WO2011141975A1 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
WO2011141975A1
WO2011141975A1 PCT/JP2010/006386 JP2010006386W WO2011141975A1 WO 2011141975 A1 WO2011141975 A1 WO 2011141975A1 JP 2010006386 W JP2010006386 W JP 2010006386W WO 2011141975 A1 WO2011141975 A1 WO 2011141975A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
signal
value
component
image
Prior art date
Application number
PCT/JP2010/006386
Other languages
English (en)
French (fr)
Inventor
信幸 廣瀬
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP10851360.7A priority Critical patent/EP2434761A4/en
Priority to CN201080037238.1A priority patent/CN102484722B/zh
Publication of WO2011141975A1 publication Critical patent/WO2011141975A1/ja
Priority to US13/355,902 priority patent/US8508633B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/131Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements including elements passing infrared wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/133Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements including elements passing panchromatic light, e.g. filters passing white light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/135Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on four or more different wavelength filter elements

Definitions

  • the present invention relates to an image pickup apparatus using an image pickup element, and more particularly to an image pickup apparatus that takes a color image using an image pickup element.
  • CMOS Complementary Metal Oxide Semiconductor
  • the infrared region light is also taken in without using the infrared cut filter, but in this case, the infrared component enters the incident light, The color reproducibility is significantly deteriorated.
  • FIG. 7 shows a general filter arrangement. As shown in FIG. 7, the filter attached to the image sensor has a so-called Bayer arrangement that uses three primary colors of red (R), green (G), and blue (B).
  • FIG. 8 shows the spectral characteristics of the primary color filter.
  • FIG. 9 shows the spectral characteristics of the primary color filter when an infrared cut filter is used. For incident light as shown in FIG. 8, as shown in FIG. 9, a portion having a frequency longer than the infrared cut frequency is cut.
  • RGB value before white balance adjustment is Rorg, Gorg, Borg
  • the white balance adjustment gain is Rgain, Ggain, Bgain
  • the RGB value after white balance adjustment is Rwh, Gwh, Bwh
  • Rwh Rorg ⁇ Rgain
  • Gwh Gorg ⁇ Ggain
  • Bwh Borg ⁇ Bgain
  • FIGS. 10A and 10B show changes in RGB signal amounts when an ideal white balance is achieved.
  • the imaging device described in Patent Document 1 has the configuration shown in FIG.
  • the infrared cut filter is turned on during the daytime when the illuminance is sufficient, and at night when the illuminance is insufficient, the infrared cut filter is removed from the front surface of the image sensor, and at the same time the video signal obtained from the image sensor
  • a black and white signal By selecting and outputting a black and white signal based on the signal processing result, an improvement in color reproducibility for a bright subject and an improvement in sensitivity for a dark subject are realized.
  • the imaging device described in Patent Document 2 includes RGB pixels and IR pixels to which visible light and infrared light are incident, and an image using RGB pixels at high illuminance. And at low illuminance, an image is generated using IR pixels, thereby realizing improved color reproducibility for bright subjects and improved sensitivity for dark subjects.
  • JP 2004-229034 A Japanese Patent Laid-Open No. 2005-6066
  • Patent Document 1 has a problem that an image always becomes a black and white image when a near-red image is output. In particular, even when there are bright subjects with colors in some areas, only a black and white image can be obtained as the entire image. In addition, since a mechanism for performing filter switching is necessary, it is difficult to reduce the size of the imaging apparatus, leading to an increase in cost.
  • the imaging device described in Patent Document 2 has the filter configuration shown in FIG. 13, but the IR light pixels that occupy 1 ⁇ 4 of the total number of pixels are not used during the daytime, so the resolution and the amount of received light are also the same. It will be less. Even at night, the number of pixels that receive the infrared component is only 1 ⁇ 4 of the total number of pixels, and the entire three-fourth pixels are not used. Therefore, the resolution and the amount of received light are reduced accordingly.
  • the present invention has been made in order to solve the above-described problems. By eliminating the need for an infrared cut filter, the amount of light incident on the image sensor is increased to improve sensitivity, and the infrared cut filter is not used.
  • An object of the present invention is to provide an imaging apparatus capable of avoiding deterioration of color reproducibility due to the above.
  • the imaging device is configured by repeatedly arranging pixels for all wavelength bands and three types of specific color pixels corresponding to three types of specific colors, and the amount of received light for each pixel.
  • An image sensor that obtains an image readout signal having a value corresponding to the above, and a portion corresponding to a pixel for all wavelength bands that is provided in front of the image sensor passes through all wavelength bands within a certain range of wavelength bands.
  • the image corresponding to the specific color pixel is read from the filter configured to reflect the wavelength band of the corresponding specific color and the value of the image read signal of the pixel for all wavelength bands.
  • a reflection amount calculation unit that calculates a signal value of a specific color by subtracting the signal value, a color difference component generation unit that generates a color difference signal based on the signal value of the specific color, and an image of a pixel for all wavelength bands Read signal
  • a luminance signal generator for generating a luminance signal.
  • the three types of specific color pixels are the WR pixel, the WG pixel, and the WB pixel, and the filter has a red wavelength band corresponding to the WR pixel.
  • the portion corresponding to the WG pixel reflects the green wavelength band
  • the portion corresponding to the WB pixel reflects the blue wavelength band.
  • the wavelength band in a certain range includes an infrared region
  • the filter is configured such that infrared light can be incident on the pixel for the specific color and the pixel for the entire wavelength band.
  • the color difference component generation unit when the value of the luminance signal generated by the luminance signal generation unit is the maximum value, the signal value of the red component and the green component obtained by the reflection amount calculation unit Regardless of the signal value of blue and the signal value of the blue component, the color difference is set to zero.
  • the present invention improves sensitivity by eliminating the need for an infrared cut filter, and avoids deterioration in color reproducibility due to the absence of an infrared cut filter.
  • FIG. 1 is a configuration diagram of an imaging apparatus according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram of a filter in the embodiment of the present invention.
  • FIG. 3 is a spectral characteristic diagram of the filter according to the embodiment of the present invention.
  • 4A is a spectral characteristic diagram of the filter according to the embodiment of the present invention (part corresponding to W pixel).
  • FIG. 4B is a spectral characteristic diagram of the filter according to the embodiment of the present invention (corresponding to WR pixel). Part)
  • FIG. 4C is a spectral characteristic diagram of the filter according to the embodiment of the present invention (part corresponding to the WG pixel).
  • FIG. 1 is a configuration diagram of an imaging apparatus according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram of a filter in the embodiment of the present invention.
  • FIG. 3 is a spectral characteristic diagram of the filter according to the embodiment of the present invention.
  • 4A is a spectral characteristic diagram of
  • FIG. 4D is a spectral characteristic diagram of the filter according to the embodiment of the present invention (W -B pixel compatible part)
  • FIG. 5A is a diagram showing an image reading signal obtained by the image sensor in the embodiment of the present invention.
  • FIG. 5B is a diagram showing a luminance signal obtained by the image sensor in the embodiment of the present invention.
  • 5 (c) is a diagram showing the amount of reflection of each pixel (RGB) of the image sensor in the embodiment of the present invention.
  • FIG. 5 (d) shows each pixel (RGB) of the image sensor in the embodiment of the present invention.
  • FIG. 6 is a diagram for explaining a function for improving color reproducibility in the vicinity of high luminance in the embodiment of the present invention.
  • FIG. 7 is a diagram showing the arrangement of conventional primary color filters.
  • FIG. 8 is a spectral characteristic diagram of a conventional primary color filter.
  • 9A is a spectral characteristic diagram of a conventional primary color filter (corresponding to a WB pixel).
  • FIG. 9B is a spectral characteristic diagram of a conventional primary color filter (corresponding to a WG pixel).
  • FIG. ) Is a spectral characteristic diagram of a conventional primary color filter (corresponding to a WR pixel).
