WO2011145514A1 - Laser welding device and laser welding method - Google Patents

Laser welding device and laser welding method Download PDF

Info

Publication number
WO2011145514A1
WO2011145514A1 PCT/JP2011/061025 JP2011061025W WO2011145514A1 WO 2011145514 A1 WO2011145514 A1 WO 2011145514A1 JP 2011061025 W JP2011061025 W JP 2011061025W WO 2011145514 A1 WO2011145514 A1 WO 2011145514A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser welding
laser
welding
gas cylinder
shielding gas
Prior art date
Application number
PCT/JP2011/061025
Other languages
French (fr)
Japanese (ja)
Inventor
聖二 片山
洋介 川人
正海 水谷
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Publication of WO2011145514A1 publication Critical patent/WO2011145514A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/1224Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/123Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/127Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an enclosure

Definitions

  • the present invention relates to a laser welding apparatus and a laser welding method, and more particularly, to a laser welding apparatus capable of stably performing high-quality welding by suppressing adhesion of metal vapor to a laser light transmission window, and The present invention relates to a laser welding method.
  • Laser welding is a welding method in which laser light, which is a heat source, is mainly focused on a metal and irradiated to locally melt and solidify the metal. Compared to conventional welding methods, laser welding is a heat source.
  • the high energy density of this material enables high-speed deep penetration welding, and has features such as less adverse effects and deformation due to heat input to the weld metal (material to be welded).
  • Such laser welding has been conventionally performed in an atmospheric pressure atmosphere, and a technique capable of ensuring a sufficient penetration depth by performing laser welding at a low speed has been developed.
  • a penetration depth of about 15 mm can be obtained at an output of 6 kW and a welding speed of about 0.1 m / min (1.7 mm / s).
  • Non-Patent Documents 1 to 4 a technique has been developed in which the atmosphere is changed from an atmospheric pressure atmosphere to a low pressure atmosphere and welding is performed using a low-power laser. It is now possible to obtain welds that suppress the occurrence of cracks.
  • the metal vapor (plume) generated by the laser light irradiation is ejected at a very high speed of 100 m / s (360 km / h), so the metal vapor is applied to the laser light transmission window. It was difficult to prevent the adhesion to reach the maximum.
  • the metal vapor that flies from the welding spot and adheres to the transmission window blocks the laser beam and makes the welding unstable, making it difficult to perform welding with a stable and sufficient penetration depth, This causes variations in welding quality. When the metal vapor further adheres, the transmission window is damaged or welding itself becomes impossible.
  • a laser welding apparatus that performs welding with laser light in a low vacuum atmosphere, A shield gas cylinder disposed along the optical axis of the laser beam at a predetermined interval from the weld, a transmission window provided at the upper end, and a lower end opened in the atmosphere control region;
  • a laser welding apparatus comprising: a shield gas supply means for introducing a shield gas into the shield gas cylinder from the transmission window side of the shield gas cylinder.
  • a shield gas cylinder is provided between the transmission window and the welded portion, a shield gas is flowed from the transmission window side toward the welded portion, and an air shield is provided between the transmission window and the welded portion. It is comprised so that it may be formed.
  • a cylindrical body that is difficult for metal vapor to enter is adopted as the structure of the apparatus for forming the air shield, and further, between the shield gas cylinder and the welded portion.
  • metal vapor can scatter around and shield gas is not sprayed directly onto the welded part, and the transmission window has a sufficient distance between the welded part at the upper end of the shield gas cylinder.
  • the air shield is formed by the shielding gas flowing from the transmission window side toward the welded portion side, it is possible to completely prevent the metal vapor from adhering to the transmission window.
  • the invention of this claim is laser welding performed in a low vacuum atmosphere, and since welding with a deep penetration depth can be performed stably for a long time, a low capital investment is not required. Even if it is an output laser, sufficient penetration depth can be obtained and capital investment can be suppressed.
  • the welding speed is about 0.1 m / min (1 7 mm / s), a penetration depth of about 30 mm, which is twice that of the atmospheric pressure atmosphere, can be obtained.
  • This result shows that the laser output efficiency is improved by a factor of two in a low-pressure atmosphere as compared to that in an atmospheric pressure atmosphere.
  • the invention of this claim can also be applied to welding using a high-power laser, and in this case, a larger penetration depth can be stably obtained.
  • the invention according to the present invention can achieve the above-described excellent effect by a very simple means of providing a shield gas cylinder having a shield gas supply means in a conventional laser welding apparatus. It is practical.
  • the invention of the above-mentioned claim is completely different from the conventional assist gas system, and does not spray the shielding gas onto the welded part, but blocks the gas with the metal vapor (proof) standing. .
  • the invention of this claim is based on the idea that the shielding gas that works in the direction of increasing the vacuum degree is flowed in spite of the welding performed in a low vacuum atmosphere. It is a fallen thing.
  • the shield gas cylinder is made of high-strength glass from the viewpoint of confirmation of the degree of rise of the induced plume during laser welding, observation / confirmation of the melt welding situation in the welding chamber (chamber)
  • a cylinder made of acrylic resin or polycarbonate resin can be preferably used.
  • the cross-sectional shape is preferably circular, but is not particularly limited, and may be square such as a quadrangle.
  • the shield gas cylinder is provided with holes as supply means for introducing the shield gas, but the number is not limited to one, and can be appropriately provided around the shield gas cylinder.
  • the type of shielding gas to be introduced is not limited as long as it is a gas that is not converted into plasma by laser light, but an inert gas such as Ar, He, N 2 is preferable, and N 2 is particularly inexpensive and is a point of oxidation prevention. To preferred.
  • the inner diameter of the tip opening of the shield gas cylinder is set to about twice the diameter of the passing laser beam because the metal vapor does not enter the cylinder excessively (for example, 10 mm or more).
  • the “predetermined distance” provided between the shield gas cylinder and the welded portion is specifically preferably about 50 to 300 mm.
  • low vacuum atmosphere refers to an atmosphere having a pressure of about 0.01 to 30 kPa.
  • Examples of the laser used in the laser welding apparatus according to the present invention include a CO 2 laser, a YAG laser, a fiber laser, and a disk laser, but are not particularly limited.
  • the invention described in claim 2 2.
  • a condensing optical system having a deep focal depth and a long Rayleigh length can be configured.
  • a weld having a small bead width and deep penetration can be provided, and a higher quality weld can be provided.
  • welding with a small bead width can be performed, it can be applied to welding of precision parts to provide high-quality welding.
  • the long focus laser welding apparatus can sufficiently increase the distance between the shield gas cylinder and the welded portion, adhesion of the metal vapor to the transmission window can be more reliably prevented and the gas passes through the shield gas cylinder.
  • the shield gas is sufficiently diffused without reaching the weld and does not adversely affect the welding.
  • the invention according to claim 3 3.
  • the introduced shielding gas can be retained in the adjacent shielding plate for a long time. Intrusion of metal vapor can be efficiently prevented.
  • the invention according to claim 4 A laser welding method using the laser welding apparatus according to any one of claims 1 to 3, A to-be-welded material placement step for placing the to-be-welded material in the laser welding apparatus; An atmospheric pressure control step for making the pressure atmosphere in the laser welding apparatus a low vacuum atmosphere; A shielding gas introduction process for introducing shielding gas into the shielding gas cylinder; A laser irradiation step of irradiating the workpiece with a laser, The introduction amount of the shielding gas is controlled by a laser welding method characterized in that the shielding gas is controlled so as not to be directly sprayed on the welded part during welding.
  • metal vapor is prevented from adhering to the laser light transmission window, a sufficient penetration depth is ensured, and high quality welding with reduced porosity is stably performed. Can be provided efficiently for a long time.
  • FIG. 1 is a perspective view showing a laser welding apparatus according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view illustrating the principle of the laser welding apparatus according to the embodiment of the present invention. is there.
  • the laser welding apparatus basically adjusts the focal point of a laser oscillator 11 that generates laser light R, an optical fiber 12, a processing head 13, and the laser light R.
  • the optical system 14, a transmission window 15 having a transmission plate, a chamber 30 for performing welding in a low vacuum atmosphere, a shield gas cylinder 40, and control means (not shown) are provided.
  • a transfer device 71 for moving the test material 61 is installed in the chamber 30.
  • an exhaust pipe 53 is connected to the chamber 30 as pressure reducing means for making the inside of the chamber 30 a low vacuum atmosphere, and two rotary vacuum pumps (VP) 51 and 52 are connected to the exhaust pipe 53. ing.
  • a gas pipe 22 for supplying the shield gas of the gas cylinder 21 into the shield gas cylinder 40 is connected to the shield gas cylinder 40.
  • the pressure in the chamber 30 is controlled by adjusting the inflow amount of the shield gas flowing into the chamber 30 from the shield gas cylinder 40 and the exhaust amount from the chamber 30 by the vacuum pumps 51 and 52.
  • a shield gas introduction portion 43 is provided at the upper end portion 41 of the shield gas cylinder 40.
  • a plurality of shield gas introduction holes 44 are formed in the shield gas introduction portion 43 at appropriate intervals in the circumferential direction of the shield gas cylinder 40.
  • the transmission window 15 is fixed to the upper end portion 41 of the shield gas cylinder 40.
  • the lower end portion 42 of the shield gas cylinder 40 is connected to the hole edge portion of the introduction port 32 provided in the top plate 31 of the chamber 30 and opens into the chamber 30.
  • An annular fin 46 is provided at the inlet 32 of the chamber 30 in order to suppress the intrusion of the plume into the shield gas cylinder 40.
  • the diameter of the introduction port 32 that is reduced by the annular fin 46 is set to about twice the diameter of the laser beam that passes through the introduction port 32 so as not to adversely affect the laser beam.
  • the inner diameter and length of the shield gas cylinder 40 can be appropriately changed according to the type of shield gas, the welding material, the welding energy, the focal length of the laser beam, and the like.
  • the optical axis of the laser beam R and the surface of the specimen 61 are orthogonal to each other, the spot diameter of the laser beam R at the irradiated portion is set to about 300 ⁇ m, and the focal point during welding is 0 below the surface of the specimen 61. It is controlled to ⁇ 10 mm.
  • the output of the laser oscillator 11 is generally 1 to 20 kW kW
  • the core diameter of the optical fiber 12 is 15 to 300 ⁇ m
  • the transmission window 15 is made of quartz glass
  • the chamber 30 is made of acrylic resin. It is.
  • the shield gas is caused to flow into the shield gas cylinder 40 from the shield gas introduction hole 44 of the shield gas cylinder 40.
  • the shield gas flows through the shield gas cylinder 40 to the lower side of the shield gas cylinder 40, flows into the chamber 30 from the introduction port 32, and is then discharged out of the chamber 30 by the vacuum pumps 51 and 52 together with the plume generated at the welded portion. (Refer to the broken arrow indicating the flow of the shielding gas in FIG. 2).
  • the inside of the chamber 30 is controlled to 0.1 to 20 kPa by the vacuum pumps 51 and 52.
  • the plume that flies by filling the shielding gas cylinder 40 with the shielding gas is blocked, and the laser light R is transmitted through the transmission window 15 while preventing the plume from adhering to the transmission window 15.
  • the sample material (material to be welded) 61 is irradiated. At the same time, laser welding is performed while the specimen 61 is moved horizontally at a constant speed by the transfer device 71.
  • the shield gas flows into the chamber 30 and diffuses in the chamber 30 as indicated by broken line arrows in FIG. For this reason, if a sufficient distance between the introduction port 32 and the welded portion is ensured, adverse effects on the welded portion due to the shielding gas can be avoided.
  • the focal length of the long focal length optical system 14 is 1000 mm
  • the length of the shield gas cylinder 40 is 500 mm
  • the distance from the inlet 32 of the chamber 30 to the welded portion is about 450 mm (about on the cylinder).
  • a condensing lens is installed 50 mm above), it is easy to avoid the adverse effect of the shielding gas on the welded portion.
  • FIG. 3 is a cross-sectional view showing another aspect of the shield gas cylinder.
  • the shield gas cylinder 40 is formed with a plurality of stages of inner fin-like inner fins 45 at appropriate intervals in the vertical direction on the inner peripheral side thereof.
  • the shield gas introduced into the shield gas cylinder 40 from the shield gas introduction hole 44 is retained by the internal fin 45 in the middle of the shield gas cylinder 40. Since the gas pressure in the shield gas cylinder 40 also increases, the plume shield effect can be increased.
  • Example A for evaluating the stability of welding was performed by measuring a bead length that can be continuously welded using an experimental apparatus having the shield gas cylinder (the laser welding apparatus described above) and an experimental apparatus having no shield gas cylinder. The stability of was evaluated.
  • the experimental apparatus used in the comparative example has the same configuration as the laser welding apparatus described above except that there is no shield gas cylinder and a transmission window is attached to the introduction port.
  • the welding conditions are as follows. Pressure in the chamber: 0.1 kPa Length and inner diameter of shield gas cylinder: 430mm, 60mm Shield gas (N 2 ) supply rate: 100 to 200 cc / min Laser power: 8kW Welding speed: 0.3 m / min Focus position (defocus amount): Focus position (0 mm) Material and thickness of test material: Stainless steel (SUS304), 50mm Optical fiber core diameter: 100 ⁇ m Pumping speed of two vacuum pumps: 162 liters / min, 500 liters / min
  • FIG. 4 is a photograph showing the metal structure of the bead surface.
  • FIG. 4A is a photograph of the example, and
  • FIG. 4B is a photograph of the comparative example.
  • Example B for welding quality evaluation
  • a welding apparatus having a shield gas cylinder was used to evaluate the welding quality due to the difference in pressure in the chamber.
  • the welding conditions are as follows. Chamber pressure: 0.1 kPa (Example 1) 1 kPa (Example 2) 10 kPa (Example 3) 101.3 kPa (comparative example) ( Atmospheric pressure) Length and inner diameter of shield gas cylinder: 430mm, 60mm Supply amount of shielding gas (N 2 ): 100 to 200 cc / min (Example 1) 200 to 300cc / min (Example 2) 500 cc / min (Example 3) 40000cc / min (atmospheric pressure) Laser power: 10kW Welding speed: 0.1 m / min Focus position (defocus amount): Focus position (0 mm) Material and thickness of test material: Stainless steel (SUS304) 50mm Optical fiber core diameter: 100 ⁇ m Pumping speed of two vacuum pumps: 162 l / min, 500 liters / min
  • FIGS. 5 and 6 show the welding results.
  • FIG. 5 is a diagram showing the bead surface and cross-sectional shape, penetration depth, and penetration cross-sectional area of bead-on-plate welding under each pressure, and (a) shows a welding speed of 0.1 m / min. It is a result and (b) is a result whose welding speed is 0.3 m / min.
  • FIG. 6 is a diagram showing the relationship between pressure and penetration depth based on the results of FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

