WO2011145733A1 - Diolefin compound, epoxy resin, curable resin composition, and cured article - Google Patents

Diolefin compound, epoxy resin, curable resin composition, and cured article Download PDF

Info

Publication number
WO2011145733A1
WO2011145733A1 PCT/JP2011/061678 JP2011061678W WO2011145733A1 WO 2011145733 A1 WO2011145733 A1 WO 2011145733A1 JP 2011061678 W JP2011061678 W JP 2011061678W WO 2011145733 A1 WO2011145733 A1 WO 2011145733A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
curable resin
epoxy resin
acid
reaction
Prior art date
Application number
PCT/JP2011/061678
Other languages
French (fr)
Japanese (ja)
Inventor
政隆 中西
健一 窪木
智江 佐々木
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to JP2012515950A priority Critical patent/JP5878865B2/en
Priority to KR1020127028378A priority patent/KR20130093473A/en
Priority to CN201180023913.XA priority patent/CN102892745B/en
Publication of WO2011145733A1 publication Critical patent/WO2011145733A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/74Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C69/753Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring of polycyclic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/16Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by esterified hydroxyl radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/027Polycondensates containing more than one epoxy group per molecule obtained by epoxidation of unsaturated precursor, e.g. polymer or monomer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/14All rings being cycloaliphatic
    • C07C2602/26All rings being cycloaliphatic the ring system containing ten carbon atoms
    • C07C2602/28Hydrogenated naphthalenes

