WO2011140686A1 - 一种应急电子镇流器 - Google Patents

一种应急电子镇流器 Download PDF

Info

Publication number
WO2011140686A1
WO2011140686A1 PCT/CN2010/000964 CN2010000964W WO2011140686A1 WO 2011140686 A1 WO2011140686 A1 WO 2011140686A1 CN 2010000964 W CN2010000964 W CN 2010000964W WO 2011140686 A1 WO2011140686 A1 WO 2011140686A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
ballast
emergency
electronic ballast
inverter
Prior art date
Application number
PCT/CN2010/000964
Other languages
English (en)
French (fr)
Inventor
林元
Original Assignee
苏州市昆士莱照明科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州市昆士莱照明科技有限公司 filed Critical 苏州市昆士莱照明科技有限公司
Publication of WO2011140686A1 publication Critical patent/WO2011140686A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/02Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which an auxiliary distribution system and its associated lamps are brought into service

Definitions

  • the invention relates to the field of fluorescent lamp driving, in particular to an emergency electronic ballast integrating an emergency device and an electronic ballast.
  • the emergency device may interfere with the operation of the electronic ballast, the lamp becomes dark, the filament is black, and the light decay increases, causing the lamp to fail prematurely. If the emergency device malfunctions, it is also possible that the ballast and the emergency device work at the same time, and the electronic ballast protects and even damages the electronic ballast.
  • the high frequency and high voltage of the emergency device illuminating the lamp affects the electronic ballast, and the induced charge is accumulated on the electrolytic capacitor of the electronic ballast.
  • the electronic ballast works, although it cannot be Light tube, but current flows through the filament, which is easy to damage the lamp tube; electronic ballast works abnormally under low voltage for a long time, it is easy to damage; the high voltage generated by the inverter of the emergency unit not only lights the lamp, but also supplies the electronic town.
  • the flow device increases the burden on the emergency device, which not only shortens the emergency time, but also damages the emergency device.
  • the object of the present invention is to provide an emergency electronic ballast, which integrates an emergency device and an electronic ballast, and ensures that the emergency circuit is activated only in an emergency situation, thereby avoiding interference between the ballast circuit and the emergency circuit. .
  • an emergency electronic ballast including a ballast circuit and an emergency circuit, the ballast circuit including a rectifier bridge circuit, a PFC power factor correction circuit, and a filter capacitor Drive circuit, first inverter circuit,
  • the ballast circuit is powered by the switch to the mains supply.
  • the PFC power factor correction circuit and the filter capacitor are connected in series and then connected to the DC of the rectifier bridge circuit. Between the outputs,
  • a driving circuit is connected in parallel with the PFC power factor correction circuit and the filter capacitor connected in series and through a first inverter circuit connecting the emergency circuit;
  • the emergency device circuit includes a control circuit, a charging circuit, a second inverter circuit and a switching circuit.
  • the utility power charges the secondary battery through the charging circuit, and the second inverter circuit boosts the voltage from the secondary battery, and then switches the power supply. Circuit strobing one of the ballast circuit and the second inverter circuit to illuminate the lamp;
  • a sampling circuit is arranged between the ballast circuit and the emergency device circuit, the sampling circuit samples the output information of the ballast circuit, and transmits the collected output information to the control circuit of the emergency device circuit, and the control circuit receives the The sampling signal and the mains supply control circuit switch one of the gate ballast circuit and the second inverter circuit.
  • a low voltage locking circuit is located between the driving circuit and the first inverter circuit, the low voltage locking circuit is connected in series to an output end of the driving circuit, and the low voltage locking circuit senses the output end of the driving circuit or filters The voltage value of the capacitor is used and the drive circuit is stopped when the voltage value is lower than the set value.
  • the voltage value of the low voltage lockout circuit is set to be 100V to 150V.
  • one of the protection circuits is connected between the driving circuit and the first inverter circuit.
  • the lamp tube forms an LC oscillation circuit by connecting an inductor and a capacitor.
  • an EMC circuit is located between the mains and the rectifier bridge circuit and the secondary battery.
  • the emergency device circuit further includes a large current charging circuit connected between the driving circuit in the ballast circuit and the control circuit of the emergency device circuit, and the control circuit controls The high current charging circuit operates to charge the secondary battery.
  • a light sensing component is further connected to the emergency device circuit, and the light sensing component is connected to a control circuit, and the light sensing component senses ambient light and transmits a signal to the control circuit.
  • the light sensing component is a photoresistor.
  • the beneficial effects of the present invention are: real-time monitoring of the mains power supply situation and the ballast output by the sampling circuit and the control circuit, ensuring that the emergency device circuit is turned on only when the emergency lighting is required, It avoids the loss of the lamp to the emergency.
  • the low voltage locking circuit ensures that the ballast circuit will not generate extra current to the lamp in the emergency state.
  • the photosensitive component is combined with the control circuit to monitor the ambient light in real time to ensure the ambient light. In sufficient circumstances, the emergency circuit will not work and avoid wasting battery power.
  • Figure 1 is a schematic diagram of the circuit frame of the present invention
  • Figure 2 is a schematic view showing the wiring of the existing electronic ballast, emergency device and battery;
  • Figure 3 is a schematic view of the wiring of the present invention.
  • Figure 4 is a circuit diagram of the present invention.
  • Rectifier bridge circuit 1. Rectifier bridge circuit; 2. PFC power factor correction circuit; 3. Filter capacitor; 4. Drive circuit; 5. First inverter circuit; 6. Control circuit; 7. Charging circuit; Second inverter circuit; 9, switching circuit; 10, secondary battery; 11, lamp; 12, sampling circuit; 13, low voltage lock circuit; 14, protection circuit; 15, EMC circuit; 16, high current charging circuit.
  • Embodiment An emergency electronic ballast
