WO2011142192A1 - Metal film forming system, metal film forming method, and computer storage medium - Google Patents

Metal film forming system, metal film forming method, and computer storage medium Download PDF

Info

Publication number
WO2011142192A1
WO2011142192A1 PCT/JP2011/058523 JP2011058523W WO2011142192A1 WO 2011142192 A1 WO2011142192 A1 WO 2011142192A1 JP 2011058523 W JP2011058523 W JP 2011058523W WO 2011142192 A1 WO2011142192 A1 WO 2011142192A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
load lock
station
unit
metal film
Prior art date
Application number
PCT/JP2011/058523
Other languages
French (fr)
Japanese (ja)
Inventor
修 平河
勝 友野
清次 中島
尚文 木下
恭弘 久我
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2011142192A1 publication Critical patent/WO2011142192A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/04Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
    • C23C18/10Deposition of aluminium only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67167Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers surrounding a central transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67184Apparatus for manufacturing or treating in a plurality of work-stations characterized by the presence of more than one transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67201Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the load-lock chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins

Definitions

  • the present invention relates to a metal film forming system for forming a metal film on a substrate, a metal film forming method using the metal film forming system, and a computer storage medium.
  • aluminum is used as a material for wiring and electrodes used in electronic devices such as semiconductor devices.
  • a predetermined pattern is formed on a substrate, a trench is formed in a portion to be a wiring or an electrode, and an aluminum film is formed on the substrate including the inside of the trench.
  • a method of removing excess portions by chemical mechanical polishing or the like was generally employed.
  • a method of forming this aluminum film a method of forming an aluminum film by a vacuum process such as sputtering, vacuum deposition, or CVD (Chemical Vapor Deposition) has been used.
  • the structures of wirings and electrodes have been miniaturized and complicated, and an improvement in accuracy regarding these shapes is required.
  • the opening width of the trench on the substrate is reduced, and the aspect ratio of the trench (the value obtained by dividing the trench depth by the minimum distance of the surface opening of the trench) is increased.
  • a conventional sputtering method, vacuum evaporation method, CVD method or the like is employed when forming an aluminum film on a substrate, aluminum deposited in a region close to the opening of the trench closes the opening of the trench.
  • a defective portion that is not filled with aluminum is generated in the trench.
  • an aluminum film for example, after applying a metal mixed solution in which a complex of an amine compound and aluminum hydroxide is dissolved in a solvent, the substrate is heat-treated at a predetermined temperature, and the aluminum film is formed on the substrate.
  • a method for forming the In such a case, since the metal mixed solution has fluidity, even when the trench on the substrate is very small, the metal mixed solution flows into the trench and generation of defects in the aluminum film can be suppressed.
  • the present situation is a stage where a method using such a metal mixed solution is being experimentally performed, and it has not been considered to efficiently form the aluminum film while appropriately controlling the processing atmosphere.
  • the treatment atmosphere is controlled each time, and it takes a long time to form the aluminum film. Therefore, it is practically difficult to continuously form aluminum films on a plurality of substrates, and it cannot cope with mass production of semiconductor devices.
  • the present invention has been made in view of the above points, and an object thereof is to appropriately and efficiently form a metal film on a substrate using a metal mixed solution.
  • the present invention provides a metal film forming system for forming a metal film on a substrate, wherein a pretreatment liquid for improving fixability between the substrate and the metal film is applied on the substrate.
  • a pre-treatment station for forming a base film on the substrate, and a main process for forming a metal film on the substrate by applying a metal mixed solution of a metal complex and a solvent on the substrate on which the base film is formed.
  • the loading / unloading station for loading / unloading the substrate to / from the preprocessing station, the loading / unloading station and the preprocessing station, and the inside can be switched to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas.
  • a first load lock unit that temporarily accommodates a substrate, the pretreatment station, and the main treatment station, and the interior thereof is an atmospheric atmosphere of an inert gas or
  • a second load lock unit capable of switching to a pressure atmosphere and temporarily storing a substrate, wherein the main processing station is configured to be capable of switching the inside to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas.
  • the second load lock unit is provided between the preprocessing station and the main processing station, the atmosphere inside the preprocessing station and the atmosphere inside the main processing station Can be isolated. Further, the main processing station can make the processing atmosphere inside it an atmospheric pressure atmosphere of an inert gas. Therefore, the atmosphere of each treatment can be strictly controlled, and a metal film can be appropriately formed on the substrate.
  • a first load lock unit is provided between the loading / unloading station and the pretreatment station, and the metal film forming system is loaded / unloaded via the first load lock unit and the second load lock unit. The station, the preprocessing station, and the main processing station are connected together.
  • the main processing station is configured so that the inside of the main processing station can be switched to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas.
  • an atmospheric pressure atmosphere of an inert gas can be quickly obtained. Therefore, the substrate can be processed by immediately starting up the metal film forming system after maintenance.
  • a metal film can be appropriately and efficiently formed on a substrate using a metal mixed solution.
  • Another aspect of the present invention is a metal film forming method for forming a metal film on a substrate using a metal film forming system, and the metal film forming system improves fixability between the substrate and the metal film.
  • a first load lock unit connected to the carry-in / out station and the pretreatment station, the inside of which can be switched to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas, and which temporarily accommodates a substrate.
  • a second load lock unit connected to the pre-processing station and the main processing station, the inside of which can be switched to an atmospheric pressure atmosphere or a reduced-pressure atmosphere of an inert gas, and which temporarily stores a substrate,
  • the substrate is transported from the loading / unloading station to the first load lock unit, the atmosphere in the first load lock unit is reduced, and then the atmospheric pressure of the inert gas is reduced.
  • the third step of setting the atmosphere to an inert gas atmospheric pressure, and then transporting the substrate from the second load lock unit to the main processing station, in the main processing station A fourth step of applying the metal mixture on the substrate in an inert gas atmospheric pressure atmosphere to form a metal film on the substrate, and then the second load lock from the main processing station.
  • a sixth step of transporting the substrate to the loading / unloading station via the station and the first load lock unit a sixth step of transporting the substrate to the loading / unloading station via the station and the first load lock unit.
  • a program that operates on a computer of a control unit that controls the metal film forming system is provided.
  • a stored computer-readable computer storage medium wherein the metal film forming system applies a pretreatment liquid on a substrate to improve fixability between the substrate and the metal film, and forms a base film on the substrate.
  • a pretreatment station to be formed, a metal mixed solution of a metal complex and a solvent is applied on the substrate on which the base film is formed, a metal film is formed on the substrate, and the inside is an atmospheric atmosphere of an inert gas
  • a main processing station that can be switched to a reduced-pressure atmosphere, a loading / unloading station for loading / unloading a substrate to / from the preprocessing station, the loading / unloading station, and the front
  • a first load lock unit that is connected to a processing station and is capable of switching the inside to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas and that temporarily accommodates a substrate; the preprocessing station; and the main processing station;
  • a second load lock unit that can be switched to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas and temporarily accommodates a substrate, and the metal film forming method includes the carrying-in method A first step of transporting the substrate from the exit station to the first load lock unit, depressurizing the atmosphere in the
  • a metal film can be appropriately and efficiently formed on a substrate using a metal mixed solution.
  • FIG. 1 is a plan view schematically showing the configuration of a metal film forming system 1 according to the present embodiment.
  • a predetermined pattern (not shown) is formed in advance on a wafer W as a substrate. Further, in the metal film forming system 1 of the present embodiment, an aluminum film is formed on the wafer W as the metal film.
  • the metal film forming system 1 carries in, for example, a plurality of wafers W carried in and out of the cassette between the outside and the metal film forming system 1, and a wafer W carried in and out of the cassette C.
  • the exit station 2 In order to form a base film on the wafer W, the exit station 2, a preprocessing station 3 having a plurality of processing units for performing predetermined processing on the wafer W, and a metal on the wafer W on which the base film is formed
  • a main processing station 4 including a plurality of processing units for performing predetermined processing on the wafer W is provided.
  • a first load lock unit 10 is arranged between the carry-in / out station 2 and the pretreatment station 3.
  • the first load lock unit 10 is connected to the carry-in / out station 2 through a gate valve 11 and is connected to the pretreatment station 3 through a gate valve 12. Further, a second load lock unit 13 is disposed between the preprocessing station 3 and the main processing station 4. The second load lock unit 13 is connected to the preprocessing station 3 through the gate valve 14 and is connected to the main processing station 4 through the gate valve 15.
  • the loading / unloading station 2 the first load lock unit 10
  • the preprocessing station 3 the second load lock unit 13 and the main processing station 4 are arranged in the Y direction (left and right direction in FIG. 1). They are arranged side by side in this order and connected together.
  • pretreatment station 3 and the main treatment station 4 are configured to be able to switch the inside to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas such as nitrogen gas, as will be described later.
  • the cassette loading table 20 is provided in the loading / unloading station 2.
  • the cassette mounting table 20 can mount a plurality of cassettes C in a row in the X direction (vertical direction in FIG. 1). That is, the carry-in / out station 2 is configured to be capable of holding a plurality of wafers W.
  • the loading / unloading station 2 is provided with a wafer transfer body 22 that can move on a transfer path 21 extending in the X direction.
  • the wafer transfer body 22 can expand and contract in the horizontal direction, and can also move in the vertical direction and the vertical direction ( ⁇ direction), and can transfer the wafer W between the cassette C and the first load lock unit 10.
  • the pretreatment station 3 heat-treats the pretreatment liquid coating unit 30 that coats the wafer W with a pretreatment liquid for improving the fixability between the wafer W and the metal film, and the wafer W coated with the pretreatment liquid.
  • the pretreatment liquid coating unit 30 is connected to the first transport unit 32 via the gate valve 33 on the negative side in the X direction of the first transport unit 32.
  • the heat treatment unit 31 is connected to the first transfer unit 32 via a gate valve 34 on the positive side in the X direction of the first transfer unit 32.
  • a wafer transfer mechanism 35 as a substrate transfer mechanism for transferring the wafer W is provided inside the first transfer unit 32.
  • the wafer transfer mechanism 35 has a pair of transfer arms 36 and 36 for supporting the wafer W.
  • the wafer transfer mechanism 35 is extendable in the horizontal direction and movable in the vertical direction and the vertical direction ( ⁇ direction).
  • the pretreatment liquid application unit 30, the heat treatment unit 31, the first load lock unit 10, and the second load lock unit 35 are movable.
  • the wafer W can be transferred to the load lock unit 13.
  • a gas supply pipe (not shown) for supplying an inert gas such as nitrogen gas and an intake pipe (not shown) for evacuating the internal atmosphere are connected to the first transfer unit 32.
  • the inside of the first transport unit 32 is configured to be switchable to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas.
  • the main processing station 4 includes a metal mixed solution application unit 40 for applying a metal mixed solution onto the wafer W on which the base film is formed in the preprocessing station 3, and a pre heat treatment unit for heat treating the wafer W applied with the metal mixed solution.
  • a post-heat treatment unit 42 for further heat-treating the wafer W heat-treated in the pre-heat treatment unit 41, a metal mixed solution coating unit 40, a pre-heat treatment unit 41, a post-heat treatment unit 42, and the second load lock unit 13.
  • a second transfer unit 43 for transferring the wafer W to each unit.
  • the metal liquid mixture application unit 40 is connected to the second transport unit 43 via the gate valve 44 on the X direction negative direction side of the second transport unit 43.
  • the pre-heat treatment unit 41 is connected to the second transfer unit 43 through the gate valve 45 on the Y direction positive direction side of the second transfer unit 43.
  • the post heat treatment unit 42 is connected to the second transfer unit 43 via the gate valve 46 on the positive side in the X direction of the second transfer unit 43.
  • a wafer transfer mechanism 47 as a substrate transfer mechanism for transferring the wafer W is provided inside the second transfer unit 43.
  • the wafer transfer mechanism 47 has a pair of transfer arms 48 and 48 for supporting the wafer W.
  • the wafer transfer mechanism 47 can be expanded and contracted in the horizontal direction and movable in the vertical direction and the vertical direction ( ⁇ direction).
  • the wafer W can be transferred to the unit 13.
  • a gas supply pipe (not shown) for supplying an inert gas such as nitrogen gas and an intake pipe (not shown) for evacuating the internal atmosphere are connected to the second transfer unit 43.
  • the second transport unit 43 is configured to be able to switch the inside to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas.
  • load lock chambers 100 and 101 are arranged in two upper and lower stages as shown in FIG.
  • the upper load lock chamber may be referred to as an upper load lock chamber 100
  • the lower load lock chamber may be referred to as a lower load lock chamber 101.
  • the upper load lock chamber 100 has a casing 110 that can be sealed.
  • a loading / unloading port (not shown) for the wafer W is formed on the side surface of the casing 110, and the gate valves 11 and 12 described above are provided at the loading / unloading port.
  • support pins 111 for supporting the wafer W are provided so that the wafer W can be temporarily accommodated.
  • the temperature adjustment mechanism 112 for adjusting the temperature of the wafer W supported by the support pins 111 is provided inside the side wall of the casing 110.
  • the temperature adjustment mechanism 112 includes a cooling member (not shown) such as a Peltier element or a water cooling jacket.
  • the cooling temperature of the temperature adjustment mechanism 112 is controlled by, for example, the control unit 250 described later.
  • a gas supply port 120 for supplying an inert gas such as nitrogen gas is formed inside the casing 110 on the side surface of the casing 110.
  • a gas supply pipe 122 communicating with the gas supply source 121 is connected to the gas supply port 120.
  • the gas supply pipe 122 is provided with a supply device group 123 including a valve for controlling the flow of the inert gas, a flow rate adjusting unit, and the like.
  • an air inlet 124 for reducing the atmosphere inside the casing 110 to a predetermined degree of vacuum is formed on the side surface of the casing 110.
  • an intake pipe 126 communicating with the vacuum pump 125 is connected to the intake port 124. Accordingly, the upper load lock chamber 100 is configured so that the inside thereof can be switched to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas.
  • the configuration of the lower load lock chamber 101 is the same as the configuration of the upper load lock chamber 100 described above, and a description thereof will be omitted.
  • the above-described gate valves 11 and 12 are also separately provided at the loading / unloading port (not shown) of the wafer W formed on the side surface of the casing 110 of the lower load lock chamber 101.
  • the configuration of the second load lock unit 13 is the same as the configuration of the first load lock unit 10, and the description thereof is omitted.
  • the pretreatment liquid coating unit 30 has a casing 130 that can seal the inside.
  • a loading / unloading port (not shown) for the wafer W is formed on a side surface of the casing 130, and the gate valve 33 described above is provided at the loading / unloading port.
  • a gas supply port 131 for supplying an inert gas such as nitrogen gas is formed in the casing 130 on the ceiling surface of the casing 130.
  • a gas supply pipe 133 communicating with the gas supply source 132 is connected to the gas supply port 131.
  • the gas supply pipe 133 is provided with a supply device group 134 including a valve for controlling the flow of the inert gas, a flow rate adjusting unit, and the like.
  • a spin chuck 140 for attracting and holding the wafer W is provided inside the casing 130.
  • the spin chuck 140 has a horizontal upper surface, and a suction port (not shown) for sucking the wafer W, for example, is provided on the upper surface.
  • the wafer W can be sucked and held on the spin chuck 140 by suction from the suction port.
  • a drive mechanism 142 provided outside the casing 130 is attached to the spin chuck 140 via a shaft 141.
  • the drive mechanism 142 includes a motor, for example, and the drive mechanism 142 can rotate the spin chuck 140 at a predetermined speed.
  • the drive mechanism 142 is provided with a lift drive source such as a cylinder, and the spin chuck 140 can be lifted and lowered.
  • a lift drive source such as a cylinder
  • an O-ring or grease is provided at a portion where the shaft 141 passes through the casing 130.
  • a guide ring 150 having a mountain shape in cross section is provided on the lower side of the spin chuck 140, and the outer peripheral edge of the guide ring 150 is bent and extends downward.
  • a cup 151 is provided so as to surround the spin chuck 140, the wafer W held by the spin chuck 140 and the guide ring 150. The cup 151 can receive and collect the liquid scattered or dropped from the wafer W.
  • the cup 151 is formed with an opening larger than the wafer W on the upper surface so that the spin chuck 140 can be moved up and down, and a gap 152 is formed between the side peripheral surface and the outer peripheral edge of the guide ring 150.
  • the lower side of the cup 151 forms a gas-liquid separation part by forming a curved path together with the outer peripheral edge portion of the guide ring 150.
  • An intake port 153 for reducing the atmosphere in the cup 151 and the atmosphere in the casing 130 to a predetermined degree of vacuum is formed in the inner region of the bottom of the cup 151.
  • an intake pipe 155 that communicates with a vacuum pump 154 is connected to the intake port 153.
  • a drain port 156 for discharging the collected liquid is formed in the outer region of the bottom of the cup 151, and a drain tube 157 is connected to the drain port 156.
  • the pretreatment liquid coating unit 30 is configured to be able to switch the inside to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas.
  • a pretreatment liquid nozzle 160 that discharges the pretreatment liquid onto the wafer W is disposed inside the casing 130 and above the spin chuck 140.
  • a supply pipe 162 communicating with the pretreatment liquid supply source 161 is connected to the pretreatment liquid nozzle 160.
  • a pretreatment liquid is stored in the pretreatment liquid supply source 161.
  • the supply pipe 162 is provided with a supply device group 163 including a valve for controlling the flow of the pretreatment liquid, a flow rate adjusting unit, and the like.
  • a liquid for improving the fixing property between the wafer W and the metal film for example, a solution in which an organometallic compound is dissolved in a solvent is used.
  • a solution in which an organometallic compound is dissolved in a solvent is used.
  • titanium oxide is used as the organometallic compound.
  • the solvent is not limited as long as it dissolves the organometallic compound.
  • ethers and hydrocarbons are used.
  • the pretreatment liquid nozzle 160 is connected to a moving mechanism (not shown) via the arm 164.
  • the pretreatment liquid nozzle 160 is moved from the standby region 165 provided on the outer side of one end side (right side in FIG. 3) of the cup 151 along the length direction (Y direction) of the casing 130 by the moving mechanism. It can move toward the side and move up and down.
  • the metal liquid mixture coating unit 40 of the main processing station 4 replaces the pretreatment liquid nozzle 160 of the pretreatment liquid coating unit 30 described above with a metal that discharges a metal complex onto the wafer W as shown in FIG.
  • a complex nozzle 170 and a solvent nozzle 171 for discharging a solvent for dissolving the metal complex are arranged.
  • the metal complex a complex having an aluminum atom is used.
  • a complex of an amine compound and aluminum hydroxide is used.
  • the solvent for dissolving the metal complex is not limited as long as it dissolves the metal complex. For example, ethers and hydrocarbons are used.
  • a supply pipe 173 communicating with the metal complex supply source 172 is connected to the metal complex nozzle 170.
  • the metal complex supply source 172 stores the above-described metal complex.
  • the supply pipe 173 is provided with a supply device group 174 including a valve for controlling the flow of the metal complex, a flow rate adjusting unit, and the like.
  • the metal complex nozzle 170 is connected to a moving mechanism (not shown) via an arm 175.
