WO2011147335A1 - 一种实现直接检测和相干检测的方法和装置 - Google Patents

一种实现直接检测和相干检测的方法和装置 Download PDF

Info

Publication number
WO2011147335A1
WO2011147335A1 PCT/CN2011/075210 CN2011075210W WO2011147335A1 WO 2011147335 A1 WO2011147335 A1 WO 2011147335A1 CN 2011075210 W CN2011075210 W CN 2011075210W WO 2011147335 A1 WO2011147335 A1 WO 2011147335A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
output
coupled
delayed
signal
Prior art date
Application number
PCT/CN2011/075210
Other languages
English (en)
French (fr)
Inventor
方圆圆
李良川
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2011147335A1 publication Critical patent/WO2011147335A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/002Coherencemultiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant

Definitions

  • the present invention relates to communication technologies, and more particularly to a method and apparatus for implementing direct detection and coherent detection. Background technique
  • modulation formats are needed.
  • the more important modulation formats include DPSK (Differential Phase Shift Keying) and QPSK (Quadature Phase Shift Keying). Keying) or PDM-QPSK (Polarization Division Multiplexing-QPSK) is widely used, and DPSK and DQPSK require direct detection, while PDM- Coherent detection is required for QPSK and other patterns.
  • Direct detection is a process of feeding a received optical signal directly into a photodetector to derive a useful signal; and coherent detection is a process of using a local oscillator signal and a received optical signal for mixing to obtain a useful signal. It improves receiver sensitivity compared to direct detection and is suitable for higher spectral efficiency modulation patterns.
  • Embodiments of the present invention provide a method and apparatus for implementing direct detection and coherent detection, which can flexibly select direct detection or coherent detection based on a control signal.
  • An embodiment of the present invention provides an apparatus for implementing direct detection and coherent detection, including: a receiving unit, configured to receive an optical signal;
  • the optical splitter is configured to divide the optical signal received by the receiving unit into a first optical signal and a second optical signal, where the first optical signal is sent to the power distribution unit, and the second optical signal is sent to the polarization beam splitting unit.
  • a power distribution unit configured to perform power distribution on the first optical signal to output the first optical signal and the second optical signal;
  • a polarization splitting unit configured to perform polarization splitting on the second optical signal to output the first optical signal and the second optical signal
  • a switching unit configured to select an optical signal output by the power distribution unit or an optical signal output by the polarization splitting unit according to the received control signal
  • the detecting unit is configured to perform direct detection or coherent detection on the optical signal output by the switching unit.
  • An embodiment of the present invention further provides a method for implementing direct detection and coherent detection, including: dividing a received optical signal into a first optical signal and a second optical signal;
  • the first way performs power distribution to obtain a first optical signal and a second optical signal, and the second optical signal is polarized and split to obtain a first optical signal and a second optical signal;
  • the optical signal after the output power distribution or the optical signal after the polarization splitting is selected according to the control signal, and the direct detection or the coherent detection can be flexibly performed to make the single polarization
  • the system or polarization multiplexing system can accommodate different rates of intermediate nodes.
  • FIG. 1 is a schematic structural diagram of an apparatus for implementing direct detection and coherent detection according to an embodiment of the present invention
  • 2 is a schematic structural diagram of a device for implementing direct detection and coherent detection according to an embodiment of the present invention
  • 3 is a schematic flowchart of a method for implementing direct detection and coherent detection according to an embodiment of the present invention
  • FIG. 4 is a schematic flowchart of a method for implementing direct detection and coherent detection according to an embodiment of the present invention
  • FIG. 5 is a schematic flowchart of a method for implementing direct detection and coherent detection according to an example of the received optical signal as DQPSK.
  • FIG. 6 is a schematic diagram of the received optical signal being DQPSK.
  • FIG. 7 is a schematic diagram of a method for implementing direct detection and coherent detection according to an embodiment of the present invention. The method for implementing direct detection and coherent detection is illustrated by using the received optical signal as an example of PDM-QPSK.
  • FIG. 8 is a schematic diagram of a method for implementing direct detection and coherent detection. The embodiment shows a structure of a device for realizing direct detection and coherent detection by taking the received optical signal as PDM-QPSK as an example. detailed description
  • An embodiment of the present invention provides a device for implementing direct detection and coherent detection. As shown in FIG. 1, the method includes:
  • the receiving unit 11 is configured to receive an optical signal
  • the optical splitter 12 is configured to divide the optical signal received by the receiving unit 11 into a first optical signal and a second optical signal.
  • the first optical signal is sent to the power distribution unit 13, and the second optical signal is sent to the polarization.
  • the power distribution unit 13 is configured to perform power distribution on the first optical signal to output the first optical signal and the second optical signal;
  • the polarization splitting unit 14 is configured to perform polarization splitting on the second optical signal to output the first optical signal and the second optical signal;
  • the switching unit 15 is configured to select the light output by the power distribution unit 13 according to the received control signal a signal or a light signal output by the polarization splitting unit 14;
  • the detecting unit 16 is for performing direct detection or coherent detection on the optical signal output from the switching unit 15. Specifically, if the switching unit selects and outputs the optical signal output from the power distribution unit 13, direct detection is performed, and if the switching unit selects and outputs the optical signal output from the polarization splitting unit 14, coherent detection is performed.
  • the foregoing apparatus may further include:
  • the control unit 21 is configured to receive a control signal sent by the transmitting end of the optical signal, and send the control signal to the switching unit, or to receive a control signal fed back by the receiving unit 11 through an externally reserved interface, And transmitting the control signal to the switching unit.
  • control signal of the control unit 21 may be manually selected, and may be selected by the pattern of the optical signal. For example, if the optical signal is DPSK, the selection control unit 21 sends a control signal to control the output power of the switching unit 15. The optical signal output by the distribution unit 13; if the optical signal is PDM-QPSK, the selection control unit 21 transmits a control signal to control the switching unit 15 to output the optical signal output by the polarization splitting unit 14.
  • the transmitting end of the optical signal may send a control signal to the control unit 21 according to the pattern of the optical signal. For example, if the optical signal sent by the transmitting end is DPSK, the control signal is sent to the control unit 21 to control the switching unit 15 to output the power allocating unit 13. The output optical signal; if the optical signal transmitted by the transmitting end is PDM-QPSK, the control signal is sent to the control unit 21 to control the switching unit 15 to output the optical signal output by the polarization splitting unit 14.
  • the receiving unit 11 may include a power detecting module, configured to detect whether the received optical signals are equal in power in two polarization states, and if they are equal, a polarization multiplexing signal, and the feedback control signal controls the switching unit 15 to output a polarization component.
  • the optical signal output by the beam unit 14; if not equal, is a single polarization signal, and the feedback control signal controls the switching unit 15 to output the optical signal output by the power distribution unit 13.
  • the control unit 21 receives the control signal fed back by the receiving unit 11, and transmits the control signal to control the switching unit 15 to output the optical signal output by the power distribution unit 13; if the received optical signal In the case of PDM-QPSK, the control unit 21 receives the control signal fed back by the receiving unit 11, and transmits the control signal to control the switching unit 15 to output the optical signal output by the polarization splitting unit 14.
  • the detecting unit 16 includes:
