WO2011142210A1 - Scanning optical system and projector provided with same - Google Patents

Scanning optical system and projector provided with same Download PDF

Info

Publication number
WO2011142210A1
WO2011142210A1 PCT/JP2011/059349 JP2011059349W WO2011142210A1 WO 2011142210 A1 WO2011142210 A1 WO 2011142210A1 JP 2011059349 W JP2011059349 W JP 2011059349W WO 2011142210 A1 WO2011142210 A1 WO 2011142210A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
optical system
laser light
projection
mirror
Prior art date
Application number
PCT/JP2011/059349
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 久保
明 小坂
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2012514741A priority Critical patent/JP5321740B2/en
Publication of WO2011142210A1 publication Critical patent/WO2011142210A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/3173Constructional details thereof wherein the projection device is specially adapted for enhanced portability

Definitions

  • the present invention relates to a scanning optical system and a projector including the same.
  • a laser projector that collimates laser light and scans the collimated laser light in a two-dimensional direction (horizontal direction and vertical direction) on the projection surface is known. ing.
  • a laser light source that generates red, green, and blue laser beams is mounted in the apparatus in order to obtain laser beams of three primary colors of red, green, and blue.
  • an optical system such as a scanning mirror that scans laser light emitted from the laser light source is also mounted in the apparatus.
  • MEMS mirror configured by MEMS (Micro Electro Mechanical Systems) as a scanning mirror (for example, see Patent Document 1).
  • Patent Document 1 discloses a laser projector that performs two-dimensional scanning of laser light using two MEMS mirrors. That is, the laser projector disclosed in Patent Document 1 is configured such that one of the two MEMS mirrors scans the laser light in the horizontal direction, and the other MEMS mirror scans the laser light in the vertical direction. Yes.
  • the scanning optical system when the scanning optical system is downsized, it is required to further improve the mounting accuracy of the optical component that guides the laser beam to the scanning mirror and to easily adjust the optical axis.
  • the present invention has been made in view of the above circumstances, and it is possible to reduce the size, improve the mounting accuracy of the optical component, and further facilitate the adjustment of the optical axis, and the scanning optical system
  • An object of the present invention is to provide a projector provided with
  • the present invention provides a laser light source unit that emits laser light, a scanning unit that has a scanning mirror that two-dimensionally scans the laser light toward a projection surface, and a predetermined laser beam emitted from the laser beam.
  • An optical component that guides in the direction, and a projection member that projects the laser light guided by the optical component toward the scanning mirror, and the projection member is fixed on a substrate constituting the scanning unit It is characterized by a scanning optical system.
  • the thickness of the scanning optical system can be reduced and the size can be reduced.
  • the mounting accuracy of the projection member with respect to the scanning mirror can be increased, and the optical axis can be easily adjusted.
  • the thickness of the scanning optical system is the thickness in the direction along the normal direction of the reflection surface of the scanning mirror in the non-driven state.
  • the projector of the present invention includes the scanning optical system having the above-described configuration. According to this configuration, the projector can be easily downsized.
  • a scanning optical system that can be miniaturized, improve the mounting accuracy of optical components, and further facilitate the adjustment of the optical axis, and a projector including the scanning optical system.
  • FIG. 1 is a schematic cross-sectional view of a first embodiment of a scanning optical system according to the present invention.
  • the principal part enlarged view of 1st embodiment of the scanning optical system which concerns on this invention is shown.
  • 1 is a plan view showing a configuration of a first embodiment of a scanning optical system according to the present invention.
  • FIG. 7 is an enlarged cross-sectional view of a part (drive unit) of the scanning unit shown in FIG. 6. It is a figure for demonstrating the use condition of the mobile terminal carrying the projector which concerns on this invention.
  • the projector 100 is mounted on a mobile terminal 40 such as a mobile phone or a PDA (Personal Digital Assistant) as shown in FIG. 8, for example. Therefore, the projector 100 is miniaturized to such an extent that it can be stored in a small space in the mobile terminal 40.
  • a mobile terminal 40 such as a mobile phone or a PDA (Personal Digital Assistant) as shown in FIG. 8, for example. Therefore, the projector 100 is miniaturized to such an extent that it can be stored in a small space in the mobile terminal 40.
  • the light source of the projector 100 As the light source of the projector 100, a light source that generates laser light is used. By scanning the laser light on the projection surface 41 in the horizontal direction (H direction) and the vertical direction (V direction), the light is input to the projector 100. The image information is projected onto the projection surface 41.
  • the projection surface 41 may be a screen prepared separately, but may be other than a screen. For example, a wall surface or the like may be used as the projection surface 41.
  • the reproduction of the color tone of the image information input to the projector 100 is performed by intensity-modulating red, green and blue laser lights, which are the three primary colors of light, and synthesizing them.
  • the wavelength of the red laser beam is set to about 640 nm, for example, and the wavelength of the green laser beam is set to about 530 nm, for example.
  • the wavelength of the blue laser light is set to about 450 nm, for example.
  • each scanning optical system 10 of the first embodiment shown in FIGS. 1A, 1B, and 2 and the scanning optical system 20 of the second embodiment shown in FIGS. 4 and 5 are both lasers of three colors of red, green, and blue. After the light is generated and collimated, they are combined and scanned. That is, each scanning optical system includes a laser light source unit 1 that emits laser light, an optical system that combines collimated R, G, and B laser light, and the combined laser light in a predetermined optical path direction. An optical component for guiding, and a scanning unit 2 having a scanning mirror 3 that emits the guided laser beam toward the projection surface and performs two-dimensional scanning, are housed in predetermined case members 10a and 20a. It becomes the composition. In the drawing, the laser beam is indicated by a two-dot chain line.
  • the laser light source unit 1 is for generating red, green and blue laser beams.
  • the laser light source unit 1 that generates red laser light is referred to as a laser light source unit 1-R
  • the laser light source unit 1 that generates green laser light is referred to as a laser light source unit 1-G
  • the laser light source unit 1 that generates blue laser light is referred to as a laser light source unit 1-B.
  • the laser light source unit 1-R is made of a red semiconductor laser having a high emission intensity and capable of high-speed modulation of the intensity.
  • the red semiconductor laser as the laser light source unit 1-R is a CAN package type, and has a structure in which a laser chip is attached to a heat radiation base called a stem and the laser chip is covered with a cap as a protective member. It has become.
  • the laser light source unit 1-G is a CAN package type green semiconductor laser shown in FIG. 2, which is a combination of the infrared semiconductor laser and the wavelength conversion element shown in FIG.
  • a configuration in which green laser light is generated by wavelength conversion of the wavelength of the laser light to 1 ⁇ 2 by the wavelength conversion element is not particularly limited. However, a combination of an infrared semiconductor laser and a wavelength conversion element is more efficient.
  • the laser light source unit 1-B is made of a CAN package type blue semiconductor laser having high emission intensity and capable of high-speed intensity modulation, and its structure is substantially the same as the laser light source unit 1-R.
  • the scanning unit 2 is for two-dimensionally scanning the combined laser beam, and has at least a scanning mirror 3 that emits the combined laser beam toward the projection surface 41 (see FIG. 8). ing.
  • the tilt angle of the scanning mirror 3 can be changed. By changing the tilt angle of the scanning mirror 3, two-dimensional scanning of the combined laser beam by the scanning unit 2 is performed.
  • the scanning mirror 3 is incorporated in a MEMS (micro electro mechanical system), and the MEMS in which the scanning mirror 3 is incorporated is used as the scanning unit 2.
  • the scanning unit 2 is substantially flat and has a small thickness, and its outer shape is substantially square (for example, the length of one side is about 1 cm) in plan view (see FIG. 2).
  • the scanning unit 2 is composed of a structure obtained by performing an etching process or the like on the silicon substrate.
  • the fixed frame 4 The drive unit 5 and the movable frame 6 are integrally provided.
  • an axis that crosses the center of the scanning mirror 3 in the horizontal direction in FIG. 6 is an X axis
  • an axis that crosses the center of the scanning mirror 3 in the vertical direction in FIG. is the point where the X axis and the Y axis are orthogonal to each other is the center of the scanning mirror 3.
  • the fixed frame 4 is a part corresponding to the outer edge of the scanning unit 2 and surrounds other parts (such as the scanning mirror 3, the drive unit 5, and the movable frame 6).
  • the drive unit 5 is connected to the fixed frame 4 in the X-axis direction with a thin connecting beam, and is connected to the fixed frame 4 in the Y-axis direction. Furthermore, the drive unit 5 includes four unimorph structures, and the four unimorph structures are arranged so as to be symmetric with respect to each of the X axis and the Y axis and are separated from each other. . Further, as shown in FIG. 7, the unimorph structure as the drive unit 5 includes a piezoelectric element (a sintered body made of PZT or the like as a raw material) 5a sandwiched between a pair of electrodes 5b, and a silicon substrate. It is formed by pasting on the region to be the driving unit 5. In this embodiment, a unimorph structure piezoelectric element is used, but other structures such as a bimorph structure may be used.
  • a piezoelectric element a sintered body made of PZT or the like as a raw material
  • the movable frame 6 is a substantially rhombus-shaped frame located inside the drive unit 5. Both ends of the movable frame 6 on the X axis are connected to the drive unit 5, and the other parts are separated from the drive unit 5. Thereby, the movable frame 6 can be rotated around the X axis.
  • a pair of torsion bars 7 extending along the Y-axis direction are provided inside the movable frame 6.
  • the pair of torsion bars 7 are arranged so as to overlap the Y axis and be symmetric with respect to the X axis. Further, one end of each of the pair of torsion bars 7 is connected to an end of the movable frame 6 on the Y axis.
  • the scanning mirror 3 is disposed between the other ends of the pair of torsion bars 7 and is supported by the other end. For this reason, the scanning mirror 3 is rotated around the X axis together with the movable frame 6 and is rotated around the Y axis using the torsion bar 7 as a rotation axis.
  • the scanning mirror 3 is formed in a substantially circular shape, and is obtained by forming a reflective film made of gold, aluminum, or the like on a region that becomes the scanning mirror 3 of the silicon substrate.
  • the scanning unit 2 of the present embodiment has the above structure.
  • the scanning operation of the scanning unit 2 is performed by adjusting the timing for driving the four driving units 5 and vibrating the scanning mirror 3 about the X axis and the Y axis.
  • the frequency when vibrating around the X axis is set to about 60 Hz
  • the frequency when vibrating around the Y axis is set to about 30 kHz.
  • each of the four drive units 5 is denoted by reference numerals 5-1 to 5-4.
  • the drive units 5-1 and 5-3 are provided.
  • the drive units 5-2 and 5-4 as the other set, and the polarity of the voltage applied to each of the one set and the other set is reversed.
  • the other drive unit 5-2 and 5-4 is Z ( ⁇ ).
  • the other driving unit 5-2 and 5-4 is deformed in the Z (+) direction. Deform.
  • the scanning mirror 3 vibrates around the X axis together with the movable frame 6, and the inclination of the scanning mirror 3 varies around the X axis. Since the torsion bar 7 is twisted in a direction perpendicular to the vibration direction around the X axis, the vibration of the scanning mirror 3 around the X axis is not affected.
  • the drive units 5-1 and 5-2 are set as one set, and the drive units 5-3 and 5-4 are set as the other set.
  • the polarity of the voltage applied to each of the set and the other set is reversed.
  • the other driving unit 5-3 and 5-4 is deformed in the Z ( ⁇ ) direction.
  • the drive units 5-1 and 5-2 that are one set are deformed in the Z ( ⁇ ) direction
  • the drive units 5-3 and 5-4 that are the other set are deformed in the Z (+) direction.
  • the frequency of the voltage applied to the drive unit 5 is set so that the scanning mirror 3 resonates with the frequency of the voltage applied to the drive unit 5. That is, the vibration around the Y axis of the scanning mirror 3 is made with reference to the resonance frequency of the scanning mirror.
  • the scanning mirror 3 can be rotated around two axes orthogonal to each other, and the combined laser beam is two-dimensionally scanned by the single scanning mirror 3. Is possible.
  • the movable frame 6 that rotatably supports the scanning mirror 3 and the drive unit 5 that drives the movable frame 6 correspond to the movable part of the present invention.
  • the scanning optical system 10 of the first embodiment shown in FIGS. 1A and 2 is configured such that red, green, and blue laser beams take an optical path as indicated by a two-dot chain line in the drawings. That is, red, green, and blue laser beams are collimated and then reflected by a plurality of optical components so that the red, green, and blue laser beams travel toward the scanning mirror 3. Further, when the optical path between two different optical components is a single optical path, at least two optical paths with respect to the normal direction N (see FIG. 1A) of the reflecting surface 3a of the scanning mirror 3 in the non-driven state. The planes including are orthogonal.
  • the optical paths of the red, green, and blue laser beams will be described in detail.
  • the laser light source unit 1-R is installed on the upper side of FIG. 2 and the laser light source units 1-G and 1-B are installed on the lower side in the case member 10a. ing. Further, the laser light source unit 1-R emits downward in the figure, and 1-G and 1-B emit upward in the figure. The emitted laser beams are guided through optical components, synthesized by the cross dichroic prism 21 and projected onto the scanning mirror 3.
  • a projection prism 81 is disposed in the vicinity of the upper side of the scanning mirror 3 (see FIG. 1A) as a projection member for projecting the combined laser beam onto the scanning mirror 3.
  • the combined laser light is projected toward the scanning mirror 3 by the projection prism 81.
  • the projection prism 81 has an advantage that the dimensional accuracy of the reflecting surface and the leg portion is improved by integrally forming the reflecting surface and the leg portion, and the adjustment of the optical axis between the parts becomes unnecessary.
  • the red laser light is emitted from the laser light source unit 1-R, and then passes from the lens optical system 11 and the cross dichroic prism 21 through the projection prism 81.
  • the light is reflected by the projection prism 81 and projected onto the scanning mirror 3.
  • the lens optical system 11 is for changing the laser light from diverging light to parallel light.
  • the cross dichroic prism 21 transmits green laser light and reflects red and blue laser light.
  • the cross dichroic prism 21 is arranged as shown in FIG. 2 to synthesize red, blue and green laser light. have.
  • the cross dichroic prism 21 is an example of the “optical component” in the present invention.
  • This red laser beam is collimated by the lens optical system 11 and then has its optical path in the same plane. That is, the red laser light is collimated by the lens optical system 11 and then passes through the cross dichroic prism 21 and the projection prism 81 in this order in the same plane.
  • the green laser light After the green laser light is emitted from the laser light source unit 1-G, it passes through the lens optical system 17, the bending mirror 15, the cross dichroic prism 21, and the projection prism 81 in this order, and is reflected by the projection prism 81. Is projected onto the scanning mirror 3.
  • the lens optical system 17 is for changing the laser light from divergent light to parallel light.
  • the bending mirror 15 is merely for changing the traveling direction of the laser light, and is an example of the “optical component” in the present invention.
  • the green laser light is collimated by the lens optical system 17 and then has its optical path in the same plane. That is, the green laser light is collimated by the lens optical system 17 and then passes through the bending mirror 15, the cross dichroic prism 21, and the projection prism 81 in this order in the same plane.
  • the lens optical system 19 is for changing the laser light from divergent light to parallel light.
  • This blue laser light is collimated by the lens optical system 19 and then has its optical path in the same plane. That is, the blue laser light is collimated by the lens optical system 19 and then passes through the cross dichroic prism 21 and the projection prism 81 in this order in the same plane.
  • the optical path to the projection prism 81 is included in the same plane in all of the red, green, and blue laser beams, and the plane is the reflecting surface 3a of the scanning mirror 3 in the non-driven state. It is orthogonal to the normal direction N. In other words, the plane is parallel to the reflecting surface 3a of the scanning mirror 3 in the non-driven state.
  • the optical system can be arranged so as to form an optical path in a plane parallel to the scanning unit 2, and the scanning optical system 10 can be thinned by reducing the thickness of the scanning unit 2. Become.
  • the projection prism 81 that projects the combined laser beam toward the scanning mirror 3 is arranged at a position opposite to the cross dichroic prism 21 with respect to the scanning mirror 3. Therefore, as shown in FIG. 1A, the incident light R1 guided from the cross dichroic prism 21 travels in parallel to the reflecting surface 3a of the scanning mirror 3 in the non-driven state, and the other side of the scanning mirror 3 Is incident on a projection prism 81, reflected from the projection prism 81, and projected as projection light R 2 toward the scanning mirror 3.
  • the emission light R3 is emitted from the scanning mirror 3, and this emission light R3 is emitted in a direction opposite to the projection light R2 and forms an optical path intersecting with the incident light R1.
  • projection members such as projection prism 81
  • the projection prism 81 used as a projection member that projects the incident light R1 toward the scanning mirror 3 is fixed on the substrate constituting the scanning unit 2 including the scanning mirror 3.
  • the projection prism 81 is fixed on the fixed frame 4 via a leg portion 81b fixed to the fixed frame 4 serving as a fixed portion of the scanning unit 2 across the scanning mirror 3. That is, the fixed frame 4 is fixed to a support member such as the case member 10a, and the projection prism 81 is fixed on the fixed frame. Further, the shape is provided with a recess 81c that avoids contact with movable parts such as the movable frame 6 and the drive unit 5 that rotatably supports the scanning mirror 3, and is configured so as not to disturb the displacement of the scanning mirror 3.
  • the relative position between the scanning unit 2 and the projection member is made accurate, and projection onto the scanning mirror 3 is performed.
  • the mounting accuracy of the member can be increased.
  • the projection member is arranged at a position away from the scanning unit 2, it is necessary to adjust the distance, angle, optical axis, etc. between the projection member and the scanning unit. If it is directly fixed on the fixed frame 4 of 2, the adjustment of the optical axis or the like in the normal direction of the scanning unit becomes unnecessary. That is, the adjustment of the optical axis may be performed only between the projection member fixed on the scanning unit 2 and another optical component (for example, the cross dichroic prism 21), and the optical axis adjustment between the projection member and the scanning unit. Is unnecessary, so that the optical axis can be easily adjusted when viewed in the entire scanning optical system.
  • another optical component for example, the cross dichroic prism 21
  • each of the upper surface of the fixed frame 4 and the bottom surface of the leg portion of the projection prism 81 (that is, on each surface to be fixed) is marked with a mark that indicates a positioning generally called an alignment mark.
  • the projection prism 81 indicated by the solid line in FIG. 1B has a structure in which the entire leg portion is fixed on the fixed frame 4. However, if the projection prism 81 has a positioning surface 81d that can be fixed at a predetermined position on the fixed frame 4, the entire leg portion of the projection prism 81 may not be fixed on the fixed frame 4. As shown by the dotted line in FIG. 1B, the scanning unit 2 and a part of the leg of the projection prism 81 may be fixed to a support member such as the case member 10a.
