WO2011145389A1 - 光学素子の製造方法、及び、光学素子の製造装置 - Google Patents
光学素子の製造方法、及び、光学素子の製造装置 Download PDFInfo
- Publication number
- WO2011145389A1 WO2011145389A1 PCT/JP2011/056646 JP2011056646W WO2011145389A1 WO 2011145389 A1 WO2011145389 A1 WO 2011145389A1 JP 2011056646 W JP2011056646 W JP 2011056646W WO 2011145389 A1 WO2011145389 A1 WO 2011145389A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical element
- element material
- mold
- manufacturing
- heating
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/06—Construction of plunger or mould
- C03B11/08—Construction of plunger or mould for making solid articles, e.g. lenses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/0244—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using fluidised bed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/04—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam
- B29C35/045—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam using gas or flames
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/12—Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
- C03B11/122—Heating
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/61—Positioning the glass to be pressed with respect to the press dies or press axis
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/70—Horizontal or inclined press axis
Definitions
- the present invention relates to an optical element manufacturing method and manufacturing apparatus for manufacturing optical elements such as lenses, prisms, and mirrors.
- An object of the present invention is to provide an optical element manufacturing method and a manufacturing apparatus capable of suppressing the occurrence of non-uniform temperature distribution in an optical element material after being heated in a gas.
- the optical element manufacturing method of the present invention includes a heating step in which an optical element material is floated and heated in a gas, and then a first mold and a second mold for the suspended optical element material. And a pressurizing step of pressurizing the optical element material with the first mold and the second mold.
- the first molding die and the second molding die are moved closer to each other in a direction intersecting the vertical direction, whereby the optical element material is formed. It is good to make it contact.
- the optical element manufacturing method in the heating step, the optical element material is heated inside a heating unit, and the optical element manufacturing method is performed after the heating step and before the pressing step. It is preferable to further include an exposing step of exposing the optical element material to the outside of the heating unit.
- the heating element in the exposing step, may be moved so that the optical element material is exposed to the outside of the heating part.
- the heating unit in the exposure step, may be moved vertically downward at a speed faster than the dropping speed of the optical element material.
- the heating unit in the exposure step, may be moved up at one end and then moved vertically downward at a speed faster than the dropping speed of the optical element material.
- the heated optical element material in the heating step, is suspended in the gas by blowing the heated gas onto the optical element material, and in the exposing step, The optical element material may be moved in a non-contact manner by increasing the amount of the gas blown.
- the optical element manufacturing apparatus of the present invention includes a heating unit that floats and heats an optical element material in a gas, and a first mold that presses the optical element material while simultaneously contacting the optical element material. And a second mold.
- the first mold and the second mold may be arranged so as to be close to each other in a direction intersecting the vertical direction.
- the present invention it is possible to suppress the occurrence of a non-uniform temperature distribution in the optical element material after being heated by being suspended in a gas.
- the heating unit 10 has a substantially cylindrical shape and opens to a main body 11 that opens at an upper end that is one end side, an electric coil 12 disposed inside the main body 11, and supplies gas to the main body 11.
- a gas supply pipe 13 A gas supply pipe 13.
- three cylindrical heaters 22a and 32a are inserted into the heater plates 22 and 32, respectively.
- the heater plates 22 and 32 are fixed to the heat insulating plates 23 and 33.
- thermocouples 62 and 63 penetrating the heat insulating plates 23 and 33 are inserted in the heater plates 22 and 32.
- the thermocouples 62 and 63 detect the temperature of the heater plates 22 and 32. Based on the detected temperature, the mold temperature controller 90 shown in FIG. 1 adjusts the heating temperature of the heaters 22a and 32a.
- the temperature flow rate control unit 50 controls the heating temperature of the gas by the electric coil 12 of the heating unit 10 based on the temperature detected by the thermocouple 61 at the upper end inside the main body 11 of the heating unit 10. .
- the thermocouple 61 is preferably fixed to the main body 11 so as to be movable in the vertical direction together with the heating unit 10.