  • 10A is a diagram showing pixel values of each pixel (RGB) of the conventional image sensor (when the infrared component is cut).
  • FIG. 10B is a diagram showing each pixel (RGB) of the conventional image sensor.
  • FIG. 11A is a diagram showing pixel values of each pixel (RGB) of the conventional image sensor (when the infrared component is not cut).
  • FIG. 11B is a diagram showing each pixel (RGB) of the conventional image sensor.
  • FIG. 12 is a configuration diagram of a conventional imaging apparatus.
  • FIG. 13 is a configuration diagram of a conventional image sensor.
  • the imaging apparatus is configured by repeatedly arranging pixels for all wavelength bands and three types of specific color pixels corresponding to three types of specific colors, and according to the amount of received light for each pixel.
  • An image sensor that acquires an image readout signal having a value, and a part corresponding to the pixel for all wavelength bands that is provided in front of the image sensor passes through all wavelength bands within a certain range of wavelength bands, and three types of identification
  • the value of the image readout signal of the pixel for the specific color is calculated from the filter configured to reflect the wavelength band of the corresponding specific color, and the value of the image readout signal of the pixel for all wavelength bands.
  • the reflection amount calculation unit that calculates the signal value of the specific color, the color difference component generation unit that generates the color difference signal based on the signal value of the specific color, and the image readout signal of the pixels for all wavelength bands Use brightness signal And it has a configuration in which a luminance signal generating unit for generating a.
  • the luminance signal generation unit Since all wavelength bands within a certain range of wavelength bands are incident on the pixels for all wavelength bands, the luminance signal generation unit generates a luminance signal using the image readout signal of the pixels for all wavelength bands, A highly sensitive luminance signal can be obtained.
  • Infrared components can be included in the image readout signal for all wavelength band pixels and the image readout signal for specific color pixels, but they are included in the image readout signal for all wavelength band pixels and the image readout signal for specific color pixels.
  • the infrared component is the same amount, subtracting the value of the image readout signal of the pixel for specific color from the value of the image readout signal of the pixel for all wavelength bands does not include the infrared component in the difference, and the reflection amount calculation In the part, a signal value of a specific color not including an infrared component is obtained. Since the color difference component generation unit generates the color difference signal based on the signal value of the specific color not including the infrared component as described above, the color reproducibility of the color difference signal is deteriorated by not providing the infrared cut filter. There is no. That is, according to the configuration of the imaging apparatus, it is possible to avoid deterioration in color reproducibility while realizing a highly sensitive imaging apparatus.
  • the three types of specific color pixels are the WR pixel, the WG pixel, and the WB pixel, and the filter has a red wavelength band corresponding to the WR pixel.
  • the portion corresponding to the WG pixel reflects the green wavelength band
  • the portion corresponding to the WB pixel reflects the blue wavelength band.
  • a red component signal value, a green component signal value, and a blue component signal value can be obtained, so that a full color image can be obtained.
  • the infrared component is not included in the signal value of the red component, the signal value of the green component, and the signal value of the blue component, it is possible to prevent coloring from occurring in white balance adjustment.
  • the wavelength band in a certain range includes the infrared region
  • the filter is configured so that infrared light can be incident on the pixel for the specific color and the pixel for the entire wavelength band.
  • each pixel can generate a luminance signal having a high S / N ratio by entering a sufficient amount of light including infrared light, and also according to the incident light amount in the entire wavelength band as described above.
  • the method of obtaining the specific color component by using the method of obtaining the infrared from the pixel value Components can be removed and high color reproducibility can be realized.
  • the color difference component generation unit is configured such that when the value of the luminance signal generated by the luminance signal generation unit is the maximum value, the signal value of the red component and the green component obtained by the reflection amount calculation unit Regardless of the signal value of blue and the signal value of the blue component, the color difference is set to zero.
  • the pixel value of the specific color is obtained by subtracting the value of the image read signal corresponding to the incident light amount excluding the wavelength band of the specific color from the value of the image read signal corresponding to the incident light amount in the entire wavelength band.
  • the color difference is set to zero, so that it is possible to prevent the coloring from being applied when the luminance is saturated.
  • FIG. 1 is a configuration diagram of an imaging apparatus according to an embodiment of the present invention.
  • the imaging apparatus 100 includes a lens 101, a filter 102, an imaging element 103, and a signal processing unit 104.
  • the imaging device 100 constitutes an electronic camera.
  • the filter 102 is attached to the front surface of the image sensor 103, that is, the lens 101 side.
  • the optical image that has passed through the lens 101 is irradiated to the image sensor 103 via the filter 102.
  • the image sensor 103 is composed of one WR pixel, one WG pixel, one WB pixel, and one W pixel, and this combination is repeatedly arranged two-dimensionally. Has been.
  • the WR pixel, the WG pixel, and the WB pixel correspond to the specific color pixel of the present invention, and the W pixel corresponds to the full wavelength band pixel of the present invention.
  • FIG. 2 is a configuration diagram of the filter 102.
  • the filter 102 includes a WR pixel corresponding portion, a WG pixel corresponding portion, a WB pixel corresponding portion, and a W pixel corresponding portion on the front surface of the WR pixel, It is configured to be positioned in front of the WG pixel, the WB pixel, and the W pixel.
  • FIG. 3 is a diagram showing the spectral characteristics of the filter 102.
  • 4A to 4D are diagrams showing the spectral characteristics of the W pixel corresponding portion, the WR pixel corresponding portion, the WG pixel corresponding portion, and the WB pixel corresponding portion of the filter 102, respectively.
  • the W pixel corresponding portion passes all the wavelength bands in a certain range of wavelength bands.
  • the WR pixel corresponding portion transmits light in the same wavelength band as the W pixel corresponding portion, but reflects light in the wavelength band corresponding to the R (red) component of the fixed wavelength band.
  • the WG pixel corresponding portion allows light in the same wavelength band as the W pixel corresponding portion to pass through, but reflects light in a wavelength band corresponding to the G (green) component of the fixed wavelength band.
  • the WB pixel corresponding portion transmits light in the same wavelength band as the W pixel corresponding portion, but reflects light in the wavelength band corresponding to the B (blue) component in the certain range of wavelength bands.
  • the portion corresponding to the W pixel passes the entire wavelength band in the wavelength range of a certain range, so that light in the entire wavelength band in the wavelength range of the certain range is incident on the W pixel.
  • the WR pixel corresponding portions pass light other than the reflected R component in the above-mentioned certain range of wavelength bands, the WR pixel has the above-mentioned certain range of wavelength bands.
  • Light other than the R component enters.
  • the WG pixel-corresponding portion and the WB image-corresponding portion allow light other than the G component and the B component to pass through each of the above-mentioned fixed wavelength bands, so that the WG pixel and the WB pixel.
  • the light other than the G component and the B component is incident on each of the above-described predetermined wavelength bands.
  • the imaging apparatus 100 As described above, in the imaging apparatus 100 according to the present embodiment, light in all wavelength bands within a certain range of wavelength bands is directly incident on the W pixel, so that the W pixel with respect to the amount of light from the subject. The amount of light incident on can be increased. In addition, since the WR pixel, the WG pixel, and the WB pixel also receive the light amount obtained by subtracting only the R, G, and B components in a certain wavelength band, the light amount from the subject. In contrast, the amount of incident light can be increased.
  • the imaging apparatus 100 of the present embodiment since no infrared cut filter is used, the W pixel corresponding portion, the WR pixel corresponding portion, the WG pixel corresponding portion, and the WB pixel corresponding portion of the filter 102.
