WO2023276723A1 - Substrate processing device and substrate processing method - Google Patents

Substrate processing device and substrate processing method Download PDF

Info

Publication number
WO2023276723A1
WO2023276723A1 PCT/JP2022/024304 JP2022024304W WO2023276723A1 WO 2023276723 A1 WO2023276723 A1 WO 2023276723A1 JP 2022024304 W JP2022024304 W JP 2022024304W WO 2023276723 A1 WO2023276723 A1 WO 2023276723A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
unit
wafer
hydroxylation
heat treatment
Prior art date
Application number
PCT/JP2022/024304
Other languages
French (fr)
Japanese (ja)
Inventor
真一路 川上
智也 鬼塚
健太郎 山村
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2023276723A1 publication Critical patent/WO2023276723A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present disclosure relates to a substrate processing apparatus and a substrate processing method.
  • Patent Document 1 discloses a pattern forming apparatus for forming a predetermined resist pattern on a semiconductor substrate using a chemically amplified resist.
  • the control section controls the delivery section and the post-exposure bake unit so that the time from the end of exposure in the exposure device to the start of post-exposure bake processing in the post-exposure bake unit is constant for each substrate.
  • the substrates are kept waiting at two places in the waiting section of .
  • the technology according to the present disclosure improves the in-plane uniformity of the dimensions of a resist pattern using a metal-containing resist.
  • One aspect of the present disclosure includes a hydroxylation treatment unit that performs hydroxylation treatment on each substrate on which a film of a metal-containing resist is formed and has been subjected to exposure treatment, and the hydroxylation treatment is performed on the film.
  • a heat treatment unit for applying heat treatment to a substrate that has been subjected to heat treatment; and a development treatment unit for applying development treatment to the film on the substrate that has been subjected to the heat treatment, wherein the hydroxylation treatment unit supports a substrate for supporting the substrate.
  • a lid covering a processing space on the substrate support; and a gas discharger for discharging gas containing moisture into the processing space.
  • FIG. 1 is an explanatory view showing an outline of an internal configuration of a coating and developing treatment apparatus as a substrate processing apparatus according to this embodiment
  • FIG. FIG. 2 is a diagram showing the outline of the internal configuration on the front side of the coating and developing treatment apparatus
  • FIG. 2 is a diagram showing the outline of the internal configuration on the back side of the coating and developing treatment apparatus
  • FIG. 2 is a vertical cross-sectional view schematically showing the outline of the configuration of a heat treatment unit used for PEB treatment
  • FIG. 2 is a cross-sectional view schematically showing the outline of the configuration of a heat treatment unit used for PEB treatment
  • FIG. 3 is a vertical cross-sectional view schematically showing the outline of the configuration of a heating region
  • FIG. 4 is a vertical cross-sectional view schematically showing the outline of the configuration of a hydroxylated region; It is a bottom view which shows the outline of a structure of a cover typically.
  • FIG. 4 is an explanatory view showing the operation of the mixing unit during hydroxylation treatment and PEB treatment;
  • FIG. 4 is an explanatory view showing the operation of the mixing unit during hydroxylation treatment and PEB treatment;
  • a predetermined process is performed to form a resist pattern on a semiconductor wafer (hereinafter referred to as "wafer").
  • the above predetermined processing includes, for example, a resist coating processing in which a resist solution is supplied onto a wafer to form a resist film, an exposure processing in which the resist film is exposed, and a PEB in which heat is applied to promote a chemical reaction in the resist film after exposure. (Post Exposure Bake) processing, development processing for developing the exposed resist film, and the like.
  • metal-containing resists are sometimes used as resists instead of chemically amplified resists.
  • the PEB process using a metal-containing resist is performed while evacuating the atmosphere around the substrate, but depending on the form of the evacuation, etc., the dimensions of the resist pattern may vary within the plane.
  • the technology according to the present disclosure improves the in-plane uniformity of the dimensions of the resist pattern using the metal-containing resist.
  • FIG. 1 is an explanatory view showing the outline of the internal configuration of a coating and developing treatment apparatus as a substrate processing apparatus according to this embodiment.
  • 2 and 3 are diagrams showing the outline of the internal configuration on the front side and the back side of the coating and developing treatment apparatus 1, respectively.
  • the coating and developing treatment apparatus 1 forms a resist pattern on a wafer W as a substrate using a negative metal-containing resist (more specifically, a metal oxide resist).
  • a negative metal-containing resist more specifically, a metal oxide resist.
  • the metal contained in the metal-containing resist is arbitrary, but is tin, for example.
  • the coating and developing treatment apparatus 1 includes a cassette station 2 in which a cassette C, which is a container capable of accommodating a plurality of wafers, is loaded and unloaded, and various processing units for performing predetermined processes such as resist coating. and a processing station 3 comprising a plurality of
  • the coating and developing treatment apparatus 1 has a configuration in which a cassette station 2, a treatment station 3, and an interface station 5 for transferring wafers W between an exposure apparatus 4 adjacent to the treatment station 3 are integrally connected. doing.
  • the cassette station 2 is divided into, for example, a cassette loading/unloading section 10 and a wafer transfer section 11 .
  • the cassette loading/unloading section 10 is provided at the end of the coating and developing treatment apparatus 1 in the negative Y direction (leftward direction in FIG. 1).
  • a cassette mounting table 12 is provided in the cassette loading/unloading section 10 .
  • a plurality of, for example, four mounting plates 13 are provided on the cassette mounting table 12 .
  • the mounting plates 13 are arranged in a row in the horizontal X direction (vertical direction in FIG. 1).
  • the cassette C can be placed on these mounting plates 13 when the cassette C is carried into and out of the coating and developing treatment apparatus 1 .
  • a transfer unit 20 for transferring the wafer W is provided in the wafer transfer section 11 .
  • the transport unit 20 is configured to be movable along a transport path 21 extending in the X direction.
  • the transport unit 20 is movable in the vertical direction and around the vertical axis ( ⁇ direction). , the wafer W can be transported.
  • the processing station 3 is provided with a plurality of, for example, first to fourth blocks G1, G2, G3, and G4 each having various units.
  • a first block G1 is provided on the front side of the processing station 3 (negative X direction side in FIG. 1), and a second block G1 is provided on the back side of the processing station 3 (positive X direction side in FIG. 1).
  • a block G2 of is provided.
  • a third block G3 is provided on the cassette station 2 side of the processing station 3 (negative Y direction side in FIG. 1), and the interface station 5 side of the processing station 3 (positive Y direction side in FIG. 1). is provided with a fourth block G4.
  • a plurality of liquid processing units such as a developing processing unit 30, a lower antireflection film forming unit 31, a resist coating unit 32, and an upper antireflection film forming unit 33 are arranged from below. are arranged in order.
  • the development processing unit 30 subjects the wafer W to development processing. Specifically, the development processing unit 30 develops the metal-containing resist film of the wafer W that has undergone the PEB processing.
  • the lower antireflection film forming unit 31 forms an antireflection film (hereinafter referred to as “lower antireflection film”) on the wafer W under the metal-containing resist film.
  • the resist coating unit 32 coats the wafer W with a metal-containing resist to form a coating of the metal-containing resist, that is, a metal-containing resist film.
  • the upper antireflection film forming unit 33 forms an antireflection film (hereinafter referred to as “upper antireflection film”) on the metal-containing resist film of the wafer W. As shown in FIG.
  • three development processing units 30, lower antireflection film forming units 31, resist coating units 32, and upper antireflection film forming units 33 are arranged horizontally.
  • the number and arrangement of these development processing units 30, lower antireflection film forming units 31, resist coating units 32, and upper antireflection film forming units 33 can be arbitrarily selected.
  • a predetermined processing liquid is applied onto the wafer W by spin coating, for example.
  • the processing liquid is discharged onto the wafer W from a discharge nozzle, and the wafer W is rotated to spread the processing liquid on the surface of the wafer W.
  • a processing unit 41 and a peripheral exposure unit 42 for exposing the peripheral portion of the resist film on the wafer W are arranged vertically and horizontally.
  • the number and arrangement of these thermal processing units 40, hydrophobic processing units 41, and peripheral exposure units 42 can also be selected arbitrarily.
  • a pre-baking process (hereinafter referred to as "PAB process”) for heat-treating the wafer W after the resist coating process, a PEB process for heat-treating the wafer W after the exposure process, and a wafer after the development process.
  • a post-baking process (hereinafter referred to as "POST process”) for heat-treating W is performed.
  • the heat treatment unit 40 used for the PEB treatment is integrated with the hydroxylation treatment unit 40a for performing the hydroxylation treatment, as described later, and constitutes the mixing unit M described later.
  • the mixing unit M described later.
  • a plurality of delivery units 50, 51, 52, 53, 54, 55, and 56 are provided in order from the bottom.
  • a plurality of transfer units 60, 61, 62 and a back surface cleaning unit 63 for cleaning the back surface of the wafer W are provided in this order from the bottom.
  • a wafer transfer area D is formed in the area surrounded by the first block G1 to the fourth block G4.
  • a transfer unit 70 as a substrate transfer unit for transferring the wafer W, for example, is arranged.
  • the transport unit 70 has a transport arm 70a that is movable in, for example, the Y direction, the ⁇ direction, and the vertical direction.
  • the transfer unit 70 moves the transfer arm 70a holding the wafer W within the wafer transfer area D, and moves the transfer arm 70a within the surrounding first block G1, second block G2, third block G3 and fourth block G4.
  • a wafer W can be transported to a predetermined device.
  • a plurality of transport units 70 are arranged vertically, and wafers W can be transported to predetermined units having approximately the same height in blocks G1 to G4, for example.
  • a shuttle transfer unit 80 is provided for transferring the wafer W linearly between the third block G3 and the fourth block G4.
  • the shuttle transport unit 80 linearly moves the supported wafer W in the Y direction, and transfers the wafer between the delivery unit 51 of the third block G3 and the delivery unit 60 of the fourth block G4, which are approximately the same height. W can be transported.
  • a transport unit 90 is provided on the positive X-direction side of the third block G3.
  • the transport unit 90 has a transport arm 90a movable in, for example, the ⁇ direction and the vertical direction.
  • the transfer unit 90 can move the transfer arm 90a holding the wafer W up and down to transfer the wafer W to each transfer unit in the third block G3.
  • the interface station 5 is provided with a transport unit 100 and a delivery unit 101 .
  • the transport unit 100 has a transport arm 100a movable in, for example, the ⁇ direction and the vertical direction.
  • the transport unit 100 can hold the wafer W on the transport arm 100a and transport the wafer W between the delivery units, the delivery unit 101 and the exposure apparatus 4 in the fourth block G4.
  • the coating and developing treatment apparatus 1 described above is provided with a control section 200 as shown in FIG.
  • the control unit 200 is, for example, a computer including a processor such as a CPU, a memory, and the like, and has a program storage unit (not shown).
  • the program storage unit stores programs for controlling the operation of drive systems such as the above-described various processing units and various transfer units, and for controlling wafer processing, which will be described later.
  • the program may be recorded in a non-temporary computer-readable storage medium H and installed in the control unit 200 from the storage medium H.
  • the storage medium H may be temporary or non-temporary. Part or all of the program may be realized by dedicated hardware (circuit board).
  • a cassette C containing a plurality of wafers W is carried into the cassette station 2 of the coating and developing treatment apparatus 1 and placed on the placing plate 13 .
  • the wafers W in the cassette C are sequentially taken out by the transfer unit 20 and transferred to the transfer unit 53 of the third block G3 of the processing station 3 .
  • the wafer W is transferred by the transfer unit 70 to the heat treatment unit 40 of the second block G2 and subjected to temperature adjustment processing. After that, the wafer W is transferred by the transfer unit 70 to, for example, the lower antireflection film forming unit 31 of the first block G1, and a lower antireflection film is formed on the wafer W.
  • the wafer W is transported to the heat treatment unit 40 of the second block G2 and subjected to heat treatment. After that, the wafer W is returned to the delivery unit 53 of the third block G3.
  • the wafer W is transferred by the transfer unit 90 to the delivery unit 54 of the same third block G3. After that, the wafer W is transported by the transport unit 70 to the hydrophobization processing unit 41 of the second block G2, and subjected to the hydrophobization processing.
  • the wafer W is transferred to the resist coating unit 32 by the transfer unit 70, and a metal-containing resist film is formed on the wafer W. After that, the wafer W is transferred to the heat treatment unit 40 by the transfer unit 70 and subjected to PAB processing. After that, the wafer W is transferred by the transfer unit 70 to the delivery unit 55 of the third block G3.
  • the wafer W is transferred by the transfer unit 70 to the upper antireflection film forming unit 33, and an upper antireflection film is formed on the wafer W.
  • the wafer W is transferred to the thermal processing unit 40 by the transfer unit 70, heated, and temperature-controlled.
  • the wafer W is transferred to the edge exposure unit 42 and subjected to edge exposure processing.
  • the wafer W is transferred by the transfer unit 70 to the delivery unit 56 of the third block G3.
  • the wafer W is transported by the transport unit 90 to the delivery unit 52 and transported by the shuttle transport unit 80 to the delivery unit 62 of the fourth block G4. After that, the wafer W is transferred by the transfer unit 100 to the back surface cleaning unit 63, and the back surface thereof is cleaned. Next, the wafer W is transported to the exposure apparatus 4 by the transport unit 100 of the interface station 5, and exposed in a predetermined pattern using EUV light.
  • the wafer W is transferred by the transfer unit 100 to the delivery unit 60 of the fourth block G4.
  • the wafer W is transported by the transport unit 70 to the heat treatment unit 40 integrated with the later-described hydroxylation unit 40a, where it is hydroxylated and then PEB-treated.
  • the hydroxylation treatment and PEB treatment in this heat treatment unit 40 will be described later.
  • the wafer W is transported by the transport unit 70 to the developing unit 30 and developed. After completion of the development, the wafer W is transported to the thermal processing unit 40 by the transport unit 90 and subjected to POST processing.
  • the wafer W is transferred by the transfer unit 70 to the delivery unit 50 of the third block G3, and then transferred to the cassette C on the predetermined mounting plate 13 by the transfer unit 20 of the cassette station 2.
  • a series of photolithography steps are completed.
  • FIG. 4 and 5 are longitudinal sectional view and transverse sectional view, respectively, schematically showing the outline of the structure of a thermal processing unit 40 used for PEB processing.
  • FIG. 6 is a vertical cross-sectional view schematically showing the outline of the configuration of the heating region 310, which will be described later.
  • FIG. 7 is a vertical cross-sectional view schematically showing the outline of the structure of the hydroxylation treatment region 311, which will be described later.
  • FIG. 8 is a bottom view schematically showing the outline of the configuration of the lid body 390, which will be described later.
  • the heat treatment unit 40 in FIGS. 4 and 5 is integrated with a hydroxylation treatment unit 40a arranged adjacent to the heat treatment unit 40 to form a mixing unit M.
  • the hydroxylation treatment unit 40a applies a hydroxylation treatment to the metal-containing resist film of each wafer W on which the metal-containing resist film is formed and subjected to the exposure treatment. Then, the heat treatment unit 40 heats the wafer W having the metal-containing resist film subjected to the hydroxylation treatment.
  • the hydroxylating unit 40a is provided in the mixing unit M on the wafer transfer area D side.
  • the mixing unit M has a processing container 300 whose inside can be closed.
  • a loading/unloading port (not shown) for the wafer W is formed on the side surface of the processing container 300 on the side of the hydroxylating unit 40a, that is, on the side of the wafer transfer region D, and the loading/unloading port is provided with an opening/closing shutter (not shown). ing.
  • a heating region 310 for heat-treating the wafer W and a hydroxylating region 311 for hydroxylating the metal-containing resist film on the wafer W are provided inside the processing container 300 .
  • the heating region 310 and the hydroxylating region 311 are arranged side by side in the Y direction.
  • the heating region 310 is provided with a chamber 320 that covers a heat treatment space S1 above a hot plate 350 to be described later and accommodates a wafer W during heat treatment.
  • the chamber 320 has an upper chamber 321 which is positioned on the upper side and can be raised and lowered, and a lower chamber 322 which is positioned on the lower side and can be sealed integrally with the upper chamber 321 .
  • the upper chamber 321 has a substantially cylindrical shape with an open bottom surface.
  • a shower head 330 serving as a gas ejection section for ejecting a gas containing moisture, that is, a moisture-containing gas, into the heat treatment space S1.
  • the shower head 330 is provided on a wafer W supported by a hot plate 350, which will be described later, and discharges moisture-containing gas.
  • the shower head 330 is configured to move up and down in synchronization with the upper chamber 321 .
  • a plurality of gas supply holes 331 are formed on the bottom surface of the shower head 330 .
  • the plurality of gas supply holes 331 are evenly arranged on the lower surface of the shower head 330 except for a central exhaust passage 340, which will be described later.
  • a gas supply pipe 332 is connected to the shower head 330 .
  • the gas supply pipe 332 is connected to a gas supply source 333 that supplies moisture-containing gas to the shower head 330 .
  • the gas supply pipe 332 is provided with a supply device group 334 including a valve for controlling the flow of the moisture-containing gas, a flow control valve, etc., and a temperature adjustment mechanism 335 for adjusting the temperature of the moisture-containing gas.
  • gas with a moisture concentration adjusted to, for example, 20% to 80% is stored inside the gas supply source 333. Then, by supplying the moisture-containing gas with the moisture concentration adjusted in this way to the heat treatment space S1 inside the chamber 320 through the shower head 330, the heat treatment space S1 is reduced to a predetermined range, for example, 20% to 80%. adjusted to the humidity of The temperature of the moisture-containing gas supplied to the heat treatment space S1 is adjusted to a predetermined range, eg, 20.degree. C. to 50.degree.
  • the shower head 330 is provided with a central exhaust passage 340 as an exhaust section for exhausting the heat treatment space S1.
  • the central exhaust path 340 is formed to extend from the central portion of the lower surface of the shower head 330 to the central portion of the upper surface.
  • a central exhaust pipe 341 provided at the center of the upper surface of the upper chamber 321 is connected to the central exhaust passage 340 .
  • an exhaust device 342 such as a vacuum pump is connected to the central exhaust pipe 341 .
  • the central exhaust pipe 341 is provided with an exhaust device group 343 having valves and the like for controlling the flow of the exhausted gas.
  • the central exhaust path 340 can exhaust the heat treatment space S1 from above the center of the wafer W supported by a hot plate 350, which will be described later.
  • the gas containing the metal-containing sublimate generated from the metal-containing resist film during the PEB process can be recovered, and the contamination of the wafer W by the metal-containing sublimate can be prevented. can be suppressed.
  • the heat treatment space S1 by evacuating the heat treatment space S1 from above the center of the wafer W, it is possible to prevent the rear surface and the peripheral edge of the wafer W from coming into contact with the gas containing the metal-containing sublimate and being contaminated. can.
  • the lower chamber 322 has a substantially cylindrical shape with an open top.
  • a hot plate 350 as a supporting heating unit that supports and heats the wafer W, and an annular holding member 351 that accommodates the hot plate 350 and holds the outer peripheral portion of the hot plate 350. and is provided.
  • the hot plate 350 has a thick, substantially disk shape. Further, the hot plate 350 incorporates, for example, a heater 352 .
  • the temperature of the hot plate 350 is controlled by, for example, the controller 200, and the wafer W placed on the hot plate 350 is heated to a predetermined temperature.
  • the lifting pin 360 can be moved up and down by a lifting drive unit 361 having a drive source such as a motor.
  • a lifting drive unit 361 having a drive source such as a motor.