Definitions

  • the present invention relates to a novel diolefin compound and an epoxy resin suitable for electrical and electronic material applications.
  • Epoxy resins are generally cured with various curing agents, resulting in cured products with excellent mechanical properties, water resistance, chemical resistance, heat resistance, electrical properties, etc., adhesives, paints, laminates, moldings It is used in a wide range of fields such as materials, casting materials and resists.
  • electronic devices such as mobile phones with cameras, ultra-thin liquid crystals, plasma TVs, and light-weight notebook computers have become key to light, thin, short, and small.
  • Very high characteristics have been demanded for packaging materials represented by resins.
  • the structure of the tip package is complicated, and there are an increasing number of things that are difficult to seal without liquid sealing.
  • a cavity down type structure such as Enhanced BGA needs to be partially sealed and cannot be handled by transfer molding.
  • RTM Resin Transfer Molding
  • a low-viscosity epoxy resin is desired because it is easily impregnated into carbon fiber or the like.
  • Alicyclic epoxy compounds are superior in terms of electrical insulation and transparency as compared with glycidyl ether type epoxy compounds, and are used in various kinds of transparent sealing materials.
  • alicyclic epoxy compounds with improved heat resistance and light resistance have been demanded particularly in fields where advanced heat / light properties such as LED applications are required (see Patent Documents 1 to 3).
  • An object of the present invention is to provide a novel alicyclic epoxy resin that gives a cured product having excellent heat resistance, optical properties, and toughness.
  • the present invention (1) Following formula (1) (In the formula, a plurality of R 1 and R 2 each independently exist, and represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.)
  • the epoxy resin of the present invention gives a cured product having excellent mechanical properties (particularly toughness).
  • the curable fat composition containing the epoxy resin of the present invention is useful for a wide range of applications such as electric / electronic materials, molding materials, casting materials, laminated materials, paints, adhesives, resists and the like. Moreover, since the epoxy resin of this invention does not have an aromatic ring, the curable resin composition containing it is very useful for an optical material.
  • the present invention is the following formula (1)
  • R 1 and R 2 each independently exist, and represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the diolefin compound represented by the formula (1) is obtained by a reaction between a cyclohexene methanol derivative and a decahydronaphthalenedicarboxylic acid derivative.
  • the cyclohexene methanol derivative is not particularly limited as long as it is a cyclohexene having a hydroxymethyl group, and preferably 3-cyclohexene methanol, 3-methyl-3-cyclohexene methanol, 4-methyl-3-cyclohexene methanol, 2-methyl-3- Examples thereof include cyclohexene methanol, and 3-cyclohexene methanol is particularly preferable, but is not limited thereto. These may be used alone or in combination of two or more.
  • decahydronaphthalenedicarboxylic acid derivatives include hydrogenation of naphthalenedicarboxylic acid or its ester by nuclear hydrogenation, and hydroformylation of tetrahydronaphthalene excluding the resulting compound and tetralin, followed by oxidation with carboxylic acid. Or by further esterification with alcohol.
  • decahydronaphthalenedicarboxylic acid excluding tetralin dicarboxylic acid may be acid halided.
  • decahydronaphthalenedicarboxylic acid dimethyl decahydronaphthalenedicarboxylate, diethyl decahydronaphthalenedicarboxylate, dipropyl decahydronaphthalenedicarboxylate, dibutyl decahydronaphthalenedicarboxylate, dicyclohexyl decahydronaphthalenedicarboxylate, methyl decahydronaphthalenedicarboxyl Dimethyl acid, cyclohexyldecahydronaphthalenedicarboxylate, and the like.
  • a general esterification method can be applied as a reaction between the cyclohexene methanol derivative and the decahydronaphthalenedicarboxylic acid derivative.
  • Specific examples include Fischer® esterification using an acid catalyst, acid halide under basic conditions, alcohol reaction, condensation reaction using various condensing agents (ADVANCED®ORGANIC®CHEMISTRY Part B: Reaction and Syntehsis®p135, 145) -147, 151 etc.).
  • Specific examples include esterification reactions between alcohols and carboxylic acids (Tetrahedron vol.36 p.2409 (1980), Tetrahedron Letter p.4475 (1980), and transesterification of carboxylic acid esters (Japan) (Japanese Patent Laid-Open No. 2006-052187) may be used.
  • R 1 in the formula (1) is any one of a hydrogen atom, a methyl group, an ethyl group, and a butyl group.
  • R 1 bonded to the olefin is preferably a hydrogen atom or a methyl group, particularly preferably a hydrogen atom.
  • the substituent R 2 directly connected to the decahydronaphthalene structure is preferably a hydrogen atom, a methyl group, an ethyl group, a propyl group or the like.
  • the diolefin compound of the formula (1) is preferably 2,6-substituted, 1,4-substituted, 2,3-substituted, 1,8-substituted, and particularly preferably 2,6-substituted.
  • the diolefin resin of the present invention represented by the formula (1) can be oxidized to form the epoxy resin of the present invention.
  • the oxidation method include, but are not limited to, a method of oxidizing with a peracid such as peracetic acid, a method of oxidizing with a hydrogen peroxide solution, and a method of oxidizing with air (oxygen).
  • a peracid such as peracetic acid
  • a hydrogen peroxide solution a method of oxidizing with air (oxygen).
  • oxygen oxygen
  • Specific examples of the epoxidation method using peracid include the method described in Japanese Patent Application Laid-Open No. 2006-52187.
  • peracids that can be used include organic acids such as formic acid, acetic acid, propionic acid, maleic acid, benzoic acid, m-chlorobenzoic acid, and phthalic acid, and acid anhydrides thereof.
  • formic acid, acetic acid, and phthalic anhydride from the viewpoint of the efficiency of reacting with hydrogen peroxide to produce an organic peracid, the reaction temperature, the ease of operation, and the economy.
  • Formic acid or acetic acid is more preferably used from the viewpoint of simplicity of reaction operation.
  • Various methods can be applied to the epoxidation method using hydrogen peroxide solution. Specifically, Japanese Patent Application Laid-Open No. 59-108793, Japanese Patent Application Laid-Open No. 62-234550, Japanese Patent Application Laid-Open No. No. 5-291919, Japanese Patent Application Laid-Open No. 11-349579, Japanese Patent Publication No. 1-33341, Japanese Patent Publication No. 2001-17864, Japanese Patent Publication No. 3-57102, etc. Various methods can be applied.
  • the diolefin compound, polyacid and quaternary ammonium salt of the present invention are reacted in two layers of an organic solvent and hydrogen peroxide solution.
  • the polyacid used in the present invention is not particularly limited as long as it is a compound having a polyacid structure, but polyacids containing tungsten or molybdenum are preferred, polyacids containing tungsten are more preferred, and tungstates are particularly preferred.
  • Specific polyacids and polyacid salts included in the polyacids include tungsten acids selected from tungstic acid, 12-tungstophosphoric acid, 12-tungstoboric acid, 18-tungstophosphoric acid, 12-tungstosilicic acid, and the like. Examples thereof include molybdenum-based acids selected from molybdic acid and phosphomolybdic acid, and salts thereof.
  • Examples of the counter cation of these salts include ammonium ions, alkaline earth metal ions, and alkali metal ions. Specific examples include alkaline earth metal ions such as calcium ions and magnesium ions, alkali metal ions such as sodium, potassium and cesium, but are not limited thereto. Particularly preferred counter cations are sodium ion, potassium ion, calcium ion and ammonium ion.
  • the amount of the polyacid used is 1.0 to 20 mmol in terms of metal element (tungstenic acid is tungsten atom, molybdic acid is molybdenum atom) to 1 mol of olefin (functional group equivalent) in the diolefin compound of the present invention. , Preferably 2.0 to 20 mmol, more preferably 2.5 to 10 mmol.
  • quaternary ammonium salt having a total carbon number of 10 or more, preferably 25 to 100, more preferably 25 to 55 can be preferably used, and in particular, the alkyl chain is preferably an aliphatic chain. .
  • tridecanylmethylammonium salt dilauryldimethylammonium salt, trioctylmethylammonium salt, trialkylmethyl (a mixed type of a compound in which the alkyl group is an octyl group and a compound in which the decanyl group is a compound) ammonium salt
  • trihexa examples include decylmethylammonium salt, trimethylstearylammonium salt, tetrapentylammonium salt, cetyltrimethylammonium salt, benzyltributylammonium salt, dicetyldimethylammonium salt, tricetylmethylammonium salt, and di-cured tallow alkyldimethylammonium salt.
  • the anion species of these salts use carboxylate ions.
  • carboxylate ion acetate ion, carbonate ion and formate ion are preferable. In particular, acetate ion is preferred.
  • acetate ion is preferred.
  • the quaternary ammonium salt has more than 100 carbon atoms, the hydrophobicity may become too strong and the solubility in the organic layer may deteriorate.
  • the carbon number of the quaternary ammonium salt is less than 10, the hydrophilicity becomes strong, and the compatibility with the organic layer may be similarly deteriorated. In general, halogen remains in the quaternary ammonium salt.
  • the present invention in particular, it is 1% by weight or less, more preferably 1000 ppm or less, and still more preferably 700 ppm or less.
  • the amount of tungstic acid and quaternary ammonium carboxylate used is preferably 0.01 to 0.8 times equivalent, or 1.1 to 10 times equivalent to the valence of the tungstic acid used. More preferably 0.05 to 0.7 times equivalent, or 1.2 to 6.0 times equivalent, still more preferably 0.05 to 0.5 times equivalent, or 1.3 to 4.5 times equivalent. is there.
  • tungstic acid is divalent with H 2 WO 4
  • the quaternary ammonium carboxylate is 0.02 to 1.6 mol, or 2.2 to 20 mol per mol of tungstic acid. A range is preferred.
  • tungstophosphoric acid is trivalent, it is similarly 0.03 to 2.4 mol, or 3.3 to 30 mol, and in the case of silicotungstic acid, it is tetravalent, so 0.04 to 3.2. Mole or 4.4 to 40 mol is preferred.
  • the amount of the quaternary ammonium carboxylate is lower than 1.1 times equivalent of the valence of tungstic acids, the epoxidation reaction is difficult to proceed (in some cases, the reaction proceeds faster), and a by-product is produced.
  • the problem is that things are easy to make.
  • the amount is more than 10 times the equivalent, not only is the treatment of the excess quaternary ammonium carboxylate difficult, but it also serves to suppress the reaction, which is not preferable.
  • the quaternary ammonium salt having a carboxylate ion as an anion a commercially available product may be used.
  • the raw material quaternary ammonium salt is treated with a metal hydroxide or an ion exchange resin to be converted into a quaternary ammonium hydroxide. Further, it may be produced by a method of reacting with various carboxylic acids. Examples of the raw material quaternary ammonium salt include quaternary ammonium halides and various metal salts. If there is a suitable quaternary ammonium hydroxide, it may be used.
  • any buffer can be used, but it is preferable to use an aqueous phosphate solution in this reaction.
  • the pH is preferably adjusted between pH 4 and 10, more preferably pH 5-9. When the pH is less than 4, the hydrolysis reaction and polymerization reaction of the epoxy group easily proceed. Moreover, when pH10 is exceeded, reaction will become extremely slow and the problem that reaction time is too long will arise.
  • the pH is preferably adjusted to be between 5 and 9.
  • a buffer solution is used in an amount of 0.1 to 10 mol% of phosphoric acid (or phosphorous such as sodium dihydrogen phosphate) with respect to hydrogen peroxide.
  • Acid salt and adjusting the pH with a basic compound (for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate, potassium carbonate, etc.).
  • a basic compound for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate, potassium carbonate, etc.
  • the pH is added so that the above-mentioned pH is obtained when hydrogen peroxide is added.
  • the preferred phosphate concentration is 0.1 to 60% by weight, preferably 5 to 45% by weight.
  • a buffer such as disodium hydrogen phosphate, sodium dihydrogen phosphate, sodium phosphate or sodium tripolyphosphate (or its hydrate) is used without adjusting the pH. It may be added directly. In the sense of simplifying the process, there is no troublesome pH adjustment, and direct addition is particularly preferred.
  • the amount of phosphate used is usually 0.1 to 5 mol% equivalent, preferably 0.2 to 4 mol% equivalent, more preferably 0.3 to 3 mol% equivalent to hydrogen peroxide. It is. At this time, if the amount exceeds 5 mol% equivalent to hydrogen peroxide, pH adjustment is required. If the amount is less than 0.1 mol% equivalent, the resulting epoxy resin hydrolyzate tends to proceed or the reaction is slow. The bad effect of becoming.
  • This reaction is epoxidized using hydrogen peroxide.
  • hydrogen peroxide used in this reaction, an aqueous solution having a hydrogen peroxide concentration of 10 to 40% by weight is preferable because of easy handling. When the concentration exceeds 40% by weight, handling becomes difficult and the decomposition reaction of the produced epoxy resin also tends to proceed.
  • This reaction uses an organic solvent.
  • the amount of the organic solvent to be used is 0.3 to 10, preferably 0.3 to 5, more preferably 0.5 to 2.5 by weight with respect to the diolefin compound 1 as a reaction substrate. is there. When the weight ratio exceeds 10, the progress of the reaction is extremely slow, which is not preferable.
  • organic solvents that can be used include alkanes such as hexane, cyclohexane, and heptane, aromatic hydrocarbon compounds such as toluene and xylene, and alcohols such as methanol, ethanol, isopropanol, butanol, hexanol, and cyclohexanol. It is done.
  • ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and anone
  • ethers such as diethyl ether, tetrahydrofuran and dioxane
  • ester compounds such as ethyl acetate, butyl acetate and methyl formate
  • nitriles such as acetonitrile Compounds and the like can also be used.
  • reaction operation method for example, when the reaction is performed in a batch-type reaction kettle, a diolefin compound, hydrogen peroxide (aqueous solution), polyacids (catalyst), a buffer solution, a quaternary ammonium salt, and an organic solvent are added. In addition, stir in two layers. There is no specific designation for the stirring speed. Since heat is often generated when hydrogen peroxide is added, a method of gradually adding hydrogen peroxide after each component may be added.
  • the reaction temperature is not particularly limited, but is preferably 0 to 90 ° C, more preferably 0 to 75 ° C, particularly preferably 15 ° C to 60 ° C.
  • the reaction temperature is too high, the hydrolysis reaction tends to proceed, and when the reaction temperature is low, the reaction rate becomes extremely slow.
  • reaction time depends on the reaction temperature, the amount of catalyst, etc., from the viewpoint of industrial production, a long reaction time is not preferable because it consumes a great deal of energy.
  • a preferred range is 1 to 48 hours, preferably 3 to 36 hours, and more preferably 4 to 24 hours.
  • the quenching treatment is preferably performed using a basic compound. It is also preferable to use a reducing agent and a basic compound in combination.
  • a preferred treatment method there is a method of quenching the remaining hydrogen peroxide using a reducing agent after neutralization adjustment to pH 6 to 10 with a basic compound.
  • the reducing agent examples include sodium sulfite, sodium thiosulfate, hydrazine, oxalic acid, vitamin C and the like.
  • the reducing agent is used in an excess amount of hydrogen peroxide of usually 0.01 to 20 times mol, more preferably 0.05 to 10 times mol, and still more preferably 0.05 to 3 times mol with respect to the number of moles. is there.
  • Basic compounds include metal hydroxides such as sodium hydroxide, potassium hydroxide, magnesium hydroxide and calcium hydroxide, metal carbonates such as sodium carbonate and potassium carbonate, phosphorus such as sodium phosphate and sodium hydrogen phosphate. Examples thereof include basic solids such as acid salts, ion exchange resins, and alumina.
  • the amount used is water or organic solvents (for example, aromatic hydrocarbons such as toluene and xylene, ketones such as methyl isobutyl ketone and methyl ethyl ketone, hydrocarbons such as cyclohexane, heptane and octane, methanol, ethanol, isopropyl alcohol, etc.
  • the amount used is usually 0.01 to 20 times mol, more preferably 0.05 to 10 times the number of moles of excess hydrogen peroxide. Mole, more preferably 0.05 to 3 times mole. These may be added as water or a solution of the above-mentioned organic solvent, or may be added alone.
  • a solid base that does not dissolve in water or an organic solvent it is preferable to use an amount of 1 to 1000 times by weight with respect to the amount of hydrogen peroxide remaining in the system. More preferably, it is 10 to 500 times, and further preferably 10 to 300 times.
  • the treatment may be carried out after separation of an aqueous layer and an organic layer described later.
  • the above-mentioned organic solvent is added and the operation is performed.
  • the reaction product is extracted from the layer.
  • the organic solvent used at this time is 0.5 to 10 times, preferably 0.5 to 5 times in weight ratio to the raw material diolefin compound. This operation is repeated several times as necessary, and then the organic layer is separated. If necessary, the organic layer is washed with water and purified.
  • the obtained organic layer may be an ion exchange resin or a metal oxide (especially silica gel or alumina is preferred), activated carbon (especially a chemical activated carbon is particularly preferred), or a composite metal salt (especially a basic composite metal salt).
  • a metal oxide especially silica gel or alumina is preferred
  • activated carbon especially a chemical activated carbon is particularly preferred
  • a composite metal salt especially a basic composite metal salt.
  • a mineral with a viscosity especially, a layered viscosity mineral such as montmorillonite is preferred
  • the solvent is distilled off to obtain the desired epoxy compound. In some cases, it may be further purified by column chromatography or distillation.
  • the epoxy resin of the present invention thus obtained has the formula (2)
  • R 1 and R 2 each independently exist, and represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the main structure is the structure represented by the formula, but a hydrolyzate, an unreacted product, a polymerized polymer obtained by polymerizing epoxy groups, and other by-products are produced depending on the reaction conditions.
  • the obtained epoxy resin of the present invention can be used as a raw material for various resins such as epoxy acrylate and derivatives thereof, oxazolidone compounds or cyclic carbonate compounds.
  • the curable resin composition of the present invention contains the epoxy resin of the present invention as an essential component.
  • the curable resin composition of the present invention two types of heat curing with a curing agent (curable resin composition A) and cationic curing (curable resin composition B) using an acid as a curing accelerator (curing catalyst).
  • curable resin composition A two types of heat curing with a curing agent
  • curable resin composition B cationic curing
  • the method can be adapted.
  • the epoxy resin of the present invention can be used alone or in combination with other epoxy resins.
  • the proportion of the epoxy resin of the present invention in the total epoxy resin is preferably 30% by mass or more, particularly preferably 40% by mass or more.
  • the epoxy resin of the present invention is used as a modifier of the curable resin composition, it may be added in a proportion of 1 to 30% by mass.
  • bisphenol A bisphenol S, thiodiphenol, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-tetramethyl- [ 1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol (Phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetofu Non, o-hydroxy
  • the epoxy resin of the present invention is preferably used in combination with an alicyclic epoxy resin or an epoxy resin having a silsesquioxane structure.
  • an alicyclic epoxy resin a compound having an epoxycyclohexane structure in the skeleton is preferable, and an epoxy resin obtained by an oxidation reaction of a compound having a cyclohexene structure is particularly preferable.
  • esterification reaction of cyclohexene carboxylic acid and alcohol or esterification reaction of cyclohexene methanol and carboxylic acid (Tetrahedron vol.36 p.2409 (1980), Tetrahedron Letter p.4475 (1980) Or the Tyshenko reaction of cyclohexene aldehyde (method described in Japanese Patent Application Laid-Open No. 2003-170059, Japanese Patent Application Laid-Open No. 2004-262871, etc.), and further transesterification of cyclohexene carboxylic acid ester
  • Examples thereof include compounds that can be produced by the method described in Japanese Patent Application Laid-Open No. 2006-052187.
  • the alcohol is not particularly limited as long as it is a compound having an alcoholic hydroxyl group, but ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,5-pentane.
  • Diols diols such as 1,6-hexanediol and cyclohexanedimethanol, triols such as glycerin, trimethylolethane, trimethylolpropane, trimethylolbutane, 2-hydroxymethyl-1,4-butanediol, pentaerythritol, etc.
  • carboxylic acids include, but are not limited to, oxalic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, adipic acid, and cyclohexanedicarboxylic acid.
  • an acetal compound obtained by an acetal reaction between a cyclohexene aldehyde derivative and an alcohol is exemplified.
  • a reaction method it can be produced by applying a general acetalization reaction.
  • a method of performing a reaction while azeotropically dehydrating using a solvent such as toluene or xylene as a reaction medium US Pat. No. 2,945,008
  • a method in which polyhydric alcohol is dissolved in hydrochloric acid and then the reaction is carried out while gradually adding aldehydes Japanese Patent Laid-Open No.
  • epoxy resins include ERL-4221, UVR-6105, ERL-4299 (all trade names, all manufactured by Dow Chemical), Celoxide 2021P, Epolide GT401, EHPE3150, EHPE3150CE (all trade names, all Daicel) (Chemical Industry) and dicyclopentadiene diepoxide, and the like, but are not limited thereto (Reference: Review Epoxy Resin Basic Edition I p76-85). These may be used alone or in combination of two or more.
  • Curable resin composition A thermo curing with curing agent
  • the curing agent contained in the curable resin composition A of the present invention include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and carboxylic acid compounds.
  • the curing agent that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, and nitrogen-containing compounds such as polyamide resins synthesized from ethylenediamine and amine compounds (amines, Amide compound); phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methyl hexahydro Phthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxy
  • the amount of the curing agent used in the curable resin composition A of the present invention is preferably 0.6 to 1.2 equivalents, and preferably 0.7 to 1.2 equivalents with respect to 1 equivalent of the epoxy group of the epoxy resin. When less than 0.6 equivalent or more than 1.2 equivalent with respect to 1 equivalent of epoxy group, curing may be incomplete, and good cured properties may not be obtained.
  • a curing accelerator (curing catalyst) may be used in combination with the curing agent.
  • curing accelerators include imidazoles such as 2-methylimidazole, 2-ethylimidazole and 2-ethyl-4-methylimidazole, 2- (dimethylaminomethyl) phenol and 1,8-diaza-bicyclo ( 5,4,0) tertiary amines such as undecene-7, phosphines such as triphenylphosphine, tetrabutylammonium salt, triisopropylmethylammonium salt, trimethyldecanylammonium salt, cetyltrimethylammonium salt, hexadecyltrimethyl Quaternary ammonium salts such as ammonium hydroxide, quaternary phosphonium salts such as triphenylbenzylphosphonium salt, triphenylethylphosphonium salt, tetra
  • the curable resin composition A of the present invention can also contain a phosphorus-containing compound as a flame retardant component.
  • the phosphorus-containing compound may be a reactive type or an additive type.
  • Specific examples of phosphorus-containing compounds include trimethyl phosphate, triethyl phosphate, tricresyl phosphate, trixylylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-dixylylenyl phosphate, 1,3-phenylenebis ( Phosphate esters such as dixylylenyl phosphate), 1,4-phenylenebis (dixylylenyl phosphate) and 4,4′-biphenyl (dixylylenyl phosphate); 9,10-dihydro-9-oxa Phosphanes such as -10-phosphaphenanthrene-10-oxide and 10 (2,5-dihydroxyphenyl) -10H-9-ox
  • Phosphate esters, phosphanes, or phosphorus-containing epoxy resins are preferable, and 1,3-phenylenebis (dixylylenyl phosphate), 1,4-phenylenebis (dixylylene). Nyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate) or phosphorus-containing epoxy resins are particularly preferred.
  • content of a phosphorus containing compound 0.6 times or less is preferable with respect to the total amount of the epoxy resin component in the curable resin composition A of this invention. If it exceeds 0.6 times, there is a concern that it may adversely affect the hygroscopicity and dielectric properties of the cured product.
  • antioxidant to the curable resin composition A of this invention as needed.
  • Antioxidants that can be used include phenol-based, sulfur-based, and phosphorus-based antioxidants. Antioxidants can be used alone or in combination of two or more.
  • the amount of the antioxidant used is usually 0.008 to 1 part by weight, preferably 0.01 to 0.5 part by weight, based on 100 parts by weight of the resin component A in the curable resin composition of the present invention. .
  • antioxidants examples include a phenol-based antioxidant, a sulfur-based antioxidant, and a phosphorus-based antioxidant.
  • phenolic antioxidants include 2,6-di-t-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-t-butyl-p-ethylphenol, stearyl- ⁇ - (3 , 5-di-t-butyl-4-hydroxyphenyl) propionate, isooctyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,4-bis- (n-octylthio)- Monophenols such as 6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine, 2,4-bis [(octylthio) methyl] -o-cresol; 2'-methylenebis (4-methyl-6-t-butylphenol), 2,2'-methylenebis (4-ethyl
  • sulfur antioxidant examples include dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyll-3,3′-thiodipropionate, and the like. .
  • phosphorus antioxidants include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) phosphite, diisodecylpentaerythritol phosphite, tris (2,4-di-t- Butylphenyl) phosphite, cyclic neopentanetetraylbis (octadecyl) phosphite, cyclic neopentanetetraylbi (2,4-di-t-butylphenyl) phosphite, cyclic neopentanetetraylbi (2,4 -Phosphites such as -di-t-butyl-4-methylphenyl) phosphite, bis [2-tert-butyl-6-methyl
  • antioxidants can be used alone, but two or more kinds may be used in combination.
  • a phosphorus-based antioxidant is particularly preferable.
  • HALS hindered amine-based light stabilizers
  • HALS is not particularly limited, but typical examples include dibutylamine, 1,3,5-triazine, N, N′-bis (2,2,6,6-tetramethyl-4- Polycondensate of piperidyl-1,6-hexamethylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine, dimethyl-1- (2-hydroxyethyl) -4-hydroxy succinate -2,2,6,6-tetramethylpiperidine polycondensate, poly [ ⁇ 6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl ⁇ ⁇ (2,2,6,6-tetramethyl-4-piperidyl) imino ⁇ hexamethylene ⁇ (2,2,6,6-tetra
  • a binder resin can be added to the curable resin composition A of the present invention as necessary.
  • the binder resin include butyral resins, acetal resins, acrylic resins, epoxy-nylon resins, NBR-phenol resins, epoxy-NBR resins, polyamide resins, polyimide resins, and silicone resins.
  • the blending amount of the binder resin is preferably within a range that does not impair the flame retardancy and heat resistance of the cured product, and is usually 0.05 to 100 parts by weight with respect to 100 parts by weight of the resin component in the curable resin composition A of the present invention. 50 parts by weight, preferably 0.05 to 20 parts by weight are used as required.
  • An inorganic filler can be added to the curable resin composition A of the present invention as necessary.
  • inorganic fillers include crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, and the like.
  • the present invention is not limited to these. These may be used alone or in combination of two or more.
  • an amount occupying 95% by mass or less in A in the curable resin composition of the present invention is used.
  • the curable resin composition A of the present invention includes a silane coupling agent, stearic acid, palmitic acid, calcium stearate, zinc carboxylate (zinc 2-ethylhexanoate, zinc stearate, zinc behenate, zinc myristate).
  • zinc compounds such as zinc phosphate phosphate (octyl zinc phosphate, zinc stearyl phosphate, etc.), various compounding agents such as surfactants, dyes, pigments, UV absorbers, and various thermosetting resins can be added. it can.
  • a fluorescent substance can be added as needed.
  • the phosphor has a function of forming white light by absorbing part of blue light emitted from a blue LED element and emitting wavelength-converted yellow light. After the phosphor is dispersed in advance in the curable resin composition, the optical semiconductor is sealed.
  • fluorescent substance A conventionally well-known fluorescent substance can be used, For example, rare earth element aluminate, thio gallate, orthosilicate, etc. are illustrated.
  • phosphors such as a YAG phosphor, a TAG phosphor, an orthosilicate phosphor, a thiogallate phosphor, and a sulfide phosphor can be mentioned, and YAlO 3 : Ce, Y 3 Al 5 O 12 : Ce, Y 4 Al 2 O 9 : Ce, Y 2 O 2 S: Eu, Sr 5 (PO 4 ) 3 Cl: Eu, (SrEu) O.Al 2 O 3 and the like are exemplified.
  • the particle size of the phosphor those having a particle size known in this field are used, and the average particle size is preferably 1 to 250 ⁇ m, particularly preferably 2 to 50 ⁇ m.
  • the addition amount is 1 to 80 parts by weight, preferably 5 to 60 parts by weight, based on 100 parts by weight of the resin component.
  • the curable resin composition A of the present invention can be obtained by uniformly mixing the above components.
  • the curable resin composition A of the present invention can be easily made into a cured product by a method similar to a conventionally known method. For example, until the epoxy resin of the present invention, a curing agent, and if necessary, a curing accelerator, a phosphorus-containing compound, a binder resin, an inorganic filler, and a compounding agent are uniform using an extruder, a kneader, a roll, or the like as necessary Mix well to obtain a curable resin composition. After potting and melting the curable resin composition (without melting in the case of liquid), it is molded using a casting or transfer molding machine, and further 80-200 The cured product of the present invention can be obtained by heating at a temperature of 2 to 10 hours.
  • the curable resin composition A of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone as necessary.
  • a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone as necessary.
  • the prepreg obtained by impregnating a base material such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber and paper, and drying by heating is formed into a curable resin composition varnish by hot press molding. It can be set as the hardened
  • the solvent is used in an amount usually accounting for 10 to 70% by mass, preferably 15 to 70% by mass in the mixture of the curable resin composition of the present invention and the solvent A. Moreover, if it is a liquid composition, the epoxy resin hardened
  • the curable resin composition A of the present invention when used in the form of a film or a sheet, it has characteristics such as excellent flexibility characteristics in the B stage.
  • Such a film or sheet-shaped resin composition is applied to the release film using the curable resin composition A of the present invention as the curable resin composition varnish, and after removing the solvent under heating, it is made into a B-stage. Is obtained.
  • This film or sheet-shaped resin composition can be used as an adhesive (interlayer insulating layer) in a multilayer substrate or the like.
  • Curable resin composition B (cationic curing with acidic curing accelerator (curing catalyst))
  • the curable resin composition B of the present invention that is cured using an acidic curing accelerator contains a photopolymerization initiator or a thermal polymerization initiator as an acidic curing accelerator.
  • a photopolymerization initiator or a thermal polymerization initiator as an acidic curing accelerator.
  • a cationic polymerization initiator is preferable, and a photocationic polymerization initiator is particularly preferable.
  • the cationic polymerization initiator include those having an onium salt such as an iodonium salt, a sulfonium salt, and a diazonium salt, and these can be used alone or in combination of two or more.
  • the active energy ray cationic polymerization initiator include metal fluoroboron complex and boron trifluoride complex (US Pat. No. 3,379,653), bis (perfluoroalkylsulfonyl) methane metal salt (US Pat. No. 3,586,616). ), Aryldiazonium compounds (US Pat.
  • Adekaoptomer SP150 As manufactured by Asahi Denka Kogyo Co., Ltd.
  • UVE-1014 manufactured by General Electronics Co., Ltd.
  • CD-1012 Siliconomer Company
  • RP-2074 manufactured by Rhodia
  • the amount of the cationic polymerization initiator used is preferably 0.01 to 50 parts by weight, more preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the epoxy resin component.
  • one or more polymerization initiation assistants and, if necessary, a photosensitizer can be used in combination with the cationic polymerization initiator.
  • the polymerization initiation aid include benzoin, benzyl, benzoin methyl ether, benzoin isopropyl ether, acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2 -Methyl-1- (4-methylthiophenyl) -2-morpholinolpropan-1-one, N, N-dimethylaminoacetophenone, 2-methylanthraquinone, 2-ethylanthraquinone, 2-tert-butylanthraquinone, 1-chloro Anthraquinone, 2-amylanthraquinone, 2-isopropylthioxatone
  • the photosensitizer include anthracene, 2-isopropylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, acridine orange, acridine yellow, phosphine R Benzoflavine, cetoflavin T, perylene, N, N-dimethylaminobenzoic acid ethyl ester, N, N-dimethylaminobenzoic acid isoamyl ester, triethanolamine, triethylamine and the like.
  • the amount of the photosensitizer used is 0.01 to 30 parts by mass, preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the epoxy resin component.
  • the curable resin composition B of the present invention includes various compounding agents such as an inorganic filler, a silane coupling material, a release agent, and a pigment, and various compounding agents for various thermosetting resins as necessary. Can be added. Specific examples are as described above.
  • the curable resin composition B of the present invention can be obtained by uniformly mixing each component. It is also possible to use the curable resin composition B of the present invention after uniformly dissolving it in an organic solvent such as polyethylene glycol monoethyl ether, cyclohexanone or ⁇ -butyrolactone, and then removing the solvent by drying.
  • the solvent at this time is usually 10 to 70% by mass, preferably 15 to 70% by mass in the mixture of the curable resin composition B of the present invention and the solvent.
  • the curable resin composition B of the present invention can be cured by heating and / or ultraviolet irradiation (for example, Reference: Review Epoxy Resin Vol. 1, Fundamental Edition I p82-84).
  • the curing conditions are determined according to each composition. Basically, it is sufficient that the cured product has curing conditions that can express the strength required for the purpose of use.
  • these curable resin compositions are difficult to be completely cured only by light irradiation, it is necessary to completely complete the reaction by heating after light irradiation in applications requiring heat resistance.
  • transmit the irradiation light in the case of photocuring to detail the highly transparent compound and composition are desired in the epoxy resin and curable resin composition B of this invention.
  • the temperature is preferably from room temperature to 150 ° C. for 30 minutes to 7 days.
  • the higher the temperature range the more effective the curing is after light irradiation, and the short heat treatment is effective. Further, the lower the temperature, the longer the heat treatment. By performing such heat after-curing, an effect of aging treatment is also exhibited.
  • the shape of the cured product obtained by curing these curable resin compositions B can be various depending on the application, it is not particularly limited. For example, it can be a film shape, a sheet shape, a bulk shape, or the like.
  • the molding method varies depending on the applicable part and member, for example, a casting method, a casting method, a screen printing method, a spin coating method, a spray method, a transfer method, a dispenser method, and the like can be mentioned. An appropriate method may be employed to obtain the shape.
  • polishing glass, a hard stainless steel polishing plate, a polycarbonate plate, a polyethylene terephthalate plate, a polymethyl methacrylate plate, or the like can be used.
  • a polyethylene terephthalate film, a polycarbonate film, a polyvinyl chloride film, a polyethylene film, a polytetrafluoroethylene film, a polypropylene film, a polyimide film, or the like is used. Can do.
  • a curable resin composition B dissolved in an organic solvent such as polyethylene glycol monoethyl ether, cyclohexanone, or ⁇ -butyrolactone is used as a copper-clad laminate, a ceramic substrate, or a glass.
  • a substrate such as a substrate is applied with a film thickness of 5 to 160 ⁇ m by a method such as screen printing or spin coating, and the coating film is preliminarily dried at 60 to 110 ° C.
  • the curable resin composition B on the obtained substrate is irradiated with ultraviolet rays (for example, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a xenon lamp, a laser beam, etc.) through a negative film having a desired pattern drawn thereon, and then 70 Perform post-exposure baking at ⁇ 120 ° C. Thereafter, the unexposed portion is dissolved and removed (developed) with a solvent such as polyethylene glycol monoethyl ether, and if necessary, sufficient by irradiation with ultraviolet rays and / or heating (eg, at 100 to 200 ° C. for 0.5 to 3 hours). A cured product is obtained by curing. In this way, it is also possible to obtain a printed wiring board.
  • the above-mentioned method is a case of a negative resist
  • the curable resin composition B of this invention can also be used as a positive resist.
  • the cured product obtained by curing the curable resin composition A and the curable resin composition B of the present invention can be used for various applications including optical component materials.
  • the optical material refers to general materials used for applications in which light such as visible light, infrared light, ultraviolet light, X-rays, and lasers passes through the material.
  • liquid crystal display substrate materials such as lamp types and SMD types
  • light guide plates such as lamp types and SMD types
  • prism sheets in display-related fields
  • liquid crystal display substrate materials liquid crystal display substrate materials, light guide plates, prism sheets, deflection plates, retardation plates, viewing angle correction films
  • Liquid crystal films including adhesives and polarizer protective films are expected to be used as next-generation flat panel displays for color PDP (plasma display) sealing materials, antireflection films, optical correction films, housing materials, front surfaces Glass protective film, front glass substitute material and adhesive, etc. are LED mold materials used in LED display devices, LED sealing material, front glass protective film, front glass substitute material and adhesive, etc. are plasma Substrate materials, light guide plates, prism sheets, deflector plates, etc.
  • front glass protective films in organic EL (electroluminescence) displays are various in field emission displays (FED). Examples thereof include a film substrate, a front glass protective film, a front glass substitute material, and an adhesive.
  • VD video disc
  • a pickup lens, a protective film, a sealing material, an adhesive, and the like can be given.
  • steel camera lens materials, finder prisms, target prisms, finder covers and light-receiving sensor parts, etc., video camera photographic lenses, finder, etc., projection TV projection lenses, protective films, sealing materials, etc.
  • adhesives include materials for lenses of optical sensing devices, sealing materials, adhesives, and films.
  • fiber materials, lenses, waveguides, element sealing materials and adhesives around optical switches in optical communication systems optical fiber materials, ferrules, sealing materials and adhesives around optical connectors, etc.
  • lenses, waveguides, LED sealing materials, CCD sealing materials and adhesives are used as substrate materials, fiber materials, and device sealing materials around optoelectronic integrated circuits (OEIC).
  • optical fibers In the field of optical fibers, lighting for decorative displays, light guides, etc., sensors for industrial use and displays / signs, etc., optical fibers for communication infrastructure and for connecting digital devices in the home, etc. can be mentioned.
  • peripheral materials for semiconductor integrated circuits include resist materials for microlithography for LSI and VLSI materials.
  • automotive lamp reflectors In the field of automobiles and transport equipment, automotive lamp reflectors, bearing retainers, gear parts, anti-corrosion coatings, switch parts, headlamps, engine internal parts, electrical parts, various interior and exterior parts, drive engines, brake oil tanks, automobile protection Rusted steel plates, interior panels, interior materials, protective / bundling wire harnesses, fuel hoses, automotive lamps and glass replacements, multilayer glass for railway vehicles, etc., toughening agents for aircraft structural materials, engine peripheral members Protective / bundling wire harnesses and corrosion resistant coatings.
  • interior and processing materials electrical covers, sheets, glass interlayers, glass substitutes, solar cell peripheral materials, and the like can be mentioned.
  • a film for house covering is exemplified.
  • Next generation optical / electronic functional organic materials include peripheral materials for organic EL elements, organic photorefractive elements, optical amplification elements that are light-to-light conversion devices, optical computing elements, substrate materials around organic solar cells, fiber materials, elements And a sealing material and an adhesive.
  • sealing agents potting used for capacitors, transistors, diodes, light emitting diodes, ICs and LSIs, dipping and transfer mold sealing, potting sealing used for ICs and LSIs such as COB, COF and TAB, flip An underfill used for a chip or the like, and sealing (reinforcing underfill) when mounting IC packages such as BGA and CSP can be given.
  • optical material examples include general uses in which the curable resin composition A or the curable resin composition B is used.
  • curable resin composition A or curable resin composition B of the present invention as an additive to other resins, for example, when used as a curing agent to a sealant or a cyanate resin composition for a substrate, The case where it uses for acrylic ester-type resin etc. as a hardening agent for resists is mentioned.
  • adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, semiconductor adhesives such as die bonding agents and underfills, BGA reinforcing underfills, anisotropic conductive films ( ACF) and an adhesive for mounting such as anisotropic conductive paste (ACP).
  • interlayer adhesives for multilayer substrates such as build-up substrates
  • semiconductor adhesives such as die bonding agents and underfills
  • BGA reinforcing underfills such as anisotropic conductive films ( ACF)
  • ACP anisotropic conductive paste
  • the epoxy equivalent was measured using an E-type viscometer at JIS K-7236 and the viscosities at 25 ° C. and 30 ° C.
  • the analysis conditions in gas chromatography were as follows: HP5-MS (0.25 mm IDx 15 m, thickness 0.25 ⁇ m) was used for the separation column, and the column oven temperature was set to the initial temperature of 100. The temperature was set at 0 ° C., and the temperature was raised at a rate of 15 ° C. per minute and held at 300 ° C. for 90 minutes.
  • GPC gel permeation chromatography
  • the column is a Shodex® SYSTEM-21 column (KF-803L, KF-802.5 ( ⁇ 2), KF-802), the coupled eluent is tetrahydrofuran, and the flow rate is 1 ml / min.
  • the column temperature was 40 ° C.
  • the detection was performed by RI
  • a standard polystyrene made by Shodex was used for the calibration curve.
  • Example 1 A flask equipped with a stirrer, a reflux condenser, a stirrer, and a Dean-Stark tube was purged with nitrogen, while 178 parts of dimethyl 2,6-decahydronaphthalenedicarboxylate (H-NDCM, manufactured by Mitsubishi Gas Chemical), cyclohexene-4 -314 parts of methanol and 0.07 part of tetrabutoxytitanium were added and the reaction was carried out while removing methanol produced by the reaction at 120 ° C for 1 hour, 150 ° C for 1 hour, 170 ° C for 1 hour, 180 ° C for 15 hours, Cooled to ° C.
  • H-NDCM dimethyl 2,6-decahydronaphthalenedicarboxylate
  • Example 2 In a flask equipped with a stirrer, a reflux condenser, and a stirrer, 212 parts of the diolefin compound of the present invention obtained in Example 1, 212 parts of toluene, 15 parts of water, 1.8 parts of 12-tungstophosphoric acid, phosphorus Add 1.6 parts disodium oxyhydrogen and 5.4 parts trioctylmethylammonium acetate (Lion Akzo 50% xylene solution, TOMAA-50). 113 parts of hydrogen water was added and the mixture was stirred at 50 ⁇ 3 ° C. for 9 hours. When the progress of the reaction was confirmed by GC, the substrate conversion after the completion of the reaction was> 99%, and the raw material peak disappeared (1% or less).
  • the obtained epoxy resin (EP-2) of the present invention was 16 parts, and the purity of the obtained epoxy resin contained 98% or more of the skeleton compound of the formula (4) based on the GPC measurement result. It was confirmed. Furthermore, in the GC measurement, the purity was about 98%. Epoxy equivalent was 229 g / eq. Met.
  • Examples 4, 5, and 6 About the epoxy resin (EP-1) of the present invention obtained in Examples 1 and 2, as a curing agent, methylhexahydrophthalic anhydride (manufactured by Shin Nippon Rika Co., Ltd., Ricacid MH700G, hereinafter referred to as H1) Bicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride (manufactured by Shin Nippon Rika Co., Ltd., Ricacid HNA-100, hereinafter referred to as H2), hexadecyltrimethylammonium hydroxide as a curing accelerator (The Tokyo Chemical Industry Co., Ltd. 25% methanol solution, referred to as C1) is blended at the blending ratio (parts by weight) shown in Table 1 below, and then defoamed for 20 minutes to cure the present invention. Sex composition was obtained.
  • Dynamic viscoelasticity measuring device manufactured by TA-instruments, DMA-2980 Measurement temperature range: -30 ° C to 280 ° C Temperature rate: 2 ° C./min Test piece size: 5 mm ⁇ 50 mm cut out (thickness is about 800 ⁇ m).
  • Analysis condition Tg Tan- ⁇ peak point in dynamic viscoelasticity (DMA) measurement was defined as Tg.
  • Elastic modulus at 25 ° C . The elastic modulus at 25 ° C. was measured.
  • the LED encapsulated with the curable resin composition (F-1) using the epoxy resin of the present invention had almost no dent, whereas the comparative curable resin composition (F-2).
  • the LED wire encapsulated in (1) had exposed LED wires, and dents were observed intensely.
  • Example 8 Comparative Examples 2, 3 Epoxy resin (EP-2) of the present invention obtained in Examples 2 and 3, epoxy resin (EP-3), bis (3,4-epoxycyclohexylmethyl) adipate (epoxy equivalent 195 g / eq. Viscosity) as comparative examples
  • EP-4 epoxy resin
  • EP-4 bis (3,4-epoxycyclohexylmethyl) adipate
  • a curing accelerator H1
  • PX4MP quaternary phosphonium salt
  • the obtained curable resin composition was vacuum-defoamed for 20 minutes, and then gently cast on a glass substrate on which a dam was created with a heat-resistant tape so as to be 30 mm ⁇ 20 mm ⁇ height 1 mm.
  • the cast was cured at 120 ° C. for 1 hour after pre-curing at 120 ° C. for 3 hours to obtain a test piece for transmittance having a thickness of 1 mm.
  • the transmittance of each cured product at 400 nm was compared.
  • the obtained test piece was heat-treated at 150 ° C. for 96 hours, and the degree of coloring was evaluated based on the thermal history (transmittance at 400 nm was measured and compared).
  • Example 9 Comparative Example 4
  • the epoxy resin (EP-2) of the present invention obtained in Example 3 and, as a comparative example, the epoxy resin (EP-6) obtained in Synthesis Example 1 the acid anhydride (H1), curing as a curing agent
  • a curing accelerator (C1) is used as an accelerator, blended at a blending ratio (parts by weight) shown in Table 3 below, defoamed for 20 minutes, and the curable resin composition of the present invention, a comparative curable resin.
  • a composition was obtained.
  • the LED test results are shown in Table 3 in the following manner.
  • the curing conditions are 140 ° C. ⁇ 3 hours after 110 ° C. ⁇ 2 hours of preliminary curing.
  • Example 10 and Comparative Examples 5 and 6 EP2 as an epoxy resin for examples, EP3 and EP6 as comparative examples, and methylhexahydrophthalic anhydride (manufactured by Shin Nippon Rika Co., Ltd., Ricacid MH, hereinafter referred to as H3) as a curing agent.
  • the epoxy resin of the present invention is an epoxy resin excellent in impact resistance and water resistance.