Provided is a laser welding device for welding by means of a laser beam in a low vacuum atmosphere, wherein said device suppresses porosity, ensures adequate weld penetration depth and prevents metal vapor from adhering to a laser beam-transmitting window (15). The laser welding device is provided with a shielding gas cylinder (40) that is disposed along the laser beam axis at a prescribed interval from the welding site, and has the transmitting window (15) installed on the top, while the bottom opens to an atmosphere controlled region. The device is further provided with a shielding gas supply means for introducing shielding gas to the interior of the shielding gas cylinder (40) from the transmitting window (15) side of the shielding gas cylinder. Also provided is a laser welding method that employs the aforementioned laser welding device.

Description

レーザ溶接装置およびレーザ溶接方法Laser welding apparatus and laser welding method
 本発明は、レーザ溶接装置およびレーザ溶接方法に関し、詳しくは、レーザ光の透過窓に金属蒸気が付着することを抑制することにより、高品質の溶接を安定して行うことができるレーザ溶接装置およびレーザ溶接方法に関する。 The present invention relates to a laser welding apparatus and a laser welding method, and more particularly, to a laser welding apparatus capable of stably performing high-quality welding by suppressing adhesion of metal vapor to a laser light transmission window, and The present invention relates to a laser welding method.
 レーザ溶接は、熱源であるレーザ光を主として金属に集光した状態で照射して、金属を局部的に溶融、凝固させることによって接合する溶接法であり、従来の溶接法に比較して、熱源のエネルギー密度が高く高速深溶込み溶接が可能であり、また溶接金属(被溶接材)への入熱による悪影響や変形が少ない等の特徴を有している。 Laser welding is a welding method in which laser light, which is a heat source, is mainly focused on a metal and irradiated to locally melt and solidify the metal. Compared to conventional welding methods, laser welding is a heat source. The high energy density of this material enables high-speed deep penetration welding, and has features such as less adverse effects and deformation due to heat input to the weld metal (material to be welded).
 このため、基幹産業である自動車産業やエレクトロニクス産業において広く採用されており、特に、近年は、ハイブリッド車のバッテリー等、レーザ溶接でしかできない工程が増加しており、その技術の重要性は益々増加しつつある。 For this reason, it is widely adopted in the key industries such as the automobile industry and the electronics industry. Particularly, in recent years, the number of processes that can only be performed by laser welding, such as batteries for hybrid vehicles, has increased, and the importance of the technology has been increasing. I am doing.
 しかし、このようなレーザ溶接装置は、出力1kW当たり約1000万円の設備投資が必要であり、また年間数万から数億カ所にも及ぶ溶接に対する溶接品質の要求も、近年益々厳しくなっている。 However, such laser welding equipment requires capital investment of about 10 million yen per 1 kW of output, and the demand for welding quality for welding of several tens of thousands to hundreds of millions of places per year has become increasingly severe in recent years. .
 このようなレーザ溶接については、従来、大気圧雰囲気下で行われており、レーザ溶接を低速度で行うことにより、充分な溶込み深さを確保することができる技術が開発され、例えば、レーザ出力6kW、溶接速度約0.1m/min(1.7mm/s)で15mm程度の溶込み深さが得られるようになっている。 Such laser welding has been conventionally performed in an atmospheric pressure atmosphere, and a technique capable of ensuring a sufficient penetration depth by performing laser welding at a low speed has been developed. A penetration depth of about 15 mm can be obtained at an output of 6 kW and a welding speed of about 0.1 m / min (1.7 mm / s).
 しかし、この技術は、大気圧雰囲気下で行う溶接であるため、前記した低速度溶接においては、深溶込み溶接部に、溶接欠陥であるポロシティ(溶接金属中の気孔や空隙)が発生して、溶接品質を低下させるという問題があった。 However, since this technique is welding performed in an atmospheric pressure atmosphere, in the above-described low-speed welding, porosity (porosity or voids in the weld metal) that is a weld defect occurs in the deep penetration weld. There was a problem of reducing the welding quality.
 このため、雰囲気を大気圧雰囲気から低圧雰囲気にして、低出力のレーザを用い、溶接を行う技術が開発され(非特許文献1~4)、より充分な溶込み深さを確保すると共に、ポロシティの発生を抑制した溶接が得られるようになった。 For this reason, a technique has been developed in which the atmosphere is changed from an atmospheric pressure atmosphere to a low pressure atmosphere and welding is performed using a low-power laser (Non-Patent Documents 1 to 4). It is now possible to obtain welds that suppress the occurrence of cracks.
 しかし、低圧雰囲気下における溶接の場合、レーザ光の照射により発生する金属蒸気(プルーム)が、100m/s(時速360km)と言う非常に速い速度で噴出するため、金属蒸気がレーザ光透過窓にまで達して付着することを防止することが困難であった。 However, in the case of welding under a low-pressure atmosphere, the metal vapor (plume) generated by the laser light irradiation is ejected at a very high speed of 100 m / s (360 km / h), so the metal vapor is applied to the laser light transmission window. It was difficult to prevent the adhesion to reach the maximum.
 溶接箇所から飛翔して透過窓に付着した金属蒸気は、レーザ光を遮り、溶接を不安定にさせるため、安定して、充分な溶込み深さが確保された溶接を行うことが困難となり、溶接品質にバラツキを生じさせる。そして、さらに金属蒸気の付着が進むと、透過窓が破損するか、もしくは溶接自体が不能となる。 The metal vapor that flies from the welding spot and adheres to the transmission window blocks the laser beam and makes the welding unstable, making it difficult to perform welding with a stable and sufficient penetration depth, This causes variations in welding quality. When the metal vapor further adheres, the transmission window is damaged or welding itself becomes impossible.
 このため、低圧雰囲気下におけるレーザ溶接によれば、充分な溶込み深さを確保すると共に、ポロシティの発生を抑制した溶接が可能であることは、理論的には分かっていても、実用化には至っていなかった。 For this reason, according to laser welding in a low-pressure atmosphere, while it is theoretically known that it is possible to perform welding with ensuring a sufficient penetration depth and suppressing generation of porosity, Was not reached.
 このような状況の下、一部の分野において、上記のような問題に対応する技術の検討がなされていた(非特許文献2、3)。 Under such circumstances, in some fields, techniques for dealing with the above problems have been studied (Non-Patent Documents 2 and 3).
 しかしながら、これまでの対応技術の場合、金属蒸気がレーザ光透過窓へ付着することが充分抑制できているとは言えず、また、高出力のレーザ溶接には応用が困難であるため、より効果的な技術、また、低コストで実用的な技術、さらには、高出力のレーザ溶接にも適用可能な技術の開発が望まれていた。 However, in the case of the corresponding technologies so far, it cannot be said that metal vapor is sufficiently suppressed from adhering to the laser light transmission window, and it is difficult to apply to high-power laser welding. Development of a practical technique, a low-cost and practical technique, and a technique applicable to high-power laser welding have been desired.
 本発明者は、鋭意検討の結果、以下の各請求項に示す発明により上記の課題が解決できることを見出し、本発明を完成するに至った。以下、各請求項毎に説明する。 As a result of intensive studies, the present inventors have found that the above problems can be solved by the inventions shown in the following claims, and have completed the present invention. Hereinafter, each claim will be described.
 請求項1に記載の発明は、
 低真空雰囲気下で、レーザ光により溶接を行うレーザ溶接装置であって、
 レーザ光の光軸に沿って、溶接部と所定の間隔を設けて配置され、上端には透過窓が設けられ、下端は雰囲気制御域内に開口しているシールドガス筒と、
 前記シールドガス筒の透過窓側から前記シールドガス筒内部へシールドガスを導入するシールドガス供給手段と
を備えていることを特徴とするレーザ溶接装置である。
The invention described in claim 1
A laser welding apparatus that performs welding with laser light in a low vacuum atmosphere,
A shield gas cylinder disposed along the optical axis of the laser beam at a predetermined interval from the weld, a transmission window provided at the upper end, and a lower end opened in the atmosphere control region;
A laser welding apparatus comprising: a shield gas supply means for introducing a shield gas into the shield gas cylinder from the transmission window side of the shield gas cylinder.
 本請求項の発明においては、透過窓と溶接部との間にシールドガス筒を設け、透過窓側から溶接部側に向けてシールドガスを流して、透過窓と溶接部との間にエアシールドが形成されるように構成されている。 In the present invention, a shield gas cylinder is provided between the transmission window and the welded portion, a shield gas is flowed from the transmission window side toward the welded portion, and an air shield is provided between the transmission window and the welded portion. It is comprised so that it may be formed.