  • three through-holes 362 are formed through the hot plate 350 in the thickness direction.
  • the elevating pins 360 can pass through the through holes 362 and protrude from the upper surface of the hot plate 350 .
  • the elevating pins 360 and the elevating drive unit 361 constitute an elevating mechanism that elevates the wafer W within the heat treatment space S1.
  • the hydroxylation treatment area 311 is provided with a temperature control plate 370 as a substrate support.
  • the temperature control plate 370 has a substantially square flat plate shape, and the end face on the hot plate 350 side is curved in an arc shape.
  • Two slits 371 are formed in the temperature control plate 370 along the Y direction.
  • the slit 371 is formed from the end surface of the temperature control plate 370 on the hot plate 350 side to the vicinity of the central portion of the temperature control plate 370 .
  • the slits 371 prevent the temperature control plate 370 from interfering with the lifting pins 360 of the heating region 310 and the lifting pins 380 of the hydroxylating region 311, which will be described later.
  • the temperature control plate 370 incorporates a temperature control member (not shown) such as cooling water or a Peltier device.
  • the temperature of the temperature control plate 370 is controlled by, for example, the control unit 200, and the wafer W placed on the temperature control plate 370 is adjusted to a predetermined temperature.
  • the temperature control plate 370 can control the temperature of the wafer W placed on the temperature control plate 370 at a predetermined temperature at which the dehydration condensation of the metal-containing resist film does not proceed.
  • the temperature control plate 370 is supported by a support arm 372.
  • a drive unit 373 having a drive source such as a motor is attached to the support arm 372 .
  • the drive unit 373 is attached to a rail 374 extending in the Y direction. Rail 374 extends from hydroxylation zone 311 to heating zone 310 .
  • the driving portion 373 allows the temperature control plate 370 to move along rails 374 between an initial position within the hydroxylation treatment area 311 and a transfer position within the heating area 310 .
  • Temperature control plate 370, support arm 372, drive unit 373, and rail 374 transport wafer W between hydroxylation area 311 and heating area 310 (that is, between heat treatment unit 40 and hydroxylation unit 40a).
  • a substrate transfer mechanism is configured. In other words, in this embodiment, the temperature control plate 370 constitutes the substrate transfer mechanism.
  • three elevating pins 380 for supporting the wafer W from below and elevating it are provided below the temperature control plate 370 .
  • the lift pin 380 can be moved up and down by a lift driver 381 .
  • the elevating pin 380 is inserted through the slit 371 and can protrude from the upper surface of the temperature control plate 370 .
  • the hydroxylation treatment area 311 is provided with a lid body 390 that covers the treatment space S2 above the temperature control plate 370 .
  • Lid 390 is configured to move up and down with respect to temperature control plate 370, and accommodates wafer W placed on temperature control plate 370 between temperature control plate 370 during the hydroxylation treatment.
  • the lid 390 and the temperature control plate 370 constitute a chamber that accommodates the wafer W during the hydroxylation treatment.
  • the lid 390 has a substantially cylindrical shape with an open bottom surface.
  • a shower head 400 serving as a gas ejection unit that ejects a moisture-containing gas into the processing space S2 is provided inside the lid 390 and at a position facing the temperature control plate 370 .
  • the shower head 400 is provided on the wafer W supported by the temperature control plate 370 at the initial position, and discharges moisture-containing gas.
  • the shower head 400 is configured to move up and down in synchronization with the lid body 390 .
  • the shower head 400 is formed with a plurality of discharge holes 401 scattered along the surface facing the wafer W supported by the temperature control plate 370 (that is, the lower surface). More specifically, for example, as shown in FIG. 8, the plurality of discharge holes 401 are substantially uniformly arranged in a region of the lower surface of the shower head 400 on the temperature control plate 370 facing the wafer W. As shown in FIG. The plurality of discharge holes 401 may be scattered so that the amount of water (humidity) in the space along the upper surface of the wafer W on the temperature control plate 370 is substantially uniform within the wafer W surface.
  • the opening area of each ejection hole 401 is, for example, substantially the same.
  • a gas supply pipe 402 is connected to the shower head 400 . Furthermore, the gas supply pipe 402 is connected to a gas supply source 403 that supplies moisture-containing gas to the shower head 400 . Further, the gas supply pipe 402 is provided with a supply device group 404 including a valve for controlling the flow of the moisture-containing gas, a flow control valve, etc., and a temperature adjustment mechanism 405 for adjusting the temperature of the moisture-containing gas.
  • gas with a moisture concentration adjusted to, for example, 20% to 80% is stored inside the gas supply source 403, gas with a moisture concentration adjusted to, for example, 20% to 80% is stored.
  • the humidity of the processing space S2 is adjusted to a predetermined range, for example, 20% to 80%. be.
  • the temperature of the moisture-containing gas supplied to the processing space S2 is adjusted to a predetermined range, eg, 20.degree. C. to 50.degree.
  • the hydroxylation treatment will be explained.
  • the dimension (for example, line width) of the resist pattern becomes non-uniform within the surface of the wafer W. was there.
  • evacuation is performed to recover gas containing metal-containing sublimate, and depending on the form of the evacuation, there have been cases where the uniformity of the above dimensions within the wafer plane is poor.
  • the metal-containing resist becomes active when the bond between the metal in the resist and the ligand (organometallic complex) is cut by the ultraviolet rays in the exposure process.
  • This metal-containing resist in the active state reacts with moisture in the atmosphere, and hydroxyl groups are bonded as side chains of the metal-containing resist. That is, the metal-containing resist is hydroxylated and becomes a precursor. Then, the hydroxylated metal-containing resist (precursor) undergoes dehydration condensation during the PEB treatment and becomes insoluble in the developer.
  • only a portion of the metal-containing resist in the active state described above is hydroxylated only by atmospheric moisture.
  • the dimension of the resist pattern becomes uneven within the wafer W depending on the exhaust method of the heat treatment space S1 that affects the flow of the moisture-containing gas supplied to the wafer W during the process. It is considered that there is a case where it becomes.
  • the water concentration (humidity) of the wafer W is higher above the center of the wafer W in the heat treatment space S1 than above the peripheral edge of the wafer W, hydration and dehydration aggregation proceed.
  • the line width of the resist pattern becomes thicker at the center of the wafer W, and the line width becomes thinner at the peripheral portion of the wafer W.
  • the wafer W prior to the PEB process, the wafer W is subjected to a hydroxylation process for hydroxylating the metal-containing resist in an active state so that only dehydration condensation is mainly performed in the PEB process. .
  • the metal-containing resist film on the wafer W is not affected by moisture in the moisture-containing gas during the PEB process. can be uniform within
  • an outer exhaust passage 410 is formed as an exhaust unit for exhausting the processing space S2 inside the lid 390 and in the outer peripheral portion of the shower head 400 .
  • An outer exhaust pipe 411 provided on the upper surface of the lid 390 is connected to the outer exhaust path 410 .
  • an exhaust device 412 such as a vacuum pump is connected to the outer exhaust pipe 411 .
  • the outer exhaust pipe 411 is provided with an exhaust device group 413 having a valve or the like for controlling the flow of the exhausted gas.
  • the outer exhaust path 410 can exhaust the processing space S ⁇ b>2 from above the outer periphery of the wafer W supported by the temperature control plate 370 .
  • Step S1 Wafer loading
  • the elevating pins 380 are raised and the wafer W is transferred from the transfer unit 70 to the elevating pins 380 .
  • the lifting pins 380 are lowered, and the wafer W is placed on the temperature control plate 370 at the initial position as shown in FIG. 9(a).
  • Step S2 Hydroxylation treatment
  • the lid 390 is lowered and brought into contact with the temperature control plate 370, and the processing space S2 is defined by the lid 390 and the temperature control plate 370.
  • the wafer W on the temperature control plate 370 is subjected to a hydroxylation treatment.
  • a water-containing gas having a water concentration adjusted to, for example, 20% to 80% is supplied from the shower head 400 at a flow rate of, for example, 4 L/min, and the processing space S2 is, for example, 20% to 80%. Humidity adjusted. Then, the moisture contained in this moisture-containing gas condenses and adheres to the metal-containing resist film of the wafer W, and this moisture promotes hydroxylation (precursor conversion) of the metal-containing resist.
  • the temperature of the moisture-containing gas supplied from the shower head 400 and the temperature of the wafer W on the temperature control plate 370, which is temperature-controlled by the temperature control plate 370, are such that dehydration condensation of the metal-containing resist occurs.
  • a predetermined temperature is set at which no progress is made.
  • the predetermined temperature in the hydroxylation treatment is specifically, for example, 20°C to 50°C, more specifically, for example, 20°C to 30°C.
  • a water-containing gas is supplied to the wafer W from a plurality of discharge holes 401 scattered along the surface facing the wafer W supported by the temperature control plate 370 , i.e., the lower surface, by the shower head 400 . is supplied uniformly. Therefore, the metal-containing resist on the wafer W can be uniformly hydrated within the wafer W surface.
  • the processing space S2 is exhausted from the outer exhaust path 410 (that is, above the outer peripheral portion of the wafer W).
  • the exhaust amount by the outer exhaust passage 410 is, for example, 4 L/min or more.
  • the hydroxylation treatment is performed, for example, for 1 to 10 minutes.
  • Step S3 Wafer transfer
  • the drive unit 373 moves the temperature control plate 370 along the rails 374 to the delivery position above the hot plate 350 .
  • the lifting pins 360 are lifted and the wafer W is transferred to the lifting pins 360 .
  • the temperature control plate 370 is returned to the initial position.
  • Step S4 PEB processing
  • the upper chamber 321 is lowered to abut on the lower chamber 322, and the interior of the chamber 320 is sealed.
  • the lifting pins 360 are lowered and the wafer W is placed on the hot plate 350 .
  • the wafer W is PEB processed.
  • the temperature on the hot plate 350 heated by the hot plate 350 is set to a predetermined temperature so that the dehydration condensation of the metal-containing resist on the wafer W proceeds.
  • the predetermined temperature in the PEB treatment is, for example, 150.degree. C. to 200.degree.
  • a water-containing gas having a water concentration adjusted to, for example, 20% to 80% is supplied from the shower head 330 at a flow rate of, for example, 4 L/min.
  • the heat treatment space S1 is adjusted to a humidity of, for example, 20% to 80%.
  • the water contained in the water-containing gas can promote the hydroxylation of the metal-containing resist when the metal-containing resist is not yet completely hydrated during the water-containing gas.
  • the temperature of the hot plate 350 is made uniform within the surface. Therefore, the dehydration condensation of the metal-containing resist that has been completely hydroxylated can be uniformly performed within the wafer surface, and the dimensions of the resist pattern can be made uniform within the wafer surface.
  • the heat treatment space S1 is evacuated from the central exhaust path 340 (that is, above the center of the wafer W).
  • the central exhaust path 340 that is, above the center of the wafer W.
  • Step S5 Rise to intermediate standby position
  • the lifting pins 360 are lifted while the supply of moisture-containing gas from the shower head 330 and the exhaust through the central exhaust path 340 are continued, and the wafer W is transferred to the lifting pins 360. As shown in FIG. 10(b), it is moved to the intermediate standby position.
  • the intermediate standby position is, for example, a position where the distance from the upper surface of the wafer W to the lower surface of the shower head 330 is half that of the PEB processing.
  • the lifting speed of the wafer W by the lifting pins 360 during the movement to the intermediate standby position is determined by the lifting speed of the wafer W to the standby position in step S6, which will be described later. It is smaller than the speed, specifically 10 mm/s or less (for example, 5 mm/s). Reducing the rising speed of the wafer W in this way has the following effects. That is, the metal-containing sublimate is generated from the metal-containing resist film on the wafer W immediately after heating by the hot plate 350, that is, immediately after the PEB processing.
  • the gas containing the metal-containing sublimate between the wafer W and the lower surface of the shower head 330 is released while the wafer W is moving to the intermediate standby position. , flow radially outward of the wafer W, thereby suppressing contamination of the back surface and the peripheral edge of the wafer W.
  • Step S6 Move to standby position
  • the upper chamber 321 is raised as shown in FIG. 10(c) while the supply of moisture-containing gas from the shower head 330 and the exhaust through the central exhaust passage 340 are continued.
  • the lifting pins 360 are further raised to move the wafer W to the standby position.
  • the distance between the lower surface of the shower head 330 and the upper surface of the wafer W is set to a predetermined range in which the gas containing the metal-containing sublimate does not leak from between the lower surface of the shower head 330 and the upper surface of the wafer W.
  • the lifting of the upper chamber 321 and the lifting pin 360 are performed simultaneously or alternately.
  • the distance between the lower surface of the showerhead 330 and the upper surface of the wafer W is such that the central exhaust path 340 maintains an airflow that removes the gas containing the metal-containing sublimate.
  • the lifting of the upper chamber 321 and the lifting pin 360 are performed simultaneously or alternately. As a result, it is possible to prevent the gas containing the metal-containing sublimate from flowing into the back surface of the wafer W, so that contamination of the back surface of the wafer W and the like can be suppressed.
  • Step S7 Wafer transfer
  • the supply of moisture-containing gas from the shower head 330 and the exhaust through the central exhaust path 340 are stopped, and the temperature control plate 370 is moved by the drive unit 373 along the rails 374 to the transfer position above the hot plate 350. be.
  • the lifting pins 360 are lowered and the wafer W is transferred to the temperature control plate 370 .
  • the temperature control plate 370 is returned to the initial position.
  • Step S8 Wafer cooling and unloading
  • the wafer W is placed on the temperature control plate 370 and cooled for a predetermined time. After that, the wafer W is transferred to the lifting pins 360 in the reverse order of the wafer loading in step S1, and then transferred to the transfer unit 70. The wafer W is unloaded from the
  • the hydroxylating unit 40a performs the hydroxylating treatment for each wafer before performing the PEB treatment on the metal-containing resist film of the wafer W subjected to the exposure treatment.
  • the hydroxylating unit 40a includes a temperature control plate 370 that supports the substrate, a lid 390 that covers the processing space S2 of the temperature control plate 370, a shower head 400 that discharges a moisture-containing gas into the processing space S2, have.
  • dehydration condensation of the metal-containing resist can be mainly performed without the above-mentioned hydroxylation.
  • the dehydration condensation of each portion of the metal-containing resist is hardly affected by moisture supplied to the portion from the metal-containing resist film or the like surrounding the portion. Therefore, if the metal-containing resist film on the wafer W is sufficiently and uniformly hydrated as described above before the PEB process, the PEB process will cause dehydration condensation of the metal-containing resist on the wafer. In-plane uniformity of W can be performed. Therefore, according to the present embodiment, it is possible to improve the in-wafer uniformity of the dimension of the resist pattern using the metal-containing resist.
  • the PEB treatment does not perform the above-described hydroxylation, but mainly performs dehydration condensation of the metal-containing resist. Not affected. Therefore, in this embodiment, various methods can be adopted as the evacuation method of the heat treatment space S1 in the PEB process.
  • the aforementioned central exhaust scheme can be employed. With this method, it is possible to prevent the gas containing the metal-containing sublimate from coming into contact with the rear surface and the peripheral portion of the wafer W and contaminating them, compared to the outer peripheral exhaust method described above.
  • the wafer in-plane of the dimension of the resist pattern using the metal-containing resist is controlled. Uniformity can be improved.
  • the heat treatment unit 40 and the hydroxylation treatment unit 40a are arranged adjacent to each other. Therefore, the PEB treatment by the heat treatment unit 40 can be performed immediately after the hydroxylation treatment by the hydroxylation treatment unit 40a. Therefore, it is possible to suppress the in-plane uniformity of the line width of the resist pattern from being adversely affected by moisture in the air or the like on the metal-containing resist film from the end of the hydroxylation treatment to the start of the PEB treatment.
  • the temperature control plate 370 constitutes part of a substrate transport mechanism that transports the wafer W between the heat treatment unit 40 and the hydroxylating unit 40a. Therefore, the time from the hydroxylation treatment of the wafer W on the temperature control plate 370 to the PEB treatment in the heat treatment unit 40 can be shortened.
  • the mixing unit M in which the heat treatment unit 40 and the hydroxylating unit 40a are integrated incorporates a substrate transfer mechanism for transferring the wafer W between the heat treatment unit 40 and the hydroxylating unit 40a. ing. Therefore, the wafer W after the hydroxylation treatment in the hydroxylation treatment unit 40a can be transferred to the heat treatment unit 40 without being affected by the transfer schedule of the other wafers W, and the PEB treatment can be performed immediately. .
  • the center exhaust method is the same as in the case where the central exhaust method is used and the wafer W immediately after heating is raised at a low speed of 10 mm/s or less (specifically, 5 mm/s).
  • the tin atoms detected at the peripheral edge and back surface of the wafer W after processing in the case where the wafer W is evacuated by the method and the wafer W immediately after heating is raised at a high speed exceeding 10 mm / s (specifically, 15 mm / s).
  • the water-containing gas is supplied from above the wafer W toward the upper surface of the wafer W, but the method of supplying the water-containing gas is not limited to this.
  • the moisture-containing gas may be supplied in the form of a unidirectional flow that flows along the upper surface of the wafer W from one end in the Y direction to the other end.
  • the heat treatment unit 40 and the hydroxylation treatment unit 40a were integrated, but they may be separate bodies.
  • a hydroxylation treatment unit for applying hydroxylation treatment to each substrate on which a film of a metal-containing resist has been formed and which has been exposed to light; a heat treatment unit for heat-treating the substrate having the film subjected to the hydroxylation treatment; a development processing unit that performs development processing on the film of the substrate that has been subjected to the heat processing;
  • the hydroxylation unit is a substrate support that supports the substrate; a lid covering the processing space on the substrate support;
  • a substrate processing apparatus comprising: a gas discharger for discharging a gas containing moisture into the processing space.
  • the substrate processing apparatus has a temperature control plate for controlling the temperature of the substrate at a predetermined temperature at which the substrate is placed and the dehydration condensation of the film does not proceed.
  • the predetermined temperature is 30° C. or less.
  • the gas discharge section has a plurality of discharge holes scattered along a surface facing the substrate supported by the substrate support section.
  • the hydroxylating unit has an exhaust section that exhausts the processing space from the outer peripheral side of the substrate supported by the substrate support section.
  • the heat treatment unit is a support heating unit that supports and heats the substrate; a chamber covering a heat treatment space on the support heating part; 6.
  • the substrate processing apparatus according to any one of additional items 1 to 5, further comprising an exhaust unit for exhausting the heat treatment space.
  • the substrate support part constitutes the substrate transfer mechanism.
  • the substrate processing apparatus according to any one of additional items 6 to 8, wherein the exhaust section of the thermal processing unit exhausts air from above the center of the substrate supported by the support heating section.
  • the heat treatment unit has an elevating mechanism for elevating the substrate in the heat treatment space, 10.
  • [Appendix 11] a step of applying a hydroxylation treatment to each substrate on which a film of a metal-containing resist has been formed and which has been exposed to light; a step of heat-treating the substrate on which the coating has been subjected to the hydroxylation treatment; and developing the coating of the heat-treated substrate,
  • the step of performing the hydroxylation treatment is A substrate processing method, comprising the step of discharging a gas containing moisture into a processing space above a substrate support that supports a substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