Abstract

Disclosed is a novel alicyclic epoxy resin which provides a cured article having excellent heat resistance, optical properties, and toughness. The epoxy resin comprises a diolefin compound represented by formula (1) as a starting material and is obtained by the epoxidation of the compound. In formula (1), a plurality of R1's and R2's each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.

Description

ジオレフィン化合物、エポキシ樹脂、硬化性樹脂組成物及びその硬化物Diolefin compound, epoxy resin, curable resin composition and cured product thereof
 本発明は電気電子材料用途に好適な、新規なジオレフィン化合物及びエポキシ樹脂に関する。 The present invention relates to a novel diolefin compound and an epoxy resin suitable for electrical and electronic material applications.
 エポキシ樹脂は種々の硬化剤で硬化させることにより、一般的に機械的性質、耐水性、耐薬品性、耐熱性、電気的性質などに優れた硬化物となり、接着剤、塗料、積層板、成形材料、注型材料、レジストなどの幅広い分野に利用されている。近年、特に半導体関連材料の分野においてはカメラ付き携帯電話、超薄型の液晶やプラズマTV、軽量ノート型パソコンなど軽・薄・短・小がキーワードとなるような電子機器があふれ、これによりエポキシ樹脂に代表されるパッケージ材料にも非常に高い特性が求められてきている。特に先端パッケージはその構造が複雑になり、液状封止でなくては封止が困難な物が増加している。例えばEnhancedBGAのようなキャビティーダウンタイプの構造になっているものは部分封止を行う必要があり、トランスファー成型では対応できない。このようなことから高機能な液状エポキシ樹脂の開発が求められている。
 またコンポジット材、車の車体や船舶の構造材として、近年、その製造法の簡便さからRTM(Resin Transfer Molding)が使用されている。このような組成物においてはカーボンファイバー等への含浸のされやすさから低粘度のエポキシ樹脂が望まれている。
Epoxy resins are generally cured with various curing agents, resulting in cured products with excellent mechanical properties, water resistance, chemical resistance, heat resistance, electrical properties, etc., adhesives, paints, laminates, moldings It is used in a wide range of fields such as materials, casting materials and resists. In recent years, especially in the field of semiconductor-related materials, electronic devices such as mobile phones with cameras, ultra-thin liquid crystals, plasma TVs, and light-weight notebook computers have become key to light, thin, short, and small. Very high characteristics have been demanded for packaging materials represented by resins. In particular, the structure of the tip package is complicated, and there are an increasing number of things that are difficult to seal without liquid sealing. For example, a cavity down type structure such as Enhanced BGA needs to be partially sealed and cannot be handled by transfer molding. For these reasons, the development of highly functional liquid epoxy resins has been demanded.
In recent years, RTM (Resin Transfer Molding) has been used as a composite material, a car body, and a structural material for a ship because of its simplicity of manufacturing method. In such a composition, a low-viscosity epoxy resin is desired because it is easily impregnated into carbon fiber or the like.
 また、オプトエレクトロニクス関連分野、特に近年の高度情報化に伴い、膨大な情報を円滑に伝送および処理するために、従来の電気配線による信号伝送に替わり、光信号を生かした技術が開発されている。中でも、光導波路、青色LEDおよび光半導体等の光学部品の分野においては、透明性に優れた樹脂材料の開発が望まれている。これらの要求に対し、脂環式のエポキシ樹脂が注目されている。 In addition, in the field of optoelectronics, particularly in recent years, advanced information technology has developed a technology that makes use of optical signals instead of conventional signal transmission in order to smoothly transmit and process vast amounts of information. . In particular, in the field of optical components such as optical waveguides, blue LEDs, and optical semiconductors, development of resin materials with excellent transparency is desired. In response to these requirements, alicyclic epoxy resins have attracted attention.
 脂環式エポキシ化合物はグリシジルエーテルタイプのエポキシ化合物と比較し、電気絶縁性や透明性といった面で優れており、透明封止材料等に種々使用されている。しかしながら、特にLED用途等の高度な熱・光特性が求められる分野においては、より耐熱性や耐光性を向上させた脂環式エポキシ化合物が求められている(特許文献1~3参照)。 Alicyclic epoxy compounds are superior in terms of electrical insulation and transparency as compared with glycidyl ether type epoxy compounds, and are used in various kinds of transparent sealing materials. However, alicyclic epoxy compounds with improved heat resistance and light resistance have been demanded particularly in fields where advanced heat / light properties such as LED applications are required (see Patent Documents 1 to 3).
日本国特開2006-52187号公報Japanese Unexamined Patent Publication No. 2006-52187 日本国特開2007-510772号公報Japanese Unexamined Patent Publication No. 2007-510772 日本国特開2007-16073号公報Japanese Unexamined Patent Publication No. 2007-16073
 本発明は、耐熱性、光学特性、強靭性に優れる硬化物を与える新規な脂環エポキシ樹脂を提供することを目的とする。 An object of the present invention is to provide a novel alicyclic epoxy resin that gives a cured product having excellent heat resistance, optical properties, and toughness.
 本発明者らは前記したような実状に鑑み、鋭意検討した結果、本発明を完成させるに至った。すなわち本発明は、
(1)
下記式(1)
Figure JPOXMLDOC01-appb-C000002
 
(式中、複数存在するR、Rはそれぞれ独立して存在し、水素原子、もしくは炭素数1~6のアルキル基を表す。)
で表されるジオレフィン化合物、
(2)
前項(1)に記載のジオレフィン化合物を酸化することにより得られるエポキシ樹脂、
(3)
過酸化水素又は過酸を用いてエポキシ化する前項(2)に記載のエポキシ樹脂、
(4)
前項(2)及び(3)のいずれか一項に記載のエポキシ樹脂と硬化剤及び/又は硬化促進剤とを含有する硬化性樹脂組成物、
(5)
前項(4)に記載の硬化性樹脂組成物を硬化してなる硬化物、
に関する。
As a result of intensive studies in view of the actual situation as described above, the present inventors have completed the present invention. That is, the present invention
(1)
Following formula (1)
Figure JPOXMLDOC01-appb-C000002

(In the formula, a plurality of R 1 and R 2 each independently exist, and represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.)
A diolefin compound represented by:
(2)
An epoxy resin obtained by oxidizing the diolefin compound according to item (1),
(3)
The epoxy resin according to item (2), which is epoxidized using hydrogen peroxide or peracid,
(4)
A curable resin composition comprising the epoxy resin according to any one of (2) and (3) above, a curing agent and / or a curing accelerator,
(5)
Hardened | cured material formed by hardening | curing curable resin composition of previous clause (4),
About.
 本発明のエポキシ樹脂は機械特性(特に靭性)に優れた硬化物を与える。本発明のエポキシ樹脂を含む硬化性脂組成物は電気・電子材料、成型材料、注型材料、積層材料、塗料、接着剤、レジスト等の広範囲の用途に有用である。また、本発明のエポキシ樹脂は芳香環を有さないことから、それを含む硬化性樹脂組成物は光学材料に極めて有用である。 The epoxy resin of the present invention gives a cured product having excellent mechanical properties (particularly toughness). The curable fat composition containing the epoxy resin of the present invention is useful for a wide range of applications such as electric / electronic materials, molding materials, casting materials, laminated materials, paints, adhesives, resists and the like. Moreover, since the epoxy resin of this invention does not have an aromatic ring, the curable resin composition containing it is very useful for an optical material.
 本発明は、下記式(1) The present invention is the following formula (1)
Figure JPOXMLDOC01-appb-C000003
 
(式中、複数存在するR、Rはそれぞれ独立して存在し、水素原子、もしくは炭素数1~6のアルキル基を表す。)
で表されるジオレフィン化合物、及びこれを酸化によりエポキシ化することで得られるエポキシ樹脂に関する。
Figure JPOXMLDOC01-appb-C000003

