WO2011142269A1 - Hydraulic control device for automatic transmission - Google Patents

Hydraulic control device for automatic transmission Download PDF

Info

Publication number
WO2011142269A1
WO2011142269A1 PCT/JP2011/060315 JP2011060315W WO2011142269A1 WO 2011142269 A1 WO2011142269 A1 WO 2011142269A1 JP 2011060315 W JP2011060315 W JP 2011060315W WO 2011142269 A1 WO2011142269 A1 WO 2011142269A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
hydraulic
spool
port
line pressure
Prior art date
Application number
PCT/JP2011/060315
Other languages
French (fr)
Japanese (ja)
Inventor
好文 村上
木村 浩一
岡崎 祐治
功 田伏
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2012514764A priority Critical patent/JP5465325B2/en
Priority to CN201180018653.7A priority patent/CN102834651B/en
Publication of WO2011142269A1 publication Critical patent/WO2011142269A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0206Layout of electro-hydraulic control circuits, e.g. arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/42Clutches or brakes
    • B60Y2400/426Hydrodynamic couplings, e.g. torque converters

Definitions

  • the present invention relates to a hydraulic control device for an automatic transmission that regulates the hydraulic pressure of hydraulic oil supplied to each part of the automatic transmission to a predetermined line pressure by a regulator valve installed in a hydraulic circuit connected to a hydraulic pressure source.
  • Patent Document 1 a regulator valve that regulates basic hydraulic pressure supplied from an oil pump serving as a hydraulic pressure source has been provided, and the engagement of a friction engagement element such as a clutch provided in an automatic transmission by the regulator valve.
  • a hydraulic control device that generates a line pressure as a source pressure of the combined hydraulic pressure.
  • the regulator valve of the hydraulic control device disclosed in Patent Document 1 is configured to increase the line pressure in accordance with the stator reaction force of the torque converter. That is, in a vehicle equipped with the hydraulic control device described above, the output of the engine is transmitted to the pump impeller of the torque converter via the crankshaft, the torque is amplified by the turbine impeller, and the reaction force of this torque is used as the stator impeller. Car will bear.
  • a stator arm for controlling the regulator valve of the hydraulic control device is fixed to the stator impeller.
  • a stator reaction force is applied to the spring receiving cylinder of the regulator valve via the stator arm.
  • the stator reaction force increases, the stator spring connected to the spring receiving cylinder is compressed, and accordingly, the spring receiving cylinder moves to increase the set load of the pressure regulating spring of the regulator valve, and the hydraulic oil passage Line pressure increases. Accordingly, when a load is applied to the line pressure of the hydraulic circuit when the vehicle is stopped, the line pressure can be increased based on the load, so that the fuel economy (fuel consumption) of the vehicle can be improved. it can.
  • the above hydraulic control device is provided with line pressure switching means having a solenoid valve for supplying auxiliary pressure to the regulator valve.
  • the solenoid valve can switch the line pressure into two stages of a low line pressure and a high line pressure by switching the supply of auxiliary pressure to the regulator valve. Therefore, in areas where high engagement hydraulic pressure is not required due to vehicle operating conditions, the line pressure is switched to low pressure with the auxiliary pressure of the solenoid valve to reduce the oil pump drive torque and the friction torque of the automatic transmission. Thus, fuel economy can be improved.
  • the present invention has been made in view of the above-described points, and an object of the present invention is to effectively prevent a spool overstroke associated with an abnormal increase in line pressure, and to set a regulator valve set value and layout. It is an object of the present invention to provide a hydraulic control device for an automatic transmission capable of minimizing the influence on the transmission.
  • the present invention relates to the hydraulic pressure of the hydraulic oil supplied to each part of the automatic transmission by means of a regulator valve (20) installed in the hydraulic circuit (1) connected to the hydraulic pressure source (P).
  • the regulator valve (20) includes a spool (23) biased by biasing means (27, 29), and a hydraulic port disposed around the spool (23). (35, 36), and operates the spool (23) by switching the hydraulic pressure supplied to the hydraulic ports (35, 36), between the drive source (E) and the transmission mechanism (M).
  • Line pressure adjusting means for adjusting the line pressure to increase by moving the spool (23) to the closed side in response to an increase in the torque reaction force of the torque transmission mechanism (T) installed in the power transmission path of
  • an auxiliary hydraulic pressure supply valve (50) for supplying auxiliary hydraulic pressure to the regulator valve (20), and switching the supply of the auxiliary hydraulic pressure by the auxiliary hydraulic pressure supply valve (50), the line pressure is reduced to the low line pressure and the high line.
  • Line pressure switching means (55) for switching to the pressure, and the regulator valve (20) includes an auxiliary hydraulic pressure input port (36) for inputting the auxiliary hydraulic pressure and an auxiliary hydraulic pressure release for releasing the auxiliary hydraulic pressure.
  • the auxiliary hydraulic pressure release port before the spool enters an overstroke state exceeding the allowable range when the auxiliary hydraulic pressure input to the auxiliary hydraulic pressure input port abnormally rises, the auxiliary hydraulic pressure release port before the spool enters an overstroke state exceeding the allowable range.
  • the auxiliary hydraulic pressure of the auxiliary hydraulic pressure input port can be released. Therefore, the overstroke of the spool can be effectively prevented.
  • the overstroke of the spool of the regulator valve can be effectively prevented, so that the resistance against an abnormal increase in the auxiliary hydraulic pressure can be improved as compared with the conventional structure.
  • the hydraulic pressure of the hydraulic oil supplied to each part of the automatic transmission is set to a predetermined line pressure by the regulator valve (20) installed in the hydraulic circuit (1) connected to the hydraulic pressure source (P).
  • the regulator valve (20) includes a spool (23) biased by biasing means (27, 29), and a hydraulic port disposed around the spool (23). (35, 36), and operates the spool (23) by switching the hydraulic pressure supplied to the hydraulic ports (35, 36), between the drive source (E) and the transmission mechanism (M).
  • Line pressure adjusting means for adjusting the line pressure to increase by moving the spool (23) to the closed side in response to an increase in the torque reaction force of the torque transmission mechanism (T) installed in the power transmission path of )
  • an auxiliary hydraulic pressure supply valve (50) for supplying auxiliary hydraulic pressure to the regulator valve (20), and switching the supply of the auxiliary hydraulic pressure by the auxiliary hydraulic pressure supply valve (50) changes the line pressure between the low line pressure and the high line pressure.
  • Line pressure switching means (55) for switching to the output pressure from the output port (35) from which the hydraulic pressure after regulation by the regulator valve (20) is output as the original pressure of the auxiliary hydraulic pressure supply valve (50)
  • the spool (23) exceeds the specified range.
  • the input port (31) supplying the hydraulic pressure to the output port (35) is closed or narrowed, and the auxiliary hydraulic pressure supplied to the regulator valve (20) is reduced. Characterized by being configured to be pressed.
  • the auxiliary hydraulic pressure input to the auxiliary hydraulic pressure input port of the regulator valve rises abnormally, the auxiliary pressure is increased before the spool enters the overstroke state exceeding the allowable range.
  • the auxiliary hydraulic pressure of the auxiliary hydraulic pressure input port can be reduced by closing or narrowing the input port that supplies the hydraulic pressure to the output port from which the original pressure of the hydraulic pressure supply valve is discharged. Therefore, an overstroke exceeding the allowable range of the spool can be effectively prevented.
  • the overstroke of the spool of the regulator valve can be effectively prevented, so that the resistance against an abnormal increase in the auxiliary hydraulic pressure can be improved as compared with the conventional structure.
  • the hydraulic pressure of the hydraulic oil supplied to each part of the automatic transmission by a regulator valve (20) installed in the hydraulic circuit (1) connected to the hydraulic pressure source (P) is set to a predetermined line.
  • the regulator valve (20) includes a spool (23) biased by the biasing means (27, 29), and a hydraulic pressure disposed around the spool (23).
  • a line pressure adjusting means (adjusted so that the line pressure increases by moving the spool (23) to the closed side in accordance with an increase in the torque reaction force of the torque transmission mechanism (T) installed in the power transmission path between them) 5) and an auxiliary hydraulic pressure supply valve (50) for supplying auxiliary hydraulic pressure to the regulator valve (20), and by switching the supply of auxiliary hydraulic pressure by the auxiliary hydraulic pressure supply valve (50), the line pressure is reduced to a low line pressure.
  • a line pressure switching means (55) for switching to a high line pressure, and a regulator valve (20) includes an input port (31) to which an original pressure before pressure regulation from a hydraulic pressure source (P) is supplied; And a source pressure release port (38) for releasing the source pressure of the input port (31), and supplies the hydraulic pressure before pressure regulation from the hydraulic source (P) as the source pressure of the auxiliary hydraulic pressure supply valve (50).
  • a source pressure release port (38) for releasing the source pressure of the input port (31), and supplies the hydraulic pressure before pressure regulation from the hydraulic source (P) as the source pressure of the auxiliary hydraulic pressure supply valve (50).
  • the hydraulic control device for an automatic transmission when the auxiliary hydraulic pressure input to the auxiliary hydraulic pressure input port abnormally increases, the input pressure of the input port is reduced by the main pressure release port before the spool enters an overstroke state exceeding the allowable range.
  • the original pressure can be released.
  • the auxiliary hydraulic pressure supplied to the auxiliary hydraulic pressure input port can be reduced. Therefore, an overstroke exceeding the allowable range of the spool can be effectively prevented.
  • the overstroke of the spool of the regulator valve can be effectively prevented, so that the resistance against an abnormal increase in the auxiliary hydraulic pressure can be improved as compared with the conventional structure.
  • the torque transmission mechanism is a fluid type torque converter (T), and the line pressure adjusting means (15) increases the stator reaction force of the torque converter (T). Accordingly, the regulator valve (20) may be controlled to be closed.
  • symbol in said parenthesis shows the code
  • the hydraulic control device for an automatic transmission it is possible to effectively prevent an overstroke of the spool due to an abnormal increase in the line pressure, while at the same time affecting the set value of the regulator valve and the layout of the structure. Can be minimized.
  • FIG. 1 is a schematic view of a vehicle to which a hydraulic control device for an automatic transmission according to the present invention is applied. It is a figure which shows the structural example of the hydraulic circuit in the hydraulic control apparatus of the automatic transmission concerning 1st Embodiment of this invention. It is a figure for demonstrating the flow of the hydraulic fluid in the hydraulic circuit of 1st Embodiment, (a) is the state in which the feedback pressure by a solenoid valve is a normal value, (b) is the state which the said feedback pressure raised abnormally.
  • FIG. It is a figure which shows the other structural example of the hydraulic circuit concerning 1st Embodiment. It is a figure which shows the hydraulic circuit in the hydraulic control apparatus of the automatic transmission concerning 2nd Embodiment of this invention.
  • FIG. 2nd Embodiment It is a figure for demonstrating the flow of the hydraulic fluid in the hydraulic circuit of 2nd Embodiment, (a) is the state in which the feedback pressure by a solenoid valve is a normal value, (b) is the state which the said feedback pressure raised abnormally.
  • FIG. It is a figure which shows the other structural example of the hydraulic circuit concerning 2nd Embodiment. It is a figure which shows the hydraulic circuit in the hydraulic control apparatus of the automatic transmission concerning 3rd Embodiment of this invention. It is a figure for demonstrating the flow of the hydraulic fluid in the hydraulic circuit of 3rd Embodiment, (a) is the state where the feedback pressure by a solenoid valve is a normal value, (b) is the state which the said feedback pressure raised abnormally.
  • FIG. 1 is a schematic view of a vehicle to which a hydraulic control device for an automatic transmission according to the present invention is applied.
  • the vehicle shown in the figure includes an engine E, a fluid type torque converter (torque transmission mechanism) T connected to the engine E, a speed change mechanism M connected to the torque converter T, a differential device Df, and the like.
  • the hydraulic control device for an automatic transmission according to the present invention is provided in the transmission mechanism M.
  • the output of the engine E is transmitted to the drive wheels W and W ′ via the crankshaft 101 through the torque converter T, the transmission mechanism M, and the differential device Df in order.
  • the torque converter T is supported on the input shaft 105 so as to be rotatable relative to the pump impeller 102 connected to the crankshaft 101 of the engine E, the turbine impeller 103 connected to the input shaft 105 of the transmission mechanism M, and the like.
  • the stator impeller 104 is connected to the stator shaft 104a via a one-way clutch 107.
  • the torque transmitted from the crankshaft 101 to the pump impeller 102 is hydrodynamically transmitted to the turbine impeller 103, during which torque amplification is performed.
  • the stator impeller 104 bears a reaction force of the torque (hereinafter referred to as “stator reaction force”).
  • a pump drive gear 108 for driving an oil pump P (see FIG. 2) described later is provided.
  • an operating arm (stator arm) 24 for controlling a regulator valve 20 described later at high line pressure is provided.
  • the transmission mechanism M is an automatic transmission mechanism for a vehicle that can set a plurality of shift stages.
  • the speed change mechanism M includes, for example, a speed change mechanism having a plurality of gear trains corresponding to each speed stage, a plurality of clutches and brakes (friction engagement elements), and an endless belt between a pair of pulleys.
  • a belt type continuously variable transmission mechanism or the like that is stretched over is used. Note that the configuration of the speed change mechanism M is not a feature of the present invention, and thus detailed illustration and description thereof will be omitted.
  • FIG. 2 is a diagram illustrating a configuration example of a hydraulic circuit provided in the hydraulic control device of the automatic transmission according to the first embodiment of the present invention.
  • the hydraulic circuit 1 shown in FIG. 1 adjusts the oil pump P serving as a hydraulic pressure source and the basic hydraulic pressure supplied from the oil pump P to generate the engagement hydraulic pressure of a friction engagement element such as a clutch provided in the transmission mechanism M.
  • a regulator valve 20 that generates a line pressure as a pressure.
  • a relief valve is provided in an oil passage (lubricating oil passage) 14 disposed on the downstream side of the regulator valve 20 so as to be released when the oil pressure (lubricating pressure) in the oil passage 14 reaches a predetermined pressure. 70 is installed.
  • the downstream oil passage 5 through which the hydraulic oil discharged from the regulator valve 20 circulates is connected to the torque converter T, and the oil passage 6 is a portion where lubrication is required such as a shaft, gear, bearing, clutch (all (Not shown).
  • the regulator valve 20 includes a housing 21, a spool 23 slidably fitted in a cylinder bore 22 provided in the housing 21, and an operating arm 24 that rotates as the stator reaction force of the torque converter T increases.
  • the first spring spring 26 is in contact with the operating arm 24, the stator spring 25 is provided between the spring receiver 26 and the housing 21, and the first spring 23 is provided between the spool 23 and the spring receiver 26 without play.
  • a pressure regulating spring (biasing means) 27 and a second pressure regulating spring (biasing means) 29 provided with play between the spool 23 and the spring receiving cylinder 26 are provided.
  • a small-diameter shaft portion 23a is coaxially formed at the axial rear end of the spool 23, and the pressure regulating springs 27 and 29 are disposed so as to surround the shaft portion 23a in a double manner.
  • the housing 21 is formed with a small-diameter cylinder bore 22 whose front end is closed, and a large-diameter sliding bore 28 that is coaxially connected to the rear end of the cylinder bore 22.
  • the spring receiving cylinder 26 is formed in a bottomed cylindrical shape having a closed end at one end, and a flange portion 26a protruding outward in the radial direction is formed at the closed end. And it is slidably fitted to the sliding bore 28 with the closed end as the rear position.
  • the operating arm 24 is in contact with the outer surface of the closed end of the spring receiving cylinder 26, and the stator spring 25 is provided between the flange portion 26 a and the housing 21.
  • the operating arm 24 is in the initial position shown in FIG. 2 in a state where the stator reaction force of the torque converter T is not acting. As the stator reaction force increases, the operating arm 24 compresses the stator spring 25 to It is designed to move forward. That is, the regulator valve 20 is configured to control the line pressure in accordance with the stator reaction force of the torque converter T.
  • the regulator valve 20 includes hydraulic ports 35 and 36 for operating the spool 23 arranged around the spool 23, and the spool valve is configured to operate the spool 23 by switching the hydraulic pressure supplied to the hydraulic ports 35 and 36. It is.
  • a solenoid output pressure port (low-line pressure feedback port) 36 which is an auxiliary hydraulic input port disposed in a gap between the closed end of the cylinder bore 22 and the tip 23b of the spool 23;
  • a feedback port (high line pressure feedback port) 35 disposed next to the solenoid output pressure port 36 is provided.
  • a state in which the spool 23 is positioned on the left end side in the cylinder bore 22 is referred to as a forward position, and the spool 23 resists the urging force of the pressure adjusting springs 27 and 29 from the forward position in the cylinder bore 22.
  • the state moved to the right side is called a retreat position.
  • a first inlet port (original pressure input port) 31 and a second inlet port 32 that communicate with the oil passages 3 and 4 from the oil pump P are provided on the inner surface of the cylinder bore 22.
  • a step is provided at a position adjacent to the first inlet port 31 on the inner surface of the cylinder bore 22, and a feedback port 35 is provided at the step.
  • a first annular groove 41 that communicates with the first inlet port 31 or the first outlet port 33 and the second inlet port 32 or the second outlet according to the axial position of the spool 23.
  • a second annular groove 42 communicating with the port 34 is provided.
  • a step 43 is formed at a position facing the feedback port 35 on the outer peripheral surface of the spool 23.
  • a communication path 44 that communicates the first annular groove 41 and the step 43 is provided inside the spool 23. The communication passage 44 communicates the first inlet port 31 facing the first annular groove 41 and the feedback port 35 facing the step 43.
  • the first annular groove 41 communicates with the first inlet port 31 and the first outlet port 33 when the spool 23 is in the retracted position, but when the spool 23 is in the advanced position, 1 outlet port 33 is formed to be blocked.
  • the second annular groove 42 communicates the second inlet port 32 and the second outlet port 34 when the spool 23 is in the retracted position, but the second inlet port 32 when the spool 23 is in the advanced position. And the second outlet port 34 are formed to be blocked.
  • the upstream side of the solenoid valve 50 communicates with the oil passage 7 connected to the oil passage 2 from the oil pump P, and the downstream side thereof communicates with the solenoid output pressure port 36 of the regulator valve 20 via the oil passage 8. Yes. Therefore, by switching on / off of the solenoid valve 50, the discharge pressure of the oil pump supplied from the oil passage 7 is used as a source pressure, and the solenoid output pressure port 36 of the regulator valve 20 is set to increase / decrease the line pressure by the regulator valve 20. A signal pressure (feedback pressure) for switching is supplied.
  • the hydraulic control apparatus is a stator reaction force of the torque converter (torque transmission mechanism) T installed in the power transmission path between the engine (drive source) E and the automatic transmission (transmission mechanism) M.
  • torque transmission mechanism torque transmission mechanism
  • line pressure adjusting means 15 for adjusting the line pressure to increase
  • feedback pressure auxiliary hydraulic pressure
  • the regulator valve 20 of the present embodiment is provided with a release port (auxiliary hydraulic pressure release port) 37 for releasing the feedback pressure from the solenoid valve 50 at a position adjacent to the solenoid output pressure port 36.
  • the release port 37 communicates with the hydraulic pressure release portion such as the oil tank U through the oil passage 9 on the downstream side thereof.
  • the release port 37 is closed by the spool 23 when the spool 23 is in the forward position, and the spool 23 resists the biasing force of the pressure adjusting springs 27 and 29 by the pressure of the solenoid output pressure port 36 and the feedback port 35. Then, when it moves further rearward than the retracted position, it communicates with the solenoid output pressure port 36 in the cylinder bore 22.
  • the oil pump P sucks up the hydraulic oil from the oil tank U and pumps it to the oil passage 2.
  • This hydraulic pressure (original pressure) is supplied to the regulator valve 20 via the oil passages 3 and 4, adjusted to a predetermined line pressure by the regulator valve 20, and then the torque converter TC via the oil passages 5 and 6. Or, it is sent to places where lubrication is required, such as shafts, gears, bearings, and clutches.
  • the hydraulic pressure supplied from the oil pump P is received by the oil passage 7, and the solenoid valve 50 is opened by the control of an automatic control unit (ECU) of the vehicle (not shown). (ON).
  • ECU automatic control unit
  • the solenoid valve 50 When the solenoid valve 50 is opened, the hydraulic pressure (feedback pressure for low line pressure) supplied to the solenoid output pressure port 36 via the oil passages 7 and 8 and the feedback via the oil passage 3, the first inlet port 31 and the communication passage 44 are fed back.
  • the regulator valve 20 is controlled by both the hydraulic pressure supplied to the port 35 (feedback pressure for low line pressure), and the pressure receiving area of the spool 23 is increased, so that the line pressure regulated by the regulator valve 20 is reduced. Switch to line pressure.
  • the line pressure is switched from low pressure to high pressure.
  • the solenoid valve 50 under the control of an automatic control unit (not shown), hydraulic oil (feedback pressure for low line pressure) is not supplied to the oil passage 8, and the oil passage 3 and the first inlet
  • the regulator valve 20 is controlled only by the hydraulic pressure supplied to the feedback port 35 via the port 31 and the communication path 44, and the pressure receiving area of the regulator valve 20 is reduced, so that the line pressure is switched from the low line pressure to the high line pressure.
  • the regulator valve 20 directly applies the stator reaction force of the torque converter T to the spring receiving cylinder 26 of the regulator valve 20 via the operation arm 24.
  • the stator reaction force increases, the stator spring 25 connected to the spring receiving cylinder 26 is compressed.
  • the set load of the pressure regulating springs 27 and 29 of the regulator valve 20 increases, and the line pressure of the hydraulic oil passage increases.
  • FIG. 3 is a diagram for explaining the flow of hydraulic oil in the hydraulic circuit 1.
  • FIG. 3A is a diagram in which the feedback pressure (low line pressure feedback pressure) supplied to the solenoid output pressure port 36 is within a normal value range. It is a figure which shows a state, (b) is a figure which shows the state which the said feedback pressure raised abnormally.
  • the solenoid valve 50 When the feedback pressure supplied to the solenoid output pressure port 36 is within the normal range with the solenoid valve 50 open, the load due to the pressure of the solenoid output pressure port 36 and the feedback port 35 applied to the spool 23 And the urging force of the pressure adjusting springs 27 and 29 are maintained, and the stroke amount of the spool 23 is within a specified range as shown in FIG. At this time, the release port 37 is closed by the spool 23. In this state, if a malfunction such as a defective opening occurs in the oil passages 5 and 6 on the downstream side of the regulator valve 20 and the line pressure rises abnormally beyond the normal value range, the solenoid valve 50 causes the solenoid output pressure to increase. The feedback pressure supplied to the port 36 rises abnormally.
  • the release port 37 for releasing the hydraulic pressure of the solenoid output pressure port 36 is provided at a position adjacent to the solenoid output pressure port 36.
  • the degree of freedom of layout of the value and stator reaction force transmission structure can be increased. Further, according to the regulator valve 20, since the overstroke of the spool 23 can be effectively prevented by the action of the release port 37, the resistance against an abnormal increase in the feedback pressure by the solenoid valve 50 is improved as compared with the conventional structure. be able to.
  • FIG. 4 is a diagram illustrating another configuration example of the hydraulic circuit 1 according to the first embodiment.
  • the hydraulic circuit 1 ′ shown in the figure further includes a modulator valve 80 installed in the oil passage 7 upstream of the solenoid valve 50 with respect to the hydraulic circuit 1 shown in FIG. 1.
  • the modulator valve 80 is a pressure reducing valve for defining an upper limit value of input pressure to the solenoid valve 50. Therefore, in the configuration example shown in FIG. 4, the hydraulic pressure controlled by the modulator valve 80 is supplied as the original pressure of the feedback pressure by the solenoid valve 50.
  • Other configurations and operations are the same as the configuration example shown in FIG.
  • FIG. 5 is a diagram showing a hydraulic circuit 1-2 in the hydraulic control device for an automatic transmission according to the second embodiment of the present invention.
  • the hydraulic circuit 1-2 of the present embodiment is configured to supply the original pressure of the solenoid valve 50 that switches the line pressure between high and low from a feedback port (output port) 35 of the regulator valve 20. That is, in the hydraulic circuit 1 of the first embodiment, the oil path 7 on the upstream side of the solenoid valve 50 is directly connected to the oil path 2 from the oil pump P, whereas the hydraulic circuit of the present embodiment. In 1-2, the oil passage 7 on the upstream side of the solenoid valve 50 is connected to the feedback port 35 of the regulator valve 20.
  • FIG. 6 is a diagram for explaining the flow of hydraulic oil in the hydraulic circuit 1-2.
  • FIG. 6A is a diagram showing a state in which the feedback pressure supplied to the solenoid output pressure port 36 is within a normal value range.
  • (B) is a figure which shows the state which the said feedback pressure raised abnormally.
  • the hydraulic circuit 1-2 is configured to supply the original pressure of the solenoid valve 50 for switching the line pressure between high and low from the feedback port 35 of the regulator valve 20.
  • the feedback pressure supplied to the solenoid output pressure port 36 abnormally increases, the supply of hydraulic oil to the feedback port 35 is cut off before the spool 23 of the regulator valve 20 enters an overstroke state exceeding the allowable range.
  • the supply of the feedback pressure to the solenoid output pressure port 36 is stopped, so that an overstroke of the spool 23 can be prevented.
  • the overstroke of the spool 23 can be effectively prevented, so that the resistance against an abnormal increase in feedback pressure by the solenoid valve 50 can be improved as compared with the conventional structure. .
  • FIG. 7 is a diagram showing another configuration example of the hydraulic circuit 1-2 according to the second embodiment.
  • the hydraulic circuit 1-2 ′ shown in the figure further includes a modulator valve 80 installed in the oil passage 7 upstream of the solenoid valve 50 with respect to the hydraulic circuit 1-2 shown in FIG. Therefore, in the configuration example shown in FIG. 7, the hydraulic pressure controlled by the modulator valve 80 is supplied as the original pressure of the feedback pressure by the solenoid valve 50.
  • Other configurations and operations are the same as the configuration example shown in FIG.
  • FIG. 8 is a diagram showing a hydraulic circuit in the hydraulic control device for an automatic transmission according to the third embodiment of the present invention.
  • the hydraulic circuit 1-3 of the present embodiment has a release port (release pressure) for releasing the original pressure (line pressure) supplied to the first inlet port 31 at a position adjacent to the first inlet port 31 of the regulator valve 20.
  • (Original pressure release port) 38 is provided. That is, in the hydraulic circuit 1 of the first embodiment, the release port 37 for releasing the solenoid output pressure port 36 to which the feedback pressure from the solenoid valve 50 is supplied is provided.
  • a release port 38 for releasing the first inlet port 31 is provided.
  • the release port 38 communicates with a hydraulic release part such as an oil reservoir U through the oil passage 12.
  • a third annular groove 45 is formed in the spool 23 at a position facing the release port 38.
  • the third annular groove 45 of the spool 23 is in a position facing only the release port 38, and the release port 38 is closed.
  • the spool 23 moves further rearward than the retracted position against the urging force of the pressure regulating springs 27 and 29 by the pressure of the solenoid output pressure port 36 and the feedback port 35, so that the third annular groove 45 is released from the release port. 38 and the first inlet port 31.
  • the release port 38 and the first inlet port 31 communicate with each other via the third annular groove 45.
  • FIG. 9 is a diagram for explaining the flow of hydraulic oil in the hydraulic circuit 1-3.
  • FIG. 9A is a diagram showing a state in which the feedback pressure supplied to the solenoid output pressure port 36 is within a normal value range.
  • (B) is a figure which shows the state which the said feedback pressure raised abnormally.
  • the original pressure supplied to the first inlet port 31 is released, so the original pressure of the solenoid valve 50 to which the hydraulic pressure from the oil pump P is supplied is reduced. Therefore, the feedback pressure supplied to the solenoid output pressure port 36 via the solenoid valve 50 is also reduced. Further, at this time, the first annular groove 41 of the spool 23 moves to a position on the right side of the first inlet port 31, so that the first annular port 41 and the communication passage 44 communicated with the first inlet port 31 until then. The connection with the feedback port 35 is closed. Thereby, the hydraulic pressure supply to the feedback port 35 is stopped. As a result, further strokes of the spool 23 are stopped. Accordingly, the overstroke of the spool 23 can be effectively regulated.
  • the release port 38 for releasing the original pressure supplied to the first inlet port 31 of the regulator valve 20 is provided.
  • the original pressure of the solenoid valve 50 can be reduced before the spool 23 exceeds the specified range and enters an overstroke state.
  • the overstroke of the spool 23 can be prevented. Therefore, as in the first and second embodiments, it is not necessary to take measures for preventing the overstroke of the spool 23 in the pressure regulating springs 27 and 29 provided in the regulator valve 20 and the stator reaction force transmission structure.
  • the degree of freedom of the layout of the pressure regulating springs 27 and 29 and the stator reaction force transmission structure can be increased. Further, according to the regulator valve 20, since the overstroke of the spool 23 can be effectively prevented by the action of the release port 38, the resistance against the abnormal increase of the feedback pressure by the solenoid valve 50 is improved as compared with the conventional structure. be able to.
  • the torque transmission mechanism according to the present invention is a fluid type torque converter, and the line pressure adjusting means controls the regulator valve to the closed side in accordance with an increase in the stator reaction force of the torque converter.
  • the torque transmission mechanism of the present invention is a torque transmission mechanism installed in the power transmission path between the drive source and the transmission mechanism, the specific mechanism is the same as that of the above embodiment.
  • a mechanism other than that shown may be used. Therefore, for example, a speed reduction mechanism including a planetary gear mechanism installed between the engine and the speed change mechanism can be adopted as the torque transmission mechanism of the present invention.
  • an operating arm for operating the regulator valve may be provided on the sun gear shaft fixed to the sun gear of the planetary gear mechanism, and the regulator valve may be controlled by the torque reaction force of the sun gear.