  • the metal complex nozzle 170 is moved from the standby region 176 provided on the outer side of one end side (right side in FIG. 4) of the cup 151 along the length direction (Y direction) of the casing 130 by the moving mechanism. And move up and down.
  • a supply pipe 181 communicating with the solvent supply source 180 is connected to the solvent nozzle 171.
  • the solvent supply source 180 stores the above-described solvent.
  • the supply pipe 181 is provided with a supply device group 182 including a valve for controlling the flow of the solvent, a flow rate adjusting unit, and the like.
  • the solvent nozzle 171 is connected to a moving mechanism (not shown) via the arm 183.
  • the solvent nozzle 171 is moved from the standby region 184 provided on the outer side of one end side (left side in FIG. 4) of the cup 151 to the one end side of the cup 151 along the length direction (Y direction) of the casing 130 by the moving mechanism. It is possible to move up and down.
  • the metal complex nozzle 170 and the solvent nozzle 171 include a center line (dotted line in the figure) of the discharge flow of the metal complex discharged from the metal complex nozzle 170 and the discharge of the solvent discharged from the solvent nozzle 171.
  • the flow center line (dotted line in the figure) is arranged so as to intersect on the wafer W. That is, the metal complex nozzle 170 and the solvent nozzle 171 are arranged such that their axial directions are inclined at a predetermined angle from the vertical direction.
  • the metal complex nozzle 170 and the solvent nozzle 171 are supported by separate arms 175 and 183.
  • the metal complex nozzle 170 and the solvent nozzle 171 are supported by the same arm and controlled by movement of the arms. The movement of 171 and the supply timing may be controlled.
  • the heat treatment unit 31 has a casing 190 that can be sealed.
  • a loading / unloading port (not shown) for the wafer W is formed on the side surface of the casing 190, and the gate valve 34 described above is provided at the loading / unloading port.
  • a gas supply port 191 for supplying an inert gas such as nitrogen gas is formed inside the casing 190 on the ceiling surface of the casing 190.
  • a gas supply pipe 193 communicating with the gas supply source 192 is connected to the gas supply port 191.
  • the gas supply pipe 193 is provided with a supply device group 194 including a valve for controlling the flow of the inert gas, a flow rate adjusting unit, and the like.
  • an air inlet 195 for reducing the atmosphere inside the casing 190 to a predetermined degree of vacuum is formed on the bottom surface of the casing 190.
  • an intake pipe 197 communicating with a vacuum pump 196 is connected to the intake port 195.
  • a heat treatment plate 200 on which the wafer W is placed and heat treated.
  • a holding member 201 that holds the heat treatment plate 200 is provided on the outer periphery of the heat treatment plate 200.
  • a substantially cylindrical support ring 202 that supports the holding member is provided on the outer periphery of the holding member 201.
  • the heating temperature of the heat treatment plate 200 is controlled by, for example, a control unit 250 described later.
  • lift pins 203 are provided for supporting and lifting the wafer W from below.
  • the lift pins 203 are provided so as to be inserted through the through holes 200 a formed in the hot plate 200.
  • a driving mechanism 205 is attached to the elevating pin 203 via a support member 204 provided outside the casing 190.
  • the drive mechanism 205 includes, for example, a motor, and the lift pin 203 can be raised and lowered by the drive mechanism 205.
  • an O-ring or grease is provided at a portion where the lifting pins 203 are inserted through the casing 190.
  • pre-heat treatment unit 41 and the post-heat treatment unit 42 of the main treatment station 4 are the same as those of the heat treatment unit 31 described above, and thus the description thereof is omitted.
  • the control unit 250 is a computer, for example, and has a program storage unit (not shown).
  • the program storage unit stores a program for executing the metal film forming process of the wafer W in the metal film forming system 1.
  • This program is recorded on a computer-readable storage medium H such as a computer-readable hard disk (HD), flexible disk (FD), compact disk (CD), magnetic optical desk (MO), or memory card. May have been installed in the control unit 250 from the storage medium H.
  • a computer-readable storage medium H such as a computer-readable hard disk (HD), flexible disk (FD), compact disk (CD), magnetic optical desk (MO), or memory card.
  • FIG. 7 is a flowchart showing main steps of the metal film forming process.
  • FIG. 8 shows the state of the wafer W in each step.
  • the interiors of the post heat treatment unit 42 and the second transfer unit 43 are each filled with an inert gas and maintained at atmospheric pressure.
  • the wafer W is taken out from the cassette C on the cassette mounting table 20 of the loading / unloading station 2 by the wafer transfer body 22 and transferred to the upper load lock chamber 100 of the first load lock unit 10.
  • the vacuum pump 125 is operated in a state where the gate valves 11 and 12 are closed, and the atmosphere inside the upper load lock chamber 100 is reduced to a predetermined degree of vacuum, for example, 13.3 Pa.
  • an inert gas is supplied from the inert gas supply source 121 to the inside of the upper load lock chamber 100, and the inside is filled with the inert gas to equalize the atmospheric pressure (step S1 in FIG. 7 (first step in the present invention). Process)).
  • the reason why the atmosphere inside the upper load lock chamber 100 is reduced is to quickly change the atmosphere inside the upper load lock chamber 100 to an inert gas atmosphere. For this reason, the pressure reduction of the atmosphere is not required until the vacuum atmosphere is strictly set, and the pressure may be reduced to, for example, a vacuum degree of 13.3 Pa as described above. Therefore, the atmosphere inside the upper load lock chamber 100 can be reduced to a predetermined degree of vacuum in a very short time, for example, 10 seconds.
  • the gate valves 12 and 33 are sequentially opened, and the wafer W is transferred to the pretreatment liquid coating unit 30 by the wafer transfer mechanism 35 of the first transfer unit 32.
  • the wafer W transferred into the pretreatment liquid coating unit 30 is sucked and held by the spin chuck 140.
  • the gate valve 33 is closed.
  • the wafer W is lowered to a predetermined position by the spin chuck 140, and the wafer W is rotated at a predetermined rotation number.
  • the pretreatment liquid 300 is discharged from the pretreatment liquid nozzle 160 onto the rotating wafer W.
  • the discharged pretreatment liquid 300 is diffused on the wafer W by centrifugal force, and the pretreatment liquid 300 is applied to the entire surface of the wafer W (step S2 in FIG. 7 (second step in the present invention)).
  • the pretreatment liquid 300 since the pretreatment liquid 300 has fluidity, even if a predetermined pattern is formed on the wafer W, the pretreatment liquid 300 appropriately flows into the trench of the pattern.
  • an inert gas is supplied from the gas supply source 132 to the inside of the pretreatment liquid application unit 30 and the internal atmosphere is sucked in by the vacuum pump 154.
  • the inside of the pretreatment liquid application unit 30 is maintained in an inert gas atmosphere at atmospheric pressure.
  • the gate valves 33 and 34 are sequentially opened, and the wafer W is transferred to the heat treatment unit 31 by the wafer transfer mechanism 35 of the first transfer unit 32.
  • the wafer W transferred into the heat treatment unit 31 is transferred to the lift pins 203.
  • the gate valve 34 is closed.
  • the lift pins 203 are lowered and the wafer W is placed on the heat treatment plate 200.
  • the wafer W on the heat treatment plate 200 is heated, for example, at 400 ° C. for 5 minutes, and a base film 310 along a predetermined pattern is formed on the wafer W as shown in FIG. 8B (step of FIG. 7).
  • S3 second step in the present invention
  • an inert gas is supplied from the gas supply source 192 to the inside of the heat treatment unit 31 and the internal atmosphere is sucked in by the vacuum pump 196.
  • the interior of the heat treatment unit 30 is maintained in an inert gas atmosphere at atmospheric pressure.
  • the gate valves 34 and 14 are opened in order, and the wafer W is transferred to the upper load lock chamber 100 of the second load lock unit 13 by the wafer transfer mechanism 35 of the first transfer unit 32.
  • the vacuum pump 125 is operated with the gate valves 14 and 15 closed, and the atmosphere inside the upper load lock chamber 100 is reduced to a predetermined degree of vacuum, for example, 13.3 Pa.
  • an inert gas is supplied from the inert gas supply source 121 to the inside of the upper load lock chamber 100, and the inside is filled with the inert gas to equalize the atmospheric pressure.
  • the wafer W is cooled to, for example, room temperature by the temperature adjustment mechanism 112 (step S4 in FIG. 7 (third step in the present invention)).
  • the gate valves 15 and 44 are sequentially opened, and the wafer W is transferred to the metal mixed solution coating unit 40 by the wafer transfer mechanism 47 of the second transfer unit 43.
  • the wafer W transported into the metal mixed solution coating unit 40 is sucked and held by the spin chuck 140.
  • the gate valve 44 is closed.
  • the wafer W is lowered to a predetermined position by the spin chuck 140, and the wafer W is rotated at a predetermined rotation number.
  • the metal complex 320 is discharged from the metal complex nozzle 170 and the solvent 321 is discharged from the solvent nozzle 171 to the rotating wafer W.
  • the metal complex 320 and the solvent 321 are mixed before reaching the wafer W, and a metal mixed solution 322 is generated.
  • the metal mixed liquid 322 needs to be coated on the wafer W within at least 90 seconds after being mixed once because aluminum which is a metal is easily deposited.
  • an appropriate metal mixed liquid 322 can be supplied onto the wafer W.
  • the supplied metal mixture 322 is diffused on the wafer W by centrifugal force, and the metal mixture 322 is applied to the entire surface of the wafer W (step S5 in FIG. 7 (fourth step in the present invention)). .
  • the metal mixed solution 322 since the metal mixed solution 322 has fluidity, even if a predetermined pattern is formed on the wafer W, the metal mixed solution 322 appropriately flows into the trench of the pattern.
  • an inert gas is supplied from the gas supply source 132 into the metal mixture application unit 40, and the internal atmosphere is sucked in by the vacuum pump 154. And the inside of the metal liquid mixture application unit 40 is maintained in an inert gas atmosphere at atmospheric pressure.
  • the gate valves 44 and 45 are sequentially opened, and the wafer W is transferred to the pre-heat treatment unit 41 by the wafer transfer mechanism 47 of the second transfer unit 43.
  • the wafer W transferred into the pre-heat treatment unit 41 is transferred to the lift pins 203.
  • the gate valve 45 is closed.
  • the lift pins 203 are lowered and the wafer W is placed on the heat treatment plate 200.
  • the wafer W on the heat treatment plate 200 is heated at a first temperature, for example, 150 ° C. for 5 minutes (step S6 in FIG. 7 (fourth step in the present invention)).
  • the organic component in the metal mixed solution 322 is volatilized and colloidal aluminum is deposited on the wafer W.
  • an inert gas is supplied from the gas supply source 192 to the inside of the pre-heat treatment unit 41 and the internal atmosphere is sucked by the vacuum pump 196.
  • the interior of the pre-heat treatment unit 41 is maintained in an inert gas atmosphere at atmospheric pressure.
  • the gate valves 45 and 46 are sequentially opened, and the wafer W is transferred to the post heat treatment unit 42 by the wafer transfer mechanism 47 of the second transfer unit 43.
  • the wafer W transferred into the post heat treatment unit 42 is delivered to the lift pins 203.
  • the gate valve 46 is closed.
  • the lift pins 203 are lowered and the wafer W is placed on the heat treatment plate 200.
  • the wafer W on the heat treatment plate 200 is heated at a second temperature higher than the first temperature, for example, 400 ° C. for 5 minutes (step S7 in FIG. 7 (fourth step in the present invention)). .
  • colloidal aluminum is metallized as shown in FIG.
  • a metal film 330 of an aluminum film is formed on the wafer W.
  • the fixing property between the wafer W and the metal mixed solution 322 is improved, and the metal mixed solution 322 is appropriately formed along a predetermined pattern.
  • an inert gas is supplied from the gas supply source 192 to the inside of the post heat treatment unit 42 and the internal atmosphere is sucked in by the vacuum pump 196.
  • the interior of the post heat treatment unit 42 is maintained in an inert gas atmosphere at atmospheric pressure.
  • the gate valves 46 and 15 are sequentially opened, and the wafer W is transferred to the lower load lock chamber 101 of the second load lock unit 13 by the wafer transfer mechanism 47 of the second transfer unit 43.
  • the vacuum pump 125 is operated with the gate valves 14 and 15 closed, and the atmosphere inside the lower load lock chamber 101 is reduced to a predetermined degree of vacuum, for example, 13.3 Pa.
  • an inert gas is supplied from the inert gas supply source 121 to the inside of the lower load lock chamber 101, and the inside is filled with the inert gas to equalize the atmospheric pressure.
  • the wafer W is cooled to a predetermined temperature by the temperature adjustment mechanism 112 (step S8 in FIG. 7 (fifth step in the present invention)).
  • the gate valves 14 and 12 are sequentially opened, and the wafer W is transferred to the lower load lock chamber 101 of the first load lock unit 10 by the wafer transfer mechanism 35 of the first transfer unit 32.
  • the temperature adjustment mechanism 112 cools the wafer W to, for example, room temperature.
  • the wafer W is transferred by the wafer transfer body 22 to the cassette C on the cassette mounting table 20 of the loading / unloading station 2 (step S9 in FIG. 7 (sixth step in the present invention)).
  • step S9 in FIG. 7 (sixth step in the present invention)
  • the atmosphere inside the preprocessing station 3 can be isolated. Further, the main processing station 4 can make the processing atmosphere inside it an atmospheric pressure atmosphere of an inert gas. Therefore, the atmosphere of each process can be strictly controlled, and the metal film 330 can be appropriately formed on the wafer W.
  • the pre-treatment station 3 can also set the inside treatment atmosphere to an atmospheric pressure atmosphere of an inert gas, the base film 310 can be appropriately formed on the wafer W. Thereby, the metal film 330 can be more appropriately formed on the wafer W.
  • a first load lock unit 10 is provided between the carry-in / out station 2 and the pretreatment station 3, and the metal film forming system 1 includes the first load lock unit 10 and the second load lock unit 13.
  • the carry-in / out station 2, the pre-processing station 3, and the main processing station 4 are connected together via the. Therefore, in the metal film forming system 1, the base film 310 and the metal film 330 can be continuously formed on the wafer W, and a plurality of wafers W can be processed continuously. Therefore, the metal film 330 can be efficiently formed on the wafer W.
  • the pretreatment liquid coating unit 30 and the heat treatment unit 31 are provided close to each other with the first transfer unit 32 interposed therebetween, so that the base film 310 is efficiently formed on the wafer W. be able to.
  • the metal liquid mixture application unit 40, the pre-heat treatment unit 41 and the post-heat treatment unit 42 are provided close to each other with the second transfer unit 43 interposed therebetween.
  • the film 330 can be formed efficiently.
  • the pre-heat treatment unit 41 and the post-heat treatment unit 42 heat-treat the wafer W in two stages. In this case, it is possible to shorten the time for the heat treatment of the wafer W in each of the heat treatment units 41 and 42 as compared with the case where the wafer W is heat-treated to a predetermined temperature with one heat treatment unit. Therefore, a plurality of wafers W can be heat-treated continuously and efficiently.
  • the pretreatment station 3 and the main treatment station 4 are configured to be able to switch the interior to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas, for example, the inside of the pretreatment station 3 and the main treatment station 4 during maintenance. Even when the atmosphere is opened to the atmosphere, after the maintenance is completed, the atmosphere in the pretreatment station 3 and the main treatment station 4 is once evacuated to reduce the pressure, whereby the atmospheric pressure of the inert gas can be quickly changed. Therefore, immediately after the maintenance, the metal film forming system 1 can be started up and the wafer W can be processed.
  • each of the first load lock unit 10 and the second load lock unit 13 includes a temperature adjustment mechanism 112 that adjusts the wafer W to a predetermined temperature. While the wafer W is temporarily accommodated in the two load lock units 13, the temperature of the wafer W can be adjusted. Thereby, the wafer W can be processed more efficiently.
  • first load lock unit 10 and the second load lock unit 13 are respectively provided with load lock chambers 100 and 101 in two upper and lower stages, two wafers W are simultaneously accommodated and processed. be able to. Therefore, the wafer W can be processed more efficiently.
  • the metal complex 320 has an aluminum atom, but may have another metal atom, such as a copper atom, a gold atom, or a silver atom.
  • the pretreatment liquid is not limited to titanium oxide, and other palladium oxide or aluminum oxide may be used.
  • the atmosphere in the pretreatment station 3 described above may be opened to the atmosphere instead of the nitrogen gas atmosphere. In such a case, the first load lock unit 10 described above can be omitted.
  • first load lock unit 10 and the second load lock unit 13 of the above embodiment are provided with two upper and lower load lock chambers 100 and 101, respectively. It is not limited to this.
  • a load lock chamber having three or more upper and lower stages may be provided.
  • first load lock unit 10 and the second load lock unit 13 of the above embodiment are provided with load lock chambers 100 and 101 in two upper and lower stages, respectively.
  • the chambers may be arranged in the horizontal direction.
  • two load lock chambers 350 and 351 are arranged side by side in the horizontal direction (X direction in FIG. 9).
  • the load lock chamber 350 disposed on the positive side in the X direction corresponds to the upper load lock chamber 100 described above, and has the same configuration as the upper load lock chamber 100.
  • the load lock chamber 351 arranged on the negative side in the X direction corresponds to the lower load lock chamber 101 described above, and has the same configuration as the lower load lock chamber 101.
  • the load lock chambers 350 and 351 are provided with the above-described gate valves 11 and 12 at both ends thereof, and are connected to the carry-in / out station 2 and the pretreatment station 3. Then, the above-described step S ⁇ b> 1 that is performed when the wafer W is transferred from the loading / unloading station 2 to the preprocessing station 3 is performed in the load lock chamber 350. Further, the above-described step S9 performed when the wafer W is transferred from the preprocessing station 3 to the carry-in / out station 2 is performed in the load lock chamber 351.
  • the second load lock unit 13 also has two load lock chambers 360 and 361 arranged in the horizontal direction. These load lock chambers 360 and 361 are arranged side by side in the X direction.
  • the load lock chamber 360 arranged on the positive side in the X direction corresponds to the upper load lock chamber 100 described above, and has the same configuration as the upper load lock chamber 100.
  • the load lock chamber 361 arranged on the X direction negative direction side corresponds to the above-described lower load lock chamber 101 and has the same configuration as the lower load lock chamber 101.
  • the load lock chambers 360 and 361 are provided with the above-described gate valves 14 and 15 at both ends thereof, and are connected to the preprocessing station 3 and the main processing station 4.
  • step S4 performed when the wafer W is transferred from the preprocessing station 3 to the main processing station 4 is performed in the load lock chamber 360. Further, the above-described step S8 performed when the wafer W is transferred from the main processing station 4 to the preprocessing station 3 is performed in the load lock chamber 361.
  • a spare heat treatment unit 362 may be provided between the load lock chambers 360 and 361 of the second load lock unit 13.
  • the heat treatment unit 362 is connected to the first transfer unit 32 of the pretreatment station 3 via the gate valve 363 and is connected to the second transfer unit 43 of the main processing station 4 via the gate valve 364.
  • the heat treatment unit 362 is provided with a temperature adjustment mechanism (not shown) therein, and is configured to be able to switch the inside to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas.
  • the heat treatment unit 362 can adjust the temperature of the wafer W to a predetermined temperature, and is used for maintenance of the load lock chambers 360 and 361, for example.
  • the main processing station 4 may be provided with a spare heat treatment unit 370.
  • the heat treatment unit 370 is connected to the second transfer unit 43 via the gate valve 371.
  • the heat treatment unit 370 is provided with a heat treatment plate (not shown) and a temperature adjustment mechanism (not shown) inside, and is configured to be able to switch the inside to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas. .
  • the heat treatment unit 370 can heat the wafer W to a predetermined temperature, and is used for maintenance of the pre-heat treatment unit 41 and the post-heat treatment unit 42, for example.
  • the other structure of the metal film formation system 1 is the same as that of the metal film formation system 1 in the said embodiment, description is abbreviate
  • the pretreatment liquid coating unit 30 and the metal mixed liquid coating unit 40 of the above embodiment may include a back rinse nozzle that cleans the back surface of the wafer W, and a cup rinse nozzle that cleans the cup 151. You may have.
  • the present invention is not limited to the wafer but may be another substrate such as an FPD (flat panel display) other than the wafer or a mask reticle for a photomask. It can also be applied in some cases. Furthermore, the present invention can be applied to, for example, a manufacturing process of an organic solar cell and a film forming process in a low oxygen atmosphere.
  • FPD flat panel display

Abstract

A metal film forming system comprises: a loading/unloading station that loads/unloads substrates; a pre-treatment station that coats a substrate with a pretreatment liquid, forming a base film on the substrate; a post-treatment station that coats the substrate with a mixed metal liquid, forming a metal film on the substrate; a first load-lock unit that connects the loading/unloading station and the pre-treatment station; and a second load-lock unit that connects the pre-treatment station and the post-treatment station. The pre-treatment station, post-treatment station, first lock-load unit, and second lock-load unit are configured so that the interior of each can be switched to an atmospheric pressure atmosphere of an inert gas or to a reduced-pressure atmosphere.