(In the formula, a plurality of R 1 and R 2 each independently exist, and represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.)
And an epoxy resin obtained by epoxidizing the compound by oxidation.
 前記式(1)で表されるジオレフィン化合物はシクロヘキセンメタノール誘導体とデカヒドロナフタレンジカルボン酸誘導体との反応によって得られる。シクロヘキセンメタノール誘導体としてはヒドロキシメチル基を有するシクロヘキセンであれば特に限定されず、好ましくは3-シクロヘキセンメタノール、3-メチル-3-シクロヘキセンメタノール、4-メチル-3-シクロヘキセンメタノール、2-メチル-3-シクロヘキセンメタノールなどが挙げられ、特に好ましくは、3-シクロヘキセンメタノールが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上併用してもよい。 The diolefin compound represented by the formula (1) is obtained by a reaction between a cyclohexene methanol derivative and a decahydronaphthalenedicarboxylic acid derivative. The cyclohexene methanol derivative is not particularly limited as long as it is a cyclohexene having a hydroxymethyl group, and preferably 3-cyclohexene methanol, 3-methyl-3-cyclohexene methanol, 4-methyl-3-cyclohexene methanol, 2-methyl-3- Examples thereof include cyclohexene methanol, and 3-cyclohexene methanol is particularly preferable, but is not limited thereto. These may be used alone or in combination of two or more.
 デカヒドロナフタレンジカルボン酸誘導体としては、例えばナフタレンジカルボン酸、もしくはそのエステル体を核水添により水添し、次いで得られる化合物やテトラリンを除くテトラヒドロナフタレンをヒドロホルミル化した後、これを酸化しカルボン酸とする、もしくはさらにアルコールでエステル化することによって得られる。さらに反応性を上げるために、テトラリンジカルボン酸を除くデカヒドロナフタレンジカルボン酸を酸ハライド化しても構わない。
 具体的にはデカヒドロナフタレンジカルボン酸、デカヒドロナフタレンジカルボン酸ジメチル、デカヒドロナフタレンジカルボン酸ジエチル、デカヒドロナフタレンジカルボン酸ジプロピル、デカヒドロナフタレンジカルボン酸ジブチル、デカヒドロナフタレンジカルボン酸ジシクロヘキシル、メチルデカヒドロナフタレンジカルボン酸ジメチル、シクロヘキシルデカヒドロナフタレンジカルボン酸ジエチル、等が挙げられる。
Examples of decahydronaphthalenedicarboxylic acid derivatives include hydrogenation of naphthalenedicarboxylic acid or its ester by nuclear hydrogenation, and hydroformylation of tetrahydronaphthalene excluding the resulting compound and tetralin, followed by oxidation with carboxylic acid. Or by further esterification with alcohol. In order to further increase the reactivity, decahydronaphthalenedicarboxylic acid excluding tetralin dicarboxylic acid may be acid halided.
Specifically, decahydronaphthalenedicarboxylic acid, dimethyl decahydronaphthalenedicarboxylate, diethyl decahydronaphthalenedicarboxylate, dipropyl decahydronaphthalenedicarboxylate, dibutyl decahydronaphthalenedicarboxylate, dicyclohexyl decahydronaphthalenedicarboxylate, methyl decahydronaphthalenedicarboxyl Dimethyl acid, cyclohexyldecahydronaphthalenedicarboxylate, and the like.
 シクロヘキセンメタノール誘導体とデカヒドロナフタレンジカルボン酸誘導体との反応としては一般のエステル化方法が適応できる。具体的には、酸触媒を使用したFischer esterification、塩基性条件下での酸ハライド、アルコールの反応、各種縮合剤を利用した縮合反応等が挙げられる(ADVANCED ORGANIC CHEMISTRY PartB:Reaction and Syntehsis  p135、145-147、151等)。また、具体的な事例としては、アルコールとカルボン酸類とのエステル化反応(Tetrahedron vol.36 p.2409 (1980)、Tetrahedron Letter p.4475 (1980)、さらにはカルボン酸エステルのエステル交換反応(日本国特開2006-052187号公報)を利用してもよい。 A general esterification method can be applied as a reaction between the cyclohexene methanol derivative and the decahydronaphthalenedicarboxylic acid derivative. Specific examples include Fischer® esterification using an acid catalyst, acid halide under basic conditions, alcohol reaction, condensation reaction using various condensing agents (ADVANCED®ORGANIC®CHEMISTRY Part B: Reaction and Syntehsis®p135, 145) -147, 151 etc.). Specific examples include esterification reactions between alcohols and carboxylic acids (Tetrahedron vol.36 p.2409 (1980), Tetrahedron Letter p.4475 (1980), and transesterification of carboxylic acid esters (Japan) (Japanese Patent Laid-Open No. 2006-052187) may be used.
 このようにして合成される前記式(1)のジオレフィン化合物の好ましい構造としては、前記式(1)においてRが水素原子、メチル基、エチル基、ブチル基のいずれかであることが好ましく、特に、置換基Rがオレフィンに結合する場合、その反応性を向上させるために、オレフィンに結合するRは水素原子、メチル基のいずれかが好ましく、特に好ましくは水素原子である。
 デカヒドロナフタレン構造に直結する置換基Rは水素原子、メチル基、エチル基、プロピル基等が好ましい。また市場からの原料の入手のしやすさから水素原子となるものが好ましい。
 また、前記式(1)のジオレフィン化合物は、2,6-置換、1,4-置換、2,3-置換、1,8-置換が好ましく、特に2,6-置換のものが好ましい。
As a preferable structure of the diolefin compound of the formula (1) synthesized as described above, it is preferable that R 1 in the formula (1) is any one of a hydrogen atom, a methyl group, an ethyl group, and a butyl group. In particular, when the substituent R 1 is bonded to an olefin, in order to improve the reactivity, R 1 bonded to the olefin is preferably a hydrogen atom or a methyl group, particularly preferably a hydrogen atom.
The substituent R 2 directly connected to the decahydronaphthalene structure is preferably a hydrogen atom, a methyl group, an ethyl group, a propyl group or the like. Moreover, the thing which becomes a hydrogen atom from the ease of acquisition of the raw material from a market is preferable.
Further, the diolefin compound of the formula (1) is preferably 2,6-substituted, 1,4-substituted, 2,3-substituted, 1,8-substituted, and particularly preferably 2,6-substituted.
 前記式(1)に示す、本発明のジオレフィン樹脂は酸化することで本発明のエポキシ樹脂とすることができる。酸化の手法としては過酢酸等の過酸で酸化する方法、過酸化水素水で酸化する方法、空気(酸素)で酸化する方法などが挙げられるが、これらに限らない。
 過酸によるエポキシ化の手法としては具体的には日本国特開2006-52187号公報に記載の手法などが挙げられる。使用できる過酸としては、例えばギ酸、酢酸、プロピオン酸、マレイン酸、安息香酸、m-クロロ安息香酸、フタル酸などの有機酸およびそれらの酸無水物が挙げられる。これらの中でも、過酸化水素と反応して有機過酸を生成する効率、反応温度、操作の簡便性、経済性などの観点からは、ギ酸、酢酸、無水フタル酸を使用するのが好ましく、特に反応操作の簡便性の観点から、ギ酸または酢酸を使用するのがより好ましい。
 過酸化水素水によるエポキシ化の手法においては種々の手法が適応できるが、具体的には、日本国特開昭59-108793号公報、日本国特開昭62-234550号公報、日本国特開平5-213919号公報、日本国特開平11-349579号公報、日本国特公平1―33471号公報、日本国特開2001-17864号公報、日本国特公平3-57102号公報等に挙げられるような手法が適応できる。
The diolefin resin of the present invention represented by the formula (1) can be oxidized to form the epoxy resin of the present invention. Examples of the oxidation method include, but are not limited to, a method of oxidizing with a peracid such as peracetic acid, a method of oxidizing with a hydrogen peroxide solution, and a method of oxidizing with air (oxygen).
Specific examples of the epoxidation method using peracid include the method described in Japanese Patent Application Laid-Open No. 2006-52187. Examples of peracids that can be used include organic acids such as formic acid, acetic acid, propionic acid, maleic acid, benzoic acid, m-chlorobenzoic acid, and phthalic acid, and acid anhydrides thereof. Among these, it is preferable to use formic acid, acetic acid, and phthalic anhydride from the viewpoint of the efficiency of reacting with hydrogen peroxide to produce an organic peracid, the reaction temperature, the ease of operation, and the economy. Formic acid or acetic acid is more preferably used from the viewpoint of simplicity of reaction operation.
Various methods can be applied to the epoxidation method using hydrogen peroxide solution. Specifically, Japanese Patent Application Laid-Open No. 59-108793, Japanese Patent Application Laid-Open No. 62-234550, Japanese Patent Application Laid-Open No. No. 5-291919, Japanese Patent Application Laid-Open No. 11-349579, Japanese Patent Publication No. 1-33341, Japanese Patent Publication No. 2001-17864, Japanese Patent Publication No. 3-57102, etc. Various methods can be applied.
 以下、本発明のエポキシ樹脂を得るのに特に好ましい方法を例示する。
 まず、本発明のジオレフィン化合物、ポリ酸類及び4級アンモニウム塩を有機溶剤と過酸化水素水との二層で反応を行う。
Hereinafter, a particularly preferable method for obtaining the epoxy resin of the present invention will be exemplified.
First, the diolefin compound, polyacid and quaternary ammonium salt of the present invention are reacted in two layers of an organic solvent and hydrogen peroxide solution.
 本発明で使用するポリ酸類は、ポリ酸構造を有する化合物であれば特に制限はないが、タングステン又はモリブデンを含むポリ酸類が好ましく、タングステンを含むポリ酸類が更に好ましく、タングステン酸塩類が特に好ましい。
 ポリ酸類に含まれる具体的なポリ酸及びポリ酸塩としては、タングステン酸、12-タングストリン酸、12-タングストホウ酸、18-タングストリン酸及び12-タングストケイ酸等から選ばれるタングステン系の酸、モリブデン酸及びリンモリブデン酸等から選ばれるモリブデン系の酸、ならびにそれらの塩等が挙げられる。
 これらの塩のカウンターカチオンとしては、アンモニウムイオン、アルカリ土類金属イオン、アルカリ金属イオン等が挙げられる。
 具体的にはカルシウムイオン、マグネシウムイオン等のアルカリ土類金属イオン、ナトリウム、カリウム、セシウム等のアルカリ金属イオン等が挙げられるがこれらに限定されない。特に好ましいカウンターカチオンとしては、ナトリウムイオン、カリウムイオン、カルシウムイオン、アンモニウムイオンである。
The polyacid used in the present invention is not particularly limited as long as it is a compound having a polyacid structure, but polyacids containing tungsten or molybdenum are preferred, polyacids containing tungsten are more preferred, and tungstates are particularly preferred.
Specific polyacids and polyacid salts included in the polyacids include tungsten acids selected from tungstic acid, 12-tungstophosphoric acid, 12-tungstoboric acid, 18-tungstophosphoric acid, 12-tungstosilicic acid, and the like. Examples thereof include molybdenum-based acids selected from molybdic acid and phosphomolybdic acid, and salts thereof.
Examples of the counter cation of these salts include ammonium ions, alkaline earth metal ions, and alkali metal ions.
Specific examples include alkaline earth metal ions such as calcium ions and magnesium ions, alkali metal ions such as sodium, potassium and cesium, but are not limited thereto. Particularly preferred counter cations are sodium ion, potassium ion, calcium ion and ammonium ion.
 ポリ酸類の使用量は本発明のジオレフィン化合物におけるオレフィン1モル(官能基当量)に対し、金属元素換算(タングテン酸ならタングステン原子、モリブデン酸ならモリブデン原子のモル数)で1.0~20ミリモル、好ましくは2.0~20ミリモル、さらに好ましくは2.5~10ミリモルである。 The amount of the polyacid used is 1.0 to 20 mmol in terms of metal element (tungstenic acid is tungsten atom, molybdic acid is molybdenum atom) to 1 mol of olefin (functional group equivalent) in the diolefin compound of the present invention. , Preferably 2.0 to 20 mmol, more preferably 2.5 to 10 mmol.
 4級アンモニウム塩としては、総炭素数が10以上、好ましくは25~100、より好ましくは25~55の4級アンモニウム塩が好ましく使用でき、特にそのアルキル鎖が全て脂肪族鎖であるものが好ましい。
 具体的にはトリデカニルメチルアンモニウム塩、ジラウリルジメチルアンモニウム塩、トリオクチルメチルアンモニウム塩、トリアルキルメチル(アルキル基がオクチル基である化合物とデカニル基である化合物の混合タイプ)アンモニウム塩、トリヘキサデシルメチルアンモニウム塩、トリメチルステアリルアンモニウム塩、テトラペンチルアンモニウム塩、セチルトリメチルアンモニウム塩、ベンジルトリブチルアンモニウム塩、ジセチルジメチルアンモニウム塩、トリセチルメチルアンモニウム塩、ジ硬化牛脂アルキルジメチルアンモニウム塩などが挙げられるがこれらに限定されない。
 またこれら塩のアニオン種は、カルボン酸イオンを使用する。カルボン酸イオンとしては、酢酸イオン、炭酸イオン、ギ酸イオンが好ましい。また、特に酢酸イオンが好ましい。
 4級アンモニウム塩の炭素数が100を上回ると、疎水性が強くなりすぎて有機層への溶解性が悪くなる場合がある。一方、4級アンモニウム塩の炭素数が10未満であると、親水性が強くなり、同様に有機層への相溶性が悪くなる場合がある。
 4級アンモニウム塩には一般にハロゲンが残存する。本発明においては特に、1重量%以下、より好ましくは1000ppm以下、さらに好ましくは700ppm以下である。総ハロゲン量が1重量%を超える場合、生成物に多量にハロゲンが残存するため好ましくない。
 タングステン酸類と4級アンモニウムのカルボン酸塩の使用量は使用するタングステン酸類の価数倍の0.01~0.8倍当量、あるいは1.1~10倍当量が好ましい。より好ましくは0.05~0.7倍当量、あるいは1.2~6.0倍当量であり、さらに好ましくは0.05~0.5倍当量、あるいは1.3~4.5倍当量である。
 例えば、タングステン酸であればHWOで2価であるので、タングステン酸1モルに対し、4級アンモニウムのカルボン酸塩は0.02~1.6モル、もしくは2.2~20モルの範囲が好ましい。またタングストリン酸であれば3価であるので、同様に0.03~2.4モル、もしくは3.3~30モル、ケイタングステン酸であれば4価であるので0.04~3.2モル、もしくは4.4~40モルが好ましい。
 4級アンモニウムのカルボン酸塩の量が、タングステン酸類の価数倍の1.1倍当量よりも低い場合、エポキシ化反応が進行しづらい(場合によっては反応の進行が早くなる)、また副生成物ができやすいという問題が生じる。10倍当量よりも多い場合、過剰の4級アンモニウムのカルボン酸塩の処理が大変であるばかりか、反応を抑制する働きがあり、好ましくない。
As the quaternary ammonium salt, a quaternary ammonium salt having a total carbon number of 10 or more, preferably 25 to 100, more preferably 25 to 55 can be preferably used, and in particular, the alkyl chain is preferably an aliphatic chain. .
Specifically, tridecanylmethylammonium salt, dilauryldimethylammonium salt, trioctylmethylammonium salt, trialkylmethyl (a mixed type of a compound in which the alkyl group is an octyl group and a compound in which the decanyl group is a compound) ammonium salt, trihexa Examples include decylmethylammonium salt, trimethylstearylammonium salt, tetrapentylammonium salt, cetyltrimethylammonium salt, benzyltributylammonium salt, dicetyldimethylammonium salt, tricetylmethylammonium salt, and di-cured tallow alkyldimethylammonium salt. It is not limited to.
The anion species of these salts use carboxylate ions. As the carboxylate ion, acetate ion, carbonate ion and formate ion are preferable. In particular, acetate ion is preferred.
If the quaternary ammonium salt has more than 100 carbon atoms, the hydrophobicity may become too strong and the solubility in the organic layer may deteriorate. On the other hand, when the carbon number of the quaternary ammonium salt is less than 10, the hydrophilicity becomes strong, and the compatibility with the organic layer may be similarly deteriorated.
In general, halogen remains in the quaternary ammonium salt. In the present invention, in particular, it is 1% by weight or less, more preferably 1000 ppm or less, and still more preferably 700 ppm or less. When the total halogen content exceeds 1% by weight, a large amount of halogen remains in the product, which is not preferable.
The amount of tungstic acid and quaternary ammonium carboxylate used is preferably 0.01 to 0.8 times equivalent, or 1.1 to 10 times equivalent to the valence of the tungstic acid used. More preferably 0.05 to 0.7 times equivalent, or 1.2 to 6.0 times equivalent, still more preferably 0.05 to 0.5 times equivalent, or 1.3 to 4.5 times equivalent. is there.
For example, since tungstic acid is divalent with H 2 WO 4 , the quaternary ammonium carboxylate is 0.02 to 1.6 mol, or 2.2 to 20 mol per mol of tungstic acid. A range is preferred. In addition, since tungstophosphoric acid is trivalent, it is similarly 0.03 to 2.4 mol, or 3.3 to 30 mol, and in the case of silicotungstic acid, it is tetravalent, so 0.04 to 3.2. Mole or 4.4 to 40 mol is preferred.
When the amount of the quaternary ammonium carboxylate is lower than 1.1 times equivalent of the valence of tungstic acids, the epoxidation reaction is difficult to proceed (in some cases, the reaction proceeds faster), and a by-product is produced. The problem is that things are easy to make. When the amount is more than 10 times the equivalent, not only is the treatment of the excess quaternary ammonium carboxylate difficult, but it also serves to suppress the reaction, which is not preferable.
 カルボン酸イオンをアニオンとする4級アンモニウム塩は、市販品を使用してもよいし、例えば、原料4級アンモニウム塩を金属水酸化物やイオン交換樹脂で処理し、4級アンモニウムハイドロオキサイドに変換し、さらに各種カルボン酸と反応させるなどの方法により製造してもよい。原料4級アンモニウム塩としては、4級アンモニウムのハロゲン化物や各種金属塩等が挙げられる。また好適な4級アンモニウムハイドロオキサイドがあればそれを用いても構わない。 As the quaternary ammonium salt having a carboxylate ion as an anion, a commercially available product may be used. For example, the raw material quaternary ammonium salt is treated with a metal hydroxide or an ion exchange resin to be converted into a quaternary ammonium hydroxide. Further, it may be produced by a method of reacting with various carboxylic acids. Examples of the raw material quaternary ammonium salt include quaternary ammonium halides and various metal salts. If there is a suitable quaternary ammonium hydroxide, it may be used.
 緩衝液としてはいずれも用いることができるが、本反応においてはリン酸塩水溶液を用いるのが好ましい。そのpHとしてはpH4~10の間に調整されたものが好ましく、より好ましくはpH5~9である。pH4未満の場合、エポキシ基の加水分解反応、重合反応が進行しやすくなる。またpH10を超える場合、反応が極度に遅くなり、反応時間が長すぎるという問題が生じる。
 特に本発明においては触媒であるタングステン酸類を溶解した際に、pH5~9の間になるように調整されることが好ましい。
 緩衝液の使用方法は、例えば好ましい緩衝液であるリン酸-リン酸塩水溶液の場合は過酸化水素に対し、0.1~10モル%当量のリン酸(あるいはリン酸二水素ナトリウム等のリン酸塩)を使用し、塩基性化合物(たとえば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム等)でpH調整を行うという方法が挙げられる。ここでpHは過酸化水素を添加した際に前述のpHになるように添加することが好ましい。また、リン酸二水素ナトリウム又はリン酸水素二ナトリウム等を用いて調整することも可能である。好ましいリン酸塩の濃度は0.1~60重量%、好ましくは5~45重量%である。
 また、本反応においては緩衝液を使用せず、pH調整無しに、リン酸水素二ナトリウム、リン酸二水素ナトリウム、リン酸ナトリウムあるいはトリポリリン酸ナトリウム等(またはその水和物)のリン酸塩を直接添加しても構わない。工程の簡略化、という意味合いではpH調整のわずらわしさが無く、直接の添加が特に好ましい。この場合のリン酸塩の使用量は、過酸化水素に対し、通常0.1~5モル%当量、好ましくは0.2~4モル%当量、より好ましくは、0.3~3モル%当量である。この際、過酸化水素に対し、5モル%当量を超えるとpH調整が必要となり、0.1モル%当量未満の場合、生成したエポキシ樹脂の加水分解物が進行しやすくなる、あるいは反応が遅くなる等の弊害が生じる。
Any buffer can be used, but it is preferable to use an aqueous phosphate solution in this reaction. The pH is preferably adjusted between pH 4 and 10, more preferably pH 5-9. When the pH is less than 4, the hydrolysis reaction and polymerization reaction of the epoxy group easily proceed. Moreover, when pH10 is exceeded, reaction will become extremely slow and the problem that reaction time is too long will arise.
In particular, in the present invention, when the tungstic acid as a catalyst is dissolved, the pH is preferably adjusted to be between 5 and 9.
For example, in the case of a phosphoric acid-phosphate aqueous solution which is a preferable buffer solution, a buffer solution is used in an amount of 0.1 to 10 mol% of phosphoric acid (or phosphorous such as sodium dihydrogen phosphate) with respect to hydrogen peroxide. Acid salt) and adjusting the pH with a basic compound (for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate, potassium carbonate, etc.). Here, it is preferable that the pH is added so that the above-mentioned pH is obtained when hydrogen peroxide is added. Moreover, it is also possible to adjust using sodium dihydrogen phosphate or disodium hydrogen phosphate. The preferred phosphate concentration is 0.1 to 60% by weight, preferably 5 to 45% by weight.
In this reaction, a buffer such as disodium hydrogen phosphate, sodium dihydrogen phosphate, sodium phosphate or sodium tripolyphosphate (or its hydrate) is used without adjusting the pH. It may be added directly. In the sense of simplifying the process, there is no troublesome pH adjustment, and direct addition is particularly preferred. In this case, the amount of phosphate used is usually 0.1 to 5 mol% equivalent, preferably 0.2 to 4 mol% equivalent, more preferably 0.3 to 3 mol% equivalent to hydrogen peroxide. It is. At this time, if the amount exceeds 5 mol% equivalent to hydrogen peroxide, pH adjustment is required. If the amount is less than 0.1 mol% equivalent, the resulting epoxy resin hydrolyzate tends to proceed or the reaction is slow. The bad effect of becoming.
 本反応は過酸化水素を用いてエポキシ化を行う。本反応に使用する過酸化水素としては、その取扱いの簡便さから過酸化水素濃度が10~40重量%の濃度である水溶液が好ましい。濃度が40重量%を超える場合、取扱いが難しくなる他、生成したエポキシ樹脂の分解反応も進行しやすくなることから好ましくない。 This reaction is epoxidized using hydrogen peroxide. As the hydrogen peroxide used in this reaction, an aqueous solution having a hydrogen peroxide concentration of 10 to 40% by weight is preferable because of easy handling. When the concentration exceeds 40% by weight, handling becomes difficult and the decomposition reaction of the produced epoxy resin also tends to proceed.
 本反応は有機溶剤を使用する。使用する有機溶剤の量としては、反応基質であるジオレフィン化合物1に対し、重量比で0.3~10であり、好ましくは0.3~5、より好ましくは0.5~2.5である。重量比で10を超える場合、反応の進行が極度に遅くなることから好ましくない。使用できる有機溶剤の具体的な例としてはヘキサン、シクロヘキサン、ヘプタン等のアルカン類、トルエン、キシレン等の芳香族炭化水素化合物、メタノール、エタノール、イソプロパノール、ブタノール、ヘキサノール、シクロヘキサノール等のアルコール類が挙げられる。また、場合によっては、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、アノン等のケトン類、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、酢酸エチル、酢酸ブチル、蟻酸メチル等のエステル化合物、アセトニトリル等のニトリル化合物等も使用可能である。 This reaction uses an organic solvent. The amount of the organic solvent to be used is 0.3 to 10, preferably 0.3 to 5, more preferably 0.5 to 2.5 by weight with respect to the diolefin compound 1 as a reaction substrate. is there. When the weight ratio exceeds 10, the progress of the reaction is extremely slow, which is not preferable. Specific examples of organic solvents that can be used include alkanes such as hexane, cyclohexane, and heptane, aromatic hydrocarbon compounds such as toluene and xylene, and alcohols such as methanol, ethanol, isopropanol, butanol, hexanol, and cyclohexanol. It is done. In some cases, ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and anone, ethers such as diethyl ether, tetrahydrofuran and dioxane, ester compounds such as ethyl acetate, butyl acetate and methyl formate, and nitriles such as acetonitrile Compounds and the like can also be used.
 具体的な反応操作方法としては、例えばバッチ式の反応釜で反応を行う際は、ジオレフィン化合物、過酸化水素(水溶液)、ポリ酸類(触媒)、緩衝液、4級アンモニウム塩及び有機溶剤を加え、二層で撹拌する。撹拌速度に特に指定は無い。過酸化水素の添加時に発熱する場合が多いことから、各成分を添加した後に過酸化水素を徐々に添加する方法でも構わない。 As a specific reaction operation method, for example, when the reaction is performed in a batch-type reaction kettle, a diolefin compound, hydrogen peroxide (aqueous solution), polyacids (catalyst), a buffer solution, a quaternary ammonium salt, and an organic solvent are added. In addition, stir in two layers. There is no specific designation for the stirring speed. Since heat is often generated when hydrogen peroxide is added, a method of gradually adding hydrogen peroxide after each component may be added.
 反応温度は特に限定されないが0~90℃が好ましく、さらに好ましくは0~75℃、特に15℃~60℃が好ましい。反応温度が高すぎる場合、加水分解反応が進行しやすく、反応温度が低いと反応速度が極端に遅くなる。 The reaction temperature is not particularly limited, but is preferably 0 to 90 ° C, more preferably 0 to 75 ° C, particularly preferably 15 ° C to 60 ° C. When the reaction temperature is too high, the hydrolysis reaction tends to proceed, and when the reaction temperature is low, the reaction rate becomes extremely slow.
 また反応時間は反応温度、触媒量等にもよるが、工業生産という観点から、長時間の反応は多大なエネルギーを消費することになるため好ましくはない。好ましい範囲としては1~48時間、好ましくは3~36時間、さらに好ましくは4~24時間である。 Although the reaction time depends on the reaction temperature, the amount of catalyst, etc., from the viewpoint of industrial production, a long reaction time is not preferable because it consumes a great deal of energy. A preferred range is 1 to 48 hours, preferably 3 to 36 hours, and more preferably 4 to 24 hours.
 反応終了後、過剰な過酸化水素のクエンチ処理を行う。クエンチ処理は、塩基性化合物を使用して行なうことが好ましい。また、還元剤と塩基性化合物を併用することも好ましい。好ましい処理方法としては塩基性化合物でpH6~10に中和調整後、還元剤を用い、残存する過酸化水素をクエンチする方法が挙げられる。pHが6未満の場合、過剰の過酸化水素を還元する際の発熱が大きく、分解物を生じる可能性がある。 After the reaction is complete, quench the excess hydrogen peroxide. The quenching treatment is preferably performed using a basic compound. It is also preferable to use a reducing agent and a basic compound in combination. As a preferred treatment method, there is a method of quenching the remaining hydrogen peroxide using a reducing agent after neutralization adjustment to pH 6 to 10 with a basic compound. When the pH is less than 6, the heat generated when reducing excess hydrogen peroxide is large, which may cause decomposition products.
 還元剤としては亜硫酸ナトリウム、チオ硫酸ナトリウム、ヒドラジン、シュウ酸、ビタミンC等が挙げられる。還元剤の使用量としては過剰分の過酸化水素もモル数に対し、通常0.01~20倍モル、より好ましくは0.05~10倍モル、さらに好ましくは0.05~3倍モルである。 Examples of the reducing agent include sodium sulfite, sodium thiosulfate, hydrazine, oxalic acid, vitamin C and the like. The reducing agent is used in an excess amount of hydrogen peroxide of usually 0.01 to 20 times mol, more preferably 0.05 to 10 times mol, and still more preferably 0.05 to 3 times mol with respect to the number of moles. is there.
 塩基性化合物としては、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム等の金属水酸化物、炭酸ナトリウム、炭酸カリウム等の金属炭酸塩、リン酸ナトリウム、リン酸水素ナトリウム等のリン酸塩、イオン交換樹脂、アルミナ等の塩基性固体が挙げられる。
 その使用量としては水、あるいは有機溶剤(例えば、トルエン、キシレン等の芳香族炭化水素、メチルイソブチルケトン、メチルエチルケトン等のケトン類、シクロヘキサン、ヘプタン、オクタン等の炭化水素、メタノール、エタノール、イソプロピルアルコール等のアルコール類等の各種溶剤)に溶解するものであれば、その使用量は過剰分の過酸化水素のモル数に対し、通常0.01~20倍モル、より好ましくは0.05~10倍モル、さらに好ましくは0.05~3倍モルである。これらは水、あるいは前述の有機溶剤の溶液として添加しても単体で添加しても構わない。
 水や有機溶剤に溶解しない固体塩基を使用する場合、系中に残存する過酸化水素の量に対し、重量比で1~1000倍の量を使用することが好ましい。より好ましくは10~500倍、さらに好ましくは10~300倍である。水や有機溶剤に溶解しない固体塩基を使用する場合は、後に記載する水層と有機層の分離の後、処理を行っても構わない。
Basic compounds include metal hydroxides such as sodium hydroxide, potassium hydroxide, magnesium hydroxide and calcium hydroxide, metal carbonates such as sodium carbonate and potassium carbonate, phosphorus such as sodium phosphate and sodium hydrogen phosphate. Examples thereof include basic solids such as acid salts, ion exchange resins, and alumina.
The amount used is water or organic solvents (for example, aromatic hydrocarbons such as toluene and xylene, ketones such as methyl isobutyl ketone and methyl ethyl ketone, hydrocarbons such as cyclohexane, heptane and octane, methanol, ethanol, isopropyl alcohol, etc. The amount used is usually 0.01 to 20 times mol, more preferably 0.05 to 10 times the number of moles of excess hydrogen peroxide. Mole, more preferably 0.05 to 3 times mole. These may be added as water or a solution of the above-mentioned organic solvent, or may be added alone.
When a solid base that does not dissolve in water or an organic solvent is used, it is preferable to use an amount of 1 to 1000 times by weight with respect to the amount of hydrogen peroxide remaining in the system. More preferably, it is 10 to 500 times, and further preferably 10 to 300 times. In the case of using a solid base that does not dissolve in water or an organic solvent, the treatment may be carried out after separation of an aqueous layer and an organic layer described later.
 過酸化水素のクエンチ後(もしくはクエンチを行う前に)、この際、有機層と水層が分離しない、もしくは有機溶剤を使用していない場合は前述の有機溶剤を添加して操作を行い、水層より反応生成物の抽出を行う。この際使用する有機溶剤は、原料ジオレフィン化合物に対して重量比で0.5~10倍、好ましくは0.5~5倍である。この操作を必要に応じて数回繰り返した後に有機層を分離し、必要に応じて該有機層を水洗して精製する。
 得られた有機層は必要に応じてイオン交換樹脂や金属酸化物(特に、シリカゲルやアルミナ等が好ましい)、活性炭(中でも特に薬品賦活活性炭が好ましい)、複合金属塩(中でも特に塩基性複合金属塩が好ましい)、粘度鉱物(中でも特にモンモリロナイト等層状粘度鉱物が好ましい)等により、不純物を除去し、さらに水洗及びろ過等を行った後、溶剤を留去し、目的とするエポキシ化合物を得る。場合によってはさらにカラムクロマトグラフィーや蒸留により精製しても構わない。
After the hydrogen peroxide quench (or before quenching), if the organic layer and the aqueous layer are not separated, or if no organic solvent is used, the above-mentioned organic solvent is added and the operation is performed. The reaction product is extracted from the layer. The organic solvent used at this time is 0.5 to 10 times, preferably 0.5 to 5 times in weight ratio to the raw material diolefin compound. This operation is repeated several times as necessary, and then the organic layer is separated. If necessary, the organic layer is washed with water and purified.
The obtained organic layer may be an ion exchange resin or a metal oxide (especially silica gel or alumina is preferred), activated carbon (especially a chemical activated carbon is particularly preferred), or a composite metal salt (especially a basic composite metal salt). Are preferably removed), a mineral with a viscosity (especially, a layered viscosity mineral such as montmorillonite is preferred), and after washing with water and filtration, the solvent is distilled off to obtain the desired epoxy compound. In some cases, it may be further purified by column chromatography or distillation.
 このようにして得られる本発明のエポキシ樹脂は式(2) The epoxy resin of the present invention thus obtained has the formula (2)
Figure JPOXMLDOC01-appb-C000004
 
(式中、複数存在するR、Rはそれぞれ独立して存在し、水素原子、もしくは炭素数1~6のアルキル基を表す。)
で表される構造をメイン構造とするが、加水分解物、未反応物、エポキシ基同士の重合した高分子量体や、その他副反応物が反応条件によっては生成する。
Figure JPOXMLDOC01-appb-C000004