Abstract

The over-stroking of a spool, which is caused by an abnormal increase in line pressure, is effectively prevented while suppressing the impact on the setting value or structural layout of a regulator valve to a minimum. Disclosed is a hydraulic control device for an automatic transmission, which is provided with a regulator valve (20) disposed on a hydraulic circuit (1) connected to an oil pump (P), a line pressure adjusting means (15) which adjusts the line pressure so that the line pressure increases by moving a spool (23) to the closing side in accordance with the increase in the stator reaction of a torque converter (T), and a line pressure switching means (55) which switches the line pressure between low line pressure and high line pressure by switching the supply of auxiliary oil pressure by means of a solenoid valve (50), wherein, when the auxiliary oil pressure supplied to the regulator valve (20) increases beyond the ranges of a normal value, the auxiliary oil pressure is released as a consequence of the solenoid output pressure port (36) and a release port (37) connecting, thereby preventing the spool (23) from over-stroking.

Description

自動変速機の油圧制御装置Hydraulic control device for automatic transmission
 本発明は、油圧源に繋がる油圧回路に設置したレギュレータバルブによって、自動変速機の各部に供給する作動油の油圧を所定のライン圧に調圧する自動変速機の油圧制御装置に関する。 The present invention relates to a hydraulic control device for an automatic transmission that regulates the hydraulic pressure of hydraulic oil supplied to each part of the automatic transmission to a predetermined line pressure by a regulator valve installed in a hydraulic circuit connected to a hydraulic pressure source.
 従来、例えば、特許文献1に示すように、油圧源となるオイルポンプから供給される基礎油圧を調圧するレギュレータバルブを備え、該レギュレータバルブによって、自動変速機が備えるクラッチなど摩擦係合要素の係合作動油圧の元圧となるライン圧を生成する油圧制御装置がある。 Conventionally, for example, as shown in Patent Document 1, a regulator valve that regulates basic hydraulic pressure supplied from an oil pump serving as a hydraulic pressure source has been provided, and the engagement of a friction engagement element such as a clutch provided in an automatic transmission by the regulator valve. There is a hydraulic control device that generates a line pressure as a source pressure of the combined hydraulic pressure.
 特許文献1に開示された油圧制御装置のレギュレータバルブは、トルクコンバータのステータ反力に応じてライン圧を増大させるように構成している。すなわち、上記の油圧制御装置を備える車両では、エンジンの出力は、クランク軸を介してトルクコンバータのポンプ翼車に伝達され、タービン翼車にてトルクが増幅され、このトルクの反力をステータ翼車が負担する。このステータ翼車には、油圧制御装置のレギュレータバルブを制御するためのステータアームが固設されている。このステータアームを介してレギュレータバルブのばね受筒にステータ反力を加えるようになっている。したがって、ステータ反力が増大すると、ばね受筒に接続されたステータばねが圧縮され、これに伴い、ばね受筒が移動してレギュレータバルブの調圧ばねのセット荷重を増大させ、作動油路のライン圧が増大する。これにより、車両の停止時における油圧回路のライン圧に対して、負荷がかかったときにその負荷に基づいてライン圧を増加させることができるので、車両の燃料経済性(燃費)を高めることができる。 The regulator valve of the hydraulic control device disclosed in Patent Document 1 is configured to increase the line pressure in accordance with the stator reaction force of the torque converter. That is, in a vehicle equipped with the hydraulic control device described above, the output of the engine is transmitted to the pump impeller of the torque converter via the crankshaft, the torque is amplified by the turbine impeller, and the reaction force of this torque is used as the stator impeller. Car will bear. A stator arm for controlling the regulator valve of the hydraulic control device is fixed to the stator impeller. A stator reaction force is applied to the spring receiving cylinder of the regulator valve via the stator arm. Therefore, when the stator reaction force increases, the stator spring connected to the spring receiving cylinder is compressed, and accordingly, the spring receiving cylinder moves to increase the set load of the pressure regulating spring of the regulator valve, and the hydraulic oil passage Line pressure increases. Accordingly, when a load is applied to the line pressure of the hydraulic circuit when the vehicle is stopped, the line pressure can be increased based on the load, so that the fuel economy (fuel consumption) of the vehicle can be improved. it can.
 さらに、上記の油圧制御装置では、レギュレータバルブに補助圧を供給するためのソレノイドバルブを有するライン圧切換手段を備えている。ソレノイドバルブは、レギュレータバルブに対する補助圧の供給切換によって、ライン圧を低ライン圧と高ライン圧の二段階に切替可能である。したがって、車両の運転状態により高い係合作動油圧を必要としない領域では、ソレノイドバルブの補助圧でライン圧を低圧に切り換えることにより、オイルポンプの駆動トルクを低減するとともに、自動変速機のフリクショントルクを低減し、これにより燃料経済性の向上を達成することができる。 Furthermore, the above hydraulic control device is provided with line pressure switching means having a solenoid valve for supplying auxiliary pressure to the regulator valve. The solenoid valve can switch the line pressure into two stages of a low line pressure and a high line pressure by switching the supply of auxiliary pressure to the regulator valve. Therefore, in areas where high engagement hydraulic pressure is not required due to vehicle operating conditions, the line pressure is switched to low pressure with the auxiliary pressure of the solenoid valve to reduce the oil pump drive torque and the friction torque of the automatic transmission. Thus, fuel economy can be improved.
特開2009-281414号公報JP 2009-281414 A
 ところで、上記の油圧制御装置では、ソレノイドバルブの出力圧がフィードバック圧としてレギュレータバルブに作用している状態で、レギュレータバルブの下流側の開放油路に開放不良などの不具合が発生すると、ライン圧が正常値の範囲を越えて上昇(異常上昇)するという問題がある。ライン圧が異常上昇すると、フィードバック圧が上昇することで、レギュレータバルブのスプールがバルブキャップに突き当たる位置までオーバーストロークする。このようなオーバーストロークが起こると、ライン圧を全く解放できなくなるので、ライン圧の供給先が異常高圧となり、自動変速機の各部の故障原因となる。 By the way, in the hydraulic control device described above, when a malfunction such as an open failure occurs in the open oil passage on the downstream side of the regulator valve in a state where the output pressure of the solenoid valve acts on the regulator valve as a feedback pressure, the line pressure is increased. There is a problem that it rises (abnormally rises) beyond the normal value range. When the line pressure rises abnormally, the feedback pressure rises, resulting in an overstroke to the position where the spool of the regulator valve hits the valve cap. When such an overstroke occurs, the line pressure cannot be released at all, and therefore the supply destination of the line pressure becomes an abnormally high pressure, causing a failure of each part of the automatic transmission.
 上記の問題に対処するため、レギュレータバルブの調圧ばねのバネ荷重を大きくする対策や、スプールが早い段階で接地するレイアウトを採用する対策などが取られている。しかしながら、これらの対策を取ることによって、レギュレータバルブのストール圧の設定値や、ステータ反力伝達構造のレイアウトの自由度などに制限が生じてしまうという問題がある。 Measures to increase the spring load of the pressure regulating spring of the regulator valve and to adopt a layout in which the spool is grounded at an early stage are taken to cope with the above problems. However, by taking these measures, there is a problem that the set value of the stall pressure of the regulator valve, the degree of freedom of the layout of the stator reaction force transmission structure, and the like are limited.
 本発明は上述の点に鑑みてなされたものであり、その目的は、ライン圧の異常上昇に伴うスプールのオーバーストロークを効果的に防止できるようにしながらも、レギュレータバルブの設定値や構造のレイアウトに及ぼす影響を最小限に抑えることができる自動変速機の油圧制御装置を提供することにある。 The present invention has been made in view of the above-described points, and an object of the present invention is to effectively prevent a spool overstroke associated with an abnormal increase in line pressure, and to set a regulator valve set value and layout. It is an object of the present invention to provide a hydraulic control device for an automatic transmission capable of minimizing the influence on the transmission.
 上記課題を解決するための本発明は、油圧源(P)に繋がる油圧回路(1)に設置したレギュレータバルブ(20)によって、自動変速機の各部に供給する作動油の油圧を所定のライン圧に調圧する自動変速機の油圧制御装置において、レギュレータバルブ(20)は、付勢手段(27,29)で付勢されたスプール(23)と、該スプール(23)の周囲に配置した油圧ポート(35,36)とを備え、油圧ポート(35,36)に供給する油圧の切り換えでスプール(23)を作動するスプールバルブであって、駆動源(E)と変速機構(M)との間の動力伝達経路に設置したトルク伝達機構(T)のトルク反力の増大に応じてスプール(23)を閉側に移動させることで、ライン圧が増大するように調整するライン圧調整手段(15)と、レギュレータバルブ(20)に補助油圧を供給する補助油圧供給バルブ(50)を有し、該補助油圧供給バルブ(50)による補助油圧の供給の切換で、ライン圧を低ライン圧と高ライン圧とに切り換えるライン圧切換手段(55)と、を備えると共に、レギュレータバルブ(20)は、補助油圧を入力するための補助油圧入力ポート(36)と、補助油圧を解放するための補助油圧解放ポート(37)とを備え、補助油圧供給バルブ(50)からレギュレータバルブ(20)に供給される補助油圧が正常値の範囲外に上昇した場合に、スプール(23)が規定範囲を超えて移動することで、補助油圧入力ポート(36)と補助油圧解放ポート(37)とが連通することを特徴とする。 In order to solve the above-mentioned problems, the present invention relates to the hydraulic pressure of the hydraulic oil supplied to each part of the automatic transmission by means of a regulator valve (20) installed in the hydraulic circuit (1) connected to the hydraulic pressure source (P). In the hydraulic control device for an automatic transmission that regulates pressure, the regulator valve (20) includes a spool (23) biased by biasing means (27, 29), and a hydraulic port disposed around the spool (23). (35, 36), and operates the spool (23) by switching the hydraulic pressure supplied to the hydraulic ports (35, 36), between the drive source (E) and the transmission mechanism (M). Line pressure adjusting means (15) for adjusting the line pressure to increase by moving the spool (23) to the closed side in response to an increase in the torque reaction force of the torque transmission mechanism (T) installed in the power transmission path of And an auxiliary hydraulic pressure supply valve (50) for supplying auxiliary hydraulic pressure to the regulator valve (20), and switching the supply of the auxiliary hydraulic pressure by the auxiliary hydraulic pressure supply valve (50), the line pressure is reduced to the low line pressure and the high line. Line pressure switching means (55) for switching to the pressure, and the regulator valve (20) includes an auxiliary hydraulic pressure input port (36) for inputting the auxiliary hydraulic pressure and an auxiliary hydraulic pressure release for releasing the auxiliary hydraulic pressure. Port (37), and when the auxiliary hydraulic pressure supplied from the auxiliary hydraulic pressure supply valve (50) to the regulator valve (20) rises outside the normal range, the spool (23) moves beyond the specified range. Thus, the auxiliary hydraulic pressure input port (36) and the auxiliary hydraulic pressure release port (37) communicate with each other.
 本発明にかかる上記の自動変速機の油圧制御装置によれば、補助油圧入力ポートに入力する補助油圧が異常上昇したとき、スプールが許容範囲を越えるオーバーストローク状態となる前に、補助油圧解放ポートによって補助油圧入力ポートの補助油圧を解放することができる。したがって、スプールのオーバーストロークを効果的に防止できる。これにより、従来のように、レギュレータバルブの付勢手段の付勢力を大きくする対策や、スプールが早い段階で接地するようなレイアウトを採用する対策などを施す必要がない。したがって、レギュレータバルブの設定値やトルク反力伝達構造のレイアウトなどの自由度を確保できる。また、本発明によれば、レギュレータバルブのスプールのオーバーストロークを効果的に防止できるので、従来構造と比較して、補助油圧の異常上昇に対する耐性を向上させることができる。 According to the hydraulic control device for an automatic transmission according to the present invention, when the auxiliary hydraulic pressure input to the auxiliary hydraulic pressure input port abnormally rises, the auxiliary hydraulic pressure release port before the spool enters an overstroke state exceeding the allowable range. The auxiliary hydraulic pressure of the auxiliary hydraulic pressure input port can be released. Therefore, the overstroke of the spool can be effectively prevented. As a result, there is no need to take measures to increase the urging force of the urging means of the regulator valve or to adopt a layout in which the spool is grounded at an early stage, as in the prior art. Therefore, it is possible to ensure the flexibility of the set value of the regulator valve and the layout of the torque reaction force transmission structure. Further, according to the present invention, the overstroke of the spool of the regulator valve can be effectively prevented, so that the resistance against an abnormal increase in the auxiliary hydraulic pressure can be improved as compared with the conventional structure.
 また、本発明は、他の態様として、油圧源(P)に繋がる油圧回路(1)に設置したレギュレータバルブ(20)によって、自動変速機の各部に供給する作動油の油圧を所定のライン圧に調圧する自動変速機の油圧制御装置において、レギュレータバルブ(20)は、付勢手段(27,29)で付勢されたスプール(23)と、該スプール(23)の周囲に配置した油圧ポート(35,36)とを備え、油圧ポート(35,36)に供給する油圧の切り換えでスプール(23)を作動するスプールバルブであって、駆動源(E)と変速機構(M)との間の動力伝達経路に設置したトルク伝達機構(T)のトルク反力の増大に応じてスプール(23)を閉側に移動させることで、ライン圧が増大するように調整するライン圧調整手段(15)と、レギュレータバルブ(20)に補助油圧を供給する補助油圧供給バルブ(50)を有し、該補助油圧供給バルブ(50)による補助油圧の供給の切換で、ライン圧を低ライン圧と高ライン圧とに切り換えるライン圧切換手段(55)と、を備えると共に、補助油圧供給バルブ(50)の元圧として、レギュレータバルブ(20)による調圧後の油圧が出力される出力ポート(35)からの排出圧を供給するように構成し、補助油圧供給バルブ(50)からレギュレータバルブ(20)に供給される補助油圧が正常値の範囲外に上昇した場合に、スプール(23)が規定範囲を超えて移動することで、出力ポート(35)に油圧を供給している入力ポート(31)が閉鎖又は狭小して、レギュレータバルブ(20)に供給される補助油圧が減圧されるように構成したことを特徴とする。 Further, according to another aspect of the present invention, the hydraulic pressure of the hydraulic oil supplied to each part of the automatic transmission is set to a predetermined line pressure by the regulator valve (20) installed in the hydraulic circuit (1) connected to the hydraulic pressure source (P). In the hydraulic control device for an automatic transmission that regulates pressure, the regulator valve (20) includes a spool (23) biased by biasing means (27, 29), and a hydraulic port disposed around the spool (23). (35, 36), and operates the spool (23) by switching the hydraulic pressure supplied to the hydraulic ports (35, 36), between the drive source (E) and the transmission mechanism (M). Line pressure adjusting means (15) for adjusting the line pressure to increase by moving the spool (23) to the closed side in response to an increase in the torque reaction force of the torque transmission mechanism (T) installed in the power transmission path of ) And an auxiliary hydraulic pressure supply valve (50) for supplying auxiliary hydraulic pressure to the regulator valve (20), and switching the supply of the auxiliary hydraulic pressure by the auxiliary hydraulic pressure supply valve (50) changes the line pressure between the low line pressure and the high line pressure. Line pressure switching means (55) for switching to the output pressure from the output port (35) from which the hydraulic pressure after regulation by the regulator valve (20) is output as the original pressure of the auxiliary hydraulic pressure supply valve (50) When the auxiliary hydraulic pressure supplied from the auxiliary hydraulic pressure supply valve (50) to the regulator valve (20) rises outside the normal value range, the spool (23) exceeds the specified range. As a result, the input port (31) supplying the hydraulic pressure to the output port (35) is closed or narrowed, and the auxiliary hydraulic pressure supplied to the regulator valve (20) is reduced. Characterized by being configured to be pressed.