This substrate processing device includes: a hydroxylation unit that performs hydroxylation, for each substrate on which a metal-containing resist film has been formed and which has been subjected to exposure processing, the film of the substrate; a heat treatment unit that performs heat treatment on the substrate on which the coating film has been subjected to the hydroxylation; and a development processing unit that performs development processing on the coating film of the substrate subjected to the heat treatment. The hydroxylation unit has a substrate support part for supporting the substrate, a lid body covering a processing space on the substrate support part, and a gas discharge part that discharges moisture-containing gas into the processing space.

Description

基板処理装置及び基板処理方法SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
 本開示は、基板処理装置及び基板処理方法に関する。 The present disclosure relates to a substrate processing apparatus and a substrate processing method.
 特許文献1には、化学増幅型レジストを用いて半導体基板に所定のレジストパターンを形成するためのパターン形成装置が開示されている。この基板処理装置は、制御部が、露光装置での露光終了後、露光後ベークユニットで露光後ベーク処理が開始されるまでの時間が基板毎に一定になるように受渡部及び露光後ベークユニットの待機部の2箇所で基板を待機させている。 Patent Document 1 discloses a pattern forming apparatus for forming a predetermined resist pattern on a semiconductor substrate using a chemically amplified resist. In this substrate processing apparatus, the control section controls the delivery section and the post-exposure bake unit so that the time from the end of exposure in the exposure device to the start of post-exposure bake processing in the post-exposure bake unit is constant for each substrate. The substrates are kept waiting at two places in the waiting section of .
特開2008-130857号公報JP 2008-130857 A
 本開示にかかる技術は、メタル含有レジストを用いたレジストパターンの寸法の基板面内均一性を向上させる。 The technology according to the present disclosure improves the in-plane uniformity of the dimensions of a resist pattern using a metal-containing resist.
 本開示の一態様は、メタル含有レジストの被膜が形成され、露光処理が施された基板の前記被膜に、基板毎に水酸化処理を施す水酸化処理ユニットと、前記被膜に前記水酸化処理が施された基板に加熱処理を施す熱処理ユニットと、前記加熱処理が施された基板の前記被膜に現像処理を施す現像処理ユニットと、を備え、前記水酸化処理ユニットは、基板を支持する基板支持部と、前記基板支持部上の処理空間を覆う蓋体と、前記処理空間に、水分を含有したガスを吐出するガス吐出部と、を有する、基板処理装置である。 One aspect of the present disclosure includes a hydroxylation treatment unit that performs hydroxylation treatment on each substrate on which a film of a metal-containing resist is formed and has been subjected to exposure treatment, and the hydroxylation treatment is performed on the film. a heat treatment unit for applying heat treatment to a substrate that has been subjected to heat treatment; and a development treatment unit for applying development treatment to the film on the substrate that has been subjected to the heat treatment, wherein the hydroxylation treatment unit supports a substrate for supporting the substrate. a lid covering a processing space on the substrate support; and a gas discharger for discharging gas containing moisture into the processing space.
 本開示によれば、メタル含有レジストを用いたレジストパターンの寸法の基板面内均一性を向上させることができる。 According to the present disclosure, it is possible to improve the in-plane uniformity of the dimensions of a resist pattern using a metal-containing resist.
本実施形態にかかる基板処理装置としての塗布現像処理装置の内部構成の概略を示す説明図である。1 is an explanatory view showing an outline of an internal configuration of a coating and developing treatment apparatus as a substrate processing apparatus according to this embodiment; FIG. 塗布現像処理装置の正面側の内部構成の概略を示す図である。FIG. 2 is a diagram showing the outline of the internal configuration on the front side of the coating and developing treatment apparatus; 塗布現像処理装置の背面側の内部構成の概略を示す図である。FIG. 2 is a diagram showing the outline of the internal configuration on the back side of the coating and developing treatment apparatus; PEB処理に用いられる熱処理ユニットの構成の概略を模式的に示す縦断面図である。FIG. 2 is a vertical cross-sectional view schematically showing the outline of the configuration of a heat treatment unit used for PEB treatment; PEB処理に用いられる熱処理ユニットの構成の概略を模式的に示す横断面図である。FIG. 2 is a cross-sectional view schematically showing the outline of the configuration of a heat treatment unit used for PEB treatment; 加熱領域の構成の概略を模式的に示す縦断面図である。FIG. 3 is a vertical cross-sectional view schematically showing the outline of the configuration of a heating region; 水酸化処理領域の構成の概略を模式的に示す縦断面図である。FIG. 4 is a vertical cross-sectional view schematically showing the outline of the configuration of a hydroxylated region; 蓋体の構成の概略を模式的に示す下面図である。It is a bottom view which shows the outline of a structure of a cover typically. 水酸化処理及びPEB処理の際の混合ユニットの動作を示す説明図である。FIG. 4 is an explanatory view showing the operation of the mixing unit during hydroxylation treatment and PEB treatment; 水酸化処理及びPEB処理の際の混合ユニットの動作を示す説明図である。FIG. 4 is an explanatory view showing the operation of the mixing unit during hydroxylation treatment and PEB treatment;
 半導体デバイス等の製造プロセスでは、半導体ウェハ(以下、「ウェハ」という。)上にレジストパターンを形成するため所定の処理が行われる。上記所定の処理とは、例えば、ウェハ上にレジスト液を供給しレジスト膜を形成するレジスト塗布処理や、レジスト膜を露光する露光処理、露光後にレジスト膜内の化学反応が促進するよう加熱するPEB(Post Exposure Bake)処理、露光されたレジスト膜を現像する現像処理等である。 In the manufacturing process of semiconductor devices, etc., a predetermined process is performed to form a resist pattern on a semiconductor wafer (hereinafter referred to as "wafer"). The above predetermined processing includes, for example, a resist coating processing in which a resist solution is supplied onto a wafer to form a resist film, an exposure processing in which the resist film is exposed, and a PEB in which heat is applied to promote a chemical reaction in the resist film after exposure. (Post Exposure Bake) processing, development processing for developing the exposed resist film, and the like.
 近年では、レジストとして、化学増幅型レジストに代えて、メタル含有レジストが用いられる場合がある。また、メタル含有レジストを用いた場合のPEB処理は、基板の周囲の雰囲気を排気しながら行われるが、排気の形態等によっては、レジストパターンの寸法が面内でばらつくことがある。 In recent years, metal-containing resists are sometimes used as resists instead of chemically amplified resists. In addition, the PEB process using a metal-containing resist is performed while evacuating the atmosphere around the substrate, but depending on the form of the evacuation, etc., the dimensions of the resist pattern may vary within the plane.
 そこで、本開示にかかる技術は、メタル含有レジストを用いたレジストパターンの寸法の基板面内均一性を向上させる。 Therefore, the technology according to the present disclosure improves the in-plane uniformity of the dimensions of the resist pattern using the metal-containing resist.
 以下、本実施形態にかかる基板処理装置及び基板処理方法を、図面を参照して説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。 A substrate processing apparatus and a substrate processing method according to the present embodiment will be described below with reference to the drawings. In the present specification and drawings, elements having substantially the same functional configuration are denoted by the same reference numerals, thereby omitting redundant description.
<塗布現像処理装置>
 図1は、本実施形態にかかる基板処理装置としての塗布現像処理装置の内部構成の概略を示す説明図である。図2及び図3はそれぞれ、塗布現像処理装置1の正面側と背面側の内部構成の概略を示す図である。
<Coating and developing device>
FIG. 1 is an explanatory view showing the outline of the internal configuration of a coating and developing treatment apparatus as a substrate processing apparatus according to this embodiment. 2 and 3 are diagrams showing the outline of the internal configuration on the front side and the back side of the coating and developing treatment apparatus 1, respectively.
 塗布現像処理装置1は、ネガ型の金属含有レジスト(より具体的には金属酸化物レジスト)を用いて、基板としてのウェハWにレジストパターンを形成する。なお、金属含有レジストに含まれる金属は任意であるが、例えばスズである。 The coating and developing treatment apparatus 1 forms a resist pattern on a wafer W as a substrate using a negative metal-containing resist (more specifically, a metal oxide resist). The metal contained in the metal-containing resist is arbitrary, but is tin, for example.
 塗布現像処理装置1は、図1~図3に示すように、ウェハを複数収容可能な容器であるカセットCが搬入出されるカセットステーション2と、レジスト塗布処理等の所定の処理を施す各種処理ユニットを複数備えた処理ステーション3と、を有する。そして、塗布現像処理装置1は、カセットステーション2と、処理ステーション3と、処理ステーション3に隣接する露光装置4との間でウェハWの受け渡しを行うインターフェイスステーション5とを一体に接続した構成を有している。 As shown in FIGS. 1 to 3, the coating and developing treatment apparatus 1 includes a cassette station 2 in which a cassette C, which is a container capable of accommodating a plurality of wafers, is loaded and unloaded, and various processing units for performing predetermined processes such as resist coating. and a processing station 3 comprising a plurality of The coating and developing treatment apparatus 1 has a configuration in which a cassette station 2, a treatment station 3, and an interface station 5 for transferring wafers W between an exposure apparatus 4 adjacent to the treatment station 3 are integrally connected. doing.
 カセットステーション2は、例えばカセット搬入出部10とウェハ搬送部11に分かれている。例えばカセット搬入出部10は、塗布現像処理装置1のY方向負方向(図1の左方向)側の端部に設けられている。カセット搬入出部10には、カセット載置台12が設けられている。カセット載置台12上には、複数、例えば4つの載置板13が設けられている。載置板13は、水平方向のX方向(図1の上下方向)に一列に並べて設けられている。これらの載置板13には、塗布現像処理装置1の外部に対してカセットCを搬入出する際に、カセットCを載置することができる。 The cassette station 2 is divided into, for example, a cassette loading/unloading section 10 and a wafer transfer section 11 . For example, the cassette loading/unloading section 10 is provided at the end of the coating and developing treatment apparatus 1 in the negative Y direction (leftward direction in FIG. 1). A cassette mounting table 12 is provided in the cassette loading/unloading section 10 . A plurality of, for example, four mounting plates 13 are provided on the cassette mounting table 12 . The mounting plates 13 are arranged in a row in the horizontal X direction (vertical direction in FIG. 1). The cassette C can be placed on these mounting plates 13 when the cassette C is carried into and out of the coating and developing treatment apparatus 1 .
 ウェハ搬送部11には、ウェハWを搬送する搬送ユニット20が設けられている。搬送ユニット20は、X方向に延びる搬送路21を移動自在に構成されている。搬送ユニット20は、上下方向及び鉛直軸周り(θ方向)にも移動自在であり、各載置板13上のカセットCと、後述する処理ステーション3の第3のブロックG3の受け渡し装置との間でウェハWを搬送できる。 A transfer unit 20 for transferring the wafer W is provided in the wafer transfer section 11 . The transport unit 20 is configured to be movable along a transport path 21 extending in the X direction. The transport unit 20 is movable in the vertical direction and around the vertical axis (θ direction). , the wafer W can be transported.
 処理ステーション3には、各種ユニットを備えた複数、例えば第1~第4の4つのブロックG1、G2、G3、G4が設けられている。例えば処理ステーション3の正面側(図1のX方向負方向側)には、第1のブロックG1が設けられ、処理ステーション3の背面側(図1のX方向正方向側)には、第2のブロックG2が設けられている。また、処理ステーション3のカセットステーション2側(図1のY方向負方向側)には、第3のブロックG3が設けられ、処理ステーション3のインターフェイスステーション5側(図1のY方向正方向側)には、第4のブロックG4が設けられている。 The processing station 3 is provided with a plurality of, for example, first to fourth blocks G1, G2, G3, and G4 each having various units. For example, a first block G1 is provided on the front side of the processing station 3 (negative X direction side in FIG. 1), and a second block G1 is provided on the back side of the processing station 3 (positive X direction side in FIG. 1). A block G2 of is provided. A third block G3 is provided on the cassette station 2 side of the processing station 3 (negative Y direction side in FIG. 1), and the interface station 5 side of the processing station 3 (positive Y direction side in FIG. 1). is provided with a fourth block G4.
 第1のブロックG1には、図2に示すように複数の液処理ユニット、例えば現像処理ユニット30、下部反射防止膜形成ユニット31、レジスト塗布ユニット32、上部反射防止膜形成ユニット33が下からこの順に配置されている。現像処理ユニット30は、ウェハWに現像処理を施す。具体的には、現像処理ユニット30は、PEB処理が施されたウェハWの金属含有レジスト膜に現像処理を施す。下部反射防止膜形成ユニット31は、ウェハWの金属含有レジスト膜の下層に反射防止膜(以下、「下部反射防止膜」という。)を形成する。レジスト塗布ユニット32は、ウェハWに金属含有レジストを塗布して金属含有レジストの被膜すなわち金属含有レジスト膜を形成する。上部反射防止膜形成ユニット33は、ウェハWの金属含有レジスト膜の上層に反射防止膜(以下、「上部反射防止膜」という。)を形成する。 In the first block G1, as shown in FIG. 2, a plurality of liquid processing units such as a developing processing unit 30, a lower antireflection film forming unit 31, a resist coating unit 32, and an upper antireflection film forming unit 33 are arranged from below. are arranged in order. The development processing unit 30 subjects the wafer W to development processing. Specifically, the development processing unit 30 develops the metal-containing resist film of the wafer W that has undergone the PEB processing. The lower antireflection film forming unit 31 forms an antireflection film (hereinafter referred to as “lower antireflection film”) on the wafer W under the metal-containing resist film. The resist coating unit 32 coats the wafer W with a metal-containing resist to form a coating of the metal-containing resist, that is, a metal-containing resist film. The upper antireflection film forming unit 33 forms an antireflection film (hereinafter referred to as “upper antireflection film”) on the metal-containing resist film of the wafer W. As shown in FIG.
 例えば現像処理ユニット30、下部反射防止膜形成ユニット31、レジスト塗布ユニット32、上部反射防止膜形成ユニット33は、それぞれ水平方向に3つ並べて配置されている。なお、これら現像処理ユニット30、下部反射防止膜形成ユニット31、レジスト塗布ユニット32、上部反射防止膜形成ユニット33の数や配置は、任意に選択できる。 For example, three development processing units 30, lower antireflection film forming units 31, resist coating units 32, and upper antireflection film forming units 33 are arranged horizontally. The number and arrangement of these development processing units 30, lower antireflection film forming units 31, resist coating units 32, and upper antireflection film forming units 33 can be arbitrarily selected.
 現像処理ユニット30、下部反射防止膜形成ユニット31、レジスト塗布ユニット32、上部反射防止膜形成ユニット33では、例えばスピン塗布法でウェハW上に所定の処理液を塗布する。スピン塗布法では、例えば吐出ノズルからウェハW上に処理液を吐出すると共に、ウェハWを回転させて、処理液をウェハWの表面に拡散させる。 In the developing processing unit 30, the lower antireflection film forming unit 31, the resist coating unit 32, and the upper antireflection film forming unit 33, a predetermined processing liquid is applied onto the wafer W by spin coating, for example. In the spin coating method, for example, the processing liquid is discharged onto the wafer W from a discharge nozzle, and the wafer W is rotated to spread the processing liquid on the surface of the wafer W. FIG.
 例えば第2のブロックG2には、図3に示すようにウェハWの加熱や冷却といった熱処理を施す熱処理ユニット40や、金属含有レジストとウェハWとの定着性を高めるために疎水化処理を施す疎水化処理ユニット41、ウェハW上のレジスト膜の周縁部を露光する周辺露光ユニット42が上下方向と水平方向に並べて設けられている。これら熱処理ユニット40、疎水化処理ユニット41、周辺露光ユニット42の数や配置についても、任意に選択できる。なお、熱処理ユニット40では、レジスト塗布処理後のウェハWを加熱処理するプリベーキング処理(以下、「PAB処理」という。)、露光処理後のウェハWを加熱処理するPEB処理、現像処理後のウェハWを加熱処理するポストベーキング処理(以下、「POST処理」という。)等を行う。本実施形態では、熱処理ユニット40のうち、PEB処理に用いられる熱処理ユニット40は、後述するように、水酸化処理を行う水酸化処理ユニット40aと一体化され、後述の混合ユニットMを構成している。このPEB処理に用いられる熱処理ユニット40、水酸化処理ユニット40a及び混合ユニットMの構成については後述する。 For example, in the second block G2, as shown in FIG. A processing unit 41 and a peripheral exposure unit 42 for exposing the peripheral portion of the resist film on the wafer W are arranged vertically and horizontally. The number and arrangement of these thermal processing units 40, hydrophobic processing units 41, and peripheral exposure units 42 can also be selected arbitrarily. In the heat treatment unit 40, a pre-baking process (hereinafter referred to as "PAB process") for heat-treating the wafer W after the resist coating process, a PEB process for heat-treating the wafer W after the exposure process, and a wafer after the development process. A post-baking process (hereinafter referred to as "POST process") for heat-treating W is performed. In the present embodiment, among the heat treatment units 40, the heat treatment unit 40 used for the PEB treatment is integrated with the hydroxylation treatment unit 40a for performing the hydroxylation treatment, as described later, and constitutes the mixing unit M described later. there is The configurations of the heat treatment unit 40, the hydroxylation treatment unit 40a and the mixing unit M used for this PEB treatment will be described later.
 例えば第3のブロックG3には、複数の受け渡しユニット50、51、52、53、54、55、56が下から順に設けられている。また、第4のブロックG4には、複数の受け渡しユニット60、61、62と、ウェハWの裏面を洗浄する裏面洗浄ユニット63が下から順に設けられている。 For example, in the third block G3, a plurality of delivery units 50, 51, 52, 53, 54, 55, and 56 are provided in order from the bottom. Further, in the fourth block G4, a plurality of transfer units 60, 61, 62 and a back surface cleaning unit 63 for cleaning the back surface of the wafer W are provided in this order from the bottom.
 図1に示すように第1のブロックG1~第4のブロックG4に囲まれた領域には、ウェハ搬送領域Dが形成されている。ウェハ搬送領域Dには、例えばウェハWを搬送する基板搬送ユニットとしての搬送ユニット70が配置されている。 As shown in FIG. 1, a wafer transfer area D is formed in the area surrounded by the first block G1 to the fourth block G4. In the wafer transfer area D, a transfer unit 70 as a substrate transfer unit for transferring the wafer W, for example, is arranged.
 搬送ユニット70は、例えばY方向、θ方向及び上下方向に移動自在な搬送アーム70aを有している。搬送ユニット70は、ウェハWを保持した搬送アーム70aをウェハ搬送領域D内で移動させ、周囲の第1のブロックG1、第2のブロックG2、第3のブロックG3及び第4のブロックG4内の所定の装置に、ウェハWを搬送できる。搬送ユニット70は、例えば図3に示すように上下に複数台配置され、例えば各ブロックG1~G4の同程度の高さの所定のユニットにウェハWを搬送できる。 The transport unit 70 has a transport arm 70a that is movable in, for example, the Y direction, the θ direction, and the vertical direction. The transfer unit 70 moves the transfer arm 70a holding the wafer W within the wafer transfer area D, and moves the transfer arm 70a within the surrounding first block G1, second block G2, third block G3 and fourth block G4. A wafer W can be transported to a predetermined device. For example, as shown in FIG. 3, a plurality of transport units 70 are arranged vertically, and wafers W can be transported to predetermined units having approximately the same height in blocks G1 to G4, for example.
 また、ウェハ搬送領域Dには、第3のブロックG3と第4のブロックG4との間で直線的にウェハWを搬送するシャトル搬送ユニット80が設けられている。 Also, in the wafer transfer area D, a shuttle transfer unit 80 is provided for transferring the wafer W linearly between the third block G3 and the fourth block G4.
 シャトル搬送ユニット80は、支持したウェハWをY方向に直線的に移動させ、同程度の高さの第3のブロックG3の受け渡しユニット51と第4のブロックG4の受け渡しユニット60との間でウェハWを搬送できる。 The shuttle transport unit 80 linearly moves the supported wafer W in the Y direction, and transfers the wafer between the delivery unit 51 of the third block G3 and the delivery unit 60 of the fourth block G4, which are approximately the same height. W can be transported.
 図1に示すように第3のブロックG3のX方向正方向側には、搬送ユニット90が設けられている。搬送ユニット90は、例えばθ方向及び上下方向に移動自在な搬送アーム90aを有している。搬送ユニット90は、ウェハWを保持した搬送アーム90aを上下に移動させ、第3のブロックG3内の各受け渡しユニットに、ウェハWを搬送できる。 As shown in FIG. 1, a transport unit 90 is provided on the positive X-direction side of the third block G3. The transport unit 90 has a transport arm 90a movable in, for example, the θ direction and the vertical direction. The transfer unit 90 can move the transfer arm 90a holding the wafer W up and down to transfer the wafer W to each transfer unit in the third block G3.
 インターフェイスステーション5には、搬送ユニット100と受け渡しユニット101が設けられている。搬送ユニット100は、例えばθ方向及び上下方向に移動自在な搬送アーム100aを有している。搬送ユニット100は、搬送アーム100aにウェハWを保持して、第4のブロックG4内の各受け渡しユニット、受け渡しユニット101及び露光装置4との間でウェハWを搬送できる。 The interface station 5 is provided with a transport unit 100 and a delivery unit 101 . The transport unit 100 has a transport arm 100a movable in, for example, the θ direction and the vertical direction. The transport unit 100 can hold the wafer W on the transport arm 100a and transport the wafer W between the delivery units, the delivery unit 101 and the exposure apparatus 4 in the fourth block G4.
