WO2011142405A1 - Dispositif désulfurant par voie humide pour gaz de carneau avec buse de pulvérisation à trois voies - Google Patents

Dispositif désulfurant par voie humide pour gaz de carneau avec buse de pulvérisation à trois voies Download PDF

Info

Publication number
WO2011142405A1
WO2011142405A1 PCT/JP2011/060905 JP2011060905W WO2011142405A1 WO 2011142405 A1 WO2011142405 A1 WO 2011142405A1 JP 2011060905 W JP2011060905 W JP 2011060905W WO 2011142405 A1 WO2011142405 A1 WO 2011142405A1
Authority
WO
WIPO (PCT)
Prior art keywords
spray nozzle
spray
flow rate
way
downward
Prior art date
Application number
PCT/JP2011/060905
Other languages
English (en)
Japanese (ja)
Inventor
張本崇良
森田陽一
及川克夫
ヨンシリ チャトロン
Original Assignee
戸田工業株式会社
富士化水工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 戸田工業株式会社, 富士化水工業株式会社 filed Critical 戸田工業株式会社
Publication of WO2011142405A1 publication Critical patent/WO2011142405A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/504Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/79Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/606Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases

Definitions

  • the present invention relates to a wet flue gas desulfurization apparatus that removes sulfur dioxide (SO 2 ) in exhaust gas discharged from a combustion apparatus such as a boiler that uses a fuel containing a sulfur compound such as coal and heavy oil, and in particular, three-way.
  • the present invention relates to a wet flue gas desulfurization apparatus provided with an absorption tower using a spray nozzle.
  • FIG. 8 shows a side view of an absorption tower constituting a desulfurization apparatus as a known example of a wet flue gas desulfurization apparatus adopting a conventional spray system (JP 2004-237258 A, etc.).
  • This wet flue gas desulfurization apparatus is mainly composed of an absorption tower body 1, a stirrer 3, an air supply pipe 4, an air bubble 5, an absorbing liquid circulation pump 7, a draining liquid pipe 8, a spray header 9, a bidirectional spray nozzle 13, a mist. It is composed of an eliminator 11 and the like.
  • 2 indicates exhaust gas
  • 12 indicates a gas after treatment
  • 6 indicates an absorbing solution.
  • the exhaust gas 2 discharged from the boiler is introduced into the lower part of the absorption tower main body 1 and comes into contact with the liquid flow ejected by a plurality of bidirectional spray nozzles 13 arranged in a plurality of installed spray headers. Then, after being processed, it is discharged from the top of the tower.
  • the absorbent 6 containing calcium carbonate sent from the absorbent circulating pump 7 is ejected from the bidirectional spray nozzle 13 described above.
  • the liquid flow ejected from the bidirectional spray nozzle 13 absorbs SO 2 in the exhaust gas by gas-liquid contact, and becomes an absorbing liquid 6 that generates Ca (HSO 3 ) 2 .
  • Ca (HSO 3 ) 2 in the absorbing liquid 6 is oxidized by oxygen in the air bubbles 5 supplied from the air supply pipe 4 to generate calcium sulfate (CaSO 4 ).
  • the slurry-like absorption liquid containing calcium sulfate and calcium carbonate that is always supplied is again sucked by the absorption liquid circulation pump 7 and sprayed from the bidirectional spray nozzle 13. If necessary, the drainage is discharged from the absorption tower via the drainage pipe 8.
  • the left figure of FIG. 2 shows a side view of a pattern sprayed using a conventional two-way spray nozzle, and numerals 1 and 2 represent an up and down spray area. Even if the injection flow from the upper stage nozzle and the neighboring nozzles is added three-dimensionally, the non-uniformity of the gas-liquid contact density is considerably large, and therefore gas turbulence occurs and the absorption efficiency is low. was there.
  • the object of the present invention is to make the injection zone of the nozzle three-dimensionally uniform, suppress the disturbance of the exhaust gas flow, make the gas-liquid contact density uniform, obtain a high desulfurization rate, and make the absorption more compact It is to obtain a wet flue gas desulfurization apparatus equipped with a tower.
  • the invention according to claim 1 is an absorption tower in which an absorption liquid is injected by an absorption liquid circulation pump through a spray nozzle of a multi-stage spray header installed in the upper part of the absorption tower, and brought into gas-liquid contact with exhaust gas introduced from the lower part of the absorption tower.
  • the spray nozzles installed in each stage excluding the uppermost stage of the multi-stage spray header are three-way spray nozzles having an upward direction, a downward direction, and a horizontal direction
  • the ratio of the absorption liquid injection flow rate from the upward spray nozzle to the absorption liquid injection flow rate from the downward spray nozzle and the absorption liquid injection flow rate from the horizontal spray nozzle is 0.2 to 1 1
  • a wet flue gas desulfurization apparatus characterized by being in the range of 0.05 to 0.4.