Description

金属膜形成システム、金属膜形成方法及びコンピュータ記憶媒体Metal film forming system, metal film forming method, and computer storage medium
 本発明は、基板上に金属膜を形成する金属膜形成システム、当該金属膜形成システムを用いた金属膜形成方法及びコンピュータ記憶媒体に関する。 The present invention relates to a metal film forming system for forming a metal film on a substrate, a metal film forming method using the metal film forming system, and a computer storage medium.
 例えば半導体デバイスなどの電子デバイスに使用されている配線や電極の材料として、例えばアルミニウムが使用されている。従来、アルミニウムの配線や電極を形成するには、例えば基板上に所定のパターンを形成して配線又は電極となるべき部位にトレンチを形成し、当該トレンチ内を含む基板上にアルミニウム膜を形成した後、余剰の部分を化学機械研磨等により除去する方法が一般的に採用されていた。また、このアルミニウム膜を形成する方法として、例えばスパッタリング法、真空蒸着法、CVD法(Chemical Vapor Deposition、化学気相成長法)などの真空プロセスでアルミニウム膜を形成する方法が用いられていた。 For example, aluminum is used as a material for wiring and electrodes used in electronic devices such as semiconductor devices. Conventionally, in order to form an aluminum wiring or electrode, for example, a predetermined pattern is formed on a substrate, a trench is formed in a portion to be a wiring or an electrode, and an aluminum film is formed on the substrate including the inside of the trench. Thereafter, a method of removing excess portions by chemical mechanical polishing or the like was generally employed. Further, as a method of forming this aluminum film, a method of forming an aluminum film by a vacuum process such as sputtering, vacuum deposition, or CVD (Chemical Vapor Deposition) has been used.
 ところで、近年、半導体デバイスのさらなる高集積化を図るため、配線や電極の構造の微細化、複雑化が進んでおり、これらの形状に関する精度の向上が要求されている。かかる場合、基板上のトレンチの開口幅が小さくなり、またトレンチのアスペクト比(トレンチの深さをトレンチの表面開口部の最小距離で除した値)が大きくなる。このため、基板上にアルミニウム膜を形成する際に、従来のスパッタリング法、真空蒸着法、CVD法などを採用すると、トレンチの開口に近い領域に堆積したアルミニウムがトレンチの開口を閉塞し、その結果としてトレンチの内部にアルミニウムが充填されない欠陥部分が生じるおそれがある。 Incidentally, in recent years, in order to further increase the integration of semiconductor devices, the structures of wirings and electrodes have been miniaturized and complicated, and an improvement in accuracy regarding these shapes is required. In such a case, the opening width of the trench on the substrate is reduced, and the aspect ratio of the trench (the value obtained by dividing the trench depth by the minimum distance of the surface opening of the trench) is increased. For this reason, when a conventional sputtering method, vacuum evaporation method, CVD method or the like is employed when forming an aluminum film on a substrate, aluminum deposited in a region close to the opening of the trench closes the opening of the trench. As a result, there is a possibility that a defective portion that is not filled with aluminum is generated in the trench.
 そこで、アルミニウム膜を形成する方法として、例えばアミン化合物と水酸化アルミニウムの錯体を溶媒に溶解した金属混合液を基板上に塗布した後、所定の温度で基板を熱処理して、基板上にアルミニウム膜を形成する方法が提案されている。かかる場合、金属混合液が流動性を有するため、基板上のトレンチが微小の場合でも、当該トレンチ内に金属混合液が流入し、アルミニウム膜の欠陥の発生を抑制できる。また、基板とアルミニウム膜との定着性を向上させるため、金属混合液を基板上に塗布する前に、基板上に有機金属化合物の下地膜を形成することも提案されている。この下地膜は、例えばチタン原子を含む有機金属化合物の溶液を基板上に塗布した後、所定の温度で基板を熱処理して形成される(特許文献1)。 Therefore, as a method of forming an aluminum film, for example, after applying a metal mixed solution in which a complex of an amine compound and aluminum hydroxide is dissolved in a solvent, the substrate is heat-treated at a predetermined temperature, and the aluminum film is formed on the substrate. There has been proposed a method for forming the. In such a case, since the metal mixed solution has fluidity, even when the trench on the substrate is very small, the metal mixed solution flows into the trench and generation of defects in the aluminum film can be suppressed. In order to improve the fixability between the substrate and the aluminum film, it has also been proposed to form a base film of an organometallic compound on the substrate before the metal mixed solution is applied onto the substrate. This base film is formed, for example, by applying a solution of an organometallic compound containing titanium atoms on a substrate and then heat-treating the substrate at a predetermined temperature (Patent Document 1).
日本国特開2009-227864号公報Japanese Unexamined Patent Publication No. 2009-227864
 特許文献1の方法を用いて基板上にアルミニウム膜を形成する場合、処理雰囲気中に微量の酸素や水分が存在すると、金属混合液はこれら酸素や水分と反応して劣化するおそれがある。このため、低酸素濃度且つ低水分濃度の処理雰囲気、例えば窒素ガス等の不活性ガス雰囲気中で、金属混合液の塗布処理や基板の熱処理を行う必要がある。また、かかる金属混合液の劣化を避けるため、アルミニウム膜を形成する際の処理雰囲気と下地膜を形成する際の処理雰囲気とを隔離する必要もある。 In the case of forming an aluminum film on a substrate using the method of Patent Document 1, if a trace amount of oxygen or moisture is present in the processing atmosphere, the metal mixture may react with these oxygen or moisture and deteriorate. For this reason, it is necessary to perform the coating process of the metal mixture and the heat treatment of the substrate in a processing atmosphere having a low oxygen concentration and a low water concentration, for example, an inert gas atmosphere such as nitrogen gas. In addition, in order to avoid the deterioration of the metal mixed solution, it is necessary to separate the processing atmosphere when forming the aluminum film from the processing atmosphere when forming the base film.
 このように金属混合液を用いた方法では、各処理の処理雰囲気を厳格に制御する必要がある。しかしながら、現状は、かかる金属混合液を用いた方法が試験的に行われている段階であり、処理雰囲気を適切に制御しつつアルミニウム膜の形成を効率よく行うことまでは考慮されていない。例えば各処理を行う際に、都度処理雰囲気を制御しており、アルミニウム膜を形成するのに多大な時間を要している。したがって、複数の基板に対してアルミニウム膜を連続的に形成することは現実的に困難であり、半導体デバイスの量産化に対応できていない。 As described above, in the method using the metal mixed solution, it is necessary to strictly control the treatment atmosphere of each treatment. However, the present situation is a stage where a method using such a metal mixed solution is being experimentally performed, and it has not been considered to efficiently form the aluminum film while appropriately controlling the processing atmosphere. For example, when each treatment is performed, the treatment atmosphere is controlled each time, and it takes a long time to form the aluminum film. Therefore, it is practically difficult to continuously form aluminum films on a plurality of substrates, and it cannot cope with mass production of semiconductor devices.
 本発明は、かかる点に鑑みてなされたものであり、金属混合液を用いて基板上に金属膜を適切且つ効率よく形成することを目的とする。 The present invention has been made in view of the above points, and an object thereof is to appropriately and efficiently form a metal film on a substrate using a metal mixed solution.
 前記の目的を達成するため、本発明は、基板上に金属膜を形成する金属膜形成システムであって、基板と金属膜との定着性を向上させるための前処理液を基板上に塗布して、当該基板上に下地膜を形成する前処理ステーションと、前記下地膜が形成された基板上に金属錯体と溶媒の金属混合液を塗布して、当該基板上に金属膜を形成する主処理ステーションと、前記前処理ステーションに対して基板を搬入出する搬入出ステーションと、前記搬入出ステーションと前記前処理ステーションとに接続され、内部を不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能で、且つ基板を一時的に収容する第1のロードロックユニットと、前記前処理ステーションと前記主処理ステーションとに接続され、内部を不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能で、且つ基板を一時的に収容する第2のロードロックユニットと、を有し、前記主処理ステーションは、内部を不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能に構成されている。 In order to achieve the above object, the present invention provides a metal film forming system for forming a metal film on a substrate, wherein a pretreatment liquid for improving fixability between the substrate and the metal film is applied on the substrate. A pre-treatment station for forming a base film on the substrate, and a main process for forming a metal film on the substrate by applying a metal mixed solution of a metal complex and a solvent on the substrate on which the base film is formed. Connected to the station, the loading / unloading station for loading / unloading the substrate to / from the preprocessing station, the loading / unloading station and the preprocessing station, and the inside can be switched to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas. And a first load lock unit that temporarily accommodates a substrate, the pretreatment station, and the main treatment station, and the interior thereof is an atmospheric atmosphere of an inert gas or A second load lock unit capable of switching to a pressure atmosphere and temporarily storing a substrate, wherein the main processing station is configured to be capable of switching the inside to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas. Has been.
 本発明の金属膜形成システムには、前処理ステーションと主処理ステーションとの間に第2のロードロックユニットが設けられているので、前処理ステーションの内部の雰囲気と主処理ステーションの内部の雰囲気とを隔離することができる。また、主処理ステーションは、その内部の処理雰囲気を不活性ガスの大気圧雰囲気にすることができる。したがって、各処理の雰囲気を厳格に制御することができ、基板上に金属膜を適切に形成することができる。また、搬入出ステーションと前処理ステーションとの間に第1のロードロックユニットが設けられており、金属膜形成システムは、第1のロードロックユニットと第2のロードロックユニットを介して、搬入出ステーション、前処理ステーション及び主処理ステーションが一体に接続された構成を有している。このため、当該金属膜形成システムにおいて、基板上に下地膜と金属膜を連続的に形成することができ、しかも複数の基板を連続して処理することができる。さらに、主処理ステーションは、その内部を不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能に構成されているので、例えばメンテナンス時に主処理ステーションの内部を大気に開放した場合でも、メンテナンス終了後、主処理ステーション内の雰囲気を一旦真空引きして減圧することで、迅速に不活性ガスの大気圧雰囲気にすることができる。したがって、メンテナンス後、直ぐに金属膜形成システムを立ち上げて基板を処理することができる。以上のように、本発明によれば、金属混合液を用いて基板上に金属膜を適切且つ効率よく形成することができる。 In the metal film forming system of the present invention, since the second load lock unit is provided between the preprocessing station and the main processing station, the atmosphere inside the preprocessing station and the atmosphere inside the main processing station Can be isolated. Further, the main processing station can make the processing atmosphere inside it an atmospheric pressure atmosphere of an inert gas. Therefore, the atmosphere of each treatment can be strictly controlled, and a metal film can be appropriately formed on the substrate. In addition, a first load lock unit is provided between the loading / unloading station and the pretreatment station, and the metal film forming system is loaded / unloaded via the first load lock unit and the second load lock unit. The station, the preprocessing station, and the main processing station are connected together. For this reason, in the said metal film formation system, a base film and a metal film can be continuously formed on a board | substrate, and a several board | substrate can be processed continuously. Furthermore, the main processing station is configured so that the inside of the main processing station can be switched to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas.For example, even when the inside of the main processing station is opened to the atmosphere during maintenance, By temporarily evacuating and reducing the atmosphere in the main processing station, an atmospheric pressure atmosphere of an inert gas can be quickly obtained. Therefore, the substrate can be processed by immediately starting up the metal film forming system after maintenance. As described above, according to the present invention, a metal film can be appropriately and efficiently formed on a substrate using a metal mixed solution.
 別な観点による本発明は、金属膜形成システムを用いて、基板上に金属膜を形成する金属膜形成方法であって、前記金属膜形成システムは、基板と金属膜との定着性を向上させるための前処理液を基板上に塗布して、当該基板上に下地膜を形成する前処理ステーションと、前記下地膜が形成された基板上に金属錯体と溶媒の金属混合液を塗布して、当該基板上に金属膜を形成し、且つ内部を不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能な主処理ステーションと、前記前処理ステーションに対して基板を搬入出する搬入出ステーションと、前記搬入出ステーションと前記前処理ステーションとに接続され、内部を不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能で、且つ基板を一時的に収容する第1のロードロックユニットと、前記前処理ステーションと前記主処理ステーションとに接続され、内部を不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能で、且つ基板を一時的に収容する第2のロードロックユニットと、を有し、前記金属膜形成方法は、前記搬入出ステーションから前記第1のロードロックユニットに基板を搬送し、当該第1のロードロックユニット内の雰囲気を減圧した後、不活性ガスの大気圧雰囲気にする第1の工程と、その後、前記第1のロードロックユニットから前記前処理ステーションに基板を搬送し、当該前処理ステーションにおいて、前記前処理液を基板上に塗布して、当該基板上に下地膜を形成する第2の工程と、その後、前記前処理ステーションから前記第2のロードロックユニットに基板を搬送し、当該第2のロードロックユニット内の雰囲気を減圧した後、不活性ガスの大気圧雰囲気にする第3の工程と、その後、前記第2のロードロックユニットから前記主処理ステーションに基板を搬送し、当該主処理ステーションにおいて、不活性ガスの大気圧雰囲気中で前記金属混合液を基板上に塗布して、当該基板上に金属膜を形成する第4の工程と、その後、前記主処理ステーションから前記第2のロードロックユニットに基板を搬送し、当該第2のロードロックユニット内の雰囲気を減圧した後、不活性ガスの大気圧雰囲気にする第5の工程と、その後、前記第2のロードロックユニットから前記前処理ステーション及び前記第1のロードロックユニットを介して前記搬入出ステーションに基板を搬送する第6の工程と、を有する。 Another aspect of the present invention is a metal film forming method for forming a metal film on a substrate using a metal film forming system, and the metal film forming system improves fixability between the substrate and the metal film. A pretreatment liquid for applying a pretreatment liquid on the substrate, forming a base film on the substrate, and applying a metal mixed solution of a metal complex and a solvent on the substrate on which the base film is formed, A main processing station capable of forming a metal film on the substrate and switching the inside to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas; a loading / unloading station for loading / unloading the substrate to / from the preprocessing station; A first load lock unit connected to the carry-in / out station and the pretreatment station, the inside of which can be switched to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas, and which temporarily accommodates a substrate. A second load lock unit connected to the pre-processing station and the main processing station, the inside of which can be switched to an atmospheric pressure atmosphere or a reduced-pressure atmosphere of an inert gas, and which temporarily stores a substrate, In the metal film forming method, the substrate is transported from the loading / unloading station to the first load lock unit, the atmosphere in the first load lock unit is reduced, and then the atmospheric pressure of the inert gas is reduced. A first step of creating an atmosphere, and then transporting the substrate from the first load lock unit to the pretreatment station, applying the pretreatment liquid onto the substrate at the pretreatment station, A second step of forming a base film on the substrate, and then transporting the substrate from the pretreatment station to the second load lock unit. After depressurizing the atmosphere in the lock unit, the third step of setting the atmosphere to an inert gas atmospheric pressure, and then transporting the substrate from the second load lock unit to the main processing station, in the main processing station A fourth step of applying the metal mixture on the substrate in an inert gas atmospheric pressure atmosphere to form a metal film on the substrate, and then the second load lock from the main processing station. A fifth step of transporting the substrate to the unit, depressurizing the atmosphere in the second load lock unit, and then setting the atmosphere to an inert gas atmospheric pressure, and then the pretreatment from the second load lock unit. And a sixth step of transporting the substrate to the loading / unloading station via the station and the first load lock unit.
 また別な観点による本発明は、基板上に金属膜を形成する金属膜形成方法を金属膜形成システムによって実行させるために、当該金属膜形成システムを制御する制御部のコンピュータ上で動作するプログラムを格納した読み取り可能なコンピュータ記憶媒体であって、前記金属膜形成システムは、基板と金属膜との定着性を向上させるための前処理液を基板上に塗布して、当該基板上に下地膜を形成する前処理ステーションと、前記下地膜が形成された基板上に金属錯体と溶媒の金属混合液を塗布して、当該基板上に金属膜を形成し、且つ内部を不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能な主処理ステーションと、前記前処理ステーションに対して基板を搬入出する搬入出ステーションと、前記搬入出ステーションと前記前処理ステーションとに接続され、内部を不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能で、且つ基板を一時的に収容する第1のロードロックユニットと、前記前処理ステーションと前記主処理ステーションとに接続され、内部を不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能で、且つ基板を一時的に収容する第2のロードロックユニットと、を有し、前記金属膜形成方法は、前記搬入出ステーションから前記第1のロードロックユニットに基板を搬送し、当該第1のロードロックユニット内の雰囲気を減圧した後、不活性ガスの大気圧雰囲気にする第1の工程と、その後、前記第1のロードロックユニットから前記前処理ステーションに基板を搬送し、当該前処理ステーションにおいて、前記前処理液を基板上に塗布して、当該基板上に下地膜を形成する第2の工程と、その後、前記前処理ステーションから前記第2のロードロックユニットに基板を搬送し、当該第2のロードロックユニット内の雰囲気を減圧した後、不活性ガスの大気圧雰囲気にする第3の工程と、その後、前記第2のロードロックユニットから前記主処理ステーションに基板を搬送し、当該主処理ステーションにおいて、不活性ガスの大気圧雰囲気中で前記金属混合液を基板上に塗布して、当該基板上に金属膜を形成する第4の工程と、その後、前記主処理ステーションから前記第2のロードロックユニットに基板を搬送し、当該第2のロードロックユニット内の雰囲気を減圧した後、不活性ガスの大気圧雰囲気にする第5の工程と、その後、前記第2のロードロックユニットから前記前処理ステーション及び前記第1のロードロックユニットを介して前記搬入出ステーションに基板を搬送する第6の工程と、を有する。 According to another aspect of the present invention, in order to cause a metal film forming system to execute a metal film forming method for forming a metal film on a substrate, a program that operates on a computer of a control unit that controls the metal film forming system is provided. A stored computer-readable computer storage medium, wherein the metal film forming system applies a pretreatment liquid on a substrate to improve fixability between the substrate and the metal film, and forms a base film on the substrate. A pretreatment station to be formed, a metal mixed solution of a metal complex and a solvent is applied on the substrate on which the base film is formed, a metal film is formed on the substrate, and the inside is an atmospheric atmosphere of an inert gas Alternatively, a main processing station that can be switched to a reduced-pressure atmosphere, a loading / unloading station for loading / unloading a substrate to / from the preprocessing station, the loading / unloading station, and the front A first load lock unit that is connected to a processing station and is capable of switching the inside to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas and that temporarily accommodates a substrate; the preprocessing station; and the main processing station; A second load lock unit that can be switched to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas and temporarily accommodates a substrate, and the metal film forming method includes the carrying-in method A first step of transporting the substrate from the exit station to the first load lock unit, depressurizing the atmosphere in the first load lock unit, and then setting the atmosphere to an inert gas atmospheric pressure; The substrate is transported from one load lock unit to the pretreatment station, and the pretreatment liquid is applied onto the substrate at the pretreatment station. A second step of forming a base film on the substrate, and then transporting the substrate from the pretreatment station to the second load lock unit and depressurizing the atmosphere in the second load lock unit. A third step of bringing the inert gas into an atmospheric pressure atmosphere, and then transferring the substrate from the second load lock unit to the main processing station, where the main processing station is in an atmospheric atmosphere of the inert gas. And applying the metal mixture onto the substrate to form a metal film on the substrate, and then transporting the substrate from the main processing station to the second load lock unit. A second step of reducing the atmosphere in the load lock unit 2 to an atmospheric pressure of an inert gas, and then starting the pretreatment from the second load lock unit. And a sixth step of transporting the substrate to the carry-in / out station via the physical station and the first load lock unit.
 本発明によれば、金属混合液を用いて基板上に金属膜を適切且つ効率よく形成することができる。 According to the present invention, a metal film can be appropriately and efficiently formed on a substrate using a metal mixed solution.
本実施の形態にかかる金属膜形成システムの構成の概略を示す平面図である。It is a top view which shows the outline of a structure of the metal film formation system concerning this Embodiment. 第1のロードロックユニットの構成の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of a structure of a 1st load lock unit. 前処理液塗布ユニットの構成の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of a structure of a pretreatment liquid application unit. 金属混合液塗布ユニットの構成の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of a structure of a metal liquid mixture application unit. 金属錯体ノズルと溶媒ノズルの配置を示した説明図である。It is explanatory drawing which showed arrangement | positioning of a metal complex nozzle and a solvent nozzle. 熱処理ユニットの構成の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of a structure of the heat processing unit. 金属膜形成処理の主な工程を示すフローチャートである。It is a flowchart which shows the main processes of a metal film formation process. 金属膜形成処理の各工程におけるウェハの状態を示した説明図であり、(a)はウェハ上に前処理液が塗布された様子を示し、(b)はウェハ上に下地膜が形成された様子を示し、(c)はウェハ上に金属混合液が塗布された様子を示し、(d)はウェハ上に金属膜が形成された様子を示す。It is explanatory drawing which showed the state of the wafer in each process of metal film formation processing, (a) shows a mode that the pre-processing liquid was apply | coated on the wafer, (b) showed the base film formed on the wafer (C) shows a state in which a metal mixed solution is applied on the wafer, and (d) shows a state in which a metal film is formed on the wafer. 他の実施の形態にかかる金属膜形成システムの構成の概略を示す平面図である。It is a top view which shows the outline of a structure of the metal film formation system concerning other embodiment.