 以上の塗布現像処理装置1には、図1に示すように制御部200が設けられている。制御部200は、例えばCPU等のプロセッサやメモリ等を備えたコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、上述の各種処理ユニットや各種搬送ユニット等の駆動系の動作を制御して、後述のウェハ処理を制御するプログラムが格納されている。なお、上記プログラムは、コンピュータに読み取り可能な非一時的な記憶媒体Hに記録されていたものであって、当該記憶媒体Hから制御部200にインストールされたものであってもよい。記憶媒体Hは、一時的なものであっても、非一時的なものであってもよい。プログラムの一部または全ては専用ハードウェア(回路基板)で実現してもよい。 The coating and developing treatment apparatus 1 described above is provided with a control section 200 as shown in FIG. The control unit 200 is, for example, a computer including a processor such as a CPU, a memory, and the like, and has a program storage unit (not shown). The program storage unit stores programs for controlling the operation of drive systems such as the above-described various processing units and various transfer units, and for controlling wafer processing, which will be described later. The program may be recorded in a non-temporary computer-readable storage medium H and installed in the control unit 200 from the storage medium H. The storage medium H may be temporary or non-temporary. Part or all of the program may be realized by dedicated hardware (circuit board).
<ウェハ処理>
 次に、塗布現像処理装置1を用いたウェハ処理の一例について説明する。なお、以下の処理は制御部200の制御の下、行われる。
<Wafer processing>
Next, an example of wafer processing using the coating and developing treatment apparatus 1 will be described. Note that the following processing is performed under the control of the control unit 200. FIG.
 先ず、複数のウェハWを収納したカセットCが、塗布現像処理装置1のカセットステーション2に搬入され、載置板13に載置される。その後、搬送ユニット20によりカセットC内の各ウェハWが順次取り出され、処理ステーション3の第3のブロックG3の受け渡しユニット53に搬送される。 First, a cassette C containing a plurality of wafers W is carried into the cassette station 2 of the coating and developing treatment apparatus 1 and placed on the placing plate 13 . After that, the wafers W in the cassette C are sequentially taken out by the transfer unit 20 and transferred to the transfer unit 53 of the third block G3 of the processing station 3 .
 次に、ウェハWは、搬送ユニット70によって第2のブロックG2の熱処理ユニット40に搬送され温度調節処理される。その後、ウェハWは、搬送ユニット70によって例えば第1のブロックG1の下部反射防止膜形成ユニット31に搬送され、ウェハW上に下部反射防止膜が形成される。その後、ウェハWは、第2のブロックG2の熱処理ユニット40に搬送され、加熱処理が行われる。その後、ウェハWは、第3のブロックG3の受け渡しユニット53に戻される。 Next, the wafer W is transferred by the transfer unit 70 to the heat treatment unit 40 of the second block G2 and subjected to temperature adjustment processing. After that, the wafer W is transferred by the transfer unit 70 to, for example, the lower antireflection film forming unit 31 of the first block G1, and a lower antireflection film is formed on the wafer W. FIG. After that, the wafer W is transported to the heat treatment unit 40 of the second block G2 and subjected to heat treatment. After that, the wafer W is returned to the delivery unit 53 of the third block G3.
 次に、ウェハWは、搬送ユニット90によって同じ第3のブロックG3の受け渡しユニット54に搬送される。その後、ウェハWは、搬送ユニット70によって第2のブロックG2の疎水化処理ユニット41に搬送され、疎水化処理が行われる。 Next, the wafer W is transferred by the transfer unit 90 to the delivery unit 54 of the same third block G3. After that, the wafer W is transported by the transport unit 70 to the hydrophobization processing unit 41 of the second block G2, and subjected to the hydrophobization processing.
 次に、ウェハWは、搬送ユニット70によってレジスト塗布ユニット32に搬送され、ウェハW上に金属含有レジスト膜が形成される。その後、ウェハWは、搬送ユニット70によって熱処理ユニット40に搬送されて、PAB処理される。その後、ウェハWは、搬送ユニット70によって第3のブロックG3の受け渡しユニット55に搬送される。 Next, the wafer W is transferred to the resist coating unit 32 by the transfer unit 70, and a metal-containing resist film is formed on the wafer W. After that, the wafer W is transferred to the heat treatment unit 40 by the transfer unit 70 and subjected to PAB processing. After that, the wafer W is transferred by the transfer unit 70 to the delivery unit 55 of the third block G3.
 次に、ウェハWは、搬送ユニット70によって上部反射防止膜形成ユニット33に搬送され、ウェハW上に上部反射防止膜が形成される。その後、ウェハWは、搬送ユニット70によって熱処理ユニット40に搬送されて、加熱され、温度調節される。その後、ウェハWは、周辺露光ユニット42に搬送され、周辺露光処理される。 Next, the wafer W is transferred by the transfer unit 70 to the upper antireflection film forming unit 33, and an upper antireflection film is formed on the wafer W. After that, the wafer W is transferred to the thermal processing unit 40 by the transfer unit 70, heated, and temperature-controlled. After that, the wafer W is transferred to the edge exposure unit 42 and subjected to edge exposure processing.
 その後、ウェハWは、搬送ユニット70によって第3のブロックG3の受け渡しユニット56に搬送される。 After that, the wafer W is transferred by the transfer unit 70 to the delivery unit 56 of the third block G3.
 次に、ウェハWは、搬送ユニット90によって受け渡しユニット52に搬送され、シャトル搬送ユニット80によって第4のブロックG4の受け渡しユニット62に搬送される。その後、ウェハWは、搬送ユニット100によって裏面洗浄ユニット63に搬送され、裏面洗浄される。次いで、ウェハWは、インターフェイスステーション5の搬送ユニット100によって露光装置4に搬送され、EUV光を用いて所定のパターンで露光処理される。 Next, the wafer W is transported by the transport unit 90 to the delivery unit 52 and transported by the shuttle transport unit 80 to the delivery unit 62 of the fourth block G4. After that, the wafer W is transferred by the transfer unit 100 to the back surface cleaning unit 63, and the back surface thereof is cleaned. Next, the wafer W is transported to the exposure apparatus 4 by the transport unit 100 of the interface station 5, and exposed in a predetermined pattern using EUV light.
 次に、ウェハWは、搬送ユニット100によって第4のブロックG4の受け渡しユニット60に搬送される。その後、ウェハWは、搬送ユニット70によって、後述の水酸化処理ユニット40aと一体化された熱処理ユニット40に搬送され、水酸化処理された後、PEB処理される。この熱処理ユニット40における水酸化処理及びPEB処理については後述する。 Next, the wafer W is transferred by the transfer unit 100 to the delivery unit 60 of the fourth block G4. After that, the wafer W is transported by the transport unit 70 to the heat treatment unit 40 integrated with the later-described hydroxylation unit 40a, where it is hydroxylated and then PEB-treated. The hydroxylation treatment and PEB treatment in this heat treatment unit 40 will be described later.
 次に、ウェハWは、搬送ユニット70によって現像処理ユニット30に搬送され、現像される。現像終了後、ウェハWは、搬送ユニット90によって熱処理ユニット40に搬送され、POST処理される。 Next, the wafer W is transported by the transport unit 70 to the developing unit 30 and developed. After completion of the development, the wafer W is transported to the thermal processing unit 40 by the transport unit 90 and subjected to POST processing.
 その後、ウェハWは、搬送ユニット70によって第3のブロックG3の受け渡しユニット50に搬送され、その後カセットステーション2の搬送ユニット20によって所定の載置板13のカセットCに搬送される。こうして、一連のフォトリソグラフィー工程が終了する。 After that, the wafer W is transferred by the transfer unit 70 to the delivery unit 50 of the third block G3, and then transferred to the cassette C on the predetermined mounting plate 13 by the transfer unit 20 of the cassette station 2. Thus, a series of photolithography steps are completed.
<熱処理ユニット>
 次に、熱処理ユニット40のうち、PEB処理に用いられる熱処理ユニット40について説明する。図4及び図5はそれぞれ、PEB処理に用いられる熱処理ユニット40の構成の概略を模式的に示す縦断面図及び横断面図である。図6は、後述の加熱領域310の構成の概略を模式的に示す縦断面図である。図7は、後述の水酸化処理領域311の構成の概略を模式的に示す縦断面図である。図8は、後述の蓋体390の構成の概略を模式的に示す下面図である。
<Heat treatment unit>
Next, among the thermal processing units 40, the thermal processing unit 40 used for PEB processing will be described. 4 and 5 are longitudinal sectional view and transverse sectional view, respectively, schematically showing the outline of the structure of a thermal processing unit 40 used for PEB processing. FIG. 6 is a vertical cross-sectional view schematically showing the outline of the configuration of the heating region 310, which will be described later. FIG. 7 is a vertical cross-sectional view schematically showing the outline of the structure of the hydroxylation treatment region 311, which will be described later. FIG. 8 is a bottom view schematically showing the outline of the configuration of the lid body 390, which will be described later.
 図4及び図5の熱処理ユニット40は、当該熱処理ユニット40に隣接して配置された水酸化処理ユニット40aと一体化され、混合ユニットMを構成している。水酸化処理ユニット40aは、メタル含有レジスト膜が形成され露光処理が施されたウェハWのメタル含有レジスト膜に、ウェハW毎に水酸化処理を施す。そして、熱処理ユニット40は、メタル含有レジスト膜に水酸化処理が施されたウェハWに加熱処理を施す。水酸化処理ユニット40aは、混合ユニットMにおいてウェハ搬送領域D側に設けられている。 The heat treatment unit 40 in FIGS. 4 and 5 is integrated with a hydroxylation treatment unit 40a arranged adjacent to the heat treatment unit 40 to form a mixing unit M. The hydroxylation treatment unit 40a applies a hydroxylation treatment to the metal-containing resist film of each wafer W on which the metal-containing resist film is formed and subjected to the exposure treatment. Then, the heat treatment unit 40 heats the wafer W having the metal-containing resist film subjected to the hydroxylation treatment. The hydroxylating unit 40a is provided in the mixing unit M on the wafer transfer area D side.
 混合ユニットMは、内部を閉鎖可能な処理容器300を有している。処理容器300の水酸化処理ユニット40a側すなわちウェハ搬送領域D側の側面には、ウェハWの搬入出口(図示せず)が形成され、当該搬入出口には開閉シャッタ(図示せず)が設けられている。 The mixing unit M has a processing container 300 whose inside can be closed. A loading/unloading port (not shown) for the wafer W is formed on the side surface of the processing container 300 on the side of the hydroxylating unit 40a, that is, on the side of the wafer transfer region D, and the loading/unloading port is provided with an opening/closing shutter (not shown). ing.
 処理容器300の内部には、ウェハWを加熱処理する加熱領域310と、ウェハW上のメタル含有レジスト膜を水酸化処理する水酸化処理領域311が設けられている。加熱領域310と水酸化処理領域311はY方向に並べて配置されている。 A heating region 310 for heat-treating the wafer W and a hydroxylating region 311 for hydroxylating the metal-containing resist film on the wafer W are provided inside the processing container 300 . The heating region 310 and the hydroxylating region 311 are arranged side by side in the Y direction.
 図6に示すように加熱領域310には、後述の熱板350上の熱処理空間S1を覆い熱処理時にウェハWを収容するチャンバ320が設けられている。チャンバ320は、上側に位置して昇降自在な上部チャンバ321と、下側に位置して上部チャンバ321と一体となって内部を密閉可能な下部チャンバ322と、を有している。 As shown in FIG. 6, the heating region 310 is provided with a chamber 320 that covers a heat treatment space S1 above a hot plate 350 to be described later and accommodates a wafer W during heat treatment. The chamber 320 has an upper chamber 321 which is positioned on the upper side and can be raised and lowered, and a lower chamber 322 which is positioned on the lower side and can be sealed integrally with the upper chamber 321 .
 上部チャンバ321は、下面が開口した略円筒形状を有している。上部チャンバ321の内部であって、後述の熱板350に対向する位置には、熱処理空間S1に水分を含有したガスすなわち水分含有ガスを吐出する、ガス吐出部としてのシャワーヘッド330が設けられている。シャワーヘッド330は、具体的には、後述の熱板350に支持されたウェハWに設けて水分含有ガスを吐出する。また、シャワーヘッド330は、上部チャンバ321と同期して昇降自在に構成されている。 The upper chamber 321 has a substantially cylindrical shape with an open bottom surface. Inside the upper chamber 321, at a position facing a hot plate 350, which will be described later, is provided a shower head 330 serving as a gas ejection section for ejecting a gas containing moisture, that is, a moisture-containing gas, into the heat treatment space S1. there is Specifically, the shower head 330 is provided on a wafer W supported by a hot plate 350, which will be described later, and discharges moisture-containing gas. Also, the shower head 330 is configured to move up and down in synchronization with the upper chamber 321 .
 シャワーヘッド330の下面には、複数のガス供給孔331が形成されている。複数のガス供給孔331は、シャワーヘッド330の下面において、後述する中央排気路340以外の部分に均一に配置されている。シャワーヘッド330には、ガス供給管332が接続されている。さらにガス供給管332には、シャワーヘッド330に水分含有ガスを供給するガス供給源333が接続されている。また、ガス供給管332には、水分含有ガスの流通を制御するバルブや流量調節弁等を含む供給機器群334と、水分含有ガスの温度を調整する温度調整機構335が設けられている。 A plurality of gas supply holes 331 are formed on the bottom surface of the shower head 330 . The plurality of gas supply holes 331 are evenly arranged on the lower surface of the shower head 330 except for a central exhaust passage 340, which will be described later. A gas supply pipe 332 is connected to the shower head 330 . Furthermore, the gas supply pipe 332 is connected to a gas supply source 333 that supplies moisture-containing gas to the shower head 330 . Further, the gas supply pipe 332 is provided with a supply device group 334 including a valve for controlling the flow of the moisture-containing gas, a flow control valve, etc., and a temperature adjustment mechanism 335 for adjusting the temperature of the moisture-containing gas.
 ガス供給源333の内部には、水分濃度が例えば20%~80%に調節されたガスが貯留されている。そして、このように水分濃度が調節された水分含有ガスがシャワーヘッド330を介してチャンバ320の内部の熱処理空間S1に供給されることで、熱処理空間S1が所定の範囲、例えば20%~80%の湿度に調節される。なお、熱処理空間S1に供給される水分含有ガスの温度は、温度調整機構335により所定の範囲、例えば20℃~50℃に調節されている。 Inside the gas supply source 333, gas with a moisture concentration adjusted to, for example, 20% to 80% is stored. Then, by supplying the moisture-containing gas with the moisture concentration adjusted in this way to the heat treatment space S1 inside the chamber 320 through the shower head 330, the heat treatment space S1 is reduced to a predetermined range, for example, 20% to 80%. adjusted to the humidity of The temperature of the moisture-containing gas supplied to the heat treatment space S1 is adjusted to a predetermined range, eg, 20.degree. C. to 50.degree.
 さらに、シャワーヘッド330には、熱処理空間S1を排気する排気部として中央排気路340が設けられている。中央排気路340は、シャワーヘッド330の下面中央部から上面中央部に延伸するように形成されている。中央排気路340には、上部チャンバ321の上面中央部に設けられた中央排気管341が接続されている。さらに中央排気管341には、例えば真空ポンプ等の排気装置342が接続されている。また、中央排気管341には、排気されたガスの流通を制御するバルブ等を有する排気機器群343が設けられている。中央排気路340は、熱処理空間S1を、後述の熱板350に支持されたウェハWの中央の上方から、排気することができる。 Furthermore, the shower head 330 is provided with a central exhaust passage 340 as an exhaust section for exhausting the heat treatment space S1. The central exhaust path 340 is formed to extend from the central portion of the lower surface of the shower head 330 to the central portion of the upper surface. A central exhaust pipe 341 provided at the center of the upper surface of the upper chamber 321 is connected to the central exhaust passage 340 . Furthermore, an exhaust device 342 such as a vacuum pump is connected to the central exhaust pipe 341 . In addition, the central exhaust pipe 341 is provided with an exhaust device group 343 having valves and the like for controlling the flow of the exhausted gas. The central exhaust path 340 can exhaust the heat treatment space S1 from above the center of the wafer W supported by a hot plate 350, which will be described later.
 上述のように熱処理空間S1を排気することでPEB処理中に金属含有レジスト膜から生じた金属含有昇華物を含むガスを回収することができ、金属含有昇華物によりウェハWが汚染されるのを抑制することができる。特に、上述のように、熱処理空間S1をウェハWの中央の上方から排気することで、ウェハWの裏面や周縁部に金属含有昇華物を含むガスが接触し汚染されるのを抑制することができる。 By evacuating the heat treatment space S1 as described above, the gas containing the metal-containing sublimate generated from the metal-containing resist film during the PEB process can be recovered, and the contamination of the wafer W by the metal-containing sublimate can be prevented. can be suppressed. In particular, as described above, by evacuating the heat treatment space S1 from above the center of the wafer W, it is possible to prevent the rear surface and the peripheral edge of the wafer W from coming into contact with the gas containing the metal-containing sublimate and being contaminated. can.
 下部チャンバ322は、上面が開口した略円筒形状を有している。下部チャンバ322の上面開口部には、ウェハWを支持して加熱する支持加熱部としての熱板350と、当該熱板350を収容して熱板350の外周部を保持する環状の保持部材351と、が設けられている。熱板350は、厚みのある略円盤形状を有する。また、熱板350には、例えばヒータ352が内蔵されている。そして、熱板350の温度は例えば制御部200により制御され、熱板350上に載置されたウェハWが所定の温度に加熱される。 The lower chamber 322 has a substantially cylindrical shape with an open top. At the upper opening of the lower chamber 322, a hot plate 350 as a supporting heating unit that supports and heats the wafer W, and an annular holding member 351 that accommodates the hot plate 350 and holds the outer peripheral portion of the hot plate 350. and is provided. The hot plate 350 has a thick, substantially disk shape. Further, the hot plate 350 incorporates, for example, a heater 352 . The temperature of the hot plate 350 is controlled by, for example, the controller 200, and the wafer W placed on the hot plate 350 is heated to a predetermined temperature.
 下部チャンバ322の内部であって熱板350の下方には、ウェハWを下方から支持し昇降させる昇降ピン360が例えば3本設けられている。昇降ピン360は、モータ等の駆動源を有する昇降駆動部361により上下動できる。熱板350の中央部付近には、当該熱板350を厚み方向に貫通する貫通孔362が例えば3箇所に形成されている。そして、昇降ピン360は貫通孔362を通過し、熱板350の上面から突出可能になっている。昇降ピン360及び昇降駆動部361は、熱処理空間S1内でウェハWを昇降する昇降機構を構成する。 Inside the lower chamber 322 and below the hot plate 350, there are provided, for example, three elevating pins 360 for supporting the wafer W from below and elevating it. The lifting pin 360 can be moved up and down by a lifting drive unit 361 having a drive source such as a motor. In the vicinity of the central portion of the hot plate 350, for example, three through-holes 362 are formed through the hot plate 350 in the thickness direction. The elevating pins 360 can pass through the through holes 362 and protrude from the upper surface of the hot plate 350 . The elevating pins 360 and the elevating drive unit 361 constitute an elevating mechanism that elevates the wafer W within the heat treatment space S1.
 図4及び図5に示すように水酸化処理領域311には、基板支持部としての温調板370が設けられている。温調板370は、略方形の平板形状を有し、熱板350側の端面が円弧状に湾曲している。温調板370には、Y方向に沿った2本のスリット371が形成されている。スリット371は、温調板370の熱板350側の端面から温調板370の中央部付近まで形成されている。このスリット371により、温調板370が、加熱領域310の昇降ピン360及び後述する水酸化処理領域311の昇降ピン380と干渉するのを防止できる。また、温調板370には、例えば冷却水やペルチェ素子等の温度調節部材(図示せず)が内蔵されている。温調板370の温度は例えば制御部200により制御され、温調板370上に載置されたウェハWが所定の温度に調節される。これにより、温調板370は、当該温調板370に載置されたウェハWを、金属含有レジスト膜の脱水縮合が進まない所定の温度で、ウェハWを温調することができる。 As shown in FIGS. 4 and 5, the hydroxylation treatment area 311 is provided with a temperature control plate 370 as a substrate support. The temperature control plate 370 has a substantially square flat plate shape, and the end face on the hot plate 350 side is curved in an arc shape. Two slits 371 are formed in the temperature control plate 370 along the Y direction. The slit 371 is formed from the end surface of the temperature control plate 370 on the hot plate 350 side to the vicinity of the central portion of the temperature control plate 370 . The slits 371 prevent the temperature control plate 370 from interfering with the lifting pins 360 of the heating region 310 and the lifting pins 380 of the hydroxylating region 311, which will be described later. Further, the temperature control plate 370 incorporates a temperature control member (not shown) such as cooling water or a Peltier device. The temperature of the temperature control plate 370 is controlled by, for example, the control unit 200, and the wafer W placed on the temperature control plate 370 is adjusted to a predetermined temperature. Thereby, the temperature control plate 370 can control the temperature of the wafer W placed on the temperature control plate 370 at a predetermined temperature at which the dehydration condensation of the metal-containing resist film does not proceed.
 温調板370は、支持アーム372に支持されている。支持アーム372には、モータ等の駆動源を有する駆動部373が取り付けられている。駆動部373は、Y方向に延伸するレール374に取り付けられている。レール374は、水酸化処理領域311から加熱領域310まで延伸している。この駆動部373により、温調板370は、レール374に沿って水酸化処理領域311内の初期位置と加熱領域310内の受け渡し位置との間を移動可能になっている。温調板370、支持アーム372、駆動部373及びレール374は、水酸化処理領域311と加熱領域310との間で(すなわち熱処理ユニット40と水酸化処理ユニット40aとの間で)ウェハWを搬送する基板搬送機構を構成する。つまり、本実施形態では、温調板370は上記基板搬送機構を構成する。 The temperature control plate 370 is supported by a support arm 372. A drive unit 373 having a drive source such as a motor is attached to the support arm 372 . The drive unit 373 is attached to a rail 374 extending in the Y direction. Rail 374 extends from hydroxylation zone 311 to heating zone 310 . The driving portion 373 allows the temperature control plate 370 to move along rails 374 between an initial position within the hydroxylation treatment area 311 and a transfer position within the heating area 310 . Temperature control plate 370, support arm 372, drive unit 373, and rail 374 transport wafer W between hydroxylation area 311 and heating area 310 (that is, between heat treatment unit 40 and hydroxylation unit 40a). A substrate transfer mechanism is configured. In other words, in this embodiment, the temperature control plate 370 constitutes the substrate transfer mechanism.