  • a first splitting delay sub-unit 1601 configured to divide the first optical signal output by the switching unit 15 The light obtains the first non-delayed optical signal and the second non-delayed optical signal, and delays the first non-delayed optical signal by using the adjustable delay line, and outputs the first delayed optical signal and the first a second non-delayed optical signal;
  • a second splitting delay sub-unit 1602 configured to split the second optical signal output by the switching unit 15 to obtain a third non-delayed optical signal and a fourth non-delayed optical signal, and
  • the fourth non-delay optical signal is subjected to delay processing by using an adjustable delay line, and outputs a third non-delayed optical signal and a fourth delayed optical signal.
  • the adjustable delay line can determine the delay bit according to the symbol rate of the signal, that is, the reciprocal of the symbol rate of the signal is a delay bit, and the delay time is adjustable, which can adapt to different working rates, and avoid Existing direct detection methods can only work at a fixed rate.
  • the detecting unit 16 further includes:
  • the first splitting sub-unit 1611 is configured to couple the first delayed optical signal output by the first splitting delay sub-unit 1601, and output the first coupled optical signal and the second coupled optical signal;
  • the second splitting subunit 1612 is configured to couple the second non-delayed optical signal outputted by the first splitting delay subunit 1601 according to the control signal or to couple the local oscillator optical signal to output the third coupled optical signal and the fourth coupled light.
  • the third splitting sub-unit 1613 is configured to couple the third non-delay optical signal output by the second splitting delay sub-unit 1602 according to the control signal or to couple the local oscillator optical signal to output the fifth coupled optical signal and the sixth coupled light.
  • the fourth splitting sub-unit 1614 is configured to couple the fourth delayed optical signal output by the second splitting delay sub-unit 1602, and output the seventh coupled optical signal and the eighth coupled optical signal;
  • a first phase delay sub-unit 1621 configured to phase delay the second coupled optical signal output by the first splitting sub-unit 1611 to obtain a second phase delayed optical signal
  • a second phase delay sub-unit 1622 configured to phase delay the fourth coupled optical signal output by the second splitting sub-unit 1612 to obtain a fourth phase delayed optical signal
  • a third phase delay sub-unit 1623 configured to phase delay the sixth coupled optical signal output by the third splitting sub-unit 1613 to obtain a sixth phase delayed optical signal
  • a fourth phase delay sub-unit 1624 configured to phase delay the eighth coupled optical signal output by the fourth splitting sub-unit 1614 to obtain an eighth phase delayed optical signal
  • a first coupling output sub-unit 1631 configured to couple the first coupled optical signal output by the first splitting sub-unit 1611 and the third coupled optical signal output by the second splitting sub-unit 1612, and output the same;
  • phase delayed optical signal is coupled with the fourth phase delayed optical signal output by the second phase delay sub-unit 1622 and output;
  • a third coupling output sub-unit 1633 configured to couple the fifth coupled optical signal output by the third splitting sub-unit 1613 and the seventh coupled optical signal output by the fourth splitting sub-unit 1614, and output the same;
  • the fourth coupled output subunit 1634 is configured to couple the sixth phase delayed optical signal output by the third phase delay subunit 1623 with the eighth phase delayed optical signal output by the fourth phase delay subunit 1624.
  • the local oscillator optical signals in the second splitting subunit 1612 and the third splitting subunit 1613 may be respectively provided by two lasers, or may be obtained by splitting by one laser, and the second splitting subunit 1612 and the third splitting photon.
  • the control signal in unit 1613 is provided by the control unit.
  • the control unit 21 controls the switching unit 15 to select the optical signal output by the output power distribution unit 13
  • the second splitting sub-unit 1612 is controlled to output the first split delay sub-unit 1601.
  • the second non-delayed optical signal is coupled, and the third splitting sub-unit 1613 is controlled to couple the third non-delayed optical signal output by the second splitting delay subunit 1602; when the control unit 21 controls the switching unit 15
  • the optical signal outputted by the output polarization splitting unit 14 is selected, then the second splitting sub-unit 1612 is controlled to couple the local oscillator optical signal, and the third splitting sub-unit 1613 is controlled to couple the local oscillator optical signal.
  • the phase delay is to determine the phase of the delay according to the pattern of the received optical signal.
  • the patterns of the original optical signal I and Q signals are 01, 11, 10, and 00, respectively, the I and Q signals respectively correspond to the current and the signal n+1 time and n time.
  • the correspondence of the phase differences is as follows:
  • the first splitting sub-unit 1611, the second splitting sub-unit 1612, the third splitting sub-unit 1613 and the fourth splitting sub-unit 1614 generally use a 2x2 coupler, wherein the first splitting sub-unit 1611 and the fourth sub-group
  • the photo subunit 1614 uses one of the inputs, and the other input is a null signal; one input of the second split subunit 1612 is connected to the second non-delay signal, and the other input is connected to the local oscillator signal, and is closed only when in use.
  • One of the inputs, the other input is also a null signal; one input of the third splitting subunit 1613 is connected to the third non-delay signal, and the other input is connected to the local oscillator signal, and only one of them is closed during use.
  • the input terminal, the other input terminal is also a null signal; the first coupling subunit 1631, the second coupling subunit 1632, the third coupling subunit 1633, and the fourth coupling subunit 1634 may be 2x2 couplers.
  • the embodiment of the present invention further provides a method for implementing direct detection and coherent detection, as shown in FIG. 3, including:
  • Step 31 The received optical signal is divided into a first optical signal and a second optical signal.
  • Step 32 The first optical signal is power-distributed to obtain a first optical signal and a second optical signal, and the second optical signal is performed. Polarizing splitting to obtain a first optical signal and a second optical signal;
  • Step 33 Select an optical signal after output power distribution or output an optical signal after polarization splitting according to the received control signal
  • Step 34 Perform direct detection or coherent detection on the output optical signal.
  • control signal is sent by the transmitting end of the optical signal, or the control signal is fed back by the receiving end of the optical signal, and the control signal may be manually selected, and the specific staff may Selecting by the pattern of the optical signal, for example, if the optical signal is DPSK, selecting a control signal to control the optical signal after the output power is allocated; if the optical signal is PDM-QPSK, selecting the control signal to control The optical signal after polarization splitting is output.
  • the transmitting end of the optical signal may also send a control signal according to the pattern of the optical signal. For example, if the optical signal sent by the transmitting end is DPSK, the control signal is sent to control the optical signal after the output power is allocated; if the optical signal sent by the transmitting end For PDM-QPSK, a control signal is sent to control the optical signal after the output polarization split.
  • the receiving end of the optical signal can feed back the control signal by detecting whether the received optical signals are equal in power in the two polarization states. If they are equal, they are polarization multiplexed signals, and the feedback control signal controls the output polarized beam splitting light. Signal; if not equal, it is a single polarization signal, and the feedback control signal controls the optical signal after the output power is distributed. For example, if the received optical signal is DPSK, the control signal is fed back to control the optical signal after the output power is allocated; if the received optical signal is PDM-QPSK, the control signal is fed back to control the optical signal after the output polarization splitting. .
  • performing direct detection or coherent detection on the output optical signal may include: Step 41: splitting the first optical signal output after power distribution or polarization splitting to obtain a first non-delay optical signal And the second non-delayed optical signal, and the first non-delayed optical signal is delayed by the adjustable delay line, and outputs the first delayed optical signal and the second non-delayed optical signal;
  • the second optical signal output after the power distribution or the polarization splitting is split to obtain the third non-delay optical signal and the fourth non-delay optical signal, and the fourth non-delay optical signal is used.
  • the delay line is subjected to delay processing to output a third non-delayed optical signal and a fourth delayed optical signal.