- the transmission sensor 70 shown in FIG. 1 detects that at least a part of the optical element material 100 is exposed to the outside of the heating unit 10 (main body 11) depending on whether light is transmitted or blocked.
- the exposure detection unit may be other than the transmission sensor 70 as long as it can detect that at least a part of the optical element material 100 is exposed to the outside of the heating unit 10.
- FIGS. 4A to 4D are schematic front views of the optical element manufacturing apparatus 1 for explaining the optical element manufacturing method according to the present embodiment.
- the electric coil 12 heats the gas supplied from the temperature flow control unit 50 through the supply pipe 13 into the main body 11. Thereby, the heated gas is blown onto the optical element material 100. In this manner, the heating unit 10 heats the optical element material 100 while floating in the gas inside the main body 11 (heating process).
- the slider 42 is moved to a position (P3) further below the height at which interference between the first pressurizing unit 20 and the second pressurizing unit 30 and the main body 11 can be avoided. Can be made. Thereby, the hot air discharged from the heating unit 10 is blown to the first molding die 21 and the second molding die 31 to the first molding die 21 and the second molding die 31, and eventually to the optical element material 100. Generation of non-uniform temperature distribution can be suppressed.
- the transmission sensor 70 detects that at least a part of the optical element material 100 is exposed to the outside of the heating unit 10 (main body 11) after the heating unit 10 starts moving (exposure detection step). For example, in the transmission sensor 70, light that has been shielded by the main body 11 of the heating unit 10 is received by the light receiving unit when the heating unit 10 moves vertically downward, and then is again shielded by the optical element 100 that falls. Thus, it is detected that the optical element material 100 is exposed. When the exposure process is omitted or when the exposure of the optical element material 100 is estimated over time, the exposure detection process can be omitted. In that case, the transmission sensor 70 can be omitted.
- the first pressurizing unit 20 and the second pressurizing unit 30 are configured so that the first molding die 21 and the second pressurizing unit 30 are opposed to the optical element material 100 in a state of being exposed and floating outside the heating unit 10 (main body 11).
- the mold 31 is brought into contact with each other at the same time, and the optical element material 100 is pressurized by the first mold 21 and the second mold 31 (pressurizing step).
- the first mold 21 and the second mold 31 can be simultaneously or Contact can be made at substantially the same time.
- “simultaneous” of the contact timings refers to a range within 0.5 seconds
- substantially simultaneous refers to a range within 2 seconds.
- the timing of contact is the same, and the shorter the time difference, the better.
- the temperature difference between the optical element material 100 and any one mold that comes into contact with the optical element material 100 is small, the temperature distribution can be suppressed even at substantially the same time.
- the optical element material 100 is suspended in the gas and heated, energy saving can be realized as compared with the case where the optical element material 100 is heated via the molds 21 and 31. it can.
- the non-uniform temperature distribution can be prevented from occurring in the optical element material 100, partial solidification or the like can be suppressed, and the pressing time of the optical element material 100 can be shortened.
- the cylinders 24 and 35 of the 1st pressurization part 20 and the 2nd pressurization part 30 are the 1st shaping
- the optical element material 100 is brought into contact with each other by being brought close to each other in a direction intersecting the vertical direction. Therefore, the first molding die 21 and the second molding die 31 can be easily or substantially simultaneously brought into contact with the optical element material 100 that falls vertically under its own weight.
- molding die 31 contact easily or substantially simultaneously, the 1st shaping
- the heating unit moving mechanism 40 moves the heating unit 10 vertically downward at a speed faster than the dropping speed of the optical element material 100. Therefore, the first mold 21 and the second mold 31 can be easily brought into contact with the optical element material 100 simultaneously or substantially simultaneously.
- the optical element material 100 In order to move the optical element material 100 to the upper position (P22), the optical element material 100 is exposed to the outside of the heating unit 10 by moving the optical element material 100 in a non-contact manner. May be. In that case, the heating part moving mechanism 40 can be omitted. In order to move the optical element material 100 in a non-contact manner, for example, the amount of blowing gas for heating the optical element material 100 may be increased. In addition, you may make it make the 1st shaping
- the optical element manufacturing apparatus 101 of the present embodiment is configured such that the first pressurizing unit 120 is fixed rather than movable as in the first pressurizing unit 20 of the above-described one embodiment.
- the configuration is the same as that of the optical element manufacturing apparatus 1 of the above-described embodiment except for the configuration related to. Therefore, the description of the configuration other than the first pressure unit 120 is omitted.
- the first pressurizing unit 120 includes a molding die 121 having a molding surface 121a and a large-diameter portion 121b and disposed so as to face the second molding die 31, and a mold heating unit. And a heat insulating plate 123 fixed to the side wall 81 of the frame 80.
- the first pressurizing unit 120 is the same as the first pressurizing unit 20 of the above-described embodiment except that the first pressurizing unit 120 does not have the cylinder 24 as a mold moving mechanism.
- the cylinder 34 moves the optical element material 100 toward the first mold 121 by bringing the second mold 31 closer to the first mold 121.
- the first mold 121 is brought into contact with the optical element material 100.
- the first mold 121 and the second mold 31 pressurize the optical element material 100 (pressurizing step).
- optical element material 100 moves slightly downward due to its own weight after contacting the second mold 31 and before contacting the first mold 121.
- the optical element manufacturing method includes a heating process in which the optical element material 100 is suspended in a gas and heated, and then in a suspended state.
- the first mold 121 and the second mold 31 are brought into contact with the optical element material 100 at the same time, and the optical element material 100 is pressurized by the first mold 121 and the second mold 31. And a pressing step.
- Optical element manufacturing apparatus 10 Heating part 11 Main body 12 Electric coil 13 Gas supply pipe 20 1st pressurization part 21 1st shaping
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ophthalmology & Optometry (AREA)
- Mechanical Engineering (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Abstract
Description
10 加熱部
11 本体
12 電気コイル
13 気体供給管
20 第1の加圧部
21 第1の成形型
21a 成形面
21b 大径部
22 ヒータプレート
22a ヒータ
23 断熱プレート
24 シリンダ
30 第2の加圧部
31 第2の成形型
31a 成形面
31b 大径部
32 ヒータプレート
32a ヒータ
33 断熱プレート
34 シリンダ
40 加熱部移動機構
41 ベース部
42 スライダ
43 保持部
50 温度流量制御部
61~63 熱電対
70 透過センサ
80 フレーム
81~84 側壁
90 型温度制御部
100 光学素子材料
101 光学素子の製造装置
120 第1の加圧部
121 第1の成形型
121a 成形面
121b 大径部
122 ヒータプレート
122a ヒータ
123 断熱プレート
Claims (12)
- 光学素子材料を気体中で浮遊させて加熱する加熱工程と、
その後、浮遊した状態の前記光学素子材料に対し、第1の成形型と第2の成形型とを同時になるよう接触させ、該第1の成形型及び該第2の成形型により前記光学素子材料を加圧する加圧工程と、を含む、光学素子の製造方法。 - 請求項1記載の光学素子の製造方法において、
前記加圧工程では、前記第1の成形型と前記第2の成形型とを、鉛直方向と交差する方向に互いに接近させることで、前記光学素子材料に接触させる、光学素子の製造方法。 - 請求項2記載の光学素子の製造方法において、
前記加圧工程では、前記第1の成形型と前記第2の成形型とを、鉛直方向と直交する方向に互いに接近させることで、前記光学素子材料に接触させる、光学素子の製造方法。 - 請求項1から請求項3のいずれか1項記載の光学素子の製造方法において、
前記加熱工程では、加熱部の内部で前記光学素子材料を加熱し、
