WO2011145437A1 - 画像処理装置および方法 - Google Patents

画像処理装置および方法 Download PDF

Info

Publication number
WO2011145437A1
WO2011145437A1 PCT/JP2011/060015 JP2011060015W WO2011145437A1 WO 2011145437 A1 WO2011145437 A1 WO 2011145437A1 JP 2011060015 W JP2011060015 W JP 2011060015W WO 2011145437 A1 WO2011145437 A1 WO 2011145437A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
unit
resolution
motion search
motion
Prior art date
Application number
PCT/JP2011/060015
Other languages
English (en)
French (fr)
Inventor
寿治 土屋
和田 徹
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US13/696,846 priority Critical patent/US20130058416A1/en
Priority to CN2011800232094A priority patent/CN102934439A/zh
Publication of WO2011145437A1 publication Critical patent/WO2011145437A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/59Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial sub-sampling or interpolation, e.g. alteration of picture size or resolution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/172Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • H04N19/423Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation characterised by memory arrangements
    • H04N19/426Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation characterised by memory arrangements using memory downsizing methods
    • H04N19/428Recompression, e.g. by spatial or temporal decimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/53Multi-resolution motion estimation; Hierarchical motion estimation

Definitions

  • the present invention relates to an image processing apparatus and method, and more particularly to an image processing apparatus and method capable of improving encoding efficiency while suppressing an increase in load.
  • image information is treated as digital, and at that time, it is an MPEG that is compressed by orthogonal transformation such as discrete cosine transformation and motion compensation for the purpose of efficient transmission and storage of information, using redundancy unique to image information.
  • orthogonal transformation such as discrete cosine transformation and motion compensation for the purpose of efficient transmission and storage of information, using redundancy unique to image information.
  • a device conforming to a method such as Moving Picture Experts Group) is spreading in both information distribution such as broadcasting station and information reception in general home.
  • MPEG2 International Organization for Standardization
  • IEC International Electrotechnical Commission
  • MPEG2 was mainly intended for high-quality coding suitable for broadcasting, it did not correspond to a coding amount (bit rate) lower than that of MPEG1, that is, a coding method with a higher compression rate.
  • bit rate bit rate
  • MPEG4 coding amount
  • the standard was approved as an international standard as ISO / IEC 14496-2 in December 1998.
  • H.26L International Telecommunication Union Telecommunication Standardization Sector (ITU-T Q6 / 16 Video Coding Expert Group)
  • ISO-T Q6 / 16 Video Coding Expert Group International Telecommunication Union Telecommunication Standardization Sector
  • AVC Advanced Video Coding
  • FRExt including RGB, 4: 2: 2, 4: 4: 4, etc., necessary coding tools necessary for business use, and 8 ⁇ 8 DCT and quantization matrix defined by MPEG2 Standardization of the Fidelity Range Extension was completed in February 2005, which makes it possible to use the AVC technology as a coding method that can also be used to better represent film noise contained in movies. Used for a wide range of applications such as
  • Non-Patent Document 1 a proposal has been made to extend the number of pixels in the horizontal and vertical directions of a macroblock as an element technology of the next-generation image coding standard.
  • the macro block of 16 ⁇ 16 pixels defined by MPEG1, MPEG2, ITU-T H.264, MPEG4-AVC, etc. it is composed of 32 ⁇ 32 pixels, 64 ⁇ 64 pixels
  • macroblocks This is expected to increase the horizontal and vertical pixel size of the image to be encoded in the future, in which case motion compensation and orthogonal transformation are performed in units of larger areas in similar areas of motion. To improve the coding efficiency.
  • a block matching method of searching for the minimum point of the sum of absolute differences of a target image and a reference image can be considered as an evaluation index in motion search.
  • an extended macroblock EBS (Extended Block Size)
  • the search is performed as in the case of a macroblock of pixel size.
  • searching 64.times.64 pixels for example, it is sufficient to drive an apparatus having the ability to search existing 16.times.16 pixels 16 times by time division.
  • a method of calculating the SAD with the whole macro block (for example, 64 ⁇ 64 pixels) as one area can be considered.
  • a macro block of 64 ⁇ 64 pixels is divided into 4 ⁇ 4 pixels, and a search is performed for each block.
  • the results of all the search points had to be held and added every 16 ⁇ 16 pixels until the end of. Therefore, a huge amount of data has to be held, which may increase the resources required for the encoding process.
  • the present invention has been made in view of such a situation, and it is an object of the present invention to improve coding efficiency while suppressing an increase in the load of coding processing.
  • a resolution determining means for determining the resolution size of an image of the partial area of an image to be encoded for each partial area, and the resolution determining means for the partial area.
  • a motion search unit configured to perform a motion search using an image of the partial area having a resolution corresponding to the size of the resolution.
  • the resolution conversion means for converting the resolution of the image of the partial area and the resolution determination means
  • the resolution is converted by the resolution conversion means
  • the motion search means can perform a motion search using the image of the partial area selected by the selection means.
  • the threshold may be a maximum value of the resolution of the partial area defined by the existing coding standard.
  • the threshold may be 16 ⁇ 16 pixels.
  • the resolution conversion means converts the resolution of the image of the partial area into a plurality of resolutions
  • the resolution determination means determines the size of the resolution of the image of the partial area with respect to a plurality of threshold values
  • the selection means An image of the partial area of the plurality of resolutions obtained by converting the resolution by the resolution conversion means according to the magnitude relationship between the resolution of the image of the partial area by the resolution determination means and the plurality of threshold values And one of the images of the partial area before the resolution conversion can be selected.
  • the image processing apparatus may further include accuracy conversion means for converting the accuracy of the motion vector detected by the motion search of the motion search means into the accuracy in the resolution of the image of the partial area before conversion by the resolution conversion means.
  • Motion compensation means for performing motion compensation using the motion vector whose precision has been converted by the precision conversion means and the image of the partial area before conversion by the resolution conversion means, and generating a predicted image it can.
  • the image processing apparatus may further include encoding means for encoding the image of the partial region using the predicted image generated by the motion compensation means.
  • the motion compensation unit may further include motion compensation unit that performs motion compensation using the motion vector detected by the motion search of the motion search unit and the image of the partial region selected by the selection unit. .
  • the image processing apparatus may further include encoding means for encoding the image of the partial region using the predicted image generated by the motion compensation means.
  • the resolution of the image of the partial area to be encoded is determined to be larger than a predetermined threshold by the first resolution conversion means for converting the resolution of the image of the partial area to be encoded and the resolution determination means Selecting the image of the partial area whose resolution has been converted by the first resolution conversion means, and determining that the resolution of the image of the partial area to be encoded is less than or equal to the threshold value;
  • a first selection means for selecting an image of the partial area to be encoded, the resolution of which has not been converted by the resolution conversion means; and the partial area obtained by decoding the encoded image of the partial area
  • the second resolution conversion means for converting the resolution of the decoded image
  • the second resolution conversion is performed when it is determined that the resolution of the image of the partial area to be encoded is determined to be equal to or less than the threshold value by selecting the decoded image of the partial area whose resolution has been converted by the resolution conversion means
  • And second selecting means for selecting a decoded image of the partial area whose resolution is not converted by the means, and the motion search means inputs an image of the partial area selected by the first selecting means.
  • a motion search can be performed using the decoded image of the partial area selected by the second selection unit as an image and using as a reference image.
  • the motion search means can perform motion search with a plurality of predetermined precisions, using the image of the partial area.
  • Another aspect of the present invention is the image processing method of the image processing apparatus, wherein the resolution determination means determines the size of the resolution of the image of the partial region of the image to be encoded for each partial region,
  • the motion search means is an image processing method for performing a motion search using the image of the partial area of the resolution according to the determined size of the resolution for the partial area.
  • Another aspect of the present invention is a decoding means for decoding encoded data obtained by converting an image from a first resolution to a second resolution for each partial area and encoding the obtained data for each partial area. And motion compensation is performed using the image of the partial region of the second resolution obtained by being decoded by the decoding unit, and used for decoding the encoded data by the decoding unit. It is an image processing apparatus provided with the motion compensation means which produces
  • First resolution conversion means for converting the resolution of the image of the partial area obtained by decoding by the decoding means into the first resolution; and the first obtained through conversion by the first resolution conversion means
  • second resolution conversion means for converting the image of the partial area of the second resolution to the second resolution, wherein the motion compensation means is obtained by the conversion by the second resolution conversion means.
  • Motion compensation can be performed using an image of the partial area of 2 resolutions.
  • Another aspect of the present invention is the image processing method of the image processing apparatus, wherein the decoding means converts the image from the first resolution to the second resolution for each partial area and encodes the image.
  • the encoded data obtained by the decoding is decoded for each of the partial areas, and the motion compensation means performs motion compensation using the image of the partial area of the second resolution obtained by being decoded, to obtain the encoded data
  • the resolution size of the image of the partial area of the image to be encoded for each partial area is determined, and the partial area of the resolution according to the determined resolution size of the partial area A motion search is performed using the image of.
  • an image is converted for each partial area, resolution is converted from the first resolution to the second resolution, and encoded data obtained by encoding is decoded for each partial area and decoded.
  • Motion compensation is performed using the image of the partial region of the second resolution obtained by the above-described process, and a predicted image of the second resolution used to decode the encoded data is generated.
  • the present invention it is possible to encode image data or decode encoded image data.
  • coding efficiency can be improved while suppressing an increase in load.
  • FIG. 2 shows the configuration of an embodiment of an image coding apparatus as an image processing apparatus to which the present invention is applied.
  • the image coding apparatus 100 shown in FIG. H.264 and MPEG (Moving Picture Experts Group) 4 Part 10 (AVC (Advanced Video Coding)) (hereinafter referred to as H.264 / AVC) (hereinafter referred to as H.264 / AVC).
  • H.264 / AVC Advanced Video Coding
  • the image coding apparatus 100 performs motion search using the reduced image of the macroblock.
  • the image coding apparatus 100 includes an A / D (Analog / Digital) conversion unit 101, a screen rearrangement buffer 102, an operation unit 103, an orthogonal conversion unit 104, a quantization unit 105, and a lossless coding unit 106. , And the accumulation buffer 107.
  • the image coding apparatus 100 further includes an inverse quantization unit 108, an inverse orthogonal transformation unit 109, an operation unit 110, a deblock filter 111, a frame memory 112, a selection unit 113, an intra prediction unit 114, a motion search and compensation unit 115, A selection unit 116 and a rate control unit 117 are included.
  • the processing unit is the same as the processing unit of the image coding apparatus based on the H.264 / AVC standard.
  • the image coding apparatus 100 further includes a reduction unit 121, a reduction screen rearrangement buffer 122, a selection unit 123, a reduction unit 124, a reduction frame memory 125, and a selection unit 127.
  • the frame memory 112 to the selection unit 116 and the reduction unit 121 to the selection unit 127 are configured as a predicted image generation unit 120 that generates a predicted image.
  • the A / D converter 101 A / D converts the input image data, and outputs the image data to the screen rearrangement buffer 102 for storage.
  • the A / D conversion unit 101 also supplies the image data subjected to A / D conversion to the reduction unit 121.
  • the screen rearrangement buffer 102 rearranges the images of frames in the stored display order into the order of frames for encoding in accordance with the GOP (Group of Picture) structure.
  • the screen rearrangement buffer 102 supplies the image in which the order of the frames is rearranged to the calculation unit 103 and the intra prediction unit 114.
  • the screen rearrangement buffer 102 also supplies the image in which the order of the frames is rearranged to the motion search / compensation unit 115 via the selection unit 123.
  • the operation unit 103 subtracts the predicted image supplied from the intra prediction unit 114 or the motion search / compensation unit 115 via the selection unit 116 from the image read from the screen rearrangement buffer 102, and makes the difference information orthogonal. It is output to the conversion unit 104.
  • the operation unit 103 subtracts the predicted image supplied from the intra prediction unit 114 from the image read from the screen rearrangement buffer 102. Also, for example, in the case of an image on which inter coding is performed, the operation unit 103 subtracts the predicted image supplied from the motion search / compensation unit 115 from the image read from the screen rearrangement buffer 102.
  • the orthogonal transformation unit 104 performs orthogonal transformation such as discrete cosine transformation and Karhunen-Loeve transformation on the difference information supplied from the calculation unit 103, and supplies the transformation coefficient to the quantization unit 105.
  • the quantization unit 105 quantizes the transform coefficient output from the orthogonal transform unit 104.
  • the quantization unit 105 supplies the quantized transform coefficient to the lossless encoding unit 106.
  • the lossless coding unit 106 performs lossless coding such as variable length coding and arithmetic coding on the quantized transform coefficients.
  • the lossless encoding unit 106 acquires information indicating intra prediction and the like from the intra prediction unit 114, and acquires information indicating an inter prediction mode and motion vector information and the like from the motion search and compensation unit 115.
  • the information which shows intra prediction is also hereafter called intra prediction mode information.
  • the information which shows the information mode which shows inter prediction is also called inter prediction mode information hereafter.
  • the lossless encoding unit 106 encodes the quantized transform coefficients, and also performs filter information, intra prediction mode information, inter prediction mode information, various information such as quantization parameters, and the like, on header information of encoded data. Make it part (multiplex).
  • the lossless encoding unit 106 supplies the encoded data obtained by the encoding to the accumulation buffer 107 for accumulation.
  • lossless encoding processing such as variable length coding or arithmetic coding is performed.
  • variable-length coding H.264 is used.
  • CAVLC Context-Adaptive Variable Length Coding
  • arithmetic coding include CABAC (Context-Adaptive Binary Arithmetic Coding).
  • the accumulation buffer 107 temporarily holds the encoded data supplied from the lossless encoding unit 106, and at a predetermined timing, the H.264 buffer is stored.
  • the encoded image encoded in the H.264 / AVC format is output to a recording apparatus, a transmission path, or the like (not shown) in the subsequent stage.
  • the transform coefficient quantized in the quantization unit 105 is also supplied to the inverse quantization unit 108.
  • the inverse quantization unit 108 inversely quantizes the quantized transform coefficient according to a method corresponding to the quantization by the quantization unit 105, and supplies the obtained transform coefficient to the inverse orthogonal transform unit 109.
  • the inverse orthogonal transform unit 109 performs inverse orthogonal transform on the supplied transform coefficient by a method corresponding to orthogonal transform processing by the orthogonal transform unit 104.
  • the inverse orthogonal transform output (restored difference information) is supplied to the calculation unit 110.
  • the calculation unit 110 predicts the inverse orthogonal transformation result supplied from the inverse orthogonal transformation unit 109, that is, the prediction supplied from the intra prediction unit 114 or the motion search / compensation unit 115 via the selection unit 116 to the restored difference information.
  • the images are added to obtain a locally decoded image (decoded image).
  • the calculation unit 110 adds the prediction image supplied from the intra prediction unit 114 to the difference information. Also, for example, when the difference information corresponds to an image on which inter coding is performed, the calculation unit 110 adds the predicted image supplied from the motion search / compensation unit 115 to the difference information.
  • the addition result is supplied to the deblocking filter 111 or the frame memory 112.
  • the deblocking filter 111 removes block distortion of the decoded image by appropriately performing deblocking filter processing, and performs image quality improvement by appropriately performing loop filter processing using, for example, a Wiener filter.
  • the deblocking filter 111 classifies each pixel and performs appropriate filtering for each class.
  • the deblocking filter 111 supplies the filter processing result to the frame memory 112 and the reduction unit 124.
  • the frame memory 112 outputs the stored reference image to the intra prediction unit 114 or the motion search / compensation unit 115 via the selection unit 113 or the selection unit 126 at a predetermined timing.
  • the frame memory 112 supplies the reference image to the intra prediction unit 114 via the selection unit 113. Also, for example, when inter coding is performed and the macroblock size is smaller than a predetermined size, the frame memory 112 transmits the reference image to the motion search / compensation unit 115 via the selection unit 113 and the selection unit 126. Supply.
  • the I picture, the B picture, and the P picture from the screen rearrangement buffer 102 are supplied to the intra prediction unit 114 as an image to be subjected to intra prediction (also referred to as intra processing).
  • the B picture and the P picture read from the screen rearrangement buffer 102 are supplied to the motion search / compensation unit 115 through the selection unit 123 as an image to be inter-predicted (also referred to as inter processing).
  • the selection unit 113 supplies the reference image to the intra prediction unit 114. Further, when the reference image supplied from the frame memory 112 is an image to be subjected to inter coding, the selection unit 113 supplies the reference image to the motion search / compensation unit 115.
  • the intra prediction unit 114 performs intra prediction (in-screen prediction) that generates a predicted image using pixel values in the screen.
  • the intra prediction unit 114 performs intra prediction in a plurality of modes (intra prediction modes).
  • the intra prediction unit 114 generates prediction images in all intra prediction modes, evaluates each prediction image, and selects an optimal mode. When the optimal intra prediction mode is selected, the intra prediction unit 114 supplies the predicted image generated in the optimal mode to the computation unit 103 via the selection unit 116.
  • the intra prediction unit 114 appropriately supplies information such as intra prediction mode information indicating the adopted intra prediction mode to the lossless encoding unit 106.
  • the motion search / compensation unit 115 searches for and detects a motion vector of the image to be inter coded using the input image supplied from the selection unit 123 and the reference image supplied from the selection unit 126. Motion compensation processing is performed according to the motion vector to generate a predicted image (inter predicted image information).
  • the motion search / compensation unit 115 uses, for example, a reduced image obtained by reducing the input image for a macro block larger than a predetermined size, such as an extended macro block larger than a 16 ⁇ 16 pixel macro block specified by AVC. Perform motion search. Details will be described later.
  • the motion search / compensation unit 115 performs inter prediction processing of all the candidate inter prediction modes to generate a prediction image.
  • the motion search / compensation unit 115 supplies the generated predicted image to the computation unit 103 and the computation unit 110 via the selection unit 116.
  • the motion search / compensation unit 115 supplies the lossless encoding unit 106 with inter prediction mode information indicating the adopted inter prediction mode and motion vector information indicating the calculated motion vector.
  • the selection unit 116 supplies the output of the intra prediction unit 114 to the calculation unit 103 and the calculation unit 110 in the case of an image to be subjected to intra coding, and the output of the motion search / compensation unit 115 in the case of an image to be subjected to inter coding. It is supplied to the calculation unit 103 and the calculation unit 110.
  • the rate control unit 117 controls the rate of the quantization operation of the quantization unit 105 based on the compressed image stored in the storage buffer 107 so that overflow or underflow does not occur.
  • the reduction unit 121 converts the size (resolution) of the input image output from the A / D conversion unit 101. For example, the reduction unit 121 reduces at a predetermined reduction ratio N.
  • the reduction method of the image is arbitrary. For example, representative pixel values may be extracted at a rate corresponding to the reduction ratio, or an average value or the like may be calculated for each pixel number corresponding to the reduction ratio.
  • the reducing unit 121 reduces the size of the input image, for example, for the purpose of reducing an image of a macro block larger than a predetermined size (threshold value) determined in advance to the predetermined size (threshold value) or less.
  • the reduction unit 121 reduces an image of an extended macro block such as 64 ⁇ 64 pixels or 32 ⁇ 32 pixels to 16 ⁇ 16 pixels or less, which is the size of a macro block used in the AVC standard.
  • the reduction ratio N 4. That is, the image size is reduced to 1 / N 2 .
  • the value of the reduction ratio N is determined in consideration of the size of the image to be reduced and the image size threshold.
  • the size of the macroblock of the input image to be reduced is selected from among a plurality of predetermined sizes and set, so the range of possible values is limited.
  • the threshold can be set arbitrarily. Therefore, the reduction ratio N may be set so that the maximum size of the macro block of the input image to be reduced is equal to or less than the threshold.
  • the threshold and the reduction ratio N are fixed values that are set in advance before the image coding process starts.
  • the threshold and the reduction rate may be made variable during the image encoding process according to the content of the image.
  • 16 ⁇ 16 pixels which is the size of a macroblock used in AVC, are used as a threshold, and extended macroblocks larger than the 16 ⁇ 16 pixels are targeted for reduction.
  • the reduction unit 121 When the reduction unit 121 reduces the input image, the reduction unit 121 supplies the reduced image to the reduced screen rearrangement buffer 122 for storage.
  • the reduced screen rearrangement buffer 122 holds the reduced image supplied from the reduction unit 121, and when the output of the reduced screen rearrangement buffer 122 is selected by the selection unit 123, the held reduced image is selected by the selection unit
  • the signal is supplied to the motion search / compensation unit 115 via 123.
  • the selection unit 123 selects one of an output from the screen rearrangement buffer 102 and an output from the reduced screen rearrangement buffer 122 as an input image to be supplied to the motion search and compensation unit 115.
  • the image output from the screen rearrangement buffer 102 is an input image of the original size not reduced.
  • the image output from the reduced screen rearrangement buffer 122 is an input image reduced at the reduction ratio N in the reduction unit 121.
  • the selection unit 123 selects the output of the reduced screen rearrangement buffer 122 and uses the image as an input image.
  • the selection unit 123 selects the reduced image output from the reduced screen rearrangement buffer 122 when the motion search / compensation unit 115 performs the motion search for the extended macroblock. It is supplied to the motion search / compensation unit 115 as an input image.
  • the selection unit 123 selects the output of the screen rearrangement buffer 102, and uses the image as an input image to perform motion search / compensation. It supplies to the part 115. That is, to explain this in a more specific example, when the motion search / compensation unit 115 performs a motion search for a macroblock of 16 ⁇ 16 pixels or less, the selection unit 123 outputs the image output from the screen rearrangement buffer 102. It selects and supplies it to the motion search / compensation unit 115 as an input image.
  • the reduction unit 124 converts the size (resolution) of the partially decoded image output from the deblocking filter 111. For example, the reduction unit 124 reduces the image at a predetermined reduction ratio N.
  • the reduction ratio N is common to the reduction unit 121.
  • the reduction unit 124 supplies the generated reduced image to the reduced frame memory 125.
  • the reduced frame memory 125 holds the reduced image supplied from the reducing unit 124, and when the output of the reduced frame memory 125 is selected by the selecting unit 126, the held reduced image is used as a reference image for selecting unit
  • the signal is supplied to the motion search / compensation unit 115 via 126.
  • the selection unit 126 selects one of the output from the selection unit 113 (frame memory 112) and the output from the reduced frame memory 125 as a reference image to be supplied to the motion search and compensation unit 115 and selects the selected image. Is supplied to the motion search / compensation unit 115 as a reference image.
  • the image output from the frame memory 112 via the selection unit 113 is a reference image of the original size that has not been reduced.
  • the image output from the reduced frame memory 125 is a reference image reduced at the reduction ratio N in the reduction unit 124.
  • the selection unit 126 selects the output of the reduced frame memory 125, and uses that image as the reference image. It supplies to 115. That is, to describe this in a more specific example, the selection unit 126 selects the reduced image output from the reduced frame memory 125 when the motion search / compensation unit 115 performs the motion search for the extended macroblock.
  • the motion search / compensation unit 115 is supplied as a reference image.
  • the selection unit 123 selects the output of the selection unit 113 (frame memory 112) and moves the image as a reference image.
  • the search / compensation unit 115 is supplied. That is, to explain this in a more specific example, when the motion search / compensation unit 115 performs a motion search with respect to a macro block of 16 ⁇ 16 pixels or less, the selection unit 123 is output from the selection unit 113 (frame memory 112). To the motion search / compensation unit 115 as a reference image.
  • motion search / compensation unit 115 when the motion search / compensation unit 115 performs motion search using an image larger than a predetermined size like an extended macroblock, motion search can be performed more easily by using a reduced image. Also, when performing a motion search using an image smaller than a predetermined size, the motion search / compensation unit 115 suppresses an unnecessary decrease in the accuracy of the motion vector by using an image of the original size that has not been reduced. be able to.
  • the motion search / compensation unit 115 performs motion compensation processing using a reference image of the original size that has not been reduced.
  • Macroblock An example of the size of a macroblock is shown in FIG. As shown in FIG. 3, the size of the macroblock is arbitrary, and an extended macroblock such as 64 ⁇ 64 pixels or 32 ⁇ 32 pixels is larger than a macroblock of 16 ⁇ 16 pixels or less used in AVC. It can also be set.
  • an extended macroblock such as 64 ⁇ 64 pixels or 32 ⁇ 32 pixels is larger than a macroblock of 16 ⁇ 16 pixels or less used in AVC. It can also be set.
  • the motion search / compensation unit 115 when a macroblock of 16 ⁇ 16 pixels or less used in AVC, which is surrounded by the dotted line 131, is to be encoded, the motion search / compensation unit 115, as described above, has the original size not reduced. Perform motion search using images. Also, for example, when an extended macroblock larger than 16 ⁇ 16 pixels surrounded by the dotted line 132 is to be encoded, the motion search / compensation unit 115 performs the motion search using the reduced image as described above. .
  • the reduction unit 121 and the reduction unit 124 perform 64 ⁇ 64 pixel expansion equivalent to 4 ⁇ 4 (MB0 to MB15) of 16 ⁇ 16 pixel macroblocks.
  • One macroblock of 16 ⁇ 16 pixels (MB-1) is generated from the macroblock.
  • the motion search / compensation unit 115 performs a motion search on this macroblock (MB-1). Therefore, the motion search / compensation unit 115 performs a motion search for an extended macroblock of 64 ⁇ 64 pixels under the same load as when performing a motion search for one macroblock of 16 ⁇ 16 pixels used in AVC or the like. It can be carried out.
  • FIG. 5 is a block diagram showing a configuration example of the motion search / compensation unit 115 inside the image coding apparatus 100 of FIG.
  • the motion search / compensation unit 115 includes a motion search unit 151, an accuracy conversion unit 152, and a motion compensation unit 153.
  • the motion search unit 151 performs a motion search using the input image supplied from the selection unit 123 and the reference image supplied from the selection unit 126.
  • the motion search unit 151 supplies various parameters such as the detected motion vector to the motion compensation unit 153 when the motion search is performed using the input image and reference image of the original size not reduced.
  • the motion search unit 151 supplies various parameters such as the detected motion vector to the precision conversion unit 152.
  • the precision conversion unit 152 reduces the precision of the supplied motion vector by N times and supplies the motion vector to the motion compensation unit 153.
  • the motion search unit 151 performs a motion search with integer precision, 1 ⁇ 2 precision finer than that, and 1 ⁇ 4 precision further finer. For example, in the case of a macroblock of 16 ⁇ 16 pixels or less, the motion search unit 151 performs motion search using an image of the original size that has not been reduced, so that motion vectors can be detected to 1/4 accuracy. . On the other hand, in the case of the extended macroblock, since the motion search unit 151 performs the motion search using the reduced image, it can detect the motion vector only to the N / 4 accuracy.
  • the accuracy conversion unit 152 converts the accuracy of the motion vector detected using the reduced image into the motion vector of the normal accuracy detected using the image of the original size that has not been reduced. .
  • the motion compensation unit 153 performs motion compensation using the parameter supplied from the motion search unit 151 or the accuracy conversion unit 152 and the image of the original size not reduced which is supplied from the selection unit 126, and outputs a predicted image Generate
  • the motion compensation unit 153 supplies the generated predicted image to the selection unit 116. Also, the motion compensation unit 153 supplies the inter prediction mode information to the lossless encoding unit 106. Furthermore, the motion search unit 151 supplies motion vector information indicating the detected motion vector to the lossless coding unit 106.
  • step S101 the A / D conversion unit 101 A / D converts the input image.
  • step S102 the screen rearrangement buffer 102 stores the A / D converted image, and performs rearrangement from the display order of each picture to the coding order.
  • each unit of the predicted image generation unit 120 performs image prediction processing.
  • the intra prediction unit 114 performs intra prediction processing in the intra prediction mode
  • the motion search / compensation unit 115 performs motion prediction compensation processing in the inter prediction mode.
  • step S104 the selection unit 116 determines the optimal prediction mode based on the cost function values output from the intra prediction unit 114 and the motion search and compensation unit 115. That is, the selection unit 116 selects one of the prediction image generated by the intra prediction unit 114 and the prediction image generated by the motion search / compensation unit 115.
  • selection information indicating which prediction image is selected is supplied to one of the intra prediction unit 114 and the motion search / compensation unit 115 from which the prediction image is selected.
  • the intra prediction unit 114 supplies the information indicating the optimal intra prediction mode (that is, intra prediction mode information) to the lossless encoding unit 106.
  • the motion search / compensation unit 115 causes the lossless encoding unit 106 to transmit information indicating the optimal inter prediction mode and, if necessary, information according to the optimal inter prediction mode. Output.
  • information according to the optimal inter prediction mode motion vector information, flag information, reference frame information and the like can be mentioned.
  • step S105 the computing unit 103 computes the difference between the image rearranged in the process of step S102 and the predicted image obtained in the prediction process of step S103.
  • the prediction image is supplied from the motion search / compensation unit 115 when performing inter prediction, and from the intra prediction unit 114 when performing intra prediction, to the computation unit 103 via the selection unit 116.
  • the amount of difference data is reduced compared to the original image data. Therefore, the amount of data can be compressed as compared to the case of encoding the image as it is.
  • step S106 the orthogonal transformation unit 104 orthogonally transforms the difference information generated by the process of step S105. Specifically, orthogonal transformation such as discrete cosine transformation and Karhunen-Loeve transformation is performed, and transformation coefficients are output.
  • step S107 the quantization unit 105 quantizes the transform coefficient generated by the process of step S106.
  • step S108 the lossless encoding unit 106 encodes the transform coefficient quantized in the process of step S107. That is, lossless coding such as variable-length coding or arithmetic coding is performed on the difference image (secondary difference image in the case of inter).
  • the lossless encoding unit 106 encodes information on the prediction mode of the predicted image selected in the process of step S104, and adds the encoded information to header information of encoded data obtained by encoding a differential image.
  • the lossless encoding unit 106 also encodes the intra prediction mode information supplied from the intra prediction unit 114 or the information corresponding to the optimal inter prediction mode supplied from the motion search / compensation unit 115, etc. into header information.
  • step S109 the accumulation buffer 107 accumulates the encoded data output from the lossless encoding unit 106.
  • the encoded data accumulated in the accumulation buffer 107 is appropriately read and transmitted to the decoding side via the transmission path.
  • step S110 the rate control unit 117 controls the rate of the quantization operation of the quantization unit 105 based on the compressed image accumulated in the accumulation buffer 107 by the process of step S109 so that overflow or underflow does not occur. .
  • the difference information quantized in the process of step S107 is locally decoded as follows. That is, in step S111, the inverse quantization unit 108 inversely quantizes the quantization coefficient generated by the process of step S107 with the characteristic corresponding to the characteristic of the quantization unit 105. In step S112, the inverse orthogonal transform unit 109 performs inverse orthogonal transform on the transform coefficient obtained by the process of step S111 with the characteristic corresponding to the characteristic of the orthogonal transform unit 104.
  • step S113 the arithmetic operation unit 110 adds the predicted image selected in the process of step S104 to the locally decoded difference information, and the locally decoded image (image corresponding to the input to the arithmetic operation unit 103) Generate).
  • step S114 the deblocking filter 111 filters the image generated by the process of step S113. This removes blockiness.
  • step S115 the reduction unit 124 reduces the image from which the block distortion has been removed by the process of step S114 at a reduction ratio N.
  • step S116 the frame memory 112 stores the image from which block distortion has been removed by the process of step S114.
  • the image not subjected to filter processing by the deblocking filter 111 is also supplied from the arithmetic unit 110 to the frame memory 112 and stored.
  • the reduced frame memory 125 stores the reduced image generated by the process of step S115.
  • step S116 When the process of step S116 ends, the encoding process ends. This encoding process is repeated, for example, for each macroblock.
  • step S131 the predicted image generation unit 120 (intra prediction unit 114) performs intra prediction on the pixels of the block to be processed in all candidate intra prediction modes.
  • the image to be processed supplied from the screen rearrangement buffer 102 is an image to be inter processed
  • the image to be referenced is read from the frame memory 112 and supplied to the motion search / compensation unit 115 via the selection unit 113. Be done.
  • the motion search / compensation unit 115 performs inter motion prediction processing based on these images.
  • the prediction image generation unit 120 performs motion prediction processing in all candidate inter prediction modes.
  • step S133 the motion search / compensation unit 115 determines, from among the cost function values for the inter prediction mode calculated in step S132, the prediction mode giving the minimum value as the optimal inter prediction mode. Then, the motion search / compensation unit 115 supplies the difference between the image to be inter processed and the secondary difference information generated in the optimal inter prediction mode, and the cost function value of the optimal inter prediction mode to the selection unit 116.
  • FIG. 8 is a flowchart illustrating an example of the flow of the inter motion prediction process performed in step S132 in FIG. 7.
  • step S151 the reduction unit 121 reduces the input image at a reduction ratio N to generate a reduced image of the input image.
  • step S152 the reduced screen rearrangement buffer 122 rearranges the reduced images generated by the process of step S151 in the same manner as the screen rearrangement buffer 102.
  • step S153 the predicted image generation unit 120 confirms the macroblock size of the processing target macroblock, and in step S154, the size of the processing target macroblock is equal to or less than a predetermined threshold (16 ⁇ 16 pixels) defined in advance. It is determined whether or not.
  • the prediction image generation unit 120 controls the selection unit 123 and the selection unit 126, and the process proceeds to step S155.
  • the selection unit 123 selects the output of the screen rearrangement buffer 102
  • the selection unit 126 selects the output of the selection unit 113 (image read from the frame memory 112).
  • step S155 the motion search unit 151 of the motion search / compensation unit 115 performs motion search with integer precision using the input image and reference image of the original size not reduced.
  • step S156 the motion search unit 151 performs motion search with 1 ⁇ 2 accuracy using the input image and reference image of the original size not reduced. Furthermore, in step S157, the motion search unit 151 performs motion search with 1/4 accuracy using the input image and reference image of the original size not reduced.
  • step S157 ends, the motion search / compensation unit 115 advances the process to step S162.