  • the absorption liquid injection angles of the upward, downward, and lateral three-way spray nozzles are set to 75 to 135 degrees and 75, respectively.
  • the vertical angle of the lateral conical injection zone is 90 ° or less and the horizontal angle of the horizontal conical injection zone is 160 ° or less.
  • the invention according to claim 3 is the wet flue gas desulfurization apparatus according to claim 1 or 2, wherein the spray nozzle installed at the uppermost stage of the multi-stage spray header is a spray nozzle only facing downward.
  • the present invention by making the gas-liquid contact zone uniform in the absorption tower, it is possible to improve the prevention of uneven flow of exhaust gas and the non-uniform dispersion of droplets, and to improve the desulfurization rate. Furthermore, since the absorbing liquid is jetted from the three-way spray nozzle in the top and bottom and side three directions, there is no section where the conventional gas-liquid contact could not be sufficiently exerted, the gas-liquid contact area can be substantially increased, and the number of spray nozzles can be increased. Reduction is possible. Therefore, a low-cost and high-performance wet flue gas desulfurization apparatus can be obtained at a lower cost than the prior art.
  • the present invention shows the relationship between the ratio of the lateral injection flow rate to the total injection flow rate and the desulfurization rate of the three-way spray nozzle of the example. It is a side view which shows the structure of the absorption tower by a prior art. It is a top view which shows arrangement
  • FIG. 1 shows a side view of an absorption tower of a wet flue gas desulfurization apparatus according to an embodiment of the present invention.
  • reference numeral 1 is an absorption tower body
  • 2 is exhaust gas
  • 3 is a stirrer
  • 4 is an air supply pipe
  • 5 is an air bubble
  • 6 is an absorption liquid
  • 7 is an absorption liquid circulation pump
  • 8 is a drainage pipe
  • 9 is a spray header
  • 10 is a three-way spray nozzle
  • 11 is a mist eliminator
  • 12 is a process gas.
  • emitted from a boiler is introduce
  • the absorption liquid 6 containing calcium carbonate sent from the absorption liquid circulation pump 7 is sprayed from the above-described three-way spray nozzle 10.
  • the liquid flow ejected from the three-way spray nozzle 10 absorbs SO 2 in the exhaust gas by gas-liquid contact, and becomes an absorbing liquid 6 that generates Ca (HSO 3 ) 2 .
  • Ca (HSO 3 ) 2 in the absorbing liquid 6 is oxidized by oxygen in the air bubbles 5 supplied from the air supply pipe 4 to generate calcium sulfate (CaSO 4 ).
  • the slurry-like absorption liquid containing calcium sulfate and calcium carbonate that is always supplied is again sucked by the absorption liquid circulation pump 7 and sprayed from the three-way spray nozzle 10. If necessary, the drainage is discharged from the absorption tower via the drainage pipe 8.
  • the absorption tower of the present embodiment has the feature that the three-way spray nozzle 10 can inject the absorbing liquid in the three directions of the upward direction, the downward direction, and the lateral direction, and is arranged in each stage except the uppermost stage.
  • the three-way spray nozzle closest to the absorption tower wall is the ratio of the absorption liquid injection flow rate from the upward spray nozzle, the absorption liquid injection flow rate from the downward spray nozzle, and the absorption liquid injection flow rate from the horizontal spray nozzle (upward injection flow rate: downward (Injection flow rate: lateral injection flow rate) is in the range of 0.2 to 1: 1: 0.05 to 0.4.
  • the absorption angle of the absorbing liquid of the upper, lower, and lateral three-direction spray nozzles is 75 to 135 degrees and 75 to 150 degrees, respectively, and the longitudinal angle of the lateral cone spray zone is 90 degrees or less.
  • the horizontal angle of the zone is 160 degrees or less.
  • the top row is designed to use only a downward spray nozzle.
  • the three-way spray nozzle 10 was used to compare with a conventional bidirectional spray nozzle, the exhaust gas amount was fixed to a constant amount, and the injection flow rate was the same.
  • the influence of the injection flow rate on the desulfurization rate is shown in FIG.
  • Both the three-way spray nozzle and the two-way spray nozzle improve the desulfurization rate as the injection flow rate increases.
  • the desulfurization rate at the same flow rate is higher than the two-way spray nozzle.
  • the injection of the lateral absorption liquid by the three-way spray nozzle rather than the bidirectional spray nozzle contributes to an increase in the desulfurization rate by making the gas-liquid contact zone more uniform.
  • FIG. 7 shows the influence on the desulfurization rate by the ratio of the injection flow rate of the lateral absorption liquid to the total flow rate of the upper and lower horizontal three-way injections using the three-way spray nozzle 10.