 温調板370の下方には、ウェハWを下方から支持し昇降させるための昇降ピン380が例えば3本設けられている。昇降ピン380は、昇降駆動部381により上下動できる。そして、昇降ピン380はスリット371を挿通し、温調板370の上面から突出可能になっている。 For example, three elevating pins 380 for supporting the wafer W from below and elevating it are provided below the temperature control plate 370 . The lift pin 380 can be moved up and down by a lift driver 381 . The elevating pin 380 is inserted through the slit 371 and can protrude from the upper surface of the temperature control plate 370 .
 図7に示すように水酸化処理領域311には、温調板370上の処理空間S2を覆う蓋体390が設けられている。蓋体390は、温調板370に対して昇降自在に構成されており、水酸化処理時に、温調板370に載置されたウェハWを温調板370との間で収容する。つまり、蓋体390と温調板370は、水酸化処理時にウェハWを収容するチャンバを構成する。 As shown in FIG. 7, the hydroxylation treatment area 311 is provided with a lid body 390 that covers the treatment space S2 above the temperature control plate 370 . Lid 390 is configured to move up and down with respect to temperature control plate 370, and accommodates wafer W placed on temperature control plate 370 between temperature control plate 370 during the hydroxylation treatment. In other words, the lid 390 and the temperature control plate 370 constitute a chamber that accommodates the wafer W during the hydroxylation treatment.
 蓋体390は、下面が開口した略円筒形状を有している。蓋体390の内部であって、温調板370に対向する位置には、処理空間S2に水分含有ガスを吐出する、ガス吐出部としてのシャワーヘッド400が設けられている。シャワーヘッド400は、具体的には、初期位置の温調板370に支持されたウェハWに設けて水分含有ガスを吐出する。また、シャワーヘッド400は、蓋体390と同期して昇降自在に構成されている。 The lid 390 has a substantially cylindrical shape with an open bottom surface. A shower head 400 serving as a gas ejection unit that ejects a moisture-containing gas into the processing space S2 is provided inside the lid 390 and at a position facing the temperature control plate 370 . Specifically, the shower head 400 is provided on the wafer W supported by the temperature control plate 370 at the initial position, and discharges moisture-containing gas. Also, the shower head 400 is configured to move up and down in synchronization with the lid body 390 .
 さらに、シャワーヘッド400は、温調板370に支持されたウェハWに対向する面(すなわち下面)に沿って点在する複数の吐出孔401が形成されている。複数の吐出孔401は、具体的には、例えば、図8に示すように、シャワーヘッド400の下面における温調板370上のウェハWに対向する領域に、略均一に配置されている。複数の吐出孔401は、温調板370上のウェハWの上面に沿った空間において水分量(湿度)がウェハWの面内において略均一となるように、点在していてもよい。各吐出孔401の開口面積は例えば互いに略同一である。 Furthermore, the shower head 400 is formed with a plurality of discharge holes 401 scattered along the surface facing the wafer W supported by the temperature control plate 370 (that is, the lower surface). More specifically, for example, as shown in FIG. 8, the plurality of discharge holes 401 are substantially uniformly arranged in a region of the lower surface of the shower head 400 on the temperature control plate 370 facing the wafer W. As shown in FIG. The plurality of discharge holes 401 may be scattered so that the amount of water (humidity) in the space along the upper surface of the wafer W on the temperature control plate 370 is substantially uniform within the wafer W surface. The opening area of each ejection hole 401 is, for example, substantially the same.
 図7に示すように、シャワーヘッド400には、ガス供給管402が接続されている。さらにガス供給管402には、シャワーヘッド400に水分含有ガスを供給するガス供給源403が接続されている。また、ガス供給管402には、水分含有ガスの流通を制御するバルブや流量調節弁等を含む供給機器群404と、水分含有ガスの温度を調整する温度調整機構405が設けられている。 As shown in FIG. 7, a gas supply pipe 402 is connected to the shower head 400 . Furthermore, the gas supply pipe 402 is connected to a gas supply source 403 that supplies moisture-containing gas to the shower head 400 . Further, the gas supply pipe 402 is provided with a supply device group 404 including a valve for controlling the flow of the moisture-containing gas, a flow control valve, etc., and a temperature adjustment mechanism 405 for adjusting the temperature of the moisture-containing gas.
 ガス供給源403の内部には、水分濃度が例えば20%~80%に調節されたガスが貯留されている。そして、このように水分濃度が調節された水分含有ガスがシャワーヘッド400を介して処理空間S2に供給されることで、処理空間S2が所定の範囲、例えば20%~80%の湿度に調節される。なお、処理空間S2に供給される水分含有ガスの温度は、温度調整機構405により所定の範囲、例えば20℃~50℃に調節されている。 Inside the gas supply source 403, gas with a moisture concentration adjusted to, for example, 20% to 80% is stored. By supplying the moisture-containing gas having the moisture concentration adjusted in this way to the processing space S2 via the shower head 400, the humidity of the processing space S2 is adjusted to a predetermined range, for example, 20% to 80%. be. Note that the temperature of the moisture-containing gas supplied to the processing space S2 is adjusted to a predetermined range, eg, 20.degree. C. to 50.degree.
 ここで、水酸化処理について説明する。本発明者らが鋭意検討したところ、本実施形態と異なり、水酸化処理を行わずにPEB処理を行う場合、レジストパターンの寸法(例えば線幅)がウェハWの面内で不均一となることがあった。特に、PEB処理では、金属含有昇華物を含むガスの回収のため排気が行われており、その排気の形態によっては、上記寸法のウェハ面内での均一性が悪い場合があった。具体的には、本実施形態のように熱処理空間S1をウェハWの中央の上方から排気する中央排気方式は、ウェハWの外周から排気する外周排気方式に比べて、ウェハWの裏面や周縁部が金属含有昇華物から汚染されるのを抑制することができていたが、上記寸法のウェハ面内での均一性が悪い場合があった。水酸化処理を行わずにPEB処理を行った場合におけるレジストパターンの寸法の面内不均一性の原因としては以下が考えられる。 Here, the hydroxylation treatment will be explained. As a result of intensive studies by the present inventors, unlike the present embodiment, when PEB treatment is performed without performing hydroxylation treatment, the dimension (for example, line width) of the resist pattern becomes non-uniform within the surface of the wafer W. was there. In particular, in the PEB process, evacuation is performed to recover gas containing metal-containing sublimate, and depending on the form of the evacuation, there have been cases where the uniformity of the above dimensions within the wafer plane is poor. Specifically, in the central exhaust method in which the heat treatment space S1 is exhausted from above the center of the wafer W as in the present embodiment, compared to the outer peripheral exhaust method in which the wafer W is exhausted from the outer periphery, was able to suppress contamination from the metal-containing sublimate, but there were cases where the uniformity of the above dimensions within the wafer surface was poor. The causes of in-plane non-uniformity in the dimensions of the resist pattern when the PEB treatment is performed without the hydroxylation treatment are considered as follows.
 すなわち、金属含有レジストは、露光処理における紫外線によって、当該レジスト中の金属とリガンド(有機金属錯体)との結合が切断されアクティブな状態となる。このアクティブな状態の金属含有レジストは大気中の水分と反応することにより、金属含有レジストの側鎖として水酸基が結合する。つまり、金属含有レジストが水酸化され前駆体となる。そして、水酸化された金属含有レジスト(前駆体)がPEB処理中に脱水縮合することにより、現像液に対して不溶となる。また、大気中の水分のみでは、上述のアクティブな状態の金属含有レジストの一部のみしか水酸化されない。通常のPEB処理では、PEB処理中の脱水縮合により生じた水分によっても水酸化(前駆体化)が行われる。さらに、PEB処理中にウェハWに対して供給される水分含有ガス中の水分によっても、水酸化が行われる。そのため、通常のPEB処理では、処理中にウェハWに対して供給される水分含有ガスの流れに影響を与える熱処理空間S1の排気方式によっては、レジストパターンの寸法がウェハWの面内で不均一となる場合があるものと考えられる。例えば、前述の中央排気方式では、熱処理空間S1におけるウェハWの中央上方において、ウェハWの周縁部上方に比べて、ウェハWの水分濃度(湿度)が高くなるため、水酸化及び脱水集合が進み、その結果、ウェハWの中央においてレジストパターンの線幅が太くなり、ウェハWの周縁部において上記線幅が細くなるものと考えられる。 In other words, the metal-containing resist becomes active when the bond between the metal in the resist and the ligand (organometallic complex) is cut by the ultraviolet rays in the exposure process. This metal-containing resist in the active state reacts with moisture in the atmosphere, and hydroxyl groups are bonded as side chains of the metal-containing resist. That is, the metal-containing resist is hydroxylated and becomes a precursor. Then, the hydroxylated metal-containing resist (precursor) undergoes dehydration condensation during the PEB treatment and becomes insoluble in the developer. In addition, only a portion of the metal-containing resist in the active state described above is hydroxylated only by atmospheric moisture. In normal PEB treatment, water generated by dehydration condensation during PEB treatment also causes hydroxylation (precursor formation). Furthermore, water in the water-containing gas supplied to the wafer W during the PEB process also causes hydroxylation. Therefore, in a normal PEB process, the dimension of the resist pattern becomes uneven within the wafer W depending on the exhaust method of the heat treatment space S1 that affects the flow of the moisture-containing gas supplied to the wafer W during the process. It is considered that there is a case where it becomes. For example, in the above-described central exhaust system, since the water concentration (humidity) of the wafer W is higher above the center of the wafer W in the heat treatment space S1 than above the peripheral edge of the wafer W, hydration and dehydration aggregation proceed. As a result, it is considered that the line width of the resist pattern becomes thicker at the center of the wafer W, and the line width becomes thinner at the peripheral portion of the wafer W.
 そこで、本実施形態では、PEB処理に先立って、ウェハWに対して、アクティブな状態の金属含有レジストを水酸化する水酸化処理を行い、PEB処理では主に脱水縮合のみが行われるようにする。これにより、ウェハW上の金属含有レジスト膜が、PEB処理において水分含有ガス中の水分に影響されないため、PEB処理中の熱処理空間S1の排気方式によらず、レジストパターンの寸法をウェハWの面内で均一にすることができる。 Therefore, in the present embodiment, prior to the PEB process, the wafer W is subjected to a hydroxylation process for hydroxylating the metal-containing resist in an active state so that only dehydration condensation is mainly performed in the PEB process. . As a result, the metal-containing resist film on the wafer W is not affected by moisture in the moisture-containing gas during the PEB process. can be uniform within
 水酸化処理領域311の説明に戻る。
 図7に示すように、蓋体390の内部であってシャワーヘッド400の外周部には、処理空間S2を排気する排気部として外周排気路410が形成されている。外周排気路410には、蓋体390の上面に設けられた外周排気管411が接続されている。さらに外周排気管411には、例えば真空ポンプ等の排気装置412が接続されている。また、外周排気管411には、排気されたガスの流通を制御するバルブ等を有する排気機器群413が設けられている。外周排気路410は、処理空間S2を、温調板370に支持されたウェハWの外周の上方から排気することができる。
Returning to the description of the hydroxylated region 311 .
As shown in FIG. 7, an outer exhaust passage 410 is formed as an exhaust unit for exhausting the processing space S2 inside the lid 390 and in the outer peripheral portion of the shower head 400 . An outer exhaust pipe 411 provided on the upper surface of the lid 390 is connected to the outer exhaust path 410 . Further, an exhaust device 412 such as a vacuum pump is connected to the outer exhaust pipe 411 . Further, the outer exhaust pipe 411 is provided with an exhaust device group 413 having a valve or the like for controlling the flow of the exhausted gas. The outer exhaust path 410 can exhaust the processing space S<b>2 from above the outer periphery of the wafer W supported by the temperature control plate 370 .
<水酸化処理及びPEB処理>
 次に、混合ユニットMを用いて行われる水酸化処理及びPEB処理について説明する。図9及び図10はそれぞれ、混合ユニットMの動作を示す説明図である。なお、混合ユニットMに搬入されるウェハWには、金属含有レジスト膜が形成されている。
<Hydroxylation treatment and PEB treatment>
Next, the hydroxylation treatment and PEB treatment performed using the mixing unit M will be described. 9 and 10 are explanatory diagrams showing the operation of the mixing unit M, respectively. A metal-containing resist film is formed on the wafer W carried into the mixing unit M. As shown in FIG.
(ステップS1:ウェハ搬入)
 先ず、搬送ユニット70によって混合ユニットMの水酸化処理ユニット40aにウェハWが搬入されると、昇降ピン380が上昇され、ウェハWが搬送ユニット70から昇降ピン380に受け渡される。続いて昇降ピン380が下降され、ウェハWが図9(a)に示すように初期位置の温調板370に載置される。
(Step S1: Wafer loading)
First, when the wafer W is carried into the hydroxylating unit 40 a of the mixing unit M by the transfer unit 70 , the elevating pins 380 are raised and the wafer W is transferred from the transfer unit 70 to the elevating pins 380 . Subsequently, the lifting pins 380 are lowered, and the wafer W is placed on the temperature control plate 370 at the initial position as shown in FIG. 9(a).
(ステップS2:水酸化処理)
 その後、図9(b)に示すように、蓋体390が下降され温調板370に当接され、蓋体390及び温調板370により処理空間S2が画成される。その後、温調板370上のウェハWを、水酸化処理する。
(Step S2: Hydroxylation treatment)
After that, as shown in FIG. 9B, the lid 390 is lowered and brought into contact with the temperature control plate 370, and the processing space S2 is defined by the lid 390 and the temperature control plate 370. As shown in FIG. After that, the wafer W on the temperature control plate 370 is subjected to a hydroxylation treatment.
 この水酸化処理では、シャワーヘッド400から、水分濃度が例えば20%~80%に調節された水分含有ガスが、例えば4L/minの流量で供給され、処理空間S2が例えば20%~80%の湿度に調節される。そして、この水分含有ガスに含まれる水分が、ウェハWの金属含有レジスト膜に結露付着し、この水分により、金属含有レジストの水酸化(前駆体化)が促進される。 In this hydroxylation treatment, a water-containing gas having a water concentration adjusted to, for example, 20% to 80% is supplied from the shower head 400 at a flow rate of, for example, 4 L/min, and the processing space S2 is, for example, 20% to 80%. Humidity adjusted. Then, the moisture contained in this moisture-containing gas condenses and adheres to the metal-containing resist film of the wafer W, and this moisture promotes hydroxylation (precursor conversion) of the metal-containing resist.
 また、この水酸化処理では、シャワーヘッド400から供給される水分含有ガスの温度及び温調板370により温調された当該温調板370上のウェハWの温度は、金属含有レジストの脱水縮合が進まない所定の温度とされる。水酸化処理における上記所定の温度とは、具体的には例えば20℃~50℃であり、より具体的には例えば20℃~30℃である。 In addition, in this hydroxylation treatment, the temperature of the moisture-containing gas supplied from the shower head 400 and the temperature of the wafer W on the temperature control plate 370, which is temperature-controlled by the temperature control plate 370, are such that dehydration condensation of the metal-containing resist occurs. A predetermined temperature is set at which no progress is made. The predetermined temperature in the hydroxylation treatment is specifically, for example, 20°C to 50°C, more specifically, for example, 20°C to 30°C.
 さらに、この水酸化処理では、シャワーヘッド400により、温調板370に支持されたウェハWに対向する面すなわち下面に沿って点在する複数の吐出孔401から、ウェハWに対して水分含有ガスが均一に供給される。したがって、ウェハW上の金属含有レジストの水酸化をウェハWの面内で均一に行うことができる。 Furthermore, in this hydroxylation treatment, a water-containing gas is supplied to the wafer W from a plurality of discharge holes 401 scattered along the surface facing the wafer W supported by the temperature control plate 370 , i.e., the lower surface, by the shower head 400 . is supplied uniformly. Therefore, the metal-containing resist on the wafer W can be uniformly hydrated within the wafer W surface.
 さらにまた、水酸化処理では、外周排気路410(すなわちウェハWの外周部の上方)から処理空間S2が排気される。このように排気されることで、ウェハW上の金属含有レジストの水酸化をウェハWの面内でさらに均一に行うことができる。外周排気路410による排気量は、例えば4L/min以上である。 Furthermore, in the hydroxylation process, the processing space S2 is exhausted from the outer exhaust path 410 (that is, above the outer peripheral portion of the wafer W). By evacuating in this way, the metal-containing resist on the wafer W can be more uniformly hydrated within the wafer W surface. The exhaust amount by the outer exhaust passage 410 is, for example, 4 L/min or more.
 なお、水酸化処理では、金属含有レジストの脱水縮合が進まないため、当該金属含有レジストからの金属含有昇華物は発生しない。 Note that, in the hydroxylation treatment, dehydration condensation of the metal-containing resist does not proceed, so no metal-containing sublimate is generated from the metal-containing resist.
 また、水酸化処理は、例えば1分間から10分間に亘って行われる。 Also, the hydroxylation treatment is performed, for example, for 1 to 10 minutes.
(ステップS3:ウェハ搬送)
 水酸化処理が終了すると、シャワーヘッド400からの水分含有ガスの供給及び外周排気路410を介した排気が停止され、図9(c)に示すように、蓋体390が上昇される。次いで、駆動部373により温調板370がレール374に沿って熱板350の上方の受け渡し位置まで移動される。続いて、昇降ピン360が上昇され、ウェハWが昇降ピン360に受け渡される。そして、温調板370が初期位置まで戻される。
(Step S3: Wafer transfer)
When the hydroxylation treatment is completed, the supply of moisture-containing gas from the shower head 400 and the exhaust through the outer exhaust passage 410 are stopped, and the lid 390 is raised as shown in FIG. 9(c). Next, the drive unit 373 moves the temperature control plate 370 along the rails 374 to the delivery position above the hot plate 350 . Subsequently, the lifting pins 360 are lifted and the wafer W is transferred to the lifting pins 360 . Then, the temperature control plate 370 is returned to the initial position.
(ステップS4:PEB処理)
 次いで、図10(a)に示すように上部チャンバ321が下降され下部チャンバ322に当接され、チャンバ320の内部が密閉される。その後、昇降ピン360が下降され、ウェハWが熱板350に載置される。そして、ウェハWがPEB処理される。
(Step S4: PEB processing)
Next, as shown in FIG. 10(a), the upper chamber 321 is lowered to abut on the lower chamber 322, and the interior of the chamber 320 is sealed. After that, the lifting pins 360 are lowered and the wafer W is placed on the hot plate 350 . Then, the wafer W is PEB processed.
 このPEB処理では、熱板350により加熱された当該熱板350上の温度は、ウェハW上の金属含有のレジストの脱水縮合が進むよう所定の温度とされる。PEB処理における上記所定の温度とは具体的には例えば150℃~200℃である。 In this PEB process, the temperature on the hot plate 350 heated by the hot plate 350 is set to a predetermined temperature so that the dehydration condensation of the metal-containing resist on the wafer W proceeds. Specifically, the predetermined temperature in the PEB treatment is, for example, 150.degree. C. to 200.degree.
 なお、本実施形態にかかるPEB処理においても、水酸化処理と同様、シャワーヘッド330から、水分濃度が例えば20%~80%に調節された水分含有ガスが、例えば4L/minの流量で供給され、熱処理空間S1が例えば20%~80%の湿度に調節される。この水分含有ガスに含まれる水分により、水酸化処理時に金属含有レジストの水酸化が完了していない場合に水酸化を促進させることができる。 In the PEB treatment according to the present embodiment, as in the hydroxylation treatment, a water-containing gas having a water concentration adjusted to, for example, 20% to 80% is supplied from the shower head 330 at a flow rate of, for example, 4 L/min. , the heat treatment space S1 is adjusted to a humidity of, for example, 20% to 80%. The water contained in the water-containing gas can promote the hydroxylation of the metal-containing resist when the metal-containing resist is not yet completely hydrated during the water-containing gas.
 また、PEB処理では、熱板350の温度が面内均一にされている。そのため、水酸化が完了した金属含有レジストの脱水縮合をウェハ面内で均一に行うことができ、レジストパターンの寸法をウェハ面内で均一にすることができる。 Also, in the PEB process, the temperature of the hot plate 350 is made uniform within the surface. Therefore, the dehydration condensation of the metal-containing resist that has been completely hydroxylated can be uniformly performed within the wafer surface, and the dimensions of the resist pattern can be made uniform within the wafer surface.
 さらに、PEB処理では、中央排気路340(すなわちウェハWの中央の上方)から当熱処理空間S1が排気される。このように排気されることで、ウェハWの外周部の上方から排気される場合に比べて、PEB処理時に生じる金属含有昇華物を含んだガスにより、ウェハWの裏面及び外周部が汚染されるのを抑制することができる。 Furthermore, in the PEB process, the heat treatment space S1 is evacuated from the central exhaust path 340 (that is, above the center of the wafer W). By exhausting in this way, the back surface and the outer peripheral portion of the wafer W are contaminated by the gas containing the metal-containing sublimate generated during the PEB process, compared to the case where the outer peripheral portion of the wafer W is exhausted from above. can be suppressed.
(ステップS5:中間待機位置への上昇)
 PEB処理が終了すると、シャワーヘッド330からの水分含有ガスの供給及び中央排気路340を介した排気が継続されたまま、昇降ピン360が上昇され、ウェハWが、昇降ピン360に受け渡され、図10(b)に示すように中間待機位置まで移動される。中間待機位置は、例えば、ウェハWの上面からシャワーヘッド330の下面までの距離がPEB処理時の半分となる位置である。
(Step S5: Rise to intermediate standby position)
When the PEB process is finished, the lifting pins 360 are lifted while the supply of moisture-containing gas from the shower head 330 and the exhaust through the central exhaust path 340 are continued, and the wafer W is transferred to the lifting pins 360. As shown in FIG. 10(b), it is moved to the intermediate standby position. The intermediate standby position is, for example, a position where the distance from the upper surface of the wafer W to the lower surface of the shower head 330 is half that of the PEB processing.