  • step S154 When it is determined in step S154 that the size of the processing target macroblock is larger than a predetermined threshold (16 ⁇ 16 pixels), the prediction image generation unit 120 controls the selection unit 123 and the selection unit 126. Then, the process proceeds to step S158. In this case, the selection unit 123 selects the output of the reduced screen rearrangement buffer 122, and the selection unit 126 selects the output of the reduced frame memory 125.
  • step S158 the motion search unit 151 of the motion search / compensation unit 115 performs motion search with integer accuracy using the input image and the reference image of the reduced image reduced at the reduction ratio N.
  • step S159 the motion search unit 151 performs motion search with 1 ⁇ 2 accuracy using the input image and the reference image of the reduced image reduced at the reduction ratio N. Furthermore, in step S160, the motion search unit 151 performs motion search with 1/4 accuracy using the input image and the reference image of the reduced image reduced at the reduction ratio N.
  • step S161 the precision conversion unit 152 converts the precision of the motion vector.
  • the motion search / compensation unit 115 advances the process to step S162.
  • step S162 the motion compensation unit 153 performs motion compensation using the searched motion vector and a reference image of the original size that has not been reduced, and generates a predicted image. A prediction image is thus generated in each mode.
  • the prediction image of the mode selected as the optimal inter prediction mode among the generated prediction images is supplied to the selection unit 116.
  • the motion search unit 151 outputs various information such as motion vector information and the like to the lossless encoding unit 106 in step S163.
  • the motion compensation unit 153 outputs various types of information such as inter prediction mode information and the like, and supplies the information to the lossless encoding unit 106.
  • the process of step S163 is omitted.
  • step S163 the prediction image generation unit 120 ends the inter motion prediction processing, returns the process to step S132 in FIG. 7, and advances the process to step S133.
  • a of FIG. 9 shows an example of a processing pipeline in AVC.
  • “motion search 1” indicates motion search processing with integer precision
  • “motion search 2” indicates motion search processing with sub-pixel precision
  • “Motion compensation” indicates motion compensation processing.
  • the squares on the right of the “motion search 1”, “motion search 2”, and “motion compensation” processes indicate the respective processes for the macroblock.
  • MB0 to MB15 indicate different macroblocks of 16 ⁇ 16 pixel size. That is, the squares on the right side of the “motion search 1”, “motion search 2”, and “motion compensation” processes indicate the respective processes for each macroblock.
  • each macroblock is sequentially processed one by one as shown in A of FIG.
  • each macroblock is the same as in the case of AVC (A of FIG. 9). Processed in order.
  • each process of “motion search 1” and “motion search 2” is performed using the reduced macro block MB-1. Therefore, each processing of "motion search 1", “motion search 2”, and “motion compensation” is performed as shown in C of FIG. In the case of C in FIG. 9, motion compensation for each of MB0 to MB15 is performed using a motion vector detected using MB-1.
  • the image coding apparatus 100 performs a motion search using an image of a size (resolution) corresponding to the size of a partial area that is a coding processing unit. For example, the image coding apparatus 100 uses the reduced image (image with reduced resolution) for an extended macro block which is a partial area serving as a coding processing unit, which is larger than a predetermined size determined in advance. Perform motion search. By doing this, the image coding apparatus 100 can improve the coding efficiency while suppressing the increase in the load of coding processing and the delay time. Further, by using the reduced image, it is possible to reduce the amount of memory required for motion search, and it is possible to suppress the increase in cost and power consumption.
  • encoded data output from the image encoding device 100 can be decoded by an image decoding device according to a conventional standard such as AVC.
  • step S201 to step S207 of FIG. 10 is performed similarly to each process of step S151 to step S157 of FIG.
  • step S204 If it is determined in step S204 that the size of the processing target macroblock is larger than a predetermined threshold (16 ⁇ 16 pixels), the predicted image generation unit 120 proceeds with the process to step S208.
  • the selection unit 123 selects the output of the reduced screen rearrangement buffer 122, and the selection unit 126 selects the output of the reduced frame memory 125.
  • step S208 the motion search unit 151 of the motion search / compensation unit 115 performs motion search with integer accuracy using the input image and the reference image of the reduced image reduced at the reduction ratio N.
  • step S209 the motion search unit 151 sets the variable M to an initial value (for example, 2).
  • step S210 the motion search unit 151 performs motion search with 1 / M accuracy on the 1 / N 2 reduced image.
  • the motion search unit 151 determines whether the variable M has reached a predetermined value (m). If it is determined that the value of variable M has not reached the predetermined value (m), motion search unit 151 advances the process to step S212, increments variable M (for example, +1), and returns the process to step S210. , Repeat the process after that. That is, the motion search unit 151 repeats each process of step S210 to step S212 until the motion search is performed with desired accuracy.
  • step S211 If it is determined in step S211 that variable M has reached a predetermined value (m), accuracy conversion unit 152 advances the process to step S213 to convert the accuracy of the motion vector (N times ). When the process of step S213 ends, the accuracy conversion unit 152 advances the process to step S214.
  • steps S214 and S215 are performed in the same manner as the processes of steps S162 and S163 of FIG.
  • the motion search unit 151 can perform the motion search with any accuracy. Therefore, the image coding apparatus 100 can suppress the decrease in the accuracy of the motion vector due to the motion search using the reduced image.
  • the encoded data output from the image encoding device 100 can be decoded by an image decoding device according to a conventional standard such as AVC.
  • the reduction ratio N of the reduced image used for the motion search may have a plurality of values. That is, a plurality of reduced images with different reduction ratios may be generated, and the motion search may be performed using the reduced images of the reduction ratio N according to the macroblock size.
  • FIG. 11 is a block diagram showing a configuration example of the image coding apparatus in that case.
  • the image coding apparatus 300 shown in FIG. 11 is basically the same apparatus as the image coding apparatus 100 in FIG. 2 and performs the same processing, but generates two reduced images at different reduction ratios N. .
  • the image coding apparatus 300 includes a predicted image generation unit 320.
  • the predicted image generation unit 320 is a processing unit corresponding to the predicted image generation unit 120 in FIG. 2 and basically performs the same processing as the predicted image generation unit 120.
  • the predicted image generation unit 320 includes a motion search / compensation unit 315 instead of the motion search / compensation unit 115 of the predicted image generation unit 120. Further, the predicted image generation unit 320 has a first reduction unit 321 and a second reduction unit 322 instead of the reduction unit 121 of the predicted image generation unit 120, and a first reduction instead of the reduced screen rearrangement buffer 122. A screen rearrangement buffer 323 and a second reduced screen rearrangement buffer 324 are provided, and a selection unit 325 is provided instead of the selection unit 123.
  • Each of the first reduction unit 321 and the second reduction unit 322 basically has the same configuration as the reduction unit 121 and similarly reduces the input image, but the reduction ratios thereof are different from each other.
  • the values of the reduction ratios N of both are arbitrary as long as they are different from each other. In the following, as an example, the reduction ratio N of the first reduction unit 321 is four, and the reduction ratio N of the second reduction unit 322 is two.
  • the first reduced screen rearrangement buffer 323 and the second reduced screen rearrangement buffer 324 have basically the same configuration as the reduced screen rearrangement buffer 122, and perform the same processing.
  • the first reduced screen rearrangement buffer 323 stores the reduced image output from the first reduction unit 321.
  • the second reduced screen rearrangement buffer 324 stores the reduced image output from the second reduction unit 322.
  • the selection unit 325 basically has the same configuration as the selection unit 123, and performs the same processing. However, as the input image supplied to the motion search / compensation unit 315, the selection unit 325 outputs the output from the screen rearrangement buffer 102, the output from the first reduced screen rearrangement buffer 323, and the second reduced screen rearrangement buffer 324. Select one of the outputs from.
  • the first threshold for example, 32 ⁇ 32 pixels
  • a second threshold for example, 16 ⁇ 16 pixels
  • the first threshold for example, 32 ⁇ 32 pixels
  • the selecting unit 325 selects an unreduced image output from the screen rearrangement buffer 102. , It supplies to motion search / compensation part 315 as an input picture.
  • the predicted image generation unit 320 has a first reduction unit 326 and a second reduction unit 327 instead of the reduction unit 124 of the predicted image generation unit 120, and a first reduced frame memory instead of the reduced frame memory 125.
  • a second reduction frame memory 329 is provided, and a selection unit 330 is provided instead of the selection unit 126.
  • Each of the first reduction unit 326 and the second reduction unit 327 basically has the same configuration as the reduction unit 124 and similarly reduces the input image, but the reduction ratios thereof are different from each other.
  • the value of the reduction ratio N of both is equal to that of the first reduction unit 321 or the second reduction unit 3322, respectively. That is, in the example of FIG. 11, the reduction ratio N of the first reduction unit 326 is four, and the reduction ratio N of the second reduction unit 327 is two.
  • the first reduced frame memory 328 and the second reduced frame memory 329 have basically the same configuration as the reduced frame memory 125, and perform the same processing.
  • the first reduced frame memory 328 stores the reduced image output from the first reduction unit 326.
  • the second reduced frame memory 329 stores the reduced image output from the second reduction unit 327.
  • the selection unit 330 basically has the same configuration as the selection unit 126 and performs the same processing. However, as the reference image supplied to the motion search / compensation unit 315, the selection unit 330 outputs the output from the frame memory 112 (selection unit 113), the output from the first reduced frame memory 328, and the second reduced frame memory 329 Select any one of the outputs of.
  • a second threshold for example, 16 ⁇ 16 pixels
  • the first threshold for example, 32 ⁇ 32 pixels
  • the selecting unit 325 outputs the unreduced image output from the frame memory 112 (selecting unit 113). Are selected and supplied to the motion search / compensation unit 315 as a reference image.
  • the motion search / compensation unit 315 basically has the same configuration as the motion search / compensation unit 115, and basically performs the same processing.
  • the motion search / compensation unit 315 performs motion search processing, motion compensation processing, and the like using the supplied input image and reference image, and generates a predicted image by inter prediction.
  • the motion search / compensation unit 315 supplies the generated predicted image to the selection unit 116, and also supplies information to be transmitted, such as inter prediction mode information and motion vector information, to the lossless encoding unit 106.
  • the motion search / compensation unit 115 performs a motion search on this macroblock (MB-1). Therefore, the motion search / compensation unit 115 loads a 32 ⁇ 32 pixel extended macroblock or 64 ⁇ 64 with the same load as performing motion search on one 16 ⁇ 16 pixel macroblock used in AVC or the like.
  • a motion search can be performed on extended macroblocks of pixels.
  • FIG. 14 is a block diagram showing a configuration example of the motion search / compensation unit 315 in the image coding apparatus 300 of FIG. That is, FIG. 14 corresponds to FIG.
  • the motion search / compensation unit 315 basically has the same configuration as the motion search unit / compensation unit 115, but has a motion search unit 351 instead of the motion search unit 151. Also, the motion search / compensation unit 315 has a first accuracy conversion unit 352 and a second accuracy conversion unit 353 instead of the accuracy conversion unit 152.
  • the motion search unit 351 supplies various parameters such as the detected motion vector to the motion compensation unit 153 when motion search is performed using the input image and reference image of the original size not reduced.
  • the motion search unit 351 performs first accuracy conversion of various parameters such as the detected motion vector. It supplies to the part 352.
  • the motion compensation unit 153 receives the parameters supplied from the motion search unit 351, the first accuracy conversion unit 352, or the second accuracy conversion unit 353, and the unreduced image of the original size supplied from the selection unit 330. Motion compensation is used to generate a predicted image.
  • the motion compensation unit 153 supplies the generated predicted image to the selection unit 116. Also, the motion compensation unit 153 supplies the inter prediction mode information to the lossless encoding unit 106. Furthermore, the motion search unit 151 supplies motion vector information indicating the detected motion vector to the lossless coding unit 106.
  • prediction process is performed in the same manner as the case of the encoding process by the image encoding device 100 described with reference to the flowchart of FIG. 7.
  • steps S301 to S307 are performed in the same manner as the processes of steps S151 to S157 of FIG.
  • step S304 If it is determined in step S304 that the size of the processing target macroblock is larger than the second threshold (16 ⁇ 16 pixels), the prediction image generation unit 320 advances the process to step S308.
  • step S308 the predicted image generation unit 320 determines whether or not the size of the processing target macroblock is equal to or less than a predetermined first threshold (32 ⁇ 32 pixels). If it is determined that the size of the processing target macroblock is equal to or less than the first threshold (32 ⁇ 32 pixels), the prediction image generation unit 320 controls the selection unit 325 and the selection unit 330, and the process proceeds to step S309. . In this case, the selection unit 325 selects the output of the second reduced screen rearrangement buffer 324, and the selection unit 330 selects the output of the second reduced frame memory 329.
  • step S312 the second precision conversion unit 353 converts the precision of the motion vector by the second reduction ratio (that is, doubles it).
  • the motion search / compensation unit 315 advances the process to step S317.
  • step S308 If it is determined in step S308 that the size of the processing target macroblock is larger than the first threshold (32 ⁇ 32 pixels), the predicted image generation unit 320 controls the selection unit 325 and the selection unit 330, and performs the process Proceed to S313.
  • the selection unit 325 selects the output of the first reduced screen rearrangement buffer 323, and the selection unit 330 selects the output of the first reduced frame memory 328.
  • step S316 the first precision conversion unit 352 converts the precision of the motion vector by the first reduction rate (that is, quadrupling).
  • the motion search / compensation unit 315 advances the process to step S317.
  • step S317 and step S318 are performed similarly to each process of step S162 and step S163.
  • the prediction image generation unit 320 ends the inter motion prediction processing, returns the process to step S132 in FIG. 7, and advances the process to step S133.
  • Timing chart A timing chart of motion search processing and motion compensation processing in this case is shown in FIG.
  • the timing chart of FIG. 16 corresponds to FIG. A of FIG. 16 shows an example of a processing pipeline in AVC, similarly to A of FIG.
  • each macroblock is the same as in the case of AVC (A of FIG. 16). Processed in order.
  • the macro block to be processed is 32 ⁇ 32 pixels or less, a reduced image is used, so the number of motion searches is reduced as shown in C of FIG.
  • a further reduced image is used, so the number of motion searches is further reduced as shown in D of FIG.
  • the image coding apparatus 300 can improve the coding efficiency while suppressing the increase in the load of the coding process and the delay time, as in the case of the first embodiment. In addition, increases in cost and power consumption can be suppressed.
  • the encoded data output from the image encoding device 300 can be decoded by an image decoding device according to a conventional standard such as AVC.
  • the image coding apparatus 300 provides a plurality of macro block size threshold values, and performs motion search using an image of a size (resolution) according to the macro block size according to the threshold values. By doing so, the image coding device 300 can suppress the decrease in the accuracy of the motion vector more than the case of the image coding device 100 described with reference to FIGS. 1 to 9. In addition, the image coding apparatus 300 can perform inter motion prediction processing more easily than in the case described with reference to FIG. 10, and can suppress an increase in load.
  • FIG. 17 is a block diagram showing a main configuration example of the image coding apparatus in that case.
  • the image coding apparatus 400 shown in FIG. 17 basically has the same configuration as the image coding apparatus 300 shown in FIG. 11, and performs the same processing. However, the image coding apparatus 400 includes a predicted image generation unit 420 instead of the predicted image generation unit 320.
  • the predicted image generation unit 420 basically has the same configuration as the predicted image generation unit 320 and performs the same processing, but has a motion search / compensation unit 415 instead of the motion search / compensation unit 315. Further, the predicted image generation unit 420 has a first reduced screen rearrangement buffer 423 instead of the first reduced screen rearrangement buffer 323, and a second reduced screen rearrangement buffer instead of the second reduced screen rearrangement buffer 324. , And has a selection unit 325 instead of the selection unit 425.
  • the first reduced screen rearrangement buffer 423 supplies the reduced image not only to the selection unit 425 but also to the selection unit 431. That is, the reduced image stored in the first reduced screen rearrangement buffer 423 is used not only for motion search but also for generating difference information.
  • the second reduced screen rearrangement buffer 424 supplies the reduced image not only to the selection unit 425 but also to the selection unit 431. That is, the reduced image stored in the second reduced screen rearrangement buffer 424 is used not only for motion search but also for generating difference information.
  • the selection unit 425 outputs an image supplied as an input image to the motion search / compensation unit 415, an output of the screen rearrangement buffer 102, an output of the first reduced screen rearrangement buffer 423, and 2. One from the reduced screen rearrangement buffer 424 is selected.
  • the motion search / compensation unit 415 basically has the same configuration as the motion search / compensation unit 315 and performs the same processing. However, while the motion search / compensation unit 315 uses the reduced image for motion search only, the motion search / compensation unit 415 further uses the reduced image for motion compensation. That is, the motion search / compensation unit 415 generates a predicted image reduced at the reduction ratio N. The motion search / compensation unit 415 supplies the prediction image of the reduced image to the selection unit 116.
  • the selection unit 116 supplies the prediction image of the reduced image to the computation unit 103 and the computation unit 110 when the prediction image of the reduced image is selected. That is, in this case, the difference information generated by the image coding apparatus 400 is an image reduced at the reduction ratio N.
  • the image coding apparatus 400 further includes a selection unit 431 and an up converter 432.
  • the selection unit 431 outputs the image supplied to the operation unit 103 according to the prediction mode and the size of the processing target macro block, the output of the screen rearrangement buffer 102, the output of the first reduced screen rearrangement buffer 423, and the second reduction. One is selected from the screen sorting buffer 424.
  • the selection unit 431 outputs the first reduction screen output from the first reduction screen rearrangement buffer 423.
  • the selecting unit 431 when the size of the processing target macroblock is equal to or smaller than the second threshold (16 ⁇ 16 pixels), the selecting unit 431 is reduced, which is output from the screen rearrangement buffer 102 An input image with no original size is selected, and the image is supplied to the calculation unit 103.
  • the motion search / compensation unit 415 performs motion search and motion compensation using the input image of the original size not reduced and output from the screen rearrangement buffer 102. Therefore, the motion search / compensation unit 415 supplies the predicted image of the original size not reduced to the calculation unit 103 via the selection unit 116.
  • the operation unit 103 subtracts the output of the motion search / compensation unit 415 from the output of the screen rearrangement buffer 102 to generate difference information. That is, this difference information is an image of the original size that has not been reduced.
  • the selection unit 431 selects the output of the screen rearrangement buffer 102 also in the intra prediction mode. That is, difference information is generated using an image of the original size that has not been reduced.
  • the image coding apparatus 400 can reduce the code amount of the coded data.
  • the code amount is reduced, the image quality of the decoded image is reduced.
  • the picture of the area is simple and has less movement. That is, even if the code amount of such a region is reduced, the influence on the image quality is relatively small.
  • the image coding apparatus 400 uses such features and uses the reduced image for motion search, motion compensation, and generation of difference information only for an area larger than a predetermined size such as an extended macroblock.
  • a predetermined size such as an extended macroblock.
  • the image coding apparatus 400 when performing motion compensation on a large size area such as an extended macroblock, the image coding apparatus 400 reduces the amount of data to be accessed in memory (DRAM) in motion compensation by using a reduced image. And the load of motion compensation can be reduced.
  • DRAM dynamic random access memory
  • the image coding apparatus 400 further includes a flag indicating that the information is difference information generated on the 1 / N 2 resolution plane (that is, difference information generated using the reduced image), and a filter for generating the reduction plane.
  • the coefficient information of, and the coefficient information of the filter to the up-converter when the reduction plane is returned to the original resolution may be provided to the decoding side.
  • Pieces of information may be added, for example, to any position of the encoded data, or may be transmitted to the decoding side separately from the encoded data.
  • the lossless encoding unit 106 may describe such information in a bitstream as a syntax.
  • the lossless encoding unit 106 may store such information as auxiliary information in a predetermined area for transmission.
  • these pieces of information may be stored in a parameter set (for example, a header of a sequence or a picture) such as SEI (Supplemental Enhancement Information).
  • the lossless encoding unit 106 may transmit such information separately from the encoded data (as a separate file) from the image encoding device to the image decoding device. In that case, it is necessary to clarify the correspondence between the information and the encoded data (to enable the decoding side to grasp the correspondence), but the method is arbitrary. For example, separately, table information indicating correspondence may be created, or link information indicating correspondence destination data may be embedded in each other's data.
  • the motion search in the reduction plane is fixedly associated with the block size
  • transmission of a flag indicating that the difference information is generated on the 1 / N 2 resolution plane can be omitted.
  • the coefficient information of the filter that generates the reduction plane, and the coefficient information of the filter to the up-converter when returning the reduction plane to the original resolution may be known in advance as long as the decoding side grasps it in advance.
  • the decoded image of the original size not reduced is supplied to the deblock filter 111 of the predicted image generation unit 420, the frame memory 112, the first reduction unit 326, and the second reduction unit 327.
  • the upconverter 432 enlarges the reduced image to restore the original original size.
  • the upconversion method is optional.
  • FIG. 18 is a block diagram showing a configuration example of the motion search / compensation unit 415 in the image coding apparatus 400 of FIG.
  • the motion search / compensation unit 415 basically has the same configuration as the motion search / compensation unit 315 and performs the same processing, but also performs motion compensation using a reduced image. Therefore, the first accuracy conversion unit 352 and the second accuracy conversion unit 353 are not included.
  • the motion search / compensation unit 415 includes a motion search unit 451 and a motion compensation unit 452.
  • the motion search unit 451 performs motion search in the same manner as the motion search unit 351, but supplies information such as a motion vector to the motion compensation unit 452 regardless of the size of the input image or the reference image.
  • the motion compensation unit 452 performs motion compensation using a reference image of the same size as that for motion search.
  • the motion compensation unit 452 supplies the generated predicted image to the selection unit 116. Also, the motion compensation unit 452 supplies information to be provided to the decoding side, such as inter prediction mode information, a flag, and a parameter, to the lossless encoding unit 106. Furthermore, the motion search unit 451 supplies the motion vector information to the lossless coding unit 106.
  • the image coding apparatus 400 performs coding processing as in the case described with reference to the flowchart of FIG. However, when the selecting unit 116 selects a predicted image in step S104 of FIG. 6, the selecting unit 431 selects an input image.
  • the upconverter 432 enlarges the addition result to the original size. Do.
  • the prediction image generation unit 420 performs prediction processing as in the case described with reference to the flowchart of FIG. 7.
  • each process of step S401 to step S408 is performed similarly to each process of step S301 to step S307 of FIG. 15 and step S317.
  • the motion compensation unit 452 advances the process to step S420.
  • step S409 to step S412 of FIG. 19 is also executed similarly to each process of step S308 to step S311 of FIG.
  • step S414 the motion compensation unit 452 appropriately generates information to be provided to the decoding side, such as a flag and a parameter.
  • the motion compensation unit 452 advances the process to step S420.
  • step S415 to step S417 of FIG. 19 is also executed similarly to each process of step S313 to step S315 of FIG.
  • step S419 the motion compensation unit 452 appropriately generates information to be provided to the decoding side, such as a flag and a parameter.
  • the motion compensation unit 452 advances the process to step S420.
  • step S420 the motion search unit 451 and the motion compensation unit 452 of the motion search / compensation unit 415 select the motion vector information, the inter prediction mode information, the flag, and various types when the prediction image inter predicted as a prediction image is selected.
  • the information to be transmitted, such as parameters, is supplied to the lossless encoding unit 106.
  • step S420 When the process of step S420 ends, the prediction image generation unit 420 ends the inter motion prediction process, returns the process to step S132 of FIG. 7, and proceeds the process to step S133.
  • the image coding apparatus 400 performs a motion search using an image of a size (resolution) according to the size of a partial area to be a coding processing unit. Since this is performed, it is possible to improve the coding efficiency while suppressing the increase in the load of the coding process and the delay time. In addition, increases in cost and power consumption can be suppressed.
  • the image encoding device 400 may be provided with a plurality of macroblock size threshold values.
  • the image coding apparatus 400 can suppress the decrease in the accuracy of the motion vector more than the case of the image coding apparatus 100 described with reference to FIGS. 1 to 9.
  • the image coding apparatus 400 can perform inter motion prediction processing more easily than in the case described with reference to FIG. 10, and can suppress an increase in load.
  • the image coding apparatus 400 may set the macro block size threshold to one, as in the image coding apparatus 100. Furthermore, as described with reference to FIG. 10, motion search may be performed with any accuracy.
  • the encoded data output from the image encoding apparatus 400 described in the third embodiment may include the encoded information of the difference information of the reduced image, the image decoding of the conventional standard such as AVC is possible. It can not always be decoded by the device. In order to decode the encoded data generated by the image encoding device 400, it is necessary to prepare an image decoding device corresponding to the image encoding device 400.
  • FIG. 20 is a block diagram showing an example of the main configuration of an image decoding apparatus to which the present invention is applied.
  • An image decoding apparatus 500 shown in FIG. 20 is a decoding apparatus corresponding to the image coding apparatus 400.
  • encoded data encoded by the image encoding device 400 is transmitted to the image decoding device 500 corresponding to the image encoding device 400 via a predetermined transmission path and decoded.
  • the image decoding apparatus 500 includes an accumulation buffer 501, a lossless decoding unit 502, an inverse quantization unit 503, an inverse orthogonal transformation unit 504, an operation unit 505, a deblock filter 506, a screen rearrangement buffer 507, And a D / A converter 508.
  • the image decoding apparatus 500 further includes a frame memory 509, a selection unit 510, an intra prediction unit 511, a motion compensation unit 512, and a selection unit 513.
  • the image decoding device 500 includes an upconverter 514.
  • the accumulation buffer 501 accumulates the transmitted encoded data.
  • the encoded data is encoded by the image encoding device 400.
  • the lossless decoding unit 502 decodes the encoded data read from the accumulation buffer 501 at a predetermined timing in a method corresponding to the encoding method of the lossless encoding unit 106 in FIG.
  • the inverse quantization unit 503 inversely quantizes the coefficient data obtained by being decoded by the lossless decoding unit 502, using a method corresponding to the quantization method of the quantization unit 105 in FIG.
  • the inverse quantization unit 503 supplies the inversely quantized coefficient data to the inverse orthogonal transformation unit 504.
  • the inverse orthogonal transformation unit 504 performs inverse orthogonal transformation on the coefficient data by a method corresponding to the orthogonal transformation method of the orthogonal transformation unit 104 in FIG. 17 and corresponds to residual data before orthogonal transformation in the image coding device 400. To obtain decoded residual data.
  • Decoded residual data obtained by the inverse orthogonal transform is supplied to the computing unit 505. Further, the prediction image is supplied to the calculation unit 505 from the intra prediction unit 511 or the motion compensation unit 512 via the selection unit 513.
  • Arithmetic unit 505 adds the decoded residual data and the predicted image to obtain decoded image data corresponding to the image data before the predicted image is subtracted by arithmetic unit 103 of image coding apparatus 400.
  • the operation unit 505 supplies the decoded image data to the up converter 514.
  • the up converter 514 encodes the residual information generated by the image coding apparatus 400 using the reduced image. If it is obtained by decoding the encoded data, the decoded image is upconverted and the image of the decoded image is enlarged to the original size.
  • the up converter 514 supplies the decoded image of the original image size obtained by up conversion or the like to the deblocking filter 506.
  • the up converter 514 omits the up conversion and supplies the decoded image to the deblocking filter 506.
  • the deblocking filter 506 removes block distortion from the supplied decoded image, and supplies it to the screen rearrangement buffer 507.
  • the screen rearrangement buffer 507 rearranges the images. That is, the order of the frames rearranged for the order of encoding by the screen rearrangement buffer 102 in FIG. 17 is rearranged in the order of the original display.
  • the D / A conversion unit 508 D / A converts the image supplied from the screen rearrangement buffer 507, and outputs the image to a display (not shown) for display.
  • the image decoding apparatus 500 further includes a first reduction unit 521, a second reduction unit 522, a first reduction frame memory 523, a second reduction frame memory 524, and a selection unit 525.
  • the output of the deblocking filter 506 is further supplied to the frame memory 509, the first reduction unit 521, and the second reduction unit 522.
  • the frame memory 509, the selection unit 510, the intra prediction unit 511, the motion compensation unit 512, and the selection unit 513 are the frame memory 112, the selection unit 113, the intra prediction unit 114, the motion search and compensation unit 415 of the image coding device 400. And the selection unit 116 respectively.
  • the first reduction unit 521, the second reduction unit 522, the first reduction frame memory 523, the second reduction frame memory 524, and the selection unit 525 are the first reduction unit 326 and the second reduction unit of the image coding apparatus 400.
  • 327 corresponds to the first reduced frame memory 328, the second reduced frame memory 329, and the selection unit 330, respectively.
  • the selection unit 510 reads the image to be inter-processed and the image to be referred to from the frame memory 509 and supplies the read image to the motion compensation unit 512. Further, the selection unit 510 reads an image used for intra prediction from the frame memory 509 and supplies the image to the intra prediction unit 511.
  • the intra prediction unit 511 generates a prediction image based on this information, and supplies the generated prediction image to the selection unit 513.
  • the motion compensation unit 512 acquires information (prediction mode information, motion vector information, reference frame information, a flag, various parameters, and the like) obtained by decoding the header information from the lossless decoding unit 502.
  • the motion compensation unit 512 controls the selection unit 525 when the information indicating the inter prediction mode is supplied, and the output of the frame memory 509 specified by the flag or various parameters supplied from the lossless decoding unit 502, The output of the first reduced frame memory 523 or the output of the second reduced frame memory 524 is selected and acquired. Then, the motion compensation unit 512 generates a prediction image based on the information supplied from the lossless decoding unit 502, and supplies the generated prediction image to the selection unit 513.
  • the selection unit 513 selects the prediction image generated by the motion compensation unit 512 or the intra prediction unit 511, and supplies the selected prediction image to the calculation unit 505.
  • the frame memory 509 to the selection unit 513 and the first reduction unit 521 to the selection unit 525 constitute a predicted image generation unit 520.
  • the predicted image generation unit 520 supplies the predicted image of the reduced image to the calculation unit 505 when the decoded image is a reduced image, and outputs the predicted image of the original size to the calculation unit 505 when the decoded image is an image of the original size. Supply.
  • step S501 the accumulation buffer 501 accumulates the transmitted encoded data.
  • step S502 the lossless decoding unit 502 decodes the encoded data supplied from the accumulation buffer 501. That is, the I picture, P picture, and B picture encoded by the lossless encoding unit 106 in FIG. 17 are decoded.
  • motion vector information reference frame information
  • prediction mode information intra prediction mode or inter prediction mode
  • information such as flags and parameters
  • the prediction mode information is intra prediction mode information
  • the prediction mode information is supplied to the intra prediction unit 511.
  • the prediction mode information is inter prediction mode information
  • motion vector information corresponding to the prediction mode information is supplied to the motion compensation unit 512.
  • step S503 the inverse quantization unit 503 inversely quantizes the transform coefficient decoded by the lossless decoding unit 502 with a characteristic corresponding to the characteristic of the quantization unit 105 in FIG.
  • step S504 the inverse orthogonal transform unit 504 performs inverse orthogonal transform on the transform coefficient inversely quantized by the inverse quantization unit 503 with a characteristic corresponding to the characteristic of the orthogonal transform unit 104 in FIG.
  • the difference information corresponding to the input of the orthogonal transform unit 104 in FIG. 17 (the output of the calculation unit 103) is decoded.
  • step S505 the intra prediction unit 511 or the motion compensation unit 512 performs image prediction processing corresponding to the prediction mode information supplied from the lossless decoding unit 502.
  • the intra prediction unit 511 performs the intra prediction process in the intra prediction mode.
  • the motion compensation unit 512 performs motion prediction processing in the inter prediction mode.
  • step S506 the selection unit 513 selects a predicted image. That is, the prediction image generated by the intra prediction unit 511 or the prediction image generated by the motion compensation unit 512 is supplied to the selection unit 513.
  • the selection unit 513 selects the side to which the predicted image is supplied, and supplies the predicted image to the calculation unit 505.
  • step S507 the computing unit 505 adds the predicted image selected in the process of step S506 to the difference information obtained in the process of step S504.
  • the original image data is thus decoded.
  • step S508 if the decoded image supplied from the arithmetic unit 505 is a reduced image, the upconverter 514 upconverts the decoded image and converts it to the original size.
  • the deblocking filter 506 appropriately filters the decoded image supplied from the upconverter 514. Thereby, block distortion is appropriately removed from the decoded image.
  • step S511 the frame memory 509 stores the filtered decoded image.
  • the first reduced frame memory 523 stores the reduced image output from the first reduction unit 521.
  • the second reduced frame memory 524 stores the reduced image output from the second reduction unit 522.
  • step S512 the screen rearrangement buffer 507 rearranges the frames of the decoded image data. That is, the order of the frames of the decoded image data rearranged for encoding by the screen rearrangement buffer 102 (FIG. 17) of the image encoding device 400 is rearranged to the original display order.
  • step S513 the D / A conversion unit 508 D / A converts the decoded image data in which the frames are rearranged in the screen rearrangement buffer 507.
  • the decoded image data is output to a display (not shown) and the image is displayed.
  • the lossless decoding unit 502 determines whether or not intra coding is performed based on the intra prediction mode information. If it is determined that intra coding is performed, the lossless decoding unit 502 supplies intra prediction mode information to the intra prediction unit 511, and the process proceeds to step S532.
  • step S532 the intra prediction unit 511 performs an intra prediction process.
  • the image decoding apparatus 500 returns the process to FIG. 21 and executes the process of step S506 and subsequent steps.
  • step S531 If it is determined in step S531 that inter coding has been performed, the lossless decoding unit 502 supplies various types of information such as inter prediction mode information to the motion compensation unit 512, and the process proceeds to step S533.
  • step S533 the motion compensation unit 512 performs inter motion prediction processing.
  • the image decoding apparatus 500 returns the process to FIG. 21 and executes the process of step S506 and subsequent steps.
  • the motion compensation unit 512 selects the resolution of the prediction image based on the information supplied from the lossless decoding unit 502 in step S551.
  • the motion compensation unit 512 determines the position (region) of the reference image based on the motion vector information.
  • the motion compensation unit 512 generates a predicted image.
  • the inter motion prediction process is ended.
  • the motion compensation unit 512 returns the process to step S533 in FIG. 22, ends the prediction process, and returns the process to step S505 in FIG. 21 to execute the processes of step S506 and subsequent steps.
  • the image decoding apparatus 500 can decode the encoded data encoded by the image encoding apparatus 400 based on various information supplied from the image encoding apparatus 400. That is, the image coding apparatus 400 performs motion search and motion compensation using an image of a size (resolution) corresponding to the size of a partial area to be a coding processing unit to generate difference information, and further, the difference information Similarly, the image decoding apparatus 500 can decode the encoded data obtained by encoding the image using the predicted image of the size (resolution) according to the size of the partial area that is the encoding processing unit.