(In the formula, a plurality of R 1 and R 2 each independently exist, and represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.)
The main structure is the structure represented by the formula, but a hydrolyzate, an unreacted product, a polymerized polymer obtained by polymerizing epoxy groups, and other by-products are produced depending on the reaction conditions.
 得られた本発明のエポキシ樹脂は、例えばエポキシアクリレートおよびその誘導体、オキサゾリドン系化合物もしくは環状カーボネート化合物等の各種樹脂原料として使用できる。 The obtained epoxy resin of the present invention can be used as a raw material for various resins such as epoxy acrylate and derivatives thereof, oxazolidone compounds or cyclic carbonate compounds.
 以下、本発明のエポキシ樹脂を含む本発明の硬化性樹脂組成物について記載する。
 本発明の硬化性樹脂組成物は本発明のエポキシ樹脂を必須成分として含有する。本発明の硬化性樹脂組成物においては、硬化剤による熱硬化(硬化性樹脂組成物A)と酸を硬化促進剤(硬化触媒)とするカチオン硬化(硬化性樹脂組成物B)の二種の方法が適応できる。
Hereinafter, it describes about the curable resin composition of this invention containing the epoxy resin of this invention.
The curable resin composition of the present invention contains the epoxy resin of the present invention as an essential component. In the curable resin composition of the present invention, two types of heat curing with a curing agent (curable resin composition A) and cationic curing (curable resin composition B) using an acid as a curing accelerator (curing catalyst). The method can be adapted.
 硬化性樹脂組成物Aと硬化性樹脂組成物Bにおいて本発明のエポキシ樹脂は単独でまたは他のエポキシ樹脂と併用して使用することが出来る。併用する場合、本発明のエポキシ樹脂の全エポキシ樹脂中に占める割合は30質量%以上が好ましく、特に40質量%以上が好ましい。ただし、本発明のエポキシ樹脂を硬化性樹脂組成物の改質剤として使用する場合は、1~30質量%の割合で添加しても構わない。 In the curable resin composition A and the curable resin composition B, the epoxy resin of the present invention can be used alone or in combination with other epoxy resins. When used in combination, the proportion of the epoxy resin of the present invention in the total epoxy resin is preferably 30% by mass or more, particularly preferably 40% by mass or more. However, when the epoxy resin of the present invention is used as a modifier of the curable resin composition, it may be added in a proportion of 1 to 30% by mass.
 本発明のエポキシ樹脂と併用し得る他のエポキシ樹脂としては、ノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂などが挙げられる。具体的には、ビスフェノールA、ビスフェノールS、チオジフェノール、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロルメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4-ビス(クロロメチル)ベンゼン又は1,4-ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類並びにアルコール類から誘導されるグリシジルエーテル化物、脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂、シルセスキオキサン系のエポキシ樹脂(鎖状、環状、ラダー状、あるいはそれら少なくとも2種以上の混合構造のシロキサン構造にグリシジル基および/またはエポキシシクロヘキサン構造を有するエポキシ樹脂)等の固形または液状エポキシ樹脂が挙げられるが、これらに限定されるものではない。 Other epoxy resins that can be used in combination with the epoxy resin of the present invention include novolak type epoxy resins, bisphenol type epoxy resins, biphenyl type epoxy resins, triphenylmethane type epoxy resins, phenol aralkyl type epoxy resins, and the like. Specifically, bisphenol A, bisphenol S, thiodiphenol, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-tetramethyl- [ 1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol (Phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetofu Non, o-hydroxyacetophenone, dicyclopentadiene, furfural, 4,4′-bis (chloromethyl) -1,1′-biphenyl, 4,4′-bis (methoxymethyl) -1,1′-biphenyl, 1, Glycidyl ethers derived from polycondensates with 4-bis (chloromethyl) benzene or 1,4-bis (methoxymethyl) benzene and their modified products, halogenated bisphenols such as tetrabromobisphenol A, and alcohols , Cycloaliphatic epoxy resin, glycidylamine epoxy resin, glycidyl ester epoxy resin, silsesquioxane epoxy resin (chain structure, cyclic structure, ladder structure, or a mixed structure of at least two of these) Has glycidyl group and / or epoxycyclohexane structure Epoxy resin) solid or liquid epoxy resins and the like that, but not limited thereto.
 特に本発明の硬化性樹脂組成物を光学用途に用いる場合、本発明のエポキシ樹脂と脂環式エポキシ樹脂やシルセスキオキサン構造のエポキシ樹脂とを併用して用いることが好ましい。特に脂環式エポキシ樹脂の場合、骨格にエポキシシクロヘキサン構造を有する化合物が好ましく、シクロヘキセン構造を有する化合物の酸化反応により得られるエポキシ樹脂が特に好ましい。
 シクロヘキセン構造を有する化合物としては、シクロヘキセンカルボン酸とアルコール類とのエステル化反応あるいはシクロヘキセンメタノールとカルボン酸類とのエステル化反応(Tetrahedron vol.36 p.2409 (1980)、Tetrahedron Letter p.4475 (1980)等に記載の手法)、あるいはシクロヘキセンアルデヒドのティシェンコ反応(日本国特開2003-170059号公報、日本国特開2004-262871号公報等に記載の手法)、さらにはシクロヘキセンカルボン酸エステルのエステル交換反応(日本国特開2006-052187号公報等に記載の手法)によって製造できる化合物が挙げられる。
 アルコール類としては、アルコール性水酸基を有する化合物であれば特に限定されないがエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、シクロヘキサンジメタノールなどのジオール類、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、2-ヒドロキシメチル-1,4-ブタンジオールなどのトリオール類、ペンタエリスリトールなどのテトラオール類などが挙げられる。またカルボン酸類としてはシュウ酸、マレイン酸、フマル酸、フタル酸、イソフタル酸、アジピン酸、シクロヘキサンジカルボン酸などが挙げられるがこれに限らない。
In particular, when the curable resin composition of the present invention is used for optical applications, the epoxy resin of the present invention is preferably used in combination with an alicyclic epoxy resin or an epoxy resin having a silsesquioxane structure. Particularly in the case of an alicyclic epoxy resin, a compound having an epoxycyclohexane structure in the skeleton is preferable, and an epoxy resin obtained by an oxidation reaction of a compound having a cyclohexene structure is particularly preferable.
As compounds having a cyclohexene structure, esterification reaction of cyclohexene carboxylic acid and alcohol or esterification reaction of cyclohexene methanol and carboxylic acid (Tetrahedron vol.36 p.2409 (1980), Tetrahedron Letter p.4475 (1980) Or the Tyshenko reaction of cyclohexene aldehyde (method described in Japanese Patent Application Laid-Open No. 2003-170059, Japanese Patent Application Laid-Open No. 2004-262871, etc.), and further transesterification of cyclohexene carboxylic acid ester Examples thereof include compounds that can be produced by the method described in Japanese Patent Application Laid-Open No. 2006-052187.
The alcohol is not particularly limited as long as it is a compound having an alcoholic hydroxyl group, but ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,5-pentane. Diols, diols such as 1,6-hexanediol and cyclohexanedimethanol, triols such as glycerin, trimethylolethane, trimethylolpropane, trimethylolbutane, 2-hydroxymethyl-1,4-butanediol, pentaerythritol, etc. And tetraols. Examples of carboxylic acids include, but are not limited to, oxalic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, adipic acid, and cyclohexanedicarboxylic acid.
 さらに上記以外のシクロヘキセン構造を有する化合物として、シクロヘキセンアルデヒド誘導体と、アルコール体とのアセタール反応によるアセタール化合物が挙げられる。反応手法としては一般のアセタール化反応を応用すれば製造でき、例えば、反応媒体にトルエン、キシレンなどの溶媒を用いて共沸脱水しながら反応を行う方法(米国特許第2945008号明細書)、濃塩酸に多価アルコールを溶解した後アルデヒド類を徐々に添加しながら反応を行う方法(日本国特開昭48-96590号公報)、反応媒体に水を用いる方法(米国特許第3092640号明細書)、反応媒体に有機溶媒を用いる方法(日本国特開平7-215979号公報)、固体酸触媒を用いる方法(日本国特開2007-230992号公報)等が開示されている。構造の安定性から環状アセタール構造が好ましい。
 これらエポキシ樹脂の具体例としては、ERL-4221、UVR-6105、ERL-4299(全て商品名、いずれもダウ・ケミカル製)、セロキサイド2021P、エポリードGT401、EHPE3150、EHPE3150CE(全て商品名、いずれもダイセル化学工業製)及びジシクロペンタジエンジエポキシドなどが挙げられるがこれらに限定されるものではない(参考文献:総説エポキシ樹脂 基礎編I p76-85)。
 これらは単独で用いてもよく、2種以上併用してもよい。
Furthermore, as a compound having a cyclohexene structure other than the above, an acetal compound obtained by an acetal reaction between a cyclohexene aldehyde derivative and an alcohol is exemplified. As a reaction method, it can be produced by applying a general acetalization reaction. For example, a method of performing a reaction while azeotropically dehydrating using a solvent such as toluene or xylene as a reaction medium (US Pat. No. 2,945,008), A method in which polyhydric alcohol is dissolved in hydrochloric acid and then the reaction is carried out while gradually adding aldehydes (Japanese Patent Laid-Open No. 48-96590), a method using water as a reaction medium (US Pat. No. 3,092,640) Further, a method using an organic solvent as a reaction medium (Japanese Patent Laid-Open No. 7-215979), a method using a solid acid catalyst (Japanese Patent Laid-Open No. 2007-230992), and the like are disclosed. A cyclic acetal structure is preferable from the viewpoint of structural stability.
Specific examples of these epoxy resins include ERL-4221, UVR-6105, ERL-4299 (all trade names, all manufactured by Dow Chemical), Celoxide 2021P, Epolide GT401, EHPE3150, EHPE3150CE (all trade names, all Daicel) (Chemical Industry) and dicyclopentadiene diepoxide, and the like, but are not limited thereto (Reference: Review Epoxy Resin Basic Edition I p76-85).
These may be used alone or in combination of two or more.
 以下それぞれの硬化性樹脂組成物について言及する。
硬化性樹脂組成物A(硬化剤による熱硬化)
 本発明の硬化性樹脂組成物Aが含有する硬化剤としては、例えばアミン系化合物、酸無水物系化合物、アミド系化合物、フェノール系化合物、カルボン酸系化合物などが挙げられる。用いうる硬化剤の具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂などの含窒素化合物(アミン、アミド化合物);無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物、などの酸無水物;各種アルコール、カルビノール変性シリコーン、と前述の酸無水物との付加反応により得られるカルボン酸樹脂;ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロロメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4’-ビス(クロロメチル)ベンゼン又は1,4’-ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、テルペンとフェノール類の縮合物などのポリフェノール類;イミダゾール、トリフルオロボラン-アミン錯体、グアニジン誘導体の化合物などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
 本発明においては特に前述の酸無水物系化合物、カルボン酸系化合物に代表される、酸無水物構造及び/またはカルボン酸構造を有する化合物が好ましい。
Hereinafter, each curable resin composition will be referred to.
Curable resin composition A (thermal curing with curing agent)
Examples of the curing agent contained in the curable resin composition A of the present invention include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and carboxylic acid compounds. Specific examples of the curing agent that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, and nitrogen-containing compounds such as polyamide resins synthesized from ethylenediamine and amine compounds (amines, Amide compound); phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methyl hexahydro Phthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, Cyclohe Acid anhydrides such as sun-1,2,4-tricarboxylic acid-1,2-anhydride, etc .; carboxylic acid resins obtained by addition reaction of various alcohols, carbinol-modified silicones and the aforementioned acid anhydrides; bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, terpene diphenol, 4,4'-biphenol, 2,2'-biphenol, 3,3 ', 5,5'-tetramethyl- [1,1'-biphenyl] -4,4'-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenols (phenol, alkyl-substituted phenol) , Naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphth ) And formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetophenone, o-hydroxyacetophenone, dicyclopentadiene, furfural, 4,4'-bis (chloromethyl) -1,1 Polycondensation with '-biphenyl, 4,4'-bis (methoxymethyl) -1,1'-biphenyl, 1,4'-bis (chloromethyl) benzene or 1,4'-bis (methoxymethyl) benzene And modified products thereof, polyphenols such as halogenated bisphenols such as tetrabromobisphenol A, condensates of terpenes and phenols; imidazole, trifluoroborane-amine complexes, guanidine derivative compounds, etc. Also limited to Not. These may be used alone or in combination of two or more.
In the present invention, compounds having an acid anhydride structure and / or a carboxylic acid structure represented by the above-mentioned acid anhydride compounds and carboxylic acid compounds are particularly preferable.
 本発明の硬化性樹脂組成物Aにおける硬化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対して0.6~1.2当量が好ましく、0.7~1.2当量が好ましい。エポキシ基1当量に対して、0.6当量に満たない場合、あるいは1.2当量を超える場合、いずれも硬化が不完全となり良好な硬化物性が得られない恐れがある。 The amount of the curing agent used in the curable resin composition A of the present invention is preferably 0.6 to 1.2 equivalents, and preferably 0.7 to 1.2 equivalents with respect to 1 equivalent of the epoxy group of the epoxy resin. When less than 0.6 equivalent or more than 1.2 equivalent with respect to 1 equivalent of epoxy group, curing may be incomplete, and good cured properties may not be obtained.
 本発明の硬化性樹脂組成物Aにおいては、硬化剤とともに硬化促進剤(硬化触媒)を併用しても差し支えない。用い得る硬化促進剤の具体例としては2-メチルイミダゾール、2-エチルイミダゾール及び2-エチル-4-メチルイミダゾール等のイミダゾール類、2-(ジメチルアミノメチル)フェノールや1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7等の第3級アミン類、トリフェニルホスフィン等のホスフィン類、テトラブチルアンモニウム塩、トリイソプロピルメチルアンモニウム塩、トリメチルデカニルアンモニウム塩、セチルトリメチルアンモニウム塩、ヘキサデシルトリメチルアンモニウムヒドロキシドなどの4級アンモニウム塩、トリフェニルベンジルフォスフォニウム塩、トリフェニルエチルフォスフォニウム塩、テトラブチルフォスフォニウム塩などの4級フォスフォニウム塩(4級塩のカウンターイオンはハロゲン、有機酸イオン、水酸化物イオンなど、特に指定は無いが、特に有機酸イオン、水酸化物イオンが好ましい。)、オクチル酸スズ等の金属化合物等が挙げられる。硬化促進剤は、エポキシ樹脂100重量部に対して0.01~5.0重量部が必要に応じ用いられる。 In the curable resin composition A of the present invention, a curing accelerator (curing catalyst) may be used in combination with the curing agent. Specific examples of curing accelerators that can be used include imidazoles such as 2-methylimidazole, 2-ethylimidazole and 2-ethyl-4-methylimidazole, 2- (dimethylaminomethyl) phenol and 1,8-diaza-bicyclo ( 5,4,0) tertiary amines such as undecene-7, phosphines such as triphenylphosphine, tetrabutylammonium salt, triisopropylmethylammonium salt, trimethyldecanylammonium salt, cetyltrimethylammonium salt, hexadecyltrimethyl Quaternary ammonium salts such as ammonium hydroxide, quaternary phosphonium salts such as triphenylbenzylphosphonium salt, triphenylethylphosphonium salt, tetrabutylphosphonium salt (the counter ion of the quaternary salt is halogen) Organic acid ions, hydroxide ions, such as, in particular specification is not, in particular organic acid ion, a hydroxide ion.) Include metal compounds such as tin octylate. The curing accelerator is used in an amount of 0.01 to 5.0 parts by weight based on 100 parts by weight of the epoxy resin, if necessary.
 本発明の硬化性樹脂組成物Aは、リン含有化合物を難燃性付与成分として含有することもできる。リン含有化合物としては反応型のものでも添加型のものでもよい。リン含有化合物の具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリクレジルホスフェート、トリキシリレニルホスフェート、クレジルジフェニルホスフェート、クレジル-2,6-ジキシリレニルホスフェート、1,3-フェニレンビス(ジキシリレニルホスフェート)、1,4-フェニレンビス(ジキシリレニルホスフェート)及び4,4'-ビフェニル(ジキシリレニルホスフェート)等のリン酸エステル類;9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイドや10(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキサイド等のホスファン類;エポキシ樹脂と前記ホスファン類の活性水素とを反応させて得られるリン含有エポキシ樹脂、赤リン等が挙げられるが、リン酸エステル類、ホスファン類またはリン含有エポキシ樹脂が好ましく、1,3-フェニレンビス(ジキシリレニルホスフェート)、1,4-フェニレンビス(ジキシリレニルホスフェート)、4,4'-ビフェニル(ジキシリレニルホスフェート)またはリン含有エポキシ樹脂が特に好ましい。リン含有化合物の含有量は、本発明の硬化性樹脂組成物A中のエポキシ樹脂成分の総量に対して0.6倍以下が好ましい。0.6倍を超える場合には硬化物の吸湿性、誘電特性に悪影響を及ぼす懸念がある。 The curable resin composition A of the present invention can also contain a phosphorus-containing compound as a flame retardant component. The phosphorus-containing compound may be a reactive type or an additive type. Specific examples of phosphorus-containing compounds include trimethyl phosphate, triethyl phosphate, tricresyl phosphate, trixylylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-dixylylenyl phosphate, 1,3-phenylenebis ( Phosphate esters such as dixylylenyl phosphate), 1,4-phenylenebis (dixylylenyl phosphate) and 4,4′-biphenyl (dixylylenyl phosphate); 9,10-dihydro-9-oxa Phosphanes such as -10-phosphaphenanthrene-10-oxide and 10 (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide; active hydrogen of epoxy resin and phosphanes Contains phosphorus obtained by reacting with Epoxy resins, red phosphorus, and the like can be mentioned. Phosphate esters, phosphanes, or phosphorus-containing epoxy resins are preferable, and 1,3-phenylenebis (dixylylenyl phosphate), 1,4-phenylenebis (dixylylene). Nyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate) or phosphorus-containing epoxy resins are particularly preferred. As for content of a phosphorus containing compound, 0.6 times or less is preferable with respect to the total amount of the epoxy resin component in the curable resin composition A of this invention. If it exceeds 0.6 times, there is a concern that it may adversely affect the hygroscopicity and dielectric properties of the cured product.
 さらに本発明の硬化性樹脂組成物Aには、必要に応じて酸化防止剤を添加しても構わない。使用できる酸化防止剤としては、フェノール系、イオウ系、リン系酸化防止剤が挙げられる。酸化防止剤は単独で又は2種以上を組み合わせて使用できる。酸化防止剤の使用量は、本発明の硬化性樹脂組成物中Aの樹脂成分100重量部に対して、通常0.008~1重量部、好ましくは0.01~0.5重量部である。 Furthermore, you may add antioxidant to the curable resin composition A of this invention as needed. Antioxidants that can be used include phenol-based, sulfur-based, and phosphorus-based antioxidants. Antioxidants can be used alone or in combination of two or more. The amount of the antioxidant used is usually 0.008 to 1 part by weight, preferably 0.01 to 0.5 part by weight, based on 100 parts by weight of the resin component A in the curable resin composition of the present invention. .
 酸化防止剤としては、例えば、フェノール系酸化防止剤、イオウ系酸化防止剤、リン系酸化防止剤などが挙げられる。フェノール系酸化防止剤の具体例として、2,6-ジ-t-ブチル-p-クレゾール、ブチル化ヒドロキシアニソール、2,6-ジ-t-ブチル-p-エチルフェノール、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、2,4-ビス[(オクチルチオ)メチル]-o-クレゾール、等のモノフェノール類;2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,5-ジ-t-ブチル-4-ヒドロキシベンジルフォスフォネート-ジエチルエステル、3,9-ビス[1,1-ジメチル-2-{β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル]2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジルスルホン酸エチル)カルシウム等のビスフェノール類;1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、テトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン、ビス[3,3’-ビス-(4’-ヒドロキシ-3’-t-ブチルフェニル)ブチリックアシッド]グリコールエステル、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト、1,3,5-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)-S-トリアジン-2,4,6-(1H,3H,5H)トリオン、トコフェノール等の高分子型フェノール類が例示される。 Examples of the antioxidant include a phenol-based antioxidant, a sulfur-based antioxidant, and a phosphorus-based antioxidant. Specific examples of phenolic antioxidants include 2,6-di-t-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-t-butyl-p-ethylphenol, stearyl-β- (3 , 5-di-t-butyl-4-hydroxyphenyl) propionate, isooctyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,4-bis- (n-octylthio)- Monophenols such as 6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine, 2,4-bis [(octylthio) methyl] -o-cresol; 2'-methylenebis (4-methyl-6-t-butylphenol), 2,2'-methylenebis (4-ethyl-6-t-butylphenol), 4,4'-thiobis (3- Til-6-tert-butylphenol), 4,4′-butylidenebis (3-methyl-6-tert-butylphenol), triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) ) Propionate], 1,6-hexanediol-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], N, N′-hexamethylenebis (3,5-di-t -Butyl-4-hydroxy-hydrocinnamamide), 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 3,5-di-t -Butyl-4-hydroxybenzyl phosphonate-diethyl ester, 3,9-bis [1,1-dimethyl-2- {β- (3-t-butyl-4-hydroxy-5- Bisphenols such as (tilphenyl) propionyloxy} ethyl] 2,4,8,10-tetraoxaspiro [5,5] undecane, bis (3,5-di-t-butyl-4-hydroxybenzylsulfonate ethyl) calcium 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t- Butyl-4-hydroxybenzyl) benzene, tetrakis- [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, bis [3,3′-bis- (4 '-Hydroxy-3'-tert-butylphenyl) butyric acid] glycol ester, tris- (3,5-di-tert-butyl-4-hydroxybenzyl) -iso Anureate, 1,3,5-tris (3 ′, 5′-di-t-butyl-4′-hydroxybenzyl) -S-triazine-2,4,6- (1H, 3H, 5H) trione, tocophenol And the like.
 イオウ系酸化防止剤の具体例として、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート、ジステアリルル-3,3’-チオジプロピオネート等が例示される。 Specific examples of the sulfur antioxidant include dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyll-3,3′-thiodipropionate, and the like. .
 リン系酸化防止剤の具体例として、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、ジイソデシルペンタエリスリトールホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(オクタデシル)ホスファイト、サイクリックネオペンタンテトライルビ(2,4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビ(2,4-ジ-t-ブチル-4-メチルフェニル)ホスファイト、ビス[2-t-ブチル-6-メチル-4-{2-(オクタデシルオキシカルボニル)エチル}フェニル]ヒドロゲンホスファイト等のホスファイト類;9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-デシロキシ-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド等のオキサホスファフェナントレンオキサイド類などが例示される。 Specific examples of phosphorus antioxidants include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) phosphite, diisodecylpentaerythritol phosphite, tris (2,4-di-t- Butylphenyl) phosphite, cyclic neopentanetetraylbis (octadecyl) phosphite, cyclic neopentanetetraylbi (2,4-di-t-butylphenyl) phosphite, cyclic neopentanetetraylbi (2,4 -Phosphites such as -di-t-butyl-4-methylphenyl) phosphite, bis [2-tert-butyl-6-methyl-4- {2- (octadecyloxycarbonyl) ethyl} phenyl] hydrogen phosphite ; 9,10-dihydride -9-oxa-10-phosphaphenanthrene-10-oxide, 10- (3,5-di-t-butyl-4-hydroxybenzyl) -9,10-dihydro-9-oxa-10-phosphaphenanthrene- Examples thereof include oxaphosphaphenanthrene oxides such as 10-oxide, 10-decyloxy-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, and the like.
 これらの酸化防止剤はそれぞれ単独で使用できるが、2種以上を組み合わせて併用しても構わない。特に本発明においてはリン系の酸化防止剤が好ましい。 These antioxidants can be used alone, but two or more kinds may be used in combination. In the present invention, a phosphorus-based antioxidant is particularly preferable.
 さらに本発明の硬化性樹脂組成物Aには、必要に応じて光安定剤を添加しても構わない。
 光安定剤としては、ヒンダートアミン系の光安定剤、特にHALS等が好適である。HALSとしては特に限定されるものではないが、代表的なものとしては、ジブチルアミン・1,3,5-トリアジン・N,N’―ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物、コハク酸ジメチル-1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物、ポリ〔{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}〕、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)〔〔3,5-ビス(1,1-ジメチルエチル)-4-ヒドリキシフェニル〕メチル〕ブチルマロネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1-オクチロキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)、等が挙げられる。HALSは1種のみが用いられても良いし、2種類以上が併用されても良い。
Furthermore, you may add a light stabilizer to the curable resin composition A of this invention as needed.
As the light stabilizer, hindered amine-based light stabilizers, particularly HALS and the like are suitable. HALS is not particularly limited, but typical examples include dibutylamine, 1,3,5-triazine, N, N′-bis (2,2,6,6-tetramethyl-4- Polycondensate of piperidyl-1,6-hexamethylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine, dimethyl-1- (2-hydroxyethyl) -4-hydroxy succinate -2,2,6,6-tetramethylpiperidine polycondensate, poly [{6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2,2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl) imino}], bis (1,2,2, 6,6-Pentamethyl-4-pi Peridyl) [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] butyl malonate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, 2- (3,5-di -T-butyl-4-hydroxybenzyl) -2-n-butylmalonate bis (1,2,2,6,6-pentamethyl-4-piperidyl), etc. Only one HALS is used. Two or more types may be used in combination.
 さらに本発明の硬化性樹脂組成物Aには、必要に応じてバインダー樹脂を添加することが出来る。バインダー樹脂としてはブチラール系樹脂、アセタール系樹脂、アクリル系樹脂、エポキシ-ナイロン系樹脂、NBR-フェノール系樹脂、エポキシ-NBR系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、シリコーン系樹脂などが挙げられるが、これらに限定されるものではない。バインダー樹脂の配合量は、硬化物の難燃性、耐熱性を損なわない範囲であることが好ましく、本発明の硬化性樹脂組成物A中の樹脂成分100重量部に対して通常0.05~50重量部、好ましくは0.05~20重量部が必要に応じて用いられる。 Furthermore, a binder resin can be added to the curable resin composition A of the present invention as necessary. Examples of the binder resin include butyral resins, acetal resins, acrylic resins, epoxy-nylon resins, NBR-phenol resins, epoxy-NBR resins, polyamide resins, polyimide resins, and silicone resins. However, it is not limited to these. The blending amount of the binder resin is preferably within a range that does not impair the flame retardancy and heat resistance of the cured product, and is usually 0.05 to 100 parts by weight with respect to 100 parts by weight of the resin component in the curable resin composition A of the present invention. 50 parts by weight, preferably 0.05 to 20 parts by weight are used as required.
 本発明の硬化性樹脂組成物Aには、必要に応じて無機充填剤を添加することができる。無機充填剤としては、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体またはこれらを球形化したビーズ等が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。これら無機充填剤の含有量は、本発明の硬化性樹脂組成物中Aにおいて95質量%以下を占める量が用いられる。更に本発明の硬化性樹脂組成物Aには、シランカップリング剤、ステアリン酸、パルミチン酸、ステアリン酸カルシウム、カルボン酸亜鉛(2-エチルヘキサン酸亜鉛、ステアリン酸亜鉛、ベヘン酸亜鉛、ミスチリン酸亜鉛)やリン酸エステル亜鉛(オクチルリン酸亜鉛、ステアリルリン酸亜鉛等)等の亜鉛化合物、界面活性剤、染料、顔料、紫外線吸収剤等の種々の配合剤、各種熱硬化性樹脂を添加することができる。 An inorganic filler can be added to the curable resin composition A of the present invention as necessary. Examples of inorganic fillers include crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, and the like. However, the present invention is not limited to these. These may be used alone or in combination of two or more. As the content of these inorganic fillers, an amount occupying 95% by mass or less in A in the curable resin composition of the present invention is used. Further, the curable resin composition A of the present invention includes a silane coupling agent, stearic acid, palmitic acid, calcium stearate, zinc carboxylate (zinc 2-ethylhexanoate, zinc stearate, zinc behenate, zinc myristate). And zinc compounds such as zinc phosphate phosphate (octyl zinc phosphate, zinc stearyl phosphate, etc.), various compounding agents such as surfactants, dyes, pigments, UV absorbers, and various thermosetting resins can be added. it can.
 本発明の硬化性樹脂組成物Aを光半導体封止剤に使用する場合、必要に応じて、蛍光体を添加することができる。蛍光体は、例えば、青色LED素子から発せられた青色光の一部を吸収し、波長変換された黄色光を発することにより、白色光を形成する作用を有するものである。蛍光体を、硬化性樹脂組成物に予め分散させておいてから、光半導体を封止する。蛍光体としては特に制限がなく、従来公知の蛍光体を使用することができ、例えば、希土類元素のアルミン酸塩、チオ没食子酸塩、オルトケイ酸塩等が例示される。より具体的には、YAG蛍光体、TAG蛍光体、オルトシリケート蛍光体、チオガレート蛍光体、硫化物蛍光体等の蛍光体が挙げられ、YAlO:Ce、YAl12:Ce,YAl2:Ce、YS:Eu、Sr(POCl:Eu、(SrEu)O・Alなどが例示される。係る蛍光体の粒径としては、この分野で公知の粒径のものが使用されるが、平均粒径としては、1~250μm、特に2~50μmが好ましい。これらの蛍光体を使用する場合、その添加量は、樹脂成分に対して100重量部に対して、1~80重量部、好ましくは、5~60重量部が好ましい。 When using the curable resin composition A of this invention for an optical semiconductor sealing agent, a fluorescent substance can be added as needed. For example, the phosphor has a function of forming white light by absorbing part of blue light emitted from a blue LED element and emitting wavelength-converted yellow light. After the phosphor is dispersed in advance in the curable resin composition, the optical semiconductor is sealed. There is no restriction | limiting in particular as fluorescent substance, A conventionally well-known fluorescent substance can be used, For example, rare earth element aluminate, thio gallate, orthosilicate, etc. are illustrated. More specifically, phosphors such as a YAG phosphor, a TAG phosphor, an orthosilicate phosphor, a thiogallate phosphor, and a sulfide phosphor can be mentioned, and YAlO 3 : Ce, Y 3 Al 5 O 12 : Ce, Y 4 Al 2 O 9 : Ce, Y 2 O 2 S: Eu, Sr 5 (PO 4 ) 3 Cl: Eu, (SrEu) O.Al 2 O 3 and the like are exemplified. As the particle size of the phosphor, those having a particle size known in this field are used, and the average particle size is preferably 1 to 250 μm, particularly preferably 2 to 50 μm. When these phosphors are used, the addition amount is 1 to 80 parts by weight, preferably 5 to 60 parts by weight, based on 100 parts by weight of the resin component.
 本発明の硬化性樹脂組成物Aは、前記各成分を均一に混合することにより得られる。本発明の硬化性樹脂組成物Aは、従来知られている方法と同様の方法で容易にその硬化物とすることができる。例えば本発明のエポキシ樹脂と硬化剤並びに必要により硬化促進剤、リン含有化合物、バインダー樹脂、無機充填材及び配合剤とを、必要に応じて押出機、ニーダ、ロール等を用いて均一になるまで充分に混合して硬化性樹脂組成物を得、その硬化性樹脂組成物をポッティング、溶融後(液状の場合は溶融無しに)注型あるいはトランスファー成型機などを用いて成型し、さらに80~200℃で2~10時間加熱することにより本発明の硬化物を得ることができる。 The curable resin composition A of the present invention can be obtained by uniformly mixing the above components. The curable resin composition A of the present invention can be easily made into a cured product by a method similar to a conventionally known method. For example, until the epoxy resin of the present invention, a curing agent, and if necessary, a curing accelerator, a phosphorus-containing compound, a binder resin, an inorganic filler, and a compounding agent are uniform using an extruder, a kneader, a roll, or the like as necessary Mix well to obtain a curable resin composition. After potting and melting the curable resin composition (without melting in the case of liquid), it is molded using a casting or transfer molding machine, and further 80-200 The cured product of the present invention can be obtained by heating at a temperature of 2 to 10 hours.
 また本発明の硬化性樹脂組成物Aを必要に応じてトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド及びN-メチルピロリドン等の溶剤に溶解させ、硬化性樹脂組成物ワニスとし、ガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維及び紙などの基材に含浸させて加熱乾燥して得たプリプレグを熱プレス成形することにより、本発明の硬化性樹脂組成物Aの硬化物とすることができる。この際の溶剤は、本発明の硬化性樹脂組成物と該溶剤Aの混合物中で通常10~70質量%、好ましくは15~70質量%を占める量を用いる。また液状組成物であれば、そのまま例えば、RTM方式でカーボン繊維を含有するエポキシ樹脂硬化物を得ることもできる。 Further, the curable resin composition A of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone as necessary. The prepreg obtained by impregnating a base material such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber and paper, and drying by heating is formed into a curable resin composition varnish by hot press molding. It can be set as the hardened | cured material of curable resin composition A of invention. In this case, the solvent is used in an amount usually accounting for 10 to 70% by mass, preferably 15 to 70% by mass in the mixture of the curable resin composition of the present invention and the solvent A. Moreover, if it is a liquid composition, the epoxy resin hardened | cured material which contains a carbon fiber by the RTM system as it is can also be obtained as it is.
 また本発明の硬化性樹脂組成物Aをフィルム又はシート形状で用いた場合、Bステージにおけるフレキシビリティ特性等に優れるという特性を有する。このようなフィルム又はシート形状の樹脂組成物は、本発明の硬化性樹脂組成物Aを前記硬化性樹脂組成物ワニスとして剥離フィルム上に塗布し、加熱下で溶剤を除去した後、Bステージ化を行うことにより得られる。このフィルム又はシート状の樹脂組成物は多層基板などにおける接着剤(層間絶縁層)として使用することが出来る。 In addition, when the curable resin composition A of the present invention is used in the form of a film or a sheet, it has characteristics such as excellent flexibility characteristics in the B stage. Such a film or sheet-shaped resin composition is applied to the release film using the curable resin composition A of the present invention as the curable resin composition varnish, and after removing the solvent under heating, it is made into a B-stage. Is obtained. This film or sheet-shaped resin composition can be used as an adhesive (interlayer insulating layer) in a multilayer substrate or the like.
 硬化性樹脂組成物B(酸性の硬化促進剤(硬化触媒)によるカチオン硬化)
 酸性硬化促進剤を用いて硬化させる本発明の硬化性樹脂組成物Bは、酸性硬化促進剤として光重合開始剤あるいは熱重合開始剤を含有する。さらに、希釈剤、重合性モノマー、重合性オリゴマー、重合開始補助剤、光増感剤等の各種公知の化合物、材料等を含有していてもよい。また、所望に応じて無機充填材、着色顔料、紫外線吸収剤、酸化防止剤、安定剤等、各種公知の添加剤を含有してもよい。
Curable resin composition B (cationic curing with acidic curing accelerator (curing catalyst))
The curable resin composition B of the present invention that is cured using an acidic curing accelerator contains a photopolymerization initiator or a thermal polymerization initiator as an acidic curing accelerator. Furthermore, you may contain various well-known compounds, materials, such as a diluent, a polymerizable monomer, a polymerizable oligomer, a polymerization start adjuvant, a photosensitizer. Moreover, you may contain various well-known additives, such as an inorganic filler, a color pigment, a ultraviolet absorber, antioxidant, a stabilizer, as needed.
 酸性硬化促進剤としてはカチオン重合開始剤が好ましく、光カチオン重合開始剤が特に好ましい。カチオン重合開始剤としてはヨードニウム塩、スルホニウム塩、ジアゾニウム塩等のオニウム塩を有するものが挙げられ、これらは単独または2種以上で使用することができる。
 活性エネルギー線カチオン重合開始剤の例は、金属フルオロホウ素錯塩および三フッ化ホウ素錯化合物(米国特許第3379653号明細書)、ビス(ペルフルアルキルスルホニル)メタン金属塩(米国特許第3586616号明細書)、アリールジアゾニウム化合物(米国特許第3708296号明細書)、VIa族元素の芳香族オニウム塩(米国特許第4058400号明細書)、Va族元素の芳香族オニウム塩(米国特許第4069055号明細書)、IIIa~Va族元素のジカルボニルキレート(米国特許第4068091号明細書)、チオピリリウム塩(米国特許第4139655号明細書)、MF 陰イオンの形のVIb族元素(米国特許第4161478号明細書;Mはリン、アンチモンおよび砒素から選択される。)、アリールスルホニウム錯塩(米国特許第4231951号明細書)、芳香族ヨードニウム錯塩および芳香族スルホニウム錯塩(米国特許第4256828号明細書)、およびビス[4-(ジフェニルスルホニオ)フェニル]スルフィド-ビス-ヘキサフルオロ金属塩(Journal of Polymer Science, Polymer Chemistry、第2巻、1789項(1984年))である。その他、鉄化合物の混合配位子金属塩およびシラノール-アルミニウム錯体も使用することが可能である。
 また、具体例としては、「アデカオプトマーSP150」、「アデカオプトマーSP170」(いずれも旭電化工業社製)、「UVE-1014」(ゼネラルエレクトロニクス社製)、「CD-1012」(サートマー社製)、「RP-2074」(ローディア社製)等が挙げられる。
 該カチオン重合開始剤の使用量は、エポキシ樹脂成分100重量部に対して、好ましくは、0.01~50重量部であり、より好ましくは、0.1~10重量部である。
As the acidic curing accelerator, a cationic polymerization initiator is preferable, and a photocationic polymerization initiator is particularly preferable. Examples of the cationic polymerization initiator include those having an onium salt such as an iodonium salt, a sulfonium salt, and a diazonium salt, and these can be used alone or in combination of two or more.
Examples of the active energy ray cationic polymerization initiator include metal fluoroboron complex and boron trifluoride complex (US Pat. No. 3,379,653), bis (perfluoroalkylsulfonyl) methane metal salt (US Pat. No. 3,586,616). ), Aryldiazonium compounds (US Pat. No. 3,708,296), aromatic onium salts of group VIa elements (US Pat. No. 4,058,400), aromatic onium salts of group Va elements (US Pat. No. 4,0690,055) , dicarbonyl chelate (U.S. Pat. No. 4,068,091) of IIIa ~ Va group elements, thiopyrylium salts (U.S. Pat. No. 4139655), MF 6 - VIb group element in the form of anions (U.S. Patent No. 4,161,478 No. M is selected from phosphorus, antimony and arsenic.) Arylsulfonium complex salts (US Pat. No. 4,231,951), aromatic iodonium complex salts and aromatic sulfonium complex salts (US Pat. No. 4,256,828), and bis [4- (diphenylsulfonio) phenyl] sulfide-bis-hexafluoro Metal salt (Journal of Polymer Science, Polymer Chemistry, Vol. 2, paragraph 1789 (1984)). In addition, mixed ligand metal salts of iron compounds and silanol-aluminum complexes can also be used.
As specific examples, “Adekaoptomer SP150”, “Adekaoptomer SP170” (all manufactured by Asahi Denka Kogyo Co., Ltd.), “UVE-1014” (manufactured by General Electronics Co., Ltd.), “CD-1012” (Sartomer Company) And "RP-2074" (manufactured by Rhodia).
The amount of the cationic polymerization initiator used is preferably 0.01 to 50 parts by weight, more preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the epoxy resin component.
 本発明の硬化性樹脂組成物Bには、カチオン重合開始剤に併用して1種または2種以上の重合開始補助剤、および必要に応じて光増感剤を使用することが出来る。
 重合開始補助剤の具体例としては、ベンゾイン、ベンジル、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノールプロパン-1-オン、N,N-ジメチルアミノアセトフェノン、2-メチルアントラキノン、2-エチルアントラキノン、2-tert-ブチルアントラキノン、1-クロロアントラキノン、2-アミルアントラキノン、2-イソプロピルチオキサトン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン、アセトフェノンジメチルケタール、ベンゾフェノン、4-メチルベンゾフェノン、4,4’-ジクロロベンゾフェノン、4,4’-ビスジエチルアミノベンゾフェノン、ミヒラーズケトン等の重合開始剤が挙げられる。重合開始剤等の重合開始補助剤の使用量は、光ラジカル重合可能な樹脂成分100質量部に対して0.01~30質量部、好ましくは0.1~10質量部である。
In the curable resin composition B of the present invention, one or more polymerization initiation assistants and, if necessary, a photosensitizer can be used in combination with the cationic polymerization initiator.
Specific examples of the polymerization initiation aid include benzoin, benzyl, benzoin methyl ether, benzoin isopropyl ether, acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2 -Methyl-1- (4-methylthiophenyl) -2-morpholinolpropan-1-one, N, N-dimethylaminoacetophenone, 2-methylanthraquinone, 2-ethylanthraquinone, 2-tert-butylanthraquinone, 1-chloro Anthraquinone, 2-amylanthraquinone, 2-isopropylthioxatone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, acetophenone dimethyl Ketal, benzophenone, 4-methylbenzophenone, 4,4'-dichlorobenzophenone, 4,4'-bis-diethylamino benzophenone, and a polymerization initiator such as Michler's ketone. The amount of the polymerization initiation assistant such as a polymerization initiator used is 0.01 to 30 parts by mass, preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin component capable of photoradical polymerization.
 また、光増感剤の具体例としては、アントラセン、2-イソプロピルチオキサトン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン、アクリジン オレンジ、アクリジン イエロー、ホスフィンR、ベンゾフラビン、セトフラビンT、ペリレン、N,N-ジメチルアミノ安息香酸エチルエステル、N,N-ジメチルアミノ安息香酸イソアミルエステル、トリエタノールアミン、トリエチルアミン等を挙げることができる。光増感剤の使用量は、エポキシ樹脂成分100質量部に対して0.01~30質量部、好ましくは0.1~10質量部である。 Specific examples of the photosensitizer include anthracene, 2-isopropylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, acridine orange, acridine yellow, phosphine R Benzoflavine, cetoflavin T, perylene, N, N-dimethylaminobenzoic acid ethyl ester, N, N-dimethylaminobenzoic acid isoamyl ester, triethanolamine, triethylamine and the like. The amount of the photosensitizer used is 0.01 to 30 parts by mass, preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the epoxy resin component.
 更に、本発明の硬化性樹脂組成物Bには、必要に応じて無機充填剤やシランカップリング材、離型剤、顔料等の種々の配合剤、各種熱硬化性樹脂の種々の配合剤を添加することができる。具体的な例としては前述の通りである。 Furthermore, the curable resin composition B of the present invention includes various compounding agents such as an inorganic filler, a silane coupling material, a release agent, and a pigment, and various compounding agents for various thermosetting resins as necessary. Can be added. Specific examples are as described above.
 本発明の硬化性樹脂組成物Bは、各成分を均一に混合することにより得られる。また本発明の硬化性樹脂組成物Bをポリエチレングリコールモノエチルエーテルやシクロヘキサノン、γブチロラクトン等の有機溶剤に均一に溶解させた後、乾燥により溶剤を除去して使用することも可能である。この際の溶剤は、本発明の硬化性樹脂組成物Bと該溶剤の混合物中で通常10~70質量%、好ましくは15~70質量%である。
 本発明の硬化性樹脂組成物Bは、加熱及び/または紫外線照射により硬化できる(例えば、参考文献:総説エポキシ樹脂 第1巻 基礎編I p82-84)が、その際の熱量及び/または紫外線照射量は硬化性樹脂組成物Bの組成に依存して異なるため、それぞれの組成に合わせて硬化条件が決定される。基本的には、硬化物が使用目的において必要とされる強度を発現できる硬化条件であれば良い。通常、これら硬化性樹脂組成物は光照射のみで完全に硬化させることが難しいため、耐熱性が求められる用途においては光照射後に加熱により完全に反応を終了させる必要がある。また、光硬化の際の照射光を細部まで透過させることが必要なため、本発明のエポキシ樹脂および硬化性樹脂組成物Bにおいては透明性の高い化合物および組成物が望まれる。
The curable resin composition B of the present invention can be obtained by uniformly mixing each component. It is also possible to use the curable resin composition B of the present invention after uniformly dissolving it in an organic solvent such as polyethylene glycol monoethyl ether, cyclohexanone or γ-butyrolactone, and then removing the solvent by drying. The solvent at this time is usually 10 to 70% by mass, preferably 15 to 70% by mass in the mixture of the curable resin composition B of the present invention and the solvent.
The curable resin composition B of the present invention can be cured by heating and / or ultraviolet irradiation (for example, Reference: Review Epoxy Resin Vol. 1, Fundamental Edition I p82-84). Since the amount varies depending on the composition of the curable resin composition B, the curing conditions are determined according to each composition. Basically, it is sufficient that the cured product has curing conditions that can express the strength required for the purpose of use. Usually, since these curable resin compositions are difficult to be completely cured only by light irradiation, it is necessary to completely complete the reaction by heating after light irradiation in applications requiring heat resistance. Moreover, since it is necessary to permeate | transmit the irradiation light in the case of photocuring to detail, the highly transparent compound and composition are desired in the epoxy resin and curable resin composition B of this invention.
 光照射後に加熱を行なう場合は、通常の硬化性樹脂組成物Bの硬化温度域で行なうことができる。例えば常温~150℃で30分間~7日間の範囲が好適である。硬化性樹脂組成物Bの配合により変化するが、特に高い温度域であればあるほど光照射後の硬化促進に効果があり、短時間の熱処理で効果がある。また、低温であればあるほど長時間の熱処理を要する。このような熱アフターキュアすることで、エージング処理になるという効果も発現される。 When heating after light irradiation, it can be carried out in the normal curing temperature range of the curable resin composition B. For example, the temperature is preferably from room temperature to 150 ° C. for 30 minutes to 7 days. Although it changes depending on the composition of the curable resin composition B, the higher the temperature range, the more effective the curing is after light irradiation, and the short heat treatment is effective. Further, the lower the temperature, the longer the heat treatment. By performing such heat after-curing, an effect of aging treatment is also exhibited.
 また、これら硬化性樹脂組成物Bを硬化させて得られる硬化物の形状も用途に応じて種々とりうるので特に限定されないが、例えばフィルム状、シート状、バルク状などの形状とすることができる。成形する方法は適応する部位、部材によって異なるが、例えば、キャスト法、注型法、スクリーン印刷法、スピンコート法、スプレー法、転写法、ディスペンサー方式などが挙げられるが、これらに限定されず所望の形状を得るために適当な方法を採用すればよい。成形型には研磨ガラス、硬質ステンレス研磨板、ポリカーボネート板、ポリエチレンテレフタレート板、ポリメチルメタクリレート板等を用いることができる。また、成形型と硬化性樹脂組成物Bとの離型性を向上させるためポリエチレンテレフタレートフィルム、ポリカーボネートフィルム、ポリ塩化ビニルフィルム、ポリエチレンフィルム、ポリテトラフルオロエチレンフィルム、ポリプロピレンフィルム、ポリイミドフィルム等を用いることができる。 Moreover, since the shape of the cured product obtained by curing these curable resin compositions B can be various depending on the application, it is not particularly limited. For example, it can be a film shape, a sheet shape, a bulk shape, or the like. . Although the molding method varies depending on the applicable part and member, for example, a casting method, a casting method, a screen printing method, a spin coating method, a spray method, a transfer method, a dispenser method, and the like can be mentioned. An appropriate method may be employed to obtain the shape. As the mold, polishing glass, a hard stainless steel polishing plate, a polycarbonate plate, a polyethylene terephthalate plate, a polymethyl methacrylate plate, or the like can be used. Moreover, in order to improve the releasability between the mold and the curable resin composition B, a polyethylene terephthalate film, a polycarbonate film, a polyvinyl chloride film, a polyethylene film, a polytetrafluoroethylene film, a polypropylene film, a polyimide film, or the like is used. Can do.
 例えばカチオン硬化性のレジストに使用する際においては、まず、ポリエチレングリコールモノエチルエーテルやシクロヘキサノン、γブチロラクトン等の有機溶剤に溶解させた硬化性樹脂組成物Bを、銅張積層板やセラミック基板、ガラス基板等の基板上にスクリーン印刷、スピンコート法などの手法によって5~160μmの膜厚で塗布し、塗膜を60~110℃で予備乾燥させる。得られた基板上の硬化性樹脂組成物Bに所望のパターンの描かれたネガフィルムを通して紫外線(例えば低圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノン灯、レーザー光等)を照射し、次いで、70~120℃で露光後ベーク処理を行う。その後ポリエチレングリコールモノエチルエーテル等の溶剤で未露光部分を溶解除去(現像)し、さらに必要があれば紫外線の照射及び/または加熱(例えば100~200℃で0.5~3時間)によって十分な硬化を行うことで硬化物を得る。このようにしてプリント配線板を得ることも可能である。尚、前述の方法はネガ型レジストの場合であるが、本発明の硬化性樹脂組成物Bはポジ型レジストとして用いることも可能である。 For example, when used for a cationic curable resist, first, a curable resin composition B dissolved in an organic solvent such as polyethylene glycol monoethyl ether, cyclohexanone, or γ-butyrolactone is used as a copper-clad laminate, a ceramic substrate, or a glass. A substrate such as a substrate is applied with a film thickness of 5 to 160 μm by a method such as screen printing or spin coating, and the coating film is preliminarily dried at 60 to 110 ° C. The curable resin composition B on the obtained substrate is irradiated with ultraviolet rays (for example, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a xenon lamp, a laser beam, etc.) through a negative film having a desired pattern drawn thereon, and then 70 Perform post-exposure baking at ~ 120 ° C. Thereafter, the unexposed portion is dissolved and removed (developed) with a solvent such as polyethylene glycol monoethyl ether, and if necessary, sufficient by irradiation with ultraviolet rays and / or heating (eg, at 100 to 200 ° C. for 0.5 to 3 hours). A cured product is obtained by curing. In this way, it is also possible to obtain a printed wiring board. In addition, although the above-mentioned method is a case of a negative resist, the curable resin composition B of this invention can also be used as a positive resist.
 本発明の硬化性樹脂組成物Aおよび硬化性樹脂組成物Bを硬化してなる硬化物は光学部品材料をはじめ各種用途に使用できる。光学用材料とは、可視光、赤外線、紫外線、X線及びレーザーなどの光が、その材料中を通過する用途に用いる材料一般を示す。より具体的には、ランプタイプ、SMDタイプ等のLED用封止材の他、表示体関連分野では、液晶ディスプレイの基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤及び偏光子保護フィルムをはじめとする液晶用フィルムなどが、次世代フラットパネルディスプレイとして期待されるカラーPDP(プラズマディスプレイ)の封止材、反射防止フィルム、光学補正フィルム、ハウジング材、前面ガラスの保護フィルム、前面ガラス代替材料及び接着剤などが、LED表示装置に使用されるLEDのモールド材、LEDの封止材、前面ガラスの保護フィルム、前面ガラス代替材料及び接着剤などが、プラズマアドレス液晶(PALC)ディスプレイにおける基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤及び偏光子保護フィルムなどが、有機EL(エレクトロルミネッセンス)ディスプレイにおける前面ガラスの保護フィルム、前面ガラス代替材料及び接着剤などが、フィールドエミッションディスプレイ(FED)における各種フィルム基板、前面ガラスの保護フィルム、前面ガラス代替材料及び接着剤などが挙げられる。光記録分野では、VD(ビデオディスク)、CD/CD-ROM、CD-R/RW、DVD-R/DVD-RAM、MO/MD、PD(相変化ディスク)及び光カード用のディスク基板材料、ピックアップレンズ、保護フィルム、封止材及び接着剤などが挙げられる。 The cured product obtained by curing the curable resin composition A and the curable resin composition B of the present invention can be used for various applications including optical component materials. The optical material refers to general materials used for applications in which light such as visible light, infrared light, ultraviolet light, X-rays, and lasers passes through the material. More specifically, in addition to LED sealing materials such as lamp types and SMD types, in display-related fields, liquid crystal display substrate materials, light guide plates, prism sheets, deflection plates, retardation plates, viewing angle correction films Liquid crystal films including adhesives and polarizer protective films are expected to be used as next-generation flat panel displays for color PDP (plasma display) sealing materials, antireflection films, optical correction films, housing materials, front surfaces Glass protective film, front glass substitute material and adhesive, etc. are LED mold materials used in LED display devices, LED sealing material, front glass protective film, front glass substitute material and adhesive, etc. are plasma Substrate materials, light guide plates, prism sheets, deflector plates, etc. in address liquid crystal (PALC) displays Difference plates, viewing angle correction films, adhesives, polarizer protective films, etc., front glass protective films in organic EL (electroluminescence) displays, front glass substitute materials, adhesives, etc., are various in field emission displays (FED). Examples thereof include a film substrate, a front glass protective film, a front glass substitute material, and an adhesive. In the optical recording field, VD (video disc), CD / CD-ROM, CD-R / RW, DVD-R / DVD-RAM, MO / MD, PD (phase change disc) and disc substrate materials for optical cards, A pickup lens, a protective film, a sealing material, an adhesive, and the like can be given.
 光学機器分野では、スチールカメラのレンズ用材料、ファインダプリズム、ターゲットプリズム、ファインダーカバー及び受光センサー部などが、ビデオカメラの撮影レンズ、及びファインダーなどが、プロジェクションテレビの投射レンズ、保護フィルム、封止材、及び接着剤などが、光センシング機器のレンズ用材料、封止材、接着剤及びフィルムなどが挙げられる。光部品分野では、光通信システムでの光スイッチ周辺のファイバー材料、レンズ、導波路、素子の封止材及び接着剤などが、光コネクタ周辺の光ファイバー材料、フェルール、封止材及び接着剤などが、光受動部品や光回路部品ではレンズ、導波路、LEDの封止材、CCDの封止材及び接着剤などが、光電子集積回路(OEIC)周辺の基板材料、ファイバー材料、素子の封止材及び接着剤などが挙げられる。光ファイバー分野では、装飾ディスプレイ用照明・ライトガイドなどが、工業用途のセンサー類及び表示・標識類などが、通信インフラ用および家庭内のデジタル機器接続用の光ファイバーなどが挙げられる。半導体集積回路周辺材料では、LSIや超LSI材料用のマイクロリソグラフィー用のレジスト材料などが挙げられる。自動車・輸送機分野では、自動車用のランプリフレクタ、ベアリングリテーナー、ギア部分、耐蝕コート、スイッチ部分、ヘッドランプ、エンジン内部品、電装部品、各種内外装品、駆動エンジン、ブレーキオイルタンク、自動車用防錆鋼板、インテリアパネル、内装材、保護・結束用ワイヤーハーネス、燃料ホース、自動車ランプ及びガラス代替品などが、鉄道車輌用の複層ガラスなどが、航空機の構造材の靭性付与剤、エンジン周辺部材、保護・結束用ワイヤーハーネス及び耐蝕コートなどが挙げられる。建築分野では、内装・加工用材料、電気カバー、シート、ガラス中間膜、ガラス代替品及び太陽電池周辺材料などが挙げられる。農業用では、ハウス被覆用フィルムなどが挙げられる。次世代の光・電子機能有機材料としては、有機EL素子周辺材料、有機フォトリフラクティブ素子、光-光変換デバイスである光増幅素子、光演算素子、有機太陽電池周辺の基板材料、ファイバー材料、素子の封止材及び接着剤などが挙げられる。 In the optical equipment field, steel camera lens materials, finder prisms, target prisms, finder covers and light-receiving sensor parts, etc., video camera photographic lenses, finder, etc., projection TV projection lenses, protective films, sealing materials, etc. , And adhesives include materials for lenses of optical sensing devices, sealing materials, adhesives, and films. In the field of optical components, fiber materials, lenses, waveguides, element sealing materials and adhesives around optical switches in optical communication systems, optical fiber materials, ferrules, sealing materials and adhesives around optical connectors, etc. In optical passive components and optical circuit components, lenses, waveguides, LED sealing materials, CCD sealing materials and adhesives are used as substrate materials, fiber materials, and device sealing materials around optoelectronic integrated circuits (OEIC). And an adhesive. In the field of optical fibers, lighting for decorative displays, light guides, etc., sensors for industrial use and displays / signs, etc., optical fibers for communication infrastructure and for connecting digital devices in the home, etc. can be mentioned. Examples of peripheral materials for semiconductor integrated circuits include resist materials for microlithography for LSI and VLSI materials. In the field of automobiles and transport equipment, automotive lamp reflectors, bearing retainers, gear parts, anti-corrosion coatings, switch parts, headlamps, engine internal parts, electrical parts, various interior and exterior parts, drive engines, brake oil tanks, automobile protection Rusted steel plates, interior panels, interior materials, protective / bundling wire harnesses, fuel hoses, automotive lamps and glass replacements, multilayer glass for railway vehicles, etc., toughening agents for aircraft structural materials, engine peripheral members Protective / bundling wire harnesses and corrosion resistant coatings. In the construction field, interior and processing materials, electrical covers, sheets, glass interlayers, glass substitutes, solar cell peripheral materials, and the like can be mentioned. In agriculture, a film for house covering is exemplified. Next generation optical / electronic functional organic materials include peripheral materials for organic EL elements, organic photorefractive elements, optical amplification elements that are light-to-light conversion devices, optical computing elements, substrate materials around organic solar cells, fiber materials, elements And a sealing material and an adhesive.
 封止剤としては、コンデンサ、トランジスタ、ダイオード、発光ダイオード、IC及びLSIなどに用いられるポッティング、ディッピング及びトランスファーモールド封止、ICやLSI類のCOB、COF及びTABなどに用いられるポッティング封止、フリップチップなどに用いられるアンダーフィル、BGAやCSPなどのICパッケージ類実装時の封止(補強用アンダーフィル)などを挙げることができる。 As sealing agents, potting used for capacitors, transistors, diodes, light emitting diodes, ICs and LSIs, dipping and transfer mold sealing, potting sealing used for ICs and LSIs such as COB, COF and TAB, flip An underfill used for a chip or the like, and sealing (reinforcing underfill) when mounting IC packages such as BGA and CSP can be given.
 光学用材料の他の用途としては、硬化性樹脂組成物Aまたは硬化性樹脂組成物Bが使用される一般の用途が挙げられ、例えば、接着剤、塗料、コーティング剤、成形材料(シート、フィルム、FRP等を含む)、絶縁材料(プリント基板、電線被覆等を含む)、封止剤及び他の樹脂等への添加剤等が挙げられる。本発明の硬化性樹脂組成物Aまたは硬化性樹脂組成物Bを他樹脂への添加剤として用いる場合には、例えば、封止材あるいは基板用のシアネート樹脂組成物へ硬化剤として用いる場合や、レジスト用硬化剤としてアクリル酸エステル系樹脂等に用いる場合が挙げられる。接着剤としては、土木用、建築用、自動車用、一般事務用、医療用及び電子材料用が挙げられる。これらのうち電子材料用の接着剤としては、ビルドアップ基板等の多層基板の層間接着剤、ダイボンディング剤及びアンダーフィル等の半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム(ACF)及び異方性導電性ペースト(ACP)等の実装用接着剤等が挙げられる。 Other uses of the optical material include general uses in which the curable resin composition A or the curable resin composition B is used. For example, adhesives, paints, coating agents, molding materials (sheets, films) , FRP, etc.), insulating materials (including printed circuit boards, wire coatings, etc.), sealants, additives to other resins, and the like. When using the curable resin composition A or curable resin composition B of the present invention as an additive to other resins, for example, when used as a curing agent to a sealant or a cyanate resin composition for a substrate, The case where it uses for acrylic ester-type resin etc. as a hardening agent for resists is mentioned. Examples of the adhesive include civil engineering, architectural use, automobile use, general office use, medical use, and electronic material use. Among these, adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, semiconductor adhesives such as die bonding agents and underfills, BGA reinforcing underfills, anisotropic conductive films ( ACF) and an adhesive for mounting such as anisotropic conductive paste (ACP).
 次に本発明を実施例により更に具体的に説明するが、以下において部は特に断わりのない限り重量部である。尚、本発明はこれら実施例に限定されるものではない。また実施例において、エポキシ当量はJIS K-7236、粘度は25℃、30℃においてE型粘度計を使用して測定を行った。またガスクロマトグラフィー(以下、「GC」という)における分析条件は分離カラムにHP5-MS(0.25mm I.D.x 15m, 膜厚0.25μm)を用いて、カラムオーブン温度を初期温度100℃に設定し、毎分 15℃の速度で昇温させ300℃で90分間保持した。またヘリウムをキャリヤーガスとした。さらにゲルパーミエーションクロマトグラフィー(以下、「GPC」という)の測定においては以下の通りである。カラムは、Shodex SYSTEM-21カラム(KF-803L、KF-802.5(×2本)、KF-802)、連結溶離液はテトラヒドロフラン、流速は1ml/min.、カラム温度は40℃、また検出はRIで行い、検量線はShodex製標準ポリスチレンを使用した。 Next, the present invention will be described more specifically with reference to examples. In the following, parts are parts by weight unless otherwise specified. The present invention is not limited to these examples. In the examples, the epoxy equivalent was measured using an E-type viscometer at JIS K-7236 and the viscosities at 25 ° C. and 30 ° C. The analysis conditions in gas chromatography (hereinafter referred to as “GC”) were as follows: HP5-MS (0.25 mm IDx 15 m, thickness 0.25 μm) was used for the separation column, and the column oven temperature was set to the initial temperature of 100. The temperature was set at 0 ° C., and the temperature was raised at a rate of 15 ° C. per minute and held at 300 ° C. for 90 minutes. Helium was used as a carrier gas. Furthermore, the measurement in gel permeation chromatography (hereinafter referred to as “GPC”) is as follows. The column is a Shodex® SYSTEM-21 column (KF-803L, KF-802.5 (× 2), KF-802), the coupled eluent is tetrahydrofuran, and the flow rate is 1 ml / min. The column temperature was 40 ° C., the detection was performed by RI, and a standard polystyrene made by Shodex was used for the calibration curve.
実施例1
 撹拌機、還流冷却管、撹拌装置、ディーンスターク管を備えたフラスコに、窒素パージを施しながら、2,6-デカヒドロナフタレンジカルボン酸ジメチル(三菱瓦斯化学製 H-NDCM)178部、シクロヘキセン-4-メタノール314部、テトラブトキシチタン0.07部を加え、120℃1時間、150℃1時間、170℃1時間、180℃15時間、反応により生成するメタノールを抜きながら反応を行った後、50℃まで冷却した。
 冷却終了後、350部のトルエンを加え均一にした後、反応溶液を10重量%水酸化ナトリウム水溶液80部で3回洗浄し、さらに水100部/回で廃水が中性になるまで水洗を繰り返し、ロータリーエバポレータで加熱減圧下、トルエンと未反応のシクロヘキセン-4-メタノールを留去することにより下記式(3)で表される本発明のジオレフィン化合物が285部得られた。
Example 1
A flask equipped with a stirrer, a reflux condenser, a stirrer, and a Dean-Stark tube was purged with nitrogen, while 178 parts of dimethyl 2,6-decahydronaphthalenedicarboxylate (H-NDCM, manufactured by Mitsubishi Gas Chemical), cyclohexene-4 -314 parts of methanol and 0.07 part of tetrabutoxytitanium were added and the reaction was carried out while removing methanol produced by the reaction at 120 ° C for 1 hour, 150 ° C for 1 hour, 170 ° C for 1 hour, 180 ° C for 15 hours, Cooled to ° C.
After completion of cooling, 350 parts of toluene was added and homogenized, and then the reaction solution was washed three times with 80 parts of a 10 wt% aqueous sodium hydroxide solution, and further washed with water until the wastewater became neutral at 100 parts / time of water. Then, 285 parts of the diolefin compound of the present invention represented by the following formula (3) was obtained by distilling off toluene and unreacted cyclohexene-4-methanol under reduced pressure by heating with a rotary evaporator.
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000005
 