 本発明にかかる上記の自動変速機の油圧制御装置によれば、レギュレータバルブの補助油圧入力ポートに入力する補助油圧が異常上昇したとき、スプールが許容範囲を越えるオーバーストローク状態となる前に、補助油圧供給バルブの元圧が排出される出力ポートに油圧を供給している入力ポートが閉鎖又は狭小することで、補助油圧入力ポートの補助油圧を減圧することができる。したがって、スプールの許容範囲を超えるオーバーストロークを効果的に防止できる。これにより、従来のように、レギュレータバルブの付勢手段の付勢力を大きくする対策や、スプールが早い段階で接地するようなレイアウトを採用する対策などを施す必要がない。したがって、レギュレータバルブの設定値やトルク反力伝達構造のレイアウトなどの自由度を確保できる。また、本発明によれば、レギュレータバルブのスプールのオーバーストロークを効果的に防止できるので、従来構造と比較して、補助油圧の異常上昇に対する耐性を向上させることができる。 According to the hydraulic control device for an automatic transmission according to the present invention, when the auxiliary hydraulic pressure input to the auxiliary hydraulic pressure input port of the regulator valve rises abnormally, the auxiliary pressure is increased before the spool enters the overstroke state exceeding the allowable range. The auxiliary hydraulic pressure of the auxiliary hydraulic pressure input port can be reduced by closing or narrowing the input port that supplies the hydraulic pressure to the output port from which the original pressure of the hydraulic pressure supply valve is discharged. Therefore, an overstroke exceeding the allowable range of the spool can be effectively prevented. As a result, there is no need to take measures to increase the urging force of the urging means of the regulator valve or to adopt a layout in which the spool is grounded at an early stage, as in the prior art. Therefore, it is possible to ensure the flexibility of the set value of the regulator valve and the layout of the torque reaction force transmission structure. Further, according to the present invention, the overstroke of the spool of the regulator valve can be effectively prevented, so that the resistance against an abnormal increase in the auxiliary hydraulic pressure can be improved as compared with the conventional structure.
 また、本発明は、さらに他の態様として、油圧源(P)に繋がる油圧回路(1)に設置したレギュレータバルブ(20)によって、自動変速機の各部に供給する作動油の油圧を所定のライン圧に調圧する自動変速機の油圧制御装置において、レギュレータバルブ(20)は、付勢手段(27,29)で付勢されたスプール(23)と、該スプール(23)の周囲に配置した油圧ポート(35,36)とを備え、油圧ポート(35,36)に供給する油圧の切り換えでスプール(23)を作動するスプールバルブであって、駆動源(E)と変速機構(M)との間の動力伝達経路に設置したトルク伝達機構(T)のトルク反力の増大に応じてスプール(23)を閉側に移動させることで、ライン圧が増大するように調整するライン圧調整手段(15)と、レギュレータバルブ(20)に補助油圧を供給する補助油圧供給バルブ(50)を有し、該補助油圧供給バルブ(50)による補助油圧の供給の切換で、ライン圧を低ライン圧と高ライン圧とに切り換えるライン圧切換手段(55)と、を備えると共に、レギュレータバルブ(20)は、油圧源(P)からの調圧前の元圧が供給される入力ポート(31)と、入力ポート(31)の元圧を解放するための元圧解放ポート(38)とを備え、補助油圧供給バルブ(50)の元圧として、油圧源(P)からの調圧前の油圧を供給するように構成し、補助油圧供給バルブ(50)からレギュレータバルブ(20)に供給される補助油圧が正常値の範囲外に上昇した場合に、スプール(23)が規定範囲を超えて移動することで、入力ポート(31)と元圧解放ポート(38)とが連通するように構成したことを特徴とする。 Further, according to another aspect of the present invention, the hydraulic pressure of the hydraulic oil supplied to each part of the automatic transmission by a regulator valve (20) installed in the hydraulic circuit (1) connected to the hydraulic pressure source (P) is set to a predetermined line. In the hydraulic control device of the automatic transmission that regulates the pressure, the regulator valve (20) includes a spool (23) biased by the biasing means (27, 29), and a hydraulic pressure disposed around the spool (23). A spool valve that operates the spool (23) by switching the hydraulic pressure supplied to the hydraulic ports (35, 36), and includes a drive source (E) and a transmission mechanism (M). A line pressure adjusting means (adjusted so that the line pressure increases by moving the spool (23) to the closed side in accordance with an increase in the torque reaction force of the torque transmission mechanism (T) installed in the power transmission path between them) 5) and an auxiliary hydraulic pressure supply valve (50) for supplying auxiliary hydraulic pressure to the regulator valve (20), and by switching the supply of auxiliary hydraulic pressure by the auxiliary hydraulic pressure supply valve (50), the line pressure is reduced to a low line pressure. A line pressure switching means (55) for switching to a high line pressure, and a regulator valve (20) includes an input port (31) to which an original pressure before pressure regulation from a hydraulic pressure source (P) is supplied; And a source pressure release port (38) for releasing the source pressure of the input port (31), and supplies the hydraulic pressure before pressure regulation from the hydraulic source (P) as the source pressure of the auxiliary hydraulic pressure supply valve (50). When the auxiliary hydraulic pressure supplied from the auxiliary hydraulic pressure supply valve (50) to the regulator valve (20) rises outside the normal value range, the spool (23) moves beyond the specified range. In the input port (31) and the original pressure release port (38) is characterized by being configured to communicate.
 上記の自動変速機の油圧制御装置によれば、補助油圧入力ポートに入力する補助油圧が異常上昇したとき、スプールが許容範囲を越えるオーバーストローク状態となる前に、元圧解放ポートによって入力ポートの元圧を解放することができる。これにより、同じ油圧源からの油圧が供給されている補助油圧供給バルブの元圧が減圧されるので、補助油圧入力ポートに供給される補助油圧を減圧することができる。したがって、スプールの許容範囲を超えるオーバーストロークを効果的に防止できる。これにより、従来のように、レギュレータバルブの付勢手段の付勢力を大きくする対策や、スプールが早い段階で接地するようなレイアウトを採用する対策などを施す必要がない。したがって、レギュレータバルブの設定値やトルク反力伝達構造のレイアウトなどの自由度を確保できる。また、本発明によれば、レギュレータバルブのスプールのオーバーストロークを効果的に防止できるので、従来構造と比較して、補助油圧の異常上昇に対する耐性を向上させることができる。 According to the hydraulic control device for an automatic transmission described above, when the auxiliary hydraulic pressure input to the auxiliary hydraulic pressure input port abnormally increases, the input pressure of the input port is reduced by the main pressure release port before the spool enters an overstroke state exceeding the allowable range. The original pressure can be released. Thereby, since the original pressure of the auxiliary hydraulic pressure supply valve to which the hydraulic pressure from the same hydraulic pressure source is supplied is reduced, the auxiliary hydraulic pressure supplied to the auxiliary hydraulic pressure input port can be reduced. Therefore, an overstroke exceeding the allowable range of the spool can be effectively prevented. As a result, there is no need to take measures to increase the urging force of the urging means of the regulator valve or to adopt a layout in which the spool is grounded at an early stage, as in the prior art. Therefore, it is possible to ensure the flexibility of the set value of the regulator valve and the layout of the torque reaction force transmission structure. Further, according to the present invention, the overstroke of the spool of the regulator valve can be effectively prevented, so that the resistance against an abnormal increase in the auxiliary hydraulic pressure can be improved as compared with the conventional structure.
 また、上記の自動変速機の油圧制御装置では、トルク伝達機構は、流体式のトルクコンバータ(T)であり、ライン圧調整手段(15)は、トルクコンバータ(T)のステータ反力の増大に応じて、レギュレータバルブ(20)を閉側に制御するものであってよい。
 なお、上記の括弧内の符号は、後述する実施形態における構成要素の符号を本発明の一例として示したものである。
Further, in the hydraulic control device for the automatic transmission described above, the torque transmission mechanism is a fluid type torque converter (T), and the line pressure adjusting means (15) increases the stator reaction force of the torque converter (T). Accordingly, the regulator valve (20) may be controlled to be closed.
In addition, the code | symbol in said parenthesis shows the code | symbol of the component in embodiment mentioned later as an example of this invention.
 本発明にかかる自動変速機の油圧制御装置によれば、ライン圧の異常上昇に伴うスプールのオーバーストロークを効果的に防止できるようにしながらも、レギュレータバルブの設定値や構造のレイアウトに及ぼす影響を最小限に抑えることができる。 According to the hydraulic control device for an automatic transmission according to the present invention, it is possible to effectively prevent an overstroke of the spool due to an abnormal increase in the line pressure, while at the same time affecting the set value of the regulator valve and the layout of the structure. Can be minimized.
本発明にかかる自動変速機の油圧制御装置が適用される車両の概略図である。1 is a schematic view of a vehicle to which a hydraulic control device for an automatic transmission according to the present invention is applied. 本発明の第1実施形態にかかる自動変速機の油圧制御装置における油圧回路の構成例を示す図である。It is a figure which shows the structural example of the hydraulic circuit in the hydraulic control apparatus of the automatic transmission concerning 1st Embodiment of this invention. 第1実施形態の油圧回路における作動油の流れを説明するための図で、(a)は、ソレノイドバルブによるフィードバック圧が正常値の状態、(b)は、当該フィードバック圧が異常上昇した状態を示す図である。It is a figure for demonstrating the flow of the hydraulic fluid in the hydraulic circuit of 1st Embodiment, (a) is the state in which the feedback pressure by a solenoid valve is a normal value, (b) is the state which the said feedback pressure raised abnormally. FIG. 第1実施形態にかかる油圧回路の他の構成例を示す図である。It is a figure which shows the other structural example of the hydraulic circuit concerning 1st Embodiment. 本発明の第2実施形態にかかる自動変速機の油圧制御装置における油圧回路を示す図である。It is a figure which shows the hydraulic circuit in the hydraulic control apparatus of the automatic transmission concerning 2nd Embodiment of this invention. 第2実施形態の油圧回路における作動油の流れを説明するための図で、(a)は、ソレノイドバルブによるフィードバック圧が正常値の状態、(b)は、当該フィードバック圧が異常上昇した状態を示す図である。It is a figure for demonstrating the flow of the hydraulic fluid in the hydraulic circuit of 2nd Embodiment, (a) is the state in which the feedback pressure by a solenoid valve is a normal value, (b) is the state which the said feedback pressure raised abnormally. FIG. 第2実施形態にかかる油圧回路の他の構成例を示す図である。It is a figure which shows the other structural example of the hydraulic circuit concerning 2nd Embodiment. 本発明の第3実施形態にかかる自動変速機の油圧制御装置における油圧回路を示す図である。It is a figure which shows the hydraulic circuit in the hydraulic control apparatus of the automatic transmission concerning 3rd Embodiment of this invention. 第3実施形態の油圧回路における作動油の流れを説明するための図で、(a)は、ソレノイドバルブによるフィードバック圧が正常値の状態、(b)は、当該フィードバック圧が異常上昇した状態を示す図である。It is a figure for demonstrating the flow of the hydraulic fluid in the hydraulic circuit of 3rd Embodiment, (a) is the state where the feedback pressure by a solenoid valve is a normal value, (b) is the state which the said feedback pressure raised abnormally. FIG.
 以下、添付図面を参照して本発明の実施形態を詳細に説明する。
〔第1実施形態〕
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[First Embodiment]
 図1は、本発明にかかる自動変速機の油圧制御装置が適用される車両の概略図である。同図に示す車両は、エンジンE、エンジンEに接続される流体式のトルクコンバータ(トルク伝達機構)T、トルクコンバータTに接続される変速機構M、差動装置Df等を備えている。なお、本発明の自動変速機の油圧制御装置は変速機構M内に設けられている。エンジンEの出力は、クランク軸101を介して、トルクコンバータT、変速機構M、差動装置Dfを順次経て駆動車輪W、W'に伝達される。 FIG. 1 is a schematic view of a vehicle to which a hydraulic control device for an automatic transmission according to the present invention is applied. The vehicle shown in the figure includes an engine E, a fluid type torque converter (torque transmission mechanism) T connected to the engine E, a speed change mechanism M connected to the torque converter T, a differential device Df, and the like. The hydraulic control device for an automatic transmission according to the present invention is provided in the transmission mechanism M. The output of the engine E is transmitted to the drive wheels W and W ′ via the crankshaft 101 through the torque converter T, the transmission mechanism M, and the differential device Df in order.
 トルクコンバータTは、エンジンEのクランク軸101に連結されたポンプ翼車102と、変速機構Mの入力軸105に連結されたタービン翼車103と、入力軸105上に相対回転自在に支承されたステータ軸104aに一方向クラッチ107を介して連結されたステータ翼車104とから構成される。クランク軸101からポンプ翼車102に伝達されるトルクは、流体力学的にタービン翼車103に伝達され、この間にトルクの増幅作用が行われる。このとき、ステータ翼車104はそのトルクの反力(以下、「ステータ反力」という)を負担する。 The torque converter T is supported on the input shaft 105 so as to be rotatable relative to the pump impeller 102 connected to the crankshaft 101 of the engine E, the turbine impeller 103 connected to the input shaft 105 of the transmission mechanism M, and the like. The stator impeller 104 is connected to the stator shaft 104a via a one-way clutch 107. The torque transmitted from the crankshaft 101 to the pump impeller 102 is hydrodynamically transmitted to the turbine impeller 103, during which torque amplification is performed. At this time, the stator impeller 104 bears a reaction force of the torque (hereinafter referred to as “stator reaction force”).
 ポンプ翼車102の右端には、後述するオイルポンプP(図2参照)を駆動するポンプ駆動歯車108が設けられる。ステータ軸104aの右端には、高ライン圧時に後述するレギュレータバルブ20を制御するための作動アーム(ステータアーム)24が設けられている。 At the right end of the pump impeller 102, a pump drive gear 108 for driving an oil pump P (see FIG. 2) described later is provided. At the right end of the stator shaft 104a, an operating arm (stator arm) 24 for controlling a regulator valve 20 described later at high line pressure is provided.