前記光学素子の製造方法は、前記加熱工程の後で且つ前記加圧工程の前に、前記光学素子材料を前記加熱部の外部に露出させる露出工程を更に含む、光学素子の製造方法。 - 請求項4記載の光学素子の製造方法において、
前記露出工程では、前記加熱部を移動させることで、前記光学素子材料を前記加熱部の外部に露出させる、光学素子の製造方法。 - 請求項5記載の光学素子の製造方法において、
前記露出工程では、前記加熱部を、鉛直下方に前記光学素子材料の落下速度よりも速い速度で移動させる、光学素子の製造方法。 - 請求項6記載の光学素子の製造方法において、
前記露出工程では、前記加熱部を、一端上昇させた後、鉛直下方に前記光学素子材料の落下速度よりも速い速度で移動させる、光学素子の製造方法。 - 請求項4記載の光学素子の製造方法において、
前記露出工程では、前記光学素子材料を非接触で移動させることで、前記光学素子材料を前記加熱部の外部に露出させる、光学素子の製造方法。 - 請求項8記載の光学素子の製造方法において、
前記加熱工程では、加熱した前記気体を前記光学素子材料に吹きつけることで、前記光学素子材料を前記気体中で浮遊させて加熱し、
前記露出工程では、前記気体の吹きつけ量を増加させることで、前記光学素子材料を非接触で移動させる、光学素子の製造方法。 - 請求項4記載の光学素子の製造方法において、
前記露出工程で前記光学素子材料の少なくとも一部が前記加圧部の外部に露出したことを検知する露出検知工程を更に含み、
前記加圧工程では、前記露出検知工程の後、前記光学素子材料に対し前記第1の成形型及び第2の成形型を接触させる、光学素子の製造方法。 - 光学素子材料を気体中で浮遊させて加熱する加熱部と、
前記光学素子材料に対し同時になるよう接触して該光学素子材料を加圧する第1の成形型及び第2の成形型と、を備える、光学素子の製造装置。 - 請求項11記載の光学素子の製造装置において、
前記第1の成形型及び前記第2の成形型は、鉛直方向と交差する方向に互いに接近させられるように配置されている、光学素子の製造装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012515785A JP5684249B2 (ja) | 2010-05-20 | 2011-03-18 | 光学素子の製造方法、及び、光学素子の製造装置 |
CN201180022075.4A CN102884013B (zh) | 2010-05-20 | 2011-03-18 | 光学元件制造方法以及光学元件制造装置 |
US13/670,709 US9452944B2 (en) | 2010-05-20 | 2012-11-07 | Method for manufacturing optical element, and apparatus for manufacturing optical element |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-116635 | 2010-05-20 | ||
JP2010116635 | 2010-05-20 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/670,709 Continuation US9452944B2 (en) | 2010-05-20 | 2012-11-07 | Method for manufacturing optical element, and apparatus for manufacturing optical element |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011145389A1 true WO2011145389A1 (ja) | 2011-11-24 |
Family
ID=44991506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/056646 WO2011145389A1 (ja) | 2010-05-20 | 2011-03-18 | 光学素子の製造方法、及び、光学素子の製造装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9452944B2 (ja) |
JP (1) | JP5684249B2 (ja) |
CN (1) | CN102884013B (ja) |
WO (1) | WO2011145389A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013077242A1 (ja) * | 2011-11-21 | 2013-05-30 | オリンパス株式会社 | 光学素子の製造方法、及び、光学素子の製造装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08133758A (ja) * | 1994-09-09 | 1996-05-28 | Hooya Precision Kk | ガラス光学素子の製造方法 |
JP2010195012A (ja) * | 2009-02-27 | 2010-09-09 | Olympus Corp | 光学素子の製造方法及び製造装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5275637A (en) * | 1990-01-31 | 1994-01-04 | Canon Kabushiki Kaisha | Method of manufacturing a glass optical part |
JPH0450124A (ja) * | 1990-06-15 | 1992-02-19 | Fuji Photo Optical Co Ltd | 精密光学ガラス成形装置 |
US5873921A (en) | 1994-09-09 | 1999-02-23 | Hoya Precisions Inc. | Process for manufacturing glass optical elements |
CN1621372A (zh) * | 2003-11-24 | 2005-06-01 | 王建伟 | 固体料块气悬浮法 |
US7395679B2 (en) * | 2004-03-19 | 2008-07-08 | Konica Minolta Opto, Inc. | Method of manufacturing glass substrate for information recording medium |
JP2007001842A (ja) * | 2005-06-27 | 2007-01-11 | Olympus Imaging Corp | ガラス光学素子成形装置 |
US8806893B2 (en) * | 2011-02-18 | 2014-08-19 | Hoya Corporation | Manufacturing method of a glass blank for magnetic disk and manufacturing method of a glass substrate for magnetic disk |
-
2011
- 2011-03-18 WO PCT/JP2011/056646 patent/WO2011145389A1/ja active Application Filing
- 2011-03-18 CN CN201180022075.4A patent/CN102884013B/zh not_active Expired - Fee Related
- 2011-03-18 JP JP2012515785A patent/JP5684249B2/ja not_active Expired - Fee Related
-
2012
- 2012-11-07 US US13/670,709 patent/US9452944B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08133758A (ja) * | 1994-09-09 | 1996-05-28 | Hooya Precision Kk | ガラス光学素子の製造方法 |
JP2010195012A (ja) * | 2009-02-27 | 2010-09-09 | Olympus Corp | 光学素子の製造方法及び製造装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013077242A1 (ja) * | 2011-11-21 | 2013-05-30 | オリンパス株式会社 | 光学素子の製造方法、及び、光学素子の製造装置 |
Also Published As
Publication number | Publication date |
---|---|
CN102884013A (zh) | 2013-01-16 |
JP5684249B2 (ja) | 2015-03-11 |
US20130062795A1 (en) | 2013-03-14 |
CN102884013B (zh) | 2014-12-24 |
JPWO2011145389A1 (ja) | 2013-07-22 |
US9452944B2 (en) | 2016-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI557082B (zh) | Plate glass forming method and forming mold | |
KR20140015383A (ko) | 2d 유리-함유 시트로부터 3d 물품을 대량 생산하기 위한 장치 및 방법 | |
WO2012118612A1 (en) | Method of forming a 3d glass article from a 2d glass sheet | |
TW392196B (en) | Method for manufacturing glass container and apparatus therefor | |
JP5684249B2 (ja) | 光学素子の製造方法、及び、光学素子の製造装置 | |
JP2012116705A (ja) | 光学素子の成形装置及び成形方法 | |
JP5845496B1 (ja) | 板ガラスの曲げ成形装置及び曲げ成形方法 | |
CN108473355B (zh) | 玻璃片模具设备和方法 | |
JP5860678B2 (ja) | 光学素子の製造方法、及び、光学素子の製造装置 | |
JP5868666B2 (ja) | 光学素子の製造方法、及び、光学素子の製造装置 | |
JP2013252986A (ja) | 光学素子の成形装置、成形型及び光学素子の成形方法 | |
JP2010024109A5 (ja) | ||
JP5829108B2 (ja) | 光学素子の製造方法、及び、光学素子の製造装置 | |
JP2009028996A (ja) | スタンパ及びスタンパ取り付け方法 | |
JP2011136882A (ja) | 光学素子の成形装置 | |
JP2006240943A (ja) | 熱間プレス成形装置、及びその方法 | |
JP2011184248A (ja) | 光学素子の成形装置 | |
JP5186174B2 (ja) | 成形品の製造方法及びその装置 | |
KR101965489B1 (ko) | 비구면 유리 제조방법 | |
JP5868667B2 (ja) | 光学素子の製造方法、及び、光学素子の製造装置 | |
JP2013112592A (ja) | 光学素子の成形装置及び成形方法 | |
JP2013227176A (ja) | 光学素子の成形装置及び成形方法 | |
JP3614902B2 (ja) | ガラス成形レンズ用プリフォーム及びその製造方法 | |
JP2015105221A (ja) | 光学素子の成形方法及び成形装置 | |
JPH04338120A (ja) | ガラス光学素子の成形方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180022075.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11783326 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012515785 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11783326 Country of ref document: EP Kind code of ref document: A1 |