  • An emergency electronic ballast comprising a ballast circuit and an emergency circuit, the ballast circuit comprising a rectifier bridge circuit 1, a PFC power factor correction circuit 2, a filter capacitor 3, a drive circuit 4, and a first inverter circuit 5,
  • the current flows through the rectifier circuit 1 composed of four diodes of D1-4, and changes from alternating current to direct current, but the direct current is not smooth, but the alternating current component is also filtered by the filter capacitor 3, that is, the electrolytic capacitor, so that the direct current
  • the voltage is smooth and reduces fluctuations.
  • the smoothed DC power is supplied to the ballast circuit as a power source, which is beneficial to the stability of the working state of the triode.
  • the function of the PFC power factor correction circuit 2 is to increase the power factor of the circuit and reduce the current harmonics.
  • the electronic ballast without PFC power factor correction circuit 2 has a very low power factor of only 0.5-0.6. The smaller the power factor, the more the input current increases, and the increase of current will inevitably increase the loss on the line on the grid.
  • the utilization of the power transformer is reduced, for example: In the case of the electronic ballast without the PFC power factor correction circuit 2, the harmonic component is large, which causes certain pollution to the power supply grid, and sometimes the pollution is very serious.
  • the even-order resonant wave is a non-mirror symmetrical waveform, which makes the current of the power supply loop positive and negative half-cycle asymmetric, especially the second harmonic of the larger content, and its DC component makes the iron core of the power transformer in the power grid generate DC. Magnetization, increased loss, severely burns the transformer, endangering the safety of power operation.
  • the 3rd harmonic and the high-order harmonics of integer multiples of 3 times make the phase currents of the grid unable to cancel each other in the neutral line. As a result, the neutral current increases. This aspect will cause the midline to be overloaded and the midline overload and heat.
  • the middle line of China's power system is thinner (smaller than the phase line), the midline is overloaded and easy to cause fire; on the other hand, the neutral current is too large, The three-phase voltage is unbalanced, and some of the phase voltages are low, and some of the phase voltages are particularly high. In severe cases, the electrical appliances in the phase circuit are burnt.
  • the ballast circuit is powered by the switch K to the mains supply.
  • the PFC power factor correction circuit 2 and the filter capacitor 3 are connected in series and then connected to the rectifier bridge circuit 1 Between the DC outputs,
  • the driving circuit 4 is connected in parallel with the PFC power factor correction circuit 2 and the filter capacitor 3 connected in series, and is connected to the first inverter circuit 5.
  • the PFC power factor correction circuit 2 smoothes and reduces the DC power, and improves the power factor of the circuit and reduces Current harmonics;
  • the driving circuit 4 for driving the switching device has two main modes of self-excitation and its excitation.
  • the main component of the self-excited drive circuit is a transformer.
  • the primary of the transformer is connected in series in the oscillating circuit.
  • the secondary of the transformer generates an induced potential.
  • the induced potential is driven by other components such as resistors to the appropriate current to drive the bipolar transistor Ql. Q2, because the two sets of secondary windings are opposite in level, the two transistors are driven to conduct in turn, causing the circuit to oscillate.
  • the self-excited oscillation circuit has a simple structure and low cost, but requires careful debugging, and requires good consistency of the transformer.
  • the driving part of the other excitation oscillation circuit is mainly composed of an IC and its peripheral components. It can directly drive MOS or IGBT power switch tubes, preheat start lamps, and has strong fault protection functions. Many internationally renowned Large companies have the production of such devices.
  • the emergency device circuit includes a control circuit 6, a charging circuit 7, a second inverter circuit 8, and a switching circuit 9.
  • the commercial power charges the secondary battery 10 through the charging circuit 7, the second inverter circuit 8 boosts the voltage from the secondary battery 10, and supplies power to the switching circuit 9 to strobe one of the ballast circuit and the second inverter circuit 8. To light the lamp 11,
  • a sampling circuit 12 is disposed between the ballast circuit and the emergency device circuit, and the sampling circuit 12 outputs the output information of the ballast circuit, and transmits the collected output information as a sampling signal to the control circuit 6, and the control circuit 6 controlling the switching circuit 9 to strobe one of the ballast circuit and the second inverter circuit 8 according to the received sampling signal and the mains power supply condition, and only the control circuit 6 simultaneously samples the mains to be powered off and the ballast output
  • the control circuit 6 controls the switching circuit 9 to turn on the second inverter circuit 8, and the secondary battery 10 is powered and boosted by the second inverter circuit 8 to illuminate the lamp tube 11;
  • the switch K When the switch K is closed, the control circuit 6 detects that the mains supply is power supply and the ballast circuit has an output, the switching circuit 9 turns on the ballast circuit, the lamp 11 is in a normal lighting state, and when the switch K is off, the control circuit 6 After the sampling circuit 12 detects that the ballast circuit has no output, the switching circuit 9 still keeps on the ballast
  • the control circuit 6 includes a detection circuit that determines the power supply state of the commercial power based on the signals supplied from the sampling circuit 12 and the charging circuit 7. Specifically, the following four cases are as follows: When the sampling circuit 12 has a signal, when the charging circuit 7 has a signal, the mains supply is normally supplied, and the ballast is working; when the sampling circuit 12 has a signal, and the charging circuit 7 has no signal, the mains supply is normally supplied. Emergency line fault; When the sampling circuit 12 has no signal, when the charging circuit 7 has a signal, the mains supply is normally supplied, and the ballast is switched off. When the sampling circuit 12 has no signal and the charging circuit 7 has no signal, the utility power is cut off.
  • the sampling circuit 12 implements a specific circuit diagram that is composed of the secondary windings and diodes of L4.
  • the composition of D19 as long as the number of turns of the secondary winding is reasonably adjusted, the voltage required for the detection circuit can be obtained.
  • the detecting circuit determines whether the lamp 11 is operating normally by the voltage coupled through the secondary winding.
  • the circuit can also be used with a resistor-resistance buck, a resistor series divider, and the like.
  • a low voltage lock circuit 13 is located between the drive circuit 4 and the first inverter circuit 5, the low voltage lock circuit 13 is connected in series to the output of the drive circuit 4, and the low voltage lock circuit 13 detects the output of the drive circuit 4 or The magnitude of the voltage value of the filter capacitor 3 and the lock drive circuit 4 stop operating when the voltage value is lower than the set value.
  • the boosted power supply of the secondary battery 10 accumulates on the filter capacitor 3, that is, the electrolytic capacitor, to form a voltage, so that the low voltage lock circuit 13 senses a certain voltage value, which is lower than the set value.
  • the setting of the low voltage locking circuit 13 ensures that the ballast circuit does not provide additional current to the lamp 11 due to the voltage accumulation of the filter capacitor 3 in the operation state of the emergency circuit, thereby prolonging the service life of the lamp 4;
  • the switch K since the emergency circuit does not work, when the ballast circuit is normally operated when the switch K is closed, the voltage value sensed by the low voltage lock circuit 13 is higher than the set value and unlocked, the lamp is unlocked. 11 is normally lit.
  • the switch K is off, the ballast circuit as a whole does not work at all, the low voltage lock circuit 13 also does not work due to no power supply, and the lamp 11 is in a normally closed state.
  • both the self-excited mode and the excitation mode require a certain voltage, which is mainly from the electrolytic capacitor, so the low voltage locking circuit 13 can also detect the voltage value at the output end of the driving circuit 4, and The lock drive circuit 4 stops operating when the voltage value is lower than the set value.
  • the voltage of C7 must rise to 32V, and the first inverter (specifically a half-bridge inverter) can start working, R7, R2 R11
  • Three resistors form a series voltage divider circuit. Only when the voltage of electrolytic capacitors C5 and C6 is 150V, the voltage of C7 is only 32V, and the drive circuit can start working.
  • the induced voltage of the filter capacitor 3 (specifically electrolytic capacitor) is only 80V, and the drive circuit 4 cannot work at this time. In this way, as long as the parameters of R7, R2, and R11 are reasonably adjusted, the function of low-voltage locking and high-voltage unlocking can be easily realized.
  • the voltage value of the low voltage lock circuit 6 is set to be 100V to 150V.
  • a protection circuit 14 is connected between the driving circuit 4 and the first inverter circuit 5 to protect the circuit 14 from damage.
  • the protection circuit 14 senses the voltage change of the oscillation circuit and makes the ballast The circuit stops working and can be restored after the fault is removed.
  • the lamp tube 11 constitutes an LC oscillation circuit by connecting the capacitor L1 and the lamp tube 11; the inductor L2 capacitor C2 and the lamp tube 11 constitute an LC tank circuit.
  • the driving circuit 4 is connected in parallel with the PFC power factor correction circuit 2 and the filter capacitor 3 connected in series and through the connection of the emergency circuit
  • the switching circuit 9 is connected to the LC oscillation circuit to drive the lamp tube 11.
  • An EMC circuit 15 is located between the mains and the rectifier bridge circuit 1 and the secondary battery 10.
  • the EMC circuit 15 is used to solve the electromagnetic compatibility problem of the product, and limits the electromagnetic noise generated by the emergency electronic ballast to a certain level or less. In order to prevent these electromagnetic noises from being transmitted to the power grid through the power line, causing conducted interference, causing pollution to the surrounding electromagnetic environment and affecting the normal operation of the relevant electronic equipment or system in the environment.
  • the emergency device circuit is further provided with a large current charging circuit 16 connected between the driving circuit 4 in the ballast circuit and the control circuit 6 of the emergency device circuit, and the control circuit 6 controls the large
  • the current charging circuit 16 charges the secondary battery 10;
  • the large current charging circuit 16 is connected between the ballast circuit and the control circuit 6 of the emergency circuit, and the control circuit 6 controls the operation of the large current charging circuit 16, which
  • the high current charging circuit 16 charges the secondary battery 10.
  • the ballast circuit works normally, the high current charging circuit 16 charges the secondary battery 10, and the control circuit 6 controls the charging circuit 7 to stop working.
  • the control circuit 6 Controlling the large current charging circuit 16 to stop working while starting the operation of the charging circuit 7, and performing small current storage on the secondary battery 10 to ensure that it is in a state of charge saturation; in the normally closed state of the lamp tube 11, the ballast circuit is stopped,
  • the charging circuit 7 operates to charge or charge the rechargeable battery 7 with a small current to bring it to or maintain a state of charge saturation.
  • a light sensing component is further connected to the emergency device circuit, and the light sensing component is connected to the control circuit 6, and the light sensing component senses ambient light and transmits the signal to the control circuit 6.
  • the light sensing component is connected to the control circuit 6, and the light sensing component senses the ambient light and transmits the signal to the control circuit 6. If the power is turned off during the daytime without lighting, the circuit should start the emergency work to light the lamp according to the sampling rule, and add a light.
  • the sense component senses ambient light to ensure that the control circuit can control the emergency circuit without starting emergency work without wasting the charge of the rechargeable battery in the presence of sufficient ambient light.
  • the light sensing component is a photoresistor.
  • the inverter circuit can invert the battery DC power into high frequency and high voltage AC power, which is used to illuminate the lamp.
  • the circuit forms commonly used in this circuit are push-pull type, flyback type, forward type and so on.
  • the method of cold cathode lighting is adopted, and the filament is not preheated, which is easy to damage the lamp tube. Please do as little abnormal power failure test.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)

Description

一种应急电子镇流器 技术领域
本发明涉及荧光灯具驱动领域, 尤其是一种集应急器和电子镇流器为一体 的应急电子镇流器。
背景技术
目前, 商场超市及企事业单位安装的消防应急照明灯具, 早期安装的灯具 都是采用电感镇流器照明, 应急器和加装蓄电池做应急照明的方法, 电感镇流 器由于损耗大, 功率因数低, 不节能, 逐渐被电子镇流器取代。 新装修的商场 超市及企事业单位多数是采用电子镇流器照明, 应急器和加装蓄电池应急照明 的方法。 正常状态下由电子镇流器驱动灯管照明, 在应急状态下切换到应急器 驱动灯管, 由蓄电池供电。 但这种方法存在很多缺点:
一、 安装繁瑣。 市场上的应急器和电子镇流器都附有安装接线图, 需要正 确连接多路导线才能工作, 过于繁瑣且容易出错。 一旦出错, 应急器、 电子镇 流器或灯管这三者势必会有损坏。
二、 互相干扰。 在正常状态时, 应急器有可能会干扰电子镇流器的工作, 灯管变暗, 灯丝发黑, 光衰增加, 使灯管过早地失效。 如果应急器误动作, 还 有可能镇流器和应急器同时工作, 轻则电子镇流器保护,甚至损坏电子镇流器。 在应急状态时, 应急器点亮灯管的高频高压会影响电子镇流器, 感应电荷积蓄 在电子镇流器的电解电容上, 随着电压升高, 电子镇流器工作, 虽然不能点亮 灯管, 但有电流流过灯丝, 易损坏灯管; 电子镇流器长期在低电压下异常工作, 极易损坏; 应急器逆变产生的高压不仅点亮灯管, 还会供给电子镇流器, 增加 了应急器的负担, 不仅缩短了应急时间, 还易损坏应急器。
三、 传统的应急灯具成本较高。
发明内容
本发明目的是提供一种应急电子镇流器, 集应急器和电子镇流器为一体, 可确保仅在需应急情况下启动应急器电路, 避免了镇流器电路和应急器电路之 间干扰。
为达到上述目的, 本发明采用的技术方案是: 一种应急电子镇流器, 包括 镇流器电路和应急器电路, 所述镇流器电路包括整流桥电路、 PFC功率因数校 正电路、 滤波电容、 驱动电路、 第一逆变电路,
镇流器电路由开关接通市电供电,
所述 PFC功率因数校正电路和滤波电容串联后接入所述整流桥电路的直流 . 输出端之间,
驱动电路与串联的 PFC功率因数校正电路和滤波电容并联且通过连接所述 应急器电路的第一逆变电路;
所述应急器电路包括控制电路、 充电电路、 第二逆变电路和切换电路, 市电通过充电电路对二次电池充电, 第二逆变电路将来自二次电池的电压 升压后供电, 切换电路选通镇流器电路和第二逆变电路之一以点亮灯管;
所述镇流器电路和应急器电路之间设有一采样电路, 该采样电路采样镇流 器电路的输出信息, 并将采集到的输出信息传输于应急器电路的控制电路, 控 制电路根据接收到该采样信号和市电供电情况控制切换电路选通镇流器电路和 第二逆变电路之一。
上述技术方案中的有关内容解释如下:
1、 上述方案中, 一低电压锁定电路位于所述驱动电路和第一逆变电路之 间, 该低电压锁定电路串联到驱动电路的输出端, 该低电压锁定电路感应驱动 电路输出端或滤波电容的电压值大小并在该电压值低于设定值时锁定驱动电 路停止工作。
2、 上述方案中, 所述低电压锁定电路的电压值的设定值为 100V ~ 150V。
3、 上述方案中, 一所述保护电路连接于驱动电路与第一逆变电路之间。
4、 上述方案中, 所述灯管通过连接电感和电容形成 LC振荡回路。
5、上述方案中,一 EMC电路位于市电与所述整流桥电路和二次电池之间。
6、 上述方案中, 所述应急器电路中还设有一大电流充电电路, 该大电流 充电电路连接于所述镇流器电路中的驱动电路和应急器电路的控制电路之间, 控制电路控制大电流充电电路工作对所述二次电池充电。
7、 上述方案中, 所述应急器电路上还连接有一光感组件, 该光感组件连 接控制电路, 该光感组件感应环境光线并传信于控制电路。
8、 上述方案中, 所述光感组件为光敏电阻。
由于上述技术方案运用, 本发明的有益效果是: 通过采样电路配合控制电 路对市电供电情况和镇流器输出情况进行实时监控,确保仅在需要应急照明时 启动应急器电路点亮灯管, 避免了误应急对灯管的损耗, 增加低电压锁定电路 确保在应急状态下镇流器电路不会对灯管产生额外电流,增加光敏组件配合控 制电路对环境光线进行实时监控,确保在环境光线充足的情况下应急器电路不 会工作而避免浪费充电电池电量。
附图说明
图 1 本发明电路框架原理示意图; 图 2现有电子镇流器、 应急器和蓄电池的接线示意图;
图 3 本发明的接线示意图;
图 4 本发明电路图。
以上附图中: 1、 整流桥电路; 2、 PFC功率因数校正电路; 3、 滤波电容; 4、 驱动电路; 5、 第一逆变电路; 6、 控制电路; 7、 充电电路; 8、 第二逆变 电路; 9、 切换电路; 10、 二次电池; 11、 灯管; 12、 采样电路; 13、 低电压 锁定电路; 14、 保护电路; 15、 EMC电路; 16、 大电流充电电路。
具体实施方式
下面结合附图及实施例对本发明作进一步描述:
实施例: 一种应急电子镇流器
一种应急电子镇流器, 包括镇流器电路和应急器电路, 所述镇流器电路包 括整流桥电路 1、 PFC功率因数校正电路 2、 滤波电容 3、 驱动电路 4、 第一逆 变电路 5,
所述电流流过 D1-4四个二极管组成的整流电路 1, 由交流变成直流, 但 这时的直流电并不平滑,含有交流分量,还需由滤波电容 3即电解电容来滤波, 使直流电压平滑, 减少起伏。 平滑后的直流电供给镇流电路作电源, 有利于三 极管工作状态的稳定。
所述 PFC功率因数校正电路 2的作用在于提高电路的功率因数, 减少电 流谐波。 没有 PFC 功率因数校正电路 2 的电子镇流器功率因数很低, 只有 0.5-0.6, 功率因数愈小, 输入电流增加的愈多, 电流的增大, 必然加大电网在 线路上的损耗, 同时还降低了电力变压器的利用率, 例如: 在无 PFC功率因 数校正电路 2的电子镇流器情况下, 其谐波分量很大, 对于供电电网会造成一 定污染, 有时这种污染十分严重。 其中偶次谐振波是非镜对称波形, 它使供电 回路电流正负半周不对称, 尤以含量较大的 2次谐波的影响最为明显, 它的直 流成分使电网中电力变压器的铁芯产生直流磁化, 损耗增大, 严重时会烧毁变 压器, 危及电力运行的安全。 在三相四线制供电系统中, 3次谐波以及 3次呈 整数倍的高次谐波会使电网的相电流无法在中线中相互抵消, 结果, 中线电流 加大。 这一方面会造成中线超负荷运行, 中线过载发热, 由于我国电力系统中 中线较细 (比相线还细), 中线超负荷运行, 容易引起火灾; 另一方面, 中线 电流过大, 还会引起三相电压不均衡, 其中有的相电压低, 有的相电压又特别 高, 严重时会使该相电路中的电器烧毁。
镇流器电路由开关 K接通市电供电,
所述 PFC功率因数校正电路 2和滤波电容 3串联后接入所述整流桥电路 1 的直流输出端之间,
驱动电路 4与串联的 PFC功率因数校正电路 2和滤波电容 3并联, 并且 连接所述第一逆变电路 5, PFC功率因数校正电路 2使直流电平滑及减少起伏, 且提高电路的功率因数, 减少电流谐波;
所述用于驱动开关器件的驱动电路 4有自激式和它激式两种主要方式。 自 激式驱动电路主要元件是变压器, 变压器的初级串联在振荡回路中, 通过正反 馈, 变压器的次级产生一个感应电势, 该感应电势经过电阻等其它元件等到合 适的电流驱动双极型晶体管 Ql、 Q2, 由于两组次级绕组级性相反, 驱动两只 晶体管轮流导通, 使电路形成振荡。 该自激式振荡电路结构简单, 成本低, 但 需要精心调试, 而且要求变压器的一致性好。 另一种它激式振荡电路的驱动部 分主要由 IC及其外围元件组成, 能直接驱动 MOS或 IGBT功率开关管、预热 启动灯管, 并有很能强的故障保护功能, 许多国际知名的大公司都有这类器件 的生产。
所述应急器电路包括控制电路 6、 充电电路 7、 第二逆变电路 8和切换电 路 9,
市电通过充电电路 7对二次电池 10充电, 第二逆变电路 8将来自二次电 池 10的电压升压后供电, 切换电路 9选通镇流器电路和第二逆变电路 8之一 以点亮灯管 11,
所述镇流器电路和应急器电路之间设有一采样电路 12, 该采样电路 12釆 样镇流器电路的输出信息,并将采集到的输出信息作为采样信号传输于控制电 路 6, 控制电路 6根据接收到该采样信号和市电供电情况控制切换电路 9选通 镇流器电路和第二逆变电路 8之一,仅有控制电路 6同时采样到市电为断电且 镇流器输出无的情况下, 控制电路 6控制切换电路 9接通第二逆变电路 8, 二 次电池 10供电并通过第二逆变电路 8升压后点亮灯管 11;市电为供电状态下, 开关 K闭合时, 控制电路 6检测到市电为供电且镇流器电路有输出, 切换电 路 9接通镇流器电路, 灯管 11为正常点亮状态, 开关 K断开时, 控制电路 6 经采样电路 12检测到镇流器电路无输出, 切换电路 9依然保持接通镇流器电 路, 镇流器电路因开关 K断开市电而不工作, 此时灯管 11为正常关闭状态。
如图 1中所示, 控制电路 6内包括一检测电路, 该检测电路根据采样电路 12和充电电路 7提供的信号判断市电的供电状态。 具体为以下四种情况: 当 采样电路 12有信号, 充电电路 7有信号时, 市电正常供电, 镇流器正在工作; 当采样电路 12有信号, 充电电路 7无信号时, 市电正常供电, 应急线故障; 当采样电路 12无信号, 充电电路 7有信号时, 市电正常供电, 镇流器开关断 开; 当采样电路 12无信号, 充电电路 7无信号时, 市电停电。
如附图 4所示, 采样电路 12实现具体电路图是由 L4的副绕组和二极管
D19组成, 只要合理调整副绕组的圈数, 就可以得到检测电路所需要的电压。 检测电路通过副绕组耦合过来的电压, 判断灯管 11是否在正常工作。 该电路 也可以用阻容降压, 电阻串联分压等电路。
一低电压锁定电路 13位于所述驱动电路 4和第一逆变电路 5之间, 该低 电压锁定电路 13串联到驱动电路 4的输出端,该低电压锁定电路 13检测驱动 电路 4输出端或滤波电容 3的电压值大小并在该电压值低于设定值时锁定驱动 电路 4停止工作。
二次电池 10经升压后的供电将积蓄在滤波电容 3即电解电容上形成电压, 从而使低电压锁定电路 13将感应到一定的电压值, 该一定的电压值低于设定 值, 从而通过低电压锁定电路 13的设置确保镇流器电路不会在应急器电路工 作状态下因滤波电容 3的电压积蓄而部分工作对灯管 11提供额外电流, 延长 灯管 4的使用寿命; 而在市电供应正常的上述两种情况下, 因应急器电路不工 作, 开关 K闭合时镇流器电路正常工作时低电压锁定电路 13所感应到的电压 值高于设定值而解锁, 灯管 11正常点亮, 开关 K断开时, 镇流器电路整体完 全不工作,低电压锁定电路 13也因无供电而不工作,灯管 11为正常关闭状态。
在驱动电路 4刚开始工作时, 自激式和它激式都需要一定的电压, 该电压 主要来自于电解电容, 因此低电压锁定电路 13同样也可以检测驱动电路 4输 出端的电压值大小, 并在该电压值低于设定值时锁定驱动电路 4停止工作。 如 附图 4所示,例型号 KYZ-228-GPY的应急电子镇流器, C7的电压须升到 32V, 第一逆变器 (具体为半桥逆变器) 才能开始工作, R7、 R2、 R11 三个电阻组 成串联分压电路, 只有电解电容 C5、 C6的电压有 150V时, C7的电压才有 32V, 驱动电路才能开始工作。 而滤波电容 3 (具体为电解电容) 的感应电压 最高只有 80V, 此时驱动电路 4不能工作。 这样, 只要合理地调整 R7、 R2、 R11的参数, 就可以轻易地实现了低压锁定, 高压解锁的功能。 所述低电压锁 定电路 6的电压值的设定值为 100V ~ 150V。
一所述保护电路 14连接于驱动电路 4与第一逆变电路 5之间, 以保护电 路 14元件不受损坏, 当出现异常状态时, 保护电路 14感应到振荡回路的电压 变化并使镇流器电路停止工作, 待故障排除后又可恢复正常。
如附图 1所示, 所述灯管 11通过连接电感 L1电容 C1和灯管 11构成 LC 振荡回路; 电感 L2电容 C2和灯管 11构成 LC振荡回路。 驱动电路 4与串联 的 PFC功率因数校正电路 2和滤波电容 3并联且通过连接所述应急器电路的 切换电路 9连通该 LC振荡回路以驱动点亮灯管 11。
一 EMC电路 15位于市电与所述整流桥电路 1和二次电池 10之间, EMC 电路 15用来解决产品的电磁兼容问题, 它将应急电子镇流器产生的电磁噪声 限制在一定水平以下, 以免这些电磁噪声通过电源线传到电网中去, 引起传导 干扰, 对周围的电磁环境造成污染, 并影响该环境内有关电子设备或系统的正 常工作。
所述应急器电路中还设有一大电流充电电路 16, 该大电流充电电路 16连 接于所述镇流器电路中的驱动电路 4和应急器电路的控制电路 6之间,控制电 路 6控制大电流充电电路 16对所述二次电池 10充电; 该大电流充电电路 16 连接于所述镇流器电路和应急器电路的控制电路 6之间,控制电路 6控制大电 流充电电路 16工作, 该大电流充电电路 16对所述二次电池 10充电。 在灯管 11正常点亮状态下, 镇流器电路正常工作, 大电流充电电路 16对二次电池 10 充电, 控制电路 6控制充电电路 7停止工作, 当充电电池 7充电饱和时, 控制 电路 6控制大电流充电电路 16停止工作同时启动充电电路 7工作, 对二次电 池 10进行小电流蓄电以确保其出于充电饱和状态;在灯管 11正常关闭状态下, 镇流器电路停止工作,充电电路 7工作对充电电池 7进行小电流充电或蓄电以 使其达到或保持充电饱和状态。
所述应急器电路上还连接有一光感组件, 该光感组件连接控制电路 6, 该 光感组件感应环境光线并传信于控制电路 6。 该光感组件连接控制电路 6, 该 光感组件感应环境光线并传信于控制电路 6, 白天无需点灯时若断电, 按采样 规则应急期电路应启动应急工作点亮灯管, 增加一光感组件感应环境光线, 可 确保在周围环境光线充足的情况下,控制电路可控制应急器电路不启动应急工 作而不会浪费充电电池的电量。
所述光感组件为光敏电阻。
逆变电路能将蓄电池直流电逆变成高频高压的交流电, 用来点亮灯管, 此 电路常用的电路形式有推挽式, 反激式, 正激式等。 采用的是冷阴极点灯的方 式, 对灯丝没有预热, 易损伤灯管, 请尽量少做异常停电试验。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技 术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范 围。 凡根据本发明精神实质所作的等效变化或修饰, 都应涵盖在本发明的保护 范围之内。

Claims

1、 一种应急电子镇流器, 包括镇流器电路和应急器电路, 所述应急器电路 包括控制电路(6)、 充电电路(7)、 第二逆变电路(8)和切换电路(9); 市电 通过充电电路(7)对二次电池( 10) 充电, 第二逆变电路(8)将来自二次电 池( 10)的电压升压后供电, 切换电路(9)选通镇流器电路和第二逆变电路(8) 之一以点亮灯管 (11 ); 其特征在于: 所述镇流器电路和应急器电路之间设有一 采样电路( 12), 该采样电路( 12)采样镇流器电路的输出信息, 并将采集到的 输出信息作为采样信号传输于控制电路(6), 控制电路(6)根据接收到该采样 信号和市电供电情况控制切换电路(9)选通镇流器电路和第二逆变电路(8) 之一。
2、 根据权利要求 1所述的应急电子镇流器, 其特征在于: 所述镇流器电路 包括整流桥电路(1)、 PFC 功率因数校正电路(2)、 滤波电容(3)、 驱动电路
(4)、 第一逆变电路(5);
所述 PFC功率因数校正电路(2)和滤波电容(3) 串联后接入所述整流桥 电路( 1 ) 的直流输出端之间;
驱动电路( 4 )与串联的 PFC功率因数校正电路 ( 2 )和滤波电容( 3 )并联, 并且连接所述第一逆变电路(5);
所述驱动电路( 4 )和第一逆变电路( 5 )之间设有一低电压锁定电路( 13 ), 该低电压锁定电路( 13)串联到驱动电路(4)的输出端,该低电压锁定电路( 13) 检测驱动电路(4)输出端或滤波电容(3) 的电压值大小并在该电压值低于设 定值时锁定驱动电路(4)停止工作。
3、 根据权利要求 2所述的应急电子镇流器, 其特征在于: 所述低电压锁定 电路(6) 的电压值的设定值为 100V~150V。
4、根据权利要求 2所述的应急电子镇流器, 其特征在于: 一保护电路(14) 连接于驱动电路(4) 与第一逆变电路(5)之间。
5、 根据权利要求 2所述的应急电子镇流器, 其特征在于: 所述灯管 (11) 通过连接电感 (Ll、 L2)和电容(Cl、 C2)形成 LC振荡回路。
6、 根据权利要求 1或 2所述的应急电子镇流器, 其特征在于: 一 EMC电 路( 15)位于市电与所述整流桥电路( 1 )和二次电池( 10)之间。
7、 才艮据权利要求 1所述的应急电子镇流器, 其特征在于: 所述应急器电路 中还设有一大电流充电电路 ( 16), 该大电流充电电路 ( 16)连接于所述镇流器 电路和控制电路(6)之间, 控制电路(6)控制大电流充电电路( 16) 工作对 所述二次电池( 10)充电。
PCT/CN2010/000964 2010-05-14 2010-06-28 一种应急电子镇流器 WO2011140686A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010175397.X 2010-05-14
CN201010175397XA CN101861040B (zh) 2010-05-14 2010-05-14 应急电子镇流器

Publications (1)

Publication Number Publication Date
WO2011140686A1 true WO2011140686A1 (zh) 2011-11-17

Family

ID=42946597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000964 WO2011140686A1 (zh) 2010-05-14 2010-06-28 一种应急电子镇流器

Country Status (2)

Country Link
CN (1) CN101861040B (zh)
WO (1) WO2011140686A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101861040B (zh) * 2010-05-14 2012-03-21 苏州市昆士莱照明科技有限公司 应急电子镇流器
CN102056381A (zh) * 2011-01-04 2011-05-11 梅州江南电器有限公司 多用途led灯智能控制系统
CN103313482A (zh) * 2013-06-24 2013-09-18 杭州徕科光电有限公司 一种led应急照明系统以及led照明灯具

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1228243A (zh) * 1997-04-10 1999-09-08 皇家菲利浦电子有限公司 荧光灯镇流器驱动器的防闪烁电路
CN1430458A (zh) * 2001-12-19 2003-07-16 尼古拉斯·伯埃诺肯托 具有应急照明设备的电子镇流器系统
JP2006216571A (ja) * 2006-05-16 2006-08-17 Matsushita Electric Works Ltd 非常用照明装置
CN200953680Y (zh) * 2006-09-27 2007-09-26 洪冲祥 一种多功能电子镇流器
CN101557118A (zh) * 2008-04-09 2009-10-14 鹏智科技(深圳)有限公司 二次电池的充电控制电路
CN201393326Y (zh) * 2009-04-28 2010-01-27 广东珠江开关有限公司 带应急照明功能的镇流器
CN101861040A (zh) * 2010-05-14 2010-10-13 苏州市昆士莱照明科技有限公司 应急电子镇流器
CN201690664U (zh) * 2010-05-14 2010-12-29 苏州市昆士莱照明科技有限公司 应急电子镇流器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4216410A (en) * 1977-11-16 1980-08-05 Feldstein Robert S Emergency lighting system
GB2101426A (en) * 1981-06-09 1983-01-12 Szeto Lok Emergency lighting
CN2231366Y (zh) * 1994-08-30 1996-07-17 张金平 日常照明和断电应急照明两用灯
CN201429013Y (zh) * 2009-06-12 2010-03-24 天津工程师范学院 Led应急照明灯

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1228243A (zh) * 1997-04-10 1999-09-08 皇家菲利浦电子有限公司 荧光灯镇流器驱动器的防闪烁电路
CN1430458A (zh) * 2001-12-19 2003-07-16 尼古拉斯·伯埃诺肯托 具有应急照明设备的电子镇流器系统
JP2006216571A (ja) * 2006-05-16 2006-08-17 Matsushita Electric Works Ltd 非常用照明装置
CN200953680Y (zh) * 2006-09-27 2007-09-26 洪冲祥 一种多功能电子镇流器
CN101557118A (zh) * 2008-04-09 2009-10-14 鹏智科技(深圳)有限公司 二次电池的充电控制电路
CN201393326Y (zh) * 2009-04-28 2010-01-27 广东珠江开关有限公司 带应急照明功能的镇流器
CN101861040A (zh) * 2010-05-14 2010-10-13 苏州市昆士莱照明科技有限公司 应急电子镇流器
CN201690664U (zh) * 2010-05-14 2010-12-29 苏州市昆士莱照明科技有限公司 应急电子镇流器

Also Published As

Publication number Publication date
CN101861040B (zh) 2012-03-21
CN101861040A (zh) 2010-10-13

Similar Documents

Publication Publication Date Title
US7084582B2 (en) Electronic ballast system having emergency lighting provisions and electronic chip
CN103563490B (zh) 用于镇流器的改良型可程序启动电路
US20060244395A1 (en) Electronic ballast having missing lamp detection
CN104822208B (zh) 小功率hid灯驱动电路的降压电路
WO2011140686A1 (zh) 一种应急电子镇流器
CN201114925Y (zh) 外置电极荧光灯用电子镇流器
CN101336031B (zh) 一种用于投影仪的金属卤化物灯的电子镇流器
CN101427612B (zh) 荧光灯电子驱动器
KR20010040328A (ko) 고압방전등용 전자식 안정기
EP2160080A1 (en) Electronic driving device for lamps, in particular HID lamps.
CN201750612U (zh) 无极荧光灯电子镇流器
CN203934085U (zh) 一种hid灯电子镇流器应急装置
JP2011135702A (ja) スイッチング電源装置
CN105828472A (zh) 一种抗干扰led路灯电路
CN103025035B (zh) 谐振电容调整元件及其所适用的电流预热型电子安定器
WO2020029006A1 (zh) 一种兼容电子镇流器和市电的led驱动电路及led灯具
CN201821561U (zh) 一种冷阴极管用电子镇流器一拖十电路
KR101228303B1 (ko) 세라믹-유리질 복합체 전극을 사용한 형광램프용 디밍용 전자식 안정기
CN102665331A (zh) 一种单电源带多种光源的照明系统
TWI446835B (zh) 諧振電容調整元件及其所適用之電流預熱型電子安定器
CN202503746U (zh) 一种单电源带多种光源的照明系统
CN201690666U (zh) 一种电磁节能无极灯用镇流器
CN1298197C (zh) 具有电子镇流器功能的功率因数校正装置
CN102665367B (zh) 一种通用型电子镇流器
JPH10271845A (ja) 電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851193

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10851193

Country of ref document: EP

Kind code of ref document: A1