  • the positioning surface is fixed to the fixed frame 4, and the leg portion 81Ab fixed to the support member so as to straddle the scanning mirror 3, and the movable part including the movable frame 6 that rotatably supports the scanning mirror 3.
  • the projection prism 81A is fixed on the substrate constituting the scanning unit 2 as a projection prism 81A having a shape with a recess 81c that avoids the contact.
  • the term "fixed” here means that the contact surface between the two members (for example, the projection member and the fixed frame) may not be directly fixed by a material such as an adhesive or a component such as a screw, as described above.
  • the projection prism 81A is indirectly fixed to the fixed frame 4 by fixing the projection prism leg 81Ab to the case member 10a as a support member with an adhesive or the like. The point is that the state in which the positional relationship between the projection member and the fixed frame does not change is maintained.
  • the concave portion 81c provided in the projection prism 81 that avoids contact with movable portions such as the movable frame 6 and the drive unit 5 that rotatably supports the scanning mirror 3 is not necessarily formed in the concave shape shown in FIG. 1B. It does not have to be. Any shape that can avoid contact with a movable part such as the drive unit 5 may be used, and for example, a hemispherical depression may be used.
  • the projection prisms 81 and 81A have a configuration in which a portion that interferes with the movable portion including the movable frame 6 of the scanning mirror 3 is formed into a concave shape and is fixed on the substrate constituting the scanning portion 2, the movable scanning mirror is used.
  • the projection member can be accurately installed at a close position that does not interfere with the displacement 3. For this reason, it is possible to increase the accuracy of attaching the projection member to the scanning mirror 3 while reducing the size of the scanning optical system 10.
  • the scanning unit 2 is provided as long as the projection member includes a positioning surface fixed to the fixed frame 4 of the scanning unit 2. Positioning of the projection member with respect to can be facilitated, and it can be compactly and accurately attached.
  • projection prisms 81 and 81A integrally including a reflection surface that reflects the laser beam toward the scanning mirror 3 and a positioning surface that is fixed to the fixed portion (fixed frame 4) are used. Thus, it becomes easy to reduce the size of the scanning optical system.
  • a scanning optical system 10 includes a laser light source unit 1 (1-R, 1-G, 1-B), a lens optical system for collimating emitted laser light, and a collimated optical system.
  • An optical component that guides the laser beam in a predetermined direction is provided at a position away from the scanning unit 2.
  • the optical component is disposed at a portion other than the upper part of the micro electro mechanical system (MEMS) in which the scanning mirror is incorporated, the plane area is increased, but the configuration can be further reduced.
  • MEMS micro electro mechanical system
  • the projection surface 81a (see FIG. 1A) of the projection prism 81 that reflects the incident light R1 toward the scanning mirror 3 is used as a semi-transparent mirror to transmit a part of the incident light R1, and the transmitted light R4 is totally reflected inside the prism body. Then, the light can be guided to a photodetector (for example, a photodiode 82) and the amount of laser light can be detected. With this configuration, the output of the laser beam can be detected, so that the laser beam output can be easily adjusted.
  • a photodetector for example, a photodiode 82
  • This modification uses the projection prism 83 in place of the projection prism 81 in the scanning optical system 10 shown above.
  • the projection prism 83 has a different installation position from the projection prism 81 and is disposed between the cross dichroic prism 21 and the scanning mirror 3.
  • the projection prism 83 includes an incident surface 83a on which incident light R1 guided from the cross dichroic prism 21 is incident, and a projection surface 83d that projects the projection light R2B toward the scanning mirror 3.
  • a first reflecting surface 83b and a second reflecting surface 83c that reflect the laser beam R2A incident on the projection prism 83 to the inside are provided. If the first and second reflection surfaces 83b and 83c are reflection surfaces that totally reflect, the inside of the prism can travel as laser light R2A that reflects all incident light R1, and can be projected as projection light R2B from the projection surface 83d. It becomes.
  • either one of the first reflecting surface 83b and the second reflecting surface 83c is made a semi-transmissive type that transmits part of the laser light R2A traveling inside the prism, and the transmitted light is detected by a photo diode or the like. It is good also as a structure which adjusts a laser beam output by detecting the light quantity of a laser beam by guiding to a container.
  • the emission light R3 is emitted from the reflection surface 3a of the scanning mirror 3.
  • the direction in which the emitted light R3 is emitted is an oblique direction opposite to the projected light R2B.
  • the projection prism 83 having the above-described configuration has a leg portion including a positioning surface 81d fixed to the fixed frame of the scanning unit 2. Further, the leg portion has a positioning surface 81e for positioning with respect to the end surface of the substrate of the scanning unit 2, thereby facilitating the horizontal positioning in the figure during assembly, and the positional relationship between the scanning mirror 3 and the projection prism 83 is It is determined with high accuracy. Further, there is a slight gap between the leg portion and the base plate constituting the case member 10a, and the gap is filled with, for example, an adhesive, and the leg portion is fixed to the case member 10a, so that the scanning portion and the projection are projected.
  • the members may be fixed to each other.
  • the projection member can be accurately installed at a close position that does not interfere with the displacement of the movable scanning mirror 3, and therefore the projection member can be attached to the scanning mirror 3 while downsizing the scanning optical system 10. The accuracy can be increased.
  • the scanning optical system 20 of the second embodiment Similar to the scanning optical system 10 described above, the scanning optical system 20 includes a laser light source unit 1, a scanning unit 2, and a plurality of optical components such as a mirror for guiding the laser light to the scanning unit 2. Further, they are configured to be stored in a predetermined case member 20a. In the drawing, the laser beam is indicated by a two-dot chain line.
  • the scanning optical system 20 is arranged in a region where at least a part of the optical path of the laser beam overlaps the scanning unit 2 in plan view (see FIG. 4). Specifically, most of the red and blue laser beams take an optical path in the region on the scanning unit 2.
  • the green laser light takes an optical path in the region on the scanning unit 2 after being reflected by the bending mirror 15, but before that, the optical path is not taken in the region on the scanning unit 2.
  • the laser light source unit 1 includes the laser light source unit 1-R that generates red laser light, the laser light source unit 1-G that generates green laser light, and the laser that generates blue laser light.
  • a light source unit 1-B is provided.
  • Both the laser light source unit 1-R and the laser light source unit 1-B are CAN package type laser light source units.
  • the laser light source unit 1-G uses, for example, a combination of an infrared semiconductor laser and a wavelength conversion element, and halves the wavelength of the laser light from the infrared semiconductor laser with the wavelength conversion element. A green laser beam is generated by wavelength conversion.
  • the structure of the laser light source unit 1-G is not particularly limited, but a combination of an infrared semiconductor laser and a wavelength conversion element is more efficient.
  • the red, green and blue laser beams are configured to take optical paths as shown in FIGS. 4 and 5 (two-dot chain lines in the drawings). That is, red, green, and blue laser beams are collimated and then reflected by a plurality of optical components so that the red, green, and blue laser beams travel toward the scanning mirror 3.
  • the optical paths of the red, green, and blue laser beams will be described in detail.
  • the laser light source units 1-G, 1-R and 1-B are arranged in this order from the upper side to the lower side in FIG. Furthermore, the laser light source units 1-R, 1-G, and 1-B have the same emission direction with respect to the reflecting surface 3a of the scanning mirror 3 in the non-driven state. They are arranged in parallel. Further, the laser light source unit 1 can be arranged so that a part of the laser light source unit 1 overlaps the scanning unit 2 in a plan view. For example, in the present embodiment, most of the laser light source units 1-R and 1-B on the light emission side are overlapped with the scanning unit 2. Therefore, the plane area of the scanning optical system can be reduced.
  • a projection prism 84 for projecting the combined laser beam onto the scanning mirror 3 is disposed in the vicinity of the oblique upper part of the scanning mirror 3. That is, the combined laser beam is reflected by the projection prism 84 toward the scanning mirror 3.
  • red laser light is emitted from the laser light source unit 1-R, and then passes through the lens optical system 11, the bending mirror 12, the dichroic mirror 13, the dichroic mirror 14, the bending mirror 15, and the projection prism 84. In this order, the light is reflected by the projection prism 84 and projected onto the scanning mirror 3.
  • the lens optical system 11 is for changing the laser light from diverging light to parallel light.
  • the bending mirrors 12 and 15 are merely for changing the traveling direction of the laser light, and are examples of the “optical component” of the present invention.
  • the dichroic mirror 13 transmits red laser light and reflects blue laser light, and has a function of combining red and blue laser light by being arranged as shown in FIG.
  • the dichroic mirror 14 reflects red and blue laser beams and transmits green laser beams. By arranging the dichroic mirror 14 as shown in FIG. 4, the red, green and blue laser beams are combined. Has function.
  • These dichroic mirrors 13 and 14 are also examples of the “optical component” of the present invention.
  • This red laser beam is collimated by the lens optical system 11 and then has its optical path in the same plane. That is, the red laser light is collimated by the lens optical system 11 and then passes through the bending mirror 12, the dichroic mirror 13, the dichroic mirror 14, and the bending mirror 15 in this order in the same plane.
  • the green laser light is emitted from the laser light source unit 1-G, and then passes through the bending mirror 16, the lens optical system 17, the bending mirror 18, the dichroic mirror 14, the bending mirror 15, and the projection prism 84 in this order, and is projected.
  • the light is reflected by the prism 84 and projected onto the scanning mirror 3.
  • the green lens optical system 17 is composed of two sheets, but may be composed of one sheet.
  • the lens optical system 17 is for changing the laser light from divergent light to parallel light.
  • the bending mirror 18 is merely for changing the traveling direction of the laser beam, and is an example of the “optical component” in the present invention.
  • the folding mirror 16 has the same function as other folding mirrors, but is arranged so as to reflect the laser light before being collimated. That is, the green laser light is incident on the bending mirror 16 immediately after being emitted, changes its traveling direction, and is collimated by the lens optical system 17.
  • the green laser light is collimated by the lens optical system 17 and then has its optical path in the same plane. That is, the green laser light is collimated by the lens optical system 17 and then passes through the bending mirror 18, the dichroic mirror 14, and the bending mirror 15 in this order in the same plane.
  • the blue laser light is emitted from the laser light source unit 1-B, then passes through the lens optical system 19, the dichroic mirror 13, the dichroic mirror 14, the bending mirror 15, and the projection prism 84 in this order, and is reflected by the projection prism 84. Is projected onto the scanning mirror 3.
  • the lens optical system 19 is for changing the laser light from divergent light to parallel light.
  • This blue laser light is collimated by the lens optical system 19 and then has its optical path in the same plane. That is, the blue laser light is collimated by the lens optical system 19 and then passes through the dichroic mirror 13, the dichroic mirror 14, and the bending mirror 15 in this order in the same plane.
  • the optical path to the projection prism 84 is included in the same plane in all of the red, green, and blue laser beams, and the plane is the reflecting surface 3a of the scanning mirror 3 in the non-driven state. It is orthogonal to the normal direction N. In other words, the plane is parallel to the reflecting surface 3a of the scanning mirror 3 in the non-driven state. Therefore, the thickness of the scanning optical system can be reduced.
  • At least a part of the optical path included in the plane is arranged in a region overlapping with the scanning unit 2 in plan view (see FIG. 4). More specifically, red and blue laser beams take an optical path in the region on the scanning unit 2 until slightly before entering the dichroic mirror 14, and after being reflected by the bending mirror 15, the scanning unit 2 again. The optical path is taken in the upper area. In this embodiment, since most of the light emission sides of the laser light source units 1-R and 1-B are completely located in the region overlapping the scanning unit 2, the red and blue laser beams are The optical path is taken in the region on the scanning unit 2 immediately after emission.
  • the green laser light takes an optical path in the region on the scanning unit 2 after being reflected by the bending mirror 15, but before that, by taking the optical path along the outer edge in the vicinity of the scanning unit 2,
  • the area other than the scanning unit 2 is kept small.
  • the plane area of the scanning optical system 20 can be easily reduced by superimposing a part of the laser light source unit 1 and the plurality of optical components on the scanning unit 2.
  • the projection prism 84 that reflects the combined laser beam toward the scanning mirror 3 is arranged at a position opposite to the bending mirror 15 with respect to the scanning mirror 3. Therefore, as shown in FIG. 5, the incident light R1 reflected from the bending mirror 15 travels parallel to the reflecting surface 3a of the scanning mirror 3 in the non-driven state, and is placed on the other side of the scanning mirror 3. Is incident on the projection prism 84, reflected from the projection surface 84a of the projection prism 84, and projected onto the scanning mirror 3 as projection light R2.
  • the emission light R3 is emitted from the scanning mirror 3, and this emission light R3 is emitted in a direction opposite to the projection light R2 and forms an optical path intersecting with the incident light R1.
  • projection prism 81 can be installed in the position near scanning mirror 3, and thickness of a scanning optical system is made thin. Can do. If it is configured to be emitted in the direction in which the projection member is located, it becomes necessary to arrange the projection member in consideration of the height and inclination of the projection member so that the emitted light does not interfere with the projection member. This is not preferable because it is an obstacle to downsizing the scanning optical system.
  • a bending mirror 15 is provided as an optical component that guides laser light to the projection member at a position facing the projection member and the scanning mirror 3, and the optical path of the incident light is not driven by the scanning mirror 3.
  • the incident light passing parallel to the scanning mirror 3 is reflected obliquely toward the reflecting surface 3a, and is opposite to the incident light from the reflecting surface 3a. It is ejected in the diagonal direction.
  • the emission light R3 is emitted in the direction opposite to the projection light R2, the projection member does not block the emission light R3, and the projection member can be installed at a position close to the scanning unit 2. Therefore, the optical path of the incident light R1 directed to the projection member can be a parallel optical path close to the reflecting surface 3a of the scanning mirror 3 in the non-driven state, and the scanning optical system can be reduced in thickness and size. It becomes possible.
  • the incident light R1 incident on the projection member that projects the guided laser light toward the scanning mirror 3 and the emission light R3 emitted from the scanning mirror 3 intersect each other.
  • the projection member is arranged at a position close to the scanning unit, it is possible to make the space area forming the optical path compact, and to reduce the thickness of the scanning optical system, and to scan optics.
  • the system can be miniaturized.
  • the leg portion of the prism is fixed to the fixed frame 4 serving as the fixed portion of the scanning unit 2.
  • the positioning surface provided on the leg portion of the prism may be fixed to the fixed frame 4.
  • a concave portion is provided to avoid contact with a movable part such as a movable frame or a drive unit that rotatably supports the scanning mirror 3.
  • a part of incident light R1 is transmitted using the projection surface 84a as a semi-transparent mirror, and the transmitted light R4 is guided to a photodetector (for example, a photodiode 82) while totally reflecting the inside of the projection prism 84.
  • the amount of light can be detected. With this configuration, the output of the laser beam can be detected, so that the laser beam output can be easily adjusted.
  • the projection member that reflects the laser light toward the scanning mirror 3 is a semi-transmissive type that transmits a part of the laser light, and the transmitted light is guided to the photodetector to control the amount of the laser light.
  • the scanning optical system according to the present embodiment can be reduced in thickness and can be easily reduced in size.
  • the mounting accuracy of the projection member with respect to the scanning mirror can be increased, the optical axis can be easily adjusted, and a desired laser beam can be correctly incident on the scanning mirror to scan the projection surface. It is possible to reduce the risk that high intensity laser light is reflected by non-movable parts other than the scanning mirror and damages human eyes.
  • the scanning unit 2 is formed by a MEMS (microelectromechanical system) incorporating a scanning mirror 3 that is rotatable about two axes orthogonal to each other with a structure using a piezoelectric element as a drive source.
  • MEMS microelectromechanical system
  • the thickness of the scanning unit 2 can be reduced, and the scanning optical systems 10 and 20 can be easily thinned.
  • the scanning mirror 3 is rotated around two axes orthogonal to each other, it becomes possible to perform two-dimensional scanning of the combined laser beam with one scanning mirror 3, and the combined laser beam It is not necessary to perform the two-dimensional scanning with two scanning mirrors. Thereby, the installation space for the scanning mirror is reduced, so that the scanning optical systems 10 and 20 can be further reduced in size.
  • the piezoelectric element 5a can drive the scanning mirror 3 with a thin structure. 2 becomes very thin.
  • each of the laser light source units 1-R, 1-G, and 1-B is configured to be substantially parallel to the reflecting surface 3a of the scanning mirror 3 in the non-driven state. Accordingly, at least two optical paths can be easily arranged in a plane orthogonal to the normal direction N of the reflecting surface 3a of the scanning mirror 3 in the non-driven state, and the thickness of the scanning optical system can be reduced. . In addition, by superimposing the laser light source unit 1 and a part of the plurality of optical components on the scanning unit 2, the plane area of the scanning optical system 20 can be easily reduced.
  • the thickness of the scanning optical system can be reduced and the size can be reduced.
  • the mounting accuracy of the projection member with respect to the scanning mirror can be increased, and the optical axis can be easily adjusted.
  • the projection prism is used as the projection member, but the present invention is not limited to this.
  • the projection mirror or the like can be fixed on the fixed frame of the scanning unit to reflect or reflect light. Any member may be used as long as it has a function of transmitting light.
  • the projector is mounted on a mobile terminal such as a mobile phone or a PDA.
  • the present invention is not limited to this, and the projector may be mounted on a device other than the mobile terminal. Further, the projector may be configured so that it can be used alone.
  • the optical component was arrange
  • a piezoelectric element is incorporated in the scanning unit, and the scanning mirror is driven using the piezoelectric element.
  • the present invention is not limited to this, and any means for driving the scanning mirror can be used. It may be a thing.
  • the use of a piezoelectric element makes it easier to reduce the thickness of the scanning unit.
  • the scanning optical system and the projector including the same According to the present invention, it is possible to reduce the size, improve the mounting accuracy of the optical components, and easily adjust the optical axis. A scanning optical system and a projector including the same can be obtained.
  • the scanning optical system according to the present invention and the projector including the same can be suitably applied to a laser projector for a mobile terminal aiming at miniaturization.