  • the adjustable delay line can determine the delay bit according to the symbol rate of the signal, that is, the reciprocal of the symbol rate of the signal is a delay bit, and the delay time is adjustable, and can adapt to different working speeds. Rate, avoiding the situation where existing direct detection methods can only work at a fixed rate.
  • Step 42 coupling the first delayed optical signal to output a first coupled optical signal and a second coupled optical signal; and coupling the second non-delayed optical signal or the local oscillator optical signal according to the control signal, Outputting a third coupled optical signal and a fourth coupled optical signal; coupling the third non-delayed optical signal or the local oscillator optical signal according to the control signal, and outputting the fifth coupled optical signal and the sixth coupled optical signal;
  • the fourth delayed optical signal is coupled to output a seventh coupled optical signal and an eighth coupled optical signal.
  • the control signal is sent by a transmitting end of the optical signal, or the control signal is fed back by a receiving end of the optical signal.
  • the local oscillation signal may be respectively provided by two lasers, or may be obtained by splitting by one laser.
  • Step 43 Perform phase delay on the second coupled optical signal to obtain a second phase delayed optical signal, perform phase delay on the fourth coupled optical signal to obtain a fourth phase delayed optical signal, and perform the sixth coupled optical signal. Phase delay to obtain a sixth phase delayed optical signal; phase delaying the eighth coupled optical signal to obtain an eighth phase delayed optical signal;
  • the phase delay is to determine the phase of the delay based on the pattern of the received optical signal. For example, for the DQPSK signal, if the patterns of the original optical signal I and Q signals are 01, 11, 10, and 00, respectively, the I and Q signals corresponding to the I and Q signals respectively and the signal n+1
  • the correspondence of the phase difference ⁇ + 1 - ⁇ ⁇ at time n is as follows:
  • Step 51 The receiving unit 11 receives the DQPSK signal, and the optical splitter 12 divides the received optical signal into a first optical signal and a second optical signal, and the first optical signal is sent to the power distribution unit 13, the second path.
  • the optical signal is sent to the polarization splitting unit 14.
  • Step 52 The power distribution unit 13 performs power distribution on the first optical signal to output the first optical signal and the second optical signal, and the polarization splitting unit 14 performs polarization splitting on the second optical signal to output the first optical signal and the second optical signal.
  • Optical signal Optical signal.
  • Step 53 Select an optical signal output by the power distribution unit 13 according to the control signal, and the control signal is sent by the control unit 21.
  • Step 54 The first splitting delay sub-unit 1601 splits the output first optical signal to obtain optical signals R(11) and R(12), and the second splitting delay sub-unit 1602 splits the output second optical signal. Obtaining the optical signals R(13) and R(14), and delaying the optical signals R(11) and R(14) ⁇ with the adjustable delay line to obtain the optical signals R(l) and R. (4) The predetermined bit may be determined according to a symbol rate of the signal.
  • Step 55 The delayed processed optical signals R(l) and R(4) and the optical signals R(12) and R(13) are respectively sent to the first splitting subunit 1611 and the fourth splitting subunit according to the control signal. 1614.
  • the second splitting subunit 1612 and the third splitting subunit 1613 are coupled to obtain optical signals r(l), r(2), r(3), r(4), r(5), r(6). , r(7) and r(8), at this time the control unit 21 controls the switches on the line where R(12) and R(13) are located to be closed.
  • Step 56 The coupled optical signals r(2), r(4), r(6), and r(8) are respectively sent to the first phase extension.
  • the late sub-unit 1621, the second phase delay sub-unit 1622, the third phase delay sub-unit 1623, and the fourth phase delay sub-unit 1624 perform phase delay to obtain optical signals X(2), X(4), X(6), and X (8).
  • the first phase delay sub-unit 1621, the second phase delay sub-unit 1622, the third phase delay sub-unit 1623, and the fourth phase delay sub-unit 1624 determine the phase of the delay according to the pattern of the received optical signal, specifically The first phase delay unit delays the phase, the second phase delay unit delays the phase, the third phase delay unit delays phase 0, and the fourth phase delay unit delays the phase.
  • Step 57 The optical signals r(l) and r(3), X(2) and X(4), r(5) and r(7), and X(6) and X(8) are respectively sent to the first The coupling subunit 1631, the second coupling subunit 1632, the third coupling subunit 1633, and the fourth coupling subunit 1634 are coupled, and the coupled optical signals x(2) and x(4) are selected to be correctly received signals. Other optical signals can be ignored.
  • step 57 selects the coupled optical signals x(l), x(2), x(3), and x(4).
  • the output is the signal that is correctly received.
  • Step 71 The receiving unit 11 receives the PDM-QPSK signal, and the optical splitter 12 divides the received optical signal into a first optical signal and a second optical signal, and the first optical signal is sent to the power distribution unit 13, The two-way optical signal is sent to the polarization splitting unit 14.
  • Step 72 The power distribution unit 13 performs power distribution on the first optical signal to output the first optical signal and the second optical signal, and the polarization splitting unit 14 performs polarization splitting on the second optical signal to output the first optical signal and the second optical signal.
  • Optical signal Optical signal.
  • Step 73 Select an optical signal output by the polarization splitting unit 14 according to the control signal, and the control signal is sent by the control unit 21.
  • Step 74 The first splitting delay sub-unit 1601 splits the output first optical signal to obtain optical signals F(11) and F(12), and the second splitting delay sub-unit 1602 splits the output second optical signal. Obtaining the optical signals F(13) and F(14), and delaying the optical signals F(11) and F(14) ⁇ with the adjustable delay line to obtain the optical signals F(l) and F (4)
  • the predetermined bit may be determined according to the symbol rate of the signal. Since there is no requirement for the number of delay bits under the coherent detection, the delay may be 0 bits, as long as the two delay processing optical signals are guaranteed. The same number of bits can be delayed.
  • Step 75 delaying the processed optical signals F(l) and F(4) and the local oscillator signal according to the control signal F(5) and F(6) respectively couple the first splitting subunit 1611, the fourth splitting subunit 1614, the second splitting subunit 1612 and the third splitting subunit 1613 to obtain optical signals f(l), f( 2), f(3), f(4), f(5), f(6), f(7), and f(8), at which time the control unit 21 controls the switch on the line where the local oscillator signal is located to be closed.
  • Step 76 The optical signals f(2), f(6), f(4), and f(8) obtained after coupling are respectively sent to the first phase delay sub-unit 1621, the second phase delay sub-unit 1622, and the third.
  • the phase delay sub-unit 1623 and the fourth phase delay sub-unit 1624 perform phase delay to obtain optical signals Z(2), Z(4), Z(6), and Z(8).
  • the first phase delay sub-unit 1621, the second phase delay sub-unit 1622, the third phase delay sub-unit 1623, and the fourth phase delay sub-unit 1624 determine the phase of the delay according to the pattern of the received optical signal, specifically The first phase delay unit and the third phase delay unit delay phase 0, and the second phase delay unit and the fourth phase delay unit delay the phase.
  • Step 77 Send the optical signals f(l) and f(3), Z(2) and Z(4), f(5) and f(7), and Z(6) and Z(8) respectively to the first
  • the coupling subunit 1631, the second coupling subunit 1632, the third coupling subunit 1633, and the fourth coupling subunit 1634 are coupled to select the coupled optical signals z(l), z(2), z(3), and z. (4)
  • the output is the signal that is correctly received.
  • the embodiment of the invention selects power distribution or polarization splitting of the optical signal according to the control signal, that is, the optical signal output by the output power distribution unit or the optical signal output by the output polarization splitting unit is selected by the switching unit, that is, according to the control signal, Direct detection or coherent detection is selected to perform direct detection or coherent detection, and demodulation of optical signals of different patterns is realized.
  • the splitting delay unit group uses the adjustable delay line for delay processing, and determines the delay bit according to the symbol rate of the signal, so as to achieve the purpose of adjusting according to the working rate, since the delay is adjustable, it can be adapted. Different working speeds solve the problem that the current direct detection method has a fixed delay of the receiver and can only work at a fixed rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