  • the image decoding apparatus 500 can enable the image encoding apparatus 400 to further improve the encoding efficiency while suppressing an increase in load.
  • a CPU (Central Processing Unit) 601 of a personal computer 600 executes various programs according to a program stored in a ROM (Read Only Memory) 602 or a program loaded from a storage unit 613 to a RAM (Random Access Memory) 603. Execute the process of The RAM 603 also stores data necessary for the CPU 601 to execute various processes.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the CPU 601, the ROM 602, and the RAM 603 are mutually connected via a bus 604.
  • An input / output interface 610 is also connected to the bus 604.
  • the input / output interface 610 includes an input unit 611 including a keyboard and a mouse, a display including a CRT (Cathode Ray Tube) and an LCD (Liquid Crystal Display), an output unit 612 including a speaker, and a hard disk.
  • a communication unit 614 including a storage unit 613 and a modem is connected. The communication unit 614 performs communication processing via a network including the Internet.
  • a drive 615 is connected to the input / output interface 610 as necessary, and removable media 621 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory are appropriately attached, and a computer program read from them is It is installed in the storage unit 613 as necessary.
  • a program that configures the software is installed from a network or a recording medium.
  • this recording medium is a magnetic disk (including a flexible disk) on which a program is recorded, which is distributed for distributing the program to the user separately from the apparatus main body, an optical disk ( It consists only of removable media 621 consisting of CD-ROM (Compact Disc-Read Only Memory), DVD (Digital Versatile Disc), Magneto-Optical Disc (including MD (Mini Disc), or semiconductor memory etc. Instead, it is configured by the ROM 602 in which the program is recorded and distributed to the user in a state of being incorporated in the apparatus main body, a hard disk included in the storage unit 613, or the like.
  • the program executed by the computer may be a program that performs processing in chronological order according to the order described in this specification, in parallel, or when necessary, such as when a call is made. It may be a program to be processed.
  • the step of describing the program to be recorded on the recording medium is not limited to processing performed chronologically in the order described, but not necessarily parallel processing It also includes processing to be executed individually.
  • system represents the entire apparatus configured by a plurality of devices (apparatus).
  • the configuration described above as one device (or processing unit) may be divided and configured as a plurality of devices (or processing units).
  • the configuration described as a plurality of devices (or processing units) in the above may be collectively configured as one device (or processing unit).
  • configurations other than those described above may be added to the configuration of each device (or each processing unit).
  • part of the configuration of one device (or processing unit) may be included in the configuration of another device (or other processing unit) if the configuration or operation of the entire system is substantially the same. . That is, the embodiment of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.
  • the image encoding device and the image decoding device described above can be applied to any electronic device.
  • the example will be described below.
  • FIG. 25 is a block diagram showing a main configuration example of a television receiver using an image decoding apparatus 500 to which the present invention is applied.
  • the television receiver 1000 shown in FIG. 25 includes a terrestrial tuner 1013, a video decoder 1015, a video signal processing circuit 1018, a graphic generation circuit 1019, a panel drive circuit 1020, and a display panel 1021.
  • the terrestrial tuner 1013 receives a broadcast wave signal of terrestrial analog broadcasting via an antenna, demodulates it, acquires a video signal, and supplies it to a video decoder 1015.
  • the video decoder 1015 performs decoding processing on the video signal supplied from the terrestrial tuner 1013, and supplies the obtained digital component signal to the video signal processing circuit 1018.
  • the video signal processing circuit 1018 performs predetermined processing such as noise removal on the video data supplied from the video decoder 1015, and supplies the obtained video data to the graphic generation circuit 1019.
  • the graphic generation circuit 1019 generates video data of a program to be displayed on the display panel 1021, image data by processing based on an application supplied via a network, and the like, and transmits the generated video data and image data to the panel drive circuit 1020. Supply. Also, the graphic generation circuit 1019 generates video data (graphic) for displaying a screen used by the user for item selection and the like, and a video obtained by superimposing it on video data of a program. A process of supplying data to the panel drive circuit 1020 is also performed as appropriate.
  • the panel drive circuit 1020 drives the display panel 1021 based on the data supplied from the graphic generation circuit 1019 and causes the display panel 1021 to display the video of the program and the various screens described above.
  • the display panel 1021 is formed of an LCD (Liquid Crystal Display) or the like, and displays an image or the like of a program according to control of the panel drive circuit 1020.
  • LCD Liquid Crystal Display
  • the television receiver 1000 also includes an audio A / D (Analog / Digital) conversion circuit 1014, an audio signal processing circuit 1022, an echo cancellation / audio synthesis circuit 1023, an audio amplification circuit 1024, and a speaker 1025.
  • an audio A / D (Analog / Digital) conversion circuit 1014 An audio signal processing circuit 1022, an echo cancellation / audio synthesis circuit 1023, an audio amplification circuit 1024, and a speaker 1025.
  • the terrestrial tuner 1013 acquires not only a video signal but also an audio signal by demodulating the received broadcast wave signal.
  • the terrestrial tuner 1013 supplies the acquired audio signal to the audio A / D conversion circuit 1014.
  • the audio A / D conversion circuit 1014 performs A / D conversion processing on the audio signal supplied from the terrestrial tuner 1013, and supplies the obtained digital audio signal to the audio signal processing circuit 1022.
  • the audio signal processing circuit 1022 performs predetermined processing such as noise removal on the audio data supplied from the audio A / D conversion circuit 1014, and supplies the obtained audio data to the echo cancellation / audio synthesis circuit 1023.
  • the echo cancellation / voice synthesis circuit 1023 supplies the voice data supplied from the voice signal processing circuit 1022 to the voice amplification circuit 1024.
  • the voice amplification circuit 1024 subjects the voice data supplied from the echo cancellation / voice synthesis circuit 1023 to D / A conversion processing and amplification processing, adjusts the volume to a predetermined level, and outputs voice from the speaker 1025.
  • the television receiver 1000 also includes a digital tuner 1016 and an MPEG decoder 1017.
  • a digital tuner 1016 receives a broadcast wave signal of digital broadcast (terrestrial digital broadcast, BS (Broadcasting Satellite) / CS (Communications Satellite) digital broadcast) via an antenna, and demodulates the signal, and generates an MPEG-TS (Moving Picture Experts Group). -Transport Stream) and supply it to the MPEG decoder 1017.
  • digital broadcast terrestrial digital broadcast, BS (Broadcasting Satellite) / CS (Communications Satellite) digital broadcast
  • MPEG-TS Motion Picture Experts Group
  • the MPEG decoder 1017 unscrambles the MPEG-TS supplied from the digital tuner 1016, and extracts a stream including data of a program to be reproduced (targeted to be viewed).
  • the MPEG decoder 1017 decodes the audio packet forming the extracted stream, supplies the obtained audio data to the audio signal processing circuit 1022, decodes the video packet forming the stream, and outputs the obtained video data as an image.
  • the signal processing circuit 1018 is supplied.
  • the MPEG decoder 1017 supplies EPG (Electronic Program Guide) data extracted from the MPEG-TS to the CPU 1032 via a path (not shown).
  • EPG Electronic Program Guide
  • the television receiver 1000 uses the above-described image decoding apparatus 500 as the MPEG decoder 1017 that decodes video packets in this manner.
  • the MPEG-TS transmitted from the broadcast station or the like is encoded by the image encoding device 400.
  • the MPEG decoder 1017 decodes the encoded data of the reduced image supplied from the broadcast station (image encoding apparatus 400) using the predicted image of the reduced image. Therefore, the MPEG decoder 1017 can enable the image coding apparatus 400 to further improve the coding efficiency while suppressing an increase in load.
  • the video data supplied from the MPEG decoder 1017 is subjected to predetermined processing in the video signal processing circuit 1018 as in the case of the video data supplied from the video decoder 1015, and the video data generated in the graphic generation circuit 1019. Etc. are appropriately superimposed and supplied to the display panel 1021 via the panel drive circuit 1020, and the image is displayed.
  • the audio data supplied from the MPEG decoder 1017 is subjected to predetermined processing in the audio signal processing circuit 1022 as in the case of the audio data supplied from the audio A / D conversion circuit 1014, and the echo cancellation / audio synthesis circuit 1023.
  • the audio amplification circuit 1024 are supplied to the audio amplification circuit 1024 and subjected to D / A conversion processing and amplification processing.
  • the sound adjusted to a predetermined volume is output from the speaker 1025.
  • the television receiver 1000 also includes a microphone 1026 and an A / D conversion circuit 1027.
  • the A / D conversion circuit 1027 receives the user's voice signal captured by the microphone 1026 provided in the television receiver 1000 for voice conversation, and performs A / D conversion processing on the received voice signal.
  • the obtained digital voice data is supplied to an echo cancellation / voice synthesis circuit 1023.
  • the echo cancellation / voice synthesis circuit 1023 performs echo cancellation on the voice data of the user A when the voice data of the user (user A) of the television receiver 1000 is supplied from the A / D conversion circuit 1027.
  • the voice data obtained by synthesizing with other voice data is output from the speaker 1025 via the voice amplification circuit 1024.
  • the television receiver 1000 further includes an audio codec 1028, an internal bus 1029, a synchronous dynamic random access memory (SDRAM) 1030, a flash memory 1031, a CPU 1032, a universal serial bus (USB) I / F 1033, and a network I / F 1034.
  • SDRAM synchronous dynamic random access memory
  • USB universal serial bus
  • the A / D conversion circuit 1027 receives the user's voice signal captured by the microphone 1026 provided in the television receiver 1000 for voice conversation, and performs A / D conversion processing on the received voice signal.
  • the obtained digital audio data is supplied to an audio codec 1028.
  • the voice codec 1028 converts voice data supplied from the A / D conversion circuit 1027 into data of a predetermined format for transmission via the network, and supplies the data to the network I / F 1034 via the internal bus 1029.
  • the network I / F 1034 is connected to the network via a cable attached to the network terminal 1035.
  • the network I / F 1034 transmits voice data supplied from the voice codec 1028 to, for example, another device connected to the network.
  • the network I / F 1034 receives, for example, voice data transmitted from another device connected via the network via the network terminal 1035, and transmits it to the voice codec 1028 via the internal bus 1029. Supply.
  • the voice codec 1028 converts voice data supplied from the network I / F 1034 into data of a predetermined format, and supplies it to the echo cancellation / voice synthesis circuit 1023.
  • the echo cancellation / voice synthesis circuit 1023 performs echo cancellation on voice data supplied from the voice codec 1028, and combines voice data obtained by combining with other voice data, etc., via the voice amplification circuit 1024. And output from the speaker 1025.
  • the SDRAM 1030 stores various data necessary for the CPU 1032 to perform processing.
  • the flash memory 1031 stores a program executed by the CPU 1032.
  • the program stored in the flash memory 1031 is read by the CPU 1032 at a predetermined timing such as when the television receiver 1000 starts up.
  • the flash memory 1031 also stores EPG data acquired via digital broadcasting, data acquired from a predetermined server via a network, and the like.
  • the flash memory 1031 stores an MPEG-TS including content data acquired from a predetermined server via the network under the control of the CPU 1032.
  • the flash memory 1031 supplies the MPEG-TS to the MPEG decoder 1017 via the internal bus 1029 under the control of the CPU 1032, for example.
  • the MPEG decoder 1017 processes the MPEG-TS in the same manner as the MPEG-TS supplied from the digital tuner 1016. As described above, the television receiver 1000 receives content data including video and audio via the network, decodes the content data using the MPEG decoder 1017, displays the video, and outputs audio. Can.
  • the television receiver 1000 also includes a light receiving unit 1037 that receives an infrared signal transmitted from the remote controller 1051.
  • the light receiving unit 1037 receives the infrared light from the remote controller 1051, and outputs a control code representing the content of the user operation obtained by demodulation to the CPU 1032.
  • the CPU 1032 executes a program stored in the flash memory 1031 and controls the overall operation of the television receiver 1000 according to a control code or the like supplied from the light receiving unit 1037.
  • the CPU 1032 and each part of the television receiver 1000 are connected via a path (not shown).
  • the USB I / F 1033 transmits / receives data to / from an external device of the television receiver 1000 connected via a USB cable attached to the USB terminal 1036.
  • the network I / F 1034 is connected to the network via a cable attached to the network terminal 1035, and transmits / receives data other than voice data to / from various devices connected to the network.
  • the television receiver 1000 suppresses an increase in load on the coding efficiency of broadcast wave signals received via an antenna and content data acquired via a network. While it can be improved, real-time processing can be realized at lower cost.
  • FIG. 26 is a block diagram showing a main configuration example of a mobile phone using the image encoding device and the image decoding device to which the present invention is applied.
  • a cellular phone 1100 shown in FIG. 26 is configured to control each part in an integrated manner, and includes a main control unit 1150, a power supply circuit unit 1151, an operation input control unit 1152, an image encoder 1153, a camera I / F unit 1154 and an LCD control. It has a unit 1155, an image decoder 1156, a demultiplexing unit 1157, a recording / reproducing unit 1162, a modulation / demodulation circuit unit 1158, and an audio codec 1159. These are connected to one another via a bus 1160.
  • the cellular phone 1100 further includes an operation key 1119, a CCD (Charge Coupled Devices) camera 1116, a liquid crystal display 1118, a storage portion 1123, a transmitting / receiving circuit portion 1163, an antenna 1114, a microphone (microphone) 1121, and a speaker 1117.
  • CCD Charge Coupled Devices
  • the power supply circuit unit 1151 starts the cellular phone 1100 in an operable state by supplying power from the battery pack to each unit.
  • the cellular phone 1100 transmits and receives audio signals, transmits and receives e-mails and image data, and images in various modes such as a voice call mode and a data communication mode based on the control of the main control unit 1150 including CPU, ROM and RAM. Perform various operations such as shooting or data recording.
  • the portable telephone 1100 converts an audio signal collected by the microphone (microphone) 1121 into digital audio data by the audio codec 1159, spread spectrum processes it by the modulation / demodulation circuit unit 1158, and transmits / receives A section 1163 performs digital-to-analog conversion processing and frequency conversion processing.
  • the cellular phone 1100 transmits the transmission signal obtained by the conversion process to a base station (not shown) via the antenna 1114.
  • the transmission signal (voice signal) transmitted to the base station is supplied to the mobile phone of the other party via the public telephone network.
  • the cellular phone 1100 amplifies the reception signal received by the antenna 1114 by the transmission / reception circuit unit 1163, further performs frequency conversion processing and analog-to-digital conversion processing, and the spectrum despreading processing by the modulation / demodulation circuit unit 1158. And converted into an analog voice signal by the voice codec 1159.
  • the cellular phone 1100 outputs the analog audio signal obtained by the conversion from the speaker 1117.
  • the cellular phone 1100 receives text data of the e-mail input by the operation of the operation key 1119 in the operation input control unit 1152.
  • the portable telephone 1100 processes the text data in the main control unit 1150, and causes the liquid crystal display 1118 to display the text data as an image through the LCD control unit 1155.
  • the mobile phone 1100 causes the main control unit 1150 to generate e-mail data based on the text data accepted by the operation input control unit 1152 and the user's instruction.
  • the portable telephone 1100 performs spread spectrum processing on the electronic mail data in the modulation / demodulation circuit unit 1158, and performs digital / analog conversion processing and frequency conversion processing in the transmission / reception circuit unit 1163.
  • the cellular phone 1100 transmits the transmission signal obtained by the conversion process to a base station (not shown) via the antenna 1114.
  • the transmission signal (e-mail) transmitted to the base station is supplied to a predetermined destination via a network, a mail server, and the like.
  • the cellular phone 1100 receives a signal transmitted from the base station via the antenna 1114 by the transmission / reception circuit unit 1163, amplifies it, and further performs frequency conversion processing and Perform analog-to-digital conversion processing.
  • the cellular phone 1100 despreads the received signal by the modulation / demodulation circuit unit 1158 to restore the original electronic mail data.
  • the portable telephone 1100 displays the restored electronic mail data on the liquid crystal display 1118 via the LCD control unit 1155.
  • the portable telephone 1100 can also record (store) the received electronic mail data in the storage unit 1123 via the recording / reproducing unit 1162.
  • the storage unit 1123 is an arbitrary rewritable storage medium.
  • the storage unit 1123 may be, for example, a semiconductor memory such as a RAM or a built-in flash memory, or may be a hard disk, or a removable disk such as a magnetic disk, a magneto-optical disk, an optical disk, a USB memory, or a memory card It may be media. Of course, it may be something other than these.
  • the cellular phone 1100 when transmitting image data in the data communication mode, the cellular phone 1100 generates image data with the CCD camera 1116 by imaging.
  • the CCD camera 1116 has an optical device such as a lens or an aperture and a CCD as a photoelectric conversion element, picks up an object, converts the intensity of received light into an electrical signal, and generates image data of the image of the object.
  • the CCD camera 1116 encodes the image data with the image encoder 1153 via the camera I / F unit 1154 and converts it into encoded image data.
  • the cellular phone 1100 uses the above-described image encoding device 100, image encoding device 300, or image encoding device 400 as an image encoder 1153 that performs such processing.
  • the image encoder 1153 performs a motion search using a reduced image when the processing target macroblock is an extended macroblock.
  • the image encoder 1153 can further improve the coding efficiency while suppressing an increase in load.
  • the image coding apparatus 400 also performs motion compensation using a reduced image. Therefore, the image encoder 1153 can further improve the coding efficiency by using the image coding apparatus 400.
  • the portable telephone 1100 analog-digital converts the voice collected by the microphone (microphone) 1121 during imaging by the CCD camera 1116 in the audio codec 1159, and further encodes it.
  • the cellular phone 1100 multiplexes the encoded image data supplied from the image encoder 1153 and the digital audio data supplied from the audio codec 1159 according to a predetermined scheme in the demultiplexer 1157.
  • the cellular phone 1100 performs spread spectrum processing on the multiplexed data obtained as a result by the modulation / demodulation circuit unit 1158, and performs digital / analog conversion processing and frequency conversion processing by the transmission / reception circuit unit 1163.
  • the cellular phone 1100 transmits the transmission signal obtained by the conversion process to a base station (not shown) via the antenna 1114.
  • the transmission signal (image data) transmitted to the base station is supplied to the other party of communication via a network or the like.
  • the cellular phone 1100 can also display the image data generated by the CCD camera 1116 on the liquid crystal display 1118 via the LCD control unit 1155 without passing through the image encoder 1153.
  • the cellular phone 1100 transmits the signal transmitted from the base station to the transmitting / receiving circuit portion 1163 via the antenna 1114. Receive, amplify, and perform frequency conversion and analog-to-digital conversion. The cellular phone 1100 despreads the received signal by the modulation / demodulation circuit unit 1158 to restore the original multiplexed data. The portable telephone 1100 separates the multiplexed data in the multiplex separation unit 1157 and divides it into encoded image data and audio data.
  • the cellular phone 1100 generates reproduction moving image data by decoding the encoded image data in the image decoder 1156, and causes the liquid crystal display 1118 to display this via the LCD control unit 1155. Thereby, for example, moving image data included in a moving image file linked to the simplified home page is displayed on the liquid crystal display 1118.
  • the cellular phone 1100 uses the above-described image decoding apparatus 500 as the image decoder 1156 that performs such processing. That is, as in the case of the image decoding device 500, the image decoder 1156 can inter-code the encoded data of the difference information generated using the reduced image using the reduced image. Therefore, the image decoder 1156 can further improve the coding efficiency while suppressing an increase in load on the image coding device 400.
  • the portable telephone 1100 simultaneously converts digital audio data into an analog audio signal in the audio codec 1159 and causes the speaker 1117 to output the analog audio signal.
  • audio data included in a moving image file linked to the simple homepage is reproduced.
  • the cellular phone 1100 can also record (store) the data linked to the received simple home page or the like in the storage unit 1123 via the recording / reproducing unit 1162. .
  • the main control unit 1150 can analyze the two-dimensional code obtained by the CCD camera 1116 by the main control unit 1150 and obtain the information recorded in the two-dimensional code.
  • the cellular phone 1100 can communicate with an external device by infrared light through the infrared communication unit 1181.
  • the cellular phone 1100 uses, for example, the image encoding device 100, the image encoding device 300, or the image encoding device 400 as the image encoder 1153 to encode and transmit, for example, image data generated by the CCD camera 1116. Encoding efficiency can be improved while suppressing an increase in load, and real-time processing can be realized at lower cost.
  • the mobile phone 1100 suppresses the increase in load, for example, the coding efficiency of data (coded data) of a moving image file linked to a simple homepage or the like. While it can be improved, real-time processing can be realized at lower cost.
  • CMOS image sensor CMOS image sensor
  • CMOS complementary metal oxide semiconductor
  • the mobile phone 1100 has been described above, for example, a PDA (Personal Digital Assistants), a smart phone, a UMPC (Ultra Mobile Personal Computer), a netbook, a notebook personal computer, etc.
  • the image coding apparatus and the image decoding apparatus to which the present invention is applied can be applied to any apparatus as long as the apparatus has a communication function, as in the case of the mobile phone 1100.
  • FIG. 27 is a block diagram showing a main configuration example of a hard disk recorder using the image encoding device and the image decoding device to which the present invention is applied.
  • a hard disk recorder (HDD recorder) 1200 shown in FIG. 27 receives audio data and video data of a broadcast program included in a broadcast wave signal (television signal) transmitted by a satellite, a ground antenna, etc., received by a tuner. And an apparatus for storing the stored data in a built-in hard disk and providing the stored data to the user at a timing according to the user's instruction.
  • a broadcast wave signal television signal
  • the hard disk recorder 1200 can extract, for example, audio data and video data from the broadcast wave signal, decode them appropriately, and store them in a built-in hard disk.
  • the hard disk recorder 1200 can also acquire audio data and video data from another device via a network, decode these as appropriate, and store them in a built-in hard disk, for example.
  • the hard disk recorder 1200 decodes, for example, audio data or video data recorded in the built-in hard disk and supplies it to the monitor 1260 to display the image on the screen of the monitor 1260. Can be output. Also, the hard disk recorder 1200 decodes, for example, audio data and video data extracted from a broadcast wave signal acquired via a tuner, or audio data and video data acquired from another device via a network. The image can be supplied to the monitor 1260 and the image can be displayed on the screen of the monitor 1260 and the sound can be output from the speaker of the monitor 1260.
  • the hard disk recorder 1200 has a receiver 1221, a demodulator 1222, a demultiplexer 1223, an audio decoder 1224, a video decoder 1225, and a recorder control unit 1226.
  • the hard disk recorder 1200 further includes an EPG data memory 1227, a program memory 1228, a work memory 1229, a display converter 1230, an on screen display (OSD) control unit 1231, a display control unit 1232, a recording and reproducing unit 1233, a D / A converter 1234, And a communication unit 1235.
  • EPG data memory 1227 a program memory 1228, a work memory 1229, a display converter 1230, an on screen display (OSD) control unit 1231, a display control unit 1232, a recording and reproducing unit 1233, a D / A converter 1234, And a communication unit 1235.
  • OSD on screen display
  • the display converter 1230 also includes a video encoder 1241.
  • the recording / reproducing unit 1233 has an encoder 1251 and a decoder 1252.
  • the receiving unit 1221 receives an infrared signal from a remote controller (not shown), converts the signal into an electrical signal, and outputs the signal to the recorder control unit 1226.
  • the recorder control unit 1226 is, for example, a microprocessor or the like, and executes various processes in accordance with a program stored in the program memory 1228. At this time, the recorder control unit 1226 uses the work memory 1229 as necessary.
  • the communication unit 1235 is connected to a network and performs communication processing with another device via the network.
  • the communication unit 1235 is controlled by the recorder control unit 1226, communicates with a tuner (not shown), and mainly outputs a channel selection control signal to the tuner.
  • the demodulation unit 1222 demodulates the signal supplied from the tuner and outputs the signal to the demultiplexer 1223.
  • the demultiplexer 1223 separates the data supplied from the demodulation unit 1222 into audio data, video data, and EPG data, and outputs the data to the audio decoder 1224, the video decoder 1225, or the recorder control unit 1226, respectively.
  • the audio decoder 1224 decodes the input audio data and outputs the decoded audio data to the recording / reproducing unit 1233.
  • the video decoder 1225 decodes the input video data and outputs the decoded video data to the display converter 1230.
  • the recorder control unit 1226 supplies the input EPG data to the EPG data memory 1227 for storage.
  • the display converter 1230 encodes the video data supplied from the video decoder 1225 or the recorder control unit 1226 into video data of, for example, a National Television Standards Committee (NTSC) system by the video encoder 1241 and outputs the video data to the recording / reproducing unit 1233.
  • the display converter 1230 converts the screen size of the video data supplied from the video decoder 1225 or the recorder control unit 1226 into a size corresponding to the size of the monitor 1260 and converts the video data into NTSC video data by the video encoder 1241. , And converts it into an analog signal, and outputs it to the display control unit 1232.
  • the display control unit 1232 superimposes the OSD signal output from the OSD (On Screen Display) control unit 1231 on the video signal input from the display converter 1230 under the control of the recorder control unit 1226, and displays it on the display of the monitor 1260. Output and display.
  • OSD On Screen Display
  • the audio data output from the audio decoder 1224 is also converted to an analog signal by the D / A converter 1234 and supplied to the monitor 1260.
  • the monitor 1260 outputs this audio signal from the built-in speaker.
  • the recording / reproducing unit 1233 has a hard disk as a storage medium for recording video data, audio data and the like.
  • the recording / reproducing unit 1233 encodes, for example, the audio data supplied from the audio decoder 1224 by the encoder 1251. Also, the recording / reproducing unit 1233 encodes the video data supplied from the video encoder 1241 of the display converter 1230 by the encoder 1251. The recording / reproducing unit 1233 combines the encoded data of the audio data and the encoded data of the video data by the multiplexer. The recording / reproducing unit 1233 channel-codes and amplifies the synthesized data, and writes the data to the hard disk via the recording head.
  • the recording and reproducing unit 1233 reproduces and amplifies the data recorded on the hard disk via the reproducing head, and separates the data into audio data and video data by the demultiplexer.
  • the recording / reproducing unit 1233 decodes the audio data and the video data by the decoder 1252.
  • the recording / reproducing unit 1233 D / A converts the decoded audio data, and outputs the converted data to a speaker of the monitor 1260. Also, the recording / reproducing unit 1233 D / A converts the decoded video data, and outputs it to the display of the monitor 1260.
  • the recorder control unit 1226 reads the latest EPG data from the EPG data memory 1227 based on the user instruction indicated by the infrared signal from the remote controller received via the reception unit 1221, and supplies it to the OSD control unit 1231. Do.
  • the OSD control unit 1231 generates image data corresponding to the input EPG data, and outputs the image data to the display control unit 1232.
  • the display control unit 1232 outputs the video data input from the OSD control unit 1231 to the display of the monitor 1260 for display. As a result, an EPG (Electronic Program Guide) is displayed on the display of the monitor 1260.
  • EPG Electronic Program Guide
  • the hard disk recorder 1200 can also acquire various data such as video data, audio data, or EPG data supplied from another device via a network such as the Internet.
  • the communication unit 1235 is controlled by the recorder control unit 1226, acquires encoded data such as video data, audio data, and EPG data transmitted from another device via the network, and supplies the encoded data to the recorder control unit 1226. Do.
  • the recorder control unit 1226 supplies, for example, encoded data of the acquired video data and audio data to the recording and reproduction unit 1233 and causes the hard disk to store the data. At this time, the recorder control unit 1226 and the recording / reproducing unit 1233 may perform processing such as re-encoding as needed.
  • the recorder control unit 1226 decodes encoded data of the acquired video data and audio data, and supplies the obtained video data to the display converter 1230.
  • the display converter 1230 processes the video data supplied from the recorder control unit 1226 as well as the video data supplied from the video decoder 1225, supplies it to the monitor 1260 via the display control unit 1232 and displays the image. .
  • the recorder control unit 1226 may supply the decoded audio data to the monitor 1260 via the D / A converter 1234 and output the sound from the speaker.
  • the recorder control unit 1226 decodes the acquired encoded data of the EPG data, and supplies the decoded EPG data to the EPG data memory 1227.
  • the hard disk recorder 1200 as described above uses the image decoding apparatus 500 as a decoder incorporated in the video decoder 1225, the decoder 1252, and the recorder control unit 1226. That is, as in the case of the image decoding apparatus 500, the video decoder 1225, the decoder 1252, and the decoder incorporated in the recorder control unit 1226 encode the encoded data encoded using the reduced image by the image encoding apparatus 400. , Inter-coding using a reduced image. Therefore, the video decoder 1225, the decoder 1252, and the decoder incorporated in the recorder control unit 1226 can further improve the coding efficiency while suppressing an increase in load.
  • the hard disk recorder 1200 increases the load of encoding efficiency of video data (coded data) received by the tuner and the communication unit 1235 and video data (coded data) reproduced by the recording / reproducing unit 1233. It is possible to improve while suppressing, and real-time processing can be realized at lower cost.
  • the hard disk recorder 1200 uses the image coding device 100, the image coding device 300, or the image coding device 400 as the encoder 1251. Therefore, as in the case of the image coding device 100, the image coding device 300, or the image coding device 400, the encoder 1251 performs motion search using the reduced image. By doing this, the encoder 1251 can further improve the coding efficiency while suppressing an increase in load.
  • the hard disk recorder 1200 can improve the coding efficiency of encoded data to be recorded on the hard disk while suppressing an increase in load, and can realize real-time processing at lower cost.
  • the hard disk recorder 1200 for recording video data and audio data on a hard disk has been described, but of course, any recording medium may be used.
  • a recording medium other than a hard disk such as a flash memory, an optical disk, or a video tape
  • an image encoding device and an image decoding device to which the present invention is applied can apply.
  • FIG. 28 is a block diagram showing a principal configuration example of a camera using the image encoding device and the image decoding device to which the present invention is applied.
  • the camera 1300 shown in FIG. 28 images a subject, displays an image of the subject on the LCD 1316, or records it as image data in the recording medium 1333.
  • the lens block 1311 causes light (that is, an image of a subject) to be incident on the CCD / CMOS 1312.
  • the CCD / CMOS 1312 is an image sensor using a CCD or CMOS, converts the intensity of the received light into an electric signal, and supplies the electric signal to the camera signal processing unit 1313.
  • the camera signal processing unit 1313 converts the electric signal supplied from the CCD / CMOS 1312 into Y, Cr, Cb color difference signals, and supplies the color difference signals to the image signal processing unit 1314.
  • the image signal processing unit 1314 performs predetermined image processing on the image signal supplied from the camera signal processing unit 1313 under the control of the controller 1321, and encodes the image signal with the encoder 1341.
  • the image signal processing unit 1314 supplies the encoded data generated by encoding the image signal to the decoder 1315. Furthermore, the image signal processing unit 1314 obtains display data generated in the on-screen display (OSD) 1320 and supplies the display data to the decoder 1315.
  • OSD on-screen display
  • the camera signal processing unit 1313 appropriately uses a dynamic random access memory (DRAM) 1318 connected via the bus 1317, and as necessary, image data and a code obtained by encoding the image data. Data is held in the DRAM 1318.
  • DRAM dynamic random access memory
  • the decoder 1315 decodes the encoded data supplied from the image signal processing unit 1314, and supplies the obtained image data (decoded image data) to the LCD 1316. Also, the decoder 1315 supplies the display data supplied from the image signal processing unit 1314 to the LCD 1316. The LCD 1316 appropriately combines the image of the decoded image data supplied from the decoder 1315 and the image of the display data, and displays the combined image.
  • the on-screen display 1320 Under the control of the controller 1321, the on-screen display 1320 outputs display data such as a menu screen or icon consisting of symbols, characters, or figures to the image signal processing unit 1314 via the bus 1317.
  • the controller 1321 executes various processing based on a signal indicating the content instructed by the user using the operation unit 1322, and also, via the bus 1317, an image signal processing unit 1314, a DRAM 1318, an external interface 1319, an on-screen display It controls 1320 and the media drive 1323 and the like.
  • the FLASH ROM 1324 stores programs, data, and the like necessary for the controller 1321 to execute various processes.
  • the controller 1321 can encode image data stored in the DRAM 1318 or decode encoded data stored in the DRAM 1318 instead of the image signal processing unit 1314 or the decoder 1315.
  • the controller 1321 may perform encoding / decoding processing by the same method as the encoding / decoding method of the image signal processing unit 1314 or the decoder 1315, or the image signal processing unit 1314 or the decoder 1315 is compatible.
  • the encoding / decoding process may be performed by a method that is not performed.
  • the controller 1321 reads image data from the DRAM 1318 and supplies it to the printer 1334 connected to the external interface 1319 via the bus 1317. Print it.
  • the controller 1321 reads encoded data from the DRAM 1318 and supplies it to the recording medium 1333 attached to the media drive 1323 via the bus 1317.
  • the recording medium 1333 is, for example, any readable / writable removable medium such as a magnetic disk, a magneto-optical disk, an optical disk, or a semiconductor memory.
  • the recording medium 1333 is, of course, optional as a removable medium, and may be a tape device, a disk, or a memory card. Of course, it may be a noncontact IC card or the like.
  • media drive 1323 and the recording medium 1333 may be integrated, and may be configured by a non-portable storage medium such as, for example, a built-in hard disk drive or a solid state drive (SSD).
  • SSD solid state drive
  • the external interface 1319 includes, for example, a USB input / output terminal, and is connected to the printer 1334 when printing an image.
  • a drive 1331 is connected to the external interface 1319 as necessary, and removable media 1332 such as a magnetic disk, an optical disk, or a magneto-optical disk are appropriately mounted, and a computer program read from them is as necessary. And installed in the FLASH ROM 1324.
  • the external interface 1319 has a network interface connected to a predetermined network such as a LAN or the Internet.
  • the controller 1321 can read encoded data from the DRAM 1318 according to an instruction from the operation unit 1322, for example, and can supply it from the external interface 1319 to other devices connected via a network. Also, the controller 1321 acquires encoded data and image data supplied from another device via the network via the external interface 1319, holds the data in the DRAM 1318, and supplies it to the image signal processing unit 1314. Can be
  • the camera 1300 as described above uses the image decoding apparatus 500 as the decoder 1315. That is, as in the case of the image decoding device 500, the decoder 1315 inter-codes the encoded data generated using the reduced image and supplied from the image encoding device 400 using the reduced image. Therefore, the decoder 1315 can further improve the coding efficiency while suppressing an increase in load.
  • the camera 1300 can encode, for example, encoded data of image data generated by the CCD / CMOS 1312, encoded data of video data read from the DRAM 1318 or the recording medium 1333, or encoded data of video data acquired via a network. Can be improved while suppressing an increase in load, and real-time processing can be realized at lower cost.
  • the camera 1300 uses the image coding device 100, the image coding device 300, or the image coding device 400 as the encoder 1341.
  • the encoder 1341 performs motion search using the reduced image, as in the case of these image coding devices. By doing this, the encoder 1341 can further improve the coding efficiency while suppressing an increase in load.
  • the camera 1300 can improve the encoding efficiency of encoded data to be recorded in, for example, the DRAM 1318 or the recording medium 1333 or encoded data to be provided to another device while suppressing an increase in load, and real time Processing can be realized at lower cost.
  • the decoding method of the image decoding apparatus 500 may be applied to the decoding process performed by the controller 1321.
  • the encoding method of the image encoding device 100, the image encoding device 300, and the image encoding device 400 may be applied to the encoding process performed by the controller 1321.
  • the image data captured by the camera 1300 may be a moving image or a still image.
  • the image coding apparatus and the image decoding apparatus to which the present invention is applied can be applied to apparatuses and systems other than the above-described apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

本発明は、負荷の増大を抑制しながら、符号化効率をより向上させることができるようにする画像処理装置および方法に関する。 例えば、AVCで使用される16×16画素以下のマクロブロックを符号化処理対象とする場合、動き探索・補償部115は、縮小されていないオリジナルのサイズの画像を用いて動き探索を行う。また、例えば、16×16画素よりも大きな拡張マクロブロックを符号化処理対象とする場合、動き探索・補償部115は、縮小画像を用いて動き探索を行う。本発明は、例えば、画像処理装置に適用することができる。

Description

画像処理装置および方法
 本発明は、画像処理装置および方法に関し、特に、負荷の増大を抑制しながら、符号化効率を向上させることができるようにした画像処理装置および方法に関する。
 近年、画像情報をデジタルとして取り扱い、その際、効率の高い情報の伝送、蓄積を目的とし、画像情報特有の冗長性を利用して、離散コサイン変換等の直交変換と動き補償により圧縮するMPEG(Moving Picture Experts Group)などの方式に準拠した装置が、放送局などの情報配信、及び一般家庭における情報受信の双方において普及しつつある。
 特に、MPEG2(ISO(International Organization for Standardization)/IEC(International Electrotechnical Commission) 13818-2)は、汎用画像符号化方式として定義されており、飛び越し走査画像及び順次走査画像の双方、並びに標準解像度画像及び高精細画像を網羅する標準で、プロフェッショナル用途及びコンシューマ用途の広範なアプリケーションに現在広く用いられている。MPEG2圧縮方式を用いることにより、例えば720×480画素を持つ標準解像度の飛び越し走査画像であれば4~8Mbps、1920×1088画素を持つ高解像度の飛び越し走査画像であれば18~22Mbpsの符号量(ビットレート)を割り当てることで、高い圧縮率と良好な画質の実現が可能である。
 MPEG2は主として放送用に適合する高画質符号化を対象としていたが、MPEG1より低い符号量(ビットレート)、つまりより高い圧縮率の符号化方式には対応していなかった。携帯端末の普及により、今後そのような符号化方式のニーズは高まると思われ、これに対応してMPEG4符号化方式の標準化が行われた。画像符号化方式に関しては、1998年12月にISO/IEC 14496-2としてその規格が国際標準に承認された。
 更に、近年、当初テレビ会議用の画像符号化を目的として、H.26L (ITU-T(International Telecommunication Union Telecommunication Standardization Sector) Q6/16 VCEG(Video Coding Expert Group))という標準の規格化が進んでいる。H.26LはMPEG2やMPEG4といった従来の符号化方式に比べ、その符号化、復号化により多くの演算量が要求されるものの、より高い符号化効率が実現されることが知られている。また、現在、MPEG4の活動の一環として、このH.26Lをベースに、H.26Lではサポートされない機能をも取り入れ、より高い符号化効率を実現する標準化がJoint Model of Enhanced-Compression Video Codingとして行われている。
 標準化のスケジュールとしては、2003年3月にはH.264及びMPEG-4 Part10 (Advanced Video Coding、以下AVCと記す)という名の元に国際標準となった。
 更に、その拡張として、RGBや4:2:2、4:4:4といった、業務用に必要な符号化ツールや、MPEG2で規定されていた8×8DCTや量子化マトリクスをも含んだFRExt(Fidelity Range Extension)の標準化が2005年2月に完了し、これにより、AVCを用いて、映画に含まれるフィルムノイズをも良好に表現することが可能な符号化方式となって、Blu-Ray Disc等の幅広いアプリケーションに用いられる運びとなった。
 しかしながら、昨今、ハイビジョン画像の4倍の、4096×2048画素程度の画像を圧縮したい、或いは、インターネットのような、限られた伝送容量の環境において、ハイビジョン画像を配信したいといった、更なる高圧縮率符号化に対するニーズが高まっている。このため、先述の、ITU-T傘下のVCEGにおいて、符号化効率の改善に関する検討が継続され行なわれている。
 ところで、これでまでの画像符号化方式である、MPEG1、MPEG2、およびITU-T H.264、MPEG4-AVCにおける画像符号化の際の画像の分割単位(符号化処理単位)であるマクロブロックの画素サイズはすべて16×16画素であった。一方、非特許文献1文献によると、次世代の画像符号化規格の要素技術として、マクロブロックの水平および垂直方向の画素数を拡張する提案がなされている。この提案によるとMPEG1、MPEG2、およびITU-T H.264、MPEG4-AVC等で規定されている16×16画素のマクロブロックの画素サイズのほかに、32×32画素、64×64画素からなるマクロブロックを使用することも提案されている。これは、将来的に符号化する画像の水平・垂直方向の画素サイズが増大することが予想されるが、その場合に、動きの似通った領域において、より大きな領域を単位として動き補償および直交変換を行うことで符号化効率を向上させることを目的としている。
 動き探索における評価指標として、第1の方法として、例えば、対象画像と参照画像の差分絶対値和(以下SADと称する)の最少ポイントを探索するブロックマッチング方式が考えられる。例えば、図1のAに示されるように、16×16画素より大きなサイズの拡張マクロブロック(EBS(Extended Block Size))を16×16画素の領域に分割し、各領域に対して16×16画素サイズのマクロブロックの場合と同様に探索を行う。この方法で例えば64×64画素を探索する場合、既存の16×16画素を探索する能力をもつ装置を時分割で16回駆動すればよい。
 また、第2の方法として、例えば図1のBに示されるように、マクロブロック全体(例えば64×64画素)を1つの領域として、SADを演算する方法も考えられる。
Peisong Chenn,Yan Ye,Marta Karczewicz,"Video Coding Using Extended Block Sizes", COM16-C123-E, Qualcomm Inc
 しかしながら、第1の方法の場合、64×64画素のマクロブロックが4×4画素毎に分割され、各ブロックに対して探索が行われるので、左上端のブロックの探索から右下端のブロックの探索が終わるまで、全サーチポイントの結果を16×16画素毎に加算しながら保持しなければならなかった。したがって、膨大な量のデータを保持しなければならず、符号化処理に必要なリソースが増大する恐れがあった。また、16マクロブロック単位で遅延が発生してしまう恐れがあった。
 また、第2の方法を実現させるためには、64×64画素分のSADを演算する処理能力が必要であった。
 本発明は、このような状況に鑑みてなされたものであり、符号化処理の負荷の増大を抑制しながら符号化効率を向上させることができるようにすることを目的とする。
 本発明の一側面は、部分領域毎に符号化される画像の、前記部分領域の画像の解像度の大きさを判定する解像度判定手段と、前記部分領域について、前記解像度判定手段により判定された前記解像度の大きさに応じた解像度の前記部分領域の画像を用いて動き探索を行う動き探索手段とを備える画像処理装置である。
 前記部分領域の画像の解像度を変換する解像度変換手段と、前記解像度判定手段により、前記部分領域の画像の解像度が所定の閾値より大きいと判定された場合、前記解像度変換手段により解像度が変換された前記部分領域の画像を選択し、前記部分領域の画像の解像度が前記閾値以下であると判定された場合、前記解像度変換手段により解像度が変換されていない前記部分領域の画像を選択する選択手段とをさらに備え、前記動き探索手段は、前記選択手段により選択された前記部分領域の画像を用いて動き探索を行うことができる。
 前記閾値は、既存の符号化規格により規定される部分領域の解像度の最大値であるようにすることができる。
 前記閾値は、16×16画素であるようにすることができる。
 前記解像度変換手段は、前記部分領域の画像の解像度を複数の解像度に変換し、前記解像度判定手段は、複数の閾値に対する前記部分領域の画像の解像度の大きさを判定し、前記選択手段は、前記解像度判定手段による前記部分領域の画像の解像度の大きさと前記複数の閾値との大小関係に応じて、前記解像度変換手段により解像度が変換されて得られた前記複数の解像度の前記部分領域の画像、並びに、前記解像度変換前の前記部分領域の画像のうち、いずれか1つを選択することができる。
 前記動き探索手段の動き探索により検出された動きベクトルの精度を、前記解像度変換手段による変換前の前記部分領域の画像の解像度における精度に変換する精度変換手段をさらに備えることができる。
 前記精度変換手段により精度が変換された前記動きベクトル、および、前記解像度変換手段による変換前の前記部分領域の画像を用いて動き補償を行い、予測画像を生成する動き補償手段をさらに備えることができる。
 前記動き補償手段により生成された前記予測画像を用いて、前記部分領域の画像を符号化する符号化手段をさらに備えることができる。
 前記動き探索手段の動き探索により検出された動きベクトル、および、前記選択手段により選択された前記部分領域の画像を用いて動き補償を行い、予測画像を生成する動き補償手段をさらに備えることができる。
 前記動き補償手段により生成された前記予測画像を用いて、前記部分領域の画像を符号化する符号化手段をさらに備えることができる。
 符号化される前記部分領域の画像の解像度を変換する第1の解像度変換手段と、前記解像度判定手段により、符号化される前記部分領域の画像の解像度が所定の閾値より大きいと判定された場合、前記第1の解像度変換手段により解像度が変換された前記部分領域の画像を選択し、符号化される前記部分領域の画像の解像度が前記閾値以下であると判定された場合、前記第1の解像度変換手段により解像度が変換されていない、符号化される前記部分領域の画像を選択する第1の選択手段と、符号化された前記部分領域の画像が復号されて得られた前記部分領域の復号画像の解像度を変換する第2の解像度変換手段と、前記解像度判定手段により、符号化される前記部分領域の画像の解像度が所定の閾値より大きいと判定された場合、前記第2の解像度変換手段により解像度が変換された前記部分領域の復号画像を選択し、符号化される前記部分領域の画像の解像度が前記閾値以下であると判定された場合、前記第2の解像度変換手段により解像度が変換されていない前記部分領域の復号画像を選択する第2の選択手段とをさらに備え、前記動き探索手段は、前記第1の選択手段により選択された前記部分領域の画像を入力画像として用い、前記第2の選択手段により選択された前記部分領域の復号画像を参照画像として用い、動き探索を行うことができる。
 前記動き探索手段は、前記部分領域の画像を用いて、複数の所定の精度で動き探索を行うことができる。
 本発明の一側面は、また、画像処理装置の画像処理方法であって、解像度判定手段が、部分領域毎に符号化される画像の、前記部分領域の画像の解像度の大きさを判定し、動き探索手段が、前記部分領域について、判定された前記解像度の大きさに応じた解像度の前記部分領域の画像を用いて動き探索を行う画像処理方法である。
 本発明の他の側面は、画像が部分領域毎に、解像度を第1の解像度から第2の解像度に変換され、符号化されて得られた符号化データを前記部分領域毎に復号する復号手段と、前記復号手段により復号されて得られる前記第2の解像度の前記部分領域の画像を用いて動き補償を行い、前記復号手段による前記符号化データの復号に用いられる、前記第2の解像度の予測画像を生成する動き補償手段とを備える画像処理装置である。
 前記復号手段により復号されて得られる前記部分領域の画像の解像度を前記第1の解像度に変換する第1の解像度変換手段と、前記第1の解像度変換手段により変換されて得られた前記第1の解像度の前記部分領域の画像を、前記第2の解像度に変換する第2の解像度変換手段とをさらに備え、前記動き補償手段は、前記第2の解像度変換手段により変換されて得られる前記第2の解像度の前記部分領域の画像を用いて動き補償を行うことができる。
 本発明の他の側面は、また、画像処理装置の画像処理方法であって、復号手段が、画像が部分領域毎に、解像度を第1の解像度から第2の解像度に変換され、符号化されて得られた符号化データを前記部分領域毎に復号し、動き補償手段が、復号されて得られる前記第2の解像度の前記部分領域の画像を用いて動き補償を行い、前記符号化データの復号に用いられる、前記第2の解像度の予測画像を生成する画像処理方法である。
 本発明の一側面においては、部分領域毎に符号化される画像の、部分領域の画像の解像度の大きさが判定され、部分領域について、判定された解像度の大きさに応じた解像度の部分領域の画像を用いて動き探索が行われる。
 本発明の他の側面においては、画像が部分領域毎に、解像度が第1の解像度から第2の解像度に変換され、符号化されて得られた符号化データが部分領域毎に復号され、復号されて得られる第2の解像度の部分領域の画像を用いて動き補償が行われ、符号化データの復号に用いられる、第2の解像度の予測画像が生成される。
 本発明によれば、画像データの符号化、若しくは、符号化された画像データの復号を行うことができる。特に、負荷の増大を抑制しながら、符号化効率を向上させることができる。
従来の動き探索の方法の例を説明する図である。 本発明を適用した画像符号化装置の主な構成例を示すブロック図である。 マクロブロックの例を示す図である。 マクロブロックの縮小の様子の例を説明する図である。 動き探索補償部の構成例を説明するブロック図である。 符号化処理の流れの例を説明するフローチャートである。 予測処理の流れの例を説明するフローチャートである。 インター動き予測処理の流れの例を説明するフローチャートである。 動き探索処理と動き補償処理の流れの様子の例を説明するタイミングチャートである。 インター動き予測処理の流れの他の例を説明するフローチャートである。 本発明を適用した画像符号化装置の他の構成例を示すブロック図である。 マクロブロックの例を示す図である。 マクロブロックの縮小の様子の、他の例を説明する図である。 動き探索補償部の他の構成例を説明するブロック図である。 インター動き予測処理の流れの、さらに他の例を説明するフローチャートである。 動き探索処理と動き補償処理の流れの様子の例を説明するタイミングチャートである。 本発明を適用した画像符号化装置のさらに他の構成例を示すブロック図である。 動き探索補償部の、さらに他の構成例を説明するブロック図である。 インター動き予測処理の流れの、さらに他の例を説明するフローチャートである。 本発明を適用した画像復号装置の主な構成例を示すブロック図である。 復号処理の流れの例を説明するフローチャートである。 予測処理の流れの例を説明するフローチャートである。 インター動き予測処理の流れの例を説明するフローチャートである。 本発明を適用したパーソナルコンピュータの主な構成例を示すブロック図である。 本発明を適用したテレビジョン受像機の主な構成例を示すブロック図である。 本発明を適用した携帯電話機の主な構成例を示すブロック図である。 本発明を適用したハードディスクレコーダの主な構成例を示すブロック図である。 本発明を適用したカメラの主な構成例を示すブロック図である。
 以下、発明を実施するための形態(以下実施の形態とする)について説明する。なお、説明は以下の順序で行う。
1.第1の実施の形態(画像符号化装置)
2.第2の実施の形態(画像符号化装置)
3.第3の実施の形態(画像符号化装置)
4.第4の実施の形態(画像復号装置)
5.第5の実施の形態(パーソナルコンピュータ)
6.第6の実施の形態(テレビジョン受像機)
7.第7の実施の形態(携帯電話機)
8.第8の実施の形態(ハードディスクレコーダ)
9.第9の実施の形態(カメラ)
<1.第1の実施の形態>
[画像符号化装置]
 図2は、本発明を適用した画像処理装置としての画像符号化装置の一実施の形態の構成を表している。
 図2に示される画像符号化装置100は、例えば、H.264及びMPEG(Moving Picture Experts Group)4 Part10(AVC(Advanced Video Coding))(以下H.264/AVCと称する)方式で画像を圧縮符号化する符号化装置である。ただし、画像符号化装置100は、拡張マクロブロックのインター符号化を行う場合、マクロブロックの縮小画像を用いて動き探索を行う。
 図2の例において、画像符号化装置100は、A/D(Analog / Digital)変換部101、画面並べ替えバッファ102、演算部103、直交変換部104、量子化部105、可逆符号化部106、および蓄積バッファ107を有する。また、画像符号化装置100は、逆量子化部108、逆直交変換部109、演算部110、デブロックフィルタ111、フレームメモリ112、選択部113、イントラ予測部114、動き探索・補償部115、選択部116、およびレート制御部117を有する。これらの処理部は、H.264/AVC規格に基づく画像符号化装置の処理部と同様である。
 画像符号化装置100は、さらに、縮小部121、縮小画面並べ替えバッファ122、選択部123、縮小部124、縮小フレームメモリ125、および選択部127を有する。
 フレームメモリ112乃至選択部116、並びに、縮小部121乃至選択部127は、予測画像を生成する予測画像生成部120として構成される。
 A/D変換部101は、入力された画像データをA/D変換し、画面並べ替えバッファ102に出力し、記憶させる。また、A/D変換部101は、A/D変換した画像データを縮小部121にも供給する。
 画面並べ替えバッファ102は、記憶した表示の順番のフレームの画像を、GOP(Group of Picture)構造に応じて、符号化のためのフレームの順番に並べ替える。画面並べ替えバッファ102は、フレームの順番を並び替えた画像を、演算部103およびイントラ予測部114に供給する。また、画面並べ替えバッファ102は、フレームの順番を並び替えた画像を、選択部123を介して動き探索・補償部115にも供給する。
 演算部103は、画面並べ替えバッファ102から読み出された画像から、選択部116を介してイントラ予測部114若しくは動き探索・補償部115から供給される予測画像を減算し、その差分情報を直交変換部104に出力する。
 例えば、イントラ符号化が行われる画像の場合、演算部103は、画面並べ替えバッファ102から読み出された画像から、イントラ予測部114から供給される予測画像を減算する。また、例えば、インター符号化が行われる画像の場合、演算部103は、画面並べ替えバッファ102から読み出された画像から、動き探索・補償部115から供給される予測画像を減算する。
 直交変換部104は、演算部103から供給される差分情報に対して、離散コサイン変換、カルーネン・レーベ変換等の直交変換を施し、その変換係数を量子化部105に供給する。量子化部105は、直交変換部104が出力する変換係数を量子化する。量子化部105は、量子化された変換係数を可逆符号化部106に供給する。
 可逆符号化部106は、その量子化された変換係数に対して、可変長符号化、算術符号化等の可逆符号化を施す。
 可逆符号化部106は、イントラ予測を示す情報などをイントラ予測部114から取得し、インター予測モードを示す情報や動きベクトル情報などを動き探索・補償部115から取得する。なお、イントラ予測(画面内予測)を示す情報は、以下、イントラ予測モード情報とも称する。また、インター予測(画面間予測)を示す情報モードを示す情報は、以下、インター予測モード情報とも称する。
 可逆符号化部106は、量子化された変換係数を符号化するとともに、フィルタ係数、イントラ予測モード情報、インター予測モード情報、および量子化パラメータなどの各種情報を、符号化データのヘッダ情報の一部とする(多重化する)。可逆符号化部106は、符号化して得られた符号化データを蓄積バッファ107に供給して蓄積させる。
 例えば、可逆符号化部106においては、可変長符号化または算術符号化等の可逆符号化処理が行われる。可変長符号化としては、H.264/AVC方式で定められているCAVLC(Context-Adaptive Variable Length Coding)などがあげられる。算術符号化としては、CABAC(Context-Adaptive Binary Arithmetic Coding)などがあげられる。
 蓄積バッファ107は、可逆符号化部106から供給された符号化データを、一時的に保持し、所定のタイミングにおいて、H.264/AVC方式で符号化された符号化画像として、例えば、後段の図示せぬ記録装置や伝送路などに出力する。
 また、量子化部105において量子化された変換係数は、逆量子化部108にも供給される。逆量子化部108は、その量子化された変換係数を、量子化部105による量子化に対応する方法で逆量子化し、得られた変換係数を、逆直交変換部109に供給する。
 逆直交変換部109は、供給された変換係数を、直交変換部104による直交変換処理に対応する方法で逆直交変換する。逆直交変換された出力(復元された差分情報)は、演算部110に供給される。
 演算部110は、逆直交変換部109より供給された逆直交変換結果、すなわち、復元された差分情報に、選択部116を介してイントラ予測部114若しくは動き探索・補償部115から供給される予測画像を加算し、局部的に復号された画像(復号画像)を得る。
 例えば、差分情報が、イントラ符号化が行われる画像に対応する場合、演算部110は、その差分情報にイントラ予測部114から供給される予測画像を加算する。また、例えば、差分情報が、インター符号化が行われる画像に対応する場合、演算部110は、その差分情報に動き探索・補償部115から供給される予測画像を加算する。
 その加算結果は、デブロックフィルタ111またはフレームメモリ112に供給される。
 デブロックフィルタ111は、適宜デブロックフィルタ処理を行うことにより復号画像のブロック歪を除去するとともに、例えばウィナーフィルタ(Wiener Filter)を用いて適宜ループフィルタ処理を行うことにより画質改善を行う。デブロックフィルタ111は、各画素をクラス分類し、クラスごとに適切なフィルタ処理を施す。デブロックフィルタ111は、そのフィルタ処理結果をフレームメモリ112および縮小部124に供給する。
 フレームメモリ112は、所定のタイミングにおいて、蓄積されている参照画像を、選択部113や選択部126を介してイントラ予測部114または動き探索・補償部115に出力する。
 例えば、イントラ符号化が行われる画像の場合、フレームメモリ112は、参照画像を、選択部113を介してイントラ予測部114に供給する。また、例えば、インター符号化が行われ、かつ、マクロブロックサイズが所定のサイズより小さい場合、フレームメモリ112は、参照画像を、選択部113および選択部126を介して動き探索・補償部115に供給する。
 画像符号化装置100においては、例えば、画面並べ替えバッファ102からのIピクチャ、Bピクチャ、およびPピクチャが、イントラ予測(イントラ処理とも称する)する画像として、イントラ予測部114に供給される。また、画面並べ替えバッファ102から読み出されたBピクチャおよびPピクチャが、インター予測(インター処理とも称する)する画像として、選択部123を介して動き探索・補償部115に供給される。
 選択部113は、フレームメモリ112から供給される参照画像がイントラ符号化を行う画像である場合、その参照画像をイントラ予測部114に供給する。また、選択部113は、フレームメモリ112から供給される参照画像がインター符号化を行う画像である場合、その参照画像を動き探索・補償部115に供給する。
 イントラ予測部114は、画面内の画素値を用いて予測画像を生成するイントラ予測(画面内予測)を行う。イントラ予測部114は、複数のモード(イントラ予測モード)によりイントラ予測を行う。
 イントラ予測部114は、全てのイントラ予測モードで予測画像を生成し、各予測画像を評価し、最適なモードを選択する。イントラ予測部114は、最適なイントラ予測モードを選択すると、その最適なモードで生成された予測画像を、選択部116を介して演算部103に供給する。
 また、上述したように、イントラ予測部114は、採用したイントラ予測モードを示すイントラ予測モード情報等の情報を、適宜可逆符号化部106に供給する。
 動き探索・補償部115は、インター符号化が行われる画像について、選択部123から供給される入力画像と、選択部126から供給される参照画像とを用いて、動きベクトルを探索し、検出された動きベクトルに応じて動き補償処理を行い、予測画像(インター予測画像情報)を生成する。
 動き探索・補償部115は、例えばAVCにより規定される16×16画素のマクロブロックより大きな拡張マクロブロックのように、所定のサイズより大きなマクロブロックについては、入力画像を縮小した縮小画像を用いて動き探索を行う。詳細については後述する。
 動き探索・補償部115は、候補となる全てのインター予測モードのインター予測処理を行い、予測画像を生成する。動き探索・補償部115は、生成された予測画像を、選択部116を介して演算部103や演算部110に供給する。
 また、動き探索・補償部115は、採用されたインター予測モードを示すインター予測モード情報や、算出した動きベクトルを示す動きベクトル情報を可逆符号化部106に供給する。
 選択部116は、イントラ符号化を行う画像の場合、イントラ予測部114の出力を演算部103や演算部110に供給し、インター符号化を行う画像の場合、動き探索・補償部115の出力を演算部103や演算部110に供給する。
 レート制御部117は、蓄積バッファ107に蓄積された圧縮画像に基づいて、オーバーフローあるいはアンダーフローが発生しないように、量子化部105の量子化動作のレートを制御する。
 縮小部121は、A/D変換部101から出力される入力画像のサイズ(解像度)を変換する。例えば、縮小部121は、所定の縮小率Nで縮小する。画像の縮小方法は任意である。例えば、縮小率に応じた割合で代表画素値を抽出するようにしてもよいし、縮小率に応じた画素数毎に平均値等を算出するようにしてもよい。
 縮小部121は、例えば、予め定められた所定のサイズ(閾値)より大きなマクロブロックの画像をその所定のサイズ(閾値)以下に縮小することを目的として、入力画像の縮小を行う。例えば、縮小部121は、64×64画素や32×32画素等の拡張マクロブロックの画像を、AVC等の規格で用いられるマクロブロックのサイズである16×16画素以下に縮小する。
 例えば、64×64画素の画像を16×16画素に縮小する場合、縮小率N=4である。つまり、画像サイズは1/Nに縮小される。このように縮小率Nの値は、縮小の対象とする画像のサイズと画像サイズの閾値とを考慮して決定される。
 一般的に、縮小の対象とする入力画像のマクロブロックのサイズは、予め定められた複数のサイズの中から選択されて設定されるので、その取り得る値の範囲は有限である。また、閾値は任意に設定可能である。したがって、縮小率Nは、その縮小の対象とする入力画像のマクロブロックの最大サイズを、閾値以下とするように設定すればよい。
 基本的に、この閾値や縮小率Nは、画像符号化処理開始前に予め設定される固定値である。ただし、例えば画像の内容等に応じてこの閾値や縮小率を画像符号化処理中に可変とするようにしてもよい。
 以下においては、AVC等で用いられるマクロブロックのサイズである16×16画素を閾値とし、その16×16画素よりも大きな拡張マクロブロックを縮小の対象とするものとして説明する。
 縮小部121は、入力画像を縮小するとその縮小画像を縮小画面並べ替えバッファ122に供給し、記憶させる。縮小画面並べ替えバッファ122は、縮小部121から供給される縮小画像を保持し、選択部123により縮小画面並べ替えバッファ122の出力が選択される場合、保持している縮小画像を、その選択部123を介して動き探索・補償部115に供給する。
 選択部123は、動き探索・補償部115に供給する入力画像として、画面並べ替えバッファ102からの出力と、縮小画面並べ替えバッファ122からの出力とのうち、いずれか一方を選択する。
 画面並べ替えバッファ102から出力される画像は、縮小されていないオリジナルのサイズの入力画像である。これに対して縮小画面並べ替えバッファ122から出力される画像は、縮小部121において縮小率Nで縮小された入力画像である。
 つまり、選択部123は、動き探索・補償部115が、縮小画像を用いて動き探索を行う場合、縮小画面並べ替えバッファ122の出力を選択し、その画像を入力画像として動き探索・補償部115に供給する。つまり、より具体的な例で説明すると、選択部123は、動き探索・補償部115が、拡張マクロブロックについて動き探索を行う場合、縮小画面並べ替えバッファ122から出力される縮小画像を選択し、それを入力画像として動き探索・補償部115に供給する。
 また、選択部123は、動き探索・補償部115が、縮小されていない画像を用いて動き探索を行う場合、画面並べ替えバッファ102の出力を選択し、その画像を入力画像として動き探索・補償部115に供給する。つまり、より具体的な例で説明すると、選択部123は、動き探索・補償部115が、16×16画素以下のマクロブロックについて動き探索を行う場合、画面並べ替えバッファ102から出力される画像を選択し、それを入力画像として動き探索・補償部115に供給する。
 縮小部124は、縮小部121と同様に、デブロックフィルタ111から出力される部分的に復号された画像のサイズ(解像度)を変換する。例えば、縮小部124は、所定の縮小率Nで画像を縮小する。この縮小率Nは、縮小部121と共通である。縮小部124は、生成した縮小画像を縮小フレームメモリ125に供給する。
 縮小フレームメモリ125は、縮小部124から供給される縮小画像を保持し、選択部126により縮小フレームメモリ125の出力が選択される場合、保持している縮小画像を、参照画像として、その選択部126を介して動き探索・補償部115に供給する。
 選択部126は、動き探索・補償部115に供給する参照画像として、選択部113(フレームメモリ112)からの出力と、縮小フレームメモリ125からの出力とのうち、いずれか一方を選択し、選択した方を参照画像として動き探索・補償部115に供給する。
 選択部113を介してフレームメモリ112から出力される画像は、縮小されていないオリジナルのサイズの参照画像である。これに対して縮小フレームメモリ125から出力される画像は、縮小部124において縮小率Nで縮小された参照画像である。
 つまり、選択部126は、動き探索・補償部115が、参照画像として縮小画像を用いて動き探索を行う場合、縮小フレームメモリ125の出力を選択し、その画像を参照画像として動き探索・補償部115に供給する。つまり、より具体的な例で説明すると、選択部126は、動き探索・補償部115が、拡張マクロブロックについて動き探索を行う場合、縮小フレームメモリ125から出力される縮小画像を選択し、それを参照画像として動き探索・補償部115に供給する。
 また、選択部123は、動き探索・補償部115が、縮小されていない画像を用いて動き探索を行う場合、選択部113(フレームメモリ112)の出力を選択し、その画像を参照画像として動き探索・補償部115に供給する。つまり、より具体的な例で説明すると、選択部123は、動き探索・補償部115が、16×16画素以下のマクロブロックについて動き探索を行う場合、選択部113(フレームメモリ112)から出力される画像を選択し、それを参照画像として動き探索・補償部115に供給する。
 このように、動き探索・補償部115は、拡張マクロブロックのように所定のサイズより大きな画像を用いて動き探索を行う場合、縮小画像を用いることにより、より容易に動き探索を行うことができる。また、所定のサイズより小さな画像を用いて動き探索を行う場合、動き探索・補償部115は、縮小されていないオリジナルのサイズの画像を用いることにより、動きベクトルの精度の不要な低下を抑制することができる。
 なお、動き探索・補償部115は、いずれの場合も、縮小されていないオリジナルのサイズの参照画像を用いて動き補償処理を行う。
[マクロブロック]
 マクロブロックのサイズの例を図3に示す。図3に示されるように、マクロブロックのサイズは任意であり、64×64画素や32×32画素のように、AVCで使用される16×16画素以下のマクロブロックよりも大きな拡張マクロブロックを設定することもできる。
 例えば、点線131に囲まれるAVCで使用される16×16画素以下のマクロブロックを符号化処理対象とする場合、動き探索・補償部115は、上述したように、縮小されていないオリジナルのサイズの画像を用いて動き探索を行う。また、例えば、点線132に囲まれる16×16画素よりも大きな拡張マクロブロックを符号化処理対象とする場合、動き探索・補償部115は、上述したように、縮小画像を用いて動き探索を行う。
[縮小]
 N=4の場合、縮小部121および縮小部124は、例えば図4に示されるように、16×16画素のマクロブロック4×4個(MB0乃至MB15)分に相当する64×64画素の拡張マクロブロックから、1個の16×16画素のマクロブロック(MB-1)を生成する。
 動き探索・補償部115は、このマクロブロック(MB-1)について動き探索を行う。したがって、動き探索・補償部115は、AVC等で使用される16×16画素のマクロブロック1個について動き探索を行う場合と同等の負荷で、64×64画素の拡張マクロブロックについての動き探索を行うことができる。
[動き探索・補償部の構成]
 図5は、図2の画像符号化装置100の内部の、動き探索・補償部115の構成例を示すブロック図である。
 図5に示されるように、動き探索・補償部115は、動き探索部151、精度変換部152、および動き補償部153を有する。動き探索部151は、選択部123から供給される入力画像、および、選択部126から供給される参照画像を用いて動き探索を行う。
動き探索部151は、縮小されていないオリジナルのサイズの入力画像や参照画像を用いて動き探索を行った場合、検出された動きベクトル等の各種パラメータを動き補償部153に供給する。
 これに対して、縮小画像を用いて動き探索を行った場合、検出される動きベクトルの精度はN倍に粗くなる。したがって、動き探索部151は、検出された動きベクトル等の各種パラメータを精度変換部152に供給する。
 精度変換部152は、供給された動きベクトルの精度をN倍細かくし、動き補償部153に供給する。