Abstract

Disclosed is a scanning optical system, which has a reduced size and improved accuracy of having an optical component assembled thereto, and furthermore, which has an optical axis easily adjusted. Also disclosed is a projector provided with the scanning optical system. The scanning optical system (10, 20) is provided with: a laser light source section (1) which outputs laser light; a scanning section (2), which has a scanning mirror (3) that two-dimensionally scans the laser light toward the projection surface; and an optical component which guides the outputted laser light to the predetermined direction. The projector (100) is provided with the scanning optical system. The scanning optical system (10, 20) is provided with a projection member (projection prism (81, 83, 84)), which projects the laser light toward the scanning mirror (3), said laser light having been guided by the optical component, and the projection member is fixed on a substrate that constitutes the scanning section (2).

Description

走査光学系およびそれを備えたプロジェクタScanning optical system and projector provided with the same
 本発明は、走査光学系およびそれを備えたプロジェクタに関する。 The present invention relates to a scanning optical system and a projector including the same.
 従来、スクリーンなどの投影面に投影する画像表示装置として、レーザ光を平行化し、その平行化したレーザ光を投影面上において二次元方向(水平方向および垂直方向)に走査するレーザプロジェクタが知られている。 Conventionally, as an image display device that projects onto a projection surface such as a screen, a laser projector that collimates laser light and scans the collimated laser light in a two-dimensional direction (horizontal direction and vertical direction) on the projection surface is known. ing.
 従来のレーザプロジェクタでは、赤色、緑色および青色の三原色のレーザ光を得るために、赤色、緑色および青色のレーザ光を生成するレーザ光源が装置内に装着されている。さらに、レーザ光源に加えて、そこから出射されるレーザ光を走査する走査ミラーなどの光学系も装置内に装着されている。そして、従来では、MEMS(Micro Electro Mechanical Systems)によって構成されたMEMSミラーを走査ミラーとして用いたものが存在する(例えば、特許文献1参照)。 In a conventional laser projector, a laser light source that generates red, green, and blue laser beams is mounted in the apparatus in order to obtain laser beams of three primary colors of red, green, and blue. Further, in addition to the laser light source, an optical system such as a scanning mirror that scans laser light emitted from the laser light source is also mounted in the apparatus. Conventionally, there is one using a MEMS mirror configured by MEMS (Micro Electro Mechanical Systems) as a scanning mirror (for example, see Patent Document 1).
 具体的に説明すると、特許文献1には、レーザ光の二次元走査を2つのMEMSミラーによって行うレーザプロジェクタが開示されている。すなわち、この特許文献1のレーザプロジェクタは、2つのMEMSミラーのうちの一方のMEMSミラーでレーザ光を水平方向に走査し、他方のMEMSミラーでレーザ光を垂直方向に走査するように構成されている。 More specifically, Patent Document 1 discloses a laser projector that performs two-dimensional scanning of laser light using two MEMS mirrors. That is, the laser projector disclosed in Patent Document 1 is configured such that one of the two MEMS mirrors scans the laser light in the horizontal direction, and the other MEMS mirror scans the laser light in the vertical direction. Yes.
特開2008-268709号公報JP 2008-268709 A
 ところで、近年では、携帯電話などのモバイル端末にレーザプロジェクタを搭載するために、レーザプロジェクタの小型化が要求されている。特に、携帯電話においては小型化が進んでいるため、携帯電話に搭載するレーザプロジェクタのさらなる小型化は必須である。しかしながら、特許文献1のレーザプロジェクタでは、MEMSミラーを走査ミラーとして用いることで、ある程度は小型になっているが、携帯電話への搭載を考慮すると、そのサイズは未だ大き過ぎるという問題がある。 Incidentally, in recent years, in order to mount a laser projector on a mobile terminal such as a mobile phone, there is a demand for downsizing the laser projector. In particular, since miniaturization is progressing in mobile phones, further miniaturization of laser projectors mounted on mobile phones is essential. However, the laser projector disclosed in Patent Document 1 is downsized to some extent by using a MEMS mirror as a scanning mirror, but there is a problem that the size is still too large considering mounting on a mobile phone.
 また、走査光学系を小型化すると、走査ミラーにレーザ光を導光する光学部品の取り付け精度をさらに上げると共に、光軸の調整も容易とすることが要求される。 Further, when the scanning optical system is downsized, it is required to further improve the mounting accuracy of the optical component that guides the laser beam to the scanning mirror and to easily adjust the optical axis.
 本発明は、上記の事情に鑑みてなされたものであって、小型化することが可能で、且つ光学部品の取り付け精度を向上し、さらに、光軸の調整が容易となる走査光学系およびそれを備えたプロジェクタを提供することを目的とする。 The present invention has been made in view of the above circumstances, and it is possible to reduce the size, improve the mounting accuracy of the optical component, and further facilitate the adjustment of the optical axis, and the scanning optical system An object of the present invention is to provide a projector provided with
 上記目的を達成するために本発明は、レーザ光を出射するレーザ光源部と、前記レーザ光を投射面に向けて二次元走査する走査ミラーを有する走査部と、出射されたレーザ光を所定の方向に導く光学部品と、前記光学部品により導かれた前記レーザ光を、前記走査ミラーに向けて投射する投射部材と、を備え、前記投射部材を、前記走査部を構成する基板上に固定した走査光学系としたことを特徴としている。 In order to achieve the above object, the present invention provides a laser light source unit that emits laser light, a scanning unit that has a scanning mirror that two-dimensionally scans the laser light toward a projection surface, and a predetermined laser beam emitted from the laser beam. An optical component that guides in the direction, and a projection member that projects the laser light guided by the optical component toward the scanning mirror, and the projection member is fixed on a substrate constituting the scanning unit It is characterized by a scanning optical system.
 上記の構成によると、投射部材を走査部に固定する構成となるので、走査光学系の厚みを薄くすることができ、小型化することが可能となる。また、走査ミラーに対する投射部材の取り付け精度を上げることができ、光軸の調整も容易となる。なお、走査光学系の厚みとは、非駆動状態の走査ミラーの反射面の法線方向に沿った方向の厚みのことである。 According to the above configuration, since the projection member is fixed to the scanning unit, the thickness of the scanning optical system can be reduced and the size can be reduced. In addition, the mounting accuracy of the projection member with respect to the scanning mirror can be increased, and the optical axis can be easily adjusted. Note that the thickness of the scanning optical system is the thickness in the direction along the normal direction of the reflection surface of the scanning mirror in the non-driven state.
 また本発明のプロジェクタは、上記の構成の走査光学系を備えている。この構成によると、容易にプロジェクタを小型化することができる。 The projector of the present invention includes the scanning optical system having the above-described configuration. According to this configuration, the projector can be easily downsized.
 本発明によれば、小型化することが可能で、且つ光学部品の取り付け精度を向上し、さらに、光軸の調整が容易となる走査光学系およびそれを備えたプロジェクタを得ることができる。 According to the present invention, it is possible to obtain a scanning optical system that can be miniaturized, improve the mounting accuracy of optical components, and further facilitate the adjustment of the optical axis, and a projector including the scanning optical system.
本発明に係る走査光学系の第一実施形態の概略断面図である。1 is a schematic cross-sectional view of a first embodiment of a scanning optical system according to the present invention. 本発明に係る走査光学系の第一実施形態の要部拡大図を示す。The principal part enlarged view of 1st embodiment of the scanning optical system which concerns on this invention is shown. 本発明に係る走査光学系の第一実施形態の構成を示す平面図である。1 is a plan view showing a configuration of a first embodiment of a scanning optical system according to the present invention. 投射プリズムの設置位置が異なる変形例を示す概略断面図である。It is a schematic sectional drawing which shows the modification from which the installation position of a projection prism differs. 本発明に係る走査光学系の第二実施形態の構成を示す平面図である。It is a top view which shows the structure of 2nd embodiment of the scanning optical system concerning this invention. 本発明に係る走査光学系の第二実施形態の概要を示す断面図である。It is sectional drawing which shows the outline | summary of 2nd embodiment of the scanning optical system concerning this invention. 走査部の一例を示す平面図である。It is a top view which shows an example of a scanning part. 図6に示した走査部の一部(駆動部)を拡大した断面図である。FIG. 7 is an enlarged cross-sectional view of a part (drive unit) of the scanning unit shown in FIG. 6. 本発明に係るプロジェクタを搭載したモバイル端末の使用状態を説明するための図である。It is a figure for demonstrating the use condition of the mobile terminal carrying the projector which concerns on this invention.
 以下に本発明の実施形態を図面を参照して説明する。また、同一構成部材については同一の符号を用い、詳細な説明は適宜省略する。 Embodiments of the present invention will be described below with reference to the drawings. Moreover, the same code | symbol is used about the same structural member, and detailed description is abbreviate | omitted suitably.
 本実施形態に係るプロジェクタ100は、例えば図8に示すように、携帯電話やPDA(Personal Digital Assistant)などのモバイル端末40に搭載されるものである。従って、このプロジェクタ100は、モバイル端末40内の小さなスペースに収納することが可能な程度に小型化されている。 The projector 100 according to the present embodiment is mounted on a mobile terminal 40 such as a mobile phone or a PDA (Personal Digital Assistant) as shown in FIG. 8, for example. Therefore, the projector 100 is miniaturized to such an extent that it can be stored in a small space in the mobile terminal 40.
 プロジェクタ100の光源としてはレーザ光を生成するものが用いられており、投影面41上においてレーザ光を水平方向(H方向)および垂直方向(V方向)に走査することによって、プロジェクタ100に入力された画像情報を投影面41に投影するようになっている。この投影面41としては、別途準備したスクリーンでもよいが、スクリーン以外のものでもよい。例えば、壁面などを投影面41としてもよい。 As the light source of the projector 100, a light source that generates laser light is used. By scanning the laser light on the projection surface 41 in the horizontal direction (H direction) and the vertical direction (V direction), the light is input to the projector 100. The image information is projected onto the projection surface 41. The projection surface 41 may be a screen prepared separately, but may be other than a screen. For example, a wall surface or the like may be used as the projection surface 41.
 また、プロジェクタ100に入力された画像情報の色調の再現については、光の三原色である赤色、緑色および青色のレーザ光を高速で強度変調し、それらを合成することによって行われる。この場合、赤色のレーザ光の波長は、例えば、約640nmに設定されるとともに、緑色のレーザ光の波長は、例えば、約530nmに設定される。また、青色のレーザ光の波長は、例えば、約450nmに設定される。 Further, the reproduction of the color tone of the image information input to the projector 100 is performed by intensity-modulating red, green and blue laser lights, which are the three primary colors of light, and synthesizing them. In this case, the wavelength of the red laser beam is set to about 640 nm, for example, and the wavelength of the green laser beam is set to about 530 nm, for example. Further, the wavelength of the blue laser light is set to about 450 nm, for example.
 次に、前述したプロジェクタが備える走査光学系について、図1~図3を用いて第一実施形態の走査光学系およびその変形例について説明し、図4、図5を用いて第二実施形態の走査光学系について説明する。 Next, regarding the scanning optical system provided in the projector described above, the scanning optical system of the first embodiment and its modification will be described with reference to FIGS. 1 to 3, and the scanning optical system of the second embodiment will be described with reference to FIGS. The scanning optical system will be described.
 図1A、図1B、図2に示す第一実施形態の走査光学系10および図4、図5に示す第二実施形態の走査光学系20は、共に、赤色、緑色および青色の三色のレーザ光を生成して平行化した後に、それらを合成して走査するように構成されている。すなわち、それぞれの走査光学系は、レーザ光を出射するレーザ光源部1と、平行化されたR、G、Bのレーザ光を合成する光学系と、合成されたレーザ光を所定の光路方向に導く光学部品と、導かれたレーザ光を投影面に向けて射出して二次元走査する走査ミラー3を有する走査部2とを備えており、それらが、所定のケース部材10a、20aに収納された構成となっている。なお、図中において、レーザ光は二点鎖線で表している。 The scanning optical system 10 of the first embodiment shown in FIGS. 1A, 1B, and 2 and the scanning optical system 20 of the second embodiment shown in FIGS. 4 and 5 are both lasers of three colors of red, green, and blue. After the light is generated and collimated, they are combined and scanned. That is, each scanning optical system includes a laser light source unit 1 that emits laser light, an optical system that combines collimated R, G, and B laser light, and the combined laser light in a predetermined optical path direction. An optical component for guiding, and a scanning unit 2 having a scanning mirror 3 that emits the guided laser beam toward the projection surface and performs two-dimensional scanning, are housed in predetermined case members 10a and 20a. It becomes the composition. In the drawing, the laser beam is indicated by a two-dot chain line.
 レーザ光源部1は、赤色、緑色および青色のレーザ光を生成するためのものである。以下、赤色のレーザ光を生成するレーザ光源部1をレーザ光源部1-Rと言うとともに、緑色のレーザ光を生成するレーザ光源部1をレーザ光源部1-Gと言う。また、青色のレーザ光を生成するレーザ光源部1をレーザ光源部1-Bと言う。 The laser light source unit 1 is for generating red, green and blue laser beams. Hereinafter, the laser light source unit 1 that generates red laser light is referred to as a laser light source unit 1-R, and the laser light source unit 1 that generates green laser light is referred to as a laser light source unit 1-G. The laser light source unit 1 that generates blue laser light is referred to as a laser light source unit 1-B.
 レーザ光源部1-Rは、発光強度が強く、かつ、強度の高速変調が可能な赤色半導体レーザからなっている。このレーザ光源部1-Rとしての赤色半導体レーザは、CANパッケージタイプであり、ステムと称される放熱基台にレーザチップが取り付けられ、そのレーザチップが保護部材であるキャップで覆われた構造となっている。 The laser light source unit 1-R is made of a red semiconductor laser having a high emission intensity and capable of high-speed modulation of the intensity. The red semiconductor laser as the laser light source unit 1-R is a CAN package type, and has a structure in which a laser chip is attached to a heat radiation base called a stem and the laser chip is covered with a cap as a protective member. It has become.
 レーザ光源部1-Gは、図2に示す、CANパッケージタイプの緑色半導体レーザでも、図4に示す、赤外半導体レーザと波長変換素子とを組み合わせたものであって、赤外半導体レーザからのレーザ光の波長を波長変換素子で1/2に波長変換することにより緑色のレーザ光を生成する構成のものでもよく、特に限定されるものではない。ただし、赤外半導体レーザと波長変換素子とを組み合わせたものの方が効率がよい。 The laser light source unit 1-G is a CAN package type green semiconductor laser shown in FIG. 2, which is a combination of the infrared semiconductor laser and the wavelength conversion element shown in FIG. A configuration in which green laser light is generated by wavelength conversion of the wavelength of the laser light to ½ by the wavelength conversion element is not particularly limited. However, a combination of an infrared semiconductor laser and a wavelength conversion element is more efficient.
 レーザ光源部1-Bは、発光強度が強く、かつ、強度の高速変調が可能なCANパッケージタイプの青色半導体レーザからなっており、その構造はレーザ光源部1-Rと略同じである。 The laser light source unit 1-B is made of a CAN package type blue semiconductor laser having high emission intensity and capable of high-speed intensity modulation, and its structure is substantially the same as the laser light source unit 1-R.
 また、走査部2は、合成後のレーザ光を二次元走査するためのものであって、合成後のレーザ光を投影面41(図8参照)に向けて射出する走査ミラー3を少なくとも有している。この走査ミラー3の傾斜角は変動可能となっており、走査ミラー3の傾斜角を変動させることにより、走査部2による合成後のレーザ光の二次元走査が行われる。 The scanning unit 2 is for two-dimensionally scanning the combined laser beam, and has at least a scanning mirror 3 that emits the combined laser beam toward the projection surface 41 (see FIG. 8). ing. The tilt angle of the scanning mirror 3 can be changed. By changing the tilt angle of the scanning mirror 3, two-dimensional scanning of the combined laser beam by the scanning unit 2 is performed.
 ここで、本実施形態では、走査ミラー3をMEMS(微小電気機械システム)に組み込み、その走査ミラー3が組み込まれたMEMSを走査部2としている。また、この走査部2は、略平坦で厚みが小さく、かつ、その外形が平面視(図2参照)において略正方形状(例えば、1辺の長さが約1cm)となっている。 Here, in this embodiment, the scanning mirror 3 is incorporated in a MEMS (micro electro mechanical system), and the MEMS in which the scanning mirror 3 is incorporated is used as the scanning unit 2. The scanning unit 2 is substantially flat and has a small thickness, and its outer shape is substantially square (for example, the length of one side is about 1 cm) in plan view (see FIG. 2).
 具体的な構造としては、図6に示すように、走査部2はシリコン基板に対してエッチング処理などを施すことで得られる構造体からなっており、走査ミラー3に加えて、固定枠4、駆動部5および可動枠6などを一体的に有している。なお、以下の説明では、走査ミラー3の中心を図6の横方向に横切る軸をX軸とし、走査ミラー3の中心を図6の縦方向に横切る軸をY軸とする。言い換えると、X軸とY軸とが直交する点を走査ミラー3の中心とする。 As a specific structure, as shown in FIG. 6, the scanning unit 2 is composed of a structure obtained by performing an etching process or the like on the silicon substrate. In addition to the scanning mirror 3, the fixed frame 4, The drive unit 5 and the movable frame 6 are integrally provided. In the following description, an axis that crosses the center of the scanning mirror 3 in the horizontal direction in FIG. 6 is an X axis, and an axis that crosses the center of the scanning mirror 3 in the vertical direction in FIG. In other words, the point where the X axis and the Y axis are orthogonal to each other is the center of the scanning mirror 3.
 固定枠4は、走査部2の外縁に相当する部分であって、他の部分(走査ミラー3、駆動部5および可動枠6など)を取り囲んでいる。 The fixed frame 4 is a part corresponding to the outer edge of the scanning unit 2 and surrounds other parts (such as the scanning mirror 3, the drive unit 5, and the movable frame 6).
 駆動部5は、X軸方向において固定枠4と細い接続梁で接続され、Y軸方向において固定枠4と連結されている。さらに、駆動部5は4つのユニモルフ構造を含んでいるとともに、その4つのユニモルフ構造がX軸およびY軸のそれぞれを対称軸として対称となり、かつ、互いに離間した状態となるように配置されている。また、駆動部5としてのユニモルフ構造は、図7に示すように、圧電素子(PZTなどを原料とした焼結体を分極処理したもの)5aを一対の電極5bで挟持し、それをシリコン基板の駆動部5となる領域上に貼り付けることによって形成されている。尚、本実施形態ではユニモルフ構造の圧電素子を使用しているが、バイモルフ構造など他の構造のものを用いても構わない。 The drive unit 5 is connected to the fixed frame 4 in the X-axis direction with a thin connecting beam, and is connected to the fixed frame 4 in the Y-axis direction. Furthermore, the drive unit 5 includes four unimorph structures, and the four unimorph structures are arranged so as to be symmetric with respect to each of the X axis and the Y axis and are separated from each other. . Further, as shown in FIG. 7, the unimorph structure as the drive unit 5 includes a piezoelectric element (a sintered body made of PZT or the like as a raw material) 5a sandwiched between a pair of electrodes 5b, and a silicon substrate. It is formed by pasting on the region to be the driving unit 5. In this embodiment, a unimorph structure piezoelectric element is used, but other structures such as a bimorph structure may be used.
 このような駆動部5では、一対の電極5bに電圧が印加されると、一対の電極5bに挟持された圧電素子5aが伸長または収縮する。そして、圧電素子5aが伸長または収縮すると、それに応じて、シリコン基板の駆動部5となる領域が厚み方向に撓む。すなわち、駆動部5は、電力が供給されることで駆動する。 In such a drive unit 5, when a voltage is applied to the pair of electrodes 5b, the piezoelectric element 5a sandwiched between the pair of electrodes 5b expands or contracts. When the piezoelectric element 5a expands or contracts, the region serving as the driving unit 5 of the silicon substrate is bent in the thickness direction accordingly. That is, the drive unit 5 is driven by being supplied with electric power.
 また、図6に示すように、可動枠6は、駆動部5の内側に位置する略ひし形形状の枠である。この可動枠6のX軸上の両端部は駆動部5と連結され、それ以外の部分は駆動部5から分離されている。これにより、可動枠6は、X軸周りに回動可能となっている。 Further, as shown in FIG. 6, the movable frame 6 is a substantially rhombus-shaped frame located inside the drive unit 5. Both ends of the movable frame 6 on the X axis are connected to the drive unit 5, and the other parts are separated from the drive unit 5. Thereby, the movable frame 6 can be rotated around the X axis.