  • the total injection flow rate is fixed, and the ratio of the lateral injection flow rate to the total flow rate is carried out based on the desulfurization rate when it is zero.
  • the desulfurization rate improves as the ratio of the lateral injection flow rate to the total flow rate increases.
  • the ratio of the upward injection amount to the downward injection amount is fixed to 1: 1
  • the lateral injection flow rate to the total injection flow rate When the ratio exceeds the range of 0.07 to 0.1, the desulfurization rate tends to decrease again.
  • the desulfurization rate when the lateral injection flow rate is 0 is lowered. This is because the gas-liquid contact zone is made uniform within a certain range by increasing the injection flow rate of the absorbent liquid in the horizontal direction, and when the horizontal injection flow rate is further increased, the uniformity is deteriorated. is there.
  • the desulfurization rate is 90% when the ratio of the upward injection flow rate: the downward injection flow rate: the lateral injection flow rate is 1: 1: 0, and the desulfurization rate is 92.5% when 1: 1: 0.118.
  • the desulfurization rate is 93.3%, in the case of 1: 1: 0.338, the desulfurization rate is 91.8%, and in the case of 1: 1: 0.466, the desulfurization rate is 88.2. %Met.
  • the desulfurization rate was calculated from the measurement results of sulfur dioxide in the exhaust gas before and after the desulfurization treatment.
  • the measurement of sulfur dioxide in the exhaust gas was based on JIS B7981 (2002). The same applies hereinafter.
  • the ratio of the absorption liquid injection flow rate from the upward spray nozzle, the absorption liquid injection flow rate from the downward spray nozzle, and the absorption liquid injection flow rate from the horizontal spray nozzle (upward injection). It is desirable that the flow rate: the downward injection flow rate: the lateral injection flow rate) be in the range of 0.2 to 1: 1: 0.05 to 0.4.
  • the collision of the upward injection and the downward injection promotes the miniaturization of the droplets and tends to increase the desulfurization rate.
  • the ratio of the upward injection amount and the downward injection amount becomes too large, most of the injection from the spray nozzle is in the same direction as the gas flow direction, and the desulfurization rate tends to decrease. Therefore, it is desirable that the ratio between the upward injection amount and the downward injection amount is in the range of 0.2 to 1: 1.
  • FIG. 2 shows the spray pattern of the three-way spray nozzle.
  • Numbers 1 and 2 are vertical injection areas, and number 3 is a side view showing a horizontal injection area.
  • FIG. 3 is a plan view of the spray nozzle spray pattern as seen from above the spray nozzle location plane.
  • the left figure shows a plan view of a pattern sprayed by using a conventional bidirectional spray nozzle
  • the numeral 3 in the right figure is a plan view showing an area for lateral injection. From the left figure of FIG. 3, it is obvious that there is no spray nozzle spray zone on the spray nozzle location plane in the conventional bidirectional spray nozzle. You can see that the spray zone is gone.
  • FIG. 4 is a side view of a spray pattern of a plurality of nearest neighbor nozzles.
  • the upper part of FIG. 4 shows a side view of a pattern sprayed using a conventional bidirectional spray nozzle, and the numerals 1 and 2 represent vertical spray areas, respectively.
  • the lower part of FIG. 4 shows the spray pattern of the three-way spray nozzle.
  • Numbers 1 and 2 are vertical injection areas, respectively, and numeral 3 is a side view showing a horizontal injection area.
  • FIG. 5 is a side view of the spray pattern of the nearest nozzle using a plurality of three-way spray nozzles in the nearest upper and lower two stages. Numbers 1, 2, and 3 indicate vertical and horizontal injection areas, respectively.
  • FIG. 3, FIG. 4 and FIG. 5 show that the spray area of the three-way spray nozzle can be made more uniform than the conventional two-way spray nozzle.
  • FIG. 9 is a plan view showing the arrangement of nozzles in a plurality of stages in the absorption tower according to the technique of the present invention.
  • Each stage shown here has the same arrangement, but the nozzle injection is performed by shifting 20 to 60 degrees between each stage (FIG. 9 shows an embodiment in which the stage is shifted 30 degrees as an example).
  • the maximum overlap of the area can be realized, and construction and manufacturing can be simplified.
  • the spray nozzle installed at the uppermost stage by using only the downward spray nozzle, the upward injection amount along the gas flow direction is zero, so the flue gas desulfurization using the conventional bidirectional spray nozzle In the apparatus, it is possible to greatly suppress a phenomenon in which the upward jet liquid flow rides on the gas and passes through the mist eliminator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