 以下、本発明の実施の形態について説明する。図1は本実施の形態にかかる金属膜形成システム1の構成の概略を示す平面図である。なお、基板としてのウェハW上には、予め所定のパターン(図示せず)が形成されている。また、本実施の形態の金属膜形成システム1では、金属膜として、アルミニウム膜をウェハW上に形成する。 Hereinafter, embodiments of the present invention will be described. FIG. 1 is a plan view schematically showing the configuration of a metal film forming system 1 according to the present embodiment. A predetermined pattern (not shown) is formed in advance on a wafer W as a substrate. Further, in the metal film forming system 1 of the present embodiment, an aluminum film is formed on the wafer W as the metal film.
 金属膜形成システム1は、図1に示すように例えば複数のウェハWをカセット単位で外部と金属膜形成システム1との間で搬入出したり、カセットCに対してウェハWを搬入出したりする搬入出ステーション2と、ウェハW上に下地膜を形成するため、ウェハWに対して所定の処理を施す複数の処理ユニットを備えた前処理ステーション3と、下地膜が形成されたウェハW上に金属膜を形成するため、ウェハWに対して所定の処理を施す複数の処理ユニットを備えた主処理ステーション4とを有している。搬入出ステーション2と前処理ステーション3との間には、第1のロードロックユニット10が配置されている。第1のロードロックユニット10は、ゲートバルブ11を介して搬入出ステーション2に接続されると共に、ゲートバルブ12を介して前処理ステーション3に接続されている。また、前処理ステーション3と主処理ステーション4との間には、第2のロードロックユニット13が配置されている。第2のロードロックユニット13は、ゲートバルブ14を介して前処理ステーション3に接続されると共に、ゲートバルブ15を介して主処理ステーション4とに接続されている。金属膜形成システム1は、これら搬入出ステーション2、第1のロードロックユニット10、前処理ステーション3、第2のロードロックユニット13、主処理ステーション4をY方向(図1中の左右方向)にこの順で並べて配置して、一体に接続した構成を有している。 As shown in FIG. 1, the metal film forming system 1 carries in, for example, a plurality of wafers W carried in and out of the cassette between the outside and the metal film forming system 1, and a wafer W carried in and out of the cassette C. In order to form a base film on the wafer W, the exit station 2, a preprocessing station 3 having a plurality of processing units for performing predetermined processing on the wafer W, and a metal on the wafer W on which the base film is formed In order to form a film, a main processing station 4 including a plurality of processing units for performing predetermined processing on the wafer W is provided. A first load lock unit 10 is arranged between the carry-in / out station 2 and the pretreatment station 3. The first load lock unit 10 is connected to the carry-in / out station 2 through a gate valve 11 and is connected to the pretreatment station 3 through a gate valve 12. Further, a second load lock unit 13 is disposed between the preprocessing station 3 and the main processing station 4. The second load lock unit 13 is connected to the preprocessing station 3 through the gate valve 14 and is connected to the main processing station 4 through the gate valve 15. In the metal film forming system 1, the loading / unloading station 2, the first load lock unit 10, the preprocessing station 3, the second load lock unit 13, and the main processing station 4 are arranged in the Y direction (left and right direction in FIG. 1). They are arranged side by side in this order and connected together.
 なお、前処理ステーション3と主処理ステーション4は、後述するように、それぞれ内部を例えば窒素ガスなどの不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能に構成されている。 Note that the pretreatment station 3 and the main treatment station 4 are configured to be able to switch the inside to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas such as nitrogen gas, as will be described later.
 搬入出ステーション2には、カセット載置台20が設けられている。カセット載置台20は、複数のカセットCをX方向(図1中の上下方向)に一列に載置自在になっている。すなわち、搬入出ステーション2は、複数のウェハWを保有可能に構成されている。 The cassette loading table 20 is provided in the loading / unloading station 2. The cassette mounting table 20 can mount a plurality of cassettes C in a row in the X direction (vertical direction in FIG. 1). That is, the carry-in / out station 2 is configured to be capable of holding a plurality of wafers W.
 搬入出ステーション2には、X方向に延伸する搬送路21上を移動可能なウェハ搬送体22が設けられている。ウェハ搬送体22は、水平方向に伸縮自在、且つ鉛直方向及び鉛直周り(θ方向)にも移動自在であり、カセットCと第1のロードロックユニット10との間でウェハWを搬送できる。 The loading / unloading station 2 is provided with a wafer transfer body 22 that can move on a transfer path 21 extending in the X direction. The wafer transfer body 22 can expand and contract in the horizontal direction, and can also move in the vertical direction and the vertical direction (θ direction), and can transfer the wafer W between the cassette C and the first load lock unit 10.
 前処理ステーション3は、ウェハWと金属膜との定着性を向上させるための前処理液をウェハW上に塗布する前処理液塗布ユニット30と、前処理液が塗布されたウェハWを熱処理する熱処理ユニット31と、前処理液塗布ユニット30、熱処理ユニット31、第1のロードロックユニット10及び第2のロードロックユニット13に接続され、各ユニットにウェハWを搬送する第1の搬送ユニット32とを有している。前処理液塗布ユニット30は、第1の搬送ユニット32のX方向負方向側において、ゲートバルブ33を介して第1の搬送ユニット32に接続されている。熱処理ユニット31は、第1の搬送ユニット32のX方向正方向側において、ゲートバルブ34を介して第1の搬送ユニット32に接続されている。 The pretreatment station 3 heat-treats the pretreatment liquid coating unit 30 that coats the wafer W with a pretreatment liquid for improving the fixability between the wafer W and the metal film, and the wafer W coated with the pretreatment liquid. A heat treatment unit 31, a pretreatment liquid application unit 30, a heat treatment unit 31, a first load lock unit 10, and a second load lock unit 13, and a first conveyance unit 32 that conveys a wafer W to each unit; have. The pretreatment liquid coating unit 30 is connected to the first transport unit 32 via the gate valve 33 on the negative side in the X direction of the first transport unit 32. The heat treatment unit 31 is connected to the first transfer unit 32 via a gate valve 34 on the positive side in the X direction of the first transfer unit 32.
 第1の搬送ユニット32の内部には、ウェハWを搬送する基板搬送機構としてのウェハ搬送機構35が設けられている。ウェハ搬送機構35は、ウェハWを支持するための一対の搬送アーム36、36を有している。ウェハ搬送機構35は、水平方向に伸縮自在、且つ鉛直方向及び鉛直周り(θ方向)に移動自在であり、前処理液塗布ユニット30、熱処理ユニット31、第1のロードロックユニット10及び第2のロードロックユニット13にウェハWを搬送できる。 Inside the first transfer unit 32, a wafer transfer mechanism 35 as a substrate transfer mechanism for transferring the wafer W is provided. The wafer transfer mechanism 35 has a pair of transfer arms 36 and 36 for supporting the wafer W. The wafer transfer mechanism 35 is extendable in the horizontal direction and movable in the vertical direction and the vertical direction (θ direction). The pretreatment liquid application unit 30, the heat treatment unit 31, the first load lock unit 10, and the second load lock unit 35 are movable. The wafer W can be transferred to the load lock unit 13.
 また、第1の搬送ユニット32には、内部に例えば窒素ガスなどの不活性ガスを供給するガス供給管(図示せず)と、内部の雰囲気を真空引きする吸気管(図示せず)が接続されている。すなわち、第1の搬送ユニット32は、その内部を不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能に構成されている。 Further, a gas supply pipe (not shown) for supplying an inert gas such as nitrogen gas and an intake pipe (not shown) for evacuating the internal atmosphere are connected to the first transfer unit 32. Has been. That is, the inside of the first transport unit 32 is configured to be switchable to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas.
 主処理ステーション4は、前処理ステーション3で下地膜が形成されたウェハW上に金属混合液を塗布する金属混合液塗布ユニット40と、金属混合液が塗布されたウェハWを熱処理する前熱処理ユニット41と、前熱処理ユニット41で熱処理されたウェハWをさらに熱処理する後熱処理ユニット42と、金属混合液塗布ユニット40、前熱処理ユニット41、後熱処理ユニット42及び第2のロードロックユニット13に接続され、各ユニットにウェハWを搬送する第2の搬送ユニット43とを有している。金属混合液塗布ユニット40は、第2の搬送ユニット43のX方向負方向側において、ゲートバルブ44を介して第2の搬送ユニット43に接続されている。前熱処理ユニット41は、第2の搬送ユニット43のY方向正方向側において、ゲートバルブ45を介して第2の搬送ユニット43に接続されている。後熱処理ユニット42は、第2の搬送ユニット43のX方向正方向側において、ゲートバルブ46を介して第2の搬送ユニット43に接続されている。 The main processing station 4 includes a metal mixed solution application unit 40 for applying a metal mixed solution onto the wafer W on which the base film is formed in the preprocessing station 3, and a pre heat treatment unit for heat treating the wafer W applied with the metal mixed solution. 41, a post-heat treatment unit 42 for further heat-treating the wafer W heat-treated in the pre-heat treatment unit 41, a metal mixed solution coating unit 40, a pre-heat treatment unit 41, a post-heat treatment unit 42, and the second load lock unit 13. And a second transfer unit 43 for transferring the wafer W to each unit. The metal liquid mixture application unit 40 is connected to the second transport unit 43 via the gate valve 44 on the X direction negative direction side of the second transport unit 43. The pre-heat treatment unit 41 is connected to the second transfer unit 43 through the gate valve 45 on the Y direction positive direction side of the second transfer unit 43. The post heat treatment unit 42 is connected to the second transfer unit 43 via the gate valve 46 on the positive side in the X direction of the second transfer unit 43.
 第2の搬送ユニット43の内部には、ウェハWを搬送する基板搬送機構としてのウェハ搬送機構47が設けられている。ウェハ搬送機構47は、ウェハWを支持するための一対の搬送アーム48、48を有している。ウェハ搬送機構47は、水平方向に伸縮自在、且つ鉛直方向及び鉛直周り(θ方向)に移動自在であり、金属混合液塗布ユニット40、前熱処理ユニット41、後熱処理ユニット42及び第2のロードロックユニット13にウェハWを搬送できる。 Inside the second transfer unit 43, a wafer transfer mechanism 47 as a substrate transfer mechanism for transferring the wafer W is provided. The wafer transfer mechanism 47 has a pair of transfer arms 48 and 48 for supporting the wafer W. The wafer transfer mechanism 47 can be expanded and contracted in the horizontal direction and movable in the vertical direction and the vertical direction (θ direction). The metal liquid mixture application unit 40, the pre-heat treatment unit 41, the post-heat treatment unit 42, and the second load lock. The wafer W can be transferred to the unit 13.
 また、第2の搬送ユニット43には、内部に例えば窒素ガスなどの不活性ガスを供給するガス供給管(図示せず)と、内部の雰囲気を真空引きする吸気管(図示せず)が接続されている。すなわち、第2の搬送ユニット43は、その内部を不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能に構成されている。 Further, a gas supply pipe (not shown) for supplying an inert gas such as nitrogen gas and an intake pipe (not shown) for evacuating the internal atmosphere are connected to the second transfer unit 43. Has been. That is, the second transport unit 43 is configured to be able to switch the inside to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas.
 次に、上述した第1のロードロックユニット10と第2のロードロックユニット13の構成について説明する。 Next, the configuration of the first load lock unit 10 and the second load lock unit 13 described above will be described.
 第1のロードロックユニット10には、図2に示すように上下2段にロードロック室100、101が配置されている。以下、上段のロードロック室を上段ロードロック室100といい、下段のロードロック室を下段ロードロック室101という場合がある。 In the first load lock unit 10, load lock chambers 100 and 101 are arranged in two upper and lower stages as shown in FIG. Hereinafter, the upper load lock chamber may be referred to as an upper load lock chamber 100, and the lower load lock chamber may be referred to as a lower load lock chamber 101.
 上段ロードロック室100は、内部を密閉可能なケーシング110を有している。ケーシング110の側面にはウェハWの搬入出口(図示せず)が形成され、当該搬入出口には上述したゲートバルブ11、12が設けられている。ケーシング110の内部には、ウェハWを支持する支持ピン111が設けられ、ウェハWを一時的に収容できるように構成されている。 The upper load lock chamber 100 has a casing 110 that can be sealed. A loading / unloading port (not shown) for the wafer W is formed on the side surface of the casing 110, and the gate valves 11 and 12 described above are provided at the loading / unloading port. Inside the casing 110, support pins 111 for supporting the wafer W are provided so that the wafer W can be temporarily accommodated.
 ケーシング110の側壁内部には、支持ピン111に支持されたウェハWを温度調節する温度調節機構112が設けられている。温度調節機構112には、例えばペルチェ素子や水冷ジャケットなどの冷却部材(図示せず)が内蔵されている。温度調節機構112の冷却温度は、例えば後述する制御部250により制御される。 Inside the side wall of the casing 110, a temperature adjustment mechanism 112 for adjusting the temperature of the wafer W supported by the support pins 111 is provided. The temperature adjustment mechanism 112 includes a cooling member (not shown) such as a Peltier element or a water cooling jacket. The cooling temperature of the temperature adjustment mechanism 112 is controlled by, for example, the control unit 250 described later.
 ケーシング110の側面には、当該ケーシング110の内部に例えば窒素ガスなどの不活性ガスを供給するガス供給口120が形成されている。ガス供給口120には、ガス供給源121に連通するガス供給管122が接続されている。ガス供給管122には、不活性ガスの流れを制御するバルブや流量調節部等を含む供給機器群123が設けられている。また、ケーシング110の側面には、当該ケーシング110の内部の雰囲気を所定の真空度まで減圧するための吸気口124が形成されている。吸気口124は、例えば真空ポンプ125に連通する吸気管126が接続されている。したがって、上段ロードロック室100は、その内部を不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能に構成されている。 A gas supply port 120 for supplying an inert gas such as nitrogen gas is formed inside the casing 110 on the side surface of the casing 110. A gas supply pipe 122 communicating with the gas supply source 121 is connected to the gas supply port 120. The gas supply pipe 122 is provided with a supply device group 123 including a valve for controlling the flow of the inert gas, a flow rate adjusting unit, and the like. In addition, an air inlet 124 for reducing the atmosphere inside the casing 110 to a predetermined degree of vacuum is formed on the side surface of the casing 110. For example, an intake pipe 126 communicating with the vacuum pump 125 is connected to the intake port 124. Accordingly, the upper load lock chamber 100 is configured so that the inside thereof can be switched to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas.
 なお、下段ロードロック室101の構成は、上述した上段ロードロック室100の構成と同様であるので説明を省略する。下段ロードロック室101のケーシング110の側面に形成されたウェハWの搬入出口(図示せず)にも、上述したゲートバルブ11、12が別途設けられている。また、第2のロードロックユニット13の構成は、第1のロードロックユニット10の構成と同様であるので説明を省略する。 Note that the configuration of the lower load lock chamber 101 is the same as the configuration of the upper load lock chamber 100 described above, and a description thereof will be omitted. The above-described gate valves 11 and 12 are also separately provided at the loading / unloading port (not shown) of the wafer W formed on the side surface of the casing 110 of the lower load lock chamber 101. Further, the configuration of the second load lock unit 13 is the same as the configuration of the first load lock unit 10, and the description thereof is omitted.
 次に、前処理ステーション3の前処理液塗布ユニット30の構成について説明する。前処理液塗布ユニット30は、図3に示すように内部を密閉可能なケーシング130を有している。ケーシング130の側面にはウェハWの搬入出口(図示せず)が形成され、当該搬入出口には上述したゲートバルブ33が設けられている。 Next, the configuration of the pretreatment liquid application unit 30 of the pretreatment station 3 will be described. As shown in FIG. 3, the pretreatment liquid coating unit 30 has a casing 130 that can seal the inside. A loading / unloading port (not shown) for the wafer W is formed on a side surface of the casing 130, and the gate valve 33 described above is provided at the loading / unloading port.
 ケーシング130の天井面には、当該ケーシング130の内部に例えば窒素ガスなどの不活性ガスを供給するガス供給口131が形成されている。ガス供給口131には、ガス供給源132に連通するガス供給管133が接続されている。ガス供給管133には、不活性ガスの流れを制御するバルブや流量調節部等を含む供給機器群134が設けられている。 A gas supply port 131 for supplying an inert gas such as nitrogen gas is formed in the casing 130 on the ceiling surface of the casing 130. A gas supply pipe 133 communicating with the gas supply source 132 is connected to the gas supply port 131. The gas supply pipe 133 is provided with a supply device group 134 including a valve for controlling the flow of the inert gas, a flow rate adjusting unit, and the like.
 ケーシング130の内部には、ウェハWを吸着保持するスピンチャック140が設けられている。スピンチャック140は、水平な上面を有し、当該上面には、例えばウェハWを吸引する吸引口(図示せず)が設けられている。この吸引口からの吸引により、ウェハWをスピンチャック140上に吸着保持できる。 Inside the casing 130, a spin chuck 140 for attracting and holding the wafer W is provided. The spin chuck 140 has a horizontal upper surface, and a suction port (not shown) for sucking the wafer W, for example, is provided on the upper surface. The wafer W can be sucked and held on the spin chuck 140 by suction from the suction port.
 スピンチャック140には、シャフト141を介して、ケーシング130の外部に設けられた駆動機構142が取り付けられている。駆動機構142は例えばモータなどを備え、この駆動機構142によりスピンチャック140は所定の速度に回転できる。また、駆動機構142にはシリンダなどの昇降駆動源が設けられており、スピンチャック140は昇降自在になっている。なお、シャフト141がケーシング130を挿通する部分には、ケーシング130の内部を密閉するために例えばOリングやグリスが設けられている。 A drive mechanism 142 provided outside the casing 130 is attached to the spin chuck 140 via a shaft 141. The drive mechanism 142 includes a motor, for example, and the drive mechanism 142 can rotate the spin chuck 140 at a predetermined speed. The drive mechanism 142 is provided with a lift drive source such as a cylinder, and the spin chuck 140 can be lifted and lowered. In addition, in order to seal the inside of the casing 130, for example, an O-ring or grease is provided at a portion where the shaft 141 passes through the casing 130.
 スピンチャック140の下方側には断面形状が山形のガイドリング150が設けられており、このガイドリング150の外周縁は下方側に屈曲して延びている。前記スピンチャック140、スピンチャック140に保持されたウェハW及びガイドリング150を囲むようにカップ151が設けられている。カップ151は、ウェハWから飛散又は落下する液体を受け止め、回収することができる。 A guide ring 150 having a mountain shape in cross section is provided on the lower side of the spin chuck 140, and the outer peripheral edge of the guide ring 150 is bent and extends downward. A cup 151 is provided so as to surround the spin chuck 140, the wafer W held by the spin chuck 140 and the guide ring 150. The cup 151 can receive and collect the liquid scattered or dropped from the wafer W.
 このカップ151は上面にスピンチャック140が昇降できるようにウェハWよりも大きい開口部が形成されていると共に、側周面とガイドリング150の外周縁との間に排出路をなす隙間152が形成されている。前記カップ151の下方側は、ガイドリング150の外周縁部分と共に屈曲路を形成して気液分離部を構成している。カップ151の底部の内側領域には、カップ151内の雰囲気及びケーシング130内の雰囲気を所定の真空度まで減圧するための吸気口153が形成されている。吸気口153には、例えば真空ポンプ154に連通する吸気管155が接続されている。さらに前記カップ151の底部の外側領域には、回収した液体を排出する排液口156が形成されており、この排液口156には排液管157が接続されている。かかる構成により、前処理液塗布ユニット30は、その内部を不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能に構成されている。 The cup 151 is formed with an opening larger than the wafer W on the upper surface so that the spin chuck 140 can be moved up and down, and a gap 152 is formed between the side peripheral surface and the outer peripheral edge of the guide ring 150. Has been. The lower side of the cup 151 forms a gas-liquid separation part by forming a curved path together with the outer peripheral edge portion of the guide ring 150. An intake port 153 for reducing the atmosphere in the cup 151 and the atmosphere in the casing 130 to a predetermined degree of vacuum is formed in the inner region of the bottom of the cup 151. For example, an intake pipe 155 that communicates with a vacuum pump 154 is connected to the intake port 153. Further, a drain port 156 for discharging the collected liquid is formed in the outer region of the bottom of the cup 151, and a drain tube 157 is connected to the drain port 156. With this configuration, the pretreatment liquid coating unit 30 is configured to be able to switch the inside to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas.
 ケーシング130の内部であってスピンチャック140の上方には、ウェハW上に前処理液を吐出する前処理液ノズル160が配置されている。前処理液ノズル160には、前処理液供給源161に連通する供給管162が接続されている。前処理液供給源161内には、前処理液が貯留されている。供給管162には、前処理液の流れを制御するバルブや流量調節部等を含む供給機器群163が設けられている。なお、前処理液には、例えばウェハWと金属膜との定着性を向上させるための液、例えば有機金属化合物を溶媒に溶解させた溶液が用いられる。本実施の形態においては、有機金属化合物として例えばチタンオキサイドが用いられる。また、溶媒としては、有機金属化合物を溶解させるものであれば限定されないが、例えばエーテル類や炭化水素類が用いられる。 Inside the casing 130 and above the spin chuck 140, a pretreatment liquid nozzle 160 that discharges the pretreatment liquid onto the wafer W is disposed. A supply pipe 162 communicating with the pretreatment liquid supply source 161 is connected to the pretreatment liquid nozzle 160. A pretreatment liquid is stored in the pretreatment liquid supply source 161. The supply pipe 162 is provided with a supply device group 163 including a valve for controlling the flow of the pretreatment liquid, a flow rate adjusting unit, and the like. As the pretreatment liquid, for example, a liquid for improving the fixing property between the wafer W and the metal film, for example, a solution in which an organometallic compound is dissolved in a solvent is used. In the present embodiment, for example, titanium oxide is used as the organometallic compound. Further, the solvent is not limited as long as it dissolves the organometallic compound. For example, ethers and hydrocarbons are used.
 前処理液ノズル160は、アーム164を介して移動機構(図示せず)に接続されている。前処理液ノズル160は、移動機構により、ケーシング130の長さ方向(Y方向)に沿って、カップ151の一端側(図3の右側)の外側に設けられた待機領域165からカップ151の一端側に向かって移動できると共に、上下方向に移動できる。 The pretreatment liquid nozzle 160 is connected to a moving mechanism (not shown) via the arm 164. The pretreatment liquid nozzle 160 is moved from the standby region 165 provided on the outer side of one end side (right side in FIG. 3) of the cup 151 along the length direction (Y direction) of the casing 130 by the moving mechanism. It can move toward the side and move up and down.
 なお、主処理ステーション4の金属混合液塗布ユニット40は、図4に示すように、上述した前処理液塗布ユニット30の前処理液ノズル160に代えて、ウェハW上に金属錯体を吐出する金属錯体ノズル170と、その金属錯体を溶解させるための溶媒を吐出する溶媒ノズル171を配置した構成を有している。なお、金属錯体には、アルミニウム原子を有する錯体が用いられる。本実施の形態においては、例えばアミン化合物と水酸化アルミニウムの錯体が用いられる。また、金属錯体を溶解させる溶媒としては、金属錯体を溶解させるものであれば限定されないが、例えばエーテル類や炭化水素類が用いられる。 In addition, the metal liquid mixture coating unit 40 of the main processing station 4 replaces the pretreatment liquid nozzle 160 of the pretreatment liquid coating unit 30 described above with a metal that discharges a metal complex onto the wafer W as shown in FIG. A complex nozzle 170 and a solvent nozzle 171 for discharging a solvent for dissolving the metal complex are arranged. As the metal complex, a complex having an aluminum atom is used. In the present embodiment, for example, a complex of an amine compound and aluminum hydroxide is used. The solvent for dissolving the metal complex is not limited as long as it dissolves the metal complex. For example, ethers and hydrocarbons are used.