一种实现直接检测和相干检测的方法和装置 本申请要求于 2010 年 11 月 19 日提交中国专利局、 申请号为 201010554150.9、 发明名称为"一种实现直接检测和相干检测的方法和装置"的 中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信技术,尤其涉及一种实现直接检测和相干检测的方法和装 置。 背景技术
目前为了提高光纤传输效率和频谱效率, 需要釆用不同的调制格式,例如 比较重要的调制格式包括 DPSK ( Differential Phase Shift Keying, 差分相移键 控)、 QPSK ( Quadrature Phase Shift Keying, 四相相移键控 )或 PDM-QPSK ( Polarization Division Multiplexing-QPSK, 偏振复用的四相相移键控 )等都被 广泛的釆用,其中 DPSK和 DQPSK等码型都需要釆用直接检测,而 PDM-QPSK 等码型则需要釆用相干检测。
直接检测是将接收到的光信号直接送入光电探测器,从而得出有用信号的 过程;而相干检测则是利用本振信号与接收到的光信号进行混频处理得出有用 信号的过程, 它与直接检测相比, 可以提高接收机的灵敏度, 同时适用于更高 频谱效率的调制码型。
目前只有单独对 DQPSK或 DPSK进行直接检测或单独对 PDM-QPSK进 行相干检测的方法和装置,并没有一个可以同时实现直接检测和相干检测的方 法和装置。 发明内容
本发明的实施例提供了一种实现直接检测和相干检测的方法和装置,可以 根据控制信号灵活的选择直接检测或相干检测。
本发明实施例提供了一种实现直接检测和相干检测的装置, 包括: 接收单元, 用于接收光信号; 光分路器,用于将接收单元接收到的光信号分成第一路光信号和第二路光 信号, 第一路光信号送入功率分配单元, 第二路光信号送入偏振分束单元; 功率分配单元,用于将第一路光信号进行功率分配输出第一光信号和第二 光信号;
偏振分束单元,用于将第二路光信号进行偏振分束输出第一光信号和第二 光信号;
切换单元,用于根据接收到的控制信号选择功率分配单元输出的光信号或 偏振分束单元输出的光信号;
检测单元, 用于将切换单元输出的光信号进行直接检测或相干检测。
本发明实施例还提供了一种实现直接检测和相干检测的方法, 包括: 将接收到的光信号分成第一路光信号和第二路光信号;
第一路进行功率分配得到第一光信号和第二光信号 ,第二路光信号进行偏 振分束得到第一光信号和第二光信号;
根据接收到的控制信号选择输出功率分配后的光信号或输出偏振分束后 的光信号;
对输出的光信号进行直接检测或相干检测。
由上述本发明的实施例提供的技术方案可以看出,其根据控制信号选择输 出功率分配后的光信号或偏振分束后的光信号,可以灵活的进行直接检测或相 干检测, 使在单偏振系统或偏振复用系统中能够适应中间节点的不同速率。 附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需 要使用的附图作简单地介绍,显而易见地, 下面描述中的附图仅仅是本发明的 一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。 图 1 为本发明实施例提供的一种实现直接检测和相干检测的装置结构示 意图;
图 2 为本发明实施例提供的一种实现直接检测和相干检测装置的进一步 结构示意图; 图 3 为本发明实施例提供的一种实现直接检测和相干检测的方法流程示 意图;
图 4 为本发明实施例提供的一种实现直接检测和相干检测方法的进一步 流程示意图;
图 5为本发明实施例以接收到的光信号为 DQPSK为例说明一种实现直接 检测和相干检测的方法流程示意图; 图 6为本发明实施例以接收到的光信号为 DQPSK为例说明一种实现直接 检测和相干检测的装置结构示意图; 图 7为本发明实施例以接收到的光信号为 PDM-QPSK为例说明一种实现 直接检测和相干检测的方法流程示意图; 图 8为本发明实施例以接收到的光信号为 PDM-QPSK为例说明一种实现 直接检测和相干检测的装置结构示意图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供了一种实现直接检测和相干检测的装置, 如图 1所示, 包括:
接收单元 11 , 用于接收光信号;
光分路器 12 , 用于将接收单元 11接收到的光信号分成第一路光信号和第 二路光信号, 第一路光信号送入功率分配单元 13 , 第二路光信号送入偏振分 束单元 14;
功率分配单元 13 , 用于将第一路光信号进行功率分配输出第一光信号和 第二光信号;
偏振分束单元 14, 用于将第二路光信号进行偏振分束输出第一光信号和 第二光信号;
切换单元 15 , 用于根据接收到的控制信号选择功率分配单元 13输出的光 信号或偏振分束单元 14输出的光信号;
检测单元 16,用于将切换单元 15输出的光信号进行直接检测或相干检测。 具体地, 若切换单元选择输出的是功率分配单元 13输出的光信号, 则进 行直接检测, 若切换单元选择输出的是偏振分束单元 14输出的光信号, 则进 行相干检测。
进一步, 上述装置, 如图 2所示, 还可以包括:
控制单元 21 , 用于接收由所述光信号的发送端发送的控制信号, 并将所 述控制信号发送给切换单元; 或用于通过外部预留的接口接收在接收单元 11 反馈的控制信号 , 并将所述控制信号发送给切换单元。
进一步, 还可以人工选择控制单元 21的控制信号, 具体可以通过所述光 信号的码型来选择, 例如, 若所述光信号为 DPSK, 则选择控制单元 21发送 控制信号控制切换单元 15输出功率分配单元 13输出的光信号;若所述光信号 为 PDM-QPSK, 则选择控制单元 21发送控制信号控制切换单元 15输出偏振 分束单元 14输出的光信号。
光信号的发送端可以根据光信号的码型发送控制信号给控制单元 21 , 例 如, 若发送端发送的光信号为 DPSK, 则发送控制信号给控制单元 21 以控制 切换单元 15输出功率分配单元 13输出的光信号; 若发送端发送的光信号为 PDM-QPSK,则发送控制信号给控制单元 21以控制切换单元 15输出偏振分束 单元 14输出的光信号。
接收单元 11 中可以含有功率检测模块, 用于检测接收到的光信号在两个 偏振态的功率是否相等, 若相等, 则为偏振复用信号, 此时反馈控制信号控制 切换单元 15输出偏振分束单元 14输出的光信号;若不相等,则为单偏振信号, 此时反馈控制信号控制切换单元 15输出功率分配单元 13输出的光信号。例如, 接收到的光信号为 DPSK, 则控制单元 21收到接收单元 11反馈的控制信号, 并发送所述控制信号控制切换单元 15输出功率分配单元 13输出的光信号;若 接收到的光信号为 PDM-QPSK, 则控制单元 21收到接收单元 11反馈的控制 信号,并发送所述控制信号控制切换单元 15输出偏振分束单元 14输出的光信 号。
具体地, 检测单元 16包括:
第一分光延时子单元 1601 , 用于将切换单元 15输出的第一光信号进行分 光得到第一非延时光信号和第二非延时光信号,并将其中的第一非延时光信号 釆用可调延时线进行延时处理, 输出第一延时光信号和第二非延时光信号; 第二分光延时子单元 1602 , 用于将切换单元 15输出的第二光信号进行分 光得到第三非延时光信号和第四非延时光信号,并将其中的第四非延时光信号 釆用可调延时线进行延时处理, 输出第三非延时光信号和第四延时光信号。
具体地, 可调延时线可以具体根据信号的符号速率确定延时的比特, 即信 号的符号速率的倒数即为延时比特, 其釆用延时可调, 可以适应不同的工作速 率, 避免了现有的直接检测方法只能工作于固定的速率的情况。
进一步, 检测单元 16还包括:
第一分光子单元 1611 , 用于将第一分光延时子单元 1601输出的第一延时 光信号进行耦合, 输出第一耦合光信号和第二耦合光信号;
第二分光子单元 1612, 用于根据控制信号将第一分光延时子单元 1601输 出的第二非延时光信号或将本振光信号进行耦合,输出第三耦合光信号和第四 耦合光信号;
第三分光子单元 1613 , 用于根据控制信号将第二分光延时子单元 1602输 出的第三非延时光信号或将本振光信号进行耦合,输出第五耦合光信号和第六 耦合光信号;
第四分光子单元 1614, 用于将第二分光延时子单元 1602输出的第四延时 光信号进行耦合, 输出第七耦合光信号和第八耦合光信号;
第一相位延迟子单元 1621 , 用于将第一分光子单元 1611输出的第二耦合 光信号进行相位延迟得到第二相位延迟光信号;
第二相位延迟子单元 1622 , 用于将第二分光子单元 1612输出的第四耦合 光信号进行相位延迟得到第四相位延迟光信号;
第三相位延迟子单元 1623 , 用于将第三分光子单元 1613输出的第六耦合 光信号进行相位延迟得到第六相位延迟光信号;
第四相位延迟子单元 1624, 用于将第四分光子单元 1614输出的第八耦合 光信号进行相位延迟得到第八相位延迟光信号;
第一耦合输出子单元 1631 , 用于将第一分光子单元 1611输出的第一耦合 光信号与第二分光子单元 1612输出的第三耦合光信号进行耦合后输出;
第二耦合输出子单元 1632 , 用于将第一相位延迟子单元 1621输出的第二 相位延迟光信号与第二相位延迟子单元 1622输出的第四相位延迟光信号进行 耦合后输出;
第三耦合输出子单元 1633 , 用于将第三分光子单元 1613输出的第五耦合 光信号与第四分光子单元 1614输出的第七耦合光信号进行耦合后输出;
第四耦合输出子单元 1634, 用于将第三相位延迟子单元 1623输出的第六 相位延迟光信号与第四相位延迟子单元 1624输出的第八相位延迟光信号进行 耦合后输出。
具体地,第二分光子单元 1612和第三分光子单元 1613中的本振光信号可 以由两个激光器分别提供,也可以由一个激光器通过分光得到, 第二分光子单 元 1612和第三分光子单元 1613中的控制信号由控制单元提供,当所述控制单 元 21控制切换单元 15选择输出功率分配单元 13输出的光信号, 则控制第二 分光子单元 1612将第一分光延时子单元 1601输出的第二非延时光信号进行耦 合,以及控制第三分光子单元 1613将第二分光延时子单元 1602输出的第三非 延时光信号进行耦合;当所述控制单元 21控制切换单元 15选择输出偏振分束 单元 14输出的光信号, 则控制第二分光子单元 1612将本振光信号进行耦合, 以及控制第三分光子单元 1613将本振光信号进行耦合。
上述第一相位延迟子单元 1621、 第二相位延迟子单元 1622、 第三相位延 迟子单元 1623和第四相位延迟子单元 1624中,相位延迟是根据接收到的光信 号的码型确定延迟的相位。 例如, 对于 DQPSK信号, 若原始光信号 I路和 Q 路信号的码型分别为 01、 11、 10和 00, 则 I路和 Q路信号分别对应的电流和 与信号 n+1时刻和 n时刻的相位差 的对应关系如下:
Figure imgf000008_0001
根据上述对应关系可以获得接收机的电场相位, 从而即可确定延迟的相 位。 上述第一分光子单元 161 1、 第二分光子单元 1612、 第三分光子单元 1613 和第四分光子单元 1614—般选用 2x2的耦合器, 其中, 第一分光子单元 161 1 和第四分光子单元 1614使用其中的一个输入端, 另一个输入端为空信号; 第 二分光子单元 1612的一个输入端连接第二非延时信号, 另一个输入端连接本 振光信号, 使用时只闭合其中的一个输入端, 另一个输入端也为空信号; 第三 分光子单元 1613的一个输入端连接第三非延时信号, 另一个输入端连接本振 光信号, 使用时只闭合其中的一个输入端, 另一个输入端也为空信号; 第一耦 合子单元 1631、 第二耦合子单元 1632、 第三耦合子单元 1633和第四耦合子单 元 1634可以是 2x2的耦合器。
本发明实施例还提供了一种实现直接检测和相干检测的方法,如图 3所示, 包括:
步骤 31、 将接收到的光信号分成第一路光信号和第二路光信号; 步骤 32、第一路光信号进行功率分配得到第一光信号和第二光信号,第二 路光信号进行偏振分束得到第一光信号和第二光信号;
步骤 33、根据接收到的控制信号选择输出功率分配后的光信号或输出偏振 分束后的光信号;
步骤 34、 对输出的光信号进行直接检测或相干检测。
具体地, 若根据接收到的控制信号选择输出的是功率分配后的光信号, 则 进行直接检测, 若根据接收到的控制信号选择输出的是偏振分束后的光信号, 则进行相干检测。
进一步, 所述控制信号是由所述光信号的发送端发送的, 或所述控制信号 是由所述光信号的接收端反馈的,还可以人工选择控制信号, 具体工作人员可 以通过所述光信号的码型来选择, 例如, 若所述光信号为 DPSK, 则选择控制 信号控制输出功率分配后的光信号; 若所述光信号为 PDM-QPSK, 则选择控 制信号控制输出偏振分束后的光信号。
光信号的发送端也可以根据光信号的码型发送控制信号, 例如, 若发送端 发送的光信号为 DPSK, 则发送控制信号以控制输出功率分配后的光信号; 若 发送端发送的光信号为 PDM-QPSK, 则发送控制信号以控制输出偏振分束后 的光信号。
光信号的接收端可以通过检测接收到的光信号在两个偏振态的功率是否 相等来反馈控制信号, 若相等, 则为偏振复用信号, 此时反馈控制信号控制输 出偏振分束后的光信号; 若不相等, 则为单偏振信号, 此时反馈控制信号控制 输出功率分配后的光信号。 例如, 若接收到的光信号为 DPSK, 则反馈控制信 号以控制输出功率分配后的光信号; 若接收到的光信号为 PDM-QPSK, 则反 馈控制信号以控制输出偏振分束后的光信号。
进一步,如图 4所示,对输出的光信号进行直接检测或相干检测可以包括: 步骤 41、将功率分配后或偏振分束后输出的第一光信号进行分光得到第一 非延时光信号和第二非延时光信号,并将其中的第一非延时光信号釆用可调延 时线进行延时处理, 输出第一延时光信号和第二非延时光信号;
同时,将功率分配后或偏振分束后输出的第二光信号进行分光得到第三非 延时光信号和第四非延时光信号,并将其中的第四非延时光信号釆用可调延时 线进行延时处理, 输出第三非延时光信号和第四延时光信号。
具体地, 可调延时线可以具体根据信号的符号速率确定延时的比特, 即信 号的符号速率的倒数即为延时比特, 其釆用延时可调, 可以适应不同的工作速 率, 避免了现有的直接检测方法只能工作于固定的速率的情况。 步骤 42、将所述第一延时光信号进行耦合,输出第一耦合光信号和第二耦 合光信号; 根据控制信号将所述第二非延时光信号或将本振光信号进行耦合, 输出第三耦合光信号和第四耦合光信号;根据控制信号将所述第三非延时光信 号或将本振光信号进行耦合,输出第五耦合光信号和第六耦合光信号; 将所述 第四延时光信号进行耦合, 输出第七耦合光信号和第八耦合光信号。 具体地, 所述控制信号是由所述光信号的发送端发送的, 或所述控制信号 是由所述光信号的接收端反馈的。本振光信号可以由两个激光器分别提供,也 可以由一个激光器通过分光得到,当根据控制信号选择输出功率分配后的光信 号, 则将第二非延时光信号和第三非延时光信号分别进行耦合; 当根据控制信 号选择输出偏振分束后的光信号, 则将本振光信号分别进行耦合。 步骤 43、 将所述第二耦合光信号进行相位延迟得到第二相位延迟光信号; 将所述第四耦合光信号进行相位延迟得到第四相位延迟光信号;将所述第六耦 合光信号进行相位延迟得到第六相位延迟光信号;将所述第八耦合光信号进行 相位延迟得到第八相位延迟光信号;
具体地, 相位延迟是根据接收到的光信号的码型确定延迟的相位。 例如, 对于 DQPSK信号, 若原始光信号 I路和 Q路信号的码型分别为 01、 11、 10 和 00, 则 I路和 Q路信号分别对应的电流^和/ 与信号 n+1 时刻和 n时刻 的相位差^ + 1 - φη的对应关系如下:
Figure imgf000011_0001
根据上述对应关系可以获得接收机的电场相位, 从而即可确定延迟的相 步骤 44、 将所述第一耦合光信号与所述第三耦合光信号进行耦合后输出; 将所述第二相位延迟光信号与所述第四相位延迟光信号进行耦合后输出;将所 述第五耦合光信号与所述第七耦合光信号进行耦合后输出;将所述第六相位延 迟光信号与所述第八相位延迟光信号进行耦合后输出。 下面以接收到的光信号为 DQPSK为例, 如图 5所示, 结合图 6的装置对 上述方法进行具体说明:
步骤 51、接收单元 11接收到 DQPSK信号, 光分路器 12将接收到的光信 号分成第一路光信号和第二路光信号, 第一路光信号送入功率分配单元 13 , 第二路光信号送入偏振分束单元 14。
步骤 52、 功率分配单元 13将第一路光信号进行功率分配输出第一光信号 和第二光信号, 偏振分束单元 14将第二路光信号进行偏振分束输出第一光信 号和第二光信号。
步骤 53、 根据控制信号选择功率分配单元 13输出的光信号, 控制信号是 由控制单元 21发送的。
步骤 54、 第一分光延时子单元 1601将输出的第一光信号进行分光得到光 信号 R(l l)和 R(12), 第二分光延时子单元 1602将输出的第二光信号进行分光 得到光信号 R(13)和 R(14), 并将其中的光信号 R(l l)和 R(14)釆用可调延时线 延时预定的比特后得到光信号 R(l)和 R(4), 所述预定的比特可以根据信号的 符号速率确定。
步骤 55、 根据控制信号将延时处理后的光信号 R(l)和 R(4)以及光信号 R(12)和 R(13)分别送入第一分光子单元 1611、 第四分光子单元 1614、 第二分 光子单元 1612和第三分光子单元 1613进行耦合,得到光信号 r(l)、 r(2)、 r(3)、 r(4)、 r(5)、 r(6)、 r(7)和 r(8), 此时控制单元 21控制 R(12)和 R(13)所在线路上 的开关闭合。
步骤 56、 将耦合得到的光信号 r(2)、 r(4)、 r(6)和 r(8)分别送入第一相位延 迟子单元 1621、第二相位延迟子单元 1622、第三相位延迟子单元 1623和第四 相位延迟子单元 1624进行相位延迟, 得到光信号 X(2)、 X(4)、 X(6)和 X(8)。
具体的, 第一相位延迟子单元 1621、 第二相位延迟子单元 1622、 第三相 位延迟子单元 1623和第四相位延迟子单元 1624根据接收到的光信号的码型确 定延迟的相位, 具体为第一相位延迟单元延迟相位 , 第二相位延迟单元延迟 相位 , 第三相位延迟单元延迟相位 0, 第四相位延迟单元延迟相位 。
步骤 57、 将光信号 r(l)与 r(3)、 X(2)与 X(4)、 r(5)与 r(7)以及 X(6)与 X(8) 分别送入第一耦合子单元 1631、 第二耦合子单元 1632、 第三耦合子单元 1633 和第四耦合子单元 1634进行耦合, 选取耦合后的光信号 x(2)和 x(4)输出即为 正确接收的信号, 其它光信号可以忽略。
同理,若接收到的光信号为 DPSK,其步骤与步骤 51到步骤 56基本相同, 步骤 57则选取耦合后的光信号 x(l)、 x(2)、 x(3)和 x(4)输出即为正确接收的信 号。
下面以接收到的光信号为 PDM-QPSK为例, 如图 7所示, 结合图 8的装 置对上述方法进行具体说明:
步骤 71、 接收单元 11接收到 PDM-QPSK信号, 光分路器 12将接收到的 光信号分成第一路光信号和第二路光信号, 第一路光信号送入功率分配单元 13 , 第二路光信号送入偏振分束单元 14。
步骤 72、 功率分配单元 13将第一路光信号进行功率分配输出第一光信号 和第二光信号, 偏振分束单元 14将第二路光信号进行偏振分束输出第一光信 号和第二光信号。
步骤 73、 根据控制信号选择偏振分束单元 14输出的光信号, 控制信号由 控制单元 21发送的。
步骤 74、 第一分光延时子单元 1601将输出的第一光信号进行分光得到光 信号 F(l l)和 F(12), 第二分光延时子单元 1602将输出的第二光信号进行分光 得到光信号 F(13)和 F(14), 并将其中的光信号 F(l l)和 F(14) 釆用可调延时线 延时预定的比特后得到光信号 F(l)和 F(4),所述预定的比特可以根据信号的符 号速率确定, 由于相干检测下对于延时的比特数没有要求,故均延时为 0比特 也可以, 只要保证两路延时处理的光信号延时相同的比特数即可。
步骤 75、 根据控制信号将延时处理后的光信号 F(l)和 F(4)以及本振信号 F(5)和 F(6)分别第一分光子单元 1611、 第四分光子单元 1614、 第二分光子单 元 1612和第三分光子单元 1613进行耦合, 得到光信号 f(l)、 f(2)、 f(3)、 f(4)、 f(5)、 f(6)、 f(7)和 f(8), 此时控制单元 21控制本振信号所在的线路上的开关闭 合。
步骤 76、 将耦合后得到的光信号 f(2)、 f(6)、 f(4)和 f(8)分别送入第一相位 延迟子单元 1621、第二相位延迟子单元 1622、第三相位延迟子单元 1623和第 四相位延迟子单元 1624进行相位延迟, 得到光信号 Z(2)、 Z(4)、 Z(6)和 Z(8)。
具体地, 第一相位延迟子单元 1621、 第二相位延迟子单元 1622、 第三相 位延迟子单元 1623和第四相位延迟子单元 1624根据接收到的光信号的码型确 定延迟的相位, 具体为第一相位延迟单元和第三相位延迟单元延迟相位 0, 第 二相位延迟单元和第四相位延迟单元延迟相位 。
步骤 77、 将光信号 f(l)与 f(3)、 Z(2)与 Z(4)、 f(5)与 f(7)以及 Z(6)与 Z(8) 分别送入第一耦合子单元 1631、 第二耦合子单元 1632、 第三耦合子单元 1633 和第四耦合子单元 1634进行耦合,选取耦合后的光信号 z(l)、 z(2)、 z(3)和 z(4) 输出即为正确接收的信号。
本发明实施例根据控制信号选择对光信号进行功率分配或偏振分束,即通 过切换单元选择输出功率分配单元输出的光信号或输出偏振分束单元输出的 光信号, 即根据控制信号即可完成直接检测或相干检测的选择,从而进行直接 检测或相干检测, 实现了对不同码型的光信号进行解调。 分光延时单元组釆用 可调延时线进行延时处理, 并具体根据信号的符号速率确定延时的比特, 达到 了可以根据工作速率进行调节的目的, 由于延时可调,故可以适应不同的工作 速率, 解决了现有的直接检测方法中, 接收机的延时量固定, 只能工作于固定 的速率的问题。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局 限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应该以权利要求的保护范围为准。

Claims

权 利 要 求
1、 一种实现直接检测和相干检测的装置, 其特征在于, 包括: 接收单元, 用于接收光信号;
光分路器,用于将接收单元接收到的光信号分成第一路光信号和第二路光 信号, 第一路光信号送入功率分配单元, 第二路光信号送入偏振分束单元; 功率分配单元,用于将第一路光信号进行功率分配输出第一光信号和第二 光信号;
偏振分束单元,用于将第二路光信号进行偏振分束输出第一光信号和第二 光信号;
切换单元,用于根据接收到的控制信号选择功率分配单元输出的光信号或 偏振分束单元输出的光信号;
检测单元, 用于将切换单元输出的光信号进行直接检测或相干检测。
2、 根据权利要求 1所述的装置, 其特征在于, 还包括:
控制单元, 用于接收由所述光信号的发送端发送的控制信号, 并将所述控 制信号发送给切换单元; 或用于接收由接收单元反馈的控制信号, 并将所述控 制信号发送给切换单元。
3、 根据权利要求 2所述的装置, 其特征在于, 所述检测单元包括: 第一分光延时子单元,用于将切换单元输出的第一光信号进行分光得到第 一非延时光信号和第二非延时光信号,并将其中的第一非延时光信号釆用可调 延时线进行延时处理, 输出第一延时光信号和第二非延时光信号;
第二分光延时子单元,用于将切换单元输出的第二光信号进行分光得到第 三非延时光信号和第四非延时光信号,并将其中的第四非延时光信号釆用可调 延时线进行延时处理, 输出第三非延时光信号和第四延时光信号。
4、 根据权利要求 3所述的装置, 其特征在于, 所述控制单元, 还用于接 收由所述光信号的发送端发送的控制信号,并将所述控制信号发送给第二分光 子单元和第三分光子单元; 或用于接收由接收单元反馈的控制信号, 并将所述 控制信号发送给第二分光子单元和第三分光子单元。
5、 根据权利要求 4所述的装置, 其特征在于, 所述检测单元还包括: 第一分光子单元,用于将第一分光延时子单元输出的第一延时光信号进行 耦合, 输出第一耦合光信号和第二耦合光信号; 第二分光子单元,用于根据所述控制信号将第一分光延时子单元输出的第 二非延时光信号或将本振光信号进行耦合,输出第三耦合光信号和第四耦合光 信号;
第三分光子单元,用于根据所述控制信号将第二分光延时子单元输出的第 三非延时光信号或将本振光信号进行耦合,输出第五耦合光信号和第六耦合光 信号;
第四分光子单元,用于将第二分光延时子单元输出的第四延时光信号进行 耦合, 输出第七耦合光信号和第八耦合光信号。
6、 根据权利要求 5所述的装置, 其特征在于, 所述第二分光子单元, 用 于若所述切换单元选择功率分配单元输出的光信号,则根据所述控制信号将第 一分光延时子单元输出的第二非延时光信号进行耦合,输出第三耦合光信号和 第四耦合光信号; 若所述切换单元选择偏振分束单元输出的光信号, 则根据所 述控制信号将本振光信号进行耦合, 输出第三耦合光信号和第四耦合光信号; 所述第三分光子单元,用于若所述切换单元选择功率分配单元输出的光信 号,则根据所述控制信号将第二分光延时子单元输出的第三非延时光信号进行 耦合,输出第五耦合光信号和第六耦合光信号; 若所述切换单元选择偏振分束 单元输出的光信号, 则根据所述控制信号将本振光信号进行耦合,输出第五耦 合光信号和第六耦合光信号。
7、 根据权利要求 5所述的装置, 其特征在于, 所述检测单元还包括: 第一相位延迟子单元,用于将第一分光子单元输出的第二耦合光信号进行 相位延迟得到第二相位延迟光信号;
第二相位延迟子单元,用于将第二分光子单元输出的第四耦合光信号进行 相位延迟得到第四相位延迟光信号;
第三相位延迟子单元,用于将第三分光子单元输出的第六耦合光信号进行 相位延迟得到第六相位延迟光信号;
第四相位延迟子单元,用于将第四分光子单元输出的第八耦合光信号进行 相位延迟得到第八相位延迟光信号。
8、 根据权利要求 7所述的装置, 其特征在于, 所述检测单元还包括: 第一耦合输出子单元,用于将第一分光子单元输出的第一耦合光信号与第 二分光子单元输出的第三耦合光信号进行耦合后输出; 第二耦合输出子单元,用于将第一相位延迟子单元输出的第二相位延迟光 信号与第二相位延迟子单元输出的第四相位延迟光信号进行耦合后输出; 第三耦合输出子单元,用于将第三分光子单元输出的第五耦合光信号与第 四分光子单元输出的第七耦合光信号进行耦合后输出;
第四耦合输出子单元,用于将第三相位延迟子单元输出的第六相位延迟光 信号与第四相位延迟子单元输出的第八相位延迟光信号进行耦合后输出。
9、 一种实现直接检测和相干检测的方法, 其特征在于, 包括: 将接收到的光信号分成第一路光信号和第二路光信号;
第一路进行功率分配得到第一光信号和第二光信号,第二路光信号进行偏 振分束得到第一光信号和第二光信号;
根据接收到的控制信号选择输出功率分配后的光信号或输出偏振分束后 的光信号;
对输出的光信号进行直接检测或相干检测。
10、 根据权利要求 9所述的方法, 其特征在于, 还包括:
所述控制信号是由所述光信号的发送端发送的;
或, 所述控制信号是由所述光信号的接收端反馈的。
11、 根据权利要求 10所述的方法, 其特征在于, 所述对输出的光信号进 行直接检测或相干检测包括:
将功率分配后或偏振分束后输出的第一光信号进行分光得到第一非延时 光信号和第二非延时光信号,并将其中的第一非延时光信号釆用可调延时线进 行延时处理, 输出第一延时光信号和第二非延时光信号;
将功率分配后或偏振分束后输出的第二光信号进行分光得到第三非延时 光信号和第四非延时光信号,并将其中的第四非延时光信号釆用可调延时线进 行延时处理, 输出第三非延时光信号和第四延时光信号。
12、 根据权利要求 11所述的方法, 其特征在于, 所述对输出的光信号进 行直接检测或相干检测包括:
将所述第一延时光信号进行耦合, 输出第一耦合光信号和第二耦合光信 号; 根据控制信号将所述第二非延时光信号或将本振光信号进行耦合, 输出第 三耦合光信号和第四耦合光信号;根据控制信号将所述第三非延时光信号或将 本振光信号进行耦合,输出第五耦合光信号和第六耦合光信号; 将所述第四延 时光信号进行耦合, 输出第七耦合光信号和第八耦合光信号;
将所述第二耦合光信号进行相位延迟得到第二相位延迟光信号;将所述第 四耦合光信号进行相位延迟得到第四相位延迟光信号;将所述第六耦合光信号 进行相位延迟得到第六相位延迟光信号;将所述第八耦合光信号进行相位延迟 得到第八相位延迟光信号;
将所述第一耦合光信号与所述第三耦合光信号进行耦合后输出;将所述第 二相位延迟光信号与所述第四相位延迟光信号进行耦合后输出;将所述第五耦 合光信号与所述第七耦合光信号进行耦合后输出;将所述第六相位延迟光信号 与所述第八相位延迟光信号进行耦合后输出。
13、 根据权利要求 12所述的方法, 其特征在于, 所述根据控制信号将所 述第二非延时光信号或将本振光信号进行耦合,输出第三耦合光信号和第四耦 合光信号; 根据控制信号将所述第三非延时光信号或将本振光信号进行耦合, 输出第五耦合光信号和第六耦合光信号, 具体包括:
若所述根据接收到的控制信号选择输出功率分配后的光信号,则根据控制 信号将所述第二非延时光信号进行耦合,输出第三耦合光信号和第四耦合光信 号; 若所述根据接收到的控制信号选择输出偏振分束后的光信号, 则根据控制 信号将所述本振光信号进行耦合, 输出第三耦合光信号和第四耦合光信号; 若所述根据接收到的控制信号选择输出功率分配后的光信号,则根据控制 信号将所述第三非延时光信号进行耦合,输出第五耦合光信号和第六耦合光信 号; 若所述根据接收到的控制信号选择输出偏振分束后的光信号, 则根据控制 信号将所述本振光信号进行耦合, 输出第五耦合光信号和第六耦合光信号。
PCT/CN2011/075210 2010-11-19 2011-06-02 一种实现直接检测和相干检测的方法和装置 WO2011147335A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201010554150 CN102142902B (zh) 2010-11-19 2010-11-19 一种实现直接检测和相干检测的方法和装置
CN201010554150.9 2010-11-19

Publications (1)

Publication Number Publication Date
WO2011147335A1 true WO2011147335A1 (zh) 2011-12-01

Family

ID=44410160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075210 WO2011147335A1 (zh) 2010-11-19 2011-06-02 一种实现直接检测和相干检测的方法和装置

Country Status (2)

Country Link
CN (1) CN102142902B (zh)
WO (1) WO2011147335A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6112192B2 (ja) 2013-03-15 2017-04-12 日本電気株式会社 光送受信器、光通信システムおよび光送受信方法
US9608723B2 (en) * 2014-10-20 2017-03-28 Huawei Technologies Co., Ltd. Carrier-signal power ratio control in direct detection optical systems
CN106453180B (zh) * 2015-08-10 2019-06-21 博通集成电路(上海)股份有限公司 改进相位检测的电路和方法
CN107346993A (zh) * 2017-07-18 2017-11-14 深圳市杰普特光电股份有限公司 光信号相干检测方法和装置
EP3664324B1 (en) 2017-08-16 2022-06-01 Huawei Technologies Co., Ltd. Optical transmitter, optical receiver, and optical transmission method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040190899A1 (en) * 2003-03-25 2004-09-30 Fujitsu Limited Quality monitoring method and apparatus for wavelength division multiplexed optical signal and optical transmission system using the same
US20090052907A1 (en) * 2007-08-20 2009-02-26 Nec Laboratories America, Inc. Wavelength transmission system and method using 3-dimensional ldpc-coded modulation
CN101507149A (zh) * 2006-09-26 2009-08-12 日立通讯技术株式会社 光电场接收器以及光传输系统
GB2472492A (en) * 2009-08-03 2011-02-09 Fujitsu Ltd Applying chromatic dispersion compensation to a WDM signal containing components to be received using different reception methods

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5760941A (en) * 1996-02-29 1998-06-02 Rice University System and method for performing optical code division multiple access communication using bipolar codes
CN100357820C (zh) * 2004-09-01 2007-12-26 华为技术有限公司 光谱检测装置和方法以及喇曼放大器反馈控制装置和方法
JP5301026B2 (ja) * 2009-03-19 2013-09-25 アジレント・テクノロジーズ・インク 光ダウンコンバータの較正
CN102396170A (zh) * 2009-04-16 2012-03-28 日本电气株式会社 检测并行信号之间时滞的方法和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040190899A1 (en) * 2003-03-25 2004-09-30 Fujitsu Limited Quality monitoring method and apparatus for wavelength division multiplexed optical signal and optical transmission system using the same
CN101507149A (zh) * 2006-09-26 2009-08-12 日立通讯技术株式会社 光电场接收器以及光传输系统
US20090052907A1 (en) * 2007-08-20 2009-02-26 Nec Laboratories America, Inc. Wavelength transmission system and method using 3-dimensional ldpc-coded modulation
GB2472492A (en) * 2009-08-03 2011-02-09 Fujitsu Ltd Applying chromatic dispersion compensation to a WDM signal containing components to be received using different reception methods

Also Published As

Publication number Publication date
CN102142902B (zh) 2013-12-18
CN102142902A (zh) 2011-08-03

Similar Documents

Publication Publication Date Title
JP4944953B2 (ja) コヒーレントな偏波多重化光信号を受け取るためのシステムおよび方法
US7689133B2 (en) Optical signal reception device and method of controlling optical signal reception
EP1686707B1 (en) Optical receiver and optical reception method compatible with differential quadrature phase shift keying
WO2011147335A1 (zh) 一种实现直接检测和相干检测的方法和装置
US9641255B1 (en) Wavelength control of two-channel DEMUX/MUX in silicon photonics
JP2012070051A (ja) コヒーレント光受信器およびその制御方法
US8958706B2 (en) Coherent optical communication device and method
US20150063825A1 (en) Signal synchronization transmission system, synchronization drive system for optical modulator, signal synchronization transmission method, and non-transitory computer readable medium storing program thereof
WO2010130158A1 (zh) 相干接收机反馈控制方法、装置及系统
CA2703726A1 (en) System and method for coherent detection of optical signals
CN102761373A (zh) 一种实现相干接收的高速大容量无源光网络系统及方法
CN104081737A (zh) 用于相干光接收器中的偏振解复用的系统和方法
CN107579820B (zh) 用于多路量子密钥分发系统的同步装置和同步方法
US7962043B2 (en) Multichannel optical transport network skew control
WO2012095043A2 (zh) 时间路径补偿方法和装置
US20050286911A1 (en) Apparatus and method for receiving a quadrature differential phase shift key modulated optical pulsetrain
WO2015120598A1 (zh) 波长转换器
WO2012103841A2 (zh) 一种数据处理方法、光接收机及光网络系统
JP2002107419A (ja) 半導体集積回路
US5081712A (en) Method and apparatus for obtaining phase in sensitive and/or polarization-insensitive optical heterodyne receiver for a fsk-modulated transmission signal
US6947421B1 (en) System method for the automatic routing of data packets in an optical data packet stream
JP2004525565A (ja) 改良された遠隔通信ネットワーク
JP2007201842A (ja) Ponシステム
US10630413B2 (en) Optical communications system with centralized wavelength source
JP2021019297A (ja) 給電装置、受電装置及び光ファイバー給電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786107

Country of ref document: EP

Kind code of ref document: A1