 可動枠6の内側には、Y軸方向に沿って延びる一対のトーションバー7が設けられている。この一対のトーションバー7は、Y軸と重なり、かつ、X軸に対して対称となるように配置されている。さらに、一対のトーションバー7のそれぞれの一方端は、可動枠6のY軸上の端部に連結されている。 A pair of torsion bars 7 extending along the Y-axis direction are provided inside the movable frame 6. The pair of torsion bars 7 are arranged so as to overlap the Y axis and be symmetric with respect to the X axis. Further, one end of each of the pair of torsion bars 7 is connected to an end of the movable frame 6 on the Y axis.
 そして、走査ミラー3は、一対のトーションバー7のそれぞれの他方端の間に配置されており、その他方端によって支持されている。このため、走査ミラー3は、可動枠6と共にX軸周りに回動され、トーションバー7を回動軸としてY軸周りに回動されることになる。なお、走査ミラー3は、略円形状に形成されており、金やアルミニウムなどからなる反射膜をシリコン基板の走査ミラー3となる領域上に成膜することで得ている。 The scanning mirror 3 is disposed between the other ends of the pair of torsion bars 7 and is supported by the other end. For this reason, the scanning mirror 3 is rotated around the X axis together with the movable frame 6 and is rotated around the Y axis using the torsion bar 7 as a rotation axis. The scanning mirror 3 is formed in a substantially circular shape, and is obtained by forming a reflective film made of gold, aluminum, or the like on a region that becomes the scanning mirror 3 of the silicon substrate.
 本実施形態の走査部2は、上記のような構造となっている。そして、この走査部2の走査動作は、4つの駆動部5を駆動させるタイミングを調整し、走査ミラー3をX軸周りおよびY軸周りに振動させることによって行われる。例えば、X軸周りに振動するときの周波数は約60Hzに設定され、Y軸周りに振動するときの周波数は約30kHzに設定される。 The scanning unit 2 of the present embodiment has the above structure. The scanning operation of the scanning unit 2 is performed by adjusting the timing for driving the four driving units 5 and vibrating the scanning mirror 3 about the X axis and the Y axis. For example, the frequency when vibrating around the X axis is set to about 60 Hz, and the frequency when vibrating around the Y axis is set to about 30 kHz.
 4つの駆動部5のそれぞれに5-1~5-4の符号を付して具体的に説明すると、走査ミラー3をX軸周りに振動させる際には、駆動部5-1および5-3を一方の組とするとともに、駆動部5-2および5-4を他方の組とし、一方の組および他方の組のそれぞれに印加する電圧の正負を反転させる。この場合、一方の組である駆動部5-1および5-3がZ(+)(紙面垂直)方向に変形すると、他方の組である駆動部5-2および5-4がZ(-)方向に変形し、一方の組である駆動部5-1および5-3がZ(-)方向に変形すると、他方の組である駆動部5-2および5-4がZ(+)方向に変形する。これにより、走査ミラー3が可動枠6と共にX軸周りに振動し、走査ミラー3の傾きがX軸周りに変動する。なお、トーションバー7のねじれ方向はX軸周りの振動方向と直交する方向であるため、この走査ミラー3のX軸周りの振動には影響しない。 More specifically, each of the four drive units 5 is denoted by reference numerals 5-1 to 5-4. When the scanning mirror 3 is vibrated around the X axis, the drive units 5-1 and 5-3 are provided. And the drive units 5-2 and 5-4 as the other set, and the polarity of the voltage applied to each of the one set and the other set is reversed. In this case, when one of the drive units 5-1 and 5-3 is deformed in the Z (+) (perpendicular to the paper surface) direction, the other drive unit 5-2 and 5-4 is Z (−). When one of the driving units 5-1 and 5-3 is deformed in the Z (−) direction, the other driving unit 5-2 and 5-4 is deformed in the Z (+) direction. Deform. As a result, the scanning mirror 3 vibrates around the X axis together with the movable frame 6, and the inclination of the scanning mirror 3 varies around the X axis. Since the torsion bar 7 is twisted in a direction perpendicular to the vibration direction around the X axis, the vibration of the scanning mirror 3 around the X axis is not affected.
 また、走査ミラー3をY軸周りに振動させる際には、駆動部5-1および5-2を一方の組とするとともに、駆動部5-3および5-4を他方の組とし、一方の組および他方の組のそれぞれに印加する電圧の正負を反転させる。この場合、一方の組である駆動部5-1および5-2がZ(+)方向に変形すると、他方の組である駆動部5-3および5-4がZ(-)方向に変形し、一方の組である駆動部5-1および5-2がZ(-)方向に変形すると、他方の組である駆動部5-3および5-4がZ(+)方向に変形する。これにより、走査ミラー3が可動枠6と共にY軸周りに振動し、走査ミラー3の傾きがY軸周りに変動する。 Further, when the scanning mirror 3 is vibrated around the Y axis, the drive units 5-1 and 5-2 are set as one set, and the drive units 5-3 and 5-4 are set as the other set. The polarity of the voltage applied to each of the set and the other set is reversed. In this case, when one of the driving units 5-1 and 5-2 is deformed in the Z (+) direction, the other driving unit 5-3 and 5-4 is deformed in the Z (−) direction. When the drive units 5-1 and 5-2 that are one set are deformed in the Z (−) direction, the drive units 5-3 and 5-4 that are the other set are deformed in the Z (+) direction. Thereby, the scanning mirror 3 vibrates around the Y axis together with the movable frame 6, and the inclination of the scanning mirror 3 varies around the Y axis.
 このとき、駆動部5を変形させることのみで走査ミラー3をY軸周りに傾かせようとすると、走査ミラー3のY軸周りの傾きの変動は小さくなってしまう。このため、実際に走査動作を行う際には、駆動部5に印加される電圧の周波数によって走査ミラー3が共振するように、駆動部5への印加電圧の周波数が設定される。すなわち、走査ミラー3のY軸周りの振動は、走査ミラーの共振周波数を基準としてなされる。 At this time, if the scanning mirror 3 is tilted around the Y axis only by deforming the drive unit 5, the fluctuation of the tilt of the scanning mirror 3 around the Y axis becomes small. For this reason, when actually performing the scanning operation, the frequency of the voltage applied to the drive unit 5 is set so that the scanning mirror 3 resonates with the frequency of the voltage applied to the drive unit 5. That is, the vibration around the Y axis of the scanning mirror 3 is made with reference to the resonance frequency of the scanning mirror.
 上記のように走査部2を動作させることで、互いに直交している2軸周りに走査ミラー3を回動させることができ、合成後のレーザ光を1つの走査ミラー3で二次元走査することが可能となる。また、走査ミラー3を回動可能に支持する可動枠6と、この可動枠6を駆動する駆動部5とが本発明の可動部分に相当する。 By operating the scanning unit 2 as described above, the scanning mirror 3 can be rotated around two axes orthogonal to each other, and the combined laser beam is two-dimensionally scanned by the single scanning mirror 3. Is possible. The movable frame 6 that rotatably supports the scanning mirror 3 and the drive unit 5 that drives the movable frame 6 correspond to the movable part of the present invention.
 次に、上記した走査ミラーを組み込んだ微小電気機械システムによって構成されている走査部を備えた走査光学系10について説明する。図1Aおよび図2に示す第一実施形態の走査光学系10は、赤色、緑色および青色のレーザ光が、図中の二点鎖線に示すような光路をとるように構成されている。すなわち、赤色、緑色および青色のレーザ光を平行化した後、それらを複数個の光学部品で反射することによって、赤色、緑色および青色のレーザ光を走査ミラー3に向かって進行させている。また、互いに異なる2つの光学部品の間の光路を1つの光路とした場合に、非駆動状態の走査ミラー3の反射面3aの法線方向N(図1A参照)に対して、少なくとも2つの光路を含む平面を直交させている。以下に、赤色、緑色および青色のレーザ光の光路について詳細に説明する。 Next, a description will be given of the scanning optical system 10 including a scanning unit that is configured by a micro electro mechanical system incorporating the above-described scanning mirror. The scanning optical system 10 of the first embodiment shown in FIGS. 1A and 2 is configured such that red, green, and blue laser beams take an optical path as indicated by a two-dot chain line in the drawings. That is, red, green, and blue laser beams are collimated and then reflected by a plurality of optical components so that the red, green, and blue laser beams travel toward the scanning mirror 3. Further, when the optical path between two different optical components is a single optical path, at least two optical paths with respect to the normal direction N (see FIG. 1A) of the reflecting surface 3a of the scanning mirror 3 in the non-driven state. The planes including are orthogonal. Hereinafter, the optical paths of the red, green, and blue laser beams will be described in detail.
 この第一実施形態の走査光学系10は、ケース部材10aの内部において、図2の上側にレーザ光源部1-Rが設置され、下側にレーザ光源部1-Gおよび1-Bが設置されている。さらに、レーザ光源部1-Rは図の下向きに出射し、1-Gおよび1-Bは図に上向きに出射する。出射されたレーザ光は、それぞれ光学部品を介して導かれ、クロスダイクロイックプリズム21により合成されて、走査ミラー3に投射される。 In the scanning optical system 10 of the first embodiment, the laser light source unit 1-R is installed on the upper side of FIG. 2 and the laser light source units 1-G and 1-B are installed on the lower side in the case member 10a. ing. Further, the laser light source unit 1-R emits downward in the figure, and 1-G and 1-B emit upward in the figure. The emitted laser beams are guided through optical components, synthesized by the cross dichroic prism 21 and projected onto the scanning mirror 3.
 また、走査ミラー3の斜め上方付近(図1A参照)には、合成後のレーザ光を走査ミラー3に投射するための投射部材として投射プリズム81が配置されている。すなわち、この投射プリズム81によって、合成後のレーザ光が走査ミラー3に向けて投射される。なお、投射プリズム81は、反射面と脚部を一体的に形成することにより反射面と脚部の寸法精度が向上し、部品間の光軸の調整が不要になるという利点がある。 Further, a projection prism 81 is disposed in the vicinity of the upper side of the scanning mirror 3 (see FIG. 1A) as a projection member for projecting the combined laser beam onto the scanning mirror 3. In other words, the combined laser light is projected toward the scanning mirror 3 by the projection prism 81. The projection prism 81 has an advantage that the dimensional accuracy of the reflecting surface and the leg portion is improved by integrally forming the reflecting surface and the leg portion, and the adjustment of the optical axis between the parts becomes unnecessary.
 具体的な光路としては、図2で示されているように、赤色のレーザ光は、レーザ光源部1-Rから出射された後、レンズ光学系11、クロスダイクロイックプリズム21から投射プリズム81を経由し、投射プリズム81で反射されることによって走査ミラー3に投射される。 As a specific optical path, as shown in FIG. 2, the red laser light is emitted from the laser light source unit 1-R, and then passes from the lens optical system 11 and the cross dichroic prism 21 through the projection prism 81. The light is reflected by the projection prism 81 and projected onto the scanning mirror 3.
 なお、レンズ光学系11は、レーザ光を発散光から平行光にするためのものである。クロスダイクロイックプリズム21は、緑色のレーザ光を透過し、赤色および青色のレーザ光を反射するものであり、図2に示すように配置することで、赤色、青色および緑色のレーザ光を合成する機能を持つ。このクロスダイクロイックプリズム21は、本発明の「光学部品」の一例である。 The lens optical system 11 is for changing the laser light from diverging light to parallel light. The cross dichroic prism 21 transmits green laser light and reflects red and blue laser light. The cross dichroic prism 21 is arranged as shown in FIG. 2 to synthesize red, blue and green laser light. have. The cross dichroic prism 21 is an example of the “optical component” in the present invention.
 この赤色のレーザ光においては、レンズ光学系11で平行化された後、光路を同一の平面内にとっている。すなわち、赤色のレーザ光は、レンズ光学系11で平行化された後に、同一の平面内において、クロスダイクロイックプリズム21および投射プリズム81をこの順番で経由している。 This red laser beam is collimated by the lens optical system 11 and then has its optical path in the same plane. That is, the red laser light is collimated by the lens optical system 11 and then passes through the cross dichroic prism 21 and the projection prism 81 in this order in the same plane.
 緑色のレーザ光は、レーザ光源部1-Gから出射された後、レンズ光学系17、折り曲げミラー15、クロスダイクロイックプリズム21および投射プリズム81をこの順番で経由し、投射プリズム81で反射されることによって走査ミラー3に投射される。 After the green laser light is emitted from the laser light source unit 1-G, it passes through the lens optical system 17, the bending mirror 15, the cross dichroic prism 21, and the projection prism 81 in this order, and is reflected by the projection prism 81. Is projected onto the scanning mirror 3.
 なお、レンズ光学系17は、レーザ光を発散光から平行光にするためのものである。折り曲げミラー15は、レーザ光の進行方向を単に変化させるためのものであって、本発明の「光学部品」の一例である。 The lens optical system 17 is for changing the laser light from divergent light to parallel light. The bending mirror 15 is merely for changing the traveling direction of the laser light, and is an example of the “optical component” in the present invention.
 この緑色のレーザ光においては、レンズ光学系17で平行化された後、光路を同一の平面内にとっている。すなわち、緑色のレーザ光は、レンズ光学系17で平行化された後に、同一の平面内において、折り曲げミラー15、クロスダイクロイックプリズム21および投射プリズム81をこの順番で経由している。 The green laser light is collimated by the lens optical system 17 and then has its optical path in the same plane. That is, the green laser light is collimated by the lens optical system 17 and then passes through the bending mirror 15, the cross dichroic prism 21, and the projection prism 81 in this order in the same plane.
 青色のレーザ光は、レーザ光源部1-Bから出射された後、レンズ光学系19からクロスダイクロイックプリズム21および投射プリズム81をこの順番で経由し、投射プリズム81で反射されることによって走査ミラー3に投射される。なお、レンズ光学系19は、レーザ光を発散光から平行光にするためのものである。 After the blue laser light is emitted from the laser light source unit 1-B, it passes through the cross dichroic prism 21 and the projection prism 81 in this order from the lens optical system 19 and is reflected by the projection prism 81 to thereby scan the mirror 3. Projected on. The lens optical system 19 is for changing the laser light from divergent light to parallel light.
 この青色のレーザ光においては、レンズ光学系19で平行化された後、光路を同一の平面内にとっている。すなわち、青色のレーザ光は、レンズ光学系19で平行化された後に、同一の平面内において、クロスダイクロイックプリズム21および投射プリズム81をこの順番で経由している。 This blue laser light is collimated by the lens optical system 19 and then has its optical path in the same plane. That is, the blue laser light is collimated by the lens optical system 19 and then passes through the cross dichroic prism 21 and the projection prism 81 in this order in the same plane.
 そして、本実施形態では、赤色、緑色および青色のレーザ光の全てにおいて、投射プリズム81に至る光路が同一の平面内に含まれており、その平面が非駆動状態の走査ミラー3の反射面3aの法線方向Nと直交している。言い換えると、上記の平面が非駆動状態の走査ミラー3の反射面3aに対して平行になっている。この構成であれば、走査部2と平行な面に光路を形成するように光学系を配置することができ走査部2の厚みを小さくして、走査光学系10を薄型にすることが可能となる。 In this embodiment, the optical path to the projection prism 81 is included in the same plane in all of the red, green, and blue laser beams, and the plane is the reflecting surface 3a of the scanning mirror 3 in the non-driven state. It is orthogonal to the normal direction N. In other words, the plane is parallel to the reflecting surface 3a of the scanning mirror 3 in the non-driven state. With this configuration, the optical system can be arranged so as to form an optical path in a plane parallel to the scanning unit 2, and the scanning optical system 10 can be thinned by reducing the thickness of the scanning unit 2. Become.
 また本実施形態では、合成されたレーザ光を走査ミラー3に向けて投射する投射プリズム81を、走査ミラー3に対してクロスダイクロイックプリズム21と反対側の位置に配置する構成としている。そのために、図1Aに示すように、クロスダイクロイックプリズム21から導光される入射光R1が、非駆動状態の走査ミラー3の反射面3aに対して平行に進行して、走査ミラー3の向こう側に設置される投射プリズム81に入射し、この投射プリズム81から反射されて投射光R2として走査ミラー3に向けて投射されている。 In this embodiment, the projection prism 81 that projects the combined laser beam toward the scanning mirror 3 is arranged at a position opposite to the cross dichroic prism 21 with respect to the scanning mirror 3. Therefore, as shown in FIG. 1A, the incident light R1 guided from the cross dichroic prism 21 travels in parallel to the reflecting surface 3a of the scanning mirror 3 in the non-driven state, and the other side of the scanning mirror 3 Is incident on a projection prism 81, reflected from the projection prism 81, and projected as projection light R 2 toward the scanning mirror 3.
 また、走査ミラー3から射出光R3が射出されるが、この射出光R3は、投射光R2とは逆方向に射出されていて、入射光R1と交差する光路を形成している。このように、投射プリズム81などの投射部材と干渉しない方向に射出される構成となるため、投射プリズム81を、走査ミラー3に近接した位置に設置可能となる。その結果、光路を形成する空間領域をコンパクトにすることが可能となり、走査光学系の厚みを薄くすることができる。もしも、投射部材の位置している方向に射出される構成であれば、射出光が投射部材に干渉しないように、投射部材の配設高さや傾きを考慮して配置する必要が生じてしまい、走査光学系の小型化を図る際に障害となって好ましくない。 Further, the emission light R3 is emitted from the scanning mirror 3, and this emission light R3 is emitted in a direction opposite to the projection light R2 and forms an optical path intersecting with the incident light R1. Thus, since it becomes the structure emitted in the direction which does not interfere with projection members, such as projection prism 81, it becomes possible to install projection prism 81 in the position near scanning mirror 3. As a result, it is possible to make the space region forming the optical path compact, and to reduce the thickness of the scanning optical system. If it is configured to be emitted in the direction in which the projection member is located, it becomes necessary to arrange the projection member in consideration of the height and inclination of the projection member so that the emitted light does not interfere with the projection member. This is not preferable because it is an obstacle to downsizing the scanning optical system.
 さらに、本実施形態では、入射光R1を走査ミラー3に向けて投射する投射部材として用いる投射プリズム81をこの走査ミラー3を備える走査部2を構成する基板上に固定する構成としている。 Furthermore, in this embodiment, the projection prism 81 used as a projection member that projects the incident light R1 toward the scanning mirror 3 is fixed on the substrate constituting the scanning unit 2 including the scanning mirror 3.
 例えば、図1Bに示すように、走査ミラー3を跨いで走査部2の固定部となる固定枠4に固定される脚部81bを介して投射プリズム81をこの固定枠4上に固定する。つまり、ケース部材10aなどの支持部材に固定枠4を固定し、この固定枠上に投射プリズム81を固定する。また、走査ミラー3を回動可能に支持する可動枠6や駆動部5などの可動部分との接触を避ける凹部81cを備えた形状として、走査ミラー3の変位を妨害しない構成とされている。 For example, as shown in FIG. 1B, the projection prism 81 is fixed on the fixed frame 4 via a leg portion 81b fixed to the fixed frame 4 serving as a fixed portion of the scanning unit 2 across the scanning mirror 3. That is, the fixed frame 4 is fixed to a support member such as the case member 10a, and the projection prism 81 is fixed on the fixed frame. Further, the shape is provided with a recess 81c that avoids contact with movable parts such as the movable frame 6 and the drive unit 5 that rotatably supports the scanning mirror 3, and is configured so as not to disturb the displacement of the scanning mirror 3.
 このように、走査部2が備える固定部(固定枠4)に投射部材(投射プリズム81)を固定することで、走査部2と投射部材との相対位置を正確にして、走査ミラー3に対する投射部材の取り付け精度を上げることができる。 In this way, by fixing the projection member (projection prism 81) to the fixed portion (fixed frame 4) included in the scanning unit 2, the relative position between the scanning unit 2 and the projection member is made accurate, and projection onto the scanning mirror 3 is performed. The mounting accuracy of the member can be increased.
 もしも投射部材を走査部2と離れた位置に配置するとすれば、投射部材と走査部間の距離や角度、光軸等の調整が必要であるが、本実施形態のように投射部材を走査部2の固定枠4上に直接固定すれば、少なくとも走査部の法線方向における光軸等の調整が不要となる。すなわち、光軸の調整は、走査部2上に固定された投射部材と他の光学部品(例えばクロスダイクロイックプリズム21など)との間でのみ行えばよく、投射部材と走査部間の光軸調整は不要であるため、走査光学系全体で見た場合、光軸の調整が容易となる。尚、固定枠4の上面と、投射プリズム81の脚部の底面の各々(即ち、固定される各面上)には、一般的にアライメントマークと呼ばれる位置決めを表す目印が記されており、このマークが一致するように、投射プリズム81を固定枠4上に配置し、固定することにより、固定枠4上の水平方向における位置決めが精度よく行われる。また、投射部材を走査部の固定枠上に直接固定するため、投射部材と走査部の間のスペースが不要になり、走査光学系の厚みを薄くすることができる。 If the projection member is arranged at a position away from the scanning unit 2, it is necessary to adjust the distance, angle, optical axis, etc. between the projection member and the scanning unit. If it is directly fixed on the fixed frame 4 of 2, the adjustment of the optical axis or the like in the normal direction of the scanning unit becomes unnecessary. That is, the adjustment of the optical axis may be performed only between the projection member fixed on the scanning unit 2 and another optical component (for example, the cross dichroic prism 21), and the optical axis adjustment between the projection member and the scanning unit. Is unnecessary, so that the optical axis can be easily adjusted when viewed in the entire scanning optical system. In addition, each of the upper surface of the fixed frame 4 and the bottom surface of the leg portion of the projection prism 81 (that is, on each surface to be fixed) is marked with a mark that indicates a positioning generally called an alignment mark. By positioning and fixing the projection prism 81 on the fixed frame 4 so that the marks coincide with each other, positioning in the horizontal direction on the fixed frame 4 is performed with high accuracy. In addition, since the projection member is directly fixed on the fixed frame of the scanning unit, a space between the projection member and the scanning unit becomes unnecessary, and the thickness of the scanning optical system can be reduced.