  • the amount of incident light is further increased. That is, in the imaging apparatus 100 of the present embodiment, the ratio of the amount of light incident on the imaging element 103 is high with respect to the amount of light reaching the imaging apparatus 100 from the subject, and a highly sensitive imaging apparatus is realized. .
  • the sensitivity of the imaging apparatus 100 of the present embodiment has greatly increased.
  • the image sensor 103 photoelectrically converts the received light for each pixel to generate an image read signal having a value corresponding to the amount of received light, and inputs this to the signal processing unit 104.
  • the signal processing unit 104 includes a preprocessing unit 110, a luminance signal processing unit 120, a color difference signal processing unit 130, and an output unit 140. An image readout signal obtained by the image sensor 103 is input to the preprocessing unit 110 of the signal processing unit 104.
  • the pre-processing unit 110 includes an OB subtraction processing unit 111, a luminance signal generation unit 112, a reflection amount calculation unit 113, a white balance adjustment unit 114, and a color difference component generation unit 115.
  • the OB subtraction processing unit 111 performs OB subtraction processing (also referred to as dark current correction) for subtracting an output component (dark current) detected in an OB (Optical Black) region from the input image readout signal.
  • the image readout signal corrected by the OB subtraction processing unit 111 is input to the luminance signal generation unit 112 and the reflection amount calculation unit 113.
  • FIG. 5 is a diagram showing a flow of generating a luminance signal and a color difference signal from the image readout signal.
  • FIG. 5A is a diagram showing an image readout signal (OB subtracted, the same applies hereinafter) obtained from a certain set of WR pixel, WG pixel, WB pixel, and W pixel.
  • OB subtracted the same applies hereinafter
  • an image readout signal is obtained by subtracting a value corresponding to the amount of light of the reflected B component from the value of the image readout signal of the W pixel.
  • an image readout signal is obtained by subtracting values corresponding to the amounts of light of the reflected G component and R component from the value of the image readout signal of the W pixel, respectively.
  • FIG. 5B is a diagram illustrating an image readout signal input to the luminance signal generation unit 112 for the pixel in FIG.
  • the luminance signal generation unit 112 generates a luminance signal according to the image readout signal.
  • the W pixel light in the entire wavelength band within a certain wavelength band is incident from the light from the subject, and there is no attenuation of light by the filter.
  • a luminance signal having a sufficiently high S / N ratio is generated.
  • the luminance signal generation unit 112 generates the luminance signal Y by using the image read signals of the W pixel, the WB pixel, the WG pixel, and the WR pixel. Specifically, for each pixel, the luminance signal generation unit 112 generates an interpolated missing color component from surrounding pixels, thereby generating a signal value W for all wavelength components having a center of gravity for the pixel, After obtaining the signal value WR obtained by subtracting the red component from the wavelength component, the signal value WG obtained by subtracting the green component from the total wavelength component, and the signal value WB obtained by subtracting the blue component from the total wavelength component, The luminance signal Y is obtained according to equation (1).
  • A, B, C, and D are weighting coefficients used for luminance generation.
  • the luminance signal generation unit 112 may directly use the W pixel image reading signal as the luminance signal.
  • FIG.5 (c) is a figure which shows the amount of reflections obtained with the pixel of Fig.5 (a).
  • the reflection amount calculation unit 113 reflects the R component reflection amount in the WR pixel corresponding portion of the filter 102, the G component reflection amount in the WG pixel corresponding portion, and the B component in the WB pixel corresponding portion. The amount of reflection is calculated respectively.
  • the reflection amount calculation unit 113 obtains the R component signal value by subtracting the value of the WR pixel image readout signal from the value of the W pixel image readout signal. Similarly, the reflection amount calculation unit 113 obtains a G component signal value by subtracting the value of the WG pixel image readout signal from the value of the W pixel image readout signal, thereby obtaining the W pixel image readout signal. By subtracting the value of the image readout signal of the WB pixel from the value of B, the signal value of the B component is obtained.
  • These signal values respectively correspond to the amount of R component reflected by the filter portion corresponding to the WR pixel, the amount of G component reflected by the filter portion corresponding to the WG pixel, and the WB pixel. The amount of the B component reflected by the corresponding filter part is shown.
  • the image readout signal of the W pixel and the image readout signal of each of the WR pixel, the WG pixel, and the WB pixel contain the same amount of infrared component
  • infrared components are used. Is zero. Therefore, the R component signal value, the G component signal value, and the B component signal value obtained as the reflection amounts respectively indicate the light amounts of the R component, the G component, and the B component that do not include the infrared component. .
  • FIG. 5D is a diagram illustrating pixel values after white balance adjustment is performed on each pixel in FIG.
  • the white balance adjustment unit 114 performs white balance adjustment by applying a white balance adjustment gain to the R component signal value, the G component signal value, and the B component signal value.
  • the signal value adjusted by the white balance adjustment is input to the color difference component generation unit 115.
  • the color difference component generation unit 115 generates color difference signals U and V based on the R component signal value, the G component signal value, and the B component signal value after white balance adjustment. Specifically, the color difference component generation unit 115 generates the color difference signals U and V according to the following expressions (2) and (3).
  • U -0.169R- 0.331G + 0.500B
  • V 0.500R-0.419G-0.081B
  • the signal value of the R component, the signal value of the G component, and the signal value of the B component are converted into the WR pixel, the WG pixel, This is obtained by subtracting the image readout signal for each of the WB pixels.
  • the value indicated by the image readout signal for the W pixel corresponds to the actual incident light amount. It will be smaller than the value.
  • the R component signal value and the G component signal value obtained are obtained.
  • B component signal values may be smaller than the actual R, G, and B components in the incident light. For this reason, if the luminance is high enough to saturate the image readout signal of the W pixel, the R component signal value, the G component signal value, and the B component signal value may not be obtained correctly.
  • the fact that the image readout signal of the W pixel is saturated means that the luminance is saturated. In this case, it is not necessary to color the pixel, and the color difference of the pixel is It is desirable that it is zero. Therefore, the color difference component generation unit 115 substitutes the value of the image readout signal of the W pixel for the function f (x) having the characteristics shown in FIG. , V to obtain corrected color difference signals U ′, V ′, and output the corrected color difference signals U ′, V ′. That is, as shown in FIG.
  • the luminance signal Y generated by the luminance signal generation unit 112 is processed by the luminance signal processing unit 120, and the color difference signals U ′ and V ′ generated by the color difference component generation unit 115 are processed by the color difference signal processing unit 130. After being combined with the synchronization signal by the output unit 140, it is output to the outside as a video signal.
  • the imaging apparatus of the present embodiment since an infrared cut filter is unnecessary, there is no attenuation of light by the infrared cut filter even at low illuminance such as at night, and a high S / N ratio. Therefore, deterioration of image quality can be suppressed.
  • the above-described effects can be achieved with an inexpensive structure that does not require a filter switching mechanism. Further, light in the entire wavelength band of a certain range of wavelength bands is incident on the W pixel, and components other than the wavelength band of the corresponding color are incident on the WR pixel, WG pixel, and WB pixel. Since light is incident, the amount of light incident on each pixel of the image sensor is very high.
  • the imaging apparatus of the present embodiment can obtain a high incident light amount including infrared light in this way, and at the same time, can create a color difference signal that does not include an infrared component, and an S / N ratio. And an electronic camera with high color reproducibility.
  • the present invention improves sensitivity by eliminating the need for an infrared cut filter and can avoid deterioration in color reproducibility due to the absence of an infrared cut filter. It is useful as an imaging device for photographing