 変速機構Mは、複数の変速段を設定可能な車両用の自動変速機構である。この変速機構Mには、例えば、各変速段に対応する複数の歯車列と、複数のクラッチやブレーキ(摩擦係合要素)とを有する変速機構や、一対のプーリの間に無端状のベルトが掛け渡されたベルト式無段変速機構などが用いられる。なお、変速機構Mの構成は、本発明の特徴部分ではないため、その詳細な図示及び説明を省略する。 The transmission mechanism M is an automatic transmission mechanism for a vehicle that can set a plurality of shift stages. The speed change mechanism M includes, for example, a speed change mechanism having a plurality of gear trains corresponding to each speed stage, a plurality of clutches and brakes (friction engagement elements), and an endless belt between a pair of pulleys. A belt type continuously variable transmission mechanism or the like that is stretched over is used. Note that the configuration of the speed change mechanism M is not a feature of the present invention, and thus detailed illustration and description thereof will be omitted.
 図2は、本発明の第1実施形態にかかる自動変速機の油圧制御装置が備える油圧回路の構成例を示す図である。同図に示す油圧回路1は、油圧源となるオイルポンプPと、オイルポンプPから供給される基礎油圧を調圧して、変速機構Mが備えるクラッチなど摩擦係合要素の係合作動油圧の元圧となるライン圧を生成するレギュレータバルブ20とを備えている。また、レギュレータバルブ20の下流側に配置した油路(潤滑油路)14には、該油路14内の油圧(潤滑圧)が所定の圧力になると開放して潤滑油量を低減するリリーフ弁70が設置されている。レギュレータバルブ20から吐出された作動油が流通する下流側の油路5は、トルクコンバータTに接続されており、油路6は、シャフト、ギヤ、ベアリング、クラッチなど潤滑が必要な箇所(いずれも図示せず)に接続されている。 FIG. 2 is a diagram illustrating a configuration example of a hydraulic circuit provided in the hydraulic control device of the automatic transmission according to the first embodiment of the present invention. The hydraulic circuit 1 shown in FIG. 1 adjusts the oil pump P serving as a hydraulic pressure source and the basic hydraulic pressure supplied from the oil pump P to generate the engagement hydraulic pressure of a friction engagement element such as a clutch provided in the transmission mechanism M. And a regulator valve 20 that generates a line pressure as a pressure. In addition, a relief valve is provided in an oil passage (lubricating oil passage) 14 disposed on the downstream side of the regulator valve 20 so as to be released when the oil pressure (lubricating pressure) in the oil passage 14 reaches a predetermined pressure. 70 is installed. The downstream oil passage 5 through which the hydraulic oil discharged from the regulator valve 20 circulates is connected to the torque converter T, and the oil passage 6 is a portion where lubrication is required such as a shaft, gear, bearing, clutch (all (Not shown).
 レギュレータバルブ20は、ハウジング21と、該ハウジング21に設けたシリンダボア22内に摺動自在に嵌合されたスプール23と、トルクコンバータTのステータ反力の増大に伴って回動する作動アーム24と、該作動アーム24に当接しているばね受筒26と、ばね受筒26とハウジング21と間に設けたステータばね25と、スプール23とばね受筒26との間に遊びなく設けた第1調圧ばね(付勢手段)27と、スプール23とばね受筒26との間に遊びを有して設けた第2調圧ばね(付勢手段)29とを備えている。スプール23の軸方向の後端には、小径の軸部23aが同軸に形成されており、調圧ばね27,29は、該軸部23aを二重に包囲するように配置されている。また、ハウジング21には、前端を閉じた小径のシリンダボア22と、該シリンダボア22の後端に同軸に繋がる大径の摺動ボア28とが形成されている。 The regulator valve 20 includes a housing 21, a spool 23 slidably fitted in a cylinder bore 22 provided in the housing 21, and an operating arm 24 that rotates as the stator reaction force of the torque converter T increases. The first spring spring 26 is in contact with the operating arm 24, the stator spring 25 is provided between the spring receiver 26 and the housing 21, and the first spring 23 is provided between the spool 23 and the spring receiver 26 without play. A pressure regulating spring (biasing means) 27 and a second pressure regulating spring (biasing means) 29 provided with play between the spool 23 and the spring receiving cylinder 26 are provided. A small-diameter shaft portion 23a is coaxially formed at the axial rear end of the spool 23, and the pressure regulating springs 27 and 29 are disposed so as to surround the shaft portion 23a in a double manner. The housing 21 is formed with a small-diameter cylinder bore 22 whose front end is closed, and a large-diameter sliding bore 28 that is coaxially connected to the rear end of the cylinder bore 22.
 ばね受筒26は、一端に閉塞端を有する有底円筒状に形成されており、閉塞端には、径方向の外側に張り出す鍔部26aが形成されている。そして、閉塞端を後方位置として摺動ボア28に摺動可能に嵌合されている。作動アーム24は、ばね受筒26の閉塞端の外面に当接しており、ステータばね25は、鍔部26aとハウジング21との間に設けられている。 The spring receiving cylinder 26 is formed in a bottomed cylindrical shape having a closed end at one end, and a flange portion 26a protruding outward in the radial direction is formed at the closed end. And it is slidably fitted to the sliding bore 28 with the closed end as the rear position. The operating arm 24 is in contact with the outer surface of the closed end of the spring receiving cylinder 26, and the stator spring 25 is provided between the flange portion 26 a and the housing 21.
 作動アーム24は、トルクコンバータTのステータ反力が作用していない状態では、図2に示す初期位置にあり、ステータ反力の増大に伴って、ステータばね25を圧縮してばね受筒26を前進させるようになっている。すなわち、レギュレータバルブ20は、トルクコンバータTのステータ反力に応じてライン圧を制御するように構成されている。 The operating arm 24 is in the initial position shown in FIG. 2 in a state where the stator reaction force of the torque converter T is not acting. As the stator reaction force increases, the operating arm 24 compresses the stator spring 25 to It is designed to move forward. That is, the regulator valve 20 is configured to control the line pressure in accordance with the stator reaction force of the torque converter T.
 また、レギュレータバルブ20は、スプール23の周囲に配置したスプール23を作動するための油圧ポート35,36を備え、油圧ポート35,36に供給する油圧の切り換えでスプール23を作動する構成のスプールバルブである。スプール23を作動するための油圧ポート35,36として、シリンダボア22の閉塞端とスプール23の先端23bとの隙間に配置した補助油圧入力ポートであるソレノイド出力圧ポート(低ライン圧用フィードバックポート)36と、ソレノイド出力圧ポート36の隣に配置したフィードバックポート(高ライン圧用フィードバックポート)35とが設けられている。なお、以下の説明では、スプール23がシリンダボア22内の左端側に位置する状態を前進位置といい、スプール23が当該前進位置から調圧ばね27,29の付勢力に抗してシリンダボア22内の右側に移動した状態を後退位置という。 Further, the regulator valve 20 includes hydraulic ports 35 and 36 for operating the spool 23 arranged around the spool 23, and the spool valve is configured to operate the spool 23 by switching the hydraulic pressure supplied to the hydraulic ports 35 and 36. It is. As hydraulic ports 35 and 36 for operating the spool 23, a solenoid output pressure port (low-line pressure feedback port) 36 which is an auxiliary hydraulic input port disposed in a gap between the closed end of the cylinder bore 22 and the tip 23b of the spool 23; A feedback port (high line pressure feedback port) 35 disposed next to the solenoid output pressure port 36 is provided. In the following description, a state in which the spool 23 is positioned on the left end side in the cylinder bore 22 is referred to as a forward position, and the spool 23 resists the urging force of the pressure adjusting springs 27 and 29 from the forward position in the cylinder bore 22. The state moved to the right side is called a retreat position.
 シリンダボア22の内側面には、オイルポンプPからの油路3,4それぞれに連通する第1入口ポート(元圧入力ポート)31と第2入口ポート32が設けられている。また、油路5を介してトルクコンバータTCに連する第1出口ポート33と、油路6を介してシャフト、ギヤ、ベアリング、クラッチなど潤滑が必要な箇所に連通する第2出口ポート34とが設けられている。また、シリンダボア22の内側面における第1入口ポート31に隣接する位置には、段差が設けられており、当該段差の箇所には、フィードバックポート35が設けられている。一方、スプール23の外周面には、スプール23の軸方向の位置に応じて第1入口ポート31又は第1出口ポート33に連通する第1環状溝41と、第2入口ポート32又は第2出口ポート34に連通する第2環状溝42とが設けられている。また、スプール23の外周面におけるフィードバックポート35に対向する位置には、段差43が形成されている。そして、スプール23の内部には、第1環状溝41と段差43の部分とを連通する連通路44が設けられている。連通路44によって、第1環状溝41に対向する第1入口ポート31と段差43に対向するフィードバックポート35とが連通している。 A first inlet port (original pressure input port) 31 and a second inlet port 32 that communicate with the oil passages 3 and 4 from the oil pump P are provided on the inner surface of the cylinder bore 22. Also, a first outlet port 33 that communicates with the torque converter TC via the oil passage 5 and a second outlet port 34 that communicates with the portion requiring lubrication such as a shaft, gear, bearing, and clutch via the oil passage 6. Is provided. Further, a step is provided at a position adjacent to the first inlet port 31 on the inner surface of the cylinder bore 22, and a feedback port 35 is provided at the step. On the other hand, on the outer peripheral surface of the spool 23, a first annular groove 41 that communicates with the first inlet port 31 or the first outlet port 33 and the second inlet port 32 or the second outlet according to the axial position of the spool 23. A second annular groove 42 communicating with the port 34 is provided. Further, a step 43 is formed at a position facing the feedback port 35 on the outer peripheral surface of the spool 23. A communication path 44 that communicates the first annular groove 41 and the step 43 is provided inside the spool 23. The communication passage 44 communicates the first inlet port 31 facing the first annular groove 41 and the feedback port 35 facing the step 43.
 第1環状溝41は、スプール23が後退位置にある状態では、第1入口ポート31と第1出口ポート33を連通するが、スプール23が前進位置にある状態では、第1入口ポート31と第1出口ポート33の間を遮断するように形成されている。また、第2環状溝42は、スプール23が後退位置にある状態では、第2入口ポート32と第2出口ポート34を連通するが、スプール23が前進位置にある状態では、第2入口ポート32と第2出口ポート34の間を遮断するように形成されている。 The first annular groove 41 communicates with the first inlet port 31 and the first outlet port 33 when the spool 23 is in the retracted position, but when the spool 23 is in the advanced position, 1 outlet port 33 is formed to be blocked. The second annular groove 42 communicates the second inlet port 32 and the second outlet port 34 when the spool 23 is in the retracted position, but the second inlet port 32 when the spool 23 is in the advanced position. And the second outlet port 34 are formed to be blocked.
 ソレノイドバルブ50は、その上流側がオイルポンプPからの油路2に繋がる油路7に連通しており、その下流側が油路8を経由してレギュレータバルブ20のソレノイド出力圧ポート36に連通している。したがって、ソレノイドバルブ50のオン/オフ切換によって、油路7から供給されるオイルポンプの吐出圧を元圧として、レギュレータバルブ20のソレノイド出力圧ポート36にレギュレータバルブ20によるライン圧の高/低を切り換えるための信号圧(フィードバック圧)を供給するようになっている。 The upstream side of the solenoid valve 50 communicates with the oil passage 7 connected to the oil passage 2 from the oil pump P, and the downstream side thereof communicates with the solenoid output pressure port 36 of the regulator valve 20 via the oil passage 8. Yes. Therefore, by switching on / off of the solenoid valve 50, the discharge pressure of the oil pump supplied from the oil passage 7 is used as a source pressure, and the solenoid output pressure port 36 of the regulator valve 20 is set to increase / decrease the line pressure by the regulator valve 20. A signal pressure (feedback pressure) for switching is supplied.
 このように、本実施形態の油圧制御装置は、エンジン(駆動源)Eと自動変速機(変速機構)Mとの間の動力伝達経路に設置したトルクコンバータ(トルク伝達機構)Tのステータ反力(トルク反力)の増大に応じてレギュレータバルブ20のスプール23を閉側に移動させることで、ライン圧が増大するように調整するライン圧調整手段15と、レギュレータバルブ20にフィードバック圧(補助油圧)を供給するソレノイドバルブ(補助油圧供給バルブ)50を有し、該ソレノイドバルブ50によるフィードバック圧の供給の切換で、レギュレータバルブ20のライン圧を低ライン圧と高ライン圧とに切り換えるライン圧切換手段55とを備えている。 As described above, the hydraulic control apparatus according to the present embodiment is a stator reaction force of the torque converter (torque transmission mechanism) T installed in the power transmission path between the engine (drive source) E and the automatic transmission (transmission mechanism) M. By moving the spool 23 of the regulator valve 20 to the closed side in accordance with an increase in (torque reaction force), line pressure adjusting means 15 for adjusting the line pressure to increase, and feedback pressure (auxiliary hydraulic pressure) to the regulator valve 20 ) And a line pressure switch for switching the line pressure of the regulator valve 20 between a low line pressure and a high line pressure by switching the feedback pressure supplied by the solenoid valve 50. Means 55.
 そして、本実施形態のレギュレータバルブ20は、ソレノイド出力圧ポート36に隣接する位置に、ソレノイドバルブ50によるフィードバック圧を解放するための解放ポート(補助油圧解放ポート)37を設けている。詳細な図示は省略するが、解放ポート37は、その下流側が油路9を経由してオイルタンクUなどの油圧解放部に通じている。解放ポート37は、スプール23が前進位置にあるときは、スプール23で閉塞されており、スプール23がソレノイド出力圧ポート36及びフィードバックポート35の圧力で調圧ばね27,29の付勢力に抗して後退位置よりもさらに後方へ移動すると、シリンダボア22内でソレノイド出力圧ポート36と連通するようになっている。 The regulator valve 20 of the present embodiment is provided with a release port (auxiliary hydraulic pressure release port) 37 for releasing the feedback pressure from the solenoid valve 50 at a position adjacent to the solenoid output pressure port 36. Although the detailed illustration is omitted, the release port 37 communicates with the hydraulic pressure release portion such as the oil tank U through the oil passage 9 on the downstream side thereof. The release port 37 is closed by the spool 23 when the spool 23 is in the forward position, and the spool 23 resists the biasing force of the pressure adjusting springs 27 and 29 by the pressure of the solenoid output pressure port 36 and the feedback port 35. Then, when it moves further rearward than the retracted position, it communicates with the solenoid output pressure port 36 in the cylinder bore 22.