 また、図1Bの実線で示された投射プリズム81は、脚部全体が固定枠4上に固定されている構造である。しかし、投射プリズム81が、固定枠4上の所定の位置に固定できる位置決め面81dを備えた構成であれば、投射プリズム81の脚部全体が固定枠4上に固定されていなくてもよく、図1Bの点線で示されているように、走査部2と投射プリズム81の脚部の一部がそれぞれケース部材10aなどの支持部材に固定された構成であってもよい。すなわち、固定枠4に位置決め面を固定すると共に、走査ミラー3を跨ぐようにして支持部材に固定される脚部81Abと、走査ミラー3を回動可能に支持する可動枠6を含む可動部分との接触を避ける凹部81cを備えた形状の投射プリズム81Aとして、投射プリズム81Aをこの走査部2を構成する基板上に固定する。 Further, the projection prism 81 indicated by the solid line in FIG. 1B has a structure in which the entire leg portion is fixed on the fixed frame 4. However, if the projection prism 81 has a positioning surface 81d that can be fixed at a predetermined position on the fixed frame 4, the entire leg portion of the projection prism 81 may not be fixed on the fixed frame 4. As shown by the dotted line in FIG. 1B, the scanning unit 2 and a part of the leg of the projection prism 81 may be fixed to a support member such as the case member 10a. That is, the positioning surface is fixed to the fixed frame 4, and the leg portion 81Ab fixed to the support member so as to straddle the scanning mirror 3, and the movable part including the movable frame 6 that rotatably supports the scanning mirror 3. The projection prism 81A is fixed on the substrate constituting the scanning unit 2 as a projection prism 81A having a shape with a recess 81c that avoids the contact.
 尚、ここでいう固定とは、二つの部材(例えば、投射部材と固定枠)との接触面が接着剤等の材料又はネジ等の部品によって直接固定されていなくてもよく、上述のように、投射プリズムの脚部81Abを支持部材であるケース部材10aに接着剤等で固定することにより、間接的に投射プリズム81Aが固定枠4に固定されることも含む。要は、投射部材と固定枠との位置関係が変わらない状態が保たれていることをいう。 The term "fixed" here means that the contact surface between the two members (for example, the projection member and the fixed frame) may not be directly fixed by a material such as an adhesive or a component such as a screw, as described above. In addition, the projection prism 81A is indirectly fixed to the fixed frame 4 by fixing the projection prism leg 81Ab to the case member 10a as a support member with an adhesive or the like. The point is that the state in which the positional relationship between the projection member and the fixed frame does not change is maintained.
 また、投射プリズム81に設けられた、走査ミラー3を回動可能に支持する可動枠6や駆動部5などの可動部分との接触を避ける凹部81cについては、必ずしも図1Bに示された凹部形状でなくてもよい。駆動部5などの可動部分との接触を避けることができる形状であれば何でもよく、例えば、半球状の窪みであってもよい。 In addition, the concave portion 81c provided in the projection prism 81 that avoids contact with movable portions such as the movable frame 6 and the drive unit 5 that rotatably supports the scanning mirror 3 is not necessarily formed in the concave shape shown in FIG. 1B. It does not have to be. Any shape that can avoid contact with a movable part such as the drive unit 5 may be used, and for example, a hemispherical depression may be used.
 上記したように、走査ミラー3の可動枠6を含む可動部分と干渉する部位を凹部形状として走査部2を構成する基板上に固定する構成の投射プリズム81、81Aであれば、可動する走査ミラー3の変位を邪魔しない近接した位置に投射部材を正確に設置可能となる。そのために、走査光学系10の小型化を図りながら、走査ミラー3に対する投射部材の取り付け精度を上げることが可能となる。 As described above, if the projection prisms 81 and 81A have a configuration in which a portion that interferes with the movable portion including the movable frame 6 of the scanning mirror 3 is formed into a concave shape and is fixed on the substrate constituting the scanning portion 2, the movable scanning mirror is used. Thus, the projection member can be accurately installed at a close position that does not interfere with the displacement 3. For this reason, it is possible to increase the accuracy of attaching the projection member to the scanning mirror 3 while reducing the size of the scanning optical system 10.
 走査部2とは別の部材に投射部材を取り付ける構成の場合であっても、投射部材が、走査部2の固定枠4に対して固定される位置決め面を備える構成であれば、走査部2に対する投射部材の位置合わせが容易となって、コンパクトに精度よく取り付けることができる。 Even when the projection member is attached to a member different from the scanning unit 2, the scanning unit 2 is provided as long as the projection member includes a positioning surface fixed to the fixed frame 4 of the scanning unit 2. Positioning of the projection member with respect to can be facilitated, and it can be compactly and accurately attached.
 また、投射部材として、レーザ光を走査ミラー3に向けて反射する反射面と、固定部(固定枠4)に対して固定される位置決め面とを一体的に備えた投射プリズム81、81Aを用いることで、走査光学系の小型化を図ることが容易となる。 Further, as the projection member, projection prisms 81 and 81A integrally including a reflection surface that reflects the laser beam toward the scanning mirror 3 and a positioning surface that is fixed to the fixed portion (fixed frame 4) are used. Thus, it becomes easy to reduce the size of the scanning optical system.
 図2に示す第一実施形態の走査光学系10は、レーザ光源部1(1-R、1-G、1-B)と、出射されたレーザ光を平行化するレンズ光学系および平行化されたレーザ光を所定の方向に導く光学部品が、走査部2とは離れた位置に設けられている。つまり、光学部品が走査ミラーを組み込んだ微小電気機械システム(MEMS)の上部以外に配置されているので、平面積は大きくなるが、より薄型化が可能な構成となる。 A scanning optical system 10 according to the first embodiment shown in FIG. 2 includes a laser light source unit 1 (1-R, 1-G, 1-B), a lens optical system for collimating emitted laser light, and a collimated optical system. An optical component that guides the laser beam in a predetermined direction is provided at a position away from the scanning unit 2. In other words, since the optical component is disposed at a portion other than the upper part of the micro electro mechanical system (MEMS) in which the scanning mirror is incorporated, the plane area is increased, but the configuration can be further reduced.
 また、入射光R1を走査ミラー3に向けて反射する投射プリズム81の投射面81a(図1A参照)を半透鏡として入射光R1の一部を透過させ、透過光R4をプリズム体内部で全反射させて光検出器(例えば、フォトダイオード82)に導光して、レーザ光の光量を検出することができる。この構成であれば、レーザ光の出力を検知可能となるので、レーザ光出力を容易に調節することができる。 Further, the projection surface 81a (see FIG. 1A) of the projection prism 81 that reflects the incident light R1 toward the scanning mirror 3 is used as a semi-transparent mirror to transmit a part of the incident light R1, and the transmitted light R4 is totally reflected inside the prism body. Then, the light can be guided to a photodetector (for example, a photodiode 82) and the amount of laser light can be detected. With this configuration, the output of the laser beam can be detected, so that the laser beam output can be easily adjusted.
 次に図3に示す第一実施形態の変形例について説明する。この変形例は、先に示した走査光学系10において、投射プリズム81に替えて投射プリズム83を用いたものである。この投射プリズム83は投射プリズム81と設置位置が異なり、クロスダイクロイックプリズム21と走査ミラー3との間に配置されている。 Next, a modification of the first embodiment shown in FIG. 3 will be described. This modification uses the projection prism 83 in place of the projection prism 81 in the scanning optical system 10 shown above. The projection prism 83 has a different installation position from the projection prism 81 and is disposed between the cross dichroic prism 21 and the scanning mirror 3.
 図示するように、投射プリズム83は、クロスダイクロイックプリズム21から導かれる入射光R1が入射する入射面83aと、走査ミラー3に向かう投射光R2Bを投射する投射面83dを備えている。また、投射プリズム83に入射したレーザ光R2Aを内部に反射する第一反射面83b、第二反射面83cを備えている。第一、第二反射面83b、83cが全反射する反射面であれば、入射光R1を全て反射するレーザ光R2Aとしてプリズム内部を進行させ、投射面83dから投射光R2Bとして投射することが可能となる。 As shown in the figure, the projection prism 83 includes an incident surface 83a on which incident light R1 guided from the cross dichroic prism 21 is incident, and a projection surface 83d that projects the projection light R2B toward the scanning mirror 3. In addition, a first reflecting surface 83b and a second reflecting surface 83c that reflect the laser beam R2A incident on the projection prism 83 to the inside are provided. If the first and second reflection surfaces 83b and 83c are reflection surfaces that totally reflect, the inside of the prism can travel as laser light R2A that reflects all incident light R1, and can be projected as projection light R2B from the projection surface 83d. It becomes.
 また、第一反射面83b、第二反射面83cのいずれか一方の反射面を、プリズム内部を進行するレーザ光R2Aの一部を透過する半透過型として、透過光をフォトダイオードなどの光検出器に導光してレーザ光の光量を検出してレーザ光出力を調節する構成としてもよい。 Further, either one of the first reflecting surface 83b and the second reflecting surface 83c is made a semi-transmissive type that transmits part of the laser light R2A traveling inside the prism, and the transmitted light is detected by a photo diode or the like. It is good also as a structure which adjusts a laser beam output by detecting the light quantity of a laser beam by guiding to a container.
 投射光R2Bが投射面83dから走査ミラー3に向けて投射されると、走査ミラー3の反射面3aから射出光R3が射出される。この射出光R3が射出される方向は、投射光R2Bとは逆の斜め方向である。この構成であれば、投射プリズム83が走査ミラー3に接近した位置にあっても、走査ミラー3が射出する射出光R3を投射プリズム83が遮ることがなく、走査光学系を薄型に、また、小型にすることが可能となる。 When the projection light R2B is projected from the projection surface 83d toward the scanning mirror 3, the emission light R3 is emitted from the reflection surface 3a of the scanning mirror 3. The direction in which the emitted light R3 is emitted is an oblique direction opposite to the projected light R2B. With this configuration, even when the projection prism 83 is close to the scanning mirror 3, the projection prism 83 does not block the emission light R3 emitted by the scanning mirror 3, and the scanning optical system can be made thin. It becomes possible to reduce the size.
 上記の構成の投射プリズム83は、走査部2の固定枠に対して固定される位置決め面81dを備える脚部を持つ。さらに脚部は、走査部2の基板端面に対して位置決めするための位置決め面81eを持つことで、組立時に図の水平方向の位置決めが容易となり、走査ミラー3と投射プリズム83の位置関係が、精度よく決定される。また、脚部とケース部材10aを構成する台板との間は僅かな隙間を持ち、この隙間に例えば接着剤を充填して、脚部をケース部材10aに固定することにより、走査部と投射部材とが互いに固定される構成としてもよい。また、走査ミラー3を回動可能に支持する可動枠6を含む可動部分との接触を避ける凹部を備えた形状であることが好ましい。この構成であれば、可動する走査ミラー3の変位を邪魔しない近接した位置に投射部材を正確に設置可能となるので、走査光学系10の小型化を図りながら、走査ミラー3に対する投射部材の取り付け精度を上げることが可能となる。 The projection prism 83 having the above-described configuration has a leg portion including a positioning surface 81d fixed to the fixed frame of the scanning unit 2. Further, the leg portion has a positioning surface 81e for positioning with respect to the end surface of the substrate of the scanning unit 2, thereby facilitating the horizontal positioning in the figure during assembly, and the positional relationship between the scanning mirror 3 and the projection prism 83 is It is determined with high accuracy. Further, there is a slight gap between the leg portion and the base plate constituting the case member 10a, and the gap is filled with, for example, an adhesive, and the leg portion is fixed to the case member 10a, so that the scanning portion and the projection are projected. The members may be fixed to each other. Moreover, it is preferable that it is a shape provided with the recessed part which avoids a contact with the movable part containing the movable frame 6 which supports the scanning mirror 3 so that rotation is possible. With this configuration, the projection member can be accurately installed at a close position that does not interfere with the displacement of the movable scanning mirror 3, and therefore the projection member can be attached to the scanning mirror 3 while downsizing the scanning optical system 10. The accuracy can be increased.
 次に、第二実施形態の走査光学系20について図4および図5を用いて説明する。この走査光学系20も前述した走査光学系10と同様に、レーザ光源部1と、走査部2と、レーザ光を走査部2に導くミラーなどの複数個の光学部品とを備えている。また、それらが、所定のケース部材20aに収納された構成となっている。なお、図中において、レーザ光は二点鎖線で表している。 Next, the scanning optical system 20 of the second embodiment will be described with reference to FIGS. Similar to the scanning optical system 10 described above, the scanning optical system 20 includes a laser light source unit 1, a scanning unit 2, and a plurality of optical components such as a mirror for guiding the laser light to the scanning unit 2. Further, they are configured to be stored in a predetermined case member 20a. In the drawing, the laser beam is indicated by a two-dot chain line.
 走査光学系20は、平面視(図4参照)において、レーザ光の光路の少なくとも一部が走査部2と重畳する領域に配置されている。具体的に言うと、赤色および青色のレーザ光の大部分が、走査部2上の領域に光路をとっている。また、緑色のレーザ光については、折り曲げミラー15で反射された後は走査部2上の領域に光路をとっているが、それ以前は走査部2上の領域に光路をとっていない。 The scanning optical system 20 is arranged in a region where at least a part of the optical path of the laser beam overlaps the scanning unit 2 in plan view (see FIG. 4). Specifically, most of the red and blue laser beams take an optical path in the region on the scanning unit 2. The green laser light takes an optical path in the region on the scanning unit 2 after being reflected by the bending mirror 15, but before that, the optical path is not taken in the region on the scanning unit 2.
 レーザ光源部1は、先に示した通り、赤色のレーザ光を生成するレーザ光源部1-Rと、緑色のレーザ光を生成するレーザ光源部1-Gと、青色のレーザ光を生成するレーザ光源部1-Bを備えている。 As described above, the laser light source unit 1 includes the laser light source unit 1-R that generates red laser light, the laser light source unit 1-G that generates green laser light, and the laser that generates blue laser light. A light source unit 1-B is provided.
 レーザ光源部1-Rとレーザ光源部1-Bは、共にCANパッケージタイプのレーザ光源部である。また、レーザ光源部1-Gは、例えば、赤外半導体レーザと波長変換素子とを組み合わせたものを使用しており、赤外半導体レーザからのレーザ光の波長を波長変換素子で1/2に波長変換することにより緑色のレーザ光を生成するようになっている。なお、レーザ光源部1-Gの構造としては特に限定されるものではないが、赤外半導体レーザと波長変換素子とを組み合わせたものの方が効率がよい。 Both the laser light source unit 1-R and the laser light source unit 1-B are CAN package type laser light source units. The laser light source unit 1-G uses, for example, a combination of an infrared semiconductor laser and a wavelength conversion element, and halves the wavelength of the laser light from the infrared semiconductor laser with the wavelength conversion element. A green laser beam is generated by wavelength conversion. The structure of the laser light source unit 1-G is not particularly limited, but a combination of an infrared semiconductor laser and a wavelength conversion element is more efficient.
 ところで、本実施形態では、赤色、緑色および青色のレーザ光が、図4および図5に示すような光路(図中の二点鎖線)をとるように構成されている。すなわち、赤色、緑色および青色のレーザ光を平行化した後、それらを複数個の光学部品で反射することによって、赤色、緑色および青色のレーザ光を走査ミラー3に向かって進行させている。以下に、赤色、緑色および青色のレーザ光の光路について詳細に説明する。 By the way, in the present embodiment, the red, green and blue laser beams are configured to take optical paths as shown in FIGS. 4 and 5 (two-dot chain lines in the drawings). That is, red, green, and blue laser beams are collimated and then reflected by a plurality of optical components so that the red, green, and blue laser beams travel toward the scanning mirror 3. Hereinafter, the optical paths of the red, green, and blue laser beams will be described in detail.
 まず、ケース部材20aの内部において、図4の上側から下側に向かって、レーザ光源部1-G、1-Rおよび1-Bがこの順番で並べられている。さらに、レーザ光源部1-R、1-Gおよび1-Bは、それぞれの出射方向が互いに同じ方向になり、かつ、それぞれの出射方向が非駆動状態の走査ミラー3の反射面3aに対して平行になるように配置されている。また、レーザ光源部1は、平面視において、それぞれの一部を走査部2と重畳して配置することができる。例えば、本実施形態においては、レーザ光源部1-Rおよび1-Bの光出射側の大部分が走査部2と重畳した状態となっている。そのため、走査光学系の平面積を小さくすることができる。 First, in the case member 20a, the laser light source units 1-G, 1-R and 1-B are arranged in this order from the upper side to the lower side in FIG. Furthermore, the laser light source units 1-R, 1-G, and 1-B have the same emission direction with respect to the reflecting surface 3a of the scanning mirror 3 in the non-driven state. They are arranged in parallel. Further, the laser light source unit 1 can be arranged so that a part of the laser light source unit 1 overlaps the scanning unit 2 in a plan view. For example, in the present embodiment, most of the laser light source units 1-R and 1-B on the light emission side are overlapped with the scanning unit 2. Therefore, the plane area of the scanning optical system can be reduced.
 また、走査ミラー3の斜め上方付近には、合成後のレーザ光を走査ミラー3に投射するための投射プリズム84が配置されている。すなわち、この投射プリズム84によって、合成後のレーザ光が走査ミラー3に向けて反射される。 Further, a projection prism 84 for projecting the combined laser beam onto the scanning mirror 3 is disposed in the vicinity of the oblique upper part of the scanning mirror 3. That is, the combined laser beam is reflected by the projection prism 84 toward the scanning mirror 3.
 具体的な光路としては、赤色のレーザ光は、レーザ光源部1-Rから出射された後、レンズ光学系11、折り曲げミラー12、ダイクロイックミラー13、ダイクロイックミラー14、折り曲げミラー15および投射プリズム84をこの順番で経由し、投射プリズム84で反射されることによって走査ミラー3に投射される。 Specifically, red laser light is emitted from the laser light source unit 1-R, and then passes through the lens optical system 11, the bending mirror 12, the dichroic mirror 13, the dichroic mirror 14, the bending mirror 15, and the projection prism 84. In this order, the light is reflected by the projection prism 84 and projected onto the scanning mirror 3.
 なお、レンズ光学系11は、レーザ光を発散光から平行光にするためのものである。折り曲げミラー12および15は、レーザ光の進行方向を単に変化させるためのものであって、本発明の「光学部品」の一例である。ダイクロイックミラー13は、赤色のレーザ光を透過し、青色のレーザ光を反射するものであり、図4に示すように配置することで、赤色および青色のレーザ光を合成する機能を持つ。また、ダイクロイックミラー14は、赤色および青色のレーザ光を反射し、緑色のレーザ光を透過するものであり、図4に示すように配置することで、赤色、緑色および青色のレーザ光を合成する機能を持つ。これらダイクロイックミラー13および14も、本発明の「光学部品」の一例である。 The lens optical system 11 is for changing the laser light from diverging light to parallel light. The bending mirrors 12 and 15 are merely for changing the traveling direction of the laser light, and are examples of the “optical component” of the present invention. The dichroic mirror 13 transmits red laser light and reflects blue laser light, and has a function of combining red and blue laser light by being arranged as shown in FIG. The dichroic mirror 14 reflects red and blue laser beams and transmits green laser beams. By arranging the dichroic mirror 14 as shown in FIG. 4, the red, green and blue laser beams are combined. Has function. These dichroic mirrors 13 and 14 are also examples of the “optical component” of the present invention.
 この赤色のレーザ光においては、レンズ光学系11で平行化された後、光路を同一の平面内にとっている。すなわち、赤色のレーザ光は、レンズ光学系11で平行化された後に、同一の平面内において、折り曲げミラー12、ダイクロイックミラー13、ダイクロイックミラー14および折り曲げミラー15をこの順番で経由している。 This red laser beam is collimated by the lens optical system 11 and then has its optical path in the same plane. That is, the red laser light is collimated by the lens optical system 11 and then passes through the bending mirror 12, the dichroic mirror 13, the dichroic mirror 14, and the bending mirror 15 in this order in the same plane.
 緑色のレーザ光は、レーザ光源部1-Gから出射された後、折り曲げミラー16、レンズ光学系17、折り曲げミラー18、ダイクロイックミラー14、折り曲げミラー15および投射プリズム84をこの順番で経由し、投射プリズム84で反射されることによって走査ミラー3に投射される。なお、緑色のレンズ光学系17は2枚で構成されているが、1枚で構成してもよい。 The green laser light is emitted from the laser light source unit 1-G, and then passes through the bending mirror 16, the lens optical system 17, the bending mirror 18, the dichroic mirror 14, the bending mirror 15, and the projection prism 84 in this order, and is projected. The light is reflected by the prism 84 and projected onto the scanning mirror 3. The green lens optical system 17 is composed of two sheets, but may be composed of one sheet.
 なお、レンズ光学系17は、レーザ光を発散光から平行光にするためのものである。折り曲げミラー18は、レーザ光の進行方向を単に変化させるためのものであって、本発明の「光学部品」の一例である。折り曲げミラー16については、他の折り曲げミラーと同様の機能を持つが、平行化される前のレーザ光を反射するように配置されている。すなわち、緑色のレーザ光は、出射直後に折り曲げミラー16に入射することで進行方向を変えた後、レンズ光学系17によって平行化される。 The lens optical system 17 is for changing the laser light from divergent light to parallel light. The bending mirror 18 is merely for changing the traveling direction of the laser beam, and is an example of the “optical component” in the present invention. The folding mirror 16 has the same function as other folding mirrors, but is arranged so as to reflect the laser light before being collimated. That is, the green laser light is incident on the bending mirror 16 immediately after being emitted, changes its traveling direction, and is collimated by the lens optical system 17.