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

 赤外カットフィルタを不要とすることで撮像素子に入射する光量を大きくして感度を向上させるとともに、赤外カットフィルタを用いないことによる色再現性の劣化を回避できる撮像装置を提供する。撮像装置(100)は、全波長帯域用の画素Wと、R用のW-R画素と、G用のW-G画素と、B用のW-B画素とが繰り返し配置されてなり、画素ごとに、受光量に応じた値を有する画像読み出し信号を取得する撮像素子(103)と、撮像素子(103)の前面に設けられ、画素Wに対応する部分が一定範囲の波長帯域の中の全波長帯域を通過させ、W-R画素、W-G画素、W-B画素に対応する部分が、それぞれ対応する色の波長帯域を反射するよう構成されたフィルタ(102)と、画素Wの画像読み出し信号の値から、W-R画素、W-G画素、W-B画素のそれぞれの画像読み出し信号の値を減算することにより、R、G、Bの信号値を演算する反射量演算部(113)と、R、G、Bの信号値に基づいて色差信号を生成する色差成分生成部(115)と、W画素の画像読み出し信号を用いて輝度信号を生成する輝度信号生成部(112)とを備えている。

Description

撮像装置 関連する出願
 本出願では、2010年5月12日に日本国に出願された特許出願番号2010-109893の利益を主張し、当該出願の内容は引用することによりここに組み込まれているものとする。
 本発明は、撮像素子を用いた撮像装置に関し、特に、撮像素子を用いてカラー画像を撮影する撮像装置に関するものである。
 近年、デジタルカメラ用の撮像素子は、多画素化が進んでおり、これに伴って、撮像素子の画素も微細化している。撮像素子の画素が微小になると、各画素の飽和電荷量が少なくなり、その結果S/N比の低下が際立って、画質が劣化してしまう。
 S/N比の低下に対して、ノイズを信号処理により除去しようとする試みもされているが、このような信号処理では、ノイズと信号を完全に分離できず、それにより画質劣化を伴うことが多い。従って、画素が微細化されて飽和電荷量が少なくなっても画質を良好に保つためには、できるだけ多くの光を画素に入射させることが望ましい。このために、撮像素子の画素に入射される波長の帯域を広げる方法が検討されている。
 ところで、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子を用いたカラー撮像装置では、通常は、色再現性の改善のため、入射光中の赤外成分をカットする赤外カットフィルタを撮像素子の前面に配置している。
 しかしながら、赤外カットフィルタを用いると画素に入射する光量が減少してしまう。そのため、十分な光量を得ようとする場合には、赤外カットフィルタを用いずに赤外領域の光も取り込むことになるが、この場合には、入射光に赤外成分が入ることにより、著しく色再現性が劣化してしまう。
 図を参照して、入射光に赤外成分が入った場合の色再現性の劣化の原因を説明する。一般に、撮像素子には、1画素につき1枚のカラーフィルタが取り付けられている。図7は、一般的なフィルタ配列を示している。図7に示すように、撮像素子に取り付けられたフィルタは、赤(R)、緑(G)、青(B)の原色系3色を使ういわゆるベイヤー配列を有している。図8は、原色フィルタにおける分光特性を示している。図9は、赤外カットフィルタを用いた場合の原色フィルタにおける分光特性を示している。図8に示すような入射光に対して、図9に示すように、赤外カット周波数より周波数が長い部分はカットされる。
 一般的なカメラ用画像信号処理では、白を写したときにR、G、Bの値が同じ大きさになるようにホワイトバランス調整が行われる。ホワイトバランス調整前のRGB値をRorg、Gorg、Borg、ホワイトバランス調整ゲインをRgain、Ggain、Bgain、ホワイトバランス調整後のRGB値をRwh、Gwh、Bwh、とすると、以下の式が成り立つ。
 Rwh=Rorg×Rgain
 Gwh=Gorg×Ggain
 Bwh=Borg×Bgain
 白を写したときにRwh=Gwh=Bwhとなるのが、理想的なホワイトバランス調整ゲインである。図10(a)及び(b)は、理想的なホワイトバランスとなるときのRGBの信号量の変化を示している。
 赤外カットフィルタがない場合、光源や被写体によっては、白色のものであっても図11(a)に示すように赤外光分の信号を蓄積してしまう。赤外成分の信号は、正しいRGBのバランスを持っていないため、ホワイトバランス調整ゲインをかけることで、図11(b)のように、Rwh=Gwh=Bwhとならず、着色を起こしてしまう。白以外の有彩色の被写体についても、同様に、赤外成分とホワイトバランス調整の影響によりR、G、Bのバランスが崩れてしまう。これら理由により、赤外成分が入った場合は、カメラの色再現性が劣化してしまう。
 上記の問題を克服する方法として、いくつかの方法が提案されている。特許文献1に記載の撮像装置は、図12に示す構成を有している。この撮像装置では、照度が十分にある昼間は、赤外カットフィルタをONとし、照度が不足する夜間は、赤外カットフィルタを撮像素子の前面から抜き取って、同時に撮像素子から得られる映像信号の信号処理結果に基づき、白黒信号を選択して出力させることで、明るい被写体に対する色再現性向上と暗い被写体に対する感度向上とを実現している。
 また、特許文献2に記載の撮像装置は、図13に示すように、RGBそれぞれの画素と、可視光及び赤外光が入射されるIR画素を有し、高照度時にはRGB画素を用いて画像を生成し、低照度時はIR画素を用いて画像を生成することで、明るい被写体に対する色再現性向上と暗い被写体に対する感度向上とを実現している。
特開2004-229034号公報 特開2005-6066号公報
 特許文献1に記載の方法では、近赤画像出力時には、画像が常に白黒画像となってしまうという課題があった。特に、一部のエリアに色の付いた明るい被写体がある場合でも、画像全部としては白黒の画像しか得られない。また、フィルタ切り替えを行う機構が必要であることから、撮像装置の小型化が困難であり、コストアップにつながるという課題もあった。
 特許文献2に記載の撮像装置は、図13に示すフィルタ構成を有するが、昼間は、画素数全体の1/4を占める赤外光用のIR画素を使用しないので、解像度及び受光量もその分少なくなってしまう。夜間に関しても、赤外成分を受光する画素は全体の画素数の1/4しかなく、全体の3/4の画素は使用しないので、解像度及び受光量もその分少なくなってしまう。
 通常のRGBのフィルタは、赤外成分を透過してしまうので、これを除外するためにフィルタの前面に赤外成分を除去するための赤外カットフィルタを設けるのが一般的であるが、特許文献2に記載の撮像装置では、赤外成分を検出するためのIR画素に赤外光を入射させる必要があるので、前面に赤外カットフィルタを設けることができない。このため、特許文献2の撮像装置において高い色再現性を確保するためには、RGBのフィルタがそれぞれ赤外成分を除去する性質を持つ必要があり、実用上の課題が多く、実現できた場合でもコストが大きく上がってしまうという課題もあった。
 本発明は、上記課題を解決するためになされたものであり、赤外カットフィルタを不要とすることで撮像素子に入射する光量を大きくして感度を向上させるとともに、赤外カットフィルタを用いないことによる色再現性の劣化を回避できる撮像装置を提供することを目的とする。
 前記従来の課題を解決するために、撮像装置は、全波長帯域用画素と3種類の特定色にそれぞれ対応した3種類の特定色用画素とが繰り返し配置されてなり、画素ごとに、受光量に応じた値を有する画像読み出し信号を取得する撮像素子と、撮像素子の前面に設けられ、全波長帯域用画素に対応する部分が一定範囲の波長帯域の中の全波長帯域を通過させ、3種類の特定色用画素に対応する部分が、それぞれ対応する特定色の波長帯域を反射するよう構成されたフィルタと、全波長帯域用画素の画像読み出し信号の値から、特定色用画素の画像読み出し信号の値を減算することにより、特定の色の信号値を演算する反射量演算部と、特定色の信号値に基づいて色差信号を生成する色差成分生成部と、全波長帯域用画素の画像読み出し信号を用いて輝度信号を生成する輝度信号生成部とを備えた構成を有する。
 上記の撮像装置において、3種類の特定色用画素は、W-R画素、W-G画素、及びW-B画素であり、フィルタは、W-R画素に対応する部分が、赤色の波長帯域を反射し、W-G画素に対応する部分が、緑色の波長帯域を反射し、W-B画素に対応する部分が、青色の波長帯域を反射するよう構成され、反射量演算部は、全波長帯域用画素の画像読み出し信号の値から、W-R画素、W-G画素、及びW-B画素の画像読み出し信号の値をそれぞれ減算することにより、赤色成分の信号値、緑色成分の信号値、及び青色成分の信号値を演算する。
 上記の撮像装置において、一定範囲の波長帯域は、赤外領域を含み、フィルタは、特定色用画素及び全波長帯域用画素に赤外光が入射し得るよう構成されている。
 上記の撮像装置において、色差成分生成部は、輝度信号生成部にて生成された輝度信号の値が最大値である場合に、反射量演算部にて求められた赤色成分の信号値、緑色成分の信号値、及び青色成分の信号値にかかわらず、色差をゼロとする。
 本発明は、赤外カットフィルタを不要とすることで感度を向上するとともに、赤外カットフィルタを用いないことによる色再現性の劣化を回避できる。
 以下に説明するように、本発明には他の態様が存在する。したがって、この発明の開示は、本発明の一部の提供を意図しており、ここで記述され請求される発明の範囲を制限することは意図していない。
図1は、本発明の実施の形態における撮像装置の構成図 図2は、本発明の実施の形態におけるフィルタの構成図 図3は、本発明の実施の形態におけるフィルタの分光特性図 図4(a)は、本発明の実施の形態におけるフィルタの分光特性図(W画素対応部分) 図4(b)は、本発明の実施の形態におけるフィルタの分光特性図(W-R画素対応部分) 図4(c)は、本発明の実施の形態におけるフィルタの分光特性図(W-G画素対応部分) 図4(d)は、本発明の実施の形態におけるフィルタの分光特性図(W-B画素対応部分) 図5(a)は、本発明の実施の形態における撮像素子で得られる画像読み取り信号を示す図 図5(b)は、本発明の実施の形態における撮像素子で得られる輝度信号を示す図 図5(c)は、本発明の実施の形態における撮像素子の各画素(RGB)の反射量を示す図 図5(d)は、本発明の実施の形態における撮像素子の各画素(RGB)に対してホワイトバランス調整をした後の反射量を示す図 図6は、本発明の実施の形態における高輝度付近の色再現性改善用関数を説明するための図 図7は、従来の原色フィルタの配置を示す図 図8は、従来の原色フィルタにおける分光特性図 図9(a)は、従来の原色フィルタにおける分光特性図(W-B画素対応部分) 図9(b)は、従来の原色フィルタにおける分光特性図(W-G画素対応部分) 図9(c)は、従来の原色フィルタにおける分光特性図(W-R画素対応部分) 図10(a)は、従来の撮像素子の各画素(RGB)の画素値を示す図(赤外成分がカットされている場合) 図10(b)は、従来の撮像素子の各画素(RGB)に対してホワイトバランス調整をした後の画素値を示す図(赤外成分がカットされている場合) 図11(a)は、従来の撮像素子の各画素(RGB)の画素値を示す図(赤外成分がカットされていない場合) 図11(b)は、従来の撮像素子の各画素(RGB)に対してホワイトバランス調整をした後の画素値を示す図(赤外成分がカットされていない場合) 図12は、従来の撮像装置の構成図 図13は、従来の撮像素子の構成図
 以下に、本発明の詳細な説明を述べる。以下に説明する実施の形態は本発明の単なる例であり、本発明は様々な態様に変形することができる。従って、以下に開示する特定の構成および機能は、特許請求の範囲を限定するものではない。
 本発明の実施の形態の撮像装置は、全波長帯域用画素と3種類の特定色にそれぞれ対応した3種類の特定色用画素とが繰り返し配置されてなり、画素ごとに、受光量に応じた値を有する画像読み出し信号を取得する撮像素子と、撮像素子の前面に設けられ、全波長帯域用画素に対応する部分が一定範囲の波長帯域の中の全波長帯域を通過させ、3種類の特定色用画素に対応する部分が、それぞれ対応する特定色の波長帯域を反射するよう構成されたフィルタと、全波長帯域用画素の画像読み出し信号の値から、特定色用画素の画像読み出し信号の値を減算することにより、特定の色の信号値を演算する反射量演算部と、特定色の信号値に基づいて色差信号を生成する色差成分生成部と、全波長帯域用画素の画像読み出し信号を用いて輝度信号を生成する輝度信号生成部とを備えた構成を有する。
 この構成により、赤外カットフィルタを用いる必要がなく、従って、被写体の光量が赤外カットフィルタによって減少しない高感度の撮像装置を実現できる。全波長帯域用画素には、一定範囲の波長帯域の中の全波長帯域が入射するので、輝度信号生成部はこの全波長帯域用画素の画像読み出し信号を用いて輝度信号を生成することで、高感度の輝度信号を得ることができる。全波長帯域用画素の画像読み出し信号及び特定色用画素の画像読み出し信号には赤外成分が含まれ得るが、全波長帯域用画素の画像読み出し信号及び特定色用画素の画像読み出し信号に含まれる赤外成分は同じ量であるので、全波長帯域用画素の画像読み出し信号の値から特定色用画素の画像読み出し信号の値を減算すると、その差分には赤外成分は含まれず、反射量演算部では赤外成分を含まない特定色の信号値が得られる。そして、色差成分生成部はそのように赤外成分を含まない特定色の信号値に基づいて色差信号を生成するので、赤外カットフィルタを設けないことで色差信号の色再現性が劣化することはない。すなわち、上記の撮像装置の構成によれば、高感度の撮像装置を実現しつつ、色再現性の劣化を回避できる。
 上記の撮像装置において、3種類の特定色用画素は、W-R画素、W-G画素、及びW-B画素であり、フィルタは、W-R画素に対応する部分が、赤色の波長帯域を反射し、W-G画素に対応する部分が、緑色の波長帯域を反射し、W-B画素に対応する部分が、青色の波長帯域を反射するよう構成され、反射量演算部は、全波長帯域用画素の画像読み出し信号の値から、W-R画素、W-G画素、及びW-B画素の画像読み出し信号の値をそれぞれ減算することにより、赤色成分の信号値、緑色成分の信号値、及び青色成分の信号値を演算する。
 この構成により、赤色成分の信号値、緑色成分の信号値、及び青色成分の信号値が得られるので、フルカラーの画像を得ることができる。また、赤色成分の信号値、緑色成分の信号値、及び青色成分の信号値には赤外成分が含まれないので、ホワイトバランス調整において着色が生じることを防止できる。
 上記の撮像装置において、一定範囲の波長帯域は赤外領域を含み、フィルタは、特定色用画素及び全波長帯域用画素に赤外光が入射し得るよう構成されている。
 この構成により、各画素では赤外光も含めた十分な光量の光を入射することで、高いS/N比を有する輝度信号を生成できるとともに、上記のように全波長帯域の入射光量に応じた画像読み出し信号の値から、特定色の波長帯域を除く入射光量に応じた画像読み出し信号の値を減算することで当該特定色の成分を求めるという方法を採用することで、画素値から赤外成分を除去でき、高い色再現性を実現できる。
 上記の撮像装置は、色差成分生成部は、輝度信号生成部にて生成された輝度信号の値が最大値である場合に、反射量演算部にて求められた赤色成分の信号値、緑色成分の信号値、及び青色成分の信号値にかかわらず、色差をゼロとする。
 上記のように全波長帯域の入射光量に応じた画像読み出し信号の値から、特定色の波長帯域を除く入射光量に応じた画像読み出し信号の値を減算することで当該特定色の画素値を求めるという方法を採用する場合において、全波長帯域の入射光量が飽和しているときには、色差をゼロとすることで、輝度が飽和している場合に色味が付くことを防止できる。
 以下、本発明を実施するための形態について、図面を参照しながら説明する。図1は、本発明の実施の形態における撮像装置の構成図である。図1において、撮像装置100は、レンズ101、フィルタ102、撮像素子103、及び信号処理部104を備えている。撮像装置100は、電子カメラを構成する。フィルタ102は、撮像素子103の前面、即ちレンズ101側に取り付けられている。レンズ101を通った光学像は、フィルタ102を介して、撮像素子103に照射される。撮像素子103は、1つのW-R画素、1つのW-G画素、1つのW-B画素、及び1つのW画素が1組となって、この組合せが二次元状に繰り返し配列されて構成されている。W-R画素、W-G画素、W-B画素は、本発明の特定色用画素に該当し、W画素は、本発明の全波長帯域用画素に該当する。
 図2は、フィルタ102の構成図である。フィルタ102は、図2に示すように、W-R画素対応部分と、W-G画素対応部分と、W-B画素対応部分と、W画素対応部分が、それぞれ、W-R画素の前面、W-G画素の前面、W-B画素の前面、W画素の前面に位置するよう構成されている。
 図3は、フィルタ102の分光特性を示す図である。図4(a)~(d)は、それぞれ、フィルタ102のW画素対応部分、W-R画素対応部分、W-G画素対応部分、W-B画素対応部分の分光特性を示す図である。図4に示すように、W画素対応部分は、一定範囲の波長帯域の中の全波長帯域を通過させる。W-R画素対応部分は、W画素対応部分と同じ範囲の波長帯域の光と通過させるが、その一定範囲の波長帯域のうちのR(赤色)成分に該当する波長帯域の光を反射する。W-G画素対応部分は、W画素対応部分と同じ範囲の波長帯域の光と通過させるが、その一定範囲の波長帯域のうちのG(緑色)成分に該当する波長帯域の光を反射する。W-B画素対応部分は、W画素対応部分と同じ範囲の波長帯域の光と通過させるが、その一定範囲の波長帯域のうちのB(青色)成分に該当する波長帯域の光を反射する。
 W画素対応部分は、一定範囲の波長帯域の中の全波長帯域を通過させるので、W画素には、一定範囲の波長帯域の中の全波長帯域の光が入射する。また、W-R画素対応部分は、それぞれ上記の一定範囲の波長帯域のうち、反射したR成分以外の光を通過させるので、W-R画素には、上記の一定範囲の波長帯域のうち、R成分以外の光が入射する。W-G画素対応部分及びW-B画像対応部分も同様に、それぞれ上記の一定範囲の波長帯域のうち、G成分及びB成分以外の光を通過させるので、W-G画素及びW-B画素には、それぞれ上記の一定範囲の波長帯域のうち、G成分及びB成分以外の光が入射する。
 上記のように、本実施の形態の撮像装置100では、W画素には、一定範囲の波長帯域の中の全波長帯域の光がそのまま入射されるので、被写体からの光量に対して、W画素に入射する光量を大きくできる。また、W-R画素、W-G画素、W-B画素についても、それぞれ一定範囲の波長帯域の中のR、G、Bの成分のみを差し引いた光量が入射されるので、被写体からの光量に対して、入射光量を大きくできる。さらに、本実施の形態の撮像装置100では、赤外カットフィルタを用いないので、フィルタ102のW画素対応部分、W-R画素対応部分、W-G画素対応部分、及びW-B画素対応部分を通過する一定範囲の波長帯域に赤外光が含まれる場合には、入射光量はさらに大きくなる。即ち、本実施の形態の撮像装置100では、被写体から撮像装置100に届く光の量に対して、撮像素子103に入射する光の量の割合が高く、高感度の撮像装置を実現している。図7を用いて説明した従来の通常のR、G、Bベイヤー配列の場合は、被写体から撮像装置に届く光のうちのそれぞれR、G、B成分の光のみを通過させるので、この場合と比べても、本実施の形態の撮像装置100の感度は大きく増加している。