 上記構成のレギュレータバルブ20の基本的な動作について説明する。オイルポンプPは、オイルタンクUから作動油を吸い上げて油路2に圧送する。この油圧(元圧)は、油路3,4を介してレギュレータバルブ20に供給され、該レギュレータバルブ20で所定のライン圧に調圧された後、油路5,6を介してトルクコンバータTCや、シャフト、ギヤ、ベアリング、クラッチなどの潤滑が必要な箇所に送られる。ここで、高い係合作動油圧が必要でない領域になると、オイルポンプPから供給される作動油圧を油路7で受け、図示しない車両の自動制御ユニット(ECU)の制御により、ソレノイドバルブ50が開放(ON)する。ソレノイドバルブ50の開放により、油路7,8を経てソレノイド出力圧ポート36に供給された油圧(低ライン圧用のフィードバック圧)と、油路3と第1入口ポート31及び連通路44を経てフィードバックポート35に供給された油圧(低ライン圧用のフィードバック圧)との両方でレギュレータバルブ20を制御し、スプール23の受圧面積を大きくすることにより、レギュレータバルブ20にて調圧されるライン圧を低ライン圧に切り換える。 The basic operation of the regulator valve 20 configured as described above will be described. The oil pump P sucks up the hydraulic oil from the oil tank U and pumps it to the oil passage 2. This hydraulic pressure (original pressure) is supplied to the regulator valve 20 via the oil passages 3 and 4, adjusted to a predetermined line pressure by the regulator valve 20, and then the torque converter TC via the oil passages 5 and 6. Or, it is sent to places where lubrication is required, such as shafts, gears, bearings, and clutches. Here, in a region where a high engagement hydraulic pressure is not required, the hydraulic pressure supplied from the oil pump P is received by the oil passage 7, and the solenoid valve 50 is opened by the control of an automatic control unit (ECU) of the vehicle (not shown). (ON). When the solenoid valve 50 is opened, the hydraulic pressure (feedback pressure for low line pressure) supplied to the solenoid output pressure port 36 via the oil passages 7 and 8 and the feedback via the oil passage 3, the first inlet port 31 and the communication passage 44 are fed back. The regulator valve 20 is controlled by both the hydraulic pressure supplied to the port 35 (feedback pressure for low line pressure), and the pressure receiving area of the spool 23 is increased, so that the line pressure regulated by the regulator valve 20 is reduced. Switch to line pressure.
 一方、高い係合作動油圧が必要な領域になると、ライン圧を低圧から高圧に切り換える動作を行う。この場合、図示しない自動制御ユニットの制御によりソレノイドバルブ50を閉止(OFF)することにより、油路8には作動油(低ライン圧用のフィードバック圧)が供給されず、油路3と第1入口ポート31及び連通路44を経てフィードバックポート35に供給された油圧のみでレギュレータバルブ20を制御し、レギュレータバルブ20の受圧面積を小さくすることにより、ライン圧を低ライン圧から高ライン圧に切り換える。 On the other hand, when high engagement hydraulic pressure is required, the line pressure is switched from low pressure to high pressure. In this case, by closing (OFF) the solenoid valve 50 under the control of an automatic control unit (not shown), hydraulic oil (feedback pressure for low line pressure) is not supplied to the oil passage 8, and the oil passage 3 and the first inlet The regulator valve 20 is controlled only by the hydraulic pressure supplied to the feedback port 35 via the port 31 and the communication path 44, and the pressure receiving area of the regulator valve 20 is reduced, so that the line pressure is switched from the low line pressure to the high line pressure.
 また、レギュレータバルブ20は、ライン圧が高圧であるとき、作動アーム24を介して、トルクコンバータTのステータ反力をレギュレータバルブ20のばね受筒26に直接的に加える。ステータ反力が増大すれば、ばね受筒26に接続されるステータばね25が圧縮される。これにより、レギュレータバルブ20の調圧ばね27,29のセット荷重が増大し、作動油路のライン圧が増大する。 Further, when the line pressure is high, the regulator valve 20 directly applies the stator reaction force of the torque converter T to the spring receiving cylinder 26 of the regulator valve 20 via the operation arm 24. When the stator reaction force increases, the stator spring 25 connected to the spring receiving cylinder 26 is compressed. Thereby, the set load of the pressure regulating springs 27 and 29 of the regulator valve 20 increases, and the line pressure of the hydraulic oil passage increases.
 ここで、上記構成のレギュレータバルブ20に設けた解放ポート37の作用について説明する。図3は、油圧回路1における作動油の流れを説明するための図で、(a)は、ソレノイド出力圧ポート36に供給されるフィードバック圧(低ライン圧用フィードバック圧)が正常値の範囲内の状態を示す図であり、(b)は、当該フィードバック圧が異常上昇した状態を示す図である。 Here, the operation of the release port 37 provided in the regulator valve 20 having the above configuration will be described. FIG. 3 is a diagram for explaining the flow of hydraulic oil in the hydraulic circuit 1. FIG. 3A is a diagram in which the feedback pressure (low line pressure feedback pressure) supplied to the solenoid output pressure port 36 is within a normal value range. It is a figure which shows a state, (b) is a figure which shows the state which the said feedback pressure raised abnormally.
 ソレノイドバルブ50が開放している状態で、ソレノイド出力圧ポート36に供給されるフィードバック圧が正常値の範囲内にあるときは、スプール23にかかるソレノイド出力圧ポート36及びフィードバックポート35の圧力による荷重と、調圧ばね27,29の付勢力との均衡が保たれており、図3(a)に示すように、スプール23のストローク量が規定範囲内にある。このとき、解放ポート37はスプール23によって閉塞されている。この状態で、万一、レギュレータバルブ20の下流側の油路5,6に開放不良などの不具合が発生し、ライン圧が正常値の範囲を越えて異常上昇すると、ソレノイドバルブ50によってソレノイド出力圧ポート36に供給されるフィードバック圧が異常上昇する。そうすると、スプール23にかかるソレノイド出力圧ポート36の圧力による荷重が過大になることで、スプール23が規定範囲を超えてストロークする。このとき、図3(b)に示すように、スプール23の先端23bが解放ポート37の位置を越えて右側に移動することで、それまでスプール23で塞がれていた解放ポート37がソレノイド出力圧ポート36と連通する。これにより、ソレノイド出力圧ポート36に供給されるフィードバック圧が解放ポート37から逃がされて減圧されるので、スプール23のストロークが停止する。またこのとき、第1入口ポート31がスプール23で閉鎖されることで、それまで第1入口ポート31からフィードバックポート35に供給されていたフィードバック圧も制限される。これらによって、スプール23の許容範囲を超えるオーバーストロークを効果的に規制できる。 When the feedback pressure supplied to the solenoid output pressure port 36 is within the normal range with the solenoid valve 50 open, the load due to the pressure of the solenoid output pressure port 36 and the feedback port 35 applied to the spool 23 And the urging force of the pressure adjusting springs 27 and 29 are maintained, and the stroke amount of the spool 23 is within a specified range as shown in FIG. At this time, the release port 37 is closed by the spool 23. In this state, if a malfunction such as a defective opening occurs in the oil passages 5 and 6 on the downstream side of the regulator valve 20 and the line pressure rises abnormally beyond the normal value range, the solenoid valve 50 causes the solenoid output pressure to increase. The feedback pressure supplied to the port 36 rises abnormally. Then, the load due to the pressure of the solenoid output pressure port 36 applied to the spool 23 becomes excessive, and the spool 23 strokes beyond the specified range. At this time, as shown in FIG. 3 (b), the tip 23b of the spool 23 moves to the right beyond the position of the release port 37, so that the release port 37 that has been blocked by the spool 23 until then is output to the solenoid. It communicates with the pressure port 36. As a result, the feedback pressure supplied to the solenoid output pressure port 36 is released from the release port 37 and is reduced, so that the stroke of the spool 23 is stopped. At this time, since the first inlet port 31 is closed by the spool 23, the feedback pressure previously supplied from the first inlet port 31 to the feedback port 35 is also limited. By these, the overstroke exceeding the allowable range of the spool 23 can be effectively regulated.
 このように、本実施形態のレギュレータバルブ20では、ソレノイド出力圧ポート36に隣接する位置に、ソレノイド出力圧ポート36の油圧を解放するための解放ポート37を設けている。これにより、ソレノイド出力圧ポート36に供給されるフィードバック圧が異常上昇したとき、スプール23が許容範囲を越えるオーバーストローク状態となる前に、ソレノイド出力圧ポート36と解放ポート37が連通することで、当該フィードバック圧が減圧される。したがって、スプール23のオーバーストロークを防止できる。これにより、レギュレータバルブ20に設けた調圧ばね27,29やステータ反力の伝達構造に、スプール23のオーバーストロークを防止するための対策を施す必要がないので、調圧ばね27,29の設定値やステータ反力伝達構造のレイアウトの自由度を高めることができる。また、このレギュレータバルブ20によれば、解放ポート37の作用でスプール23のオーバーストロークを効果的に防止できるので、従来構造と比較して、ソレノイドバルブ50によるフィードバック圧の異常上昇に対する耐性を向上させることができる。 Thus, in the regulator valve 20 of the present embodiment, the release port 37 for releasing the hydraulic pressure of the solenoid output pressure port 36 is provided at a position adjacent to the solenoid output pressure port 36. As a result, when the feedback pressure supplied to the solenoid output pressure port 36 abnormally increases, the solenoid output pressure port 36 and the release port 37 communicate with each other before the spool 23 enters an overstroke state exceeding the allowable range. The feedback pressure is reduced. Therefore, the overstroke of the spool 23 can be prevented. As a result, there is no need to take measures for preventing the overstroke of the spool 23 in the pressure regulating springs 27 and 29 provided in the regulator valve 20 and the stator reaction force transmission structure. The degree of freedom of layout of the value and stator reaction force transmission structure can be increased. Further, according to the regulator valve 20, since the overstroke of the spool 23 can be effectively prevented by the action of the release port 37, the resistance against an abnormal increase in the feedback pressure by the solenoid valve 50 is improved as compared with the conventional structure. be able to.
 図4は、第1実施形態にかかる油圧回路1の他の構成例を示す図である。同図に示す油圧回路1´は、図1に示す油圧回路1に対して、ソレノイドバルブ50の上流側の油路7に設置したモジュレータバルブ80をさらに備えている。モジュレータバルブ80は、ソレノイドバルブ50に対する入力圧の上限値を規定するための減圧弁である。したがって、図4に示す構成例では、ソレノイドバルブ50によるフィードバック圧の元圧として、モジュレータバルブ80で制御された油圧が供給されるようになっている。それ以外の構成及び動作は、図1に示す構成例と同じである。 FIG. 4 is a diagram illustrating another configuration example of the hydraulic circuit 1 according to the first embodiment. The hydraulic circuit 1 ′ shown in the figure further includes a modulator valve 80 installed in the oil passage 7 upstream of the solenoid valve 50 with respect to the hydraulic circuit 1 shown in FIG. 1. The modulator valve 80 is a pressure reducing valve for defining an upper limit value of input pressure to the solenoid valve 50. Therefore, in the configuration example shown in FIG. 4, the hydraulic pressure controlled by the modulator valve 80 is supplied as the original pressure of the feedback pressure by the solenoid valve 50. Other configurations and operations are the same as the configuration example shown in FIG.
〔第2実施形態〕
 次に、本発明の第2実施形態について説明する。なお、第2実施形態の説明及び対応する図面においては、第1実施形態と同一又は相当する構成部分には同一の符号を付し、以下ではその部分の詳細な説明は省略する。また、以下で説明する事項以外の事項については、第1実施形態と同じである。この点は、他の実施形態においても同様である。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. In the description of the second embodiment and the corresponding drawings, the same or corresponding components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted below. In addition, matters other than those described below are the same as those in the first embodiment. This is the same in other embodiments.
 図5は、本発明の第2実施形態にかかる自動変速機の油圧制御装置における油圧回路1-2を示す図である。本実施形態の油圧回路1-2は、ライン圧の高/低を切り換えるソレノイドバルブ50の元圧をレギュレータバルブ20のフィードバックポート(出力ポート)35から供給するように構成している。すなわち、第1実施形態の油圧回路1では、ソレノイドバルブ50の上流側の油路7は、オイルポンプPからの油路2に直接的に繋がっていたのに対して、本実施形態の油圧回路1-2では、ソレノイドバルブ50の上流側の油路7は、レギュレータバルブ20のフィードバックポート35に繋がっている。 FIG. 5 is a diagram showing a hydraulic circuit 1-2 in the hydraulic control device for an automatic transmission according to the second embodiment of the present invention. The hydraulic circuit 1-2 of the present embodiment is configured to supply the original pressure of the solenoid valve 50 that switches the line pressure between high and low from a feedback port (output port) 35 of the regulator valve 20. That is, in the hydraulic circuit 1 of the first embodiment, the oil path 7 on the upstream side of the solenoid valve 50 is directly connected to the oil path 2 from the oil pump P, whereas the hydraulic circuit of the present embodiment. In 1-2, the oil passage 7 on the upstream side of the solenoid valve 50 is connected to the feedback port 35 of the regulator valve 20.
 上記構成の油圧回路1-2の作用について説明する。図6は、油圧回路1-2における作動油の流れを説明するための図で、(a)は、ソレノイド出力圧ポート36に供給されるフィードバック圧が正常値の範囲内の状態を示す図であり、(b)は、当該フィードバック圧が異常上昇した状態を示す図である。 The operation of the hydraulic circuit 1-2 having the above configuration will be described. FIG. 6 is a diagram for explaining the flow of hydraulic oil in the hydraulic circuit 1-2. FIG. 6A is a diagram showing a state in which the feedback pressure supplied to the solenoid output pressure port 36 is within a normal value range. (B) is a figure which shows the state which the said feedback pressure raised abnormally.
 ソレノイドバルブ50が開放している状態で、ソレノイド出力圧ポート36に供給されるフィードバック圧が正常値の範囲内にあるときは、図6(a)に示すように、スプール23にかかるソレノイド出力圧ポート36及びフィードバックポート35の圧力による荷重と、調圧ばね27,29の付勢力との均衡が保たれており、スプール23のストローク量が規定範囲内にある。このとき、スプール23の第1環状溝41が第1入口ポート31に対向していることで、連通路44を介して第1入口ポート31とフィードバックポート35とが連通している。したがって、フィードバックポート35にフィードバック圧が供給されており、さらに、フィードバックポート35を介してソレノイドバルブ50に元圧が供給されている。 When the feedback pressure supplied to the solenoid output pressure port 36 is within the normal range with the solenoid valve 50 open, the solenoid output pressure applied to the spool 23 as shown in FIG. The load due to the pressure of the port 36 and the feedback port 35 and the urging force of the pressure adjusting springs 27 and 29 are balanced, and the stroke amount of the spool 23 is within the specified range. At this time, since the first annular groove 41 of the spool 23 faces the first inlet port 31, the first inlet port 31 and the feedback port 35 communicate with each other via the communication path 44. Therefore, the feedback pressure is supplied to the feedback port 35, and the original pressure is supplied to the solenoid valve 50 via the feedback port 35.
 この状態で、レギュレータバルブ20の下流側の油路5,6に開放不良などの不具合が発生し、ライン圧が異常上昇すると、ソレノイドバルブ50によってソレノイド出力圧ポート36に供給されるフィードバック圧が異常上昇する。そうすると、スプール23にかかるソレノイド出力圧ポート36の圧力による荷重が過大になることで、スプール23が規定範囲を超えてストロークする。このとき、図6(b)に示すように、スプール23の第1環状溝41が第1入口ポート31より右側の位置へ移動することで、それまで第1環状溝41及び連通路44によって連通していた第1入口ポート31とフィードバックポート35との連通が遮断される。これにより、フィードバックポート35への油圧供給が停止する。そうすると、フィードバックポート35からソレノイドバルブ50に供給されていた元圧も停止するので、ソレノイド出力圧ポート36へのフィードバック圧の供給が停止する。したがって、スプール23のそれ以上のストロークが停止する。これらによって、スプール23の許容範囲を超えるオーバーストロークを効果的に規制できる。 In this state, when a malfunction such as an open failure occurs in the oil passages 5 and 6 on the downstream side of the regulator valve 20 and the line pressure rises abnormally, the feedback pressure supplied to the solenoid output pressure port 36 by the solenoid valve 50 becomes abnormal. To rise. Then, the load due to the pressure of the solenoid output pressure port 36 applied to the spool 23 becomes excessive, and the spool 23 strokes beyond the specified range. At this time, as shown in FIG. 6B, the first annular groove 41 of the spool 23 moves to a position on the right side of the first inlet port 31, so that the first annular groove 41 and the communication passage 44 communicate with each other until then. The communication between the first inlet port 31 and the feedback port 35 is blocked. Thereby, the hydraulic pressure supply to the feedback port 35 is stopped. Then, since the original pressure supplied from the feedback port 35 to the solenoid valve 50 is also stopped, the supply of the feedback pressure to the solenoid output pressure port 36 is stopped. Therefore, further strokes of the spool 23 are stopped. By these, the overstroke exceeding the allowable range of the spool 23 can be effectively regulated.