 金属錯体ノズル170には、金属錯体供給源172に連通する供給管173が接続されている。金属錯体供給源172内には、上述した金属錯体が貯留されている。供給管173には、金属錯体の流れを制御するバルブや流量調節部等を含む供給機器群174が設けられている。金属錯体ノズル170は、アーム175を介して移動機構(図示せず)に接続されている。金属錯体ノズル170は、移動機構により、ケーシング130の長さ方向(Y方向)に沿って、カップ151の一端側(図4の右側)の外側に設けられた待機領域176からカップ151の一端側に向かって移動できると共に、上下方向に移動できる。 A supply pipe 173 communicating with the metal complex supply source 172 is connected to the metal complex nozzle 170. The metal complex supply source 172 stores the above-described metal complex. The supply pipe 173 is provided with a supply device group 174 including a valve for controlling the flow of the metal complex, a flow rate adjusting unit, and the like. The metal complex nozzle 170 is connected to a moving mechanism (not shown) via an arm 175. The metal complex nozzle 170 is moved from the standby region 176 provided on the outer side of one end side (right side in FIG. 4) of the cup 151 along the length direction (Y direction) of the casing 130 by the moving mechanism. And move up and down.
 溶媒ノズル171には、溶媒供給源180に連通する供給管181が接続されている。溶媒供給源180内には、上述した溶媒が貯留されている。供給管181には、溶媒の流れを制御するバルブや流量調節部等を含む供給機器群182が設けられている。溶媒ノズル171は、アーム183を介して移動機構(図示せず)に接続されている。溶媒ノズル171は、移動機構により、ケーシング130の長さ方向(Y方向)に沿って、カップ151の一端側(図4の左側)の外側に設けられた待機領域184からカップ151の一端側に向かって移動できると共に、上下方向に移動できる。 A supply pipe 181 communicating with the solvent supply source 180 is connected to the solvent nozzle 171. The solvent supply source 180 stores the above-described solvent. The supply pipe 181 is provided with a supply device group 182 including a valve for controlling the flow of the solvent, a flow rate adjusting unit, and the like. The solvent nozzle 171 is connected to a moving mechanism (not shown) via the arm 183. The solvent nozzle 171 is moved from the standby region 184 provided on the outer side of one end side (left side in FIG. 4) of the cup 151 to the one end side of the cup 151 along the length direction (Y direction) of the casing 130 by the moving mechanism. It is possible to move up and down.
 金属錯体ノズル170と溶媒ノズル171は、図5に示すように金属錯体ノズル170から吐出される金属錯体の吐出流の中心線(図中の点線)と、溶媒ノズル171から吐出される溶媒の吐出流の中心線(図中の点線)とがウェハW上で交わるように配置される。すなわち、金属錯体ノズル170と溶媒ノズル171は、それらの軸方向が鉛直方向から所定の角度、傾斜して配置されている。このように金属錯体ノズル170と溶媒ノズル171を配置することにより、後述するとおり金属錯体ノズル170から吐出された金属錯体と溶媒ノズル171から吐出された溶媒がウェハWに到達する前に混合されて、金属混合液が生成される。 As shown in FIG. 5, the metal complex nozzle 170 and the solvent nozzle 171 include a center line (dotted line in the figure) of the discharge flow of the metal complex discharged from the metal complex nozzle 170 and the discharge of the solvent discharged from the solvent nozzle 171. The flow center line (dotted line in the figure) is arranged so as to intersect on the wafer W. That is, the metal complex nozzle 170 and the solvent nozzle 171 are arranged such that their axial directions are inclined at a predetermined angle from the vertical direction. By arranging the metal complex nozzle 170 and the solvent nozzle 171 in this way, the metal complex discharged from the metal complex nozzle 170 and the solvent discharged from the solvent nozzle 171 are mixed before reaching the wafer W as will be described later. A metal mixture is produced.
 なお、以上の構成では、金属錯体ノズル170と溶媒ノズル171が別々のアーム175、183に支持されていたが、同じアームに支持され、そのアームの移動の制御により、金属錯体ノズル170と溶媒ノズル171の移動と供給タイミングを制御してもよい。 In the above configuration, the metal complex nozzle 170 and the solvent nozzle 171 are supported by separate arms 175 and 183. However, the metal complex nozzle 170 and the solvent nozzle 171 are supported by the same arm and controlled by movement of the arms. The movement of 171 and the supply timing may be controlled.
 金属混合液塗布ユニット40のその他の構成は、上述した前処理液塗布ユニット30の構成と同様であるので説明を省略する。 Other configurations of the metal mixed solution coating unit 40 are the same as the configuration of the pretreatment liquid coating unit 30 described above, and thus the description thereof is omitted.
 次に、前処理ステーション3の熱処理ユニット31の構成について説明する。熱処理ユニット31は、図6に示すように内部を密閉可能なケーシング190を有している。ケーシング190の側面にはウェハWの搬入出口(図示せず)が形成され、当該搬入出口には上述したゲートバルブ34が設けられている。 Next, the configuration of the heat treatment unit 31 of the pretreatment station 3 will be described. As shown in FIG. 6, the heat treatment unit 31 has a casing 190 that can be sealed. A loading / unloading port (not shown) for the wafer W is formed on the side surface of the casing 190, and the gate valve 34 described above is provided at the loading / unloading port.
 ケーシング190の天井面には、当該ケーシング190の内部に例えば窒素ガスなどの不活性ガスを供給するガス供給口191が形成されている。ガス供給口191には、ガス供給源192に連通するガス供給管193が接続されている。ガス供給管193には、不活性ガスの流れを制御するバルブや流量調節部等を含む供給機器群194が設けられている。 A gas supply port 191 for supplying an inert gas such as nitrogen gas is formed inside the casing 190 on the ceiling surface of the casing 190. A gas supply pipe 193 communicating with the gas supply source 192 is connected to the gas supply port 191. The gas supply pipe 193 is provided with a supply device group 194 including a valve for controlling the flow of the inert gas, a flow rate adjusting unit, and the like.
 ケーシング190の底面には、当該ケーシング190の内部の雰囲気を所定の真空度まで減圧するための吸気口195が形成されている。吸気口195には、例えば真空ポンプ196に連通する吸気管197が接続されている。かかる構成により、熱処理ユニット31は、その内部を不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能に構成されている。 On the bottom surface of the casing 190, an air inlet 195 for reducing the atmosphere inside the casing 190 to a predetermined degree of vacuum is formed. For example, an intake pipe 197 communicating with a vacuum pump 196 is connected to the intake port 195. With this configuration, the heat treatment unit 31 is configured to be able to switch the inside to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas.
 ケーシング190の内部には、ウェハWを載置して熱処理する熱処理板200が設けられている。熱処理板200の外周部には、当該熱処理板200を保持する保持部材201が設けられている。また、保持部材201の外周には、当該保持部材を支持する略円筒状のサポートリング202が設けられている。熱処理板200の加熱温度は、例えば後述する制御部250により制御される。 Inside the casing 190, there is provided a heat treatment plate 200 on which the wafer W is placed and heat treated. A holding member 201 that holds the heat treatment plate 200 is provided on the outer periphery of the heat treatment plate 200. A substantially cylindrical support ring 202 that supports the holding member is provided on the outer periphery of the holding member 201. The heating temperature of the heat treatment plate 200 is controlled by, for example, a control unit 250 described later.
 サポートリング202の内部であって熱処理板200の下方には、ウェハWを下方から支持し昇降させるための昇降ピン203が設けられている。昇降ピン203は、熱板200に形成された貫通孔200aを挿通するように設けられている。昇降ピン203には、ケーシング190の外部に設けられた支持部材204を介して、駆動機構205が取り付けられている。駆動機構205は例えばモータなどを備え、この駆動機構205により、昇降ピン203は昇降自在になっている。なお、昇降ピン203がケーシング190を挿通する部分には、ケーシング190の内部を密閉するために例えばOリングやグリスが設けられている。 In the support ring 202 and below the heat treatment plate 200, lift pins 203 are provided for supporting and lifting the wafer W from below. The lift pins 203 are provided so as to be inserted through the through holes 200 a formed in the hot plate 200. A driving mechanism 205 is attached to the elevating pin 203 via a support member 204 provided outside the casing 190. The drive mechanism 205 includes, for example, a motor, and the lift pin 203 can be raised and lowered by the drive mechanism 205. In order to seal the inside of the casing 190, for example, an O-ring or grease is provided at a portion where the lifting pins 203 are inserted through the casing 190.
 なお、主処理ステーション4の前熱処理ユニット41と後熱処理ユニット42の構成は、上述した熱処理ユニット31の構成と同様であるので説明を省略する。 Note that the configurations of the pre-heat treatment unit 41 and the post-heat treatment unit 42 of the main treatment station 4 are the same as those of the heat treatment unit 31 described above, and thus the description thereof is omitted.
 以上の金属膜形成システム1には、図1に示すように制御部250が設けられている。制御部250は、例えばコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、金属膜形成システム1におけるウェハWの金属膜形成処理を実行するプログラムが格納されている。なお、このプログラムは、例えばコンピュータ読み取り可能なハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルデスク(MO)、メモリーカードなどのコンピュータに読み取り可能な記憶媒体Hに記録されていたものであって、その記憶媒体Hから制御部250にインストールされたものであってもよい。 In the metal film forming system 1 described above, a control unit 250 is provided as shown in FIG. The control unit 250 is a computer, for example, and has a program storage unit (not shown). The program storage unit stores a program for executing the metal film forming process of the wafer W in the metal film forming system 1. This program is recorded on a computer-readable storage medium H such as a computer-readable hard disk (HD), flexible disk (FD), compact disk (CD), magnetic optical desk (MO), or memory card. May have been installed in the control unit 250 from the storage medium H.
 本実施にかかる金属膜形成システム1は以上のように構成されている。次に、その金属膜形成システム1で行われる金属膜を形成する処理について説明する。図7は、かかる金属膜形成処理の主な工程を示すフローチャートであり。図8は、各工程におけるウェハWの状態を示している。 The metal film forming system 1 according to the present embodiment is configured as described above. Next, the process which forms the metal film performed with the metal film formation system 1 is demonstrated. FIG. 7 is a flowchart showing main steps of the metal film forming process. FIG. 8 shows the state of the wafer W in each step.
 なお、金属膜形成処理中、前処理ステーション3の前処理液塗布ユニット30、熱処理ユニット31及び第1の搬送ユニット32の内部と、主処理ステーション4の金属混合液塗布ユニット40、前熱処理ユニット41、後熱処理ユニット42及び第2の搬送ユニット43の内部は、それぞれ不活性ガスが充満されて大気圧に維持されている。 During the metal film forming process, the inside of the pretreatment liquid coating unit 30, the heat treatment unit 31 and the first transfer unit 32 in the pretreatment station 3, the metal mixed liquid coating unit 40 in the main treatment station 4, and the preheat treatment unit 41. The interiors of the post heat treatment unit 42 and the second transfer unit 43 are each filled with an inert gas and maintained at atmospheric pressure.
 先ず、ウェハ搬送体22によって、搬入出ステーション2のカセット載置台20上のカセットCからウェハWが取り出され、第1のロードロックユニット10の上段ロードロック室100に搬送される。その後、ゲートバルブ11、12を閉じた状態で真空ポンプ125を作動させ、上段ロードロック室100の内部の雰囲気を所定の真空度、例えば13.3Paに減圧する。その後、不活性ガス供給源121から上段ロードロック室100の内部に不活性ガスを供給し、内部を不活性ガスで充満させて大気圧に均圧する(図7の工程S1(本発明における第1の工程))。なお、上段ロードロック室100の内部の雰囲気を減圧するのは、当該上段ロードロック室100の内部の雰囲気を迅速に不活性ガス雰囲気にするためである。このため、雰囲気の減圧は厳格に真空雰囲気にすることまでは要求されず、上述の通り例えば13.3Paの真空度まで減圧すればよい。したがって、極めて短時間、例えば10秒間で上段ロードロック室100の内部の雰囲気を所定の真空度まで減圧することができる。 First, the wafer W is taken out from the cassette C on the cassette mounting table 20 of the loading / unloading station 2 by the wafer transfer body 22 and transferred to the upper load lock chamber 100 of the first load lock unit 10. Thereafter, the vacuum pump 125 is operated in a state where the gate valves 11 and 12 are closed, and the atmosphere inside the upper load lock chamber 100 is reduced to a predetermined degree of vacuum, for example, 13.3 Pa. Thereafter, an inert gas is supplied from the inert gas supply source 121 to the inside of the upper load lock chamber 100, and the inside is filled with the inert gas to equalize the atmospheric pressure (step S1 in FIG. 7 (first step in the present invention). Process)). The reason why the atmosphere inside the upper load lock chamber 100 is reduced is to quickly change the atmosphere inside the upper load lock chamber 100 to an inert gas atmosphere. For this reason, the pressure reduction of the atmosphere is not required until the vacuum atmosphere is strictly set, and the pressure may be reduced to, for example, a vacuum degree of 13.3 Pa as described above. Therefore, the atmosphere inside the upper load lock chamber 100 can be reduced to a predetermined degree of vacuum in a very short time, for example, 10 seconds.
 その後、ゲートバルブ12、33を順に開き、第1の搬送ユニット32のウェハ搬送機構35によって、ウェハWが前処理液塗布ユニット30に搬送される。前処理液塗布ユニット30内に搬送されたウェハWは、スピンチャック140に吸着保持される。このとき、ゲートバルブ33が閉じられる。次に、スピンチャック140によってウェハWを所定の位置まで下降させ、当該ウェハWを所定の回転数で回転させる。そして、図8(a)に示すように回転中のウェハWに対して、前処理液ノズル160から前処理液300が吐出される。吐出された前処理液300は遠心力によってウェハW上を拡散し、ウェハWの表面全面に前処理液300が塗布される(図7の工程S2(本発明における第2の工程))。このとき、前処理液300は流動性を有するため、ウェハW上に所定のパターンが形成されていても、前処理液300は当該パターンのトレンチ内に適切に流入する。なお、この前処理液の塗布処理中、前処理液塗布ユニット30の内部には、ガス供給源132から不活性ガスが供給されると共に、真空ポンプ154によって内部の雰囲気が吸気される。そして、前処理液塗布ユニット30の内部は、大気圧の不活性ガス雰囲気に維持されている。 Thereafter, the gate valves 12 and 33 are sequentially opened, and the wafer W is transferred to the pretreatment liquid coating unit 30 by the wafer transfer mechanism 35 of the first transfer unit 32. The wafer W transferred into the pretreatment liquid coating unit 30 is sucked and held by the spin chuck 140. At this time, the gate valve 33 is closed. Next, the wafer W is lowered to a predetermined position by the spin chuck 140, and the wafer W is rotated at a predetermined rotation number. Then, as shown in FIG. 8A, the pretreatment liquid 300 is discharged from the pretreatment liquid nozzle 160 onto the rotating wafer W. The discharged pretreatment liquid 300 is diffused on the wafer W by centrifugal force, and the pretreatment liquid 300 is applied to the entire surface of the wafer W (step S2 in FIG. 7 (second step in the present invention)). At this time, since the pretreatment liquid 300 has fluidity, even if a predetermined pattern is formed on the wafer W, the pretreatment liquid 300 appropriately flows into the trench of the pattern. During the pretreatment liquid application process, an inert gas is supplied from the gas supply source 132 to the inside of the pretreatment liquid application unit 30 and the internal atmosphere is sucked in by the vacuum pump 154. The inside of the pretreatment liquid application unit 30 is maintained in an inert gas atmosphere at atmospheric pressure.
 その後、ゲートバルブ33、34を順に開き、第1の搬送ユニット32のウェハ搬送機構35によって、ウェハWが熱処理ユニット31に搬送される。熱処理ユニット31内に搬送されたウェハWは、昇降ピン203に受け渡される。このとき、ゲートバルブ34が閉じられる。次に、昇降ピン203を下降させ、ウェハWを熱処理板200上に載置する。そして、熱処理板200上のウェハWは例えば400℃で5分間加熱され、図8(b)に示すようにウェハW上に所定のパターンに沿った下地膜310が形成される(図7の工程S3(本発明における第2の工程))。なお、この熱処理中、熱処理ユニット31の内部には、ガス供給源192から不活性ガスが供給されると共に、真空ポンプ196によって内部の雰囲気が吸気される。そして、熱処理ユニット30の内部は、大気圧の不活性ガス雰囲気に維持されている。 Thereafter, the gate valves 33 and 34 are sequentially opened, and the wafer W is transferred to the heat treatment unit 31 by the wafer transfer mechanism 35 of the first transfer unit 32. The wafer W transferred into the heat treatment unit 31 is transferred to the lift pins 203. At this time, the gate valve 34 is closed. Next, the lift pins 203 are lowered and the wafer W is placed on the heat treatment plate 200. Then, the wafer W on the heat treatment plate 200 is heated, for example, at 400 ° C. for 5 minutes, and a base film 310 along a predetermined pattern is formed on the wafer W as shown in FIG. 8B (step of FIG. 7). S3 (second step in the present invention)). During this heat treatment, an inert gas is supplied from the gas supply source 192 to the inside of the heat treatment unit 31 and the internal atmosphere is sucked in by the vacuum pump 196. The interior of the heat treatment unit 30 is maintained in an inert gas atmosphere at atmospheric pressure.
 その後、ゲートバルブ34、14を順に開き、第1の搬送ユニット32のウェハ搬送機構35によって、ウェハWが第2のロードロックユニット13の上段ロードロック室100に搬送される。その後、ゲートバルブ14、15を閉じた状態で真空ポンプ125を作動させ、上段ロードロック室100の内部の雰囲気を所定の真空度、例えば13.3Paに減圧する。その後、不活性ガス供給源121から上段ロードロック室100の内部に不活性ガスを供給し、内部を不活性ガスで充満させて大気圧に均圧する。また、このとき、温度調節機構112によって、ウェハWを例えば常温まで冷却する(図7の工程S4(本発明における第3の工程))。 Thereafter, the gate valves 34 and 14 are opened in order, and the wafer W is transferred to the upper load lock chamber 100 of the second load lock unit 13 by the wafer transfer mechanism 35 of the first transfer unit 32. Thereafter, the vacuum pump 125 is operated with the gate valves 14 and 15 closed, and the atmosphere inside the upper load lock chamber 100 is reduced to a predetermined degree of vacuum, for example, 13.3 Pa. Thereafter, an inert gas is supplied from the inert gas supply source 121 to the inside of the upper load lock chamber 100, and the inside is filled with the inert gas to equalize the atmospheric pressure. At this time, the wafer W is cooled to, for example, room temperature by the temperature adjustment mechanism 112 (step S4 in FIG. 7 (third step in the present invention)).
 その後、ゲートバルブ15、44を順に開き、第2の搬送ユニット43のウェハ搬送機構47によって、ウェハWが金属混合液塗布ユニット40に搬送される。金属混合液塗布ユニット40内に搬送されたウェハWは、スピンチャック140に吸着保持される。このとき、ゲートバルブ44が閉じられる。次に、スピンチャック140によってウェハWを所定の位置まで下降させ、当該ウェハWを所定の回転数で回転させる。そして、図8(c)に示すように回転中のウェハWに対して、金属錯体ノズル170から金属錯体320が吐出されると共に、溶媒ノズル171から溶媒321が吐出される。これら金属錯体320と溶媒321は、ウェハWに到達する前に混合され、金属混合液322が生成される。ここで、金属混合液322は、金属であるアルミニウムが析出し易いため、一旦混合された後少なくとも90秒以内にウェハW上に塗布する必要がある。本実施の形態では、ウェハWに供給される直前に金属混合液322が生成されるので、適切な金属混合液322をウェハW上に供給することができる。そして、供給された金属混合液322は遠心力によってウェハW上を拡散し、ウェハWの表面全面に金属混合液322が塗布される(図7の工程S5(本発明における第4の工程))。このとき、金属混合液322は流動性を有するため、ウェハW上に所定のパターンが形成されていても、金属混合液322は当該パターンのトレンチ内に適切に流入する。なお、この金属混合液の塗布処理中、金属混合液塗布ユニット40の内部には、ガス供給源132から不活性ガスが供給されると共に、真空ポンプ154によって内部の雰囲気が吸気される。そして、金属混合液塗布ユニット40の内部は、大気圧の不活性ガス雰囲気に維持されている。 Thereafter, the gate valves 15 and 44 are sequentially opened, and the wafer W is transferred to the metal mixed solution coating unit 40 by the wafer transfer mechanism 47 of the second transfer unit 43. The wafer W transported into the metal mixed solution coating unit 40 is sucked and held by the spin chuck 140. At this time, the gate valve 44 is closed. Next, the wafer W is lowered to a predetermined position by the spin chuck 140, and the wafer W is rotated at a predetermined rotation number. Then, as illustrated in FIG. 8C, the metal complex 320 is discharged from the metal complex nozzle 170 and the solvent 321 is discharged from the solvent nozzle 171 to the rotating wafer W. The metal complex 320 and the solvent 321 are mixed before reaching the wafer W, and a metal mixed solution 322 is generated. Here, the metal mixed liquid 322 needs to be coated on the wafer W within at least 90 seconds after being mixed once because aluminum which is a metal is easily deposited. In the present embodiment, since the metal mixed liquid 322 is generated immediately before being supplied to the wafer W, an appropriate metal mixed liquid 322 can be supplied onto the wafer W. The supplied metal mixture 322 is diffused on the wafer W by centrifugal force, and the metal mixture 322 is applied to the entire surface of the wafer W (step S5 in FIG. 7 (fourth step in the present invention)). . At this time, since the metal mixed solution 322 has fluidity, even if a predetermined pattern is formed on the wafer W, the metal mixed solution 322 appropriately flows into the trench of the pattern. During the metal mixture application process, an inert gas is supplied from the gas supply source 132 into the metal mixture application unit 40, and the internal atmosphere is sucked in by the vacuum pump 154. And the inside of the metal liquid mixture application unit 40 is maintained in an inert gas atmosphere at atmospheric pressure.
 その後、ゲートバルブ44、45を順に開き、第2の搬送ユニット43のウェハ搬送機構47によって、ウェハWが前熱処理ユニット41に搬送される。前熱処理ユニット41内に搬送されたウェハWは、昇降ピン203に受け渡される。このとき、ゲートバルブ45が閉じられる。次に、昇降ピン203を下降させ、ウェハWを熱処理板200上に載置する。そして、熱処理板200上のウェハWは、第1の温度である、例えば150℃で5分間加熱される(図7の工程S6(本発明における第4の工程))。そうすると、金属混合液322中の有機成分が揮発し、ウェハW上にコロイド状のアルミニウムが析出する。なお、この熱処理中、前熱処理ユニット41の内部には、ガス供給源192から不活性ガスが供給されると共に、真空ポンプ196によって内部の雰囲気が吸気される。そして、前熱処理ユニット41の内部は、大気圧の不活性ガス雰囲気に維持されている。 Thereafter, the gate valves 44 and 45 are sequentially opened, and the wafer W is transferred to the pre-heat treatment unit 41 by the wafer transfer mechanism 47 of the second transfer unit 43. The wafer W transferred into the pre-heat treatment unit 41 is transferred to the lift pins 203. At this time, the gate valve 45 is closed. Next, the lift pins 203 are lowered and the wafer W is placed on the heat treatment plate 200. Then, the wafer W on the heat treatment plate 200 is heated at a first temperature, for example, 150 ° C. for 5 minutes (step S6 in FIG. 7 (fourth step in the present invention)). Then, the organic component in the metal mixed solution 322 is volatilized and colloidal aluminum is deposited on the wafer W. During this heat treatment, an inert gas is supplied from the gas supply source 192 to the inside of the pre-heat treatment unit 41 and the internal atmosphere is sucked by the vacuum pump 196. The interior of the pre-heat treatment unit 41 is maintained in an inert gas atmosphere at atmospheric pressure.