実施例2
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、実施例1で得られた本発明のジオレフィン化合物212部、トルエン212部、水15部、12-タングストリン酸1.8部、リン酸水素二ナトリウム1.6部、トリオクチルメチルアンモニウムアセテート5.4部(ライオンアクゾ製 50%キシレン溶液、TOMAA-50)を加え、50±3℃に昇温攪拌しながら、35重量%過酸化水素水113部を加え、そのまま50±3℃で9時間攪拌した。GCにて反応の進行を確認したところ、反応終了後の基質のコンバ-ジョンは>99%であり、原料ピークは消失(1%以下)していた。
 ついで30%水酸化ナトリウム水溶液でpH9とした後、20%チオ硫酸ナトリウム水溶液25部を加え30分攪拌を行い、静置した。2層に分離した有機層を取り出し、ここに活性炭(味の素ファインテクノ製 CP)50部を加え、室温で4時間攪拌後、ろ過した。得られたろ液を水100部で3回水洗を行なった後有機溶剤を留去することで、下記式(4)
Example 2
In a flask equipped with a stirrer, a reflux condenser, and a stirrer, 212 parts of the diolefin compound of the present invention obtained in Example 1, 212 parts of toluene, 15 parts of water, 1.8 parts of 12-tungstophosphoric acid, phosphorus Add 1.6 parts disodium oxyhydrogen and 5.4 parts trioctylmethylammonium acetate (Lion Akzo 50% xylene solution, TOMAA-50). 113 parts of hydrogen water was added and the mixture was stirred at 50 ± 3 ° C. for 9 hours. When the progress of the reaction was confirmed by GC, the substrate conversion after the completion of the reaction was> 99%, and the raw material peak disappeared (1% or less).
Next, the pH was adjusted to 9 with a 30% aqueous sodium hydroxide solution, 25 parts of a 20% aqueous sodium thiosulfate solution was added, and the mixture was stirred for 30 minutes and allowed to stand. The organic layer separated into two layers was taken out, 50 parts of activated carbon (CP made by Ajinomoto Fine Techno) was added thereto, and the mixture was stirred at room temperature for 4 hours and filtered. The obtained filtrate was washed with 100 parts of water three times and then the organic solvent was distilled off to obtain the following formula (4).
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000006
 