 このように、本実施形態の油圧回路1-2では、ライン圧の高/低を切り換えるソレノイドバルブ50の元圧をレギュレータバルブ20のフィードバックポート35から供給するように構成している。これにより、ソレノイド出力圧ポート36に供給されるフィードバック圧が異常上昇したとき、レギュレータバルブ20のスプール23が許容範囲を越えるオーバーストローク状態となる前に、フィードバックポート35への作動油の供給が遮断されることで、ソレノイド出力圧ポート36へのフィードバック圧の供給が停止するので、スプール23のオーバーストロークを防止できる。これにより、第1実施形態と同様、レギュレータバルブ20に設けた調圧ばね27,29やステータ反力の伝達構造にスプール23のオーバーストロークを防止するための対策を施す必要が無くなるので、調圧ばね27,29やステータ反力伝達構造のレイアウトの自由度を高めることができる。また、本実施形態のレギュレータバルブ20によれば、スプール23のオーバーストロークを効果的に防止できるので、従来構造と比較して、ソレノイドバルブ50によるフィードバック圧の異常上昇に対する耐性を向上させることができる。 As described above, the hydraulic circuit 1-2 according to the present embodiment is configured to supply the original pressure of the solenoid valve 50 for switching the line pressure between high and low from the feedback port 35 of the regulator valve 20. As a result, when the feedback pressure supplied to the solenoid output pressure port 36 abnormally increases, the supply of hydraulic oil to the feedback port 35 is cut off before the spool 23 of the regulator valve 20 enters an overstroke state exceeding the allowable range. As a result, the supply of the feedback pressure to the solenoid output pressure port 36 is stopped, so that an overstroke of the spool 23 can be prevented. As a result, as in the first embodiment, it is not necessary to take measures to prevent the overstroke of the spool 23 in the pressure regulating springs 27 and 29 provided in the regulator valve 20 and the stator reaction force transmission structure. The degree of freedom in layout of the springs 27 and 29 and the stator reaction force transmission structure can be increased. Further, according to the regulator valve 20 of the present embodiment, the overstroke of the spool 23 can be effectively prevented, so that the resistance against an abnormal increase in feedback pressure by the solenoid valve 50 can be improved as compared with the conventional structure. .
 図7は、第2実施形態にかかる油圧回路1-2の他の構成例を示す図である。同図に示す油圧回路1-2´は、図5に示す油圧回路1-2に対して、ソレノイドバルブ50の上流側の油路7に設置したモジュレータバルブ80をさらに備えている。したがって、図7に示す構成例では、ソレノイドバルブ50によるフィードバック圧の元圧として、モジュレータバルブ80で制御された油圧が供給されるようになっている。それ以外の構成及び動作は、図5に示す構成例と同じである。 FIG. 7 is a diagram showing another configuration example of the hydraulic circuit 1-2 according to the second embodiment. The hydraulic circuit 1-2 ′ shown in the figure further includes a modulator valve 80 installed in the oil passage 7 upstream of the solenoid valve 50 with respect to the hydraulic circuit 1-2 shown in FIG. Therefore, in the configuration example shown in FIG. 7, the hydraulic pressure controlled by the modulator valve 80 is supplied as the original pressure of the feedback pressure by the solenoid valve 50. Other configurations and operations are the same as the configuration example shown in FIG.
〔第3実施形態〕
 次に、本発明の第3実施形態について説明する。図8は、本発明の第3実施形態にかかる自動変速機の油圧制御装置における油圧回路を示す図である。本実施形態の油圧回路1-3は、レギュレータバルブ20の第1入口ポート31に隣接する位置に、当該第1入口ポート31に供給される元圧(ライン圧)を解放するための解放ポート(元圧解放ポート)38を設けている。すなわち、第1実施形態の油圧回路1では、ソレノイドバルブ50からのフィードバック圧が供給されるソレノイド出力圧ポート36を解放するための解放ポート37を設けていたのに対して、本実施形態の油圧回路1-3では、第1入口ポート31を解放するための解放ポート38を設けている。解放ポート38は、詳細な図示は省略するが、油路12を経由してオイル溜まりUなどの油圧解放部に通じている。また、スプール23における解放ポート38に対向する位置には、第3環状溝45が形成されている。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. FIG. 8 is a diagram showing a hydraulic circuit in the hydraulic control device for an automatic transmission according to the third embodiment of the present invention. The hydraulic circuit 1-3 of the present embodiment has a release port (release pressure) for releasing the original pressure (line pressure) supplied to the first inlet port 31 at a position adjacent to the first inlet port 31 of the regulator valve 20. (Original pressure release port) 38 is provided. That is, in the hydraulic circuit 1 of the first embodiment, the release port 37 for releasing the solenoid output pressure port 36 to which the feedback pressure from the solenoid valve 50 is supplied is provided. In the circuit 1-3, a release port 38 for releasing the first inlet port 31 is provided. Although not shown in detail, the release port 38 communicates with a hydraulic release part such as an oil reservoir U through the oil passage 12. A third annular groove 45 is formed in the spool 23 at a position facing the release port 38.
 スプール23が前進位置にあるときは、スプール23の第3環状溝45が解放ポート38のみに対向した位置にあり、解放ポート38が塞がれた状態になっている。一方、スプール23がソレノイド出力圧ポート36及びフィードバックポート35の圧力で調圧ばね27,29の付勢力に抗して後退位置よりもさらに後方へ移動することにより、第3環状溝45が解放ポート38と第1入口ポート31の両方に跨る位置に配置される。これにより、第3環状溝45を介して解放ポート38と第1入口ポート31が連通するようになっている。 When the spool 23 is in the forward position, the third annular groove 45 of the spool 23 is in a position facing only the release port 38, and the release port 38 is closed. On the other hand, the spool 23 moves further rearward than the retracted position against the urging force of the pressure regulating springs 27 and 29 by the pressure of the solenoid output pressure port 36 and the feedback port 35, so that the third annular groove 45 is released from the release port. 38 and the first inlet port 31. As a result, the release port 38 and the first inlet port 31 communicate with each other via the third annular groove 45.
 上記構成の油圧回路1-3の作用について説明する。図9は、油圧回路1-3における作動油の流れを説明するための図で、(a)は、ソレノイド出力圧ポート36に供給されるフィードバック圧が正常値の範囲内の状態を示す図であり、(b)は、当該フィードバック圧が異常上昇した状態を示す図である。 The operation of the hydraulic circuit 1-3 having the above configuration will be described. FIG. 9 is a diagram for explaining the flow of hydraulic oil in the hydraulic circuit 1-3. FIG. 9A is a diagram showing a state in which the feedback pressure supplied to the solenoid output pressure port 36 is within a normal value range. (B) is a figure which shows the state which the said feedback pressure raised abnormally.
 ソレノイドバルブ50が開放している状態で、ソレノイド出力圧ポート36に供給されるフィードバック圧が正常値の範囲内にあるときは、図9(a)に示すように、スプール23にかかるソレノイド出力圧ポート36及びフィードバックポート35の圧力による荷重と、調圧ばね27,29の付勢力との均衡が保たれており、スプール23のストローク量が規定範囲内にある。このとき、スプール23の第3環状溝45が解放ポート38のみに対向していることで、解放ポート38と第1入口ポート31の間が遮断されている。またこのとき、第1環状溝41が第1入口ポート31に対向していることで、連通路44を介して第1入口ポート31とフィードバックポート35が連通している。したがって、フィードバックポート35に油圧が供給されている。 When the feedback pressure supplied to the solenoid output pressure port 36 is within the normal value range with the solenoid valve 50 open, the solenoid output pressure applied to the spool 23 as shown in FIG. The load due to the pressure of the port 36 and the feedback port 35 and the urging force of the pressure adjusting springs 27 and 29 are balanced, and the stroke amount of the spool 23 is within the specified range. At this time, since the third annular groove 45 of the spool 23 faces only the release port 38, the gap between the release port 38 and the first inlet port 31 is blocked. At this time, since the first annular groove 41 faces the first inlet port 31, the first inlet port 31 and the feedback port 35 communicate with each other via the communication path 44. Therefore, hydraulic pressure is supplied to the feedback port 35.
 この状態で、レギュレータバルブ20の下流側の油路5,6に開放不良などの不具合が発生し、ライン圧が正常値の範囲を越えて異常上昇すると、ソレノイドバルブ50によってソレノイド出力圧ポート36に供給されるフィードバック圧が異常上昇する。そうすると、スプール23にかかるソレノイド出力圧ポート36の圧力による荷重が過大になることで、スプール23が規定範囲を超えてストロークする。このとき、図9(b)に示すように、スプール23の第3環状溝45が解放ポート38と第1入口ポート31の両方に跨る位置へ移動することで、それまで閉鎖されていた解放ポート38と第1入口ポート31との間が連通する。これにより、第1入口ポート31に供給されていた元圧が解放されるので、オイルポンプPからの油圧が供給されているソレノイドバルブ50の元圧が減圧する。したがって、ソレノイドバルブ50を介してソレノイド出力圧ポート36に供給されるフィードバック圧も減圧する。またこのとき、スプール23の第1環状溝41が第1入口ポート31より右側の位置へ移動することで、それまで第1環状溝41及び連通路44によって連通していた第1入口ポート31とフィードバックポート35との間が閉鎖される。これにより、フィードバックポート35への油圧供給が停止する。これらによって、スプール23のそれ以上のストロークが停止する。したがって、スプール23のオーバーストロークを効果的に規制できる。 In this state, if a failure such as a defective opening occurs in the oil passages 5 and 6 on the downstream side of the regulator valve 20 and the line pressure rises abnormally beyond the normal value range, the solenoid valve 50 causes the solenoid output pressure port 36 to The supplied feedback pressure rises abnormally. Then, the load due to the pressure of the solenoid output pressure port 36 applied to the spool 23 becomes excessive, and the spool 23 strokes beyond the specified range. At this time, as shown in FIG. 9B, the release port that has been closed until then is moved by moving the third annular groove 45 of the spool 23 to a position straddling both the release port 38 and the first inlet port 31. 38 communicates with the first inlet port 31. As a result, the original pressure supplied to the first inlet port 31 is released, so the original pressure of the solenoid valve 50 to which the hydraulic pressure from the oil pump P is supplied is reduced. Therefore, the feedback pressure supplied to the solenoid output pressure port 36 via the solenoid valve 50 is also reduced. Further, at this time, the first annular groove 41 of the spool 23 moves to a position on the right side of the first inlet port 31, so that the first annular port 41 and the communication passage 44 communicated with the first inlet port 31 until then. The connection with the feedback port 35 is closed. Thereby, the hydraulic pressure supply to the feedback port 35 is stopped. As a result, further strokes of the spool 23 are stopped. Accordingly, the overstroke of the spool 23 can be effectively regulated.
 このように、本実施形態の油圧回路1-3では、レギュレータバルブ20の第1入口ポート31に供給される元圧を解放するための解放ポート38を設けている。これにより、ソレノイド出力圧ポート36に供給されるフィードバック圧が異常上昇したとき、スプール23が規定範囲を越えてオーバーストローク状態となる前に、ソレノイドバルブ50の元圧を減圧できる。これにより、ソレノイドバルブ50によるフィードバック圧を減圧できるので、スプール23のオーバーストロークを防止できる。したがって、第1、第2実施形態と同様、レギュレータバルブ20に設けた調圧ばね27,29やステータ反力の伝達構造にスプール23のオーバーストロークを防止するための対策を施す必要がなくなるので、調圧ばね27,29やステータ反力伝達構造のレイアウトの自由度を高めることができる。また、このレギュレータバルブ20によれば、解放ポート38の作用でスプール23のオーバーストロークを効果的に防止できるので、従来構造と比較して、ソレノイドバルブ50によるフィードバック圧の異常上昇に対する耐性を向上させることができる。 Thus, in the hydraulic circuit 1-3 of the present embodiment, the release port 38 for releasing the original pressure supplied to the first inlet port 31 of the regulator valve 20 is provided. As a result, when the feedback pressure supplied to the solenoid output pressure port 36 abnormally increases, the original pressure of the solenoid valve 50 can be reduced before the spool 23 exceeds the specified range and enters an overstroke state. Thereby, since the feedback pressure by the solenoid valve 50 can be reduced, the overstroke of the spool 23 can be prevented. Therefore, as in the first and second embodiments, it is not necessary to take measures for preventing the overstroke of the spool 23 in the pressure regulating springs 27 and 29 provided in the regulator valve 20 and the stator reaction force transmission structure. The degree of freedom of the layout of the pressure regulating springs 27 and 29 and the stator reaction force transmission structure can be increased. Further, according to the regulator valve 20, since the overstroke of the spool 23 can be effectively prevented by the action of the release port 38, the resistance against the abnormal increase of the feedback pressure by the solenoid valve 50 is improved as compared with the conventional structure. be able to.
 以上本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Is possible.
 例えば、上記実施形態では、本発明にかかるトルク伝達機構は、流体式のトルクコンバータであり、ライン圧調整手段は、トルクコンバータのステータ反力の増大に応じてレギュレータバルブを閉側に制御するように構成した場合を説明したが、本発明のトルク伝達機構は、駆動源と変速機構との間の動力伝達経路に設置したトルク伝達機構であれば、その具体的な機構は、上記実施形態に示す以外の機構であってもよい。したがって、例えば、本発明のトルク伝達機構として、エンジンと変速機構との間に設置した遊星歯車機構からなる減速機構を採用することもできる。その場合は、遊星歯車機構のサンギヤに固定したサンギヤ軸にレギュレータバルブを作動するための作動アームを設け、サンギヤのトルク反力でレギュレータバルブを制御するように構成してよい。 For example, in the above embodiment, the torque transmission mechanism according to the present invention is a fluid type torque converter, and the line pressure adjusting means controls the regulator valve to the closed side in accordance with an increase in the stator reaction force of the torque converter. However, if the torque transmission mechanism of the present invention is a torque transmission mechanism installed in the power transmission path between the drive source and the transmission mechanism, the specific mechanism is the same as that of the above embodiment. A mechanism other than that shown may be used. Therefore, for example, a speed reduction mechanism including a planetary gear mechanism installed between the engine and the speed change mechanism can be adopted as the torque transmission mechanism of the present invention. In that case, an operating arm for operating the regulator valve may be provided on the sun gear shaft fixed to the sun gear of the planetary gear mechanism, and the regulator valve may be controlled by the torque reaction force of the sun gear.