 その後、ゲートバルブ45、46を順に開き、第2の搬送ユニット43のウェハ搬送機構47によって、ウェハWが後熱処理ユニット42に搬送される。後熱処理ユニット42内に搬送されたウェハWは、昇降ピン203に受け渡される。このとき、ゲートバルブ46が閉じられる。次に、昇降ピン203を下降させ、ウェハWを熱処理板200上に載置する。そして、熱処理板200上のウェハWは、第1の温度よりも高い第2の温度である、例えば400℃で5分間加熱される(図7の工程S7(本発明における第4の工程))。そうすると、図8(d)に示すようにコロイド状のアルミニウムが金属化し、ウェハW上にアルミニウム膜の金属膜330が形成される。このとき、ウェハW上に下地膜310が形成されているため、ウェハWと金属混合液322との定着性が向上し、金属混合液322が所定のパターンに沿って適切に形成される。なお、この熱処理中、後熱処理ユニット42の内部には、ガス供給源192から不活性ガスが供給されると共に、真空ポンプ196によって内部の雰囲気が吸気される。そして、後熱処理ユニット42の内部は、大気圧の不活性ガス雰囲気に維持されている。 Thereafter, the gate valves 45 and 46 are sequentially opened, and the wafer W is transferred to the post heat treatment unit 42 by the wafer transfer mechanism 47 of the second transfer unit 43. The wafer W transferred into the post heat treatment unit 42 is delivered to the lift pins 203. At this time, the gate valve 46 is closed. Next, the lift pins 203 are lowered and the wafer W is placed on the heat treatment plate 200. Then, the wafer W on the heat treatment plate 200 is heated at a second temperature higher than the first temperature, for example, 400 ° C. for 5 minutes (step S7 in FIG. 7 (fourth step in the present invention)). . Then, colloidal aluminum is metallized as shown in FIG. 8D, and a metal film 330 of an aluminum film is formed on the wafer W. At this time, since the base film 310 is formed on the wafer W, the fixing property between the wafer W and the metal mixed solution 322 is improved, and the metal mixed solution 322 is appropriately formed along a predetermined pattern. During this heat treatment, an inert gas is supplied from the gas supply source 192 to the inside of the post heat treatment unit 42 and the internal atmosphere is sucked in by the vacuum pump 196. The interior of the post heat treatment unit 42 is maintained in an inert gas atmosphere at atmospheric pressure.
 その後、ゲートバルブ46、15を順に開き、第2の搬送ユニット43のウェハ搬送機構47によって、ウェハWが第2のロードロックユニット13の下段ロードロック室101に搬送される。その後、ゲートバルブ14、15を閉じた状態で真空ポンプ125を作動させ、下段ロードロック室101の内部の雰囲気を所定の真空度、例えば13.3Paに減圧する。その後、不活性ガス供給源121から下段ロードロック室101の内部に不活性ガスを供給し、内部を不活性ガスで充満させて大気圧に均圧する。また、このとき、温度調節機構112によって、ウェハWを所定の温度まで冷却する(図7の工程S8(本発明における第5の工程))。 Thereafter, the gate valves 46 and 15 are sequentially opened, and the wafer W is transferred to the lower load lock chamber 101 of the second load lock unit 13 by the wafer transfer mechanism 47 of the second transfer unit 43. Thereafter, the vacuum pump 125 is operated with the gate valves 14 and 15 closed, and the atmosphere inside the lower load lock chamber 101 is reduced to a predetermined degree of vacuum, for example, 13.3 Pa. Thereafter, an inert gas is supplied from the inert gas supply source 121 to the inside of the lower load lock chamber 101, and the inside is filled with the inert gas to equalize the atmospheric pressure. At this time, the wafer W is cooled to a predetermined temperature by the temperature adjustment mechanism 112 (step S8 in FIG. 7 (fifth step in the present invention)).
 その後、ゲートバルブ14、12を順に開き、第1の搬送ユニット32のウェハ搬送機構35によって、ウェハWが第1のロードロックユニット10の下段ロードロック室101に搬送される。下段ロードロック室101では、温度調節機構112によって、ウェハWを例えば常温まで冷却する。その後、ウェハ搬送体22によって、搬入出ステーション2のカセット載置台20上のカセットCにウェハWが搬送される(図7の工程S9(本発明における第6の工程))。こうして、金属膜形成システム1における一連の金属膜形成処理が終了する。 Thereafter, the gate valves 14 and 12 are sequentially opened, and the wafer W is transferred to the lower load lock chamber 101 of the first load lock unit 10 by the wafer transfer mechanism 35 of the first transfer unit 32. In the lower load lock chamber 101, the temperature adjustment mechanism 112 cools the wafer W to, for example, room temperature. After that, the wafer W is transferred by the wafer transfer body 22 to the cassette C on the cassette mounting table 20 of the loading / unloading station 2 (step S9 in FIG. 7 (sixth step in the present invention)). Thus, a series of metal film forming processes in the metal film forming system 1 is completed.
 以上の実施の形態の金属膜形成システム1には、前処理ステーション3と主処理ステーション4との間に第2のロードロックユニット13が設けられているので、前処理ステーション3の内部の雰囲気と主処理ステーション4の内部の雰囲気とを隔離することができる。また、主処理ステーション4は、その内部の処理雰囲気を不活性ガスの大気圧雰囲気にすることができる。したがって、各処理の雰囲気を厳格に制御することができ、ウェハW上に金属膜330を適切に形成することができる。 Since the second load lock unit 13 is provided between the preprocessing station 3 and the main processing station 4 in the metal film forming system 1 of the above embodiment, the atmosphere inside the preprocessing station 3 The atmosphere inside the main processing station 4 can be isolated. Further, the main processing station 4 can make the processing atmosphere inside it an atmospheric pressure atmosphere of an inert gas. Therefore, the atmosphere of each process can be strictly controlled, and the metal film 330 can be appropriately formed on the wafer W.
 また、前処理ステーション3も、その内部の処理雰囲気を不活性ガスの大気圧雰囲気にすることができるため、ウェハW上に下地膜310を適切に形成することができる。これにより、ウェハW上に金属膜330をより適切に形成することができる。 In addition, since the pre-treatment station 3 can also set the inside treatment atmosphere to an atmospheric pressure atmosphere of an inert gas, the base film 310 can be appropriately formed on the wafer W. Thereby, the metal film 330 can be more appropriately formed on the wafer W.
 また、搬入出ステーション2と前処理ステーション3との間に第1のロードロックユニット10が設けられており、金属膜形成システム1は、第1のロードロックユニット10と第2のロードロックユニット13を介して、搬入出ステーション2、前処理ステーション3及び主処理ステーション4が一体に接続された構成を有している。このため、当該金属膜形成システム1において、ウェハW上に下地膜310と金属膜330を連続的に形成することができ、しかも複数のウェハWを連続して処理することができる。したがって、ウェハW上に金属膜330を効率よく形成することができる。 A first load lock unit 10 is provided between the carry-in / out station 2 and the pretreatment station 3, and the metal film forming system 1 includes the first load lock unit 10 and the second load lock unit 13. The carry-in / out station 2, the pre-processing station 3, and the main processing station 4 are connected together via the. Therefore, in the metal film forming system 1, the base film 310 and the metal film 330 can be continuously formed on the wafer W, and a plurality of wafers W can be processed continuously. Therefore, the metal film 330 can be efficiently formed on the wafer W.
 また、前処理ステーション3において、前処理液塗布ユニット30と熱処理ユニット31は、第1の搬送ユニット32を挟んで近接して設けられているので、ウェハW上に下地膜310を効率よく形成することができる。また、主処理ステーション4においても、金属混合液塗布ユニット40、前熱処理ユニット41及び後熱処理ユニット42は、第2の搬送ユニット43を挟んで近接して設けられているので、ウェハW上に金属膜330を効率よく形成することができる。 In the pretreatment station 3, the pretreatment liquid coating unit 30 and the heat treatment unit 31 are provided close to each other with the first transfer unit 32 interposed therebetween, so that the base film 310 is efficiently formed on the wafer W. be able to. Also in the main processing station 4, the metal liquid mixture application unit 40, the pre-heat treatment unit 41 and the post-heat treatment unit 42 are provided close to each other with the second transfer unit 43 interposed therebetween. The film 330 can be formed efficiently.
 また、主処理ステーション4において、ウェハW上に金属混合液322を塗布した後、前熱処理ユニット41と後熱処理ユニット42において2段階でウェハWを熱処理している。かかる場合、1つの熱処理ユニットでウェハWを所定の温度まで熱処理する場合に比べて、各熱処理ユニット41、42でのウェハWの熱処理の時間を短縮できる。したがって、複数のウェハWを連続して効率よく熱処理することができる。 In the main processing station 4, after the metal mixed solution 322 is applied onto the wafer W, the pre-heat treatment unit 41 and the post-heat treatment unit 42 heat-treat the wafer W in two stages. In this case, it is possible to shorten the time for the heat treatment of the wafer W in each of the heat treatment units 41 and 42 as compared with the case where the wafer W is heat-treated to a predetermined temperature with one heat treatment unit. Therefore, a plurality of wafers W can be heat-treated continuously and efficiently.
 さらに、前処理ステーション3と主処理ステーション4は、それぞれ内部を不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能に構成されているので、例えばメンテナンス時に前処理ステーション3と主処理ステーション4の内部を大気に開放した場合でも、メンテナンス終了後、前処理ステーション3と主処理ステーション4内の雰囲気を一旦真空引きして減圧することで、迅速に不活性ガスの大気圧雰囲気にすることができる。したがって、メンテナンス後、直ぐに金属膜形成システム1を立ち上げてウェハWを処理することができる。 Furthermore, since the pretreatment station 3 and the main treatment station 4 are configured to be able to switch the interior to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas, for example, the inside of the pretreatment station 3 and the main treatment station 4 during maintenance. Even when the atmosphere is opened to the atmosphere, after the maintenance is completed, the atmosphere in the pretreatment station 3 and the main treatment station 4 is once evacuated to reduce the pressure, whereby the atmospheric pressure of the inert gas can be quickly changed. Therefore, immediately after the maintenance, the metal film forming system 1 can be started up and the wafer W can be processed.
 また、第1のロードロックユニット10と第2のロードロックユニット13は、それぞれウェハWを所定の温度に調節する温度調節機構112を有しているので、当該第1のロードロックユニット10と第2のロードロックユニット13においてウェハWを一時的に収容している間に、当該ウェハWを温度調節することができる。これにより、ウェハWをより効率よく処理することができる。 Further, each of the first load lock unit 10 and the second load lock unit 13 includes a temperature adjustment mechanism 112 that adjusts the wafer W to a predetermined temperature. While the wafer W is temporarily accommodated in the two load lock units 13, the temperature of the wafer W can be adjusted. Thereby, the wafer W can be processed more efficiently.
 また、第1のロードロックユニット10と第2のロードロックユニット13には、それぞれ上下2段にロードロック室100、101が配置されているので、2枚のウェハWを同時に収容して処理することができる。したがって、ウェハWをより効率よく処理することができる。 In addition, since the first load lock unit 10 and the second load lock unit 13 are respectively provided with load lock chambers 100 and 101 in two upper and lower stages, two wafers W are simultaneously accommodated and processed. be able to. Therefore, the wafer W can be processed more efficiently.
 以上の実施の形態では、金属錯体320はアルミニウム原子を有していたが、他の金属原子、例えば銅原子や金原子、銀原子などを有していてもよい。また、前処理液についても、チタンオキサイドに限定されず、他のパラジウム酸化物やアルミニウム酸化物を用いてもよい。さらに、前処理液の種類によっては、上述の前処理ステーション3内の雰囲気を窒素ガス雰囲気にせず、大気に開放してもよい。かかる場合、上述の第1のロードロックユニット10を省略することができる。 In the above embodiment, the metal complex 320 has an aluminum atom, but may have another metal atom, such as a copper atom, a gold atom, or a silver atom. Further, the pretreatment liquid is not limited to titanium oxide, and other palladium oxide or aluminum oxide may be used. Furthermore, depending on the type of pretreatment liquid, the atmosphere in the pretreatment station 3 described above may be opened to the atmosphere instead of the nitrogen gas atmosphere. In such a case, the first load lock unit 10 described above can be omitted.
 また、以上の実施の形態の第1のロードロックユニット10と第2のロードロックユニット13には、それぞれ上下2段のロードロック室100、101が設けられていたが、ロードロック室の数はこれに限定されない。例えば上下3段以上のロードロック室を設けてもよい。 Further, the first load lock unit 10 and the second load lock unit 13 of the above embodiment are provided with two upper and lower load lock chambers 100 and 101, respectively. It is not limited to this. For example, a load lock chamber having three or more upper and lower stages may be provided.
 さらに、以上の実施の形態の第1のロードロックユニット10と第2のロードロックユニット13には、それぞれ上下2段のロードロック室100、101が設けられていたが、これら2室のロードロック室は水平方向に配置されていてもよい。かかる場合、図9に示すように第1のロードロックユニット10には、2室のロードロック室350、351が水平方向(図9のX方向)に並べて配置されている。そして、X方向正方向側に配置されたロードロック室350は、上述の上段ロードロック室100に相当し、当該上段ロードロック室100と同様の構成を有している。また、X方向負方向側に配置されたロードロック室351は、上述の下段ロードロック室101に相当し、当該下段ロードロック室101と同様の構成を有している。なお、これらロードロック室350、351は、その両端部に上述のゲートバルブ11、12がそれぞれ設けられ、搬入出ステーション2と前処理ステーション3に接続されている。そして、搬入出ステーション2から前処理ステーション3へウェハWを搬送する際に行われる上述の工程S1は、ロードロック室350において行われる。また、前処理ステーション3から搬入出ステーション2へウェハWを搬送する際に行われる上述の工程S9は、ロードロック室351において行われる。 Further, the first load lock unit 10 and the second load lock unit 13 of the above embodiment are provided with load lock chambers 100 and 101 in two upper and lower stages, respectively. The chambers may be arranged in the horizontal direction. In this case, as shown in FIG. 9, in the first load lock unit 10, two load lock chambers 350 and 351 are arranged side by side in the horizontal direction (X direction in FIG. 9). The load lock chamber 350 disposed on the positive side in the X direction corresponds to the upper load lock chamber 100 described above, and has the same configuration as the upper load lock chamber 100. The load lock chamber 351 arranged on the negative side in the X direction corresponds to the lower load lock chamber 101 described above, and has the same configuration as the lower load lock chamber 101. The load lock chambers 350 and 351 are provided with the above-described gate valves 11 and 12 at both ends thereof, and are connected to the carry-in / out station 2 and the pretreatment station 3. Then, the above-described step S <b> 1 that is performed when the wafer W is transferred from the loading / unloading station 2 to the preprocessing station 3 is performed in the load lock chamber 350. Further, the above-described step S9 performed when the wafer W is transferred from the preprocessing station 3 to the carry-in / out station 2 is performed in the load lock chamber 351.
 第2のロードロックユニット13も、第1のロードロックユニット10と同様に、2室のロードロック室360、361が水平方向に配置されている。これらロードロック室360、361は、X方向に並べて配置されている。そして、X方向正方向側に配置されたロードロック室360は、上述の上段ロードロック室100に相当し、当該上段ロードロック室100と同様の構成を有している。また、X方向負方向側に配置されたロードロック室361は、上述の下段ロードロック室101に相当し、当該下段ロードロック室101と同様の構成を有している。なお、これらロードロック室360、361は、その両端部に上述のゲートバルブ14、15がそれぞれ設けられ、前処理ステーション3と主処理ステーション4に接続されている。そして、前処理ステーション3から主処理ステーション4へウェハWを搬送する際に行われる上述の工程S4は、ロードロック室360において行われる。また、主処理ステーション4から前処理ステーション3へウェハWを搬送する際に行われる上述の工程S8は、ロードロック室361において行われる。 As with the first load lock unit 10, the second load lock unit 13 also has two load lock chambers 360 and 361 arranged in the horizontal direction. These load lock chambers 360 and 361 are arranged side by side in the X direction. The load lock chamber 360 arranged on the positive side in the X direction corresponds to the upper load lock chamber 100 described above, and has the same configuration as the upper load lock chamber 100. Further, the load lock chamber 361 arranged on the X direction negative direction side corresponds to the above-described lower load lock chamber 101 and has the same configuration as the lower load lock chamber 101. The load lock chambers 360 and 361 are provided with the above-described gate valves 14 and 15 at both ends thereof, and are connected to the preprocessing station 3 and the main processing station 4. The above-described step S4 performed when the wafer W is transferred from the preprocessing station 3 to the main processing station 4 is performed in the load lock chamber 360. Further, the above-described step S8 performed when the wafer W is transferred from the main processing station 4 to the preprocessing station 3 is performed in the load lock chamber 361.
 なお、第2のロードロックユニット13のロードロック室360、361間には、予備の熱処理ユニット362が設けられていてもよい。熱処理ユニット362は、ゲートバルブ363を介して前処理ステーション3の第1の搬送ユニット32に接続されると共に、ゲートバルブ364を介して主処理ステーション4の第2の搬送ユニット43に接続されている。熱処理ユニット362は、その内部に温度調節機構(図示せず)が設けられ、且つその内部を不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能に構成されている。そして、熱処理ユニット362は、ウェハWを所定の温度に温度調節することができ、例えばロードロック室360、361のメンテナンス時などに使用される。 Note that a spare heat treatment unit 362 may be provided between the load lock chambers 360 and 361 of the second load lock unit 13. The heat treatment unit 362 is connected to the first transfer unit 32 of the pretreatment station 3 via the gate valve 363 and is connected to the second transfer unit 43 of the main processing station 4 via the gate valve 364. . The heat treatment unit 362 is provided with a temperature adjustment mechanism (not shown) therein, and is configured to be able to switch the inside to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas. The heat treatment unit 362 can adjust the temperature of the wafer W to a predetermined temperature, and is used for maintenance of the load lock chambers 360 and 361, for example.
 また、主処理ステーション4には、予備の熱処理ユニット370が設けられていてもよい。熱処理ユニット370は、ゲートバルブ371を介して第2の搬送ユニット43に接続されている。熱処理ユニット370は、その内部に熱処理板(図示せず)や温度調節機構(図示せず)が設けられ、且つその内部を不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能に構成されている。そして、熱処理ユニット370は、ウェハWを所定の温度に熱処理することができ、例えば前熱処理ユニット41や後熱処理ユニット42のメンテナンス時などに使用される。 In addition, the main processing station 4 may be provided with a spare heat treatment unit 370. The heat treatment unit 370 is connected to the second transfer unit 43 via the gate valve 371. The heat treatment unit 370 is provided with a heat treatment plate (not shown) and a temperature adjustment mechanism (not shown) inside, and is configured to be able to switch the inside to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas. . The heat treatment unit 370 can heat the wafer W to a predetermined temperature, and is used for maintenance of the pre-heat treatment unit 41 and the post-heat treatment unit 42, for example.
 なお、金属膜形成システム1のその他の構成は、前記実施の形態における金属膜形成システム1の構成と同様であるので説明を省略する。本実施の形態においても、前記実施の形態と同様の効果を享受することができる。また、第1のロードロックユニット10にはロードロック室350、351が水平方向に配置されているので、第1の搬送ユニット32のウェハ搬送機構35の鉛直方向への移動を省略することが可能となる。同様に、第2のロードロックユニット13にも、ロードロック室360、361が水平方向に配置されているので、第2の搬送ユニット43のウェハ搬送機構47の鉛直方向への移動を省略することが可能となる。したがって、第1の搬送ユニット32と第2の搬送ユニット43の装置構成を簡略化することができる。 In addition, since the other structure of the metal film formation system 1 is the same as that of the metal film formation system 1 in the said embodiment, description is abbreviate | omitted. Also in this embodiment, the same effect as that of the above embodiment can be enjoyed. Further, since the load lock chambers 350 and 351 are arranged in the horizontal direction in the first load lock unit 10, it is possible to omit the movement of the wafer transfer mechanism 35 of the first transfer unit 32 in the vertical direction. It becomes. Similarly, since the load lock chambers 360 and 361 are also arranged in the horizontal direction in the second load lock unit 13, the movement of the wafer transfer mechanism 47 of the second transfer unit 43 in the vertical direction is omitted. Is possible. Therefore, the apparatus configuration of the first transport unit 32 and the second transport unit 43 can be simplified.
 また、以上の実施の形態の前処理液塗布ユニット30と金属混合液塗布ユニット40は、ウェハWの裏面を洗浄するバックリンスノズルを備えていてもよく、またカップ151を洗浄するカップリンスノズルを備えていてもよい。 In addition, the pretreatment liquid coating unit 30 and the metal mixed liquid coating unit 40 of the above embodiment may include a back rinse nozzle that cleans the back surface of the wafer W, and a cup rinse nozzle that cleans the cup 151. You may have.
 また、以上の実施の形態では、基板としてウェハWを用いた場合について説明したが、本発明は、基板がウェハ以外のFPD(フラットパネルディスプレイ)、フォトマスク用のマスクレチクルなどの他の基板である場合にも適用できる。さらに、本発明は、例えば有機太陽電池の製造プロセスや低酸素雰囲気下での成膜プロセスにも適用することができる。 In the above embodiment, the case where the wafer W is used as the substrate has been described. However, the present invention is not limited to the wafer but may be another substrate such as an FPD (flat panel display) other than the wafer or a mask reticle for a photomask. It can also be applied in some cases. Furthermore, the present invention can be applied to, for example, a manufacturing process of an organic solar cell and a film forming process in a low oxygen atmosphere.
 以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。本発明はこの例に限らず種々の態様を採りうるものである。 The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the idea described in the claims, and these naturally belong to the technical scope of the present invention. It is understood. The present invention is not limited to this example and can take various forms.
  1  金属膜形成システム
  2  搬入出ステーション
  3  前処理ステーション
  4  主処理ステーション
  10 第1のロードロックユニット
  13 第2のロードロックユニット
  30 前処理液塗布ユニット
  31 熱処理ユニット
  32 第1の搬送ユニット
  35 ウェハ搬送機構
  40 金属混合液塗布ユニット
  41 前熱処理ユニット
  42 後熱処理ユニット
  43 第2の搬送ユニット
  47 ウェハ搬送機構
  100 上段ロードロック室
  101 下段ロードロック室
  112 温度調節機構
  121 ガス供給源
  125 真空ポンプ
  132 ガス供給源
  154 真空ポンプ
  160 前処理液ノズル
  170 金属錯体ノズル
  171 溶媒ノズル
  192 ガス供給源
  196 真空ポンプ
  200 熱処理板
  250 制御部
  300 前処理液
  310 下地膜
  320 金属錯体
  321 溶媒
  322 金属混合液
  330 金属膜
  350、351、360、361 ロードロック室
  W  ウェハ
DESCRIPTION OF SYMBOLS 1 Metal film formation system 2 Loading / unloading station 3 Pre-processing station 4 Main processing station 10 1st load lock unit 13 2nd load lock unit 30 Pre-processing liquid application unit 31 Heat processing unit 32 1st transfer unit 35 Wafer transfer mechanism 40 Metal Mixed Liquid Application Unit 41 Pre-heat treatment unit 42 Post-heat treatment unit 43 Second transfer unit 47 Wafer transfer mechanism 100 Upper load lock chamber 101 Lower load lock chamber 112 Temperature control mechanism 121 Gas supply source 125 Vacuum pump 132 Gas supply source 154 Vacuum pump 160 Pretreatment liquid nozzle 170 Metal complex nozzle 171 Solvent nozzle 192 Gas supply source 196 Vacuum pump 200 Heat treatment plate 250 Controller 300 Pretreatment liquid 310 Underlayer film 32 0 Metal Complex 321 Solvent 322 Metal Mixture 330 Metal Film 350, 351, 360, 361 Load Lock Chamber W Wafer