 この緑色のレーザ光においては、レンズ光学系17で平行化された後、光路を同一の平面内にとっている。すなわち、緑色のレーザ光は、レンズ光学系17で平行化された後に、同一の平面内において、折り曲げミラー18、ダイクロイックミラー14および折り曲げミラー15をこの順番で経由している。 The green laser light is collimated by the lens optical system 17 and then has its optical path in the same plane. That is, the green laser light is collimated by the lens optical system 17 and then passes through the bending mirror 18, the dichroic mirror 14, and the bending mirror 15 in this order in the same plane.
 青色のレーザ光は、レーザ光源部1-Bから出射された後、レンズ光学系19、ダイクロイックミラー13、ダイクロイックミラー14、折り曲げミラー15および投射プリズム84をこの順番で経由し、投射プリズム84で反射されることによって走査ミラー3に投射される。なお、レンズ光学系19は、レーザ光を発散光から平行光にするためのものである。 The blue laser light is emitted from the laser light source unit 1-B, then passes through the lens optical system 19, the dichroic mirror 13, the dichroic mirror 14, the bending mirror 15, and the projection prism 84 in this order, and is reflected by the projection prism 84. Is projected onto the scanning mirror 3. The lens optical system 19 is for changing the laser light from divergent light to parallel light.
 この青色のレーザ光においては、レンズ光学系19で平行化された後、光路を同一の平面内にとっている。すなわち、青色のレーザ光は、レンズ光学系19で平行化された後に、同一の平面内において、ダイクロイックミラー13、ダイクロイックミラー14および折り曲げミラー15をこの順番で経由している。 This blue laser light is collimated by the lens optical system 19 and then has its optical path in the same plane. That is, the blue laser light is collimated by the lens optical system 19 and then passes through the dichroic mirror 13, the dichroic mirror 14, and the bending mirror 15 in this order in the same plane.
 そして、本実施形態では、赤色、緑色および青色のレーザ光の全てにおいて、投射プリズム84に至る光路が同一の平面内に含まれており、その平面が非駆動状態の走査ミラー3の反射面3aの法線方向Nと直交している。言い換えると、上記の平面が非駆動状態の走査ミラー3の反射面3aに対して平行になっている。そのため、走査光学系の厚みを薄くすることができる。 In this embodiment, the optical path to the projection prism 84 is included in the same plane in all of the red, green, and blue laser beams, and the plane is the reflecting surface 3a of the scanning mirror 3 in the non-driven state. It is orthogonal to the normal direction N. In other words, the plane is parallel to the reflecting surface 3a of the scanning mirror 3 in the non-driven state. Therefore, the thickness of the scanning optical system can be reduced.
 また、本実施形態では、平面視(図4参照)において、上記の平面内に含まれる光路の少なくとも一部が走査部2と重畳する領域に配置されている。具体的に言うと、赤色および青色のレーザ光が、ダイクロイックミラー14に入射される少し前まで走査部2上の領域に光路をとっており、折り曲げミラー15で反射された後に、再び走査部2上の領域に光路をとっている。なお、この実施形態では、レーザ光源部1-Rおよび1-Bのそれぞれの光出射側の大部分が完全に走査部2と重畳する領域に位置しているため、赤色および青色のレーザ光は出射直後から走査部2上の領域に光路をとることになる。一方、緑色のレーザ光については、折り曲げミラー15で反射された後は走査部2上の領域に光路をとっているが、それ以前は走査部2の近傍外縁に沿って光路をとることにより、走査部2以外の領域の面積を小さく抑えている。 In the present embodiment, at least a part of the optical path included in the plane is arranged in a region overlapping with the scanning unit 2 in plan view (see FIG. 4). More specifically, red and blue laser beams take an optical path in the region on the scanning unit 2 until slightly before entering the dichroic mirror 14, and after being reflected by the bending mirror 15, the scanning unit 2 again. The optical path is taken in the upper area. In this embodiment, since most of the light emission sides of the laser light source units 1-R and 1-B are completely located in the region overlapping the scanning unit 2, the red and blue laser beams are The optical path is taken in the region on the scanning unit 2 immediately after emission. On the other hand, the green laser light takes an optical path in the region on the scanning unit 2 after being reflected by the bending mirror 15, but before that, by taking the optical path along the outer edge in the vicinity of the scanning unit 2, The area other than the scanning unit 2 is kept small.
 上記したように、本実施形態によれば、レーザ光源部1および複数の光学部品の一部を走査部2と重畳させることで、走査光学系20の平面積を容易に小さくすることができる。 As described above, according to the present embodiment, the plane area of the scanning optical system 20 can be easily reduced by superimposing a part of the laser light source unit 1 and the plurality of optical components on the scanning unit 2.
 また本実施形態では、合成されたレーザ光を走査ミラー3に向けて反射する投射プリズム84を、走査ミラー3に対して折り曲げミラー15と反対側の位置に配置する構成としている。そのために、図5に示すように、折り曲げミラー15から反射された入射光R1が、非駆動状態の走査ミラー3の反射面3aに対して平行に進行して、走査ミラー3の向こう側に設置される投射プリズム84に入射し、この投射プリズム84の投射面84aから反射されて投射光R2として走査ミラー3に向けて投射されている。 In this embodiment, the projection prism 84 that reflects the combined laser beam toward the scanning mirror 3 is arranged at a position opposite to the bending mirror 15 with respect to the scanning mirror 3. Therefore, as shown in FIG. 5, the incident light R1 reflected from the bending mirror 15 travels parallel to the reflecting surface 3a of the scanning mirror 3 in the non-driven state, and is placed on the other side of the scanning mirror 3. Is incident on the projection prism 84, reflected from the projection surface 84a of the projection prism 84, and projected onto the scanning mirror 3 as projection light R2.
 また、走査ミラー3から射出光R3が射出されるが、この射出光R3は、投射光R2とは逆方向に射出されていて、入射光R1と交差する光路を形成している。このように、投射プリズム84などの投射部材と干渉しない方向に射出される構成となるため、投射プリズム81を、走査ミラー3に近接した位置に設置可能となり、走査光学系の厚みを薄くすることができる。もしも、投射部材の位置している方向に射出される構成であれば、射出光が投射部材に干渉しないように、投射部材の配設高さや傾きを考慮して配置する必要が生じてしまい、走査光学系の小型化を図る際に障害となって好ましくない。 Further, the emission light R3 is emitted from the scanning mirror 3, and this emission light R3 is emitted in a direction opposite to the projection light R2 and forms an optical path intersecting with the incident light R1. Thus, since it becomes the structure emitted in the direction which does not interfere with projection members, such as projection prism 84, projection prism 81 can be installed in the position near scanning mirror 3, and thickness of a scanning optical system is made thin. Can do. If it is configured to be emitted in the direction in which the projection member is located, it becomes necessary to arrange the projection member in consideration of the height and inclination of the projection member so that the emitted light does not interfere with the projection member. This is not preferable because it is an obstacle to downsizing the scanning optical system.
 本実施形態では、投射部材と走査ミラー3を挟んで対向する位置に、レーザ光を投射部材に導光する光学部品としての折り曲げミラー15を設けて、入射光の光路を走査ミラー3の非駆動状態の反射面3aに対して平行な光路とし、走査ミラー3の上を平行に通過する入射光を投射部材が反射面3aに向けて斜めに反射し、当該反射面3aから入射光とは逆の斜め方向に射出している。このように、投射光R2とは逆方向に射出光R3を射出しているので、投射部材が射出光R3を遮ることがなく、投射部材を走査部2に近接した位置に設置可能となる。そのために、投射部材に向かう入射光R1の光路を、非駆動状態の走査ミラー3の反射面3aに対して近接した平行な光路とすることができ、走査光学系の薄型化および小型化を図ることが可能となる。 In the present embodiment, a bending mirror 15 is provided as an optical component that guides laser light to the projection member at a position facing the projection member and the scanning mirror 3, and the optical path of the incident light is not driven by the scanning mirror 3. The incident light passing parallel to the scanning mirror 3 is reflected obliquely toward the reflecting surface 3a, and is opposite to the incident light from the reflecting surface 3a. It is ejected in the diagonal direction. Thus, since the emission light R3 is emitted in the direction opposite to the projection light R2, the projection member does not block the emission light R3, and the projection member can be installed at a position close to the scanning unit 2. Therefore, the optical path of the incident light R1 directed to the projection member can be a parallel optical path close to the reflecting surface 3a of the scanning mirror 3 in the non-driven state, and the scanning optical system can be reduced in thickness and size. It becomes possible.
 つまり、本実施形態では、導かれるレーザ光を走査ミラー3に向けて投射する投射部材(投射プリズム84)に入射する入射光R1と、走査ミラー3から射出する射出光R3とが交差する位置に、且つ、走査部に近接した位置に、前記投射部材を配置しているので、光路を形成する空間領域をコンパクトにすることが可能となり、走査光学系の厚みを薄くすることができ、走査光学系を小型化することが可能となる。 That is, in the present embodiment, the incident light R1 incident on the projection member (projection prism 84) that projects the guided laser light toward the scanning mirror 3 and the emission light R3 emitted from the scanning mirror 3 intersect each other. In addition, since the projection member is arranged at a position close to the scanning unit, it is possible to make the space area forming the optical path compact, and to reduce the thickness of the scanning optical system, and to scan optics. The system can be miniaturized.
 上記の構成の投射プリズム84も、走査部2の固定部となる固定枠4に、当該プリズムの脚部が固定されている。または、固定枠4に、当該プリズムの脚部に備えられた位置決め面が固定されていてもよい。また、走査ミラー3を回動可能に支持する可動枠や駆動部などの可動部分との接触を避ける凹部を備えている。この構成であれば、可動する走査ミラー3の変位を邪魔しない近接した位置に投射部材を正確に設置可能となるので、走査光学系20の小型化を図りながら、走査ミラー3に対する投射部材の取り付け精度を上げることが可能となる。 Also in the projection prism 84 having the above-described configuration, the leg portion of the prism is fixed to the fixed frame 4 serving as the fixed portion of the scanning unit 2. Alternatively, the positioning surface provided on the leg portion of the prism may be fixed to the fixed frame 4. In addition, a concave portion is provided to avoid contact with a movable part such as a movable frame or a drive unit that rotatably supports the scanning mirror 3. With this configuration, the projection member can be accurately installed at a close position that does not interfere with the displacement of the movable scanning mirror 3, so the projection optical system 20 can be miniaturized and the projection member can be attached to the scanning mirror 3. The accuracy can be increased.
 また、投射面84aを半透鏡として入射光R1の一部を透過させ、この透過光R4を投射プリズム84の内部を全反射させながら光検出器(例えば、フォトダイオード82)に導光して、光量を検出することができる。この構成であれば、レーザ光の出力を検知可能となるので、レーザ光出力を容易に調節することができる。 Further, a part of incident light R1 is transmitted using the projection surface 84a as a semi-transparent mirror, and the transmitted light R4 is guided to a photodetector (for example, a photodiode 82) while totally reflecting the inside of the projection prism 84. The amount of light can be detected. With this configuration, the output of the laser beam can be detected, so that the laser beam output can be easily adjusted.
 上記したように、レーザ光を走査ミラー3に向けて反射する投射部材を、レーザ光の一部を透過する半透過型とし、透過光を光検出器に導光して前記レーザ光の光量を検出することで、走査光学系の小型化を図りながらレーザ光の出力を検知可能となって、レーザ光出力を調節して安定した画像を担保することが可能となる。 As described above, the projection member that reflects the laser light toward the scanning mirror 3 is a semi-transmissive type that transmits a part of the laser light, and the transmitted light is guided to the photodetector to control the amount of the laser light. By detecting, it becomes possible to detect the output of the laser beam while reducing the size of the scanning optical system, and it is possible to secure a stable image by adjusting the laser beam output.
 以上、説明したように、本実施形態に係る走査光学系は、薄型化を図ることが可能となって、容易に小型化することができる。また、走査ミラーに対する投射部材の取り付け精度を上げることができ、光軸の調整も容易となり、所望のレーザ光を正しく走査ミラーに入射し投影面を走査することができるので、レーザ光が走査部の走査ミラー以外の可動しない部分に反射され、強度の高いレーザ光が人の眼にダメージを与えるといったリスクを軽減することができる。 As described above, the scanning optical system according to the present embodiment can be reduced in thickness and can be easily reduced in size. In addition, the mounting accuracy of the projection member with respect to the scanning mirror can be increased, the optical axis can be easily adjusted, and a desired laser beam can be correctly incident on the scanning mirror to scan the projection surface. It is possible to reduce the risk that high intensity laser light is reflected by non-movable parts other than the scanning mirror and damages human eyes.
 例えば、上記のように、圧電素子を駆動源とした構造により、互いに直交している2軸周りに回動可能とされる走査ミラー3を組み込んだMEMS(微小電気機械システム)で走査部2を構成することによって、走査部2の厚みを小さくすることができ、走査光学系10、20を薄型にするのが容易となる。また、互いに直交している2軸周りに走査ミラー3を回動させるので、合成後のレーザ光の二次元走査を1つの走査ミラー3で行う走ことができるようになり、合成後のレーザ光の二次元走査を2つの走査ミラーで行う必要がなくなる。これにより、走査ミラー用の設置スペースが小さくなるので、走査光学系10、20のさらなる小型化を図ることが可能となる。 For example, as described above, the scanning unit 2 is formed by a MEMS (microelectromechanical system) incorporating a scanning mirror 3 that is rotatable about two axes orthogonal to each other with a structure using a piezoelectric element as a drive source. By configuring, the thickness of the scanning unit 2 can be reduced, and the scanning optical systems 10 and 20 can be easily thinned. In addition, since the scanning mirror 3 is rotated around two axes orthogonal to each other, it becomes possible to perform two-dimensional scanning of the combined laser beam with one scanning mirror 3, and the combined laser beam It is not necessary to perform the two-dimensional scanning with two scanning mirrors. Thereby, the installation space for the scanning mirror is reduced, so that the scanning optical systems 10 and 20 can be further reduced in size.
 また、上記のように、走査ミラー3が圧電素子5aで駆動されるように構成することによって、圧電素子5aは薄型の構造で走査ミラー3を駆動させることができるので、圧電駆動方式の走査部2は非常に薄型となる。 Further, as described above, by configuring the scanning mirror 3 to be driven by the piezoelectric element 5a, the piezoelectric element 5a can drive the scanning mirror 3 with a thin structure. 2 becomes very thin.
 また、上記のように、レーザ光源部1-R、1-Gおよび1-Bのそれぞれの出射方向が、非駆動状態の走査ミラー3の反射面3aに対してほぼ平行となるように構成することによって、容易に、非駆動状態の走査ミラー3の反射面3aの法線方向Nと直交する平面内に少なくとも2つの光路を配置することができ、走査光学系の厚みを薄くすることができる。また、レーザ光源部1および複数の光学部品の一部を走査部2と重畳させることで、走査光学系20の平面積を容易に小さくすることができる。 Further, as described above, each of the laser light source units 1-R, 1-G, and 1-B is configured to be substantially parallel to the reflecting surface 3a of the scanning mirror 3 in the non-driven state. Accordingly, at least two optical paths can be easily arranged in a plane orthogonal to the normal direction N of the reflecting surface 3a of the scanning mirror 3 in the non-driven state, and the thickness of the scanning optical system can be reduced. . In addition, by superimposing the laser light source unit 1 and a part of the plurality of optical components on the scanning unit 2, the plane area of the scanning optical system 20 can be easily reduced.
 また、上記のように、投射部材を走査部を構成する基板上に固定しているので、走査光学系の厚みを薄くすることができ、小型化することが可能となる。また、走査ミラーに対する投射部材の取り付け精度を上げることができ、光軸の調整も容易となる。 Further, as described above, since the projection member is fixed on the substrate constituting the scanning unit, the thickness of the scanning optical system can be reduced and the size can be reduced. In addition, the mounting accuracy of the projection member with respect to the scanning mirror can be increased, and the optical axis can be easily adjusted.
 上記の各実施形態では、投射部材として投射プリズムを用いたが、本発明はこれに限定されるものではなく、例えば投射ミラーなど、走査部の固定枠上に固定できる部材で、光を反射または透過する機能を持つ部材であれば何でもよい。 In each of the above embodiments, the projection prism is used as the projection member, but the present invention is not limited to this. For example, the projection mirror or the like can be fixed on the fixed frame of the scanning unit to reflect or reflect light. Any member may be used as long as it has a function of transmitting light.
 以上、本発明に係る走査光学系について、モバイル端末用プロジェクタの実施形態を中心に説明したが、これに限定されるものではなく、特許請求の範囲の記載およびこれと均等なものの範囲内で様々な変形が可能なことは、当該技術分野における通常の知識を持つ者には明らかである。 The scanning optical system according to the present invention has been described above centering on the embodiment of the projector for mobile terminals. However, the present invention is not limited to this, and various modifications are possible within the scope of the description of the claims and the equivalents thereof. It will be apparent to those skilled in the art that various modifications are possible.
 例えば、上記実施形態では、携帯電話やPDAなどのモバイル端末にプロジェクタを搭載する場合について説明したが、本発明はこれに限らず、モバイル端末以外の装置にプロジェクタを搭載するようにしてもよい。また、プロジェクタ単体で使用可能となるように構成してもよい。 For example, in the above-described embodiment, the case where the projector is mounted on a mobile terminal such as a mobile phone or a PDA has been described. However, the present invention is not limited to this, and the projector may be mounted on a device other than the mobile terminal. Further, the projector may be configured so that it can be used alone.
 また、上記実施形態では、図2および図4に示した状態となるように光学部品を配置したが、本発明はこれに限らず、光学部品の配置位置や使用個数は用途に応じて変更可能である。 Moreover, in the said embodiment, although the optical component was arrange | positioned so that it might be in the state shown in FIG. 2 and FIG. 4, this invention is not limited to this, The arrangement position and the number of use of an optical component can be changed according to a use. It is.
 また、上記実施形態では、走査部に圧電素子を組み込み、その圧電素子を利用して走査ミラーを駆動するようにしたが、本発明はこれに限らず、走査ミラーの駆動手段としてはどのようなものであってもよい。ただし、圧電素子を用いた方が走査部の薄型化を図り易い。 In the above embodiment, a piezoelectric element is incorporated in the scanning unit, and the scanning mirror is driven using the piezoelectric element. However, the present invention is not limited to this, and any means for driving the scanning mirror can be used. It may be a thing. However, the use of a piezoelectric element makes it easier to reduce the thickness of the scanning unit.
 以上説明したように、本発明に係る走査光学系およびそれを備えたプロジェクタによれば、小型化することが可能で、且つ光学部品の取り付け精度を向上し、さらに、光軸の調整が容易となる走査光学系およびそれを備えたプロジェクタを得ることができる。 As described above, according to the scanning optical system and the projector including the same according to the present invention, it is possible to reduce the size, improve the mounting accuracy of the optical components, and easily adjust the optical axis. A scanning optical system and a projector including the same can be obtained.
 そのために、本発明に係る走査光学系およびそれを備えたプロジェクタは、小型化を目指すモバイル端末用のレーザプロジェクタに好適に適用することができる。 Therefore, the scanning optical system according to the present invention and the projector including the same can be suitably applied to a laser projector for a mobile terminal aiming at miniaturization.
   1、1-R、1-G、1-B  レーザ光源部
   2  走査部
   3  走査ミラー
   3a 反射面
   4  固定枠
   5a 圧電素子
  10  走査光学系(第一実施形態)
  20  走査光学系(第二実施形態)
  21  クロスダイクロイックプリズム
  11、17、19  レンズ光学系
  12、15、16、18  折り曲げミラー(光学部品)
  13、14  ダイクロイックミラー(光学部品)
  41  投影面
  81、83、84 投射プリズム(投射部材)
  81a、83d、84a 投射面
  81b 脚部
  81c 凹部
  81d 位置決め面
  82  フォトダイオード(光検出器)
 100  プロジェクタ
  R1  入射光
  R2  投射光
  R3  射出光
1, 1-R, 1-G, 1-B Laser light source unit 2 Scanning unit 3 Scanning mirror 3a Reflecting surface 4 Fixed frame 5a Piezoelectric element 10 Scanning optical system (first embodiment)
20 Scanning optical system (second embodiment)
21 Cross dichroic prism 11, 17, 19 Lens optical system 12, 15, 16, 18 Bending mirror (optical component)
13, 14 Dichroic mirror (optical component)
41 Projection surface 81, 83, 84 Projection prism (projection member)
81a, 83d, 84a Projection surface 81b Leg portion 81c Recessed portion 81d Positioning surface 82 Photodiode (photodetector)
100 projector R1 incident light R2 projection light R3 emission light