 中間待機位置まで移動する間の、昇降ピン360によるウェハWの上昇速度すなわち熱板350による加熱直後のウェハWの昇降ピン360による上昇速度は、後述のステップS6の待機位置へのウェハWの上昇速度より小さく、具体的には10mm/s以下(例えば5mm/s)である。このようにウェハWの上昇速度を小さくすることで、以下の効果がある。すなわち、熱板350による加熱直後すなわちPEB処理直後も、ウェハW上の金属含有レジスト膜から金属含有昇華物は生じる。それに対し、上述のようにウェハWの上昇速度を小さくすることで、ウェハWが中間待機位置まで移動する間に、ウェハWとシャワーヘッド330の下面との間の金属含有昇華物を含むガスが、ウェハWの径方向外側に向けて流れ、ウェハWの裏面や周縁部が汚染されるのを抑制することができる。 The lifting speed of the wafer W by the lifting pins 360 during the movement to the intermediate standby position, that is, the lifting speed of the wafer W immediately after being heated by the hot plate 350 by the lifting pins 360 is determined by the lifting speed of the wafer W to the standby position in step S6, which will be described later. It is smaller than the speed, specifically 10 mm/s or less (for example, 5 mm/s). Reducing the rising speed of the wafer W in this way has the following effects. That is, the metal-containing sublimate is generated from the metal-containing resist film on the wafer W immediately after heating by the hot plate 350, that is, immediately after the PEB processing. In contrast, by reducing the rising speed of the wafer W as described above, the gas containing the metal-containing sublimate between the wafer W and the lower surface of the shower head 330 is released while the wafer W is moving to the intermediate standby position. , flow radially outward of the wafer W, thereby suppressing contamination of the back surface and the peripheral edge of the wafer W.
(ステップS6:待機位置への移動)
 その後、シャワーヘッド330からの水分含有ガスの供給及び中央排気路340を介した排気が継続されたまま、図10(c)に示すように上部チャンバ321が上昇される。それと共に、昇降ピン360がさらに上昇され、ウェハWが、待機位置まで移動される。この工程では、シャワーヘッド330の下面とウェハWの上面との間の距離が、シャワーヘッド330の下面とウェハWの上面との間から金属含有昇華物を含むガスが漏れ出さない所定の範囲に収まるよう、上部チャンバ321の上昇及び昇降ピン360が同時または交互に行われる。言い換えると、この工程では、シャワーヘッド330の下面とウェハWの上面との間の距離が、中央排気路340による、金属含有昇華物を含むガスを排除する気流が維持される距離となるよう、上部チャンバ321の上昇及び昇降ピン360が同時または交互に行われる。これにより、上記金属含有昇華物を含むガスがウェハWの裏面へ回り込むこと等を抑制することができ、ウェハWの裏面等の汚染を抑制することができる。
(Step S6: Move to standby position)
After that, the upper chamber 321 is raised as shown in FIG. 10(c) while the supply of moisture-containing gas from the shower head 330 and the exhaust through the central exhaust passage 340 are continued. At the same time, the lifting pins 360 are further raised to move the wafer W to the standby position. In this step, the distance between the lower surface of the shower head 330 and the upper surface of the wafer W is set to a predetermined range in which the gas containing the metal-containing sublimate does not leak from between the lower surface of the shower head 330 and the upper surface of the wafer W. To accommodate, the lifting of the upper chamber 321 and the lifting pin 360 are performed simultaneously or alternately. In other words, in this step, the distance between the lower surface of the showerhead 330 and the upper surface of the wafer W is such that the central exhaust path 340 maintains an airflow that removes the gas containing the metal-containing sublimate. The lifting of the upper chamber 321 and the lifting pin 360 are performed simultaneously or alternately. As a result, it is possible to prevent the gas containing the metal-containing sublimate from flowing into the back surface of the wafer W, so that contamination of the back surface of the wafer W and the like can be suppressed.
(ステップS7:ウェハ搬送)
 その後、シャワーヘッド330からの水分含有ガスの供給及び中央排気路340を介した排気が停止され、温調板370が駆動部373によりレール374に沿って熱板350の上方の受け渡し位置まで移動される。続いて、昇降ピン360が下降され、ウェハWが温調板370に受け渡される。そして、温調板370が初期位置まで戻される。
(Step S7: Wafer transfer)
After that, the supply of moisture-containing gas from the shower head 330 and the exhaust through the central exhaust path 340 are stopped, and the temperature control plate 370 is moved by the drive unit 373 along the rails 374 to the transfer position above the hot plate 350. be. Subsequently, the lifting pins 360 are lowered and the wafer W is transferred to the temperature control plate 370 . Then, the temperature control plate 370 is returned to the initial position.
(ステップS8:ウェハ冷却及び搬出)
 そして、ウェハWが、所定の時間、温調板370に載置されて冷却される。その後、ステップS1のウェハ搬入と逆の手順で、ウェハWが、昇降ピン360に受け渡された後、搬送ユニット70に受け渡され、当該搬送ユニット70によって、混合ユニットMの水酸化処理ユニット40aからウェハWが搬出される。
(Step S8: Wafer cooling and unloading)
Then, the wafer W is placed on the temperature control plate 370 and cooled for a predetermined time. After that, the wafer W is transferred to the lifting pins 360 in the reverse order of the wafer loading in step S1, and then transferred to the transfer unit 70. The wafer W is unloaded from the
<本実施形態の主な効果>
 以上のように、本実施形態では、露光処理が施されたウェハWのメタル含有レジスト膜に、ウェハW毎にPEB処理を行う前に、ウェハ毎に水酸化処理を施す水酸化処理ユニット40aが設けられている。そして、水酸化処理ユニット40aが、基板を支持する温調板370と、温調板370の処理空間S2を覆う蓋体390と、処理空間S2に、水分含有ガスを吐出するシャワーヘッド400と、を有している。
 水酸化処理ユニット40aを用いれば、PEB処理前に、ウェハW上のメタル含有レジスト膜の水酸化を十分且つ面内均一に行うことができる。そのため、PEB処理において、上記水酸化は行わずに主にメタル含有レジストの脱水縮合を行うことができる。メタル含有レジストの各部分の脱水縮合は、当該部分の周囲のメタル含有レジスト膜等から当該部分に供給される水分の影響をほとんど受けることがない。したがって、PEB処理前に、上述のようにウェハW上のメタル含有レジスト膜の水酸化が十分且つウェハWの面内均一に行われていれば、PEB処理により、メタル含有レジストの脱水縮合をウェハWの面内均一に行うことができる。よって、本実施形態によれば、メタル含有レジストを用いたレジストパターンの寸法のウェハ面内均一性を向上させることができる。
<Main effects of the present embodiment>
As described above, in the present embodiment, the hydroxylating unit 40a performs the hydroxylating treatment for each wafer before performing the PEB treatment on the metal-containing resist film of the wafer W subjected to the exposure treatment. is provided. The hydroxylating unit 40a includes a temperature control plate 370 that supports the substrate, a lid 390 that covers the processing space S2 of the temperature control plate 370, a shower head 400 that discharges a moisture-containing gas into the processing space S2, have.
By using the hydroxylating unit 40a, the metal-containing resist film on the wafer W can be sufficiently and uniformly hydroxylated before the PEB process. Therefore, in the PEB treatment, dehydration condensation of the metal-containing resist can be mainly performed without the above-mentioned hydroxylation. The dehydration condensation of each portion of the metal-containing resist is hardly affected by moisture supplied to the portion from the metal-containing resist film or the like surrounding the portion. Therefore, if the metal-containing resist film on the wafer W is sufficiently and uniformly hydrated as described above before the PEB process, the PEB process will cause dehydration condensation of the metal-containing resist on the wafer. In-plane uniformity of W can be performed. Therefore, according to the present embodiment, it is possible to improve the in-wafer uniformity of the dimension of the resist pattern using the metal-containing resist.
 また、本実施形態では、PEB処理において上記水酸化は行わずに主にメタル含有レジストの脱水縮合を行うため、PEB処理結果が、PEB処理時の熱処理空間S1の排気による水分含有ガスの気流の影響を受けない。そのため、本実施形態では、PEB処理における熱処理空間S1の排気方式として種々のものを採用することができる。例えば、前述の中央排気方式を採用することができる。この方式であれば、前述の外周排気方式に比べて、ウェハWの裏面や周縁部に金属含有昇華物を含むガスが接触し汚染されるのを抑制することができる。つまり、本実施形態によれば、ウェハWの裏面や周縁部に金属含有昇華物を含むガスが接触し汚染されることを抑制しながら、メタル含有レジストを用いたレジストパターンの寸法のウェハ面内均一性を向上させることができる。 In addition, in the present embodiment, the PEB treatment does not perform the above-described hydroxylation, but mainly performs dehydration condensation of the metal-containing resist. Not affected. Therefore, in this embodiment, various methods can be adopted as the evacuation method of the heat treatment space S1 in the PEB process. For example, the aforementioned central exhaust scheme can be employed. With this method, it is possible to prevent the gas containing the metal-containing sublimate from coming into contact with the rear surface and the peripheral portion of the wafer W and contaminating them, compared to the outer peripheral exhaust method described above. In other words, according to the present embodiment, while suppressing contamination due to contact of the gas containing the metal-containing sublimate with the rear surface and the peripheral portion of the wafer W, the wafer in-plane of the dimension of the resist pattern using the metal-containing resist is controlled. Uniformity can be improved.
 さらに、本実施形態では、熱処理ユニット40と水酸化処理ユニット40aとが隣接して配置されている。そのため、水酸化処理ユニット40aによる水酸化処理直後に熱処理ユニット40によるPEB処理を行うことができる。したがって、水酸化処理終了からPEB処理開始までに金属含有レジスト膜が大気中等の水分の影響を受けてレジストパターンの線幅の面内均一性に悪影響を及ぼすのを抑制することができる。 Furthermore, in this embodiment, the heat treatment unit 40 and the hydroxylation treatment unit 40a are arranged adjacent to each other. Therefore, the PEB treatment by the heat treatment unit 40 can be performed immediately after the hydroxylation treatment by the hydroxylation treatment unit 40a. Therefore, it is possible to suppress the in-plane uniformity of the line width of the resist pattern from being adversely affected by moisture in the air or the like on the metal-containing resist film from the end of the hydroxylation treatment to the start of the PEB treatment.
 また、本実施形態では、温調板370が、熱処理ユニット40と水酸化処理ユニット40aとの間でウェハWを搬送する基板搬送機構の一部を構成している。そのため、温調板370上でウェハWの水酸化処理を行ってから、熱処理ユニット40でPEB処理を行うまでの時間をより短くすることができる。 In addition, in this embodiment, the temperature control plate 370 constitutes part of a substrate transport mechanism that transports the wafer W between the heat treatment unit 40 and the hydroxylating unit 40a. Therefore, the time from the hydroxylation treatment of the wafer W on the temperature control plate 370 to the PEB treatment in the heat treatment unit 40 can be shortened.
 さらにまた、本実施形態では、熱処理ユニット40と水酸化処理ユニット40aを一体化した混合ユニットMが、熱処理ユニット40と水酸化処理ユニット40aとの間でウェハWを搬送する基板搬送機構を内蔵している。そのため、水酸化処理ユニット40aでの水酸化処理後のウェハWを、他のウェハWの搬送スケジュールの影響を受けずに、熱処理ユニット40に搬送することができ、直ちにPEB処理を行うことができる。 Furthermore, in the present embodiment, the mixing unit M in which the heat treatment unit 40 and the hydroxylating unit 40a are integrated incorporates a substrate transfer mechanism for transferring the wafer W between the heat treatment unit 40 and the hydroxylating unit 40a. ing. Therefore, the wafer W after the hydroxylation treatment in the hydroxylation treatment unit 40a can be transferred to the heat treatment unit 40 without being affected by the transfer schedule of the other wafers W, and the PEB treatment can be performed immediately. .
<確認試験1>
 水酸化処理を行わずに前述の中央排気方式でPEB処理を行った場合と、水酸化処理を行った後に同じPEB処理を行った場合と、で、メタル含有レジストのレジストパターンの線幅を測定する試験を行った。水酸化処理を行わなかった場合、線幅の平均値が13.8nm程度であり、線幅のウェハ面内でのばらつき(具体的には最大値と最小値の差)が1.2nm程度であった。それに対し、水酸化処理を行った場合、線幅の平均値が15.4nm程度であり、線幅のウェハ面内でのばらつきは、0.5nm以下であった。この結果から、水酸化処理を行うことにより、レジストパターンの面内均一性の向上させることができることが分かる。
<Confirmation test 1>
Measure the line width of the resist pattern of the metal-containing resist in the case where PEB treatment is performed by the above-mentioned central exhaust method without hydroxylation treatment and in the case where the same PEB treatment is performed after hydroxylation treatment. I did a test to do. When the hydroxylation treatment was not performed, the average value of the line width was about 13.8 nm, and the variation of the line width (specifically, the difference between the maximum value and the minimum value) within the wafer surface was about 1.2 nm. there were. On the other hand, when the hydroxylation treatment was performed, the average value of the line width was about 15.4 nm, and the variation of the line width within the wafer surface was 0.5 nm or less. From this result, it can be seen that the in-plane uniformity of the resist pattern can be improved by performing the hydroxylation treatment.
<確認試験2>
 また、水酸化処理後のPEB処理において、中央排気方式で排気し且つ加熱直後のウェハWを10mm/s以下の低速(具体的には5mm/s)で上昇させた場合と、同様に中央排気方式で排気し且つ加熱直後のウェハWを10mm/sを超える高速(具体的には15mm/s)で上昇させた場合とで、処理後のウェハWの周縁部及び裏面で検出されたスズ原子の数を計測する試験を行った。高速で上昇させた場合、検出されたスズ原子の数は、1.6×1012個/cmであったのに対し、低速で上昇させた場合は、8.1×10個/cmであった。この結果から、加熱直後のウェハWの上昇速度を低速とすることで、金属含有レジスト膜からの金属含有レジスト膜により、ウェハWの裏面や周縁部が汚染されるのを抑制できることが分かる。
<Confirmation test 2>
In addition, in the PEB process after the hydroxylation process, the center exhaust method is the same as in the case where the central exhaust method is used and the wafer W immediately after heating is raised at a low speed of 10 mm/s or less (specifically, 5 mm/s). The tin atoms detected at the peripheral edge and back surface of the wafer W after processing in the case where the wafer W is evacuated by the method and the wafer W immediately after heating is raised at a high speed exceeding 10 mm / s (specifically, 15 mm / s). A test was conducted to measure the number of The number of tin atoms detected was 1.6×10 12 /cm 2 for the fast ascent compared to 8.1×10 9 /cm for the slow ascent. was 2 . From this result, it can be seen that contamination of the back surface and peripheral portion of the wafer W by the metal-containing resist film from the metal-containing resist film can be suppressed by slowing the rising speed of the wafer W immediately after heating.
<変形例>
 以上の例では、水分含有ガスをウェハWの上方からウェハWの上面に向けて供給していたが、水分含有ガスの供給方式はこれに限られない。例えば、水分含有ガスを、ウェハWの上面に沿ってY方向一端側から他端側へ向けて流れる一方向流の形態で供給してもよい。
<Modification>
In the above example, the water-containing gas is supplied from above the wafer W toward the upper surface of the wafer W, but the method of supplying the water-containing gas is not limited to this. For example, the moisture-containing gas may be supplied in the form of a unidirectional flow that flows along the upper surface of the wafer W from one end in the Y direction to the other end.
 また、以上の例では、熱処理ユニット40と水酸化処理ユニット40aとは一体化されていたが、これらは別体であってもよい。 Also, in the above example, the heat treatment unit 40 and the hydroxylation treatment unit 40a were integrated, but they may be separate bodies.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲、後述の付記項及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。例えば、上記実施形態の構成要件は上記の効果を損なわない範囲で、任意に組み合わせることができる。また、本開示に係る技術は、上記の効果とともに、又は、上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The embodiments described above may be omitted, substituted, or modified in various ways without departing from the scope of the appended claims, the appended claims, and the spirit thereof. For example, the constituent elements of the above embodiments can be combined arbitrarily within a range that does not impair the above effects. In addition to the above effects, or instead of the above effects, the technology according to the present disclosure can produce other effects that are obvious to those skilled in the art from the description of this specification.
 なお、以下のような構成も本開示の技術的範囲に属する。
[付記項1]
メタル含有レジストの被膜が形成され、露光処理が施された基板の前記被膜に、基板毎に水酸化処理を施す水酸化処理ユニットと、
前記被膜に前記水酸化処理が施された基板に加熱処理を施す熱処理ユニットと、
前記加熱処理が施された基板の前記被膜に現像処理を施す現像処理ユニットと、を備え、
前記水酸化処理ユニットは、
 基板を支持する基板支持部と、
 前記基板支持部上の処理空間を覆う蓋体と、
 前記処理空間に、水分を含有したガスを吐出するガス吐出部と、を有する、基板処理装置。
[付記項2]
前記基板支持部は、基板が載置され、前記被膜の脱水縮合が進まない所定の温度で、基板を温調する温調板を有する、付記項1に記載の基板処理装置。
[付記項3]
前記所定の温度は、30℃以下である、付記項2に記載の基板処理装置。
[付記項4]
前記ガス吐出部は、前記基板支持部に支持された基板に対向する面に沿って点在する複数の吐出孔を有する、付記項1~3のいずれか1項に記載の基板処理装置。
[付記項5]
前記水酸化処理ユニットは、前記処理空間を、前記基板支持部に支持された基板の外周側から排気する排気部を有する、付記項1~4のいずれか1項に記載の基板処理装置。
[付記項6]
前記熱処理ユニットは、
 基板を支持して加熱する支持加熱部と、
 前記支持加熱部上の熱処理空間を覆うチャンバと、
 前記熱処理空間を排気する排気部を有する、付記項1~5のいずれか1項に記載の基板処理装置。
[付記項7]
前記水酸化処理ユニットに基板を搬入出する基板搬送ユニットを備え、
前記熱処理ユニットは、前記水酸化処理ユニットに隣接し配置され、
前記熱処理ユニットと前記水酸化処理ユニットとの間で基板を搬送する基板搬送機構をさらに備える、付記項6に記載の基板処理装置。
[付記項8]
前記基板支持部は、前記基板搬送機構を構成する、付記項7に記載の基板処理装置。
[付記項9]
前記熱処理ユニットの前記排気部は、前記支持加熱部に支持された基板の中央の上方から排気する、付記項6~8のいずれか1項に記載の基板処理装置。
[付記項10]
前記熱処理ユニットは、前記熱処理空間内で基板を昇降する昇降機構を有し、
前記昇降機構は、前記支持加熱部による加熱直後の基板を10mm/s以下の速度で上昇させる、付記項6~9のいずれか1項に記載の基板処理装置。
[付記項11]
メタル含有レジストの被膜が形成され、露光処理が施された基板の前記被膜に、基板毎に水酸化処理を施す工程と、
前記被膜に前記水酸化処理が施された基板に加熱処理を施す工程と、
前記加熱処理が施された基板の前記被膜に現像処理を施す工程と、を含み、
前記水酸化処理を行う工程は、
 基板を支持した基板支持部上の処理空間に、水分を含有したガスを吐出する工程を含む、基板処理方法。
Note that the following configuration also belongs to the technical scope of the present disclosure.
[Appendix 1]
a hydroxylation treatment unit for applying hydroxylation treatment to each substrate on which a film of a metal-containing resist has been formed and which has been exposed to light;
a heat treatment unit for heat-treating the substrate having the film subjected to the hydroxylation treatment;
a development processing unit that performs development processing on the film of the substrate that has been subjected to the heat processing;
The hydroxylation unit is
a substrate support that supports the substrate;
a lid covering the processing space on the substrate support;
A substrate processing apparatus, comprising: a gas discharger for discharging a gas containing moisture into the processing space.
[Appendix 2]
2. The substrate processing apparatus according to claim 1, wherein the substrate supporting portion has a temperature control plate for controlling the temperature of the substrate at a predetermined temperature at which the substrate is placed and the dehydration condensation of the film does not proceed.
[Appendix 3]
3. The substrate processing apparatus according to item 2, wherein the predetermined temperature is 30° C. or less.
[Appendix 4]
4. The substrate processing apparatus according to any one of additional items 1 to 3, wherein the gas discharge section has a plurality of discharge holes scattered along a surface facing the substrate supported by the substrate support section.
[Appendix 5]
5. The substrate processing apparatus according to any one of additional items 1 to 4, wherein the hydroxylating unit has an exhaust section that exhausts the processing space from the outer peripheral side of the substrate supported by the substrate support section.
[Appendix 6]
The heat treatment unit is
a support heating unit that supports and heats the substrate;
a chamber covering a heat treatment space on the support heating part;
6. The substrate processing apparatus according to any one of additional items 1 to 5, further comprising an exhaust unit for exhausting the heat treatment space.
[Appendix 7]
A substrate transport unit for loading and unloading the substrate to and from the hydroxylating unit,
The heat treatment unit is arranged adjacent to the hydroxylation unit,
7. The substrate processing apparatus according to claim 6, further comprising a substrate transport mechanism that transports the substrate between the heat treatment unit and the hydroxylating unit.
[Appendix 8]
8. The substrate processing apparatus according to claim 7, wherein the substrate support part constitutes the substrate transfer mechanism.
[Appendix 9]
9. The substrate processing apparatus according to any one of additional items 6 to 8, wherein the exhaust section of the thermal processing unit exhausts air from above the center of the substrate supported by the support heating section.
[Appendix 10]
The heat treatment unit has an elevating mechanism for elevating the substrate in the heat treatment space,
10. The substrate processing apparatus according to any one of additional items 6 to 9, wherein the elevating mechanism elevates the substrate immediately after being heated by the support heating unit at a speed of 10 mm/s or less.
[Appendix 11]
a step of applying a hydroxylation treatment to each substrate on which a film of a metal-containing resist has been formed and which has been exposed to light;
a step of heat-treating the substrate on which the coating has been subjected to the hydroxylation treatment;
and developing the coating of the heat-treated substrate,
The step of performing the hydroxylation treatment is
A substrate processing method, comprising the step of discharging a gas containing moisture into a processing space above a substrate support that supports a substrate.
1 塗布現像処理装置
30 現像処理ユニット
40 熱処理ユニット
40a 水酸化処理ユニット
370 温調板
390 蓋体
400 シャワーヘッド
S2 処理空間
W ウェハ
1 Coating and developing apparatus 30 Development unit 40 Heat treatment unit 40a Hydroxylation unit 370 Temperature control plate 390 Lid 400 Shower head S2 Processing space W Wafer

Claims (11)

  1. メタル含有レジストの被膜が形成され、露光処理が施された基板の前記被膜に、基板毎に水酸化処理を施す水酸化処理ユニットと、
    前記被膜に前記水酸化処理が施された基板に加熱処理を施す熱処理ユニットと、
    前記加熱処理が施された基板の前記被膜に現像処理を施す現像処理ユニットと、を備え、
    前記水酸化処理ユニットは、
     基板を支持する基板支持部と、
     前記基板支持部上の処理空間を覆う蓋体と、
     前記処理空間に、水分を含有したガスを吐出するガス吐出部と、を有する、基板処理装置。
    a hydroxylation treatment unit for applying hydroxylation treatment to each substrate on which a film of a metal-containing resist has been formed and which has been exposed to light;
    a heat treatment unit for heat-treating the substrate having the film subjected to the hydroxylation treatment;
    a development processing unit that performs development processing on the film of the substrate that has been subjected to the heat processing;
    The hydroxylation unit is
    a substrate support that supports the substrate;
    a lid covering the processing space on the substrate support;
    A substrate processing apparatus, comprising: a gas discharger for discharging a gas containing moisture into the processing space.
  2. 前記基板支持部は、基板が載置され、前記被膜の脱水縮合が進まない所定の温度で、基板を温調する温調板を有する、請求項1に記載の基板処理装置。 2. The substrate processing apparatus according to claim 1, wherein the substrate supporting portion has a temperature control plate for controlling the temperature of the substrate at a predetermined temperature at which the substrate is placed and the dehydration condensation of the film does not proceed.
  3. 前記所定の温度は、30℃以下である、請求項2に記載の基板処理装置。 3. The substrate processing apparatus according to claim 2, wherein said predetermined temperature is 30[deg.] C. or less.
  4. 前記ガス吐出部は、前記基板支持部に支持された基板に対向する面に沿って点在する複数の吐出孔を有する、請求項1~3のいずれか1項に記載の基板処理装置。 4. The substrate processing apparatus according to claim 1, wherein said gas discharge part has a plurality of discharge holes scattered along a surface facing the substrate supported by said substrate support part.
  5. 前記水酸化処理ユニットは、前記処理空間を、前記基板支持部に支持された基板の外周側から排気する排気部を有する、請求項1~3のいずれか1項に記載の基板処理装置。 4. The substrate processing apparatus according to claim 1, wherein said hydroxylating unit has an exhaust section for exhausting said processing space from an outer peripheral side of said substrate supported by said substrate support section.
  6. 前記熱処理ユニットは、
     基板を支持して加熱する支持加熱部と、
     前記支持加熱部上の熱処理空間を覆うチャンバと、
     前記熱処理空間を排気する排気部を有する、請求項1~3のいずれか1項に記載の基板処理装置。
    The heat treatment unit is
    a support heating unit that supports and heats the substrate;
    a chamber covering a heat treatment space on the support heating part;
    4. The substrate processing apparatus according to any one of claims 1 to 3, further comprising an exhaust section for exhausting said heat treatment space.
  7. 前記水酸化処理ユニットに基板を搬入出する基板搬送ユニットを備え、
    前記熱処理ユニットは、前記水酸化処理ユニットに隣接し配置され、
    前記熱処理ユニットと前記水酸化処理ユニットとの間で基板を搬送する基板搬送機構をさらに備える、請求項6に記載の基板処理装置。
    A substrate transport unit for loading and unloading the substrate to and from the hydroxylating unit,
    The heat treatment unit is arranged adjacent to the hydroxylation unit,
    7. The substrate processing apparatus according to claim 6, further comprising a substrate transfer mechanism for transferring substrates between said heat treatment unit and said hydroxylating unit.
  8. 前記基板支持部は、前記基板搬送機構を構成する、請求項7に記載の基板処理装置。 8. The substrate processing apparatus according to claim 7, wherein said substrate support part constitutes said substrate transfer mechanism.
  9. 前記熱処理ユニットの前記排気部は、前記支持加熱部に支持された基板の中央の上方から排気する、請求項6に記載の基板処理装置。 7. The substrate processing apparatus according to claim 6, wherein said exhaust part of said heat treatment unit exhausts air from above the center of the substrate supported by said support heating part.
  10. 前記熱処理ユニットは、前記熱処理空間内で基板を昇降する昇降機構を有し、
    前記昇降機構は、前記支持加熱部による加熱直後の基板を10mm/s以下の速度で上昇させる、請求項6に記載の基板処理装置。
    The heat treatment unit has an elevating mechanism for elevating the substrate in the heat treatment space,
    7. The substrate processing apparatus according to claim 6, wherein said elevating mechanism lifts the substrate immediately after being heated by said support heating unit at a speed of 10 mm/s or less.
  11. メタル含有レジストの被膜が形成され、露光処理が施された基板の前記被膜に、基板毎に水酸化処理を施す工程と、
    前記被膜に前記水酸化処理が施された基板に加熱処理を施す工程と、
    前記加熱処理が施された基板の前記被膜に現像処理を施す工程と、を含み、
    前記水酸化処理を行う工程は、
     基板を支持した基板支持部上の処理空間に、水分を含有したガスを吐出する工程を含む、基板処理方法。
    a step of applying a hydroxylation treatment to each substrate on which a film of a metal-containing resist has been formed and which has been exposed to light;
    a step of subjecting the substrate having the coating to the hydroxylation treatment to a heat treatment;
    and developing the coating of the heat-treated substrate,
    The step of performing the hydroxylation treatment is
    A substrate processing method, comprising the step of discharging a gas containing moisture into a processing space above a substrate support that supports a substrate.
PCT/JP2022/024304 2021-06-30 2022-06-17 Substrate processing device and substrate processing method WO2023276723A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021109046 2021-06-30
JP2021-109046 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023276723A1 true WO2023276723A1 (en) 2023-01-05