Claims (15)

  1. 基板上に金属膜を形成する金属膜形成システムであって、
    基板と金属膜との定着性を向上させるための前処理液を基板上に塗布して、当該基板上に下地膜を形成する前処理ステーションと、
    前記下地膜が形成された基板上に金属錯体と溶媒の金属混合液を塗布して、当該基板上に金属膜を形成する主処理ステーションと、
    前記前処理ステーションに対して基板を搬入出する搬入出ステーションと、
    前記搬入出ステーションと前記前処理ステーションとに接続され、内部を不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能で、且つ基板を一時的に収容する第1のロードロックユニットと、
    前記前処理ステーションと前記主処理ステーションとに接続され、内部を不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能で、且つ基板を一時的に収容する第2のロードロックユニットと、を有し、
    前記主処理ステーションは、内部を不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能に構成されている。
    A metal film forming system for forming a metal film on a substrate,
    A pretreatment station for applying a pretreatment liquid on the substrate to improve the fixing property between the substrate and the metal film, and forming a base film on the substrate;
    A main processing station for applying a metal complex and a metal mixed solution of a solvent on the substrate on which the base film is formed, and forming a metal film on the substrate;
    A loading / unloading station for loading / unloading substrates to / from the pretreatment station;
    A first load lock unit connected to the carry-in / out station and the pre-treatment station, the inside of which can be switched to an atmospheric pressure atmosphere or a reduced-pressure atmosphere of an inert gas, and which temporarily stores a substrate;
    A second load lock unit connected to the pre-processing station and the main processing station, the inside of which can be switched to an atmospheric pressure atmosphere or a reduced-pressure atmosphere of an inert gas, and which temporarily stores a substrate. ,
    The main processing station is configured to be switchable to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas.
  2. 請求項1に記載の金属膜形成システムであって、
    前記前処理ステーションは、内部を不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能に構成されている。
    The metal film forming system according to claim 1,
    The pretreatment station is configured to be switchable to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas.
  3. 請求項2に記載の金属膜形成システムであって、
    前記前処理ステーションは、
    基板上に前記前処理液を塗布する前処理液塗布ユニットと、
    前記前処理液が塗布された基板を熱処理する熱処理ユニットと、
    前記前処理液塗布ユニット、前記熱処理ユニット、前記第1のロードロックユニット及び前記第2のロードロックユニットに接続され、基板を搬送する基板搬送機構を備えた第1の搬送ユニットと、を有し、
    前記主処理ステーションは、
    基板上に前記金属混合液を塗布する金属混合液塗布ユニットと、
    前記金属混合液が塗布された基板を第1の温度まで熱処理する前熱処理ユニットと、
    前記第1の温度まで熱処理された基板をさらに第1の温度よりも高い第2の温度まで熱処理する後熱処理ユニットと、
    前記金属混合液塗布ユニット、前記前熱処理ユニット、前記後熱処理ユニット及び前記第2のロードロックユニットに接続され、基板を搬送する基板搬送機構を備えた第2の搬送ユニットと、を有し、
    前記前処理液塗布ユニット、前記熱処理ユニット、前記第1の搬送ユニット、前記金属混合液塗布ユニット、前記前熱処理ユニット、前記後熱処理ユニット、前記第2の搬送ユニットは、それぞれ内部を不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能に構成されている。
    The metal film forming system according to claim 2,
    The pretreatment station is
    A pretreatment liquid application unit for applying the pretreatment liquid on a substrate;
    A heat treatment unit for heat-treating the substrate coated with the pretreatment liquid;
    A first transport unit having a substrate transport mechanism connected to the pretreatment liquid application unit, the heat treatment unit, the first load lock unit, and the second load lock unit and transporting a substrate; ,
    The main processing station is
    A metal mixture application unit for applying the metal mixture on a substrate;
    A pre-heat treatment unit for heat-treating the substrate coated with the metal mixed solution to a first temperature;
    A post-heat treatment unit that heat-treats the substrate heat-treated to the first temperature to a second temperature higher than the first temperature;
    A second transport unit provided with a substrate transport mechanism connected to the metal liquid mixture application unit, the pre-heat treatment unit, the post-heat treatment unit, and the second load lock unit, and transports a substrate;
    The pretreatment liquid coating unit, the heat treatment unit, the first transport unit, the metal mixed liquid coating unit, the preheat treatment unit, the post heat treatment unit, and the second transport unit are each filled with an inert gas. It can be switched to an atmospheric pressure atmosphere or a reduced pressure atmosphere.
  4. 請求項1に記載の金属膜形成システムであって、
    前記第1のロードロックユニットと前記第2のロードロックユニットは、それぞれ基板を所定の温度に調節する温度調節機構を有する。
    The metal film forming system according to claim 1,
    Each of the first load lock unit and the second load lock unit has a temperature adjustment mechanism for adjusting the substrate to a predetermined temperature.
  5. 請求項1に記載の金属膜形成システムであって、
    前記第1のロードロックユニットと前記第2のロードロックユニットには、それぞれ上下2段にロードロック室が配置され、
    前記各ロードロック室は、内部を不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能で、且つ基板を一時的に収容するように構成されている。
    The metal film forming system according to claim 1,
    In the first load lock unit and the second load lock unit, load lock chambers are arranged in two upper and lower stages, respectively.
    Each of the load lock chambers can be switched to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas, and is configured to temporarily accommodate a substrate.
  6. 請求項1に記載の金属膜形成システムであって、
    前記第1のロードロックユニットと前記第2のロードロックユニットには、それぞれ2室のロードロック室が水平方向に配置され、
    前記各ロードロック室は、内部を不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能で、且つ基板を一時的に収容するように構成されている。
    The metal film forming system according to claim 1,
    In each of the first load lock unit and the second load lock unit, two load lock chambers are arranged in the horizontal direction,
    Each of the load lock chambers can be switched to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas, and is configured to temporarily accommodate a substrate.
  7. 請求項1に記載の金属膜形成システムであって、
    前記金属錯体はアルミニウム原子を有し、前記前処理液は有機金属化合物を有する。
    The metal film forming system according to claim 1,
    The metal complex has an aluminum atom, and the pretreatment liquid has an organometallic compound.
  8. 金属膜形成システムを用いて、基板上に金属膜を形成する金属膜形成方法であって、
    前記金属膜形成システムは、
    基板と金属膜との定着性を向上させるための前処理液を基板上に塗布して、当該基板上に下地膜を形成する前処理ステーションと、
    前記下地膜が形成された基板上に金属錯体と溶媒の金属混合液を塗布して、当該基板上に金属膜を形成し、且つ内部を不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能な主処理ステーションと、
    前記前処理ステーションに対して基板を搬入出する搬入出ステーションと、
    前記搬入出ステーションと前記前処理ステーションとに接続され、内部を不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能で、且つ基板を一時的に収容する第1のロードロックユニットと、
    前記前処理ステーションと前記主処理ステーションとに接続され、内部を不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能で、且つ基板を一時的に収容する第2のロードロックユニットと、を有し、
    前記金属膜形成方法は、
    前記搬入出ステーションから前記第1のロードロックユニットに基板を搬送し、当該第1のロードロックユニット内の雰囲気を減圧した後、不活性ガスの大気圧雰囲気にする第1の工程と、
    その後、前記第1のロードロックユニットから前記前処理ステーションに基板を搬送し、当該前処理ステーションにおいて、前記前処理液を基板上に塗布して、当該基板上に下地膜を形成する第2の工程と、
    その後、前記前処理ステーションから前記第2のロードロックユニットに基板を搬送し、当該第2のロードロックユニット内の雰囲気を減圧した後、不活性ガスの大気圧雰囲気にする第3の工程と、
    その後、前記第2のロードロックユニットから前記主処理ステーションに基板を搬送し、当該主処理ステーションにおいて、不活性ガスの大気圧雰囲気中で前記金属混合液を基板上に塗布して、当該基板上に金属膜を形成する第4の工程と、
    その後、前記主処理ステーションから前記第2のロードロックユニットに基板を搬送し、当該第2のロードロックユニット内の雰囲気を減圧した後、不活性ガスの大気圧雰囲気にする第5の工程と、
    その後、前記第2のロードロックユニットから前記前処理ステーション及び前記第1のロードロックユニットを介して前記搬入出ステーションに基板を搬送する第6の工程と、を有する。
    A metal film forming method for forming a metal film on a substrate using a metal film forming system,
    The metal film forming system includes:
    A pretreatment station for applying a pretreatment liquid on the substrate to improve the fixing property between the substrate and the metal film, and forming a base film on the substrate;
    A metal mixed solution of a metal complex and a solvent is applied on the substrate on which the base film is formed, a metal film is formed on the substrate, and the inside can be switched to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas. A main processing station;
    A loading / unloading station for loading / unloading substrates to / from the pretreatment station;
    A first load lock unit connected to the carry-in / out station and the pre-treatment station, the inside of which can be switched to an atmospheric pressure atmosphere or a reduced-pressure atmosphere of an inert gas, and which temporarily stores a substrate;
    A second load lock unit connected to the pre-processing station and the main processing station, the inside of which can be switched to an atmospheric pressure atmosphere or a reduced-pressure atmosphere of an inert gas, and which temporarily stores a substrate. ,
    The metal film forming method includes:
    A first step of transporting the substrate from the loading / unloading station to the first load lock unit, depressurizing the atmosphere in the first load lock unit, and then setting the atmosphere to an inert gas atmospheric pressure;
    Thereafter, the substrate is transported from the first load lock unit to the pretreatment station, and the pretreatment liquid is applied onto the substrate at the pretreatment station to form a base film on the substrate. Process,
    A third step of transferring the substrate from the pretreatment station to the second load lock unit, depressurizing the atmosphere in the second load lock unit, and then setting the atmosphere to an inert gas atmospheric pressure;
    Thereafter, the substrate is transported from the second load lock unit to the main processing station, and the metal mixture is applied onto the substrate in an atmospheric pressure atmosphere of an inert gas at the main processing station. A fourth step of forming a metal film on the substrate;
    Thereafter, a substrate is transferred from the main processing station to the second load lock unit, and after reducing the atmosphere in the second load lock unit, a fifth step of bringing the atmosphere into an inert gas atmospheric pressure;
    And a sixth step of transporting the substrate from the second load lock unit to the loading / unloading station via the pretreatment station and the first load lock unit.
  9. 請求項8に記載の金属膜形成方法であって、
    前記前処理ステーションは、内部を不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能に構成され、
    前記第2の工程は、前記前処理ステーションの内部を不活性ガスの大気圧雰囲気にした状態で行われる。
    The metal film forming method according to claim 8,
    The pretreatment station is configured to be able to switch the inside to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas,
    The second step is performed in a state where the inside of the pretreatment station is in an inert gas atmospheric pressure atmosphere.
  10. 請求項8に記載の金属膜形成方法であって、
    前記第2の工程において、基板上に前記前処理液を塗布した後、当該基板を熱処理し、
    前記第4の工程において、基板上に前記金属混合液を塗布した後、当該基板を熱処理する。
    The metal film forming method according to claim 8,
    In the second step, after applying the pretreatment liquid on the substrate, the substrate is heat-treated,
    In the fourth step, after the metal mixed solution is applied on the substrate, the substrate is heat-treated.
  11. 請求項8に記載の金属膜形成方法であって、
    前記第3の工程において、基板を常温に温度調節し、
    前記第6の工程において、前記第1のロードロックユニットで基板を常温に温度調節する。
    The metal film forming method according to claim 8,
    In the third step, the temperature of the substrate is adjusted to room temperature,
    In the sixth step, the temperature of the substrate is adjusted to room temperature by the first load lock unit.
  12. 請求項8に記載の金属膜形成方法であって、
    前記第1のロードロックユニットと前記第2のロードロックユニットには、それぞれ上下2段にロードロック室が配置され、
    前記第1の工程と前記第6の工程は、前記第1のロードロックユニットの各ロードロック室でそれぞれ行われ、
    前記第3の工程と前記第5の工程は、前記第2のロードロックユニットの各ロードロック室でそれぞれ行われる。
    The metal film forming method according to claim 8,
    In the first load lock unit and the second load lock unit, load lock chambers are arranged in two upper and lower stages, respectively.
    The first step and the sixth step are respectively performed in each load lock chamber of the first load lock unit,
    The third step and the fifth step are respectively performed in each load lock chamber of the second load lock unit.
  13. 請求項8に記載の金属膜形成方法であって、
    前記第1のロードロックユニットと前記第2のロードロックユニットには、それぞれ2室のロードロック室が水平方向に配置され、
    前記第1の工程と前記第6の工程は、前記第1のロードロックユニットの各ロードロック室でそれぞれ行われ、
    前記第3の工程と前記第5の工程は、前記第2のロードロックユニットの各ロードロック室でそれぞれ行われる。
    The metal film forming method according to claim 8,
    In each of the first load lock unit and the second load lock unit, two load lock chambers are arranged in the horizontal direction,
    The first step and the sixth step are respectively performed in each load lock chamber of the first load lock unit,
    The third step and the fifth step are respectively performed in each load lock chamber of the second load lock unit.
  14. 請求項8に記載の金属膜形成方法であって、
    前記金属錯体はアルミニウム原子を有し、前記前処理液は有機金属化合物を有する。
    The metal film forming method according to claim 8,
    The metal complex has an aluminum atom, and the pretreatment liquid has an organometallic compound.
  15. 基板上に金属膜を形成する金属膜形成方法を金属膜形成システムによって実行させるために、当該金属膜形成システムを制御する制御部のコンピュータ上で動作するプログラムを格納した読み取り可能なコンピュータ記憶媒体であって、
    前記金属膜形成システムは、
    基板と金属膜との定着性を向上させるための前処理液を基板上に塗布して、当該基板上に下地膜を形成する前処理ステーションと、
    前記下地膜が形成された基板上に金属錯体と溶媒の金属混合液を塗布して、当該基板上に金属膜を形成し、且つ内部を不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能な主処理ステーションと、
    前記前処理ステーションに対して基板を搬入出する搬入出ステーションと、
    前記搬入出ステーションと前記前処理ステーションとに接続され、内部を不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能で、且つ基板を一時的に収容する第1のロードロックユニットと、
    前記前処理ステーションと前記主処理ステーションとに接続され、内部を不活性ガスの大気圧雰囲気又は減圧雰囲気に切り替え可能で、且つ基板を一時的に収容する第2のロードロックユニットと、を有し、
    前記金属膜形成方法は、
    前記搬入出ステーションから前記第1のロードロックユニットに基板を搬送し、当該第1のロードロックユニット内の雰囲気を減圧した後、不活性ガスの大気圧雰囲気にする第1の工程と、
    その後、前記第1のロードロックユニットから前記前処理ステーションに基板を搬送し、当該前処理ステーションにおいて、前記前処理液を基板上に塗布して、当該基板上に下地膜を形成する第2の工程と、
    その後、前記前処理ステーションから前記第2のロードロックユニットに基板を搬送し、当該第2のロードロックユニット内の雰囲気を減圧した後、不活性ガスの大気圧雰囲気にする第3の工程と、
    その後、前記第2のロードロックユニットから前記主処理ステーションに基板を搬送し、当該主処理ステーションにおいて、不活性ガスの大気圧雰囲気中で前記金属混合液を基板上に塗布して、当該基板上に金属膜を形成する第4の工程と、
    その後、前記主処理ステーションから前記第2のロードロックユニットに基板を搬送し、当該第2のロードロックユニット内の雰囲気を減圧した後、不活性ガスの大気圧雰囲気にする第5の工程と、
    その後、前記第2のロードロックユニットから前記前処理ステーション及び前記第1のロードロックユニットを介して前記搬入出ステーションに基板を搬送する第6の工程と、を有する。
    A readable computer storage medium storing a program that operates on a computer of a control unit that controls the metal film forming system in order to cause the metal film forming system to execute a metal film forming method for forming a metal film on a substrate. There,
    The metal film forming system includes:
    A pretreatment station for applying a pretreatment liquid on the substrate to improve the fixing property between the substrate and the metal film, and forming a base film on the substrate;
    A metal mixed solution of a metal complex and a solvent is applied on the substrate on which the base film is formed, a metal film is formed on the substrate, and the inside can be switched to an atmospheric pressure atmosphere or a reduced pressure atmosphere of an inert gas. A main processing station;
    A loading / unloading station for loading / unloading substrates to / from the pretreatment station;
    A first load lock unit connected to the carry-in / out station and the pre-treatment station, the inside of which can be switched to an atmospheric pressure atmosphere or a reduced-pressure atmosphere of an inert gas, and which temporarily stores a substrate;
    A second load lock unit connected to the pre-processing station and the main processing station, the inside of which can be switched to an atmospheric pressure atmosphere or a reduced-pressure atmosphere of an inert gas, and which temporarily stores a substrate. ,
    The metal film forming method includes:
    A first step of transporting the substrate from the loading / unloading station to the first load lock unit, depressurizing the atmosphere in the first load lock unit, and then setting the atmosphere to an inert gas atmospheric pressure;
    Thereafter, the substrate is transported from the first load lock unit to the pretreatment station, and the pretreatment liquid is applied onto the substrate at the pretreatment station to form a base film on the substrate. Process,
    A third step of transferring the substrate from the pretreatment station to the second load lock unit, depressurizing the atmosphere in the second load lock unit, and then setting the atmosphere to an inert gas atmospheric pressure;
    Thereafter, the substrate is transported from the second load lock unit to the main processing station, and the metal mixture is applied onto the substrate in an atmospheric pressure atmosphere of an inert gas at the main processing station. A fourth step of forming a metal film on the substrate;
    Thereafter, a substrate is transferred from the main processing station to the second load lock unit, and after reducing the atmosphere in the second load lock unit, a fifth step of bringing the atmosphere into an inert gas atmospheric pressure;
    And a sixth step of transporting the substrate from the second load lock unit to the loading / unloading station via the pretreatment station and the first load lock unit.
PCT/JP2011/058523 2010-05-12 2011-04-04 Metal film forming system, metal film forming method, and computer storage medium WO2011142192A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-110203 2010-05-12
JP2010110203A JP2011236478A (en) 2010-05-12 2010-05-12 Metal film forming system, method of forming metal film, program and computer storage medium