 動き探索部151は、整数精度、それよりも細かい1/2精度、および、さらに細かい1/4精度で動き探索を行う。例えば、16×16画素以下のマクロブロックの場合、動き探索部151は、縮小されていないオリジナルのサイズの画像を用いて動き探索を行うので、動きベクトルを1/4精度まで検出することができる。これに対して、拡張マクロブロックの場合、動き探索部151は、縮小画像を用いて動き探索を行うので、動きベクトルをN/4精度までしか検出することができない。
 精度変換部152は、このように、縮小画像を用いて検出された動きベクトルの精度を、縮小されていないオリジナルのサイズの画像を用いて検出された通常精度の動きベクトルに合わせるように変換する。
 動き補償部153は、動き探索部151若しくは精度変換部152から供給されるパラメータと、選択部126から供給される、縮小されていないオリジナルのサイズの画像を用いて動き補償を行い、予測画像を生成する。
 動き補償部153は、生成した予測画像を選択部116に供給する。また、動き補償部153は、インター予測モード情報を可逆符号化部106に供給する。さらに、動き探索部151は、検出された動きベクトルを示す動きベクトル情報を可逆符号化部106に供給する。
[符号化処理]
 次に、以上のような画像符号化装置100により実行される各処理の流れについて説明する。最初に、図6のフローチャートを参照して、符号化処理の流れの例を説明する。
 ステップS101において、A/D変換部101は入力された画像をA/D変換する。ステップS102において、画面並べ替えバッファ102は、A/D変換された画像を記憶し、各ピクチャの表示する順番から符号化する順番への並べ替えを行う。
 ステップS103において、予測画像生成部120の各部は、画像の予測処理を行う。
例えば、イントラ予測部114は、イントラ予測モードのイントラ予測処理を行い、動き探索・補償部115は、インター予測モードの動き予測補償処理を行う。
 ステップS104において、選択部116は、イントラ予測部114および動き探索・補償部115から出力された各コスト関数値に基づいて、最適予測モードを決定する。つまり、選択部116は、イントラ予測部114により生成された予測画像と、動き探索・補償部115により生成された予測画像のいずれか一方を選択する。
 また、このいずれの予測画像が選択されたかを示す選択情報は、イントラ予測部114および動き探索・補償部115のうち、予測画像が選択された方に供給される。最適イントラ予測モードの予測画像が選択された場合、イントラ予測部114は、最適イントラ予測モードを示す情報(すなわち、イントラ予測モード情報)を、可逆符号化部106に供給する。
 最適インター予測モードの予測画像が選択された場合、動き探索・補償部115は、最適インター予測モードを示す情報と、必要に応じて、最適インター予測モードに応じた情報を可逆符号化部106に出力する。最適インター予測モードに応じた情報としては、動きベクトル情報やフラグ情報、参照フレーム情報などがあげられる。
 ステップS105において、演算部103は、ステップS102の処理により並び替えられた画像と、ステップS103の予測処理により得られた予測画像との差分を演算する。予測画像は、インター予測する場合は動き探索・補償部115から、イントラ予測する場合はイントラ予測部114から、選択部116を介して演算部103に供給される。
 差分データは元の画像データに較べてデータ量が低減される。したがって、画像をそのまま符号化する場合に較べて、データ量を圧縮することができる。
 ステップS106において、直交変換部104は,ステップS105の処理により生成された差分情報を直交変換する。具体的には、離散コサイン変換、カルーネン・レーベ変換等の直交変換が行われ、変換係数が出力される。ステップS107において、量子化部105は、ステップS106の処理により生成された変換係数を量子化する。
 ステップS108において、可逆符号化部106は、ステップS107の処理により量子化された変換係数を符号化する。すなわち、差分画像(インターの場合、2次差分画像)に対して、可変長符号化や算術符号化等の可逆符号化が行われる。
 なお、可逆符号化部106は、ステップS104の処理により選択された予測画像の予測モードに関する情報を符号化し、差分画像を符号化して得られる符号化データのヘッダ情報に付加する。
 つまり、可逆符号化部106は、イントラ予測部114から供給されるイントラ予測モード情報、または、動き探索・補償部115から供給される最適インター予測モードに応じた情報なども符号化し、ヘッダ情報に付加する。
 ステップS109において蓄積バッファ107は、可逆符号化部106から出力される符号化データを蓄積する。蓄積バッファ107に蓄積された符号化データは、適宜読み出され、伝送路を介して復号側に伝送される。
 ステップS110においてレート制御部117は、ステップS109の処理により蓄積バッファ107に蓄積された圧縮画像に基づいて、オーバーフローあるいはアンダーフローが発生しないように、量子化部105の量子化動作のレートを制御する。
 また、ステップS107の処理により量子化された差分情報は、次のようにして局部的に復号される。すなわち、ステップS111において、逆量子化部108はステップS107の処理により生成された量子化係数を量子化部105の特性に対応する特性で逆量子化する。ステップS112において、逆直交変換部109は、ステップS111の処理により得られた変換係数を、直交変換部104の特性に対応する特性で逆直交変換する。
 ステップS113において、演算部110は、ステップS104の処理により選択された予測画像を局部的に復号された差分情報に加算し、局部的に復号された画像(演算部103への入力に対応する画像)を生成する。ステップS114においてデブロックフィルタ111は、ステップS113の処理により生成された画像をフィルタリングする。これによりブロック歪みが除去される。
 ステップS115において、縮小部124は、ステップS114の処理によりブロック歪みが除去された画像を縮小率Nで縮小する。
 ステップS116において、フレームメモリ112は、ステップS114の処理によりブロック歪みが除去された画像を記憶する。なお、フレームメモリ112にはデブロックフィルタ111によりフィルタ処理されていない画像も演算部110から供給され、記憶される。また、縮小フレームメモリ125は、ステップS115の処理により生成された縮小画像を記憶する。
 ステップS116の処理が終了すると、符号化処理が終了される。この符号化処理は、例えばマクロブロック毎に繰り返される。
[予測処理]
 次に、図7のフローチャートを参照して、図6のステップS103において実行される予測処理の流れの例を説明する。
 ステップS131において、予測画像生成部120(イントラ予測部114)は処理対象のブロックの画素を、候補となる全てのイントラ予測モードでイントラ予測する。
 画面並べ替えバッファ102から供給される処理対象の画像がインター処理される画像である場合、参照される画像がフレームメモリ112から読み出され、選択部113を介して動き探索・補償部115に供給される。これらの画像に基づいて、ステップS132において、動き探索・補償部115は、インター動き予測処理を行う。予測画像生成部120は、候補となる全てのインター予測モードの動き予測処理を行う。
 ステップS133において、動き探索・補償部115は、ステップS132において算出されたインター予測モードに対してのコスト関数値の中から、最小値を与える予測モードを、最適インター予測モードとして決定する。そして、動き探索・補償部115は、インター処理する画像と最適インター予測モードで生成された2次差分情報との差分、および最適インター予測モードのコスト関数値を、選択部116に供給する。
[インター動き予測処理]
 図8は、図7のステップS132において実行されるインター動き予測処理の流れの例を説明するフローチャートである。
 インター動き予測処理が開始されると、ステップS151において、縮小部121は、入力画像を縮小率Nで縮小し、入力画像の縮小画像を生成する。ステップS152において縮小画面並べ替えバッファ122は、画面並べ替えバッファ102と同様の方法で、ステップS151の処理により生成された縮小画像の並べ替えを行う。
 予測画像生成部120は、ステップS153において、処理対象マクロブロックのマクロブロックサイズを確認し、ステップS154において、処理対象マクロブロックのサイズが予め定められた所定の閾値(16×16画素)以下であるか否かを判定する。
 処理対象マクロブロックのサイズが16×16画素以下であると判定された場合、予測画像生成部120は、選択部123および選択部126を制御し、処理をステップS155に進める。この場合、選択部123は、画面並べ替えバッファ102の出力を選択し、選択部126は、選択部113の出力(フレームメモリ112から読み出された画像)を選択する。
 ステップS155において、動き探索・補償部115の動き探索部151は、縮小されていないオリジナルのサイズの入力画像および参照画像を用いて整数精度の動き探索を行う。
 また、ステップS156において、動き探索部151は、縮小されていないオリジナルのサイズの入力画像および参照画像を用いて1/2精度の動き探索を行う。さらに、ステップS157において、動き探索部151は、縮小されていないオリジナルのサイズの入力画像および参照画像を用いて1/4精度の動き探索を行う。ステップS157の処理を終了すると、動き探索・補償部115は、処理をステップS162に進める。
 また、ステップS154において、処理対象マクロブロックのサイズが予め定められた所定の閾値(16×16画素)より大きいと判定された場合、予測画像生成部120は、選択部123および選択部126を制御し、処理をステップS158に進める。この場合、選択部123は、縮小画面並べ替えバッファ122の出力を選択し、選択部126は、縮小フレームメモリ125の出力を選択する。
 ステップS158において、動き探索・補償部115の動き探索部151は、縮小率Nで縮小された縮小画像の入力画像および参照画像を用いて整数精度の動き探索を行う。
 また、ステップS159において、動き探索部151は、縮小率Nで縮小された縮小画像の入力画像および参照画像を用いて1/2精度の動き探索を行う。さらに、ステップS160において、動き探索部151は、縮小率Nで縮小された縮小画像の入力画像および参照画像を用いて1/4精度の動き探索を行う。
 ステップS161において、精度変換部152は、動きベクトルの精度を変換する。ステップS161の処理を終了すると、動き探索・補償部115は、処理をステップS162に進める。
 ステップS162において、動き補償部153は、探索された動きベクトルと、縮小されていないオリジナルのサイズの参照画像を用いて動き補償を行い、予測画像を生成する。各モードにおいてこのように予測画像が生成される。生成された予測画像のうち最適インター予測モードに選ばれたモードの予測画像は、選択部116に供給される。インター予測が選択されると、ステップS163において、動き探索部151は、動きベクトル情報等の各種情報を出力し、可逆符号化部106に供給する。また、動き補償部153は、インター予測モード情報等の各種情報を出力し、可逆符号化部106に供給する。イントラ予測モードが選択された場合、ステップS163の処理は省略される。
 ステップS163までの処理が終了すると、予測画像生成部120は、インター動き予測処理を終了し、処理を図7のステップS132に処理を戻し、ステップS133に処理を進める。
[タイミングチャート]
 以上のように各処理を行うことにより、動き探索処理および動き補償処理は、例えば、図9に示されるような手順で処理される。
 図9のAは、AVCにおける処理パイプラインの例を示している。図9において、「動き探索1」は、整数精度での動き探索処理を示し、「動き探索2」は、サブピクセル精度での動き探索処理を示す。「動き補償」は、動き補償処理を示す。「動き探索1」、「動き探索2」、および「動き補償」の各処理の右側の各四角は、マクロブロックに対するそれぞれの処理を示している。MB0乃至MB15は、16×16画素サイズの互いに異なるマクロブロックを示している。つまり、「動き探索1」、「動き探索2」、および「動き補償」の各処理の右側の四角は、各マクロブロックに対するそれぞれの処理を示している。
 AVCの場合、各マクロブロックは、図9のAに示されるように、1つずつ順に処理される。
 画像符号化装置100の場合、処理対象のマクロブロックが16×16画素以下のときは、図9のBに示されるように、AVCの場合(図9のA)と同様に、各マクロブロックが順に処理される。
 ただし、処理対象のマクロブロックが16×16画素より大きい場合、「動き探索1」および「動き探索2」の各処理は、縮小されたマクロブロックMB-1を用いて行われる。したがって、「動き探索1」、「動き探索2」、および「動き補償」の各処理は、図9のCに示されるように行われる。図9のCの場合、MB0乃至MB15のそれぞれに対する動き補償は、MB-1を用いて検出された動きベクトルを用いて行われる。
 以上のように、画像符号化装置100は、符号化処理単位となる部分領域の大きさに応じたサイズ(解像度)の画像を用いて動き探索を行う。例えば、画像符号化装置100は、予め定められた所定のサイズより大きな、符号化処理単位となる部分領域である拡張マクロブロックに対して、その縮小画像(解像度を低下させた画像)を用いた動き探索を行う。このようにすることにより、画像符号化装置100は、符号化処理の負荷や遅延時間の増大を抑制しながら、符号化効率を向上させることができる。また、縮小画像を用いることにより動き探索に必要なメモリ量を低減させることができ、コストや消費電力の増大を抑制することができる。
 なお、画像符号化装置100より出力される符号化データは、AVC等の従来の規格の画像復号装置により復号することができる。
[インター動き予測処理]
 なお、以上においては、オリジナルのサイズの画像を用いて動き探索を行う場合と、縮小画像を用いて動き探索を行う場合とで、動き探索を行う精度が互いに等しくなるように説明したが、互いに等しくなくてもよい。例えば、縮小画像を用いて動き探索を行う場合、所望の精度で動き探索を行うようにしてもよい。
 その場合のインター動き予測処理の流れの例を図10のフローチャートを参照して説明する。このフローチャートは、図8のフローチャートに対応する。
 図10のステップS201乃至ステップS207の各処理は、図8のステップS151乃至ステップS157の各処理と同様に実行される。
 ステップS204において、処理対象マクロブロックのサイズが予め定められた所定の閾値(16×16画素)より大きいと判定された場合、予測画像生成部120は、ステップS208に処理を進める。この場合、選択部123は、縮小画面並べ替えバッファ122の出力を選択し、選択部126は、縮小フレームメモリ125の出力を選択する。
 ステップS208において、動き探索・補償部115の動き探索部151は、縮小率Nで縮小された縮小画像の入力画像および参照画像を用いて整数精度の動き探索を行う。
 ステップS209において、動き探索部151は、変数Mを初期値(例えば2)に設定する。
 ステップS210において、動き探索部151は、1/N縮小画像において1/M精度の動き探索を行う。ステップS211において、動き探索部151は、変数Mが所定の値(m)に達したか否かを判定する。変数Mの値が所定の値(m)に達していないと判定された場合、動き探索部151は、処理をステップS212に進め、変数Mをインクリメント(例えば+1)し、処理をステップS210に戻し、それ以降の処理を繰り返す。つまり、動き探索部151は、所望の精度で動き探索が行われるまでステップS210乃至ステップS212の各処理を繰り返す。
 ステップS211において、変数Mが予め定められた所定の値(m)に達したと判定された場合、精度変換部152は、処理をステップS213に進め、動きベクトルの精度を変換する(N倍する)。ステップS213の処理が終了すると、精度変換部152は、処理をステップS214に進める。
 ステップS214およびステップS215の各処理は、図8のステップS162およびステップS163の各処理と同様に行われる。
 このように、動き探索部151は、任意の精度で動き探索を行うことができる。したがって、画像符号化装置100は、縮小画像を用いて動き探索を行うことによる、動きベクトルの精度の低下を抑制することができる。
 なお、この場合も、画像符号化装置100より出力される符号化データは、AVC等の従来の規格の画像復号装置により復号することができる。
<2.第2の実施の形態>
[画像符号化装置]
 動き探索に用いる縮小画像の縮小率Nの値は、複数であってもよい。つまり、互いに異なる縮小率の縮小画像が複数生成されるようにし、その中から、マクロブロックサイズに応じた縮小率Nの縮小画像を用いて動き探索が行われるようにしてもよい。
 図11は、その場合の画像符号化装置の構成例を示すブロック図である。図11に示される画像符号化装置300は、基本的に図2の画像符号化装置100と同様の装置であり、同様の処理を行うが、互いに異なる縮小率Nで縮小画像を2つ生成する。
 図11に示されるように、画像符号化装置300は、予測画像生成部320を有する。
予測画像生成部320は、図2の予測画像生成部120に対応する処理部であり、基本的に予測画像生成部120と同様の処理を行う。
 ただし、予測画像生成部320は、予測画像生成部120の動き探索・補償部115の代わりに動き探索・補償部315を備える。また、予測画像生成部320は、予測画像生成部120の縮小部121の代わりに、第1縮小部321および第2縮小部322を有し、縮小画面並べ替えバッファ122の代わりに、第1縮小画面並べ替えバッファ323および第2縮小画面並べ替えバッファ324を有し、選択部123の代わりに選択部325を有する。
 第1縮小部321および第2縮小部322は、それぞれ、縮小部121と基本的に同様の構成を有し、同様に入力画像を縮小するが、その縮小率が互いに異なる。両者の縮小率Nの値は、互いに異なる値である限り任意である。以下においては、一例として、第1縮小部321の縮小率N=4とし、第2縮小部322の縮小率N=2として説明する。
 第1縮小画面並べ替えバッファ323および第2縮小画面並べ替えバッファ324は、それぞれ、縮小画面並べ替えバッファ122と基本的に同様の構成を有し、同様の処理を行う。第1縮小画面並べ替えバッファ323は、第1縮小部321から出力される縮小画像を記憶する。第2縮小画面並べ替えバッファ324は、第2縮小部322から出力される縮小画像を記憶する。
 選択部325は、選択部123と基本的に同様の構成を有し、同様の処理を行う。ただし、選択部325は、動き探索・補償部315に供給する入力画像として、画面並べ替えバッファ102からの出力、第1縮小画面並べ替えバッファ323からの出力、および第2縮小画面並べ替えバッファ324からの出力のうち、いずれか1つを選択する。
 例えば、選択部325は、処理対象のマクロブロックのサイズが第1の閾値(例えば32×32画素)より大きい場合、第1縮小画面並べ替えバッファ323から出力される縮小率N=4の画像を選択し、入力画像として動き探索・補償部315に供給する。
 また、例えば、選択部325は、処理対象のマクロブロックのサイズが第1の閾値(例えば32×32画素)以下であり、かつ、第1の閾値より小さな第2の閾値(例えば16×16画素)より大きい場合、第2縮小画面並べ替えバッファ324から出力される縮小率N=2の画像を選択し、入力画像として動き探索・補償部315に供給する。
 さらに、例えば、選択部325は、処理対象のマクロブロックのサイズが第2の閾値(例えば16×16画素)以下である場合、画面並べ替えバッファ102から出力される縮小されていない画像を選択し、入力画像として動き探索・補償部315に供給する。
 さらに、予測画像生成部320は、予測画像生成部120の縮小部124の代わりに、第1縮小部326および第2縮小部327を有し、縮小フレームメモリ125の代わりに、第1縮小フレームメモリ328および第2縮小フレームメモリ329を有し、選択部126の代わりに選択部330を有する。
 第1縮小部326および第2縮小部327は、それぞれ、縮小部124と基本的に同様の構成を有し、同様に入力画像を縮小するが、その縮小率が互いに異なる。両者の縮小率Nの値は、それぞれ第1縮小部321若しくは第2縮小部3322と等しい。つまり、図11の例の場合、第1縮小部326の縮小率N=4、第2縮小部327の縮小率N=2である。
 第1縮小フレームメモリ328および第2縮小フレームメモリ329は、それぞれ、縮小フレームメモリ125と基本的に同様の構成を有し、同様の処理を行う。第1縮小フレームメモリ328は、第1縮小部326から出力される縮小画像を記憶する。第2縮小フレームメモリ329は、第2縮小部327から出力される縮小画像を記憶する。
 選択部330は、選択部126と基本的に同様の構成を有し、同様の処理を行う。ただし、選択部330は、動き探索・補償部315に供給する参照画像として、フレームメモリ112(選択部113)からの出力、第1縮小フレームメモリ328からの出力、および第2縮小フレームメモリ329からの出力のうち、いずれか1つを選択する。
 例えば、選択部330は、処理対象のマクロブロックのサイズが第1の閾値(例えば32×32画素)より大きい場合、第1縮小フレームメモリ328から出力される縮小率N=4の画像を選択し、参照画像として動き探索・補償部315に供給する。
 また、例えば、選択部325は、処理対象のマクロブロックのサイズが第1の閾値(例えば32×32画素)以下であり、かつ、第1の閾値より小さな第2の閾値(例えば16×16画素)より大きい場合、第2縮小フレームメモリ329から出力される縮小率N=2の画像を選択し、参照画像として動き探索・補償部315に供給する。
 さらに、例えば、選択部325は、処理対象のマクロブロックのサイズが第2の閾値(例えば16×16画素)以下である場合、フレームメモリ112(選択部113)から出力される縮小されていない画像を選択し、参照画像として動き探索・補償部315に供給する。
 動き探索・補償部315は、動き探索・補償部115と基本的に同様の構成を有し、基本的に同様の処理を行う。動き探索・補償部315は、供給される入力画像と参照画像を用いて動き探索処理や動き補償処理等を行い、インター予測による予測画像を生成する。
 動き探索・補償部315は、生成した予測画像を選択部116に供給するとともに、インター予測モード情報や動きベクトル情報等、伝送すべき情報を可逆符号化部106に供給する。
[マクロブロック]
 マクロブロックのサイズの例を図12に示す。図12に示されるように、例えば、点線341に囲まれるAVCで使用される16×16画素以下のマクロブロックを符号化処理対象とする場合、動き探索・補償部315は、縮小されていないオリジナルのサイズの画像を用いて動き探索を行う。また、例えば、点線342に囲まれる16×16画素よりも大きく、かつ、32×32画素以下の拡張マクロブロックを符号化処理対象とする場合、動き探索・補償部315は、縮小率N=2の縮小画像を用いて動き探索を行う。
 さらに、例えば、点線343に囲まれる32×32画素よりも大きな拡張マクロブロックを符号化処理対象とする場合、動き探索・補償部315は、縮小率N=4の縮小画像を用いて動き探索を行う。
[縮小]
 第1縮小部321および第1縮小部326は、縮小率N=4であるので、例えば図13に示されるように、16×16画素のマクロブロック4×4個(MB0乃至MB15)分に相当する64×64画素の拡張マクロブロックから、1個の16×16画素のマクロブロック(MB-1)を生成する。
 これに対して第2縮小部322および第2縮小部327は、縮小率N=2であるので、例えば図13に示されるように、16×16画素のマクロブロック2×2個(MB-2乃至MB-4)分に相当する32×32画素の拡張マクロブロックから、1個の16×16画素のマクロブロック(MB-1)を生成する。
 動き探索・補償部115は、このマクロブロック(MB-1)について動き探索を行う。したがって、動き探索・補償部115は、AVC等で使用される16×16画素のマクロブロック1個について動き探索を行う場合と同等の負荷で、32×32画素の拡張マクロブロックや、64×64画素の拡張マクロブロックについての動き探索を行うことができる。
[動き探索・補償部の構成]
 図14は、図11の画像符号化装置300の内部の、動き探索・補償部315の構成例を示すブロック図である。つまり、図14は、図5に対応する。
 図14に示されるように、動き探索・補償部315は、基本的に動き探索部・補償部115と同様の構成を有するが、動き探索部151の代わりに動き探索部351を有する。
また、動き探索・補償部315は、精度変換部152の代わりに第1精度変換部352および第2精度変換部353を有する。
 動き探索部351は、基本的に動き探索部151と同様の構成を有し、同様の処理を行うが、縮小率N=4と縮小率N=2のように、複数の縮小率の縮小画像に対して、動き探索を行うことができる。
 動き探索部351は、縮小されていないオリジナルのサイズの入力画像や参照画像を用いて動き探索を行った場合、検出された動きベクトル等の各種パラメータを動き補償部153に供給する。
 これに対して、第1の縮小率(縮小率N=4)の縮小画像を用いて動き探索を行った場合、動き探索部351は、検出された動きベクトル等の各種パラメータを第1精度変換部352に供給する。第1精度変換部352は、供給された動きベクトルの精度を第1の縮小率(N=4)の分細かくし、動き補償部153に供給する。
 また、第2の縮小率(縮小率N=2)の縮小画像を用いて動き探索を行った場合、動き探索部351は、検出された動きベクトル等の各種パラメータを第2精度変換部353に供給する。第2精度変換部353は、供給された動きベクトルの精度を第2の縮小率(N=2)の分細かくし、動き補償部153に供給する。
 動き補償部153は、動き探索部351、第1精度変換部352、若しくは第2精度変換部353から供給されるパラメータと、選択部330から供給される、縮小されていないオリジナルのサイズの画像を用いて動き補償を行い、予測画像を生成する。
 動き補償部153は、生成した予測画像を選択部116に供給する。また、動き補償部153は、インター予測モード情報を可逆符号化部106に供給する。さらに、動き探索部151は、検出された動きベクトルを示す動きベクトル情報を可逆符号化部106に供給する。
[インター動き予測処理]
 この場合、符号化処理は、図6のフローチャートを参照して説明した画像符号化装置100による符号化処理の場合と同様に行われる。
 また、予測処理は、図7のフローチャートを参照して説明した画像符号化装置100による符号化処理の場合と同様に行われる。
 図15のフローチャートを参照して、この場合の、インター動き予測処理の流れの例を説明する。図15のフローチャートは、図8のフローチャートに対応する。
 ステップS301乃至ステップS307の各処理は、図8のステップS151乃至ステップS157の各処理と同様に実行される。
 ステップS304において、処理対象マクロブロックのサイズが第2の閾値(16×16画素)より大きいと判定された場合、予測画像生成部320は、処理をステップS308に進める。
 ステップS308において、予測画像生成部320は、処理対象マクロブロックのサイズが予め定められた第1の閾値(32×32画素)以下であるか否かを判定する。処理対象マクロブロックのサイズが第1の閾値(32×32画素)以下であると判定された場合、予測画像生成部320は、選択部325および選択部330を制御し、処理をステップS309に進める。この場合、選択部325は、第2縮小画面並べ替えバッファ324の出力を選択し、選択部330は、第2縮小フレームメモリ329の出力を選択する。
 ステップS309において、動き探索・補償部315の動き探索部351は、第2の縮小率(N=2)で縮小された縮小画像(すなわち1/2縮小画像)の入力画像および参照画像を用いて整数精度の動き探索を行う。
 また、ステップS310において、動き探索部351は、第2の縮小率(N=2)で縮小された縮小画像(すなわち1/2縮小画像)の入力画像および参照画像を用いて1/2精度の動き探索を行う。さらに、ステップS311において、動き探索部351は、第2の縮小率(N=2)で縮小された縮小画像(すなわち1/2縮小画像)の入力画像および参照画像を用いて1/4精度の動き探索を行う。
 ステップS312において、第2精度変換部353は、動きベクトルの精度を第2の縮小率分変換する(つまり2倍する)。ステップS312の処理を終了すると、動き探索・補償部315は、処理をステップS317に進める。
 ステップS308において、処理対象マクロブロックのサイズが第1の閾値(32×32画素)より大きいと判定された場合、予測画像生成部320は、選択部325および選択部330を制御し、処理をステップS313に進める。
 この場合、選択部325は、第1縮小画面並べ替えバッファ323の出力を選択し、選択部330は、第1縮小フレームメモリ328の出力を選択する。
 ステップS313において、動き探索・補償部315の動き探索部351は、第1の縮小率(N=4)で縮小された縮小画像(すなわち1/4縮小画像)の入力画像および参照画像を用いて整数精度の動き探索を行う。
 また、ステップS314において、動き探索部351は、第1の縮小率(N=4)で縮小された縮小画像(すなわち1/4縮小画像)の入力画像および参照画像を用いて1/2精度の動き探索を行う。さらに、ステップS315において、動き探索部351は、第1の縮小率(N=4)で縮小された縮小画像(すなわち1/4縮小画像)の入力画像および参照画像を用いて1/4精度の動き探索を行う。
 ステップS316において、第1精度変換部352は、動きベクトルの精度を第1の縮小率分変換する(つまり4倍する)。ステップS316の処理を終了すると、動き探索・補償部315は、処理をステップS317に進める。
 ステップS317およびステップS318の各処理は、ステップS162およびステップS163の各処理と同様に行われる。
 ステップS318までの処理が終了すると、予測画像生成部320は、インター動き予測処理を終了し、処理を図7のステップS132に処理を戻し、ステップS133に処理を進める。
[タイミングチャート]
 この場合の動き探索処理および動き補償処理のタイミングチャートを図16に示す。図16のタイミングチャートは、図9に対応する。図16のAは、図9のAと同様に、AVCにおける処理パイプラインの例を示している。
 画像符号化装置300の場合、処理対象のマクロブロックが16×16画素以下のときは、図16のBに示されるように、AVCの場合(図16のA)と同様に、各マクロブロックが順に処理される。
 また、処理対象のマクロブロックが32×32画素以下のときは、縮小画像が用いられるので、図16のCに示されるように、動き探索の回数が減少する。処理対象のマクロブロックが32×32画素より大きいときは、さらに小さくされた縮小画像が用いられるので、図16のDに示されるように、動き探索の回数がさらに減少する。
 したがってこの場合も、画像符号化装置300は、第1の実施の形態の場合と同様に、符号化処理の負荷や遅延時間の増大を抑制しながら、符号化効率を向上させることができる。また、コストや消費電力の増大を抑制することができる。
 なお、画像符号化装置300より出力される符号化データは、AVC等の従来の規格の画像復号装置により復号することができる。
 以上のように画像符号化装置300は、マクロブロックサイズの閾値を複数設け、その閾値に従って、マクロブロックの大きさに応じたサイズ(解像度)の画像を用いて動き探索を行う。このようにすることにより、画像符号化装置300は、動きベクトルの精度の低下を、図1乃至図9を参照して説明した画像符号化装置100の場合よりも抑制することができる。また、画像符号化装置300は、図10を参照して説明した場合よりもインター動き予測処理を容易に行うことができ、負荷の増大を抑制することができる。
<3.第3の実施の形態>
[画像符号化装置]
 以上においては、動き探索にのみ縮小画像を用いるように説明したが、これに限らず、所定の閾値より大きな拡張マクロブロックの場合、動き補償にも縮小画像を用いるようにし、縮小画像の差分情報を符号化するようにしてもよい。
 図17は、その場合の画像符号化装置の主な構成例を示すブロック図である。
 図17に示される画像符号化装置400は、基本的に図11の画像符号化装置300と同様の構成を有し、同様の処理を行う。ただし、画像符号化装置400は、予測画像生成部320の代わりに予測画像生成部420を有する。
 予測画像生成部420は、基本的に予測画像生成部320と同様の構成を有し、同様の処理を行うが、動き探索・補償部315の代わりに動き探索・補償部415を有する。また、予測画像生成部420は、第1縮小画面並べ替えバッファ323の代わりに第1縮小画面並べ替えバッファ423を有し、第2縮小画面並べ替えバッファ324の代わりに第2縮小画面並べ替えバッファ424を有し、選択部425の代わりに選択部325を有する。
 第1縮小画面並べ替えバッファ423は、基本的に第1縮小画面並べ替えバッファ323と同様に、第1縮小部321より供給される第1の縮小率(N=4)で縮小された入力画像を記憶する。ただし、第1縮小画面並べ替えバッファ423は、その縮小画像を選択部425だけでなく、選択部431にも供給する。つまり、第1縮小画面並べ替えバッファ423が記憶する縮小画像は、動き探索だけでなく、差分情報生成にも用いられる。
 第2縮小画面並べ替えバッファ424は、基本的に第2縮小画面並べ替えバッファ324と同様に、第2縮小部322より供給される第2の縮小率(N=2)で縮小された入力画像を記憶する。ただし、第2縮小画面並べ替えバッファ424は、その縮小画像を選択部425だけでなく、選択部431にも供給する。つまり、第2縮小画面並べ替えバッファ424が記憶する縮小画像は、動き探索だけでなく、差分情報生成にも用いられる。
 選択部425は、選択部325の場合と同様に、動き探索・補償部415に入力画像として供給する画像を、画面並べ替えバッファ102の出力、第1縮小画面並べ替えバッファ423の出力、および第2縮小画面並べ替えバッファ424の中から1つ選択する。
 動き探索・補償部415は、動き探索・補償部315と基本的に同様の構成を有し、同様の処理を行う。ただし、動き探索・補償部315が動き探索のみに縮小画像を用いるのに対して、動き探索・補償部415は、さらに動き補償にも縮小画像を用いる。つまり、動き探索・補償部415は、縮小率Nで縮小された予測画像を生成する。動き探索・補償部415は、その縮小画像の予測画像を選択部116に供給する。
 選択部116は、所定のサイズより大きな拡張マクロブロックのインター予測の場合、その縮小画像の予測画像を選択すると、それを演算部103および演算部110に供給する。つまり、この場合、画像符号化装置400が生成する差分情報は、縮小率Nで縮小された画像である。
 画像符号化装置400は、さらに、選択部431およびアップコンバータ432を有する。
 選択部431は、演算部103に供給する画像を、予測モードや処理対象マクロブロックのサイズに応じて、画面並べ替えバッファ102の出力、第1縮小画面並べ替えバッファ423の出力、および第2縮小画面並べ替えバッファ424の中から1つ選択する。
 例えば、インター予測モードで、処理対象マクロブロックのサイズが、第1閾値(32×32画素)より大きい場合、選択部431は、第1縮小画面並べ替えバッファ423から出力される、第1の縮小率(N=4)で縮小された縮小画像を選択し、その縮小画像を演算部103に供給する。この場合、動き探索・補償部415は、第1縮小画面並べ替えバッファ423から出力される、第1の縮小率(N=4)で縮小された縮小画像を用いて動き探索および動き補償を行う。したがって、動き探索・補償部415は、第1の縮小率(N=4)で縮小された縮小画像の予測画像を、選択部116を介して演算部103に供給する。
 演算部103は、第1縮小画面並べ替えバッファ423の出力から、動き探索・補償部415の出力を減算し、差分情報を生成する。つまり、この差分情報は、第1の縮小率(N=4)で縮小された縮小画像となる。
 また、例えば、インター予測モードで、処理対象マクロブロックのサイズが、第1閾値(32×32画素)以下であり、第2の閾値(16×16画素)より大きい場合、選択部431は、第2縮小画面並べ替えバッファ424から出力される、第2の縮小率(N=2)で縮小された縮小画像を選択し、その縮小画像を演算部103に供給する。この場合、動き探索・補償部415は、第2縮小画面並べ替えバッファ424から出力される、第2の縮小率(N=2)で縮小された縮小画像を用いて動き探索および動き補償を行う。したがって、動き探索・補償部415は、第2の縮小率(N=2)で縮小された縮小画像の予測画像を、選択部116を介して演算部103に供給する。
 演算部103は、第2縮小画面並べ替えバッファ424の出力から、動き探索・補償部415の出力を減算し、差分情報を生成する。つまり、この差分情報は、第2の縮小率(N=2)で縮小された縮小画像となる。
 さらに、例えば、インター予測モードで、処理対象マクロブロックのサイズが、第2の閾値(16×16画素)以下である場合、選択部431は、画面並べ替えバッファ102から出力される、縮小されていないオリジナルのサイズの入力画像を選択し、その画像を演算部103に供給する。この場合、動き探索・補償部415は、画面並べ替えバッファ102から出力される、縮小されていないオリジナルのサイズの入力画像を用いて動き探索および動き補償を行う。したがって、動き探索・補償部415は、縮小されていないオリジナルのサイズの予測画像を、選択部116を介して演算部103に供給する。
 演算部103は、画面並べ替えバッファ102の出力から、動き探索・補償部415の出力を減算し、差分情報を生成する。つまり、この差分情報は、縮小されていないオリジナルのサイズの画像となる。
 なお、イントラ予測モードの場合も選択部431は、画面並べ替えバッファ102の出力を選択する。つまり、縮小されていないオリジナルのサイズの画像を用いて差分情報が生成される。
 上述したように差分情報が縮小画像を用いて生成される場合、蓄積バッファ107より出力される符号化データは、縮小画像の差分情報から生成されたものとなる。したがって、この場合、画像符号化装置400は、符号化データの符号量を低減させることができる。
 符号量が低減するので復号画像の画質は低下することになる。しかしながら、一般的に、拡張マクロブロックのように大きな領域を符号化処理単位とする場合、その領域の絵柄は、単純であり、かつ、動きが少ない。つまり、このような領域の符号量を低減させても、画質に対する影響は比較的少ない。
 画像符号化装置400は、このような特徴を利用して、拡張マクロブロックのような所定のサイズより大きな領域に対してのみ、動き探索、動き補償、および差分情報の生成を、縮小画像を用いて行うようにし、通常サイズのマクロブロックのように所定のサイズ以下の小さな領域に対しては、縮小されていない画像を用いて、動き探索、動き補償、および差分情報の生成を行うようにすることにより、画質の劣化を抑制しながら、符号化データの符号量を低減させることができる。
 なお、拡張マクロブロックのような大きなサイズの領域に対して動き補償を行う際に、縮小画像を用いることにより、画像符号化装置400は、動き補償におけるメモリ(DRAM)アクセスするデータ量を低減させることができ、動き補償の負荷を低減させることができる。
 また、画像符号化装置400は、1/N解像度面上で生成された差分情報(すなわち、縮小画像を用いて生成された差分情報)であることを示すフラグと、縮小面を生成するフィルタの係数情報、および、縮小面をオリジナル解像度に戻す際のアップコンバータへのフィルタの係数情報を復号側に提供するようにしてもよい。
 これらの情報は、例えば、符号化データの任意の位置に付加されるようにしてもよいし、符号化データとは別に復号側に伝送されるようにしてもよい。例えば、可逆符号化部106が、これらの情報を、ビットストリームにシンタックスとして記述するようにしてもよい。また、可逆符号化部106が、これらの情報を、補助情報として所定の領域に格納して伝送するようにしてもよい。例えば、これらの情報が、SEI(Suplemental Enhancement Information)等のパラメータセット(例えばシーケンスやピクチャのヘッダ等)に格納されるようにしてもよい。
 また、可逆符号化部106が、これらの情報を、符号化データとは別に(別のファイルとして)、画像符号化装置から画像復号装置に伝送させるようにしてもよい。その場合、これらの情報と符号化データとの対応関係を明確にする(復号側で把握することができるようにする)必要があるが、その方法は任意である。例えば、別途、対応関係を示すテーブル情報を作成してもよいし、対応先のデータを示すリンク情報を互いのデータに埋め込むなどしてもよい。
 なお、例えばブロックサイズと縮小面での動き探索を固定で紐付とする場合、1/N解像度面上で生成された差分情報であることを示すフラグの伝送を省略することもできる。また、縮小面を生成するフィルタの係数情報、および、縮小面をオリジナル解像度に戻す際のアップコンバータへのフィルタの係数情報も、復号側が予め把握していればよく、必ずしも伝送させる必要はない。
 次に、部分的に復号される画像について説明する。画像符号化装置400は、予測画像生成部420のデブロックフィルタ111、フレームメモリ112、第1縮小部326、および第2縮小部327には、縮小されていないオリジナルのサイズの復号画像が供給されるようにする。
 つまり、例えば、上述したように差分情報が縮小画像を用いて生成される場合、アップコンバータ432が、その縮小画像を拡大し、元のオリジナルのサイズに戻す。このアップコンバートの方法は任意である。
[動き探索・補償部の構成]
 図18は、図17の画像符号化装置400の内部の、動き探索・補償部415の構成例を示すブロック図である。
 図18に示されるように、動き探索・補償部415は、基本的に、動き探索・補償部315と同様の構成を有し、同様の処理を行うが、動き補償も縮小画像を用いて行うので、第1精度変換部352や第2精度変換部353を有していない。動き探索・補償部415は、動き探索部451および動き補償部452を有する。
 動き探索部451は、動き探索部351と同様に動き探索を行うが、入力画像や参照画像のサイズに関わらず、動きベクトル等の情報を動き補償部452に供給する。動き補償部452は、動き探索のときと同様のサイズの参照画像を用いて動き補償を行う。
 動き補償部452は、生成した予測画像を選択部116に供給する。また、動き補償部452は、インター予測モード情報、フラグ、パラメータ等、復号側に提供すべき情報を可逆符号化部106に供給する。さらに、動き探索部451は、動きベクトル情報を可逆符号化部106に供給する。
[インター動き予測処理]
 次に処理の流れについて説明する。画像符号化装置400は、図6のフローチャートを参照して説明した場合と同様に符号化処理を行う。ただし、図6のステップS104において選択部116が予測画像を選択する際に、選択部431は、入力画像の選択を行う。
 また、ステップS105において、差分情報が縮小画像を用いて生成された場合、ステップS113において、演算部110が予測画像と復号画像を加算すると、アップコンバータ432は、その加算結果をオリジナルのサイズに拡大する。
 予測画像生成部420は、図7のフローチャートを参照して説明した場合と同様に予測処理を行う。
 この場合の、インター動き予測処理の流れの例を図19のフローチャートを参照して説明する。図19のフローチャートは、図15のフローチャートに対応する。
 つまり、ステップS401乃至ステップS408の各処理は、図15のステップS301乃至ステップS307、並びに、ステップS317の各処理と同様に実行される。ステップS408の処理が終了すると、動き補償部452は、処理をステップS420に進める。
 また、図19のステップS409乃至ステップS412の各処理も図15のステップS308乃至ステップS311の各処理と同様に実行される。
 図15の場合のように動きベクトルの精度変換は行われずに、ステップS413において、動き探索・補償部415の動き補償部452は、第2の縮小率(N=2)で縮小された縮小画像(すなわち1/2縮小画像)の参照画像を用いて動き補償を行う。ステップS414において、動き補償部452は、フラグやパラメータ等、復号側に提供すべき情報を適宜生成する。ステップS414の処理が終了すると、動き補償部452は、処理をステップS420に進める。
 また、図19のステップS415乃至ステップS417の各処理も図15のステップS313乃至ステップS315の各処理と同様に実行される。
 図15の場合のように動きベクトルの精度変換は行われずに、ステップS418において、動き探索・補償部415の動き補償部452は、第1の縮小率(N=4)で縮小された縮小画像(すなわち1/4縮小画像)の参照画像を用いて動き補償を行う。ステップS419において、動き補償部452は、フラグやパラメータ等、復号側に提供すべき情報を適宜生成する。ステップS419の処理が終了すると、動き補償部452は、処理をステップS420に進める。
 ステップS420において、動き探索・補償部415の動き探索部451および動き補償部452は、予測画像としてインター予測された予測画像が選択された場合、動きベクトル情報、インター予測モード情報、フラグ、および各種パラメータ等、伝送すべき情報を可逆符号化部106に供給する。
 ステップS420の処理が終了すると、予測画像生成部420は、インター動き予測処理を終了し、処理を図7のステップS132に処理を戻し、ステップS133に処理を進める。
 以上のように、画像符号化装置400は、第1の実施の形態の場合と同様に、符号化処理単位となる部分領域の大きさに応じたサイズ(解像度)の画像を用いて動き探索を行うので、符号化処理の負荷や遅延時間の増大を抑制しながら、符号化効率を向上させることができる。また、コストや消費電力の増大を抑制することができる。
 さらに、画像符号化装置400は、画像符号化装置300の場合と同様に、マクロブロックサイズの閾値を複数設けるようにしてもよい。このようにすることにより、画像符号化装置400は、動きベクトルの精度の低下を、図1乃至図9を参照して説明した画像符号化装置100の場合よりも抑制することができる。また、画像符号化装置400は、図10を参照して説明した場合よりもインター動き予測処理を容易に行うことができ、負荷の増大を抑制することができる。
 なお、画像符号化装置400は、画像符号化装置100のように、マクロブロックサイズの閾値を1つにするようにしてもよい。さらに、図10を参照して説明したように、任意の精度で動き探索を行うことができるようにしてもよい。
<4.第4の実施の形態>
[画像復号装置]
 第3の実施の形態において説明した画像符号化装置400より出力される符号化データは、縮小画像の差分情報を符号化したものを含む可能性があるので、AVC等の従来の規格の画像復号装置により復号することができるとは限らない。画像符号化装置400により生成された符号化データを復号するには、画像符号化装置400に対応する画像復号装置を用意する必要がある。
 以下においては、その、第3の実施の形態において説明した画像符号化装置400に対応する画像復号装置について説明する。図20は、本発明を適用した画像復号装置の主な構成例を示すブロック図である。図20に示される画像復号装置500は、画像符号化装置400に対応する復号装置である。
 画像符号化装置400より符号化された符号化データは、所定の伝送路を介して、この画像符号化装置400に対応する画像復号装置500に伝送され、復号されるものとする。
 図20に示されるように、画像復号装置500は、蓄積バッファ501、可逆復号部502、逆量子化部503、逆直交変換部504、演算部505、デブロックフィルタ506、画面並べ替えバッファ507、およびD/A変換部508を有する。また、画像復号装置500は、フレームメモリ509、選択部510、イントラ予測部511、動き補償部512、および選択部513を有する。
 さらに、画像復号装置500は、アップコンバータ514を有する。
 蓄積バッファ501は、伝送されてきた符号化データを蓄積する。この符号化データは、画像符号化装置400により符号化されたものである。可逆復号部502は、蓄積バッファ501から所定のタイミングで読み出された符号化データを、図17の可逆符号化部106の符号化方式に対応する方式で復号する。
 逆量子化部503は、可逆復号部502により復号されて得られた係数データを、図17の量子化部105の量子化方式に対応する方式で逆量子化する。逆量子化部503は、逆量子化された係数データを、逆直交変換部504に供給する。逆直交変換部504は、図17の直交変換部104の直交変換方式に対応する方式で、その係数データを逆直交変換し、画像符号化装置400において直交変換される前の残差データに対応する復号残差データを得る。
 逆直交変換されて得られた復号残差データは、演算部505に供給される。また、演算部505には、選択部513を介して、イントラ予測部511若しくは動き補償部512から予測画像が供給される。
 演算部505は、その復号残差データと予測画像とを加算し、画像符号化装置400の演算部103により予測画像が減算される前の画像データに対応する復号画像データを得る。演算部505は、その復号画像データをアップコンバータ514に供給する。
 アップコンバータ514は、演算部505から供給される復号画像が縮小画像である場合、つまり、その復号画像が、画像符号化装置400において縮小画像を用いて生成された残差情報が符号化された符号化データを復号して得られたものである場合、その復号画像をアップコンバートし、その復号画像の画像を、オリジナルのサイズに拡大する。
 アップコンバータ514は、アップコンバートするなどして得られたオリジナルの画像サイズの復号画像をデブロックフィルタ506に供給する。なお、アップコンバータ514は、演算部505から供給される復号画像がオリジナルのサイズの画像である場合、アップコンバートを省略し、その復号画像をデブロックフィルタ506に供給する。
 デブロックフィルタ506は、供給された復号画像のブロック歪を除去した後、画面並べ替えバッファ507に供給する。
 画面並べ替えバッファ507は、画像の並べ替えを行う。すなわち、図17の画面並べ替えバッファ102により符号化の順番のために並べ替えられたフレームの順番が、元の表示の順番に並べ替えられる。D/A変換部508は、画面並べ替えバッファ507から供給された画像をD/A変換し、図示せぬディスプレイに出力し、表示させる。
 また、画像復号装置500は、第1縮小部521、第2縮小部522、第1縮小フレームメモリ523、第2縮小フレームメモリ524、および選択部525を有する。
 デブロックフィルタ506の出力は、さらに、フレームメモリ509、第1縮小部521、および第2縮小部522に供給される。
 フレームメモリ509、選択部510、イントラ予測部511、動き補償部512、および選択部513は、画像符号化装置400のフレームメモリ112、選択部113、イントラ予測部114、動き探索・補償部415、および選択部116にそれぞれ対応する。また、第1縮小部521、第2縮小部522、第1縮小フレームメモリ523、第2縮小フレームメモリ524、および選択部525は、画像符号化装置400の第1縮小部326、第2縮小部327、第1縮小フレームメモリ328、第2縮小フレームメモリ329、および選択部330にそれぞれ対応する。
 選択部510は、インター処理される画像と参照される画像をフレームメモリ509から読み出し、動き補償部512に供給する。また、選択部510は、イントラ予測に用いられる画像をフレームメモリ509から読み出し、イントラ予測部511に供給する。
 イントラ予測部511には、ヘッダ情報を復号して得られたイントラ予測モードを示す情報等が可逆復号部502から適宜供給される。イントラ予測部511は、この情報に基づいて、予測画像を生成し、生成した予測画像を選択部513に供給する。
 動き補償部512は、ヘッダ情報を復号して得られた情報(予測モード情報、動きベクトル情報、参照フレーム情報、フラグ、および各種パラメータ等)を可逆復号部502から取得する。
 動き補償部512は、インター予測モードを示す情報が供給された場合、選択部525を制御し、可逆復号部502から供給されたフラグや各種パラメータ等により指定される、フレームメモリ509の出力、第1縮小フレームメモリ523の出力、若しくは、第2縮小フレームメモリ524の出力を選択させ、それを取得する。そして、動き補償部512は、可逆復号部502から供給される情報に基づいて、予測画像を生成し、生成した予測画像を選択部513に供給する。
 選択部513は、動き補償部512またはイントラ予測部511により生成された予測画像を選択し、演算部505に供給する。
 フレームメモリ509乃至選択部513、並びに、第1縮小部521乃至選択部525は、予測画像生成部520を構成する。予測画像生成部520は、復号画像が縮小画像の場合、縮小画像の予測画像を演算部505に供給し、復号画像がオリジナルのサイズの画像の場合、オリジナルのサイズの予測画像を演算部505に供給する。
[復号処理]
 次に、以上のような画像復号装置500により実行される各処理の流れについて説明する。最初に、図21のフローチャートを参照して、復号処理の流れの例を説明する。
 復号処理が開始されると、ステップS501において、蓄積バッファ501は、伝送されてきた符号化データを蓄積する。ステップS502において、可逆復号部502は、蓄積バッファ501から供給される符号化データを復号する。すなわち、図17の可逆符号化部106により符号化されたIピクチャ、Pピクチャ、並びにBピクチャが復号される。
 このとき、動きベクトル情報、参照フレーム情報、予測モード情報(イントラ予測モード、またはインター予測モード)、並びに、フラグやパラメータ等の情報も復号される。
 予測モード情報がイントラ予測モード情報である場合、予測モード情報は、イントラ予測部511に供給される。予測モード情報がインター予測モード情報である場合、予測モード情報と対応する動きベクトル情報は、動き補償部512に供給される。
 ステップS503において、逆量子化部503は可逆復号部502により復号された変換係数を、図17の量子化部105の特性に対応する特性で逆量子化する。ステップS504において逆直交変換部504は逆量子化部503により逆量子化された変換係数を、図17の直交変換部104の特性に対応する特性で逆直交変換する。これにより図17の直交変換部104の入力(演算部103の出力)に対応する差分情報が復号されたことになる。
 ステップS505において、イントラ予測部511、または動き補償部512は、可逆復号部502から供給される予測モード情報に対応して、それぞれ画像の予測処理を行う。
 すなわち、可逆復号部502からイントラ予測モード情報が供給された場合、イントラ予測部511は、イントラ予測モードのイントラ予測処理を行う。また、可逆復号部502からインター予測モード情報が供給された場合、動き補償部512は、インター予測モードの動き予測処理を行う。
 ステップS506において、選択部513は予測画像を選択する。すなわち、選択部513には、イントラ予測部511により生成された予測画像、若しくは、動き補償部512により生成された予測画像が供給される。選択部513は、その予測画像が供給された側を選択し、その予測画像を演算部505に供給する。
 ステップS507において、演算部505は、ステップS504の処理により得られた差分情報に、ステップS506の処理により選択された予測画像を加算する。これにより元の画像データが復号される。
 ステップS508において、アップコンバータ514は、演算部505から供給された復号画像が縮小画像の場合、その復号画像をアップコンバートし、オリジナルのサイズに変換する。ステップS509において、デブロックフィルタ506は、アップコンバータ514から供給された復号画像を適宜フィルタリングする。これにより適宜復号画像からブロック歪みが除去される。
 ステップS510において、第1縮小部521は、フィルタリングされた復号画像を、第1の縮小率(N=4)で縮小する。また、第2縮小部522は、フィルタリングされた復号画像を、第2の縮小率(N=2)で縮小する。
 ステップS511において、フレームメモリ509は、フィルタリングされた復号画像を記憶する。また、第1縮小フレームメモリ523は、第1縮小部521から出力された縮小画像を記憶する。さらに、第2縮小フレームメモリ524は、第2縮小部522から出力された縮小画像を記憶する。
 ステップS512において、画面並べ替えバッファ507は、復号画像データのフレームの並べ替えを行う。すなわち、復号画像データの、画像符号化装置400の画面並べ替えバッファ102(図17)により符号化のために並べ替えられたフレームの順序が、元の表示の順序に並べ替えられる。
 ステップS513において、D/A変換部508は、画面並べ替えバッファ507においてフレームが並べ替えられた復号画像データをD/A変換する。この復号画像データが図示せぬディスプレイに出力され、その画像が表示される。
[予測処理]
 次に図22のフローチャートを参照して、図21のステップS505において実行される予測処理の流れの例を説明する。
 予測処理が開始されると、可逆復号部502は、イントラ予測モード情報に基づいて、イントラ符号化されているか否かを判定する。イントラ符号化されていると判定した場合、可逆復号部502は、イントラ予測モード情報をイントラ予測部511に供給し、処理をステップS532に進める。
 ステップS532において、イントラ予測部511は、イントラ予測処理を行う。イントラ予測処理が終了すると、画像復号装置500は、処理を図21に戻し、ステップS506以降の処理を実行させる。
 また、ステップS531において、インター符号化されていると判定された場合、可逆復号部502は、インター予測モード情報等の各種情報を動き補償部512に供給し、処理をステップS533に進める。
 ステップS533において、動き補償部512は、インター動き予測処理を行う。インター動き予測処理が終了すると、画像復号装置500は、処理を図21に戻し、ステップS506以降の処理を実行させる。
[イントラ予測処理]
 次に、図23のフローチャートを参照して、図21のステップS533において実行されるインター動き予測処理の流れの例を説明する。
 インター動き予測処理が開始されると、動き補償部512は、ステップS551において、可逆復号部502から供給される情報に基づいて予測画像の解像度を選択する。ステップS552において、動き補償部512は、動きベクトル情報に基づいて参照画像の位置(領域)を決定する。ステップS553において、動き補償部512は、予測画像を生成する。予測画像が生成されると、インター動き予測処理が終了される。動き補償部512は、処理を図22のステップS533に戻し、予測処理を終了させ、さらに、処理を図21のステップS505に戻し、ステップS506以降の処理を実行させる。
 以上のように、画像復号装置500は、画像符号化装置400から供給される各種情報に基づいて、画像符号化装置400が符号化した符号化データを復号することができる。
つまり、画像符号化装置400が、符号化処理単位となる部分領域の大きさに応じたサイズ(解像度)の画像を用いて動き探索や動き補償を行って差分情報を生成し、さらにその差分情報を符号化して得られた符号化データを、画像復号装置500は、同様に符号化処理単位となる部分領域の大きさに応じたサイズ(解像度)の予測画像を用いて復号することができる。
 つまり、画像復号装置500は、画像符号化装置400が負荷の増大を抑制しながら、符号化効率をより向上させることができるようにすることができる。
<5.第5の実施の形態>
[パーソナルコンピュータ]
 上述した一連の処理は、ハードウエアにより実行させることもできるし、ソフトウエアにより実行させることもできる。この場合、例えば、図24に示されるようなパーソナルコンピュータとして構成されるようにしてもよい。
 図24において、パーソナルコンピュータ600のCPU(Central Processing Unit)601は、ROM(Read Only Memory)602に記憶されているプログラム、または記憶部613からRAM(Random Access Memory)603にロードされたプログラムに従って各種の処理を実行する。RAM603にはまた、CPU601が各種の処理を実行する上において必要なデータなども適宜記憶される。
 CPU601、ROM602、およびRAM603は、バス604を介して相互に接続されている。このバス604にはまた、入出力インタフェース610も接続されている。
 入出力インタフェース610には、キーボード、マウスなどよりなる入力部611、CRT(Cathode Ray Tube)やLCD(Liquid Crystal Display)などよりなるディスプレイ、並びにスピーカなどよりなる出力部612、ハードディスクなどより構成される記憶部613、モデムなどより構成される通信部614が接続されている。通信部614は、インターネットを含むネットワークを介しての通信処理を行う。
 入出力インタフェース610にはまた、必要に応じてドライブ615が接続され、磁気ディスク、光ディスク、光磁気ディスク、或いは半導体メモリなどのリムーバブルメディア621が適宜装着され、それらから読み出されたコンピュータプログラムが、必要に応じて記憶部613にインストールされる。
 上述した一連の処理をソフトウエアにより実行させる場合には、そのソフトウエアを構成するプログラムが、ネットワークや記録媒体からインストールされる。
 この記録媒体は、例えば、図24に示されるように、装置本体とは別に、ユーザにプログラムを配信するために配布される、プログラムが記録されている磁気ディスク(フレキシブルディスクを含む)、光ディスク(CD-ROM(Compact Disc - Read Only Memory),DVD(Digital Versatile Disc)を含む)、光磁気ディスク(MD(Mini Disc)を含む)、若しくは半導体メモリなどよりなるリムーバブルメディア621により構成されるだけでなく、装置本体に予め組み込まれた状態でユーザに配信される、プログラムが記録されているROM602や、記憶部613に含まれるハードディスクなどで構成される。
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
 また、本明細書において、記録媒体に記録されるプログラムを記述するステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。
 また、本明細書において、システムとは、複数のデバイス(装置)により構成される装置全体を表すものである。
 また、以上において、1つの装置(または処理部)として説明した構成を分割し、複数の装置(または処理部)として構成するようにしてもよい。逆に、以上において複数の装置(または処理部)として説明した構成をまとめて1つの装置(または処理部)として構成されるようにしてもよい。また、各装置(または各処理部)の構成に上述した以外の構成を付加するようにしてももちろんよい。さらに、システム全体としての構成や動作が実質的に同じであれば、ある装置(または処理部)の構成の一部を他の装置(または他の処理部)の構成に含めるようにしてもよい。つまり、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。
 例えば、上述した画像符号化装置や画像復号装置は、任意の電子機器に適用することができる。以下にその例について説明する。
<6.第6の実施の形態>
[テレビジョン受像機]
 図25は、本発明を適用した画像復号装置500を用いるテレビジョン受像機の主な構成例を示すブロック図である。
 図25に示されるテレビジョン受像機1000は、地上波チューナ1013、ビデオデコーダ1015、映像信号処理回路1018、グラフィック生成回路1019、パネル駆動回路1020、および表示パネル1021を有する。
 地上波チューナ1013は、地上アナログ放送の放送波信号を、アンテナを介して受信し、復調し、映像信号を取得し、それをビデオデコーダ1015に供給する。ビデオデコーダ1015は、地上波チューナ1013から供給された映像信号に対してデコード処理を施し、得られたデジタルのコンポーネント信号を映像信号処理回路1018に供給する。
 映像信号処理回路1018は、ビデオデコーダ1015から供給された映像データに対してノイズ除去などの所定の処理を施し、得られた映像データをグラフィック生成回路1019に供給する。
 グラフィック生成回路1019は、表示パネル1021に表示させる番組の映像データや、ネットワークを介して供給されるアプリケーションに基づく処理による画像データなどを生成し、生成した映像データや画像データをパネル駆動回路1020に供給する。また、グラフィック生成回路1019は、項目の選択などにユーザにより利用される画面を表示するための映像データ(グラフィック)を生成し、それを番組の映像データに重畳したりすることによって得られた映像データをパネル駆動回路1020に供給するといった処理も適宜行う。
 パネル駆動回路1020は、グラフィック生成回路1019から供給されたデータに基づいて表示パネル1021を駆動し、番組の映像や上述した各種の画面を表示パネル1021に表示させる。
 表示パネル1021はLCD(Liquid Crystal Display)などよりなり、パネル駆動回路1020による制御に従って番組の映像などを表示させる。
 また、テレビジョン受像機1000は、音声A/D(Analog/Digital)変換回路1014、音声信号処理回路1022、エコーキャンセル/音声合成回路1023、音声増幅回路1024、およびスピーカ1025も有する。
 地上波チューナ1013は、受信した放送波信号を復調することにより、映像信号だけでなく音声信号も取得する。地上波チューナ1013は、取得した音声信号を音声A/D変換回路1014に供給する。
 音声A/D変換回路1014は、地上波チューナ1013から供給された音声信号に対してA/D変換処理を施し、得られたデジタルの音声信号を音声信号処理回路1022に供給する。
 音声信号処理回路1022は、音声A/D変換回路1014から供給された音声データに対してノイズ除去などの所定の処理を施し、得られた音声データをエコーキャンセル/音声合成回路1023に供給する。
 エコーキャンセル/音声合成回路1023は、音声信号処理回路1022から供給された音声データを音声増幅回路1024に供給する。
 音声増幅回路1024は、エコーキャンセル/音声合成回路1023から供給された音声データに対してD/A変換処理、増幅処理を施し、所定の音量に調整した後、音声をスピーカ1025から出力させる。
 さらに、テレビジョン受像機1000は、デジタルチューナ1016およびMPEGデコーダ1017も有する。
 デジタルチューナ1016は、デジタル放送(地上デジタル放送、BS(Broadcasting Satellite)/CS(Communications Satellite)デジタル放送)の放送波信号を、アンテナを介して受信し、復調し、MPEG-TS(Moving Picture Experts Group-Transport Stream)を取得し、それをMPEGデコーダ1017に供給する。
 MPEGデコーダ1017は、デジタルチューナ1016から供給されたMPEG-TSに施されているスクランブルを解除し、再生対象(視聴対象)になっている番組のデータを含むストリームを抽出する。MPEGデコーダ1017は、抽出したストリームを構成する音声パケットをデコードし、得られた音声データを音声信号処理回路1022に供給するとともに、ストリームを構成する映像パケットをデコードし、得られた映像データを映像信号処理回路1018に供給する。また、MPEGデコーダ1017は、MPEG-TSから抽出したEPG(Electronic Program Guide)データを図示せぬ経路を介してCPU1032に供給する。
 テレビジョン受像機1000は、このように映像パケットをデコードするMPEGデコーダ1017として、上述した画像復号装置500を用いる。なお、放送局等より送信されるMPEG-TSは、画像符号化装置400によって符号化されている。
 MPEGデコーダ1017は、画像復号装置500の場合と同様に、放送局(画像符号化装置400)より供給される縮小画像の符号化データを、縮小画像の予測画像を用いて復号する。したがって、MPEGデコーダ1017は、画像符号化装置400が、負荷の増大を抑制しながら、符号化効率をより向上させることができるようにすることができる。
 MPEGデコーダ1017から供給された映像データは、ビデオデコーダ1015から供給された映像データの場合と同様に、映像信号処理回路1018において所定の処理が施され、グラフィック生成回路1019において、生成された映像データ等が適宜重畳され、パネル駆動回路1020を介して表示パネル1021に供給され、その画像が表示される。
 MPEGデコーダ1017から供給された音声データは、音声A/D変換回路1014から供給された音声データの場合と同様に、音声信号処理回路1022において所定の処理が施され、エコーキャンセル/音声合成回路1023を介して音声増幅回路1024に供給され、D/A変換処理や増幅処理が施される。その結果、所定の音量に調整された音声がスピーカ1025から出力される。