Family

ID=84692347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024304 WO2023276723A1 (en) 2021-06-30 2022-06-17 Substrate processing device and substrate processing method

Country Status (2)

Country Link
TW (1) TW202323985A (en)
WO (1) WO2023276723A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018098229A (en) * 2016-12-08 2018-06-21 東京エレクトロン株式会社 Substrate processing method and heat treatment apparatus
WO2020045302A1 (en) * 2018-08-30 2020-03-05 東京エレクトロン株式会社 Substrate processing method and substrate processing device
JP2020129607A (en) * 2019-02-08 2020-08-27 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method
US20210166937A1 (en) * 2019-12-02 2021-06-03 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing a semiconductor device and semiconductor device manufacturing tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018098229A (en) * 2016-12-08 2018-06-21 東京エレクトロン株式会社 Substrate processing method and heat treatment apparatus
WO2020045302A1 (en) * 2018-08-30 2020-03-05 東京エレクトロン株式会社 Substrate processing method and substrate processing device
JP2020129607A (en) * 2019-02-08 2020-08-27 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method
US20210166937A1 (en) * 2019-12-02 2021-06-03 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing a semiconductor device and semiconductor device manufacturing tool

Also Published As

Publication number Publication date
TW202323985A (en) 2023-06-16

Similar Documents

Publication Publication Date Title
KR102640367B1 (en) Substrate processing method and heat treatment apparatus
JP5014811B2 (en) Substrate processing method
JP4601080B2 (en) Substrate processing equipment
US8840728B2 (en) Imprint system for performing a treatment on a template
JP4937772B2 (en) Substrate processing method
WO2010147056A1 (en) Imprinting system, imprinting method, and computer storage medium
WO2004109779A1 (en) Method for improving surface roughness of processed film of substrate and apparatus for processing substrate
US20120140191A1 (en) Coating and developing apparatus, coating and developing method, and storage medium
JP3989221B2 (en) Heat treatment apparatus and heat treatment method
TWI625788B (en) Substrate processing method, storage medium and heating apparatus
KR20170126459A (en) A coating method, a computer storage medium and a coating processing apparatus
JP4148346B2 (en) Heat treatment equipment
TWI790339B (en) Substrate processing device, substrate processing method, and computer storage medium
KR102516725B1 (en) bake apparatus a having the unit and method processing substrate by using thereof
WO2023276723A1 (en) Substrate processing device and substrate processing method
JP5415881B2 (en) Hydrophobic treatment apparatus, hydrophobic treatment method, program, and computer storage medium
JP3909574B2 (en) Resist coating device
JP2002343708A (en) Substrate processing system and heat treating method
JP7432770B2 (en) Heat treatment equipment, heat treatment method and storage medium
JP2011005695A (en) Template processor, imprint system, release agent processing method, program and computer storage medium
JP7158549B2 (en) SUBSTRATE PROCESSING METHOD, SUBSTRATE PROCESSING SYSTEM AND COMPUTER-READABLE STORAGE MEDIUM
JP2024055150A (en) SUBSTRATE PROCESSING METHOD, SUBSTRATE PROCESSING APPARATUS, AND COMPUTER STORAGE MEDIUM
TW202347043A (en) Substrate processing method, storage medium, and substrate processing device
JP2023177658A (en) Heat treatment device, heat treatment method, and storage medium
JP2024017893A (en) Substrate processing method, program and substrate processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE