis and characterization of undoped and Er-doped ZnO nano-structure thin films deposited by sol-gel spin coating technique
DE102020111624A1 (de) Aluminium-dotierter Lithiumionenleiter auf Basis einer Granatstruktur
DE102006011754B4 (de) Mikrowellen-Synthesen kristalliner Metalloxidpartikel in lonischen Flüssigkeiten (ILs)
DE2417358A1 (de) Porzellanemails und ihre verwendung
WO2011147548A1 (de) Sol und verfahren zur herstellung einer kristallinen mischoxidschicht, substrat mit mischoxidschicht sowie verwendung hiervon
EP3013837B1 (de) Formulierungen zur herstellung indiumoxid-haltiger schichten, verfahren zu ihrer herstellung und ihre verwendung
DE102005038860A1 (de) Komplexes Oxid mit thermoelektrischen Eigenschaften des p-Typs
DE102016122132A1 (de) Katalytisch aktives Material, Verfahren zu dessen Herstellung sowie dessen Verwendung
WO2010003620A1 (de) Sol und verfahren zur herstellung einer delafossit-mischoxidschicht-struktur auf einem substrat sowie mit einem mischoxid beschichtetes substrat
EP1752215A1 (de) Photokatalysator
DE112004002101T5 (de) Kompositoxid mit thermoelektrischen Umwandlungseigenschaften vom n-Typ
Margoni et al. Studies on pure and fluorine doped vanadium pentoxide thin films deposited by spray pyrolysis technique
DE102010027063A1 (de) Beschichtung zur Umwandlung von Strahlungsenergie
DE102013212017A1 (de) Verfahren zur Herstellung von Indiumalkoxid-Verbindungen, die nach dem Verfahren herstellbaren Indiumalkoxid-Verbindungen und ihre Verwendung
WO2009141417A1 (de) Verfahren zur herstellung von alkalimetall-dotiertem nanoskaligem zinkoxid mit variablem dotierungsgehalt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11727641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11727641

Country of ref document: EP

Kind code of ref document: A1