 撮像素子103は、画素ごとに、受光した光を光電変換することで、受光した光の量に応じた値を有する画像読み出し信号を生成して、これを信号処理部104に入力する。信号処理部104は、前処理部110、輝度信号処理部120、色差信号処理部130、及び出力部140を有している。撮像素子103で得られた画像読み出し信号は、信号処理部104の前処理部110に入力される。
 前処理部110は、OB減算処理部111、輝度信号生成部112、反射量演算部113、ホワイトバランス調整部114、及び色差成分生成部115を有している。OB減算処理部111は、入力された画像読み出し信号に対して、OB(Optical Black)領域で検出される出力成分(暗電流)を差し引くOB減算処理(暗電流補正ともいう)を行う。OB減算処理部111で補正された画像読み出し信号は、輝度信号生成部112及び反射量演算部113に入力される。
 図5は、画像読み出し信号から、輝度信号及び色差信号を生成する流れを示す図である。以下、図5を参照しながら、図1の前処理部110のOB減算部111以降の構成を説明する。図5(a)は、ある1組のW-R画素、W-G画素、W-B画素、及びW画素で得られる画像読み出し信号(OB減算済み、以下同じ)を示す図である。図5(a)に示すように、W画素では、一定範囲の波長帯域の中の全波長帯域の光の光量に応じた画像読み出し信号が得られている。W-B画素では、W画素の画像読み出し信号の値から、反射されたB成分の光量に応じた値を差し引いた画像読み出し信号が得られている。同様に、W-G画素及びW-R画素では、それぞれW画素の画像読み出し信号の値から、反射されたG成分及びR成分の光量に応じた値を差し引いた画像読み出し信号が得られている。
 図5(b)は、図5(a)の画素について輝度信号生成部112に入力される画像読み出し信号を示す図である。輝度信号生成部112は、画像読み出し信号に応じて輝度信号を生成する。W画素には、上で説明したとおり、被写体からの光のうち、一定範囲の波長帯域の中の全波長帯域の光が入射し、フィルタによる光の減衰がないため、輝度信号生成部112ではS/N比が十分に高い輝度信号が生成される。
 輝度信号生成部112は、W画素、W-B画素、W-G画素、及びW-R画素の画像読み出し信号を用いて輝度信号Yを生成する。具体的には、輝度信号生成部112は、各画素について、不足している色成分を周囲の画素から補間して生成することにより、当該画素に重心のある全波長成分の信号値W、全波長成分から赤色成分を差し引いた信号値W-R、全波長成分から緑色成分を差し引いた信号値W-G、及び全波長成分から青色成分を差し引いた信号値W-Bを求めた後に、下式(1)に従って輝度信号Yを求める。
 Y=(A*W+B(W-R)+C(W-G)+D(W-B))/(A+B+C+D) 
 ……(1)
 ここで、A、B、C、Dは輝度生成に用いる重み付け係数である。なお、輝度信号生成部112は、W画素の画像読み取り信号をそのまま輝度信号としてもよい。
 図5(c)は、図5(a)の画素で得られる反射量を示す図である。反射量演算部113は、各画素について、フィルタ102のW-R画素対応部分におけるR成分の反射量、W-G画素対応部分におけるG成分の反射量、及びW-B画素対応部分におけるB成分の反射量をそれぞれ算出する。
 具体的には、反射量演算部113は、W画素の画像読み出し信号の値から、W-R画素の画像読み出し信号の値を減算することにより、R成分の信号値を求める。同様に、反射量演算部113は、W画素の画像読み出し信号の値から、W-G画素の画像読み出し信号の値を減算することにより、G成分の信号値を求め、W画素の画像読み出し信号の値から、W-B画素の画像読み出し信号の値を減算することにより、B成分の信号値を求める。これらの信号値は、それぞれ、W-R画素に対応するフィルタ部分で反射されたR成分の量、W-G画素に対応するフィルタ部分で反射されたG成分の量、及びW-B画素に対応するフィルタ部分で反射されたB成分の量を示している。
 W画素の画像読み出し信号と、W-R画素、W-G画素、及びW-B画素のぞれぞれの画像読み出し信号には、同一の量の赤外成分が含まれていることから、W画素の画像読み出し信号と、W-R画素、W-G画素、及びW-B画素のそれぞれの画像読み出し信号との差分として求められたR、G、Bそれぞれの反射量では、赤外成分がゼロになっている。よって、反射量として求められたR成分の信号値、G成分の信号値、及びB成分の信号値は、それぞれ赤外成分を含まないR成分、G成分、及びB成分の光量を示している。
 R成分の信号値、G成分の信号値、及びB成分の信号値は、ホワイトバランス調整部114に入力される。図5(d)は、図5(c)の各画素に対してホワイトバランス調整をした後の画素値を示す図である。ホワイトバランス調整部114は、R成分の信号値、G成分の信号値、及びB成分の信号値にホワイトバランス調整ゲインをかけることによりホワイトバランス調整を行う。ホワイトバランス調整にて調整された信号値は、色差成分生成部115に入力される。
 色差成分生成部115は、ホワイトバランス調整後のR成分の信号値、G成分の信号値、及びB成分の信号値に基づいて、色差信号U、Vを生成する。具体的には、色差成分生成部115は、下式(2)、(3)に従って、色差信号U、Vを生成する。
 U=-0.169R- 0.331G+0.500B  ……(2)
 V=0.500R-0.419G-0.081B  ……(3)
 ここで、R成分の信号値、G成分の信号値、及びB成分の信号値は、上記の反射量算出部113において、W画素の画像読み出し信号からW-R画素、W-G画素、及びW-B画素のそれぞれ画像読み出し信号を減算して求めたものであるが、Wの信号が飽和している場合にはW用画素の画像読み出し信号が示す値は、実際の入射光量に対応する値よりも小さくなってしまう。この結果、そのようなW画素の画像読み出し信号からW-R画素、W-G画素、及びW-B画素の画像読み出し信号を減算すると、得られたR成分の信号値、G成分の信号値、及びB成分の信号値は、入射光中の実際のR成分、G成分、B成分よりも小さくなってしまう可能性がある。このためW画素の画像読み出し信号が飽和する程度に高輝度である場合は、R成分の信号値、G成分の信号値、及びB成分の信号値が正しく求まらない場合がある。
 一方、W画素の画像読み出し信号が飽和しているということは、輝度が飽和しているということであり、この場合には、その画素には特に色をつける必要がなく、その画素の色差は0になっているのが望ましい。そこで、色差成分生成部115は、図6に示す特性を有する関数f(x)に、W画素の画像読み出し信号の値を代入して得た値を、上記のようにして求めた色差信号U、Vにかけることで、修正後の色差信号U’、V’を得て、この修正後の色差信号U’、V’を出力する。即ち、図6に示すように、W画素の画像読み出し信号の値が小さいときは、U、Vの値がそのままU’、V’として出力され、W画素の画像読み出し信号の値が所定の閾値を超えると、W画素の画像読み出し信号の値が増加するに従ってU、Vの値に対してU’、V’の値を小さくしていき、W画素の画像読み出し信号の値の最大値では、U’、V’をゼロにする。これにより、高輝度付近でも色再現の劣化をなくすことが可能であり、高輝度付近でより色再現性を高めることが可能となる。
 なお、関数f(x)は、図6に示すように高輝度部分で輝度に応じて徐々に減少するのではなく、最大値まではf(x)=1とし、最大値でf(x)=0となる関数であってもよい。
 輝度信号生成部112で生成された輝度信号Yは、輝度信号処理部120で処理され、色差成分生成部115で生成された色差信号U’、V’は、色差信号処理部130で処理され、出力部140にて同期信号とともに合成された後、映像信号として外部へ出力される。
 以上のように、本実施の形態の撮像装置によれば、赤外カットフィルタが不要であるので、夜間などの低照度時においても赤外カットフィルタによる光の減衰がなく、高いS/N比を確保できるので、画質の劣化を抑えることができる。また、フィルタ切り替えを行う機構を必要としない安価な構造で、上記の効果を達成できる。さらに、W画素には、一定範囲の波長帯域の全波長帯域の光が入射し、W-R画素、W-G画素、及びW-B画素には、対応する色の波長帯域以外の成分の光が入射するので、撮像素子の各画素に入射する光量は非常に高くなる。特に、一定範囲の波長帯域の中に赤外の帯域が含まれる場合には、この赤外光も入射するので、入射光量はさらに高くなる。さらに、本実施の形態の撮像装置は、このように赤外光も含めて高い入射光量を得るのと同時に、赤外成分を含まない色差信号を作成することが可能であり、S/N比が高く、かつ色再現性の高い電子カメラを実現できる。
 以上に現時点で考えられる本発明の好適な実施の形態を説明したが、本実施の形態に対して多様な変形が可能であり、そして、本発明の真実の精神と範囲内にあるそのようなすべての変形を添付の請求の範囲が含むことが意図されている。
 以上のように、本発明は、赤外カットフィルタを不要とすることで感度を向上するとともに、赤外カットフィルタを用いないことによる色再現性の劣化を回避でき、撮像素子を用いてカラー画像を撮影する撮像装置等として有用である。
 100 撮像装置
 101 レンズ
 102 フィルタ
 103 撮像素子
 104 信号処理部
 110 前処理部
 111 OB減算部
 112 輝度信号生成部
 113 反射量演算部
 114 ホワイトバランス調整部
 115 色差成分生成部
 120 輝度信号処理部
 130 色差信号処理部
 140 出力部