 このように、透過窓と溶接部との間にエアシールドが形成されるため、低真空下、非常に速い速度で、透過窓方向へ噴出する金属蒸気の飛翔をブロックして、透過窓への付着を防止することができ、長時間、低真空雰囲気下における充分な溶込み深さが確保された溶接ができると共に、ポロシティの発生が抑制された高い品質の溶接を、効率的に提供することができる。 In this way, since an air shield is formed between the transmission window and the welded part, the flying of the metal vapor ejected toward the transmission window at a very high speed under a low vacuum is blocked, and Adhesion can be prevented, welding with a sufficient depth of penetration in a low vacuum atmosphere can be performed for a long time, and high-quality welding with reduced porosity is efficiently provided. Can do.
 特に、本請求項の発明においては、エアシールドを形成する装置の構造として、金属蒸気が侵入しがたい筒状体(シールドガス筒)を採用し、さらに、シールドガス筒と溶接部との間に、金属蒸気が周囲に飛散できると共に、シールドガスが溶接部に直接吹き付けられることがない一定の間隔を設けると共に、透過窓がシールドガス筒の上端に溶接部との間に充分な距離を設けて配置されており、また透過窓側から溶接部側に向けて流れるシールドガスによりエアシールドを形成させているため、金属蒸気の透過窓への付着を完全に防止することができる。 In particular, in the present invention, a cylindrical body (shield gas cylinder) that is difficult for metal vapor to enter is adopted as the structure of the apparatus for forming the air shield, and further, between the shield gas cylinder and the welded portion. In addition, metal vapor can scatter around and shield gas is not sprayed directly onto the welded part, and the transmission window has a sufficient distance between the welded part at the upper end of the shield gas cylinder. Further, since the air shield is formed by the shielding gas flowing from the transmission window side toward the welded portion side, it is possible to completely prevent the metal vapor from adhering to the transmission window.
 さらに、本請求項の発明は、低真空雰囲気下で行われるレーザ溶接であって、深い溶込み深さの溶接を安定して長時間行うことができるため、多大な設備投資を必要としない低出力レーザであっても、充分な溶込み深さを得ることができ、設備投資を抑制することができる。 Furthermore, the invention of this claim is laser welding performed in a low vacuum atmosphere, and since welding with a deep penetration depth can be performed stably for a long time, a low capital investment is not required. Even if it is an output laser, sufficient penetration depth can be obtained and capital investment can be suppressed.
 具体的には、本発明者の実験によれば、10kPa(大気圧の1/10)雰囲気下、前記した大気圧雰囲気下の場合と同じレーザ出力6kW、溶接速度約0.1m/min(1.7mm/s)で、大気圧雰囲気下の2倍となる約30mmの溶込み深さを得ることができている。この結果は、低圧雰囲気下においてはレーザ出力の効率が大気圧雰囲気下に比べて2倍に改善されることを示している。 Specifically, according to the experiment of the present inventor, under the atmosphere of 10 kPa (1/10 of the atmospheric pressure), the same laser output 6 kW as in the case of the atmospheric pressure described above, the welding speed is about 0.1 m / min (1 7 mm / s), a penetration depth of about 30 mm, which is twice that of the atmospheric pressure atmosphere, can be obtained. This result shows that the laser output efficiency is improved by a factor of two in a low-pressure atmosphere as compared to that in an atmospheric pressure atmosphere.
 一方、高出力レーザを用いた溶接にも、本請求項の発明は適用することができ、この場合には、より大きな溶込み深さを安定して得ることができる。 On the other hand, the invention of this claim can also be applied to welding using a high-power laser, and in this case, a larger penetration depth can be stably obtained.
 また、金属蒸気の透過窓への付着が確実に防止されるため、透過窓の汚れが抑制され、高価な石英ガラス製の透過窓を短期間で取替えたりする必要がなく、透過窓が割れたりするようなこともない。 In addition, since the adhesion of metal vapor to the transmission window is reliably prevented, contamination of the transmission window is suppressed, and there is no need to replace an expensive transmission window made of quartz glass in a short period of time, and the transmission window may be broken. There is nothing to do.
 そして、本請求項の発明は、従来のレーザ溶接装置に、シールドガス供給手段を有するシールドガス筒を設けると言う極めて簡便な手段により、上記の優れた効果を得ることができるため、低コストで実用的である。 The invention according to the present invention can achieve the above-described excellent effect by a very simple means of providing a shield gas cylinder having a shield gas supply means in a conventional laser welding apparatus. It is practical.
 上記した本請求項の発明は、従来のアシストガス方式とは全く発想が異なっており、シールドガスを溶接部に吹き付けるものではなく、金属蒸気(プルーフ)を立てたままガスでブロックするものである。 The invention of the above-mentioned claim is completely different from the conventional assist gas system, and does not spray the shielding gas onto the welded part, but blocks the gas with the metal vapor (proof) standing. .
 このような本請求項の発明は、低真空雰囲気下で溶接が行われるにも拘わらず、真空度を上昇させる方向に働くシールドガスを流すと言う、低真空とは逆転した発想の下にもたらされたものである。 The invention of this claim is based on the idea that the shielding gas that works in the direction of increasing the vacuum degree is flowed in spite of the welding performed in a low vacuum atmosphere. It is a fallen thing.
 本請求項の発明において、シールドガス筒としては、レーザ溶接時の誘起プルームの上昇の程度の確認、溶接室(チャンバー)内の溶融溶接状況の観察・確認などの観点より、高強度ガラス製、アクリル樹脂製、ポリカーボネート樹脂製などの筒を好ましく用いることができる。断面形状は円形が好ましいが、特には限定されず四角形等の角状であってもよい。 In the invention of this claim, the shield gas cylinder is made of high-strength glass from the viewpoint of confirmation of the degree of rise of the induced plume during laser welding, observation / confirmation of the melt welding situation in the welding chamber (chamber) A cylinder made of acrylic resin or polycarbonate resin can be preferably used. The cross-sectional shape is preferably circular, but is not particularly limited, and may be square such as a quadrangle.
 なお、シールドガス筒には、シールドガスを導入するための供給手段として、穴が設けられるが、その数は1個に限定されることはなく、シールドガス筒の周囲に適宜設けることができる。 The shield gas cylinder is provided with holes as supply means for introducing the shield gas, but the number is not limited to one, and can be appropriately provided around the shield gas cylinder.
 導入されるシールドガスとしては、レーザ光によりプラズマ化しないガスであれば種類は限定されないが、Ar、He、N等の不活性ガスが好ましく、特にNは安価であり、酸化防止の点から好ましい。 The type of shielding gas to be introduced is not limited as long as it is a gas that is not converted into plasma by laser light, but an inert gas such as Ar, He, N 2 is preferable, and N 2 is particularly inexpensive and is a point of oxidation prevention. To preferred.
 また、シールドガス筒の先端開口部の内径を、通過するレーザビームの直径の2倍程度に設定すると、金属蒸気が筒内に過剰(例えば10mm以上に)侵入しないため好ましい。 Also, it is preferable to set the inner diameter of the tip opening of the shield gas cylinder to about twice the diameter of the passing laser beam because the metal vapor does not enter the cylinder excessively (for example, 10 mm or more).
 なお、シールドガス筒と溶接部との間に設けられる「所定の間隔」としては、具体的には、50~300mm程度が好ましい。 The “predetermined distance” provided between the shield gas cylinder and the welded portion is specifically preferably about 50 to 300 mm.
 また、「低真空雰囲気」とは、0.01~30kPa程度の圧力である雰囲気を指す。 Also, “low vacuum atmosphere” refers to an atmosphere having a pressure of about 0.01 to 30 kPa.
 本請求項の発明に係るレーザ溶接装置に用いられるレーザとしては、COレーザ、YAGレーザ、ファイバーレーザ、ディスクレーザ等が挙げられるが、特に限定されない。 Examples of the laser used in the laser welding apparatus according to the present invention include a CO 2 laser, a YAG laser, a fiber laser, and a disk laser, but are not particularly limited.
 請求項2に記載の発明は、
 焦点距離が350mm以上の長焦点レーザ溶接装置であることを特徴とする請求項1に記載のレーザ溶接装置である。
The invention described in claim 2
2. The laser welding apparatus according to claim 1, wherein the laser welding apparatus has a focal length of 350 mm or longer.
 長焦点レーザ溶接装置である場合、特に、焦点距離が350mm以上の長焦点レーザ溶接装置の場合、焦点深度が深くレイリー長が長い集光光学系を構成できるため、厚さのある部材であっても、ビード幅が小さく、溶込みが深い溶接を提供することができ、より高品質の溶接を提供することができる。また、小さなビード幅の溶接ができるため、精密部品の溶接にも適用して、高品質の溶接を提供することができる。 In the case of a long focus laser welding apparatus, in particular, in the case of a long focus laser welding apparatus having a focal length of 350 mm or more, a condensing optical system having a deep focal depth and a long Rayleigh length can be configured. However, a weld having a small bead width and deep penetration can be provided, and a higher quality weld can be provided. In addition, since welding with a small bead width can be performed, it can be applied to welding of precision parts to provide high-quality welding.