Claims (4)

  1.  油圧源に繋がる油圧回路に設置したレギュレータバルブによって、自動変速機の各部に供給する作動油の油圧を所定のライン圧に調圧する自動変速機の油圧制御装置において、
     前記レギュレータバルブは、付勢手段で付勢されたスプールと、該スプールの周囲に配置した油圧ポートとを備え、前記油圧ポートに供給する油圧の切り換えで前記スプールを作動するスプールバルブであって、
     駆動源と変速機構との間の動力伝達経路に設置したトルク伝達機構のトルク反力の増大に応じて前記スプールを閉側に移動させることで、前記ライン圧が増大するように調整するライン圧調整手段と、
     前記レギュレータバルブに補助油圧を供給する補助油圧供給バルブを有し、該補助油圧供給バルブによる補助油圧の供給の切換で、前記ライン圧を低ライン圧と高ライン圧とに切り換えるライン圧切換手段と、を備えると共に、
     前記レギュレータバルブは、前記補助油圧を入力するための補助油圧入力ポートと、前記補助油圧を解放するための補助油圧解放ポートとを備え、
     前記補助油圧供給バルブから前記レギュレータバルブに供給される補助油圧が正常値の範囲外に上昇した場合に、前記スプールが規定範囲を超えて移動することで、前記補助油圧入力ポートと前記補助油圧解放ポートとが連通するように構成した
    ことを特徴とする自動変速機の油圧制御装置。
    In a hydraulic control device for an automatic transmission that regulates the hydraulic pressure of hydraulic oil supplied to each part of the automatic transmission to a predetermined line pressure by a regulator valve installed in a hydraulic circuit connected to a hydraulic pressure source,
    The regulator valve is a spool valve that includes a spool urged by urging means and a hydraulic port arranged around the spool, and operates the spool by switching the hydraulic pressure supplied to the hydraulic port,
    A line pressure that is adjusted so that the line pressure increases by moving the spool to the closed side in response to an increase in the torque reaction force of the torque transmission mechanism installed in the power transmission path between the drive source and the transmission mechanism. Adjusting means;
    A line pressure switching means for switching the line pressure between the low line pressure and the high line pressure by switching the supply of the auxiliary oil pressure by the auxiliary oil pressure supply valve; And having
    The regulator valve includes an auxiliary hydraulic pressure input port for inputting the auxiliary hydraulic pressure, and an auxiliary hydraulic pressure release port for releasing the auxiliary hydraulic pressure,
    When the auxiliary hydraulic pressure supplied from the auxiliary hydraulic pressure supply valve to the regulator valve rises outside the normal value range, the spool moves beyond a specified range, so that the auxiliary hydraulic pressure input port and the auxiliary hydraulic pressure release A hydraulic control device for an automatic transmission, characterized in that it is configured to communicate with a port.
  2.  油圧源に繋がる油圧回路に設置したレギュレータバルブによって、自動変速機の各部に供給する作動油の油圧を所定のライン圧に調圧する自動変速機の油圧制御装置において、
     前記レギュレータバルブは、付勢手段で付勢されたスプールと、該スプールの周囲に配置した油圧ポートとを備え、前記油圧ポートに供給する油圧の切り換えで前記スプールを作動するスプールバルブであって、
     駆動源と変速機構との間の動力伝達経路に設置したトルク伝達機構のトルク反力の増大に応じて前記スプールを閉側に移動させることで、前記ライン圧が増大するように調整するライン圧調整手段と、
     前記レギュレータバルブに補助油圧を供給する補助油圧供給バルブを有し、該補助油圧供給バルブによる補助油圧の供給の切換で、前記ライン圧を低ライン圧と高ライン圧とに切り換えるライン圧切換手段と、を備えると共に、
     前記補助油圧供給バルブの元圧として、前記レギュレータバルブによる調圧後の油圧が出力される出力ポートからの排出圧を供給するように構成し、
     前記補助油圧供給バルブから前記レギュレータバルブに供給される補助油圧が正常値の範囲外に上昇した場合に、前記スプールが規定範囲を超えて移動することで、前記出力ポートに油圧を供給している入力ポートが閉鎖又は狭小して、前記レギュレータバルブに供給される補助油圧が減圧されるように構成した
    ことを特徴とする自動変速機の油圧制御装置。
    In a hydraulic control device for an automatic transmission that regulates the hydraulic pressure of hydraulic oil supplied to each part of the automatic transmission to a predetermined line pressure by a regulator valve installed in a hydraulic circuit connected to a hydraulic pressure source,
    The regulator valve is a spool valve that includes a spool urged by urging means and a hydraulic port arranged around the spool, and operates the spool by switching the hydraulic pressure supplied to the hydraulic port,
    A line pressure that is adjusted so that the line pressure increases by moving the spool to the closed side in response to an increase in the torque reaction force of the torque transmission mechanism installed in the power transmission path between the drive source and the transmission mechanism. Adjusting means;
    A line pressure switching means for switching the line pressure between the low line pressure and the high line pressure by switching the supply of the auxiliary oil pressure by the auxiliary oil pressure supply valve; And having
    As the original pressure of the auxiliary hydraulic pressure supply valve, configured to supply the discharge pressure from the output port from which the hydraulic pressure after pressure regulation by the regulator valve is output,
    When the auxiliary hydraulic pressure supplied from the auxiliary hydraulic pressure supply valve to the regulator valve rises outside the normal value range, the spool moves beyond a specified range to supply hydraulic pressure to the output port. A hydraulic control device for an automatic transmission, wherein the input port is closed or narrowed so that the auxiliary hydraulic pressure supplied to the regulator valve is reduced.
  3.  油圧源に繋がる油圧回路に設置したレギュレータバルブによって、自動変速機の各部に供給する作動油の油圧を所定のライン圧に調圧する自動変速機の油圧制御装置において、
     前記レギュレータバルブは、付勢手段で付勢されたスプールと、該スプールの周囲に配置した油圧ポートとを備え、前記油圧ポートに供給する油圧の切り換えで前記スプールを作動するスプールバルブであって、
     駆動源と変速機構との間の動力伝達経路に設置したトルク伝達機構のトルク反力の増大に応じて前記スプールを閉側に移動させることで、前記ライン圧が増大するように調整するライン圧調整手段と、
     前記レギュレータバルブに補助油圧を供給する補助油圧供給バルブを有し、該補助油圧供給バルブによる補助油圧の供給の切換で、前記ライン圧を低ライン圧と高ライン圧とに切り換えるライン圧切換手段と、を備えると共に、
     前記レギュレータバルブは、前記油圧源からの調圧用の元圧が供給される入力ポートと、前記入力ポートの元圧を解放するための元圧解放ポートとを備え、
     前記補助油圧供給バルブの元圧として、前記油圧源からの調圧前の油圧を供給するように構成し、
     前記補助油圧供給バルブから前記レギュレータバルブに供給される補助油圧が正常値の範囲外に上昇した場合に、前記スプールが規定範囲を超えて移動することで、前記入力ポートと前記元圧解放ポートとが連通するように構成した
    ことを特徴とする自動変速機の油圧制御装置。
    In a hydraulic control device for an automatic transmission that regulates the hydraulic pressure of hydraulic oil supplied to each part of the automatic transmission to a predetermined line pressure by a regulator valve installed in a hydraulic circuit connected to a hydraulic pressure source,
    The regulator valve is a spool valve that includes a spool urged by urging means and a hydraulic port arranged around the spool, and operates the spool by switching the hydraulic pressure supplied to the hydraulic port,
    A line pressure that is adjusted so that the line pressure increases by moving the spool to the closed side in response to an increase in the torque reaction force of the torque transmission mechanism installed in the power transmission path between the drive source and the transmission mechanism. Adjusting means;
    A line pressure switching means for switching the line pressure between the low line pressure and the high line pressure by switching the supply of the auxiliary oil pressure by the auxiliary oil pressure supply valve; And having
    The regulator valve includes an input port to which an original pressure for pressure adjustment from the hydraulic source is supplied, and an original pressure release port for releasing the original pressure of the input port,
    As the original pressure of the auxiliary hydraulic pressure supply valve, configured to supply hydraulic pressure before pressure regulation from the hydraulic pressure source,
    When the auxiliary hydraulic pressure supplied from the auxiliary hydraulic pressure supply valve to the regulator valve rises outside the normal value range, the spool moves beyond a specified range, so that the input port, the original pressure release port, A hydraulic control device for an automatic transmission, characterized in that is configured to communicate with each other.
  4.  前記トルク伝達機構は、流体式のトルクコンバータであり、
     前記ライン圧調整手段は、前記トルクコンバータのステータ反力の増大に応じて、前記レギュレータバルブを閉側に制御する
    ことを特徴とする請求項1乃至3のいずれか1項に記載の自動変速機の油圧制御装置。
    The torque transmission mechanism is a fluid type torque converter,
    The automatic transmission according to any one of claims 1 to 3, wherein the line pressure adjusting means controls the regulator valve to be closed in accordance with an increase in a stator reaction force of the torque converter. Hydraulic control device.
PCT/JP2011/060315 2010-05-12 2011-04-27 Hydraulic control device for automatic transmission WO2011142269A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012514764A JP5465325B2 (en) 2010-05-12 2011-04-27 Hydraulic control device for automatic transmission
CN201180018653.7A CN102834651B (en) 2010-05-12 2011-04-27 Hydraulic control device for automatic transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-110561 2010-05-12
JP2010110561 2010-05-12