 また、テレビジョン受像機1000は、マイクロホン1026、およびA/D変換回路1027も有する。
 A/D変換回路1027は、音声会話用のものとしてテレビジョン受像機1000に設けられるマイクロホン1026により取り込まれたユーザの音声の信号を受信し、受信した音声信号に対してA/D変換処理を施し、得られたデジタルの音声データをエコーキャンセル/音声合成回路1023に供給する。
 エコーキャンセル/音声合成回路1023は、テレビジョン受像機1000のユーザ(ユーザA)の音声のデータがA/D変換回路1027から供給されている場合、ユーザAの音声データを対象としてエコーキャンセルを行い、他の音声データと合成するなどして得られた音声のデータを、音声増幅回路1024を介してスピーカ1025より出力させる。
 さらに、テレビジョン受像機1000は、音声コーデック1028、内部バス1029、SDRAM(Synchronous Dynamic Random Access Memory)1030、フラッシュメモリ1031、CPU1032、USB(Universal Serial Bus) I/F1033、およびネットワークI/F1034も有する。
 A/D変換回路1027は、音声会話用のものとしてテレビジョン受像機1000に設けられるマイクロホン1026により取り込まれたユーザの音声の信号を受信し、受信した音声信号に対してA/D変換処理を施し、得られたデジタルの音声データを音声コーデック1028に供給する。
 音声コーデック1028は、A/D変換回路1027から供給された音声データを、ネットワーク経由で送信するための所定のフォーマットのデータに変換し、内部バス1029を介してネットワークI/F1034に供給する。
 ネットワークI/F1034は、ネットワーク端子1035に装着されたケーブルを介してネットワークに接続される。ネットワークI/F1034は、例えば、そのネットワークに接続される他の装置に対して、音声コーデック1028から供給された音声データを送信する。また、ネットワークI/F1034は、例えば、ネットワークを介して接続される他の装置から送信される音声データを、ネットワーク端子1035を介して受信し、それを、内部バス1029を介して音声コーデック1028に供給する。
 音声コーデック1028は、ネットワークI/F1034から供給された音声データを所定のフォーマットのデータに変換し、それをエコーキャンセル/音声合成回路1023に供給する。
 エコーキャンセル/音声合成回路1023は、音声コーデック1028から供給される音声データを対象としてエコーキャンセルを行い、他の音声データと合成するなどして得られた音声のデータを、音声増幅回路1024を介してスピーカ1025より出力させる。
 SDRAM1030は、CPU1032が処理を行う上で必要な各種のデータを記憶する。
 フラッシュメモリ1031は、CPU1032により実行されるプログラムを記憶する。
フラッシュメモリ1031に記憶されているプログラムは、テレビジョン受像機1000の起動時などの所定のタイミングでCPU1032により読み出される。フラッシュメモリ1031には、デジタル放送を介して取得されたEPGデータ、ネットワークを介して所定のサーバから取得されたデータなども記憶される。
 例えば、フラッシュメモリ1031には、CPU1032の制御によりネットワークを介して所定のサーバから取得されたコンテンツデータを含むMPEG-TSが記憶される。フラッシュメモリ1031は、例えばCPU1032の制御により、そのMPEG-TSを、内部バス1029を介してMPEGデコーダ1017に供給する。
 MPEGデコーダ1017は、デジタルチューナ1016から供給されたMPEG-TSの場合と同様に、そのMPEG-TSを処理する。このようにテレビジョン受像機1000は、映像や音声等よりなるコンテンツデータを、ネットワークを介して受信し、MPEGデコーダ1017を用いてデコードし、その映像を表示させたり、音声を出力させたりすることができる。
 また、テレビジョン受像機1000は、リモートコントローラ1051から送信される赤外線信号を受光する受光部1037も有する。
 受光部1037は、リモートコントローラ1051からの赤外線を受光し、復調して得られたユーザ操作の内容を表す制御コードをCPU1032に出力する。
 CPU1032は、フラッシュメモリ1031に記憶されているプログラムを実行し、受光部1037から供給される制御コードなどに応じてテレビジョン受像機1000の全体の動作を制御する。CPU1032とテレビジョン受像機1000の各部は、図示せぬ経路を介して接続されている。
 USB I/F1033は、USB端子1036に装着されたUSBケーブルを介して接続される、テレビジョン受像機1000の外部の機器との間でデータの送受信を行う。ネットワークI/F1034は、ネットワーク端子1035に装着されたケーブルを介してネットワークに接続し、ネットワークに接続される各種の装置と音声データ以外のデータの送受信も行う。
 テレビジョン受像機1000は、MPEGデコーダ1017として画像復号装置500を用いることにより、アンテナを介して受信する放送波信号や、ネットワークを介して取得するコンテンツデータの符号化効率を、負荷の増大を抑制しながら向上させることができ、リアルタイム処理をより低いコストで実現することができる。
<7.第7の実施の形態>
[携帯電話機]
 図26は、本発明を適用した画像符号化装置および画像復号装置を用いる携帯電話機の主な構成例を示すブロック図である。
 図26に示される携帯電話機1100は、各部を統括的に制御するようになされた主制御部1150、電源回路部1151、操作入力制御部1152、画像エンコーダ1153、カメラI/F部1154、LCD制御部1155、画像デコーダ1156、多重分離部1157、記録再生部1162、変復調回路部1158、および音声コーデック1159を有する。これらは、バス1160を介して互いに接続されている。
 また、携帯電話機1100は、操作キー1119、CCD(Charge Coupled Devices)カメラ1116、液晶ディスプレイ1118、記憶部1123、送受信回路部1163、アンテナ1114、マイクロホン(マイク)1121、およびスピーカ1117を有する。
 電源回路部1151は、ユーザの操作により終話および電源キーがオン状態にされると、バッテリパックから各部に対して電力を供給することにより携帯電話機1100を動作可能な状態に起動する。
 携帯電話機1100は、CPU、ROMおよびRAM等でなる主制御部1150の制御に基づいて、音声通話モードやデータ通信モード等の各種モードで、音声信号の送受信、電子メールや画像データの送受信、画像撮影、またはデータ記録等の各種動作を行う。
 例えば、音声通話モードにおいて、携帯電話機1100は、マイクロホン(マイク)1121で集音した音声信号を、音声コーデック1159によってデジタル音声データに変換し、これを変復調回路部1158でスペクトラム拡散処理し、送受信回路部1163でデジタルアナログ変換処理および周波数変換処理する。携帯電話機1100は、その変換処理により得られた送信用信号を、アンテナ1114を介して図示しない基地局へ送信する。基地局へ伝送された送信用信号(音声信号)は、公衆電話回線網を介して通話相手の携帯電話機に供給される。
 また、例えば、音声通話モードにおいて、携帯電話機1100は、アンテナ1114で受信した受信信号を送受信回路部1163で増幅し、さらに周波数変換処理およびアナログデジタル変換処理し、変復調回路部1158でスペクトラム逆拡散処理し、音声コーデック1159によってアナログ音声信号に変換する。携帯電話機1100は、その変換して得られたアナログ音声信号をスピーカ1117から出力する。
 更に、例えば、データ通信モードにおいて電子メールを送信する場合、携帯電話機1100は、操作キー1119の操作によって入力された電子メールのテキストデータを、操作入力制御部1152において受け付ける。携帯電話機1100は、そのテキストデータを主制御部1150において処理し、LCD制御部1155を介して、画像として液晶ディスプレイ1118に表示させる。
 また、携帯電話機1100は、主制御部1150において、操作入力制御部1152が受け付けたテキストデータやユーザ指示等に基づいて電子メールデータを生成する。携帯電話機1100は、その電子メールデータを、変復調回路部1158でスペクトラム拡散処理し、送受信回路部1163でデジタルアナログ変換処理および周波数変換処理する。
携帯電話機1100は、その変換処理により得られた送信用信号を、アンテナ1114を介して図示しない基地局へ送信する。基地局へ伝送された送信用信号(電子メール)は、ネットワークおよびメールサーバ等を介して、所定のあて先に供給される。
 また、例えば、データ通信モードにおいて電子メールを受信する場合、携帯電話機1100は、基地局から送信された信号を、アンテナ1114を介して送受信回路部1163で受信し、増幅し、さらに周波数変換処理およびアナログデジタル変換処理する。携帯電話機1100は、その受信信号を変復調回路部1158でスペクトラム逆拡散処理して元の電子メールデータを復元する。携帯電話機1100は、復元された電子メールデータを、LCD制御部1155を介して液晶ディスプレイ1118に表示する。
 なお、携帯電話機1100は、受信した電子メールデータを、記録再生部1162を介して、記憶部1123に記録する(記憶させる)ことも可能である。
 この記憶部1123は、書き換え可能な任意の記憶媒体である。記憶部1123は、例えば、RAMや内蔵型フラッシュメモリ等の半導体メモリであってもよいし、ハードディスクであってもよいし、磁気ディスク、光磁気ディスク、光ディスク、USBメモリ、またはメモリカード等のリムーバブルメディアであってもよい。もちろん、これら以外のものであってもよい。
 さらに、例えば、データ通信モードにおいて画像データを送信する場合、携帯電話機1100は、撮像によりCCDカメラ1116で画像データを生成する。CCDカメラ1116は、レンズや絞り等の光学デバイスと光電変換素子としてのCCDを有し、被写体を撮像し、受光した光の強度を電気信号に変換し、被写体の画像の画像データを生成する。CCDカメラ1116は、その画像データを、カメラI/F部1154を介して、画像エンコーダ1153で符号化し、符号化画像データに変換する。
 携帯電話機1100は、このような処理を行う画像エンコーダ1153として、上述した画像符号化装置100、画像符号化装置300、若しくは画像符号化装置400を用いる。画像エンコーダ1153は、これらの画像符号化装置の場合と同様に、処理対象マクロブロックが拡張マクロブロックの場合、縮小画像を用いて動き探索を行う。このように縮小画像を用いて生成された予測画像を用いて画像データを符号化することにより、画像エンコーダ1153は、負荷の増大を抑制しながら、符号化効率をより向上させることができる。
 なお、画像符号化装置400は、動き補償も縮小画像を用いて行う。したがって、画像エンコーダ1153は、画像符号化装置400を用いることにより、さらに符号化効率を向上させることができる。
 なお、携帯電話機1100は、このとき同時に、CCDカメラ1116で撮像中にマイクロホン(マイク)1121で集音した音声を、音声コーデック1159においてアナログデジタル変換し、さらに符号化する。
 携帯電話機1100は、多重分離部1157において、画像エンコーダ1153から供給された符号化画像データと、音声コーデック1159から供給されたデジタル音声データとを、所定の方式で多重化する。携帯電話機1100は、その結果得られる多重化データを、変復調回路部1158でスペクトラム拡散処理し、送受信回路部1163でデジタルアナログ変換処理および周波数変換処理する。携帯電話機1100は、その変換処理により得られた送信用信号を、アンテナ1114を介して図示しない基地局へ送信する。基地局へ伝送された送信用信号(画像データ)は、ネットワーク等を介して、通信相手に供給される。
 なお、画像データを送信しない場合、携帯電話機1100は、CCDカメラ1116で生成した画像データを、画像エンコーダ1153を介さずに、LCD制御部1155を介して液晶ディスプレイ1118に表示させることもできる。
 また、例えば、データ通信モードにおいて、簡易ホームページ等にリンクされた動画像ファイルのデータを受信する場合、携帯電話機1100は、基地局から送信された信号を、アンテナ1114を介して送受信回路部1163で受信し、増幅し、さらに周波数変換処理およびアナログデジタル変換処理する。携帯電話機1100は、その受信信号を変復調回路部1158でスペクトラム逆拡散処理して元の多重化データを復元する。携帯電話機1100は、多重分離部1157において、その多重化データを分離して、符号化画像データと音声データとに分ける。
 携帯電話機1100は、画像デコーダ1156において符号化画像データをデコードすることにより、再生動画像データを生成し、これを、LCD制御部1155を介して液晶ディスプレイ1118に表示させる。これにより、例えば、簡易ホームページにリンクされた動画像ファイルに含まれる動画データが液晶ディスプレイ1118に表示される。
 携帯電話機1100は、このような処理を行う画像デコーダ1156として、上述した画像復号装置500を用いる。つまり、画像デコーダ1156は、画像復号装置500の場合と同様に、縮小画像を用いて生成された差分情報の符号化データを、縮小画像を用いてインター符号化することができる。したがって、画像デコーダ1156は、画像符号化装置400に、負荷の増大を抑制しながら、符号化効率をより向上させることができる。
 このとき、携帯電話機1100は、同時に、音声コーデック1159において、デジタルの音声データをアナログ音声信号に変換し、これをスピーカ1117より出力させる。
これにより、例えば、簡易ホームページにリンクされた動画像ファイルに含まれる音声データが再生される。
 なお、電子メールの場合と同様に、携帯電話機1100は、受信した簡易ホームページ等にリンクされたデータを、記録再生部1162を介して、記憶部1123に記録する(記憶させる)ことも可能である。
 また、携帯電話機1100は、主制御部1150において、撮像されてCCDカメラ1116で得られた2次元コードを解析し、2次元コードに記録された情報を取得することができる。
 さらに、携帯電話機1100は、赤外線通信部1181で赤外線により外部の機器と通信することができる。
 携帯電話機1100は、画像エンコーダ1153として画像符号化装置100、画像符号化装置300、若しくは画像符号化装置400を用いることにより、例えばCCDカメラ1116において生成された画像データを符号化して伝送する際の符号化効率を、負荷の増大を抑制しながら向上させることができ、リアルタイム処理をより低いコストで実現することができる。
 また、携帯電話機1100は、画像デコーダ1156として画像復号装置500を用いることにより、例えば、簡易ホームページ等にリンクされた動画像ファイルのデータ(符号化データ)の符号化効率を、負荷の増大を抑制しながら向上させることができ、リアルタイム処理をより低いコストで実現することができる。
 なお、以上において、携帯電話機1100が、CCDカメラ1116を用いるように説明したが、このCCDカメラ1116の代わりに、CMOS(Complementary Metal Oxide Semiconductor)を用いたイメージセンサ(CMOSイメージセンサ)を用いるようにしてもよい。この場合も、携帯電話機1100は、CCDカメラ1116を用いる場合と同様に、被写体を撮像し、被写体の画像の画像データを生成することができる。
 また、以上においては携帯電話機1100として説明したが、例えば、PDA(Personal Digital Assistants)、スマートフォン、UMPC(Ultra Mobile Personal Computer)、ネットブック、ノート型パーソナルコンピュータ等、この携帯電話機1100と同様の撮像機能や通信機能を有する装置であれば、どのような装置であっても携帯電話機1100の場合と同様に、本発明を適用した画像符号化装置および画像復号装置を適用することができる。
<8.第8の実施の形態>
[ハードディスクレコーダ]
 図27は、本発明を適用した画像符号化装置および画像復号装置を用いるハードディスクレコーダの主な構成例を示すブロック図である。
 図27に示されるハードディスクレコーダ(HDDレコーダ)1200は、チューナにより受信された、衛星や地上のアンテナ等より送信される放送波信号(テレビジョン信号)に含まれる放送番組のオーディオデータとビデオデータを、内蔵するハードディスクに保存し、その保存したデータをユーザの指示に応じたタイミングでユーザに提供する装置である。
 ハードディスクレコーダ1200は、例えば、放送波信号よりオーディオデータとビデオデータを抽出し、それらを適宜復号し、内蔵するハードディスクに記憶させることができる。また、ハードディスクレコーダ1200は、例えば、ネットワークを介して他の装置からオーディオデータやビデオデータを取得し、それらを適宜復号し、内蔵するハードディスクに記憶させることもできる。
 さらに、ハードディスクレコーダ1200は、例えば、内蔵するハードディスクに記録されているオーディオデータやビデオデータを復号してモニタ1260に供給し、モニタ1260の画面にその画像を表示させ、モニタ1260のスピーカよりその音声を出力させることができる。また、ハードディスクレコーダ1200は、例えば、チューナを介して取得された放送波信号より抽出されたオーディオデータとビデオデータ、または、ネットワークを介して他の装置から取得したオーディオデータやビデオデータを復号してモニタ1260に供給し、モニタ1260の画面にその画像を表示させ、モニタ1260のスピーカよりその音声を出力させることもできる。
 もちろん、この他の動作も可能である。
 図26に示されるように、ハードディスクレコーダ1200は、受信部1221、復調部1222、デマルチプレクサ1223、オーディオデコーダ1224、ビデオデコーダ1225、およびレコーダ制御部1226を有する。ハードディスクレコーダ1200は、さらに、EPGデータメモリ1227、プログラムメモリ1228、ワークメモリ1229、ディスプレイコンバータ1230、OSD(On Screen Display)制御部1231、ディスプレイ制御部1232、記録再生部1233、D/Aコンバータ1234、および通信部1235を有する。
 また、ディスプレイコンバータ1230は、ビデオエンコーダ1241を有する。記録再生部1233は、エンコーダ1251およびデコーダ1252を有する。
 受信部1221は、リモートコントローラ(図示せず)からの赤外線信号を受信し、電気信号に変換してレコーダ制御部1226に出力する。レコーダ制御部1226は、例えば、マイクロプロセッサなどにより構成され、プログラムメモリ1228に記憶されているプログラムに従って、各種の処理を実行する。レコーダ制御部1226は、このとき、ワークメモリ1229を必要に応じて使用する。
 通信部1235は、ネットワークに接続され、ネットワークを介して他の装置との通信処理を行う。例えば、通信部1235は、レコーダ制御部1226により制御され、チューナ(図示せず)と通信し、主にチューナに対して選局制御信号を出力する。
 復調部1222は、チューナより供給された信号を、復調し、デマルチプレクサ1223に出力する。デマルチプレクサ1223は、復調部1222より供給されたデータを、オーディオデータ、ビデオデータ、およびEPGデータに分離し、それぞれ、オーディオデコーダ1224、ビデオデコーダ1225、またはレコーダ制御部1226に出力する。
 オーディオデコーダ1224は、入力されたオーディオデータをデコードし、記録再生部1233に出力する。ビデオデコーダ1225は、入力されたビデオデータをデコードし、ディスプレイコンバータ1230に出力する。レコーダ制御部1226は、入力されたEPGデータをEPGデータメモリ1227に供給し、記憶させる。
 ディスプレイコンバータ1230は、ビデオデコーダ1225またはレコーダ制御部1226より供給されたビデオデータを、ビデオエンコーダ1241により、例えばNTSC(National Television Standards Committee)方式のビデオデータにエンコードし、記録再生部1233に出力する。また、ディスプレイコンバータ1230は、ビデオデコーダ1225またはレコーダ制御部1226より供給されるビデオデータの画面のサイズを、モニタ1260のサイズに対応するサイズに変換し、ビデオエンコーダ1241によってNTSC方式のビデオデータに変換し、アナログ信号に変換し、ディスプレイ制御部1232に出力する。
 ディスプレイ制御部1232は、レコーダ制御部1226の制御のもと、OSD(On Screen Display)制御部1231が出力したOSD信号を、ディスプレイコンバータ1230より入力されたビデオ信号に重畳し、モニタ1260のディスプレイに出力し、表示させる。
 モニタ1260にはまた、オーディオデコーダ1224が出力したオーディオデータが、D/Aコンバータ1234によりアナログ信号に変換されて供給されている。モニタ1260は、このオーディオ信号を内蔵するスピーカから出力する。
 記録再生部1233は、ビデオデータやオーディオデータ等を記録する記憶媒体としてハードディスクを有する。
 記録再生部1233は、例えば、オーディオデコーダ1224より供給されるオーディオデータを、エンコーダ1251によりエンコードする。また、記録再生部1233は、ディスプレイコンバータ1230のビデオエンコーダ1241より供給されるビデオデータを、エンコーダ1251によりエンコードする。記録再生部1233は、そのオーディオデータの符号化データとビデオデータの符号化データとをマルチプレクサにより合成する。記録再生部1233は、その合成データをチャネルコーディングして増幅し、そのデータを、記録ヘッドを介してハードディスクに書き込む。
 記録再生部1233は、再生ヘッドを介してハードディスクに記録されているデータを再生し、増幅し、デマルチプレクサによりオーディオデータとビデオデータに分離する。記録再生部1233は、デコーダ1252によりオーディオデータおよびビデオデータをデコードする。記録再生部1233は、復号したオーディオデータをD/A変換し、モニタ1260のスピーカに出力する。また、記録再生部1233は、復号したビデオデータをD/A変換し、モニタ1260のディスプレイに出力する。
 レコーダ制御部1226は、受信部1221を介して受信されるリモートコントローラからの赤外線信号により示されるユーザ指示に基づいて、EPGデータメモリ1227から最新のEPGデータを読み出し、それをOSD制御部1231に供給する。OSD制御部1231は、入力されたEPGデータに対応する画像データを発生し、ディスプレイ制御部1232に出力する。ディスプレイ制御部1232は、OSD制御部1231より入力されたビデオデータをモニタ1260のディスプレイに出力し、表示させる。これにより、モニタ1260のディスプレイには、EPG(電子番組ガイド)が表示される。
 また、ハードディスクレコーダ1200は、インターネット等のネットワークを介して他の装置から供給されるビデオデータ、オーディオデータ、またはEPGデータ等の各種データを取得することができる。
 通信部1235は、レコーダ制御部1226に制御され、ネットワークを介して他の装置から送信されるビデオデータ、オーディオデータ、およびEPGデータ等の符号化データを取得し、それをレコーダ制御部1226に供給する。レコーダ制御部1226は、例えば、取得したビデオデータやオーディオデータの符号化データを記録再生部1233に供給し、ハードディスクに記憶させる。このとき、レコーダ制御部1226および記録再生部1233が、必要に応じて再エンコード等の処理を行うようにしてもよい。
 また、レコーダ制御部1226は、取得したビデオデータやオーディオデータの符号化データを復号し、得られるビデオデータをディスプレイコンバータ1230に供給する。
ディスプレイコンバータ1230は、ビデオデコーダ1225から供給されるビデオデータと同様に、レコーダ制御部1226から供給されるビデオデータを処理し、ディスプレイ制御部1232を介してモニタ1260に供給し、その画像を表示させる。
 また、この画像表示に合わせて、レコーダ制御部1226が、復号したオーディオデータを、D/Aコンバータ1234を介してモニタ1260に供給し、その音声をスピーカから出力させるようにしてもよい。
 さらに、レコーダ制御部1226は、取得したEPGデータの符号化データを復号し、復号したEPGデータをEPGデータメモリ1227に供給する。
 以上のようなハードディスクレコーダ1200は、ビデオデコーダ1225、デコーダ1252、およびレコーダ制御部1226に内蔵されるデコーダとして画像復号装置500を用いる。つまり、ビデオデコーダ1225、デコーダ1252、およびレコーダ制御部1226に内蔵されるデコーダは、画像復号装置500の場合と同様に、画像符号化装置400により縮小画像を用いて符号化された符号化データを、縮小画像を用いてインター符号化する。したがって、ビデオデコーダ1225、デコーダ1252、およびレコーダ制御部1226に内蔵されるデコーダは、負荷の増大を抑制しながら、符号化効率をより向上させることができる。
 したがって、ハードディスクレコーダ1200は、例えば、チューナや通信部1235が受信するビデオデータ(符号化データ)や、記録再生部1233が再生するビデオデータ(符号化データ)の符号化効率を、負荷の増大を抑制しながら向上させることができ、リアルタイム処理をより低いコストで実現することができる。
 また、ハードディスクレコーダ1200は、エンコーダ1251として画像符号化装置100、画像符号化装置300、若しくは画像符号化装置400を用いる。したがって、エンコーダ1251は、画像符号化装置100、画像符号化装置300、若しくは画像符号化装置400の場合と同様に、縮小画像を用いて動き探索を行う。このようにすることにより、エンコーダ1251は、負荷の増大を抑制しながら、符号化効率をより向上させることができる。
 したがって、ハードディスクレコーダ1200は、例えば、ハードディスクに記録する符号化データの符号化効率を、負荷の増大を抑制しながら向上させることができ、リアルタイム処理をより低いコストで実現することができる。
 なお、以上においては、ビデオデータやオーディオデータをハードディスクに記録するハードディスクレコーダ1200について説明したが、もちろん、記録媒体はどのようなものであってもよい。例えばフラッシュメモリ、光ディスク、またはビデオテープ等、ハードディスク以外の記録媒体を適用するレコーダであっても、上述したハードディスクレコーダ1200の場合と同様に、本発明を適用した画像符号化装置および画像復号装置を適用することができる。
<9.第9の実施の形態>
[カメラ]
 図28は、本発明を適用した画像符号化装置および画像復号装置を用いるカメラの主な構成例を示すブロック図である。
 図28に示されるカメラ1300は、被写体を撮像し、被写体の画像をLCD1316に表示させたり、それを画像データとして、記録メディア1333に記録したりする。
 レンズブロック1311は、光(すなわち、被写体の映像)を、CCD/CMOS1312に入射させる。CCD/CMOS1312は、CCDまたはCMOSを用いたイメージセンサであり、受光した光の強度を電気信号に変換し、カメラ信号処理部1313に供給する。
 カメラ信号処理部1313は、CCD/CMOS1312から供給された電気信号を、Y,Cr,Cbの色差信号に変換し、画像信号処理部1314に供給する。画像信号処理部1314は、コントローラ1321の制御の下、カメラ信号処理部1313から供給された画像信号に対して所定の画像処理を施したり、その画像信号をエンコーダ1341で符号化したりする。画像信号処理部1314は、画像信号を符号化して生成した符号化データを、デコーダ1315に供給する。さらに、画像信号処理部1314は、オンスクリーンディスプレイ(OSD)1320において生成された表示用データを取得し、それをデコーダ1315に供給する。
 以上の処理において、カメラ信号処理部1313は、バス1317を介して接続されるDRAM(Dynamic Random Access Memory)1318を適宜利用し、必要に応じて画像データや、その画像データが符号化された符号化データ等をそのDRAM1318に保持させる。
 デコーダ1315は、画像信号処理部1314から供給された符号化データを復号し、得られた画像データ(復号画像データ)をLCD1316に供給する。また、デコーダ1315は、画像信号処理部1314から供給された表示用データをLCD1316に供給する。LCD1316は、デコーダ1315から供給された復号画像データの画像と表示用データの画像を適宜合成し、その合成画像を表示する。
 オンスクリーンディスプレイ1320は、コントローラ1321の制御の下、記号、文字、または図形からなるメニュー画面やアイコンなどの表示用データを、バス1317を介して画像信号処理部1314に出力する。
 コントローラ1321は、ユーザが操作部1322を用いて指令した内容を示す信号に基づいて、各種処理を実行するとともに、バス1317を介して、画像信号処理部1314、DRAM1318、外部インタフェース1319、オンスクリーンディスプレイ1320、およびメディアドライブ1323等を制御する。FLASH ROM1324には、コントローラ1321が各種処理を実行する上で必要なプログラムやデータ等が格納される。
 例えば、コントローラ1321は、画像信号処理部1314やデコーダ1315に代わって、DRAM1318に記憶されている画像データを符号化したり、DRAM1318に記憶されている符号化データを復号したりすることができる。このとき、コントローラ1321は、画像信号処理部1314やデコーダ1315の符号化・復号方式と同様の方式によって符号化・復号処理を行うようにしてもよいし、画像信号処理部1314やデコーダ1315が対応していない方式により符号化・復号処理を行うようにしてもよい。
 また、例えば、操作部1322から画像印刷の開始が指示された場合、コントローラ1321は、DRAM1318から画像データを読み出し、それを、バス1317を介して外部インタフェース1319に接続されるプリンタ1334に供給して印刷させる。
 さらに、例えば、操作部1322から画像記録が指示された場合、コントローラ1321は、DRAM1318から符号化データを読み出し、それを、バス1317を介してメディアドライブ1323に装着される記録メディア1333に供給して記憶させる。
 記録メディア1333は、例えば、磁気ディスク、光磁気ディスク、光ディスク、または半導体メモリ等の、読み書き可能な任意のリムーバブルメディアである。記録メディア1333は、もちろん、リムーバブルメディアとしての種類も任意であり、テープデバイスであってもよいし、ディスクであってもよいし、メモリカードであってもよい。もちろん、非接触ICカード等であっても良い。
 また、メディアドライブ1323と記録メディア1333を一体化し、例えば、内蔵型ハードディスクドライブやSSD(Solid State Drive)等のように、非可搬性の記憶媒体により構成されるようにしてもよい。
 外部インタフェース1319は、例えば、USB入出力端子などで構成され、画像の印刷を行う場合に、プリンタ1334と接続される。また、外部インタフェース1319には、必要に応じてドライブ1331が接続され、磁気ディスク、光ディスク、あるいは光磁気ディスクなどのリムーバブルメディア1332が適宜装着され、それらから読み出されたコンピュータプログラムが、必要に応じて、FLASH ROM1324にインストールされる。
 さらに、外部インタフェース1319は、LANやインターネット等の所定のネットワークに接続されるネットワークインタフェースを有する。コントローラ1321は、例えば、操作部1322からの指示に従って、DRAM1318から符号化データを読み出し、それを外部インタフェース1319から、ネットワークを介して接続される他の装置に供給させることができる。また、コントローラ1321は、ネットワークを介して他の装置から供給される符号化データや画像データを、外部インタフェース1319を介して取得し、それをDRAM1318に保持させたり、画像信号処理部1314に供給したりすることができる。
 以上のようなカメラ1300は、デコーダ1315として画像復号装置500を用いる。つまり、デコーダ1315は、画像復号装置500の場合と同様に、画像符号化装置400より供給される、縮小画像を用いて生成された符号化データを、縮小画像を用いてインター符号化する。したがって、デコーダ1315は、負荷の増大を抑制しながら、符号化効率をより向上させることができる。
 したがって、カメラ1300は、例えば、CCD/CMOS1312において生成される画像データや、DRAM1318または記録メディア1333から読み出すビデオデータの符号化データや、ネットワークを介して取得するビデオデータの符号化データの符号化効率を、負荷の増大を抑制しながら向上させることができ、リアルタイム処理をより低いコストで実現することができる。
 また、カメラ1300は、エンコーダ1341として画像符号化装置100、画像符号化装置300、若しくは画像符号化装置400を用いる。エンコーダ1341は、これらの画像符号化装置の場合と同様に、縮小画像を用いて動き探索を行う。このようにすることにより、エンコーダ1341は、負荷の増大を抑制しながら、符号化効率をより向上させることができる。
 したがって、カメラ1300は、例えば、DRAM1318や記録メディア1333に記録する符号化データや、他の装置に提供する符号化データの符号化効率を、負荷の増大を抑制しながら向上させることができ、リアルタイム処理をより低いコストで実現することができる。
 なお、コントローラ1321が行う復号処理に画像復号装置500の復号方法を適用するようにしてもよい。同様に、コントローラ1321が行う符号化処理に画像符号化装置100、画像符号化装置300、および画像符号化装置400の符号化方法を適用するようにしてもよい。
 また、カメラ1300が撮像する画像データは動画像であってもよいし、静止画像であってもよい。
 もちろん、本発明を適用した画像符号化装置および画像復号装置は、上述した装置以外の装置やシステムにも適用可能である。
 100 画像符号化装置, 115 動き探索・補償部, 121 縮小部, 122 縮小画面並べ替えバッファ, 123 選択部, 124 縮小部, 125 縮小フレームメモリ, 126 選択部, 151 動き探索部, 152 精度変換部, 153 動き補償部

Claims (16)

  1.  部分領域毎に符号化される画像の、前記部分領域の画像の解像度の大きさを判定する解像度判定手段と、
     前記部分領域について、前記解像度判定手段により判定された前記解像度の大きさに応じた解像度の前記部分領域の画像を用いて動き探索を行う動き探索手段と
     を備える画像処理装置。
  2.  前記部分領域の画像の解像度を変換する解像度変換手段と、
     前記解像度判定手段により、前記部分領域の画像の解像度が所定の閾値より大きいと判定された場合、前記解像度変換手段により解像度が変換された前記部分領域の画像を選択し、前記部分領域の画像の解像度が前記閾値以下であると判定された場合、前記解像度変換手段により解像度が変換されていない前記部分領域の画像を選択する選択手段と
     をさらに備え、
     前記動き探索手段は、前記選択手段により選択された前記部分領域の画像を用いて動き探索を行う
     請求項1に記載の画像処理装置。
  3.  前記閾値は、既存の符号化規格により規定される部分領域の解像度の最大値である
     請求項2に記載の画像処理装置。
  4.  前記閾値は、16×16画素である
     請求項2に記載の画像処理装置。
  5.  前記解像度変換手段は、前記部分領域の画像の解像度を複数の解像度に変換し、
     前記解像度判定手段は、複数の閾値に対する前記部分領域の画像の解像度の大きさを判定し、
     前記選択手段は、前記解像度判定手段による前記部分領域の画像の解像度の大きさと前記複数の閾値との大小関係に応じて、前記解像度変換手段により解像度が変換されて得られた前記複数の解像度の前記部分領域の画像、並びに、前記解像度変換前の前記部分領域の画像のうち、いずれか1つを選択する
     請求項2に記載の画像処理装置。
  6.  前記動き探索手段の動き探索により検出された動きベクトルの精度を、前記解像度変換手段による変換前の前記部分領域の画像の解像度における精度に変換する精度変換手段をさらに備える
     請求項2に記載の画像処理装置。
  7.  前記精度変換手段により精度が変換された前記動きベクトル、および、前記解像度変換手段による変換前の前記部分領域の画像を用いて動き補償を行い、予測画像を生成する動き補償手段をさらに備える
     請求項2に記載の画像処理装置。
  8.  前記動き補償手段により生成された前記予測画像を用いて、前記部分領域の画像を符号化する符号化手段をさらに備える
     請求項7に記載の画像処理装置。
  9.  前記動き探索手段の動き探索により検出された動きベクトル、および、前記選択手段により選択された前記部分領域の画像を用いて動き補償を行い、予測画像を生成する動き補償手段をさらに備える
     請求項2に記載の画像処理装置。
  10.  前記動き補償手段により生成された前記予測画像を用いて、前記部分領域の画像を符号化する符号化手段をさらに備える
     請求項9に記載の画像処理装置。
  11.  符号化される前記部分領域の画像の解像度を変換する第1の解像度変換手段と、
     前記解像度判定手段により、符号化される前記部分領域の画像の解像度が所定の閾値より大きいと判定された場合、前記第1の解像度変換手段により解像度が変換された前記部分領域の画像を選択し、符号化される前記部分領域の画像の解像度が前記閾値以下であると判定された場合、前記第1の解像度変換手段により解像度が変換されていない、符号化される前記部分領域の画像を選択する第1の選択手段と、
     符号化された前記部分領域の画像が復号されて得られた前記部分領域の復号画像の解像度を変換する第2の解像度変換手段と、
     前記解像度判定手段により、符号化される前記部分領域の画像の解像度が所定の閾値より大きいと判定された場合、前記第2の解像度変換手段により解像度が変換された前記部分領域の復号画像を選択し、符号化される前記部分領域の画像の解像度が前記閾値以下であると判定された場合、前記第2の解像度変換手段により解像度が変換されていない前記部分領域の復号画像を選択する第2の選択手段と
     をさらに備え、
     前記動き探索手段は、前記第1の選択手段により選択された前記部分領域の画像を入力画像として用い、前記第2の選択手段により選択された前記部分領域の復号画像を参照画像として用い、動き探索を行う
     請求項1に記載の画像処理装置。
  12.  前記動き探索手段は、前記部分領域の画像を用いて、複数の所定の精度で動き探索を行う
     請求項1に記載の画像処理装置。
  13.  画像処理装置の画像処理方法であって、
     解像度判定手段が、部分領域毎に符号化される画像の、前記部分領域の画像の解像度の大きさを判定し、
     動き探索手段が、前記部分領域について、判定された前記解像度の大きさに応じた解像度の前記部分領域の画像を用いて動き探索を行う
     画像処理方法。
  14.  画像が部分領域毎に、解像度を第1の解像度から第2の解像度に変換され、符号化されて得られた符号化データを前記部分領域毎に復号する復号手段と、
     前記復号手段により復号されて得られる前記第2の解像度の前記部分領域の画像を用いて動き補償を行い、前記復号手段による前記符号化データの復号に用いられる、前記第2の解像度の予測画像を生成する動き補償手段と
     を備える画像処理装置。
  15.  前記復号手段により復号されて得られる前記部分領域の画像の解像度を前記第1の解像度に変換する第1の解像度変換手段と、
     前記第1の解像度変換手段により変換されて得られた前記第1の解像度の前記部分領域の画像を、前記第2の解像度に変換する第2の解像度変換手段と
     をさらに備え、
     前記動き補償手段は、前記第2の解像度変換手段により変換されて得られる前記第2の解像度の前記部分領域の画像を用いて動き補償を行う
     請求項14に記載の画像処理装置。
  16.  画像処理装置の画像処理方法であって、
     復号手段が、画像が部分領域毎に、解像度を第1の解像度から第2の解像度に変換され、符号化されて得られた符号化データを前記部分領域毎に復号し、
     動き補償手段が、復号されて得られる前記第2の解像度の前記部分領域の画像を用いて動き補償を行い、前記符号化データの復号に用いられる、前記第2の解像度の予測画像を生成する
     画像処理方法。
PCT/JP2011/060015 2010-05-18 2011-04-25 画像処理装置および方法 WO2011145437A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/696,846 US20130058416A1 (en) 2010-05-18 2011-04-25 Image processing apparatus and method
CN2011800232094A CN102934439A (zh) 2010-05-18 2011-04-25 图像处理设备和方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-114577 2010-05-18
JP2010114577A JP2011244210A (ja) 2010-05-18 2010-05-18 画像処理装置および方法

Publications (1)

Publication Number Publication Date
WO2011145437A1 true WO2011145437A1 (ja) 2011-11-24

Family

ID=44991548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060015 WO2011145437A1 (ja) 2010-05-18 2011-04-25 画像処理装置および方法

Country Status (4)

Country Link
US (1) US20130058416A1 (ja)
JP (1) JP2011244210A (ja)
CN (1) CN102934439A (ja)
WO (1) WO2011145437A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013223135A (ja) * 2012-04-17 2013-10-28 Mitsubishi Electric Building Techno Service Co Ltd 画像符号化装置、画像符号化方法及びプログラム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102194635B1 (ko) * 2014-01-29 2020-12-23 삼성전자주식회사 디스플레이 컨트롤러 및 이를 포함하는 디스플레이 시스템
JP6336341B2 (ja) * 2014-06-24 2018-06-06 キヤノン株式会社 撮像装置及びその制御方法、プログラム、記憶媒体
TWI749855B (zh) * 2020-11-09 2021-12-11 瑞昱半導體股份有限公司 訊號傳輸裝置、連接裝置與轉接線
CN115691390B (zh) * 2022-11-02 2023-09-26 上海傲显科技有限公司 一种显示面板补偿方法、装置及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004048552A (ja) * 2002-07-15 2004-02-12 Mitsubishi Electric Corp 画像符号化装置、画像符号化方法、画像復号装置、画像復号方法、および通信装置
JP2004241880A (ja) * 2003-02-04 2004-08-26 Sony Corp 画像処理装置および方法、記録媒体、並びにプログラム
JP2005303710A (ja) * 2004-04-13 2005-10-27 Seiko Epson Corp 動画像符号化方法、画像処理装置および画像処理プログラム
WO2010001911A1 (ja) * 2008-07-03 2010-01-07 シャープ株式会社 フィルタ装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69535228T2 (de) * 1994-06-08 2007-09-13 Matsushita Electric Industrial Co., Ltd., Kadoma Bildumsetzungsvorrichtung
CN1243635A (zh) * 1997-01-10 2000-02-02 松下电器产业株式会社 图像处理方法、图像处理装置及数据记录媒体
US6963606B1 (en) * 1997-11-05 2005-11-08 Sony Corporation Digital signal conversion method and digital signal conversion device
JPH11341496A (ja) * 1998-05-28 1999-12-10 Matsushita Electric Ind Co Ltd 画像処理方法,画像処理装置,及びデータ記憶媒体
EP1322121A3 (en) * 2001-12-19 2003-07-16 Matsushita Electric Industrial Co., Ltd. Video encoder and decoder with improved motion detection precision
JP3997171B2 (ja) * 2003-03-27 2007-10-24 株式会社エヌ・ティ・ティ・ドコモ 動画像符号化装置、動画像符号化方法、動画像符号化プログラム、動画像復号装置、動画像復号方法、及び動画像復号プログラム
JP4594201B2 (ja) * 2005-09-28 2010-12-08 パナソニック株式会社 画像符号化方法、画像符号化装置、プログラムおよび集積回路
JP4784322B2 (ja) * 2006-01-31 2011-10-05 ソニー株式会社 画像処理装置
KR100734314B1 (ko) * 2006-02-11 2007-07-02 삼성전자주식회사 움직임 보상 기반의 영상 압축 시스템에서의 영상 신호의공간 해상도 변환 방법
CN102165778A (zh) * 2009-02-10 2011-08-24 松下电器产业株式会社 图像处理装置、图像处理方法、程序及集成电路
JP5366855B2 (ja) * 2010-02-16 2013-12-11 富士フイルム株式会社 画像処理方法及び装置並びにプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004048552A (ja) * 2002-07-15 2004-02-12 Mitsubishi Electric Corp 画像符号化装置、画像符号化方法、画像復号装置、画像復号方法、および通信装置
JP2004241880A (ja) * 2003-02-04 2004-08-26 Sony Corp 画像処理装置および方法、記録媒体、並びにプログラム
JP2005303710A (ja) * 2004-04-13 2005-10-27 Seiko Epson Corp 動画像符号化方法、画像処理装置および画像処理プログラム
WO2010001911A1 (ja) * 2008-07-03 2010-01-07 シャープ株式会社 フィルタ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013223135A (ja) * 2012-04-17 2013-10-28 Mitsubishi Electric Building Techno Service Co Ltd 画像符号化装置、画像符号化方法及びプログラム

Also Published As

Publication number Publication date
CN102934439A (zh) 2013-02-13
US20130058416A1 (en) 2013-03-07
JP2011244210A (ja) 2011-12-01

Similar Documents

Publication Publication Date Title
WO2011155378A1 (ja) 画像処理装置および方法
WO2011040302A1 (ja) 画像処理装置および方法
WO2010101064A1 (ja) 画像処理装置および方法
WO2010095560A1 (ja) 画像処理装置および方法
WO2010035731A1 (ja) 画像処理装置および方法
US20120287998A1 (en) Image processing apparatus and method
WO2010095559A1 (ja) 画像処理装置および方法
US20120257681A1 (en) Image processing device and method and program
WO2010035734A1 (ja) 画像処理装置および方法
US20110170605A1 (en) Image processing apparatus and image processing method
KR20120058521A (ko) 화상 처리 장치 및 방법
WO2011152315A1 (ja) 画像処理装置および方法
WO2011089973A1 (ja) 画像処理装置および方法
WO2010035732A1 (ja) 画像処理装置および方法
WO2011155377A1 (ja) 画像処理装置および方法
US20120288004A1 (en) Image processing apparatus and image processing method
WO2012093611A1 (ja) 画像処理装置および方法
WO2011145437A1 (ja) 画像処理装置および方法
WO2011096318A1 (ja) 画像処理装置および方法
WO2010101063A1 (ja) 画像処理装置および方法
WO2010035735A1 (ja) 画像処理装置および方法
WO2012005195A1 (ja) 画像処理装置および方法
WO2012005194A1 (ja) 画像処理装置および方法
WO2011125809A1 (ja) 画像処理装置および方法
WO2011125625A1 (ja) 画像処理装置および方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180023209.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783374

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13696846

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783374

Country of ref document: EP

Kind code of ref document: A1