La présente invention concerne un dispositif désulfurant par voie humide pour gaz de carneau. Ce procédé consiste d'abord à introduire dans une tour d'absorption les gaz émis par dispositif de combustion. Le procédé consiste ensuite à injecter une solution d'absorption (6) à partir de buses de pulvérisation (10) équipant des rampes de pulvérisation (9) disposées en plusieurs étages dans le sens d'écoulement de bas en haut des gaz de carneau. Le procédé consiste enfin à créer entre la solution et les gaz de carneau un contact gaz-liquide. Les buses de pulvérisation selon l'invention sont réparties plusieurs étages de rampes de buses de pulvérisation. À l'exception de celles des rampes de pulvérisation de l'étage supérieur, ces buses sont des buses de pulvérisation à trois voies définissant un axe remontant, un axe descendant, et un axe latéral. Dans ces buses de pulvérisation à trois voies, le rapport complexe entre, d'une part le débit d'injection de solution absorbante par les buses de pulvérisation dans l'axe remontant, d'autre part le débit d'injection de solution absorbante par les buses de pulvérisation dans l'axe descendant, et enfin le débit d'injection de solution absorbante par les buses de pulvérisation dans l'axe latéral se situent dans les plages de 0,2-1:1:0,05-0,4. Enfin, avec le procédé de la tour de pulvérisation, le recours à des buses de pulvérisation à trois voies permet d'améliorer la qualité du contact entre gaz et liquide ce qui donne un taux élevé de désulfuration.
PCT/JP2011/060905 2010-05-13 2011-05-12 Dispositif désulfurant par voie humide pour gaz de carneau avec buse de pulvérisation à trois voies WO2011142405A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010110768 2010-05-13
JP2010-110768 2010-05-13

Publications (1)

Publication Number Publication Date
WO2011142405A1 true WO2011142405A1 (fr) 2011-11-17

Family

ID=44914457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060905 WO2011142405A1 (fr) 2010-05-13 2011-05-12 Dispositif désulfurant par voie humide pour gaz de carneau avec buse de pulvérisation à trois voies

Country Status (3)

Country Link
JP (1) JP5648576B2 (fr)
TW (1) TWI507240B (fr)
WO (1) WO2011142405A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102716656A (zh) * 2012-03-23 2012-10-10 北京东旭宏业科技有限公司 一种烟气洗涤装置
CN103157357A (zh) * 2011-12-08 2013-06-19 江苏东大热能机械制造有限公司 一种新型脱硫脱硝一体化装置
CN106390691A (zh) * 2016-09-20 2017-02-15 大唐环境产业集团股份有限公司 一种高效氧化空气喷枪
CN107413185A (zh) * 2017-08-25 2017-12-01 衡阳旭光锌锗科技有限公司 电解锌酸雾处理装置
CN114345113A (zh) * 2022-03-21 2022-04-15 浙江浩普环保工程有限公司 一种强传质自适应吸收塔
KR20230063700A (ko) * 2021-11-02 2023-05-09 고등기술연구원연구조합 대용량 가스에 함유된 황화수소의 제거를 위한 대용량 용매분사 장치

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103041682B (zh) * 2012-10-02 2016-05-11 云南云天化国际化工股份有限公司 一种精脱硫在硫酸尾吸中的应用方法
CN103801185B (zh) * 2012-11-08 2016-12-21 江苏佳世达环保工程有限公司 金属烟气处理净化系统
JP2015042389A (ja) * 2013-08-26 2015-03-05 株式会社Ihi 排煙脱硫装置
US9364781B2 (en) * 2013-10-11 2016-06-14 Alstom Technology Ltd Method and apparatus for wet desulfurization spray towers
CN104190244B (zh) * 2014-09-12 2016-07-06 北京清新环境技术股份有限公司 小颗粒活性焦多级悬浮式烟气脱硫装置及其烟气脱硫方法
CN105413443B (zh) * 2015-12-17 2018-05-08 江苏鲲鹏环保工程技术有限公司 一种增强烟气脱硫效果的装置
CN110935290A (zh) * 2018-12-27 2020-03-31 久保田化水株式会社 湿式排烟脱硫装置和湿式排烟脱硫方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151337A (ja) * 1986-12-16 1988-06-23 Babcock Hitachi Kk 脱硫装置
JPH06198121A (ja) * 1993-01-06 1994-07-19 Babcock Hitachi Kk 吸収塔を備えた湿式排煙脱硫装置
JPH11179144A (ja) * 1997-12-22 1999-07-06 Ishikawajima Harima Heavy Ind Co Ltd スプレー式脱硫装置
JP2007260487A (ja) * 2006-03-27 2007-10-11 Osaka Gas Engineering Co Ltd ノズル装置
WO2009011323A1 (fr) * 2007-07-13 2009-01-22 Ebara Corporation Dispositif de nettoyage d'un gaz d'échappement

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2453912C (fr) * 2002-12-23 2011-03-15 Eric B. Rosen Epurateur d'echappement et methode d'exploitation connexe
GB0709502D0 (en) * 2007-05-18 2007-06-27 Boc Group Plc Apparatus for treating gas
JP2009131836A (ja) * 2007-11-09 2009-06-18 Espo Chemical Corp 空気清浄化装置及びこの装置を用いた空気の清浄化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151337A (ja) * 1986-12-16 1988-06-23 Babcock Hitachi Kk 脱硫装置
JPH06198121A (ja) * 1993-01-06 1994-07-19 Babcock Hitachi Kk 吸収塔を備えた湿式排煙脱硫装置
JPH11179144A (ja) * 1997-12-22 1999-07-06 Ishikawajima Harima Heavy Ind Co Ltd スプレー式脱硫装置
JP2007260487A (ja) * 2006-03-27 2007-10-11 Osaka Gas Engineering Co Ltd ノズル装置
WO2009011323A1 (fr) * 2007-07-13 2009-01-22 Ebara Corporation Dispositif de nettoyage d'un gaz d'échappement

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103157357A (zh) * 2011-12-08 2013-06-19 江苏东大热能机械制造有限公司 一种新型脱硫脱硝一体化装置
CN102716656A (zh) * 2012-03-23 2012-10-10 北京东旭宏业科技有限公司 一种烟气洗涤装置
CN106390691A (zh) * 2016-09-20 2017-02-15 大唐环境产业集团股份有限公司 一种高效氧化空气喷枪
CN107413185A (zh) * 2017-08-25 2017-12-01 衡阳旭光锌锗科技有限公司 电解锌酸雾处理装置
KR20230063700A (ko) * 2021-11-02 2023-05-09 고등기술연구원연구조합 대용량 가스에 함유된 황화수소의 제거를 위한 대용량 용매분사 장치
KR102564381B1 (ko) * 2021-11-02 2023-08-07 고등기술연구원연구조합 대용량 가스에 함유된 황화수소의 제거를 위한 대용량 용매분사 장치
CN114345113A (zh) * 2022-03-21 2022-04-15 浙江浩普环保工程有限公司 一种强传质自适应吸收塔

Also Published As

Publication number Publication date
TWI507240B (zh) 2015-11-11
JP5648576B2 (ja) 2015-01-07
JP2011255370A (ja) 2011-12-22
TW201210677A (en) 2012-03-16

Similar Documents

Publication Publication Date Title
JP5648576B2 (ja) 三方向スプレーノズルを用いた湿式排煙脱硫装置
US8092582B2 (en) Wet-type exhaust gas desulfurizer
JP4785006B2 (ja) 湿式排煙脱硫装置
CN203355586U (zh) 一种多段式吸收氨法脱硫系统
CN104785084A (zh) 一种强化传质高效脱硫吸收塔
US20130055937A1 (en) Flue gas desulfurization device, combustion system and combustion method
JP2015174025A (ja) 海水排煙脱硫装置とその運用方法
KR100652856B1 (ko) 배기 가스 처리 장치
JP5967306B2 (ja) 脱硫装置
KR102036295B1 (ko) 가스 내의 개별 성분을 흡수하기 위한 플랜트 및 방법
EP2762221A1 (fr) Dispositif de désulfurisation de gaz de combustion humide à multi-absorption et à chambre double
JP3073972B2 (ja) 排煙脱硫装置
JP2011230047A (ja) 排煙脱硫装置及びこれを備えた酸素燃焼装置と方法
JP2015042389A (ja) 排煙脱硫装置
WO2014196458A1 (fr) Dispositif de désulfuration à l'aide de l'eau de mer et système de désulfuration à l'aide de l'eau de mer
KR100733075B1 (ko) 가스층 다공판 장착 습식 배연 탈황장치
WO2019163950A1 (fr) Réservoir de traitement d'eau et dispositif de désulfuration
KR101646058B1 (ko) pH 분리형 습식 탈황장치
JP2004237258A (ja) 湿式排煙脱硫装置
JP2008200619A (ja) 排煙脱硫装置
JP4787283B2 (ja) 湿式煙道ガス脱硫システムにおけるスケール生成を抑制する装置
WO2019163418A1 (fr) Réservoir de traitement de l'eau et dispositif de désulfuration
CN110935290A (zh) 湿式排烟脱硫装置和湿式排烟脱硫方法
JPH119956A (ja) 湿式排煙脱硫装置の吸収塔
JP2001009237A (ja) スプレー式排煙脱硫装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780662

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 9673/DELNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201005905

Country of ref document: TH

122 Ep: pct application non-entry in european phase

Ref document number: 11780662

Country of ref document: EP

Kind code of ref document: A1