 このように溶接品質に優れた長焦点レーザ溶接装置に、請求項1の発明を適用することにより、厚さのある部材であっても、低真空雰囲気下におけるレーザ溶接を安定して行うことが可能となり、ポロシティの発生が抑制され、ビード幅が小さく、溶込みが深い溶接、即ち高品質の溶接を、安定的に、長く継続して提供することが可能となる。 Thus, by applying the invention of claim 1 to the long focus laser welding apparatus excellent in welding quality, laser welding in a low vacuum atmosphere can be stably performed even with a thick member. This makes it possible to suppress the generation of porosity, provide a weld having a small bead width and a deep penetration, that is, a high-quality weld, stably and continuously.
 また、長焦点レーザ溶接装置は、シールドガス筒と溶接部との間隔を充分に大きくすることができるため、金属蒸気の透過窓への付着がより確実に防止できると共に、シールドガス筒を通過したシールドガスは、溶接部に到達することなく充分に拡散され、溶接に悪影響を及ぼすことがない。 In addition, since the long focus laser welding apparatus can sufficiently increase the distance between the shield gas cylinder and the welded portion, adhesion of the metal vapor to the transmission window can be more reliably prevented and the gas passes through the shield gas cylinder. The shield gas is sufficiently diffused without reaching the weld and does not adversely affect the welding.
 請求項3に記載の発明は、
 前記シールドガス筒の内壁の長手方向に、所定の間隔毎に、レーザ光の通路を取り囲む環状の遮蔽板が設けられていることを特徴とする請求項1または請求項2に記載のレーザ溶接装置である。
The invention according to claim 3
3. The laser welding apparatus according to claim 1, wherein an annular shielding plate surrounding the laser beam passage is provided at predetermined intervals in the longitudinal direction of the inner wall of the shield gas cylinder. It is.
 所定の間隔毎に、レーザ光の通路を取り囲む環状の遮蔽板を設けることにより、隣り合った遮蔽板内に、導入されたシールドガスを長い時間滞留させることができるため、より少ないシールドガス導入量で金属蒸気の侵入を効率的に防止することができる。 By providing an annular shielding plate that surrounds the laser beam path at every predetermined interval, the introduced shielding gas can be retained in the adjacent shielding plate for a long time. Intrusion of metal vapor can be efficiently prevented.
 請求項4に記載の発明は、
 請求項1ないし請求項3のいずれか1項に記載のレーザ溶接装置を用いたレーザ溶接方法であって、
 被溶接材を前記レーザ溶接装置内に配置する被溶接材配置工程と、
 前記レーザ溶接装置内の圧力雰囲気を低真空雰囲気にする雰囲気圧力制御工程と、
 シールドガス筒にシールドガスを導入するシールドガス導入工程と、
 レーザを前記被溶接材に照射するレーザ照射工程と
を有し、
 前記シールドガスの導入量は、シールドガスが溶接時、溶接部に直接吹き付けられることがない量に制御されている
ことを特徴とするレーザ溶接方法である。
The invention according to claim 4
A laser welding method using the laser welding apparatus according to any one of claims 1 to 3,
A to-be-welded material placement step for placing the to-be-welded material in the laser welding apparatus;
An atmospheric pressure control step for making the pressure atmosphere in the laser welding apparatus a low vacuum atmosphere;
A shielding gas introduction process for introducing shielding gas into the shielding gas cylinder;
A laser irradiation step of irradiating the workpiece with a laser,
The introduction amount of the shielding gas is controlled by a laser welding method characterized in that the shielding gas is controlled so as not to be directly sprayed on the welded part during welding.
 本請求項の発明においては、請求項1ないし請求項3のいずれか1項に記載のレーザ溶接装置を用いてレーザ溶接を行っているため、シールドガス筒に導入されたシールドガスが形成するエアシールドにより、金属蒸気の透過窓への付着を確実に防止することができる。また、シールドガスの導入量を溶接部に直接吹き付けることがない量に制御しているため、溶接に悪影響を及ぼすことがない。この結果、充分な溶込み深さを確保すると共に、ポロシティの発生を抑制した高品質の溶接を、連続して長時間行うことができる。 In the invention of this claim, since laser welding is performed using the laser welding apparatus according to any one of claims 1 to 3, air formed by the shield gas introduced into the shield gas cylinder is formed. The shield can reliably prevent the metal vapor from adhering to the transmission window. In addition, since the amount of shield gas introduced is controlled so as not to be sprayed directly onto the welded portion, the welding is not adversely affected. As a result, it is possible to continuously perform high-quality welding while ensuring a sufficient penetration depth and suppressing the generation of porosity for a long time.
 本発明によれば、金属蒸気がレーザ光透過窓へ付着することを防止して、充分な溶込み深さが確保されると共に、ポロシティの発生が抑制された高い品質の溶接を、安定して、長時間効率的に提供することができる。 According to the present invention, metal vapor is prevented from adhering to the laser light transmission window, a sufficient penetration depth is ensured, and high quality welding with reduced porosity is stably performed. Can be provided efficiently for a long time.
本発明の実施の形態のレーザ溶接装置を示す斜視図である。It is a perspective view which shows the laser welding apparatus of embodiment of this invention. 本発明の実施の形態のレーザ溶接装置の原理を説明する断面図である。It is sectional drawing explaining the principle of the laser welding apparatus of embodiment of this invention. 本発明の実施の形態のレーザ溶接装置のシールドガス筒の他の態様を示す断面図である。It is sectional drawing which shows the other aspect of the shield gas cylinder of the laser welding apparatus of embodiment of this invention. ビード表面の金属組織を表す写真である。It is a photograph showing the metal structure of the bead surface. ビード・オン・プレート溶接における溶込み深さおよび溶込み断面積と圧力の関係を示す図である。It is a figure which shows the relationship between the penetration depth and penetration cross-sectional area, and a pressure in bead on plate welding. ビード・オン・プレート溶接における溶込み深さと圧力の関係を示す図である。It is a figure which shows the relationship between the penetration depth and pressure in bead on plate welding.
 以下、本発明の実施の形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(1)装置全体の説明
 図1は、本発明の実施の形態のレーザ溶接装置を示す斜視図であり、図2は、本発明の実施の形態のレーザ溶接装置の原理を説明する断面図である。
(1) Description of Entire Apparatus FIG. 1 is a perspective view showing a laser welding apparatus according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view illustrating the principle of the laser welding apparatus according to the embodiment of the present invention. is there.
 はじめに、装置全体の概要を説明する。
 図1および図2に示すように、レーザ溶接装置は、基本的には、レーザ光Rを発生させるレーザ発振機11と、光ファイバー12と、加工ヘッド13と、レーザ光Rの焦点を調整するための光学系14と、透過板を有する透過窓15と、低真空雰囲気下で溶接を行うためのチャンバー30と、シールドガス筒40と、図外の制御手段を備えている。また、チャンバー30内には、供試材61を移動させるための移送装置71が設置されている。
First, an outline of the entire apparatus will be described.
As shown in FIGS. 1 and 2, the laser welding apparatus basically adjusts the focal point of a laser oscillator 11 that generates laser light R, an optical fiber 12, a processing head 13, and the laser light R. The optical system 14, a transmission window 15 having a transmission plate, a chamber 30 for performing welding in a low vacuum atmosphere, a shield gas cylinder 40, and control means (not shown) are provided. A transfer device 71 for moving the test material 61 is installed in the chamber 30.
 さらに、チャンバー30内を低真空雰囲気にするための減圧手段として、チャンバー30には排気管53が接続され、排気管53には二基のロータリー型の真空ポンプ(VP)51、52が接続されている。また、ガスボンベ21のシールドガスをシールドガス筒40内に供給するためのガス配管22がシールドガス筒40に接続されている。 Further, an exhaust pipe 53 is connected to the chamber 30 as pressure reducing means for making the inside of the chamber 30 a low vacuum atmosphere, and two rotary vacuum pumps (VP) 51 and 52 are connected to the exhaust pipe 53. ing. A gas pipe 22 for supplying the shield gas of the gas cylinder 21 into the shield gas cylinder 40 is connected to the shield gas cylinder 40.
 チャンバー30内の圧力は、シールドガス筒40からチャンバー30内に流入するシールドガスの流入量と、真空ポンプ51、52によるチャンバー30からの排気量とを調節することにより制御される。 The pressure in the chamber 30 is controlled by adjusting the inflow amount of the shield gas flowing into the chamber 30 from the shield gas cylinder 40 and the exhaust amount from the chamber 30 by the vacuum pumps 51 and 52.
(2)シールドガス筒の説明 (2) Explanation of shield gas cylinder
 シールドガス筒40の上端部41には、シールドガス導入部43が設けられている。シールドガス導入部43には、シールドガス筒40の周方向に適宜間隔を置いて複数のシールドガス導入用孔44が形成されている。また、シールドガス筒40の上端部41は、透過窓15が固定されている。 A shield gas introduction portion 43 is provided at the upper end portion 41 of the shield gas cylinder 40. A plurality of shield gas introduction holes 44 are formed in the shield gas introduction portion 43 at appropriate intervals in the circumferential direction of the shield gas cylinder 40. The transmission window 15 is fixed to the upper end portion 41 of the shield gas cylinder 40.
 シールドガス筒40の下端部42は、チャンバー30の天板31に設けられた導入口32の孔縁部に接続されてチャンバー30内に開口している。 The lower end portion 42 of the shield gas cylinder 40 is connected to the hole edge portion of the introduction port 32 provided in the top plate 31 of the chamber 30 and opens into the chamber 30.
 チャンバー30の導入口32には、シールドガス筒40内へのプルームの侵入を抑制するために、環状フィン46が設けられている。環状フィン46により小さくなる導入口32の口径は、レーザ光に悪影響を及ぼさないように、導入口32を通過するレーザ光の直径の約2倍に設定されている。 An annular fin 46 is provided at the inlet 32 of the chamber 30 in order to suppress the intrusion of the plume into the shield gas cylinder 40. The diameter of the introduction port 32 that is reduced by the annular fin 46 is set to about twice the diameter of the laser beam that passes through the introduction port 32 so as not to adversely affect the laser beam.
 シールドガス用筒40の内径や長さは、シールドガスの種類、溶接材、溶接エネルギー、レーザ光の焦点距離などに応じて、適宜変更することができる。 The inner diameter and length of the shield gas cylinder 40 can be appropriately changed according to the type of shield gas, the welding material, the welding energy, the focal length of the laser beam, and the like.
 レーザ光Rの光軸と供試材61の表面とは直交し、照射箇所でのレーザ光Rのスポット径は300μm程度に設定され、溶接時の焦点は、供試材61の表面より下方0~10mmに制御されている。 The optical axis of the laser beam R and the surface of the specimen 61 are orthogonal to each other, the spot diameter of the laser beam R at the irradiated portion is set to about 300 μm, and the focal point during welding is 0 below the surface of the specimen 61. It is controlled to ˜10 mm.
 レーザ発振機11の出力は、一般的に、1~20kWkWであり、光ファイバー12のコア径は、15~300 μmであり、透過窓15は、石英ガラス製であり、チャンバー30は、アクリル樹脂製である。 The output of the laser oscillator 11 is generally 1 to 20 kW kW, the core diameter of the optical fiber 12 is 15 to 300 μm, the transmission window 15 is made of quartz glass, and the chamber 30 is made of acrylic resin. It is.
(3)レーザ溶接装置を用いた溶接方法
 次に、本実施の形態のレーザ溶接装置を用いた溶接方法について説明する。
(3) Welding method using laser welding apparatus Next, a welding method using the laser welding apparatus of the present embodiment will be described.
 まず、真空ポンプ51、52により、チャンバー30内の圧力を、30Pa程度まで低減した後、シールドガス筒40のシールドガス導入用孔44からシールドガス筒40内にシールドガスを流入させる。 First, after the pressure in the chamber 30 is reduced to about 30 Pa by the vacuum pumps 51 and 52, the shield gas is caused to flow into the shield gas cylinder 40 from the shield gas introduction hole 44 of the shield gas cylinder 40.
 シールドガスは、シールドガス筒40を通ってシールドガス筒40の下方に流れ、導入口32からチャンバー30内に流入した後、溶接部で発生するプルームと共に真空ポンプ51、52によりチャンバー30外へ排出される(図2中のシールドガスの流れを示す破線の矢印を参照)。溶接中は、真空ポンプ51、52により、チャンバー30内は、0.1~20kPaに制御される。 The shield gas flows through the shield gas cylinder 40 to the lower side of the shield gas cylinder 40, flows into the chamber 30 from the introduction port 32, and is then discharged out of the chamber 30 by the vacuum pumps 51 and 52 together with the plume generated at the welded portion. (Refer to the broken arrow indicating the flow of the shielding gas in FIG. 2). During welding, the inside of the chamber 30 is controlled to 0.1 to 20 kPa by the vacuum pumps 51 and 52.
 そして、低真空雰囲気の下において、シールドガス筒40内にシールドガスを充満させて飛翔するプルームをブロックし、透過窓15へのプルームの付着を防止しながら、レーザ光Rを、透過窓15を通して、供試材(被溶接材)61に照射する。それと共に、供試材61を、移送装置71により、一定速度で水平に移動させながら、レーザ溶接を行う。 Then, under a low vacuum atmosphere, the plume that flies by filling the shielding gas cylinder 40 with the shielding gas is blocked, and the laser light R is transmitted through the transmission window 15 while preventing the plume from adhering to the transmission window 15. The sample material (material to be welded) 61 is irradiated. At the same time, laser welding is performed while the specimen 61 is moved horizontally at a constant speed by the transfer device 71.
 また、図2の破線矢印で示すように、シールドガスは、チャンバー30内に流入してチャンバー30内で拡散する。このため、導入口32と溶接部との距離を十分に確保すれば、シールドガスによる溶接部への悪影響を回避できる。例えば、長焦点型の光学系14の焦点距離が1000mmの場合、シールドガス筒40の長さを500mmにすれば、チャンバー30の導入口32から溶接部までの距離が約450mm程度(筒上約50mm上方に集光レンズを設置している場合)となり、シールドガスによる溶接部への悪影響を回避することが容易になる。 2, the shield gas flows into the chamber 30 and diffuses in the chamber 30 as indicated by broken line arrows in FIG. For this reason, if a sufficient distance between the introduction port 32 and the welded portion is ensured, adverse effects on the welded portion due to the shielding gas can be avoided. For example, when the focal length of the long focal length optical system 14 is 1000 mm, if the length of the shield gas cylinder 40 is 500 mm, the distance from the inlet 32 of the chamber 30 to the welded portion is about 450 mm (about on the cylinder). When a condensing lens is installed 50 mm above), it is easy to avoid the adverse effect of the shielding gas on the welded portion.
(3)シールドガス筒の他の態様
 図3は、シールドガス筒の他の態様を示す断面図である。図3のようにシールドガス筒40は、その内周側に、縦方向に適宜間隔を置いて内鍔状の内部フィン45が複数段形成されている。
(3) Other Aspects of Shield Gas Cylinder FIG. 3 is a cross-sectional view showing another aspect of the shield gas cylinder. As shown in FIG. 3, the shield gas cylinder 40 is formed with a plurality of stages of inner fin-like inner fins 45 at appropriate intervals in the vertical direction on the inner peripheral side thereof.
 このシールドガス筒40によれば、シールドガス導入用孔44からシールドガス筒40内に導入されるシールドガスは、シールドガス筒40の途中で、内部フィン45により滞留するため、シールドガスの使用量を軽減でき、また、シールドガス筒40内のガス圧も増加するため、プルームのシールド効果を増加させることができる。 According to the shield gas cylinder 40, the shield gas introduced into the shield gas cylinder 40 from the shield gas introduction hole 44 is retained by the internal fin 45 in the middle of the shield gas cylinder 40. Since the gas pressure in the shield gas cylinder 40 also increases, the plume shield effect can be increased.
(1)溶接の安定性評価のための実施例A
 実施例Aにおいては、シールドガス筒を有する実験装置(上記のレーザ溶接装置)と、シールドガス筒を有しない実験装置とを用いて、連続して溶接可能なビード長を測定することにより、溶接の安定性を評価した。
(1) Example A for evaluating the stability of welding
In Example A, welding was performed by measuring a bead length that can be continuously welded using an experimental apparatus having the shield gas cylinder (the laser welding apparatus described above) and an experimental apparatus having no shield gas cylinder. The stability of was evaluated.
 (a)実施例および比較例
 実施例は、シールドガス筒を有する実験装置を用いて、以下に示す溶接条件で、溶接を行って、連続して溶接できたビード長を測定した。
(A) Examples and Comparative Examples In the examples, welding was performed under the welding conditions shown below using an experimental apparatus having a shield gas cylinder, and the bead length that could be continuously welded was measured.
 比較例は、シールドガス筒を有しない実験装置を用いて、以下に示す溶接条件の下で、溶接を行って、連続して溶接できたビード長を測定した。比較例に用いた実験装置は、シールドガス筒がなく、また、導入口に透過窓が取り付けられている点を除き、上記のレーザ溶接装置と同じように構成されている。 In the comparative example, using an experimental apparatus that does not have a shield gas cylinder, welding was performed under the following welding conditions, and the bead length that could be continuously welded was measured. The experimental apparatus used in the comparative example has the same configuration as the laser welding apparatus described above except that there is no shield gas cylinder and a transmission window is attached to the introduction port.
 溶接条件は次の通りである。
   チャンバー内の圧力:      0.1kPa
   シールドガス筒の長さおよび内径:430mm、60mm
   シールドガス(N)の供給量:  100~200cc/min
   レーザ出力:          8kW
   溶接速度:           0.3m/min
   焦点位置(デフォーカス量):  焦点位置(0mm)
   供試材の材質および厚み:    ステンレス鋼(SUS304)、
                   50mm
   光ファイバーのコア径:     100μm
   二基の真空ポンプのポンピング速度:
                 162リットル/min、500リッ
                 トル/min
The welding conditions are as follows.
Pressure in the chamber: 0.1 kPa
Length and inner diameter of shield gas cylinder: 430mm, 60mm
Shield gas (N 2 ) supply rate: 100 to 200 cc / min
Laser power: 8kW
Welding speed: 0.3 m / min
Focus position (defocus amount): Focus position (0 mm)
Material and thickness of test material: Stainless steel (SUS304),
50mm
Optical fiber core diameter: 100 μm
Pumping speed of two vacuum pumps:
162 liters / min, 500 liters / min
 (b)評価方法
 連続して溶接可能な時間を調べることにより、溶接の安定性について評価した。
(B) Evaluation method The stability of welding was evaluated by investigating the continuous welding time.
 (c)溶接結果
 図4はビード表面の金属組織を表す写真である。図4(a)は、実施例の写真であり、図4(b)は比較例の写真である。
(C) Welding result FIG. 4 is a photograph showing the metal structure of the bead surface. FIG. 4A is a photograph of the example, and FIG. 4B is a photograph of the comparative example.
 実施例の場合は、レーザ溶接を開始後、1.2分経過時点においても、透過窓にプルームが付着しなかったため、安定した溶接を行うことができた。そして、1.2分経過した時点で溶接を中止し、長さ350mmのビードを引くことができた。一方、比較例の場合は、透過窓にプルームが付着したため、レーザ溶接を開始後、0.27分後には溶接が不安定になったため、長さ80mmのビードしか引くことができなかった。 In the case of the example, since the plume did not adhere to the transmission window even after 1.2 minutes had elapsed since the start of laser welding, stable welding could be performed. And when 1.2 minutes passed, welding was stopped and the bead of length 350mm was able to be drawn. On the other hand, in the case of the comparative example, since the plume adhered to the transmission window, the welding became unstable 0.27 minutes after the start of laser welding, so that only a bead with a length of 80 mm could be drawn.
 (d)評価
 シールドガス筒のある実験装置の場合は、シールドガス筒のない実験装置の場合とは異なり、ビード長を大幅に伸ばすことができ、実用化が可能であることが確認できた。
(D) Evaluation In the case of an experimental apparatus with a shield gas cylinder, unlike the experimental apparatus without a shield gas cylinder, the bead length can be greatly increased, and it has been confirmed that practical use is possible.
(2)溶接の品質評価のための実施例B
 実施例Bにおいては、シールドガス筒を有する溶接装置を用いて、チャンバー内の圧力の相違による溶接品質を評価した。
(2) Example B for welding quality evaluation
In Example B, a welding apparatus having a shield gas cylinder was used to evaluate the welding quality due to the difference in pressure in the chamber.
 (a)実施例および比較例
 シールドガス筒を有する実験装置(上記のレーザ溶接装置)を用いて、次の溶接条件の下で、チャンバー内の圧力を変えて、ビード表面および溶込み断面の形状、溶込み深さ、溶込み断面積を観察、測定した。
(A) Examples and Comparative Examples Using an experimental apparatus having the shield gas cylinder (the above laser welding apparatus), the pressure in the chamber was changed under the following welding conditions, and the shape of the bead surface and the penetration cross section The penetration depth and penetration cross-sectional area were observed and measured.
 溶接条件は次の通りである。
   チャンバー内圧力:        0.1kPa(実施例1)
                    1kPa(実施例2)
                    10kPa(実施例3)
                    101.3kPa(比較例)(
                    大気圧)
   シールドガス筒の長さおよび内径: 430mm、60mm
   シールドガス(N)の供給量:   100~200cc/min(実
                    施例1)
                    200~300cc/min(実
                    施例2)
                    500cc/min(実施例3)
                    40000cc/min(大気圧
                    )
   レーザ出力:           10kW
   溶接速度:            0.1m/min
   焦点位置(デフォーカス量):   焦点位置(0mm)
   供試材の材質および厚み:     ステンレス鋼(SUS304)
                    、50mm
   光ファイバーのコア径:      100μm
   二基の真空ポンプのポンピング速度:162リットル/min、
                    500リットル/min
The welding conditions are as follows.
Chamber pressure: 0.1 kPa (Example 1)
1 kPa (Example 2)
10 kPa (Example 3)
101.3 kPa (comparative example) (
Atmospheric pressure)
Length and inner diameter of shield gas cylinder: 430mm, 60mm
Supply amount of shielding gas (N 2 ): 100 to 200 cc / min (Example 1)
200 to 300cc / min (Example 2)
500 cc / min (Example 3)
40000cc / min (atmospheric pressure)
Laser power: 10kW
Welding speed: 0.1 m / min
Focus position (defocus amount): Focus position (0 mm)
Material and thickness of test material: Stainless steel (SUS304)
50mm
Optical fiber core diameter: 100 μm
Pumping speed of two vacuum pumps: 162 l / min,
500 liters / min
 (b)評価方法
 ビードの表面状態、溶込み断面の形状、溶込み深さおよび溶込み断面積により、溶接品質を評価した。
(B) Evaluation method Weld quality was evaluated based on the surface state of the bead, the shape of the penetration cross section, the penetration depth, and the penetration cross sectional area.
 (c)溶接結果
 図5および図6に溶接結果を示す。図5は、各圧力下におけるビード・オン・プレート溶接のビード表面と断面の形状および溶込み深さ、溶込み断面積を示す図であり、(a)は溶接速度が0.1m/minの結果であり、(b)は溶接速度が0.3m/minの結果である。図6は、図5の結果に基づいて圧力と溶込み深さとの関係を示した図である。
(C) Welding results FIGS. 5 and 6 show the welding results. FIG. 5 is a diagram showing the bead surface and cross-sectional shape, penetration depth, and penetration cross-sectional area of bead-on-plate welding under each pressure, and (a) shows a welding speed of 0.1 m / min. It is a result and (b) is a result whose welding speed is 0.3 m / min. FIG. 6 is a diagram showing the relationship between pressure and penetration depth based on the results of FIG.
 (d)評価
 (イ)ビードの表面状態
 実施例1~3は、ビードの幅が細くてきれいであり、比較例は、ビードの幅が太く、きれいな状態ではない。
(D) Evaluation (a) Surface state of the beads In Examples 1 to 3, the width of the bead is thin and clean, and in the comparative example, the width of the bead is large and not clean.
 (ロ)溶込み深さ
 実施例1~3は、溶込み深さが深く、溶接速度が0.1m/min、0.3m/minの場合ともに、溶込み深さが30mmを超えているのに対し、比較例は、実施例1~3に比べて溶込み深さが浅くなることが確認できた。
(B) Penetration depth In Examples 1 to 3, the penetration depth is greater than 30 mm in both cases where the penetration depth is deep and the welding speed is 0.1 m / min and 0.3 m / min. On the other hand, it was confirmed that the penetration depth of the comparative example was shallower than that of Examples 1 to 3.
 (ハ)溶込み断面の形状
 実施例の場合は、ビード幅が小さく、深い溶込みが得られていることが確認できた。比較例の場合は、ビード幅が大きく、浅い溶込みになることが確認できた。さらに、実施例1~3は、溶接部にポロシティの存在が認められず、高品質のレーザ溶接であることが確認できた。
(C) Shape of penetration cross section In the case of the example, it was confirmed that the bead width was small and deep penetration was obtained. In the case of the comparative example, it was confirmed that the bead width was large and the penetration was shallow. Further, in Examples 1 to 3, no porosity was observed in the welded portion, and it was confirmed that the welding was of high quality.
 (ニ)溶込み断面積
 溶込み断面積については、溶接速度が0.1m/minの場合、実施例1~3の方が大きくなった。一方、溶接速度が0.3m/minの場合、溶接ビード幅が狭いため、実施例1~3の方が小さくなった。
(D) Penetration sectional area With respect to the penetration sectional area, Examples 1 to 3 were larger when the welding speed was 0.1 m / min. On the other hand, when the welding speed was 0.3 m / min, since the weld bead width was narrow, Examples 1 to 3 were smaller.
 以上より、シールドガス筒を用いて、低真空雰囲気下でレーザ溶接を行うことにより、安定して高い品質の溶接ができることが確認できた。 From the above, it has been confirmed that stable and high-quality welding can be performed by performing laser welding in a low vacuum atmosphere using a shield gas cylinder.
 以上、本発明の実施の形態について説明したが、本発明は、以上の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、以上の実施の形態に対して種々の変更を加えることが可能である。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the above embodiment. Various modifications can be made to the above embodiments within the same and equivalent scope as the present invention.
11     レーザ発振機
12     光ファイバー
13     加工ヘッド
14     光学系
15     透過窓
21     ガスボンベ
22     ガス配管
30     チャンバー
31     チャンバーの天板
32     導入口
40     シールドガス筒
41     シールドガス筒の上端
42     シールドガス筒の下端
43     シールドガス導入部
44     シールドガス導入用孔
45     内部フィン
46     環状フィン
51、52  真空ポンプ
53     排気管
61     供試材(被溶接材)
71     移送装置
R      レーザ光
DESCRIPTION OF SYMBOLS 11 Laser oscillator 12 Optical fiber 13 Processing head 14 Optical system 15 Transmission window 21 Gas cylinder 22 Gas piping 30 Chamber 31 Chamber top plate 32 Inlet 40 Shield gas cylinder 41 Upper end of shield gas cylinder 42 Lower end of shield gas cylinder 43 Shield gas introduction Portion 44 Shield gas introduction hole 45 Inner fin 46 Annular fins 51, 52 Vacuum pump 53 Exhaust pipe 61
71 Transfer device R Laser light

Claims (4)

  1.  低真空雰囲気下で、レーザ光により溶接を行うレーザ溶接装置であって、
     レーザ光の光軸に沿って、溶接部と所定の間隔を設けて配置され、上端には透過窓が設けられ、下端は雰囲気制御域内に開口しているシールドガス筒と、
     前記シールドガス筒の透過窓側から前記シールドガス筒内部へシールドガスを導入するシールドガス供給手段と
    を備えていることを特徴とするレーザ溶接装置。
    A laser welding apparatus that performs welding with laser light in a low vacuum atmosphere,
    A shield gas cylinder disposed along the optical axis of the laser beam at a predetermined interval from the weld, a transmission window provided at the upper end, and a lower end opened in the atmosphere control region;
    A laser welding apparatus comprising: a shielding gas supply means for introducing a shielding gas from the transmission window side of the shielding gas cylinder into the shielding gas cylinder.
  2.  焦点距離が350mm以上の長焦点レーザ溶接装置であることを特徴とする請求項1に記載のレーザ溶接装置。 2. The laser welding apparatus according to claim 1, wherein the laser welding apparatus is a long focus laser welding apparatus having a focal length of 350 mm or more.
  3.  前記シールドガス筒の内壁の長手方向に、所定の間隔毎に、レーザ光の通路を取り囲む環状の遮蔽板が設けられていることを特徴とする請求項1または請求項2に記載のレーザ溶接装置。 3. The laser welding apparatus according to claim 1, wherein an annular shielding plate surrounding the laser beam passage is provided at predetermined intervals in the longitudinal direction of the inner wall of the shield gas cylinder. .
  4.  請求項1ないし請求項3のいずれか1項に記載のレーザ溶接装置を用いたレーザ溶接方法であって、
     被溶接材を前記レーザ溶接装置内に配置する被溶接材配置工程と、
     前記レーザ溶接装置内の圧力雰囲気を低真空雰囲気にする雰囲気圧力制御工程と、
     シールドガス筒にシールドガスを導入するシールドガス導入工程と、
     レーザを前記被溶接材に照射するレーザ照射工程と
    を有し、
     前記シールドガスの導入量は、シールドガスが溶接時、溶接部に直接吹き付けられることがない量に制御されている
    ことを特徴とするレーザ溶接方法。
    A laser welding method using the laser welding apparatus according to any one of claims 1 to 3,
    A to-be-welded material placement step for placing the to-be-welded material in the laser welding apparatus;
    An atmospheric pressure control step for making the pressure atmosphere in the laser welding apparatus a low vacuum atmosphere;
    A shielding gas introduction process for introducing shielding gas into the shielding gas cylinder;
    A laser irradiation step of irradiating the workpiece with a laser,
    The laser welding method according to claim 1, wherein an amount of the shielding gas introduced is controlled so that the shielding gas is not sprayed directly onto the welded portion during welding.
PCT/JP2011/061025 2010-05-18 2011-05-13 Laser welding device and laser welding method WO2011145514A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-114077 2010-05-18
JP2010114077A JP5234471B2 (en) 2010-05-18 2010-05-18 Laser welding apparatus and laser welding method

Publications (1)

Publication Number Publication Date
WO2011145514A1 true WO2011145514A1 (en) 2011-11-24

Family

ID=44991620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061025 WO2011145514A1 (en) 2010-05-18 2011-05-13 Laser welding device and laser welding method

Country Status (2)