を主成分とする本発明のエポキシ樹脂(EP-1)を215部得た。
 GPCの測定結果より、式(4)の骨格の化合物を98%含有していることを確認した。さらに、GC測定においては純度92%であった。またエポキシ当量は251g/eqであり、粘度は79000mPa・s(30℃)であった。
215 parts of the epoxy resin (EP-1) of the present invention containing as a main component was obtained.
From the measurement result of GPC, it was confirmed that 98% of the compound having the skeleton of the formula (4) was contained. Furthermore, in the GC measurement, the purity was 92%. The epoxy equivalent was 251 g / eq, and the viscosity was 79000 mPa · s (30 ° C.).
実施例3
 得られた本発明のエポキシ樹脂(EP-1)20部に対し、シリカゲル(ワコーゲル C-300 和光純薬製)300部を使用し、酢酸エチル:ヘキサン=1:5→1:4→1:2の展開溶媒を用い(順番に極性を変えながら)、カラムクロマトグラフィーにより精製を行った。 
 得られた本発明のエポキシ樹脂(EP-2)は16部であり、得られたエポキシ樹脂の純度はGPCの測定結果より、前記式(4)の骨格の化合物を98%以上含有していることを確認した。さらに、GC測定においては純度約98%であった。エポキシ当量は229g/eq.であった。
Example 3
To 20 parts of the obtained epoxy resin (EP-1) of the present invention, 300 parts of silica gel (Wakogel C-300 manufactured by Wako Pure Chemical Industries, Ltd.) was used, and ethyl acetate: hexane = 1: 5 → 1: 4 → 1: Purification was performed by column chromatography using 2 developing solvents (changing polarity in order).
The obtained epoxy resin (EP-2) of the present invention was 16 parts, and the purity of the obtained epoxy resin contained 98% or more of the skeleton compound of the formula (4) based on the GPC measurement result. It was confirmed. Furthermore, in the GC measurement, the purity was about 98%. Epoxy equivalent was 229 g / eq. Met.
実施例4、5、6
 実施例1、2で得られた本発明のエポキシ樹脂(EP-1)について、硬化剤として、メチルヘキサヒドロフタル酸無水物(新日本理化(株)製、リカシッドMH700G、以下、H1と称す)、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物(新日本理化(株)製、リカシッドHNA-100、以下、H2と称す)、硬化促進剤としてヘキサデシルトリメチルアンモニウムヒドロキシド(東京化成工業(株)製 25%メタノール溶液、C1と称す)を使用し、下記表1に示す配合比(重量部)で配合した後、20分間脱泡を行うことで、本発明の硬化性組成物を得た。
Examples 4, 5, and 6
About the epoxy resin (EP-1) of the present invention obtained in Examples 1 and 2, as a curing agent, methylhexahydrophthalic anhydride (manufactured by Shin Nippon Rika Co., Ltd., Ricacid MH700G, hereinafter referred to as H1) Bicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride (manufactured by Shin Nippon Rika Co., Ltd., Ricacid HNA-100, hereinafter referred to as H2), hexadecyltrimethylammonium hydroxide as a curing accelerator (The Tokyo Chemical Industry Co., Ltd. 25% methanol solution, referred to as C1) is blended at the blending ratio (parts by weight) shown in Table 1 below, and then defoamed for 20 minutes to cure the present invention. Sex composition was obtained.
 得られた硬化性樹脂組成物を用い、以下に示す要領で、耐熱特性試験を行った。結果を表1に示す。なお硬化条件は120℃×3時間の予備硬化の後150℃×1時間である。 Using the obtained curable resin composition, a heat resistance test was performed in the following manner. The results are shown in Table 1. The curing conditions are 150 ° C. × 1 hour after preliminary curing at 120 ° C. × 3 hours.
(耐熱特性試験)
 実施例4~6で得られた硬化性樹脂組成物を真空脱泡20分間実施後、横7mm、縦5cm、厚み約800μmの試験片用金型に静かに注型し、その後上からポリイミドフィルムでフタをした。その注型物を前述の条件で硬化させ動的粘弾性用試験片を得た。これらの試験片を用いて下記に示した条件で動的粘弾性試験を実施した結果を表1に示す。
測定条件
動的粘弾性測定器:TA-instruments製、DMA-2980
測定温度範囲:-30℃~280℃
温速度:2℃/分
試験片サイズ:5mm×50mmに切り出した物を使用した(厚みは約800μm)。
解析条件
Tg:動的粘弾性(DMA)測定に於けるTan-δのピーク点をTgとした。
25℃弾性率:25℃時の弾性率を測定した。
(Heat resistance test)
The curable resin compositions obtained in Examples 4 to 6 were vacuum defoamed for 20 minutes, and then gently poured into a test piece mold having a width of 7 mm, a length of 5 cm, and a thickness of about 800 μm, and then a polyimide film from above. Covered with. The cast was cured under the above conditions to obtain a dynamic viscoelastic test piece. Table 1 shows the results of performing a dynamic viscoelasticity test using these test pieces under the conditions shown below.
Measurement conditions Dynamic viscoelasticity measuring device: manufactured by TA-instruments, DMA-2980
Measurement temperature range: -30 ° C to 280 ° C
Temperature rate: 2 ° C./min Test piece size: 5 mm × 50 mm cut out (thickness is about 800 μm).
Analysis condition Tg: Tan-δ peak point in dynamic viscoelasticity (DMA) measurement was defined as Tg.
Elastic modulus at 25 ° C .: The elastic modulus at 25 ° C. was measured.
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 
(凹み試験)
実施例7、比較例1
 実施例2、3で得られた本発明のエポキシ樹脂(EP-2)5.0部、比較例として3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキシルカルボキシレート(エポキシ当量 140g/eq.、粘度 205mPa・s(25℃) 以下、EP-3と称す)2.8部について、硬化剤(H1)3.4部、硬化促進剤(C1)0.03部でそれぞれ配合し、20分間脱泡を行い、本発明の硬化性樹脂組成物(F-1)、比較用の硬化性樹脂組成物(F-2)を得た。
(Dent test)
Example 7, Comparative Example 1
5.0 parts of the epoxy resin (EP-2) of the present invention obtained in Examples 2 and 3, and 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexylcarboxylate (epoxy equivalent 140 g / eq.) As a comparative example. Viscosity: 205 mPa · s (25 ° C.) hereafter referred to as EP-3) 2.8 parts, blended with 3.4 parts of curing agent (H1) and 0.03 part of curing accelerator (C1), respectively, for 20 minutes Defoaming was performed to obtain a curable resin composition (F-1) of the present invention and a comparative curable resin composition (F-2).
 得られた硬化性樹脂組成物(F-1)(F-2)を用いLED封止凹み試験を行った。シリンジに充填し精密吐出装置を使用して、中心発光波465nmのチップを搭載した外径5mm角表面実装型LEDパッケージ(内径4.4mm、外壁高さ1.25mm)に注型した。その後、120℃×2時間の予備硬化の後150℃×3時間で硬化させることで、試験用LEDを得た。得られたLEDの表面を目視で観察し、凹みの有無を確認した。その結果、本発明のエポキシ樹脂を使用した硬化性樹脂組成物(F-1)で封止したLEDは凹みがほとんど見られなかったのに対し、比較用の硬化性樹脂組成物(F-2)で封止したLEDはLEDのワイヤーが露出しており、激しく凹みが観察された。 Using the obtained curable resin compositions (F-1) and (F-2), an LED sealing dent test was conducted. Using a precision discharge device, the syringe was filled and cast into a surface mount LED package (inner diameter 4.4 mm, outer wall height 1.25 mm) having an outer diameter of 5 mm and mounted with a chip having a center emission wave of 465 nm. Then, after 120 degreeC x 2 hours pre-curing, it was made to harden | cure at 150 degreeC x 3 hours, and the LED for a test was obtained. The surface of the obtained LED was visually observed to confirm the presence or absence of a dent. As a result, the LED encapsulated with the curable resin composition (F-1) using the epoxy resin of the present invention had almost no dent, whereas the comparative curable resin composition (F-2). The LED wire encapsulated in (1) had exposed LED wires, and dents were observed intensely.
実施例8、比較例2、3
 実施例2、3で得られた本発明のエポキシ樹脂(EP-2)、比較例としてエポキシ樹脂(EP-3)、ビス(3,4-エポキシシクロヘキシルメチル)アジペート(エポキシ当量 195g/eq. 粘度 730mPa・s(25℃) 以下、EP-4と称す)について、硬化剤(H1)3.4部、硬化促進剤として4級ホスホニウム塩(日本化学工業製 PX4MP 以下、C2と称す。)を使用し、下記表2に示す配合比(重量部)で配合し、20分間脱泡を行なった。得られた硬化性樹脂組成物を真空脱泡20分間実施後、30mm×20mm×高さ1mmになるように耐熱テープでダムを作成したガラス基板上に静かに注型した。その注型物を、120℃×3時間の予備硬化の後150℃×1時間で硬化させ、厚さ1mmの透過率用試験片を得た。400nmにおけるそれぞれの硬化物の透過率を比較した。また、得られた試験片につき、150℃で96時間熱処理し、熱履歴により着色の度合いを評価した(400nmにおける透過率を測定し比較)。
Example 8, Comparative Examples 2, 3
Epoxy resin (EP-2) of the present invention obtained in Examples 2 and 3, epoxy resin (EP-3), bis (3,4-epoxycyclohexylmethyl) adipate (epoxy equivalent 195 g / eq. Viscosity) as comparative examples For 730 mPa · s (25 ° C.) (hereinafter referred to as EP-4), 3.4 parts of a curing agent (H1) and a quaternary phosphonium salt (PX4MP, hereinafter referred to as C2 manufactured by Nippon Chemical Industry Co., Ltd.) are used as a curing accelerator. And it mix | blended with the compounding ratio (weight part) shown in following Table 2, and deaerated for 20 minutes. The obtained curable resin composition was vacuum-defoamed for 20 minutes, and then gently cast on a glass substrate on which a dam was created with a heat-resistant tape so as to be 30 mm × 20 mm × height 1 mm. The cast was cured at 120 ° C. for 1 hour after pre-curing at 120 ° C. for 3 hours to obtain a test piece for transmittance having a thickness of 1 mm. The transmittance of each cured product at 400 nm was compared. Further, the obtained test piece was heat-treated at 150 ° C. for 96 hours, and the degree of coloring was evaluated based on the thermal history (transmittance at 400 nm was measured and compared).
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000008
 