Claims (15)

  1.  レーザ光を出射するレーザ光源部と、
     前記レーザ光を投射面に向けて二次元走査する走査ミラーを有する走査部と、
     出射されたレーザ光を所定の方向に導く光学部品と、
     前記光学部品により導かれた前記レーザ光を、前記走査ミラーに向けて投射する投射部材と、
    を備え、
     前記投射部材を、前記走査部を構成する基板上に固定したことを特徴とする走査光学系。
    A laser light source for emitting laser light;
    A scanning unit having a scanning mirror that two-dimensionally scans the laser beam toward the projection surface;
    An optical component for guiding the emitted laser light in a predetermined direction;
    A projection member for projecting the laser light guided by the optical component toward the scanning mirror;
    With
    A scanning optical system, wherein the projection member is fixed on a substrate constituting the scanning unit.
  2.  前記走査部は、微小電気機械システムを構成する基板に形成された前記走査ミラーと、
    該走査ミラーを回動可能に支持する固定部とを備え、前記投射部材を、前記固定部上に固定したことを特徴とする請求項1に記載の走査光学系。
    The scanning unit includes the scanning mirror formed on a substrate constituting a microelectromechanical system;
    The scanning optical system according to claim 1, further comprising: a fixing portion that rotatably supports the scanning mirror, wherein the projection member is fixed on the fixing portion.
  3.  前記投射部材は、前記走査部の可動領域との接触を避ける凹部と、前記固定部上に固定される脚部を備えたことを特徴とする請求項2に記載の走査光学系。 3. The scanning optical system according to claim 2, wherein the projection member includes a concave portion that avoids contact with a movable region of the scanning portion and a leg portion that is fixed on the fixed portion.
  4.  前記投射部材の脚部は、前記固定部の所定の位置に前記投射部材を固定するための位置決め面を備えたことを特徴とする請求項3に記載の走査光学系。 4. The scanning optical system according to claim 3, wherein the leg portion of the projection member includes a positioning surface for fixing the projection member at a predetermined position of the fixing portion.
  5.  前記投射部材の脚部の全部又は一部を、前記固定部を支持する支持部材に固定することにより、前記投射部材が前記走査部上に固定されることを特徴とする請求項4に記載の走査光学系。 The said projection member is fixed on the said scanning part by fixing all or one part of the leg part of the said projection member to the support member which supports the said fixing | fixed part. Scanning optical system.
  6.  前記投射部材は、一体的に形成された投射プリズムであって、前記光学部品により導かれた前記レーザ光を前記走査ミラーに向けて反射する反射面と、前記固定部に対して固定される位置決め面を備えたことを特徴とする請求項2に記載の走査光学系。 The projection member is an integrally formed projection prism that is fixed to the fixed portion and a reflecting surface that reflects the laser light guided by the optical component toward the scanning mirror. The scanning optical system according to claim 2, further comprising a surface.
  7.  前記走査ミラーが、圧電素子を駆動源とした構造により、互いに直交している2軸周りに回動可能とされ、前記走査部がこの走査ミラーを組み込んだ微小電気機械システムによって構成されていることを特徴とする請求項1に記載の走査光学系。 The scanning mirror can be rotated around two axes orthogonal to each other by a structure using a piezoelectric element as a drive source, and the scanning unit is configured by a microelectromechanical system incorporating the scanning mirror. The scanning optical system according to claim 1.
  8.  前記投射部材を、レーザ光の一部を透過する半透過型とし、透過光を光検出器に導光して前記レーザ光の光量を検出していることを特徴とする請求項1に記載の走査光学系。 2. The projection member according to claim 1, wherein the projection member is a transflective type that transmits a part of laser light, and the amount of the laser light is detected by guiding the transmitted light to a photodetector. Scanning optical system.
  9.  前記走査ミラーの非駆動状態の反射面に対して、前記レーザ光源部の出射方向がほぼ平行になるように、前記レーザ光源部を配置したことを特徴とする請求項1に記載の走査光学系。 2. The scanning optical system according to claim 1, wherein the laser light source unit is arranged so that an emission direction of the laser light source unit is substantially parallel to a reflection surface of the scanning mirror in a non-driven state. .
  10.  前記投射部材に入射するレーザ光と前記走査ミラーから射出するレーザ光とが交差するように、前記投射部材を配置したことを特徴とする請求項1に記載の走査光学系。 2. The scanning optical system according to claim 1, wherein the projection member is arranged so that a laser beam incident on the projection member and a laser beam emitted from the scanning mirror intersect each other.
  11.  前記投射部材に反射されて前記走査ミラーへ斜めに入射したレーザ光が、前記走査ミラーに反射して前記レーザ光の入射方向とは逆の斜め方向に射出するように、前記投射部材を配置したことを特徴とする請求項1に記載の走査光学系。 The projection member is arranged so that the laser light reflected by the projection member and obliquely incident on the scanning mirror is reflected by the scanning mirror and emitted in an oblique direction opposite to the incident direction of the laser light. The scanning optical system according to claim 1.
  12.  前記レーザ光は、前記光学部品により、前記走査ミラーの非駆動状態の反射面に対してほぼ平行な平面に沿って導かれ、前記走査ミラーに対向する該平面上を通過後、前記投射部材に入射することを特徴とする請求項1に記載の走査光学系。 The laser beam is guided by the optical component along a plane substantially parallel to the reflection surface of the scanning mirror in the non-driven state, and after passing through the plane facing the scanning mirror, is applied to the projection member. 2. The scanning optical system according to claim 1, wherein the scanning optical system is incident.
  13.  前記レーザ光が走査部と重畳する領域を進行するように、前記レーザ光源部及び前記光学部品が配置されていることを特徴とする請求項1に記載の走査光学系。 The scanning optical system according to claim 1, wherein the laser light source unit and the optical component are arranged so that the laser beam travels in a region where the laser beam overlaps the scanning unit.
  14.  前記投射部材が投射プリズムであって、該投射プリズムと前記走査ミラーを挟んで対向する位置に、レーザ光を前記投射プリズムに導光する光学部品としての折り曲げミラーを設けて、前記入射光の光路を前記走査ミラーの非駆動状態の反射面に対して平行な光路とし、前記走査ミラーの上を平行に通過する入射光を前記投射プリズムが前記反射面に向けて斜めに反射し、当該反射面から前記入射光とは逆の斜め方向に射出していることを特徴とする請求項13に記載の走査光学系。 The projection member is a projection prism, and a bending mirror as an optical component for guiding laser light to the projection prism is provided at a position facing the projection prism with the scanning mirror interposed therebetween, and the optical path of the incident light Is an optical path parallel to the reflecting surface of the scanning mirror in the non-driven state, and the projection prism reflects the incident light passing parallel to the scanning mirror obliquely toward the reflecting surface, and the reflecting surface The scanning optical system according to claim 13, wherein the scanning optical system emits light in an oblique direction opposite to the incident light.
  15.  請求項1に記載の走査光学系を備えていることを特徴とするプロジェクタ。 A projector comprising the scanning optical system according to claim 1.
PCT/JP2011/059349 2010-05-12 2011-04-15 Scanning optical system and projector provided with same WO2011142210A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012514741A JP5321740B2 (en) 2010-05-12 2011-04-15 Scanning optical system and projector provided with the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010110308 2010-05-12
JP2010-110308 2010-05-12