Country Link
JP (1) JP5234471B2 (en)
WO (1) WO2011145514A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015139689A1 (en) * 2014-03-17 2015-09-24 Rwth Aachen Körperschaft Des Öffentlichen Rechts Vacuum chamber having a protective housing
CN105252143A (en) * 2015-11-23 2016-01-20 哈尔滨工业大学 Large-power vacuum laser welding device
CN105728942A (en) * 2016-04-22 2016-07-06 哈尔滨工业大学 Vacuum laser wire filling processing device and vacuum laser wire filling method
CN107617820A (en) * 2017-10-24 2018-01-23 大族激光科技产业集团股份有限公司 Power battery explosion protection valve weld assembly and welding method
JP2020089899A (en) * 2018-12-04 2020-06-11 アイシン・エィ・ダブリュ工業株式会社 Laser welding device
WO2020116502A1 (en) * 2018-12-04 2020-06-11 アイシン・エイ・ダブリュ工業株式会社 Laser welding device
JP2020089898A (en) * 2018-12-04 2020-06-11 アイシン・エィ・ダブリュ工業株式会社 Laser welding device
CN111633328A (en) * 2020-06-08 2020-09-08 武汉光谷航天三江激光产业技术研究院有限公司 Weak atmosphere environment laser welding device and method
CN114473199A (en) * 2022-02-28 2022-05-13 哈尔滨工大焊接科技有限公司 High-quality vacuum laser welding method and system for large-thickness heterogeneous material
CN115008002A (en) * 2022-03-22 2022-09-06 哈尔滨工大焊接科技有限公司 Vacuum environment swing laser welding method and system
DE102021123027A1 (en) 2021-09-06 2023-03-09 LaVa-X GmbH Laser processing device
GB2612361A (en) * 2021-11-01 2023-05-03 Aquasium Tech Limited Laser welding apparatus

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102642085A (en) * 2012-04-01 2012-08-22 上海交通大学 Plasma-side-suction negative pressure device for laser welding
DE102012012275B9 (en) 2012-06-21 2014-11-27 Carl Zeiss Microscopy Gmbh MACHINING SYSTEM FOR MICRO-MATERIAL PROCESSING
JP2014128832A (en) * 2012-11-28 2014-07-10 Toshiba Corp Apparatus and method for laser welding
CN103658984B (en) * 2013-12-04 2016-04-13 上海交通大学 Laser weld plasma side draught negative pressure device and laser welding system
KR102155077B1 (en) * 2015-10-30 2020-09-11 주식회사 엘지화학 Laser Welding Device Including Focus Lens Having Wide Depth of Focus
CN105904088A (en) * 2016-06-29 2016-08-31 上海电气钠硫储能技术有限公司 Vacuum laser aluminum alloy welding smoke dust removal system
KR101971939B1 (en) * 2016-12-26 2019-04-24 주식회사 큐비에스 Welding method and equipment of water tank for water purifier to prevent oxidation inside the weld zone
CN110977171B (en) * 2019-11-12 2021-11-23 江苏大学 Vacuum laser-electric arc hybrid welding method and device for improving weld formation
JP7514796B2 (en) 2021-05-25 2024-07-11 三菱重工業株式会社 Vacuum Laser Processing Equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57109235A (en) * 1980-12-26 1982-07-07 Toshiba Corp Sealing work
JPS6195769A (en) * 1984-10-17 1986-05-14 Toshiba Corp Fixing method corrosion preventing member to steam turbine blade
JP2000317671A (en) * 1999-03-10 2000-11-21 Japan Science & Technology Corp Laser welding method and its device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57109235A (en) * 1980-12-26 1982-07-07 Toshiba Corp Sealing work
JPS6195769A (en) * 1984-10-17 1986-05-14 Toshiba Corp Fixing method corrosion preventing member to steam turbine blade
JP2000317671A (en) * 1999-03-10 2000-11-21 Japan Science & Technology Corp Laser welding method and its device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015139689A1 (en) * 2014-03-17 2015-09-24 Rwth Aachen Körperschaft Des Öffentlichen Rechts Vacuum chamber having a protective housing
CN105252143A (en) * 2015-11-23 2016-01-20 哈尔滨工业大学 Large-power vacuum laser welding device
CN105252143B (en) * 2015-11-23 2017-09-29 哈尔滨工业大学 A kind of powerful vacuum laser soldering device
CN105728942A (en) * 2016-04-22 2016-07-06 哈尔滨工业大学 Vacuum laser wire filling processing device and vacuum laser wire filling method
CN107617820A (en) * 2017-10-24 2018-01-23 大族激光科技产业集团股份有限公司 Power battery explosion protection valve weld assembly and welding method
CN107617820B (en) * 2017-10-24 2019-06-14 大族激光科技产业集团股份有限公司 Power battery explosion protection valve weld assembly and welding method
CN113165116B (en) * 2018-12-04 2022-10-21 株式会社爱信福井 Laser welding device
CN113165112A (en) * 2018-12-04 2021-07-23 爱信艾达工业株式会社 Laser welding device
JP2020089898A (en) * 2018-12-04 2020-06-11 アイシン・エィ・ダブリュ工業株式会社 Laser welding device
WO2020116515A1 (en) * 2018-12-04 2020-06-11 アイシン・エイ・ダブリュ工業株式会社 Laser welding device
WO2020116513A1 (en) * 2018-12-04 2020-06-11 アイシン・エイ・ダブリュ工業株式会社 Laser welding device
JP2020089900A (en) * 2018-12-04 2020-06-11 アイシン・エィ・ダブリュ工業株式会社 Laser welding apparatus
US11938565B2 (en) 2018-12-04 2024-03-26 Aisin Fukui Corporation Laser welding device
CN113165116A (en) * 2018-12-04 2021-07-23 爱信艾达工业株式会社 Laser welding device
CN113165113A (en) * 2018-12-04 2021-07-23 爱信艾达工业株式会社 Laser welding device
WO2020116502A1 (en) * 2018-12-04 2020-06-11 アイシン・エイ・ダブリュ工業株式会社 Laser welding device
US11865638B2 (en) 2018-12-04 2024-01-09 Aisin Fukui Corporation Laser welding device
JP7239307B2 (en) 2018-12-04 2023-03-14 株式会社アイシン福井 laser welding equipment
JP2020089899A (en) * 2018-12-04 2020-06-11 アイシン・エィ・ダブリュ工業株式会社 Laser welding device
JP7168430B2 (en) 2018-12-04 2022-11-09 株式会社アイシン福井 laser welding equipment
CN111633328A (en) * 2020-06-08 2020-09-08 武汉光谷航天三江激光产业技术研究院有限公司 Weak atmosphere environment laser welding device and method
DE102021123027A1 (en) 2021-09-06 2023-03-09 LaVa-X GmbH Laser processing device
GB2612361A (en) * 2021-11-01 2023-05-03 Aquasium Tech Limited Laser welding apparatus
CN114473199A (en) * 2022-02-28 2022-05-13 哈尔滨工大焊接科技有限公司 High-quality vacuum laser welding method and system for large-thickness heterogeneous material
CN115008002A (en) * 2022-03-22 2022-09-06 哈尔滨工大焊接科技有限公司 Vacuum environment swing laser welding method and system

Also Published As

Publication number Publication date
JP5234471B2 (en) 2013-07-10
JP2011240365A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
JP5234471B2 (en) Laser welding apparatus and laser welding method
JP2016120506A (en) Laser welding method
Katayama et al. Development of deep penetration welding technology with high brightness laser under vacuum
CN103831531B (en) Welding point
JP5595913B2 (en) Laser lap welding method of galvanized steel sheet
KR101906189B1 (en) Laser light irradiation apparatus and laser peening treatment method
JP2011183427A (en) Laser arc combination welding method and method of producing welded member according to the welding method
JP6155183B2 (en) Narrow groove laser welding method
JP2008502485A (en) Continuous butt welding method using plasma and laser, and metal pipe manufacturing method using the same
JP5495118B2 (en) Laser lap welding method of galvanized steel sheet
Jiang et al. Comparison of processing window in full penetration laser welding of thick high-strength steel under atmosphere and sub-atmosphere
JP4977234B2 (en) Laser shock hardening method and apparatus
JP2011230158A (en) Laser lap welding method for galvanized steel sheet
Kawahito et al. Investigation of high-power fiber laser welding phenomena of stainless steel
CN107052581B (en) Laser modification welding method based on beam spot energy distribution regulation
CN104131154B (en) A kind of tube-welding method for removing residual stress based on laser and pulsed magnetic
JP2010247213A (en) Apparatus and method for performing laser peening, and metallic material product
RU2718393C2 (en) Method of connection of tubes of shell-and-tube heat exchanger with tube array of shell-and-tube heat exchanger
CN108890131B (en) Method for laser deep fusion welding of plate based on prefabricated flow channel
TW201811474A (en) Removal of debris associated with laser drilling of transparent materials
JP2008522835A5 (en)
JP2018065154A (en) Laser welding apparatus and laser welding method
JP4868729B2 (en) Laser shock hardening method and apparatus
Katayama et al. Deep penetration welding with high power disk lasers in low vacuum
JP5958894B2 (en) Method of jetting shield gas in laser welding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783448

Country of ref document: EP

Kind code of ref document: A1