Publications (1)

Publication Number Publication Date
WO2011142269A1 true WO2011142269A1 (en) 2011-11-17

Family

ID=44914325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060315 WO2011142269A1 (en) 2010-05-12 2011-04-27 Hydraulic control device for automatic transmission

Country Status (3)

Country Link
JP (1) JP5465325B2 (en)
CN (1) CN102834651B (en)
WO (1) WO2011142269A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58111460U (en) * 1982-01-26 1983-07-29 本田技研工業株式会社 Line pressure adjustment device in hydraulically operated transmissions
JPS62274139A (en) * 1986-05-22 1987-11-28 Nissan Motor Co Ltd Hydraulic control circuit of automatic transmission
JPH02253044A (en) * 1989-03-27 1990-10-11 Mazda Motor Corp Pressure control device for hydraulic actuated transmission gear
JPH03181660A (en) * 1989-12-09 1991-08-07 Fuji Heavy Ind Ltd Controller for continuously variable transmission
JPH05203022A (en) * 1992-01-27 1993-08-10 Mazda Motor Corp Hydraulic control device for automatic tranmission
JPH10252847A (en) * 1997-03-10 1998-09-22 Aisin Aw Co Ltd Hydraulic control device for continuously variable transmission
JP2001065684A (en) * 1999-08-25 2001-03-16 Mitsubishi Motors Corp Hydraulic circuit for belt type continuously variable transmission
JP2001280477A (en) * 2000-03-30 2001-10-10 Nissan Motor Co Ltd Controller for gear ratio infinity step less transmission
JP2009281414A (en) * 2008-05-19 2009-12-03 Honda Motor Co Ltd Hydraulic control device for automatic transmission
JP2010101427A (en) * 2008-10-23 2010-05-06 Toyota Motor Corp Hydraulic control device of vehicular transmission

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524568B2 (en) * 2004-03-09 2010-08-18 アイシン・エィ・ダブリュ株式会社 Hydraulic control device for automatic transmission
JP4179364B2 (en) * 2006-08-28 2008-11-12 トヨタ自動車株式会社 Hydraulic control device for power transmission device for vehicle
JP4605245B2 (en) * 2008-04-24 2011-01-05 トヨタ自動車株式会社 Hydraulic control device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58111460U (en) * 1982-01-26 1983-07-29 本田技研工業株式会社 Line pressure adjustment device in hydraulically operated transmissions
JPS62274139A (en) * 1986-05-22 1987-11-28 Nissan Motor Co Ltd Hydraulic control circuit of automatic transmission
JPH02253044A (en) * 1989-03-27 1990-10-11 Mazda Motor Corp Pressure control device for hydraulic actuated transmission gear
JPH03181660A (en) * 1989-12-09 1991-08-07 Fuji Heavy Ind Ltd Controller for continuously variable transmission
JPH05203022A (en) * 1992-01-27 1993-08-10 Mazda Motor Corp Hydraulic control device for automatic tranmission
JPH10252847A (en) * 1997-03-10 1998-09-22 Aisin Aw Co Ltd Hydraulic control device for continuously variable transmission
JP2001065684A (en) * 1999-08-25 2001-03-16 Mitsubishi Motors Corp Hydraulic circuit for belt type continuously variable transmission
JP2001280477A (en) * 2000-03-30 2001-10-10 Nissan Motor Co Ltd Controller for gear ratio infinity step less transmission
JP2009281414A (en) * 2008-05-19 2009-12-03 Honda Motor Co Ltd Hydraulic control device for automatic transmission
JP2010101427A (en) * 2008-10-23 2010-05-06 Toyota Motor Corp Hydraulic control device of vehicular transmission

Also Published As

Publication number Publication date
JP5465325B2 (en) 2014-04-09
JPWO2011142269A1 (en) 2013-07-22
CN102834651B (en) 2015-05-27
CN102834651A (en) 2012-12-19

Similar Documents

Publication Publication Date Title
EP1881222B1 (en) Method of operating a dual clutch transmission hydraulic power control system as well as dual clutch transmission hydraulic power control system
JP5218303B2 (en) Power transmission device
WO2009122858A1 (en) Oil pressure control apparatus for starting apparatus
JP2016502631A (en) Hydraulically operated continuously variable transmission for a power transmission path of a vehicle equipped with an internal combustion engine
JP2013113439A (en) Hydraulic control device for automatic transmission
WO2013076825A1 (en) Oil pressure control device
JP2001065684A (en) Hydraulic circuit for belt type continuously variable transmission
KR20050118217A (en) Hydrodynamic converter provided with a primary clutch and a by-pass clutch for said converter
KR20130060046A (en) Hydraulic control system for transmission
JP6493050B2 (en) Hydraulic control device for continuously variable transmission for vehicle
JP4664393B2 (en) Hydraulic control device for automatic transmission
WO2016047018A1 (en) Automatic transmission hydraulic control device
JP5233956B2 (en) Oil supply device
WO2018088294A1 (en) Hydraulically operated transmission
JP6532595B2 (en) Hydraulic control unit
US7617918B2 (en) Device for the operation of a starter mechanism that can be brought into active connection with a hydraulic supply circuit of a transmission unit
US11022155B2 (en) Hydraulic control system having four-position main pressure regulator
JP5465325B2 (en) Hydraulic control device for automatic transmission
JP4396350B2 (en) Hydraulic control device for automatic transmission
JP6345756B1 (en) Hydraulic circuit
US11143293B2 (en) Power train device for vehicles
JPH09105457A (en) Controller for continuously variable transmission
JP2011127632A (en) Hydraulic control device for continuously variable transmission
JP4857275B2 (en) Continuously variable transmission with control device
US6793053B2 (en) Torque converter clutch regulator valve assembly

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180018653.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780526

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012514764

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201005855

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 10144/CHENP/2012

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 11780526

Country of ref document: EP

Kind code of ref document: A1