Publications (1)

Publication Number Publication Date
WO2011142192A1 true WO2011142192A1 (en) 2011-11-17

Family

ID=44914248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058523 WO2011142192A1 (en) 2010-05-12 2011-04-04 Metal film forming system, metal film forming method, and computer storage medium

Country Status (3)

Country Link
JP (1) JP2011236478A (en)
TW (1) TW201207911A (en)
WO (1) WO2011142192A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190013220A1 (en) * 2016-03-11 2019-01-10 SCREEN Holdings Co., Ltd. Substrate processing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003037147A (en) * 2001-07-25 2003-02-07 Tokyo Electron Ltd Substrate carrying apparatus and thermally treatment method
JP2008235800A (en) * 2007-03-23 2008-10-02 Tokyo Electron Ltd Load-lock device and processing system for substrate
WO2009001896A1 (en) * 2007-06-28 2008-12-31 Tokyo Electron Limited Filming method, and treating system
JP2009227864A (en) * 2008-03-24 2009-10-08 Jsr Corp Composition for forming aluminum film, and method for forming aluminum film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003037147A (en) * 2001-07-25 2003-02-07 Tokyo Electron Ltd Substrate carrying apparatus and thermally treatment method
JP2008235800A (en) * 2007-03-23 2008-10-02 Tokyo Electron Ltd Load-lock device and processing system for substrate
WO2009001896A1 (en) * 2007-06-28 2008-12-31 Tokyo Electron Limited Filming method, and treating system
JP2009227864A (en) * 2008-03-24 2009-10-08 Jsr Corp Composition for forming aluminum film, and method for forming aluminum film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190013220A1 (en) * 2016-03-11 2019-01-10 SCREEN Holdings Co., Ltd. Substrate processing device
US10910240B2 (en) * 2016-03-11 2021-02-02 SCREEN Holdings Co., Ltd. Substrate processing device

Also Published As

Publication number Publication date
JP2011236478A (en) 2011-11-24
TW201207911A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
KR102436241B1 (en) Substrate processing method and heat treatment apparatus
US8813678B2 (en) Substrate processing apparatus
JP4916140B2 (en) Vacuum processing system
JP4450784B2 (en) Coating and developing apparatus and method thereof
WO2017090505A1 (en) Substrate liquid treatment device, substrate liquid treatment method, and memory medium
JP5090536B2 (en) Substrate processing method and substrate processing apparatus
JP6945314B2 (en) Board processing equipment
JP4879304B2 (en) Vacuum drying apparatus and vacuum drying method
JP3598462B2 (en) Drying method and drying device
KR101932777B1 (en) Substrate processing apparatus and substrate processing method
JP2007149948A (en) Vacuum treatment device
JP3739287B2 (en) Vacuum drying method and coating film forming apparatus
WO2011142193A1 (en) Metal film forming system, method for forming metal film and computer recording medium
KR20080011903A (en) Apparatus for transfering substrates, apparatus for treating substrates, and method for cooling substrates
WO2011142192A1 (en) Metal film forming system, metal film forming method, and computer storage medium
WO2011142194A1 (en) Metal film forming system
JP2004235469A (en) Heat treatment method and heat treatment apparatus
JP6417916B2 (en) Substrate transport method, substrate processing apparatus, and storage medium
JP3167547U (en) Metal mixture nozzle
JP7445509B2 (en) Substrate processing equipment and substrate transport method
WO2023276723A1 (en) Substrate processing device and substrate processing method
JP2002246435A (en) Substrate processor and substrate-processing method
JP2006147779A (en) Processing system
KR20220060027A (en) Apparatus and method for treating substrate
KR101578078B1 (en) Substrate processing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11780449

Country of ref document: EP

Kind code of ref document: A1