合成例1
 実施例2において、実施例1で得られた本発明のジオレフィン化合物212部を、1,4-シクロヘキサンジメタノールと3-シクロヘキセンカルボン酸との脱水エステル化により合成した下記式(5)
Synthesis example 1
In Example 2, 212 parts of the diolefin compound of the present invention obtained in Example 1 was synthesized by dehydration esterification of 1,4-cyclohexanedimethanol and 3-cyclohexenecarboxylic acid.
Figure JPOXMLDOC01-appb-C000009
 
に示される構造のジオレフィン化合物を180部に変えた以外は同様に合成を行い、比較用のエポキシ樹脂(EP-5)を183部得た。エポキシ当量は207g/eq.、粘度は3700mPa・s(25℃)であった。また実施例3と同様の手法によりカラムクロマトグラフィーで精製することでエポキシ当量198g/eq、粘度3010mPa・s(25℃)のエポキシ樹脂(EP-6)を得た。
Figure JPOXMLDOC01-appb-C000009

Synthesis was carried out in the same manner except that the diolefin compound having the structure shown in FIG. 1 was changed to 180 parts, and 183 parts of a comparative epoxy resin (EP-5) was obtained. Epoxy equivalent is 207 g / eq. The viscosity was 3700 mPa · s (25 ° C.). Further, by purifying by column chromatography in the same manner as in Example 3, an epoxy resin (EP-6) having an epoxy equivalent of 198 g / eq and a viscosity of 3010 mPa · s (25 ° C.) was obtained.
実施例9、比較例4
 実施例3で得られた本発明のエポキシ樹脂(EP-2)、比較例として、合成例1で得られたエポキシ樹脂(EP-6)について、硬化剤として、酸無水物(H1)、硬化促進剤として硬化促進剤(C1)を使用し、下記表3に示す配合比(重量部)で配合し、20分間脱泡を行い、本発明の硬化性樹脂組成物、比較用の硬化性樹脂組成物を得た。
Example 9, Comparative Example 4
For the epoxy resin (EP-2) of the present invention obtained in Example 3 and, as a comparative example, the epoxy resin (EP-6) obtained in Synthesis Example 1, the acid anhydride (H1), curing as a curing agent A curing accelerator (C1) is used as an accelerator, blended at a blending ratio (parts by weight) shown in Table 3 below, defoamed for 20 minutes, and the curable resin composition of the present invention, a comparative curable resin. A composition was obtained.
 得られた硬化性樹脂組成物を用い、以下に示す要領で、LED試験をおこなった結果を表3に合わせて示す。なお、硬化条件は110℃×2時間の予備硬化の後140℃×3時間である。 Using the obtained curable resin composition, the LED test results are shown in Table 3 in the following manner. The curing conditions are 140 ° C. × 3 hours after 110 ° C. × 2 hours of preliminary curing.
(LED点灯試験)
 得られた硬化性樹脂組成物を真空脱泡20分間実施後、シリンジに充填し精密吐出装置を使用して、中心発光波465nmのチップを搭載した外径5mm角表面実装型LEDパッケージ(内径4.4mm、外壁高さ1.25mm)に注型した。その後、所定の硬化条件で硬化させることで、試験用LEDを得た。
 点灯試験は、規定電流の2倍である60mAでの点灯試験を行った。詳細な条件は下記に示した。測定項目としては、各時間点灯前後の照度を積分球を使用して測定し、試験用LEDの照度の保持率を算出した。
点灯詳細条件
 発光波長:465nm
 駆動方式:定電流方式、60mA(発光素子規定電流は30mA)
 駆動環境:85℃、85%
(LED lighting test)
The resulting curable resin composition was vacuum degassed for 20 minutes, then filled into a syringe, and using a precision discharge device, an outer diameter 5 mm square surface mount LED package (inner diameter 4) mounted with a chip having a central emission wave of 465 nm. 4 mm, outer wall height 1.25 mm). Thereafter, a test LED was obtained by curing under predetermined curing conditions.
The lighting test was performed at 60 mA, which is twice the specified current. Detailed conditions are shown below. As a measurement item, the illuminance before and after lighting for each time was measured using an integrating sphere, and the illuminance retention rate of the test LED was calculated.
Detailed lighting conditions Light emission wavelength: 465nm
Drive system: constant current system, 60 mA (light emitting element regulation current is 30 mA)
Driving environment: 85 ° C, 85%
Figure JPOXMLDOC01-appb-T000010
 
Figure JPOXMLDOC01-appb-T000010
 
実施例10、比較例5、6
 実施例用のエポキシ樹脂としてEP2、比較例用としてEP3、EP6、硬化剤としてメチルヘキサヒドロフタル酸無水物(新日本理化(株)製、リカシッドMH、以下、H3と称す)を、硬化促進剤として2-エチル-4-イミダゾール(2E4MZ 四国化成製)表4に示す配合比(重量部)で配合し、組成物を調製し、金型に流しこみ、120℃2時間160℃で6時間かけて硬化させた。
Example 10 and Comparative Examples 5 and 6
EP2 as an epoxy resin for examples, EP3 and EP6 as comparative examples, and methylhexahydrophthalic anhydride (manufactured by Shin Nippon Rika Co., Ltd., Ricacid MH, hereinafter referred to as H3) as a curing agent. 2-ethyl-4-imidazole (2E4MZ, manufactured by Shikoku Kasei Co., Ltd.) at a blending ratio (parts by weight) shown in Table 4 to prepare a composition, poured into a mold, and 120 ° C for 2 hours and 160 ° C for 6 hours. And cured.
 このようにして得られた硬化物の物性を測定した結果を表4に示す。
 尚、物性値の測定は以下の方法で行った。
・IZOD衝撃試験:JIS K-6911に準拠。
・吸水率:直径5cm×厚み4mmの円盤状の試験片を100℃の水中で24時間煮沸した後の重量増加率(%)
・吸湿率:直径5cm×厚み4mmの円盤状の試験片を各条件で吸湿させた後の重量増加率(%)
The results of measuring the physical properties of the cured product thus obtained are shown in Table 4.
The physical property values were measured by the following methods.
・ IZOD impact test: Conforms to JIS K-6911.
-Water absorption: Rate of weight increase (%) after boiling a disk-shaped test piece having a diameter of 5 cm and a thickness of 4 mm in water at 100 ° C for 24 hours
Moisture absorption rate: weight increase rate (%) after absorbing a disk-shaped test piece having a diameter of 5 cm and a thickness of 4 mm under each condition
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000011
 
 以上の結果から、本発明のエポキシ樹脂は耐衝撃性・耐水性に優れたエポキシ樹脂であることがわかる。 From the above results, it can be seen that the epoxy resin of the present invention is an epoxy resin excellent in impact resistance and water resistance.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2010年5月21日付で出願された日本特許出願(特願2010-117176)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
The present application is based on a Japanese patent application (Japanese Patent Application No. 2010-117176) filed on May 21, 2010, which is incorporated by reference in its entirety. Also, all references cited herein are incorporated as a whole.

Claims (5)

  1.  下記式(1)
    Figure JPOXMLDOC01-appb-C000001
     
    (式中、複数存在するR、Rはそれぞれ独立して存在し、水素原子、もしくは炭素数1~6のアルキル基を表す。)
    で表されることを特徴とするジオレフィン化合物。
    Following formula (1)
    Figure JPOXMLDOC01-appb-C000001

    (In the formula, a plurality of R 1 and R 2 each independently exist, and represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.)
    The diolefin compound characterized by these.
  2.  請求項1に記載のジオレフィン化合物を酸化することにより得られるエポキシ樹脂。 An epoxy resin obtained by oxidizing the diolefin compound according to claim 1.
  3.  過酸化水素又は過酸を用いてエポキシ化する請求項2に記載のエポキシ樹脂。 The epoxy resin according to claim 2, which is epoxidized using hydrogen peroxide or peracid.
  4.  請求項2及び3のいずれか一項に記載のエポキシ樹脂と硬化剤及び/又は硬化促進剤とを含有する硬化性樹脂組成物。 A curable resin composition containing the epoxy resin according to any one of claims 2 and 3, a curing agent and / or a curing accelerator.
  5.  請求項4に記載の硬化性樹脂組成物を硬化してなる硬化物。 Hardened | cured material formed by hardening | curing curable resin composition of Claim 4.
PCT/JP2011/061678 2010-05-21 2011-05-20 Diolefin compound, epoxy resin, curable resin composition, and cured article WO2011145733A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012515950A JP5878865B2 (en) 2010-05-21 2011-05-20 Diolefin compound, epoxy resin, curable resin composition and cured product thereof
KR1020127028378A KR20130093473A (en) 2010-05-21 2011-05-20 Diolefin compound, epoxy resin, curable resin composition, and cured article
CN201180023913.XA CN102892745B (en) 2010-05-21 2011-05-20 Diolefin compound, epoxy resin, curable resin composition, and cured article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-117176 2010-05-21
JP2010117176 2010-05-21

Publications (1)

Publication Number Publication Date
WO2011145733A1 true WO2011145733A1 (en) 2011-11-24

Family

ID=44991819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061678 WO2011145733A1 (en) 2010-05-21 2011-05-20 Diolefin compound, epoxy resin, curable resin composition, and cured article

Country Status (4)

Country Link
JP (1) JP5878865B2 (en)
KR (1) KR20130093473A (en)
CN (1) CN102892745B (en)
WO (1) WO2011145733A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016119848A1 (en) * 2015-01-29 2016-08-04 Henkel Ag & Co. Kgaa Method for the preparation of cycloaliphatic epoxy resins

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456725A (en) * 1988-03-10 1989-03-03 Teijin Ltd Crosslinked polymer molded product, production thereof and combination of reactive solution therefor
JP2006052187A (en) * 2004-08-16 2006-02-23 Daicel Chem Ind Ltd Methods for producing alicyclic olefin compound and alicyclic epoxy compound
JP2006169326A (en) * 2004-12-14 2006-06-29 Daicel Chem Ind Ltd Photocurable resin composition for stereolithography
JP2007016073A (en) * 2005-07-05 2007-01-25 Kyocera Chemical Corp Epoxy resin composition and optical semiconductor device
JP2007510772A (en) * 2003-11-03 2007-04-26 ユニオン・カーバイド・ケミカルズ・アンド・プラスティックス・テクノロジー・コーポレイション Tougher alicyclic epoxy resin
JP2009256632A (en) * 2008-03-18 2009-11-05 Idemitsu Kosan Co Ltd Decalin derivative, resin composition containing it, optical semiconductor sealant using it, optoelectronic member, resist material, and method for producing decalin derivative
JP2011079794A (en) * 2009-10-09 2011-04-21 Nippon Kayaku Co Ltd Diolefin compound, epoxy resin, curable resin composition, and cured product thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1296836C (en) * 1987-03-13 1992-03-03 Zen-Ichiro Endo Metathesis polymerized copolymer
KR19980702382A (en) * 1995-02-24 1998-07-15 후루다 다케시 Molding resin composition
CN1203056C (en) * 2003-06-05 2005-05-25 上海交通大学 Naphthalic acid or naphthalate containing two sulfonates structure and preparation thereof
JP2007163571A (en) * 2005-12-09 2007-06-28 Fujifilm Corp Photosensitive resin composition for optical waveguide and optical waveguide

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456725A (en) * 1988-03-10 1989-03-03 Teijin Ltd Crosslinked polymer molded product, production thereof and combination of reactive solution therefor
JP2007510772A (en) * 2003-11-03 2007-04-26 ユニオン・カーバイド・ケミカルズ・アンド・プラスティックス・テクノロジー・コーポレイション Tougher alicyclic epoxy resin
JP2006052187A (en) * 2004-08-16 2006-02-23 Daicel Chem Ind Ltd Methods for producing alicyclic olefin compound and alicyclic epoxy compound
JP2006169326A (en) * 2004-12-14 2006-06-29 Daicel Chem Ind Ltd Photocurable resin composition for stereolithography
JP2007016073A (en) * 2005-07-05 2007-01-25 Kyocera Chemical Corp Epoxy resin composition and optical semiconductor device
JP2009256632A (en) * 2008-03-18 2009-11-05 Idemitsu Kosan Co Ltd Decalin derivative, resin composition containing it, optical semiconductor sealant using it, optoelectronic member, resist material, and method for producing decalin derivative
JP2011079794A (en) * 2009-10-09 2011-04-21 Nippon Kayaku Co Ltd Diolefin compound, epoxy resin, curable resin composition, and cured product thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016119848A1 (en) * 2015-01-29 2016-08-04 Henkel Ag & Co. Kgaa Method for the preparation of cycloaliphatic epoxy resins

Also Published As

Publication number Publication date
JP5878865B2 (en) 2016-03-08
KR20130093473A (en) 2013-08-22
JPWO2011145733A1 (en) 2013-07-22
CN102892745B (en) 2014-10-15
CN102892745A (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP6240069B2 (en) Epoxy resin composition, cured product thereof, and curable resin composition
JP5517237B2 (en) Method for producing epoxy compound, epoxy compound, curable resin composition and cured product thereof
JP5559154B2 (en) Olefin resin, epoxy resin, curable resin composition and cured product thereof
JP5511047B2 (en) Diolefin compound, epoxy resin, and curable resin composition
JP5469078B2 (en) Diolefin compound, epoxy resin, curable resin composition, and cured product
JP5294771B2 (en) Method for producing epoxy compound
JP5430337B2 (en) Diolefin compound, epoxy resin, curable resin composition and cured product thereof
JP5243123B2 (en) Epoxy composition, method for producing epoxy composition, curable resin composition, and cured product
JP5780627B2 (en) Method for producing epoxy compound
JP5388493B2 (en) Method for producing epoxy compound
JP5492081B2 (en) Diolefin compound, epoxy resin and composition
JP5505960B2 (en) Diolefin compound, epoxy resin, curable resin composition and cured product thereof
JP5367065B2 (en) Olefin compound, epoxy resin, curable resin composition and cured product thereof, LED device
JP5294772B2 (en) Method for producing epoxy compound
JP5878865B2 (en) Diolefin compound, epoxy resin, curable resin composition and cured product thereof
JP5748191B2 (en) Method for producing epoxy compound
JP2011225654A (en) Diolefin resin, epoxy resin, and composition for the same
JP5196663B2 (en) Diolefin compound, epoxy resin, curable resin composition and cured product thereof
JP5660778B2 (en) Diolefin compound, epoxy compound, and composition
JP5796916B2 (en) Production method of epoxy resin
JP5388531B2 (en) Method for producing epoxy compound
JP2010254628A (en) Diolefin compound, epoxy compound, curable resin composition and cured product thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180023913.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783665

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012515950

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127028378

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783665

Country of ref document: EP

Kind code of ref document: A1