Publications (1)

Publication Number Publication Date
WO2011142210A1 true WO2011142210A1 (en) 2011-11-17

Family

ID=44914266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059349 WO2011142210A1 (en) 2010-05-12 2011-04-15 Scanning optical system and projector provided with same

Country Status (2)

Country Link
JP (1) JP5321740B2 (en)
WO (1) WO2011142210A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217536A1 (en) * 2016-06-17 2017-12-21 Ricoh Company, Ltd. Optical device, optical unit, display device, and prism fixing method
US9971152B2 (en) 2015-11-10 2018-05-15 Funai Electric Co., Ltd. Projector and head-up display device
WO2021166466A1 (en) * 2020-02-20 2021-08-26 国立大学法人福井大学 Optical scanning video projection device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1184250A (en) * 1997-09-08 1999-03-26 Olympus Optical Co Ltd Optical scanning confocal microscope
JPH11183807A (en) * 1997-02-12 1999-07-09 Univ Leland Stanford Jr Small-sized scanning confocal microscope
JP2002196277A (en) * 2000-12-26 2002-07-12 Canon Inc Image display device and image display system
JP2002277807A (en) * 2001-03-14 2002-09-25 Ricoh Co Ltd Optical scanner
JP2003332699A (en) * 2002-05-07 2003-11-21 Ricoh Co Ltd Optical integrated element, light source device, laser beam scanner and imaging apparatus
JP2005181566A (en) * 2003-12-18 2005-07-07 Brother Ind Ltd Optical scanner and image forming apparatus furnished with the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003215386A (en) * 2002-01-21 2003-07-30 Fuji Xerox Co Ltd Optical transmission medium and optical transmission device
JP2004233687A (en) * 2003-01-30 2004-08-19 Sony Corp Optical waveguide substrate and optical module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11183807A (en) * 1997-02-12 1999-07-09 Univ Leland Stanford Jr Small-sized scanning confocal microscope
JPH1184250A (en) * 1997-09-08 1999-03-26 Olympus Optical Co Ltd Optical scanning confocal microscope
JP2002196277A (en) * 2000-12-26 2002-07-12 Canon Inc Image display device and image display system
JP2002277807A (en) * 2001-03-14 2002-09-25 Ricoh Co Ltd Optical scanner
JP2003332699A (en) * 2002-05-07 2003-11-21 Ricoh Co Ltd Optical integrated element, light source device, laser beam scanner and imaging apparatus
JP2005181566A (en) * 2003-12-18 2005-07-07 Brother Ind Ltd Optical scanner and image forming apparatus furnished with the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9971152B2 (en) 2015-11-10 2018-05-15 Funai Electric Co., Ltd. Projector and head-up display device
WO2017217536A1 (en) * 2016-06-17 2017-12-21 Ricoh Company, Ltd. Optical device, optical unit, display device, and prism fixing method
US10923883B2 (en) 2016-06-17 2021-02-16 Ricoh Company, Ltd. Optical device, optical unit, display device, and prism fixing method
WO2021166466A1 (en) * 2020-02-20 2021-08-26 国立大学法人福井大学 Optical scanning video projection device
CN113631985A (en) * 2020-02-20 2021-11-09 国立大学法人福井大学 Optical scanning type image projection device
JP6984940B1 (en) * 2020-02-20 2021-12-22 国立大学法人福井大学 Optical scanning image projection device

Also Published As

Publication number Publication date
JP5321740B2 (en) 2013-10-23
JPWO2011142210A1 (en) 2013-07-22

Similar Documents

Publication Publication Date Title
KR101193524B1 (en) Optical scan unit, image projector including the same, vehicle head-up display device, and mobile phone
JP7167500B2 (en) Mobile devices, image projection devices, head-up displays, laser headlamps, head-mounted displays, object recognition devices, and vehicles
JP6278180B2 (en) Optical scanning device, image display device, and moving body
JP4737346B2 (en) Scanning optical system and projector provided with the same
JP5321740B2 (en) Scanning optical system and projector provided with the same
JP5321216B2 (en) Scanning optical system and projector provided with the same
JP7225771B2 (en) Mobile devices, distance measuring devices, image projection devices, vehicles, and pedestals
WO2011114941A1 (en) Optical scanning system and projector equipped with same
JP5321511B2 (en) Scanning optical system and projector provided with the same
US11644663B2 (en) Light deflector and its manufacturing method, image projector, object recognition device, laser headlamp device, optical writing device, and mobile object
JP2021071582A (en) Light deflector, image projection device, head-up display, laser head lamp, head-mounted display, object recognition device, and vehicle
US20200174249A1 (en) Light deflection device, distance measurement device, and mobile body
JP2021067721A (en) Movable device, image projection device, head-up display, laser head lamp, head-mounted display, object recognition device, and vehicle
JP2021067722A (en) Movable device, image projection device, head-up display, laser head lamp, head-mounted display, object recognition device, and vehicle
JP7247553B2 (en) Mobile devices, image projection devices, head-up displays, laser headlamps, head-mounted displays, object recognition devices, and vehicles
US20220299755A1 (en) Light deflector, image projection apparatus, laser headlamp, head-mounted display, distance measurement apparatus, and mobile object
US11640053B2 (en) Movable device, image projection apparatus, heads-up display, laser headlamp, head-mounted display, object recognition device, and mobile object
JP7456294B2 (en) Movable devices, deflection devices, distance measuring devices, image projection devices, and vehicles
JP7243174B2 (en) Mobile devices, distance measuring devices, image projection devices, and vehicles
US11624903B2 (en) Light deflector, LiDAR device, and image forming apparatus
US20220155582A1 (en) Operating device, light deflector, light deflecting device, distance measurement apparatus, image projection apparatus, and mobile object
CA3123184C (en) Movable device, distance measurement device, image projection apparatus, vehicle, and mount
JP2023107590A (en) Movable device, distance measurement device, measurement device, robot, electronic apparatus, molding device, image projection device, head-up display, laser head lamp, head-mounted display, object recognition device, vehicle and movable body
JP2010281853A (en) Optical deflection apparatus, image forming apparatus and image display device
JP2007304442A (en) Retina scanner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780467

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012514741

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11780467

Country of ref document: EP

Kind code of ref document: A1