Claims (4)

  1.  全波長帯域用画素と3種類以上の特定色にそれぞれ対応した3種類以上の特定色用画素とが繰り返し配置されてなり、画素ごとに、受光量に応じた値を有する画像読み出し信号を取得する撮像素子と、
     前記撮像素子の前面に設けられ、前記全波長帯域用画素に対応する部分が一定範囲の波長帯域の中の全波長帯域を通過させ、前記3種類以上の特定色用画素に対応する部分が、それぞれ対応する特定色の波長帯域を反射するよう構成されたフィルタと、
     前記全波長帯域用画素の画像読み出し信号の値から、前記特定色用画素の画像読み出し信号の値を減算することにより、前記特定の色の信号値を演算する反射量演算部と、
     前記特定色の信号値に基づいて色差信号を生成する色差成分生成部と、
     前記全波長帯域用画素の画像読み出し信号を用いて輝度信号を生成する輝度信号生成部と、
     を備えたことを特徴とする撮像装置。
  2.  前記3種類以上の特定色用画素は、W-R画素、W-G画素、及びW-B画素であり、
     前記フィルタは、前記W-R画素に対応する部分が、赤色の波長帯域を反射し、前記W-G画素に対応する部分が、緑色の波長帯域を反射し、前記W-B画素に対応する部分が、青色の波長帯域を反射するよう構成され、
     前記反射量演算部は、前記全波長帯域用画素の画像読み出し信号の値から、W-R画素、W-G画素、及びW-B画素の画像読み出し信号の値をそれぞれ減算することにより、赤色成分の信号値、緑色成分の信号値、及び青色成分の信号値を演算する請求項1に記載の撮像装置。
  3.  前記一定範囲の波長帯域は、赤外領域を含み、
     前記フィルタは、前記特定色用画素及び前記全波長帯域用画素に赤外光が入射し得るよう構成されている請求項1又は2に記載の撮像装置。
  4.  前記色差成分生成部は、前記輝度信号生成部にて生成された輝度信号の値が最大値である場合に、前記反射量演算部にて求められた赤色成分の信号値、緑色成分の信号値、及び青色成分の信号値にかかわらず、色差をゼロとする請求項2に記載の撮像装置。
PCT/JP2010/006386 2010-05-12 2010-10-29 撮像装置 WO2011141975A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10851360.7A EP2434761A4 (en) 2010-05-12 2010-10-29 IMAGE CAPTURE DEVICE
CN201080037238.1A CN102484722B (zh) 2010-05-12 2010-10-29 图像捕获装置
US13/355,902 US8508633B2 (en) 2010-05-12 2012-01-23 Image device with color and brightness signal processing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010109893A JP2011239252A (ja) 2010-05-12 2010-05-12 撮像装置
JP2010-109893 2010-05-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/355,902 Continuation US8508633B2 (en) 2010-05-12 2012-01-23 Image device with color and brightness signal processing

Publications (1)

Publication Number Publication Date
WO2011141975A1 true WO2011141975A1 (ja) 2011-11-17

Family

ID=44914044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006386 WO2011141975A1 (ja) 2010-05-12 2010-10-29 撮像装置

Country Status (5)

Country Link
US (1) US8508633B2 (ja)
EP (1) EP2434761A4 (ja)
JP (1) JP2011239252A (ja)
CN (1) CN102484722B (ja)
WO (1) WO2011141975A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5411390B2 (ja) * 2011-02-21 2014-02-12 富士フイルム株式会社 カラー撮像素子
JP5697646B2 (ja) * 2012-11-05 2015-04-08 本田技研工業株式会社 車両周辺監視装置
CN104113744B (zh) * 2013-04-18 2018-01-19 深圳中兴力维技术有限公司 全天候彩色摄像机白平衡处理方法及装置
US9692992B2 (en) 2013-07-01 2017-06-27 Omnivision Technologies, Inc. Color and infrared filter array patterns to reduce color aliasing
US9667933B2 (en) * 2013-07-01 2017-05-30 Omnivision Technologies, Inc. Color and infrared filter array patterns to reduce color aliasing
US9219896B1 (en) * 2014-06-12 2015-12-22 Himax Imaging Limited Method of color processing using a color and white filter array
WO2015198127A1 (ja) * 2014-06-24 2015-12-30 日立マクセル株式会社 撮像処理装置および撮像処理方法
US9185377B1 (en) * 2014-06-26 2015-11-10 Himax Imaging Limited Color processing system and apparatus
US10151862B2 (en) * 2016-04-27 2018-12-11 Visera Technologies Company Limited Color filter array having low density of blue color
KR101848284B1 (ko) 2016-08-29 2018-04-12 (주) 지안 가시광선 칼라 및 근적외선 영상 촬영용 영상 센서
EP3301911A1 (en) * 2016-09-29 2018-04-04 Conti Temic microelectronic GmbH Device for white balance correction
CN106911919A (zh) * 2017-03-24 2017-06-30 陈兵 彩色图像传感器及彩色图像成像方法
CN106713878A (zh) * 2017-03-24 2017-05-24 陈兵 一种新型图像传感器
GB201908517D0 (en) * 2019-06-13 2019-07-31 Spectral Edge Ltd 3D digital imagenoise reduction system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001069519A (ja) * 1999-08-30 2001-03-16 Sony Corp 固体撮像装置
JP2002142228A (ja) * 2000-10-31 2002-05-17 Toyota Central Res & Dev Lab Inc 撮像装置
JP2004229034A (ja) 2003-01-24 2004-08-12 Takenaka Engineering Co Ltd 赤外線照明内蔵型デイナイトカメラ
JP2005006066A (ja) 2003-06-12 2005-01-06 Acutelogic Corp 固体撮像素子用カラーフィルタおよびこれを用いたカラー撮像装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004304706A (ja) * 2003-04-01 2004-10-28 Fuji Photo Film Co Ltd 固体撮像装置およびその補間処理方法
JP2006217441A (ja) * 2005-02-07 2006-08-17 Sanyo Electric Co Ltd 色信号処理方法
JP2006237737A (ja) * 2005-02-22 2006-09-07 Sanyo Electric Co Ltd カラーフィルタアレイ及び固体撮像素子
JP5106870B2 (ja) * 2006-06-14 2012-12-26 株式会社東芝 固体撮像素子
US8111286B2 (en) * 2006-09-28 2012-02-07 Fujifilm Corporation Image processing apparatus, endoscope, and computer readable medium
JP5085140B2 (ja) * 2007-01-05 2012-11-28 株式会社東芝 固体撮像装置
WO2009017184A1 (ja) * 2007-08-01 2009-02-05 Sharp Kabushiki Kaisha カラー撮像素子及びこれを用いた撮像装置及びフィルタ
JP5075795B2 (ja) * 2008-11-14 2012-11-21 株式会社東芝 固体撮像装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001069519A (ja) * 1999-08-30 2001-03-16 Sony Corp 固体撮像装置
JP2002142228A (ja) * 2000-10-31 2002-05-17 Toyota Central Res & Dev Lab Inc 撮像装置
JP2004229034A (ja) 2003-01-24 2004-08-12 Takenaka Engineering Co Ltd 赤外線照明内蔵型デイナイトカメラ
JP2005006066A (ja) 2003-06-12 2005-01-06 Acutelogic Corp 固体撮像素子用カラーフィルタおよびこれを用いたカラー撮像装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2434761A4

Also Published As

Publication number Publication date
US8508633B2 (en) 2013-08-13
EP2434761A4 (en) 2013-10-23
US20120176513A1 (en) 2012-07-12
CN102484722B (zh) 2015-02-04
EP2434761A1 (en) 2012-03-28
CN102484722A (zh) 2012-05-30
JP2011239252A (ja) 2011-11-24

Similar Documents

Publication Publication Date Title
WO2011141975A1 (ja) 撮像装置
JP6725613B2 (ja) 撮像装置および撮像処理方法
JP5206796B2 (ja) 画像入力装置
EP2471258B1 (en) Reducing noise in a color image
JP5168353B2 (ja) 撮像装置及び撮像素子
JP5397788B2 (ja) 画像入力装置
JP4407448B2 (ja) 撮像装置
JP6538819B2 (ja) 画像処理装置、画像処理方法およびプログラム
US20080203305A1 (en) Image pickup apparatus including image pickup devices having sensitivity in infrared region
JP6538818B2 (ja) 画像処理装置、画像処理方法およびプログラム
JP2007043312A (ja) 撮影装置
US10623674B2 (en) Image processing device, image processing method and computer readable recording medium
JP2010068020A (ja) 画像入力装置
WO2015008383A1 (ja) 撮像装置
JP5464008B2 (ja) 画像入力装置
JP2010252077A (ja) 撮像装置
JP2013219452A (ja) 色信号処理回路、色信号処理方法、色再現評価方法、撮像装置、電子機器、及び、試験装置
JP2010171950A (ja) 撮像装置および撮像装置の色補正方法
JP4993275B2 (ja) 画像処理装置
JP4397724B2 (ja) 撮像装置、カメラ、及び信号処理方法
JP5920144B2 (ja) 撮像装置および撮像方法
JP2005354457A (ja) 撮像装置
JP2011176617A (ja) 撮像装置およびその方法
JP2005303702A (ja) 撮像装置、カメラ、及び信号処理方法
JP2012010161A (ja) 撮像装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080037238.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010851360

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE