WO2020029006A1 - 一种兼容电子镇流器和市电的led驱动电路及led灯具 - Google Patents

一种兼容电子镇流器和市电的led驱动电路及led灯具 Download PDF

Info

Publication number
WO2020029006A1
WO2020029006A1 PCT/CN2018/098942 CN2018098942W WO2020029006A1 WO 2020029006 A1 WO2020029006 A1 WO 2020029006A1 CN 2018098942 W CN2018098942 W CN 2018098942W WO 2020029006 A1 WO2020029006 A1 WO 2020029006A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
capacitor
terminal
diode
resistor
Prior art date
Application number
PCT/CN2018/098942
Other languages
English (en)
French (fr)
Inventor
杨清华
吴宇龙
Original Assignee
深圳拓邦股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳拓邦股份有限公司 filed Critical 深圳拓邦股份有限公司
Priority to PCT/CN2018/098942 priority Critical patent/WO2020029006A1/zh
Priority to US16/606,771 priority patent/US11259383B2/en
Publication of WO2020029006A1 publication Critical patent/WO2020029006A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/357Driver circuits specially adapted for retrofit LED light sources
    • H05B45/3578Emulating the electrical or functional characteristics of discharge lamps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection
    • H05B47/26Circuit arrangements for protecting against earth faults
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to the field of LED technology, and more particularly, to an LED driving circuit and an LED lamp that are compatible with electronic ballasts and city power.
  • LED light sources are a new generation Compared with the existing light source, the semiconductor light source has the characteristics of high efficiency and long life. LED belongs to the green environmental protection light source, without mercury, lead and other harmful substances. Lighting products using LED as the light source are rapidly developing, and it has become a trend to replace traditional lighting.
  • LED lamps on the market are basically divided into the following types:
  • a technical problem to be solved by the present invention is to provide an LED driving circuit and an LED lamp compatible with an electronic ballast and a mains power in response to the foregoing defects of the prior art.
  • the technical solution adopted by the present invention to solve its technical problems is to construct an LED driving circuit compatible with electronic ballasts and mains electricity, including:
  • a first input terminal, a second input terminal for receiving alternating current, a step-down circuit connected to the first input terminal and the second input terminal, a rectifier circuit connected to the step-down circuit, and the rectifier A circuit-connected leakage current limit circuit, a constant current output circuit connected to the leakage current limit circuit, a signal sampling circuit connected to the second input terminal and the leakage current limit circuit, and the leakage current limit Circuit-connected switch;
  • the step-down circuit steps down the high-frequency alternating current and outputs a step-down signal;
  • the rectifier circuit is configured to convert the step-down signal or
  • the low-frequency AC power is rectified into DC power;
  • the signal sampling circuit detects the AC power at the second input terminal, and bypasses the leakage current limiting circuit when the AC power at the second input terminal is high-frequency AC power;
  • the leakage current limiting circuit is configured to detect a loop voltage of the LED driving circuit, and control the switch to be turned off when the loop voltage of the LED driving circuit reaches a threshold, so that the constant current output circuit Disconnected from the rectifier circuit. .
  • the first input terminal includes a first pin and a second pin
  • the electronic ballast and mains-compatible LED driving circuit further includes a first overcurrent protection circuit connected in series between the first pin and the step-down circuit, and a second overcurrent protection circuit connected in series with the second pin A third overcurrent protection circuit between the step-down circuits and a second overcurrent protection circuit connected in series between the second input terminal and the step-down circuit.
  • the step-down circuit includes a first capacitor and a second capacitor;
  • a first end of the first capacitor is connected to the first overcurrent protection circuit, and a second end of the first capacitor and a first end of the second capacitor are connected to the second overcurrent protection circuit together. A second end of the second capacitor is connected to the third overcurrent protection circuit.
  • the leakage current limiting circuit includes: a current limiting circuit and a control circuit;
  • An input terminal of the current limiting circuit is connected to an output terminal of the rectifier circuit, and an output terminal of the current limiting circuit is connected to a power supply terminal of the control circuit.
  • the current limiting circuit includes a diode D3, a resistor R5, a resistor R6, and a resistor R9;
  • the anode of the diode D3 is connected to the output terminal of the rectifier circuit, the cathode of the diode D3 is connected to the first terminal of the resistor R5, and the second terminal of the resistor R5 is connected to the first terminal of the resistor R6.
  • a second terminal of the resistor R6 is connected to a first terminal of the resistor R9, and a second terminal of the resistor R9 is connected to a power supply terminal of the control circuit.
  • control circuit includes a control chip U1, a capacitor C5, a capacitor C7, a resistor R7, a resistor R8, and a capacitor C6;
  • the switch includes a MOS transistor Q, which is built into the control chip U1;
  • the control chip U1 includes a power supply circuit, a logic control circuit, and a driving circuit. An input end of the power supply circuit is connected to an eighth pin of the control chip U1, and an output end of the power supply circuit is connected to the logic control circuit.
  • the logic control circuit is connected to the input terminal of the driving circuit, the output terminal of the driving circuit is connected to the gate of the MOS tube Q, and the drain of the MOS tube Q is connected to the third pin of the control chip U1 and A fourth pin, the source of the MOS transistor Q and the logic control circuit are connected to a fifth pin of the control chip U1 together;
  • the eighth pin of the control chip U1 is used as a power supply end of the control circuit to connect to the second end of the resistor R9, and the eighth pin of the control chip U1 is also connected to the first power ground through the capacitor C5;
  • the second pin of the control chip U1 is connected to the first power ground
  • the sixth pin of the control chip U1 is connected to the first power ground through the capacitor C6, and the fifth pin of the control chip U1 is connected to the first
  • the resistor R8 is connected to the first power ground
  • the capacitor C7 is connected in parallel with the resistor R7 and then in parallel at both ends of the resistor R8; the third pin and the fourth pin of the control chip U1 are short-circuited and connected to the first Second power ground.
  • the signal sampling circuit includes: a filter rectifier circuit and a MOS transistor Q1;
  • An input terminal of the filter rectifier circuit is connected to the second input terminal, an output terminal of the filter rectifier circuit is connected to a gate of the MOS tube Q1, and a source of the MOS tube Q1 is connected to a first power ground.
  • the drain of the MOS transistor Q1 is connected to the leakage current limiting circuit.
  • the filter rectification circuit includes: an inductor L2, a capacitor C9, a diode D9, a diode D10, a capacitor C10, a resistor R16, and a voltage regulator D11;
  • a first terminal of the inductor L2 is connected to the second input terminal, a second terminal of the inductor L2 is connected to a first terminal of the capacitor C9, and a second terminal of the capacitor C9 is respectively connected to an anode of the diode D9.
  • the cathode of the diode D10; the cathode of the diode D9 is connected to the gate of the MOS tube Q1, and the cathode of the diode D9 is also connected to the first power ground through the capacitor C10; the cathode of the diode D10 is connected to the first A power source ground, the resistor R9 is connected in parallel at both ends of the capacitor C10, the cathode of the voltage regulator tube D11 is connected to the gate of the MOS transistor Q1, and the anode of the voltage regulator tube D11 is connected to the first power source ground.
  • the signal sampling circuit further includes: an anti-reverse circuit connected between the leakage current limiting circuit and the drain of the MOS transistor Q1;
  • the anti-reverse circuit includes a diode D12 and a diode D13;
  • An anode of the diode D12 is connected to the leakage current limiting circuit, a cathode of the diode D12 is connected to a drain of the MOS tube Q1, and the diode D13 is connected in parallel with the diode D12.
  • the present invention also provides an LED lamp, which includes the above-mentioned compatible electronic ballast and a mains-driven LED driving circuit.
  • the present invention can be compatible with both the electronic ballast and the mains, and can automatically reduce the output of the electronic ballast when connected to the electronic ballast High-frequency voltage, which effectively protects the back-end circuit; when it is connected to the mains, it can meet the single-end and double-end connection, and the double-end connection can pass the leakage current test.
  • the electronic ballast of a fluorescent lamp of the LED lamp of the present invention can also be used, the original fluorescent lamp can be directly replaced with the LED lamp of the present invention, thereby saving labor costs; at the end of the life of the electronic ballast of a fluorescent lamp, only The electronic ballast of the fluorescent lamp is removed, and the LED lamp of the present invention can be continuously used by simply modifying the circuit, thereby saving the cost of purchasing a lamp tube.
  • the leakage current protection circuit when one end of the LED lamp of the present invention is charged, at this time, when the human body touches the other end of the lamp tube, there is no danger of electric shock, and the safety performance is high.
  • FIG. 1 is a principle block diagram of an LED driving circuit compatible with an electronic ballast and a mains of the present invention
  • FIG. 2 is a circuit schematic diagram of an LED driving circuit compatible with an electronic ballast and a mains of the present invention
  • FIG. 3 is a functional block diagram of the switch built into the control chip U1.
  • FIG. 1 is a principle block diagram of an LED driving circuit compatible with an electronic ballast and a mains of the present invention.
  • the embodiment of the present invention is compatible with an electronic ballast and a mains-driven LED driving circuit including a first input terminal 10, a second input terminal 20, and a first input terminal 10 and a second input terminal for inputting alternating current.
  • the step-down circuit 30 connected to the input terminal 20, the rectifier circuit 40 connected to the step-down circuit 30, the leakage current limit circuit 50 connected to the rectifier circuit 40, the constant current output circuit 70 connected to the leakage current limit circuit 50, and the first A signal sampling circuit 60 connected to the two input terminals 20 and the leakage current limit circuit 50, and a switch 80 connected to the leakage current limit circuit 50.
  • the AC power input by the first input terminal 10 and the second input terminal 20 includes high-frequency AC power and low-frequency AC power output by the electronic ballast.
  • the input AC power when the external power supply is mains, the input AC power is 50 / 60Hz low-frequency AC power; when the external power supply is an electronic ballast (actually, the main power is input to the first input after passing through the electronic ballast).
  • Terminal 10 and second input terminal 20 the input AC power is high frequency AC power.
  • the high frequency AC power output by the electronic ballast is in the range of 60 ⁇ 80KHz and 600 ⁇ 800V.
  • the step-down circuit 30 mainly works when the input AC power is a high-frequency AC power. That is, when the input AC power is high-frequency AC power (that is, the external power source is commercial power and needs to pass through an electronic ballast), the step-down circuit 30 steps down the high-frequency AC power and outputs a step-down signal.
  • the step-down circuit 30 By providing the step-down circuit 30 between the first input terminal 10 and the second input terminal 20, when the connected AC power is high-frequency AC power, the high-frequency AC voltage output by the electronic ballast can be effectively reduced to avoid high-frequency The effect of AC voltage on the post-stage circuit effectively protects the post-stage circuit.
  • the LED lamp tube using the LED driving circuit of the present invention can be directly compatible with the electronic ballast when replacing the traditional fluorescent lamp tube.
  • the LED lamp tube of the LED driving circuit of the present invention can be directly used to replace the original fluorescent lamp, saving labor costs.
  • the LED lamp tube can be used to replace the fluorescent lamp tube.
  • the step-down circuit 30 has no effect and has no effect on the low-frequency AC power, and the input low-frequency AC power flows directly into the subsequent circuit.
  • the step-down circuit 30 in the embodiment of the present invention may be implemented by a capacitor.
  • the capacitor selected is a withstand voltage capacitor.
  • a withstand voltage capacitor with a capacitance of 1 to 4.7 nF can be used.
  • the rectifying circuit 40 is configured to rectify a step-down signal or a low-frequency AC power into a DC power.
  • the input AC power is low-frequency AC power (that is, the external power source is mains power and no electronic ballast is connected)
  • the input low-frequency AC power flows directly into the rectification circuit 40, and the low-frequency AC power is rectified by the rectification circuit 40. And rectified into the corresponding direct current to provide to the subsequent circuit.
  • the input AC power is high-frequency AC power (high-frequency AC power is output by the electronic ballast)
  • the high-frequency AC power is first processed by the step-down circuit 30 and then transmitted to the rectifier circuit 40.
  • the step-down signal output from the voltage circuit 30 is rectified and rectified into corresponding DC power to be provided to the subsequent stage circuit.
  • the rectifier circuit 40 in the embodiment of the present invention may be a bridge rectifier circuit.
  • the leakage current limiting circuit 50 is used to detect the loop voltage of the LED driving circuit, and when the loop voltage of the LED driving circuit reaches a threshold, the control switch 80 is turned off, so that the constant current output circuit 70 is disconnected from the rectifier circuit 40 .
  • the leakage current limiting circuit 50 does not affect the switch 80 when the input AC power is low-frequency AC power, the switch 80 remains closed, and the rectifier circuit The DC power output from 40 is transmitted to the output circuit 70, and the output circuit 70 can supply power to the load (LED light) with normal output current; when used as Type B, and when either the first input terminal 10 or the second input terminal 20 is connected When it is connected to the L terminal of the city power and the other end has a human body impedance connected to the ground, the leakage current limiting circuit 50 can detect the loop voltage of the LED drive circuit by detecting its built-in circuit, and control the switch when the loop voltage reaches the threshold 80 disconnect to disconnect the leakage current and avoid the risk of electric shock.
  • the leakage current limiting circuit 50 can detect the impedance of the human body to the ground. It is judged that there is a leakage current.
  • the leakage current limiting circuit 50 that is, the control switch 80 is turned off to disconnect the first power ground and the second power ground.
  • the output circuit 70 cannot output current, and the leakage current circuit is disconnected to reduce the leakage current. To avoid electric shock to the human body.
  • the leakage current limiting circuit 50 may include a current limiting circuit and a control circuit.
  • the input terminal of the current limiting circuit is connected to the output terminal of the rectifier circuit 40, and the output terminal of the current limiting circuit is connected to the power supply terminal of the control circuit.
  • the current limiting circuit is mainly used to limit the supply voltage flowing into the control circuit
  • the control circuit is mainly used to detect the loop voltage of the LED driving circuit, and output a control signal to control the switch 80 to open when the loop voltage reaches a threshold value. ON to disconnect the first power ground and the second power ground.
  • the switch 80 is mainly used to open or close according to a control signal output by the control circuit.
  • the switch 80 may be an NMOS tube.
  • the signal sampling circuit 60 is configured to detect the AC power at the second input terminal 20, and bypass the leakage current limiting circuit 50 when the AC power at the second input terminal 20 is a high-frequency AC power. Specifically, when the input AC power is low-frequency AC power, the signal sampling circuit 60 does not work, and the leakage current limit circuit 50 works normally. When the AC power input from the second input terminal 20 is a high-frequency AC power, the signal sampling circuit 60 is activated, and the leakage current limiting circuit 50 is bypassed. It should be noted here that when the leakage current limiting circuit 50 according to the embodiment of the present invention is used as Type A (that is, the input AC power is high-frequency AC power), the leakage current limiting circuit 50 cannot detect the electronic ballast.
  • Type A that is, the input AC power is high-frequency AC power
  • the leakage current limiting circuit 50 has no control function, which will cause the first power ground and the second power ground to fail to conduct normally, and the output circuit 70 cannot form a current loop through the leakage current limiting circuit 50. Therefore, by setting the signal sampling circuit 60, it can be started when the input AC power is high-frequency AC, so that the first power source ground and the second power source ground are conducted, and the output circuit 70 can form a current loop through the signal sampling circuit 60 to normalize The output current powers the load, which prevents the output current of the output circuit 70 from powering the load normally due to the leakage current limiting circuit 50 not working.
  • the LED driving circuit compatible with the electronic ballast and the mains further includes a first overcurrent protection circuit connected in series between the first pin and the step-down circuit 30, and a second pin connected in series with the step-down circuit 30. A third overcurrent protection circuit therebetween, and a second overcurrent protection circuit connected in series between the second input terminal 20 and the step-down circuit 30.
  • the first input terminal 10 includes a first pin and a second pin; the second input terminal 20 includes a third pin and a fourth pin.
  • the first pin is ACL1 in FIG. 2
  • the second pin is ACN in FIG. 2
  • the third pin is shorted to be ACL2 in FIG. 2.
  • the first overcurrent protection circuit includes a first fuse F1, a first terminal of the first fuse F1 is connected to a first pin (ACL1), and a second terminal of the first fuse F1 is connected to a first terminal of the first capacitor CX1 and First input terminal 10 of the rectifier circuit 40.
  • the second overcurrent protection circuit includes a second fuse F2, a first end of the second fuse F2 is connected to the second pin and a fourth pin (ACL2), and a second end of the second fuse F2 is connected to the first capacitor CX1
  • the second terminal of the second capacitor CX2 is connected to the second input terminal 20 of the rectifier circuit 40
  • the third overcurrent protection circuit includes a third fuse F3, and the first terminal of the third fuse F3 is connected
  • the second pin (ACN) the second terminal of the third fuse F3 is connected to the second terminal of the second capacitor CX2, and is connected to the third input terminal of the rectifier circuit 40.
  • the step-down circuit 30 includes a first capacitor CX1 and a second capacitor CX2.
  • the first terminal of the first capacitor CX1 is connected to the first overcurrent protection circuit
  • the second terminal of the first capacitor CX1 and the first terminal of the second capacitor CX2 are connected to the second overcurrent protection circuit together
  • the first terminal of the second capacitor CX2 is The two terminals are connected to a third overcurrent protection circuit.
  • the more specific connection relationship is as described above.
  • the rectifier circuit 40 includes a diode D1, a diode D2, a diode D5, a diode D6, a diode D14, and a diode D15.
  • the anode of the diode D15 is connected to the cathode of the diode D14, and the node of the anode of the diode D15 and the cathode of the diode D14 is the first input terminal of the rectification circuit 40;
  • the anode of the diode D2 is connected to the cathode of the diode D6, and the diode D2
  • the node of the anode connected to the cathode of the diode D6 is the second input of the rectifier circuit 40;
  • the anode of the diode D1 is connected to the cathode of the diode D5, and the node of the anode of the diode D1 and the cathode of the diode D5 is the first node of the rectifier circuit 40.
  • GND1 first power ground
  • the cathode of diode D15, the cathode of diode D2 and the cathode of diode D1 are the output terminals of rectifier circuit 40, It is commonly connected to the leakage current limiting circuit 50 and the output circuit 70.
  • the leakage current limiting circuit 50 includes a current limiting circuit and a control circuit.
  • the current limiting circuit includes a diode D3, a resistor R5, a resistor R6, and a resistor R9.
  • the control circuit includes a control chip U1, a capacitor C5, a capacitor C7, a resistor R7, a resistor R8, and a capacitor C6.
  • the switch 80 is built in the control chip U1 as an example.
  • the equivalent circuit diagram inside the control chip U1 is shown in FIG. 3.
  • the switch 80 includes a MOS transistor Q, which is built into the control chip U1;
  • the control chip U1 includes a power supply circuit, a logic control circuit, and a driving circuit. An input end of the power supply circuit is connected to an eighth pin of the control chip U1, and an output end of the power supply circuit is connected to the logic control circuit.
  • the logic control circuit is connected to the input terminal of the driving circuit, the output terminal of the driving circuit is connected to the gate of the MOS tube Q, and the drain of the MOS tube Q is connected to the third pin of the control chip U1 and The fourth pin, the source of the MOS transistor Q and the logic control circuit are connected to the fifth pin of the control chip U1 together.
  • the anode of the diode D3 is connected to the output terminal of the rectifier circuit 40, the cathode of the diode D3 is connected to the first terminal of the resistor R5, the second terminal of the resistor R5 is connected to the first terminal of the resistor R6, and the second terminal of the resistor R6 is connected to the first of the resistor R9 Terminal, the second terminal of the resistor R9 is connected to the power supply terminal of the control circuit (that is, the eighth pin of the control chip U1).
  • the diode D3 may be omitted.
  • the eighth pin of the control chip U1 is used as the power supply end of the control circuit and is connected to the second end of the resistor R9.
  • the eighth pin of the control chip U1 is also connected to the first power ground (GND1) through the capacitor C5; Pin is connected to the first power ground (GND1), the sixth pin of the control chip U1 is connected to the first power ground (GND1) through the capacitor C6, and the fifth pin of the control chip U1 is connected to the first power ground (GND1) through the resistor R8,
  • the capacitor C7 is connected in parallel with the resistor R7 and then in parallel at both ends of the resistor R8; the third pin and the fourth pin of the control chip U1 are short-circuited and connected to the second power ground (GND).
  • the switch 80 of the present invention may also be externally disposed outside the control chip U1.
  • This embodiment uses a switch 80 built into the control chip U1.
  • the control chip U1 may use a control chip of the DL002 type; when the switch 80 adopts an external structure, the control chip U1 may use a DIO8275 type control chip.
  • the switch 80 may be an NMOS tube.
  • first power ground (GND1) and the second power ground (GND) are both power grounds, where the first power ground (GND1) is the power ground between the rectifier circuit 40 and the leakage current limit circuit 50
  • the second power source ground (GND) is a power source ground between the leakage current limiting circuit 50 and the output circuit 70.
  • the signal sampling circuit 60 includes a filter rectifier circuit and a MOS transistor Q1.
  • the input terminal of the filter rectifier circuit is connected to the second input terminal 20
  • the output terminal of the filter rectifier circuit is connected to the gate of the MOS tube Q1
  • the source of the MOS tube Q1 is connected to the first power ground
  • the drain of the MOS tube Q1 is connected to the leakage current.
  • Limiting circuit 50 Limiting circuit 50.
  • the filter rectification circuit includes an inductor L2, a capacitor C9, a diode D9, a diode D10, a capacitor C10, a resistor R16, and a voltage regulator D11.
  • the first terminal of the inductor L2 is connected to the second input terminal 20 (ACL2), the second terminal of the inductor L2 is connected to the first terminal of the capacitor C9, and the second terminal of the capacitor C9 is respectively connected to the anode of the diode D9 and the cathode of the diode D10; the diode D9
  • the cathode of diode D9 is connected to the gate of MOS tube Q1, the cathode of diode D9 is also connected to the first power ground (GND1) through capacitor C10; the anode of diode D10 is connected to the first power ground (GND1), and resistor R9 is connected in parallel at both ends of capacitor C10.
  • the cathode of the voltage regulator D11 is connected to the gate of the MOS transistor Q1, and the anode of the voltage regulator D11 is connected to the first power ground (GND1).
  • the signal sampling circuit 60 further includes an anti-reverse circuit connected between the leakage current limiting circuit 50 and the drain of the MOS transistor Q1.
  • the anti-reverse circuit includes a diode D12 and a diode D13.
  • the anode of the diode D12 is connected to the leakage current limiting circuit 50 (as shown in FIG. 2, the anode of the diode D12 is connected to the fourth pin of the control chip U1 and the second power ground (GND)), and the cathode of the diode D12 is connected to the drain of the MOS tube Q1.
  • the diode D13 is connected in parallel with the diode D12.
  • the anti-reverse circuit is composed of the diode D12 and the diode D13.
  • the anti-reverse circuit may also be composed of any one of the diode D12 and the diode D13, or, in other embodiments, In some embodiments, more than two diodes can also be used to achieve anti-reverse effect.
  • the inductor L2 can play a filtering role
  • the capacitor C9 can play a role of detecting a signal input from the second input terminal 20 (ACL2)
  • the diode D9 can play a role of rectification
  • the capacitor C10 can play a role of charging and The function of voltage maintenance
  • the resistor R16 can play the role of discharge
  • the voltage regulator D11 can play the role of clamping, to prevent the MOS tube Q1 from being damaged.
  • the output circuit 70 includes: a capacitor C2, a resistor R2, a resistor R3, a diode D7, a transformer L1, a capacitor CE1, a resistor R15, a resistor R11, a resistor R12, a diode D8, a resistor R10, a capacitor C4, a capacitor C8, Resistor R13, resistor R17, MOS transistor Q2, resistor Rs1, resistor Rs2 and chip U2.
  • the transformer L1 includes a main winding L1A and an auxiliary power supply winding L1B.
  • the first terminal of the capacitor C2 is connected to the output terminal of the rectifier circuit 40, the second terminal of the capacitor C2 is connected to the second power ground (GND); the first terminal of the resistor R2 is connected to the first terminal of the capacitor C2, and the second terminal of the resistor R2 passes
  • the resistor R3 is connected to the PIN5 pin of the chip U2; the cathode of the diode D7 is connected to the first end of the resistor R2, the anode of the diode D7 is connected to the negative output terminal (LED-) of the output circuit 70 through the main winding L1A, and the anode of the diode D7 is also connected to the MOS
  • the drain of the tube Q2; the capacitor CE1 is connected to the positive output terminal (LED +) and the negative output terminal (LED-) of the output circuit 70.
  • the resistor R15 is connected in parallel at both ends of the capacitor CE1.
  • the PIN5 pin of chip U2 is connected to the cathode of diode D8 through resistor R10.
  • the anode of diode D8 is connected to the second power ground (GND) through auxiliary power winding L1B.
  • the anode of diode D8 is also connected to the second power ground through resistor R11 and resistor R12 in order.
  • (GND) the connection node of resistor R11 and resistor R12 is also connected to the PIN4 pin of chip U2; the PIN2 pin of the chip is grounded, and the capacitor C4 is connected between the PIN5 pin and PIN2 pin of chip U2;
  • the pin is connected to the second power ground (GND) through capacitor C8 and resistor R13 in order.
  • the PIN2 pin of chip U2 is connected to the gate of MOS tube Q2 through resistor R17.
  • the PIN1 pin of chip U2 is connected to the source of MOS tube Q2 and chip U2.
  • the PIN1 pin is also connected to the second power ground (GND) through a resistor Rs1 and a resistor Rs2, respectively.
  • the electronic ballast and mains-compatible LED driving circuit of this embodiment can be compatible with mains (Type Type B) single-ended / double-ended and compatible electronic ballasts (Type A type), can also be used as Type A or Type Type B is used alone.
  • Type A type single-ended / double-ended and compatible electronic ballasts
  • the signal uses the capacitor C9 in the circuit to detect that the signal input by ACL2 is a low-frequency 50 / 60Hz AC signal. At this time, no current flows through the diode D9 by the capacitor C9, and the gate of the MOS tube Q1 does not reach its turn-on voltage. At this time, the MOS tube Q1 is in the off state, and the signal using the circuit has no effect.
  • the control chip U1 in the leakage current limiting circuit 50 detects the voltage of its fifth pin, and keeps the built-in switch 80 closed when the voltage of the fifth pin does not reach the threshold, so that the first power ground (GND1) and The second power source ground (GND) is connected, and the output circuit 70 can output a constant current normally, and supplies power to the load (LED lamp).
  • the voltage at the fifth pin of the control chip U1 is the sampling voltage of the loop voltage of the LED driving circuit.
  • the sampling voltage can feedback the loop voltage.
  • By detecting the sampling voltage (the voltage of the fifth pin of the control chip U1) ) Can detect the loop voltage of the LED drive circuit.
  • the control chip U1 in the leakage current limiting circuit 50 detects the voltage of its fifth pin. When the voltage of the fifth pin does not reach the threshold, the built-in switch 80 is kept closed, so that the first power ground (GND1) and the first The two power grounds (GND) are connected, and the output circuit 70 can output normally and constantly, and supply power to the load (LED light).
  • the control chip U1 in the leakage current limit circuit 50 determines that there is a leakage current Then, the built-in switch 80 is controlled to be turned off. At this time, the first power ground (GND1) and the second power ground (GND) are turned off, and the leakage current loop is disconnected, which reduces the leakage current and prevents the human body from being electrocuted. Specifically, as shown in FIG. 3, the logic control circuit of the control chip U1 detects the voltage of the fifth pin in real time, and judges the loop impedance of the LED driving circuit based on the voltage of the fifth pin.
  • the impedance of the human body is about 1 ⁇ 2K ⁇ .
  • the loop impedance is ⁇ 500 ⁇ and the instantaneous peak value of the leakage current is> 5mA
  • the voltage generated by the leakage current on R7 and R8 reaches the IC leakage current protection trigger point voltage (threshold value).
  • Logic control The circuit gives a low-voltage control signal to the drive circuit, turns off the MOS tube Q, disconnects the leakage current loop, reduces the leakage current, and after a period of shutdown, the logic control will turn on the MOS tube Q again, and once the current peak reaches 5mA, it turns off the MOS immediately.
  • Tube Q reduce the leakage current, so periodic detection, so that the effective value of the leakage current can be kept within 5mA.
  • the leakage current of the MOS tube Q is less than 5 mA, the MOS tube Q is always turned on, so that the output circuit 70 at the back can work normally.
  • the fourth case when connected as a Type A (connected to an electronic ballast):
  • the first capacitor CX1 and / or the second capacitor CX2 in the step-down circuit 30 step down the high-frequency AC voltage output by the electronic ballast and output an AC voltage within a certain range (for example, it can be ⁇ 300V, 60 ⁇ 80KHz AC voltage), in order to protect the back-end circuit, so that the back-end circuit will not be damaged by excessive voltage breakdown, and at this time, the output circuit 70 can output a normal constant current, and supply power to the load (LED light). .
  • a certain range for example, it can be ⁇ 300V, 60 ⁇ 80KHz AC voltage
  • the leakage current limiting circuit 50 cannot detect the high-frequency signal output by the electronic ballast in this case, the leakage current limiting circuit 50 has no control function.
  • the first power ground (GND1) and the second power ground ( GND) cannot be turned on normally, resulting in that the output circuit 70 cannot form a current loop through the leakage current limiting circuit 50; and because the signal sampling circuit 60 can detect that the signal at the ACL2 terminal is a high frequency (60 ⁇ 80KHz) high frequency signal, at this time there is The current flows to the gate of the MOS transistor Q1, and the MOS transistor Q1 is turned on.
  • the first power ground (GND1) and the second power ground (GND) are turned on, so that the output circuit 70 can form a current loop through the signal sampling circuit 60 to avoid Because the leakage current limiting circuit 50 cannot work, the output circuit 70 cannot work without current.
  • the present invention also provides an LED lamp, which may include the aforementioned electronic ballast and a mains-compatible LED drive circuit.
  • the invention can be compatible with the electronic ballast and the mains at the same time.
  • the high-frequency voltage output by the electronic ballast can be automatically reduced to effectively protect the subsequent circuit.
  • the mains When the mains is connected, it can meet the single-end connection. Electrical and double-terminal power, and double-terminal power can pass the leakage current test.
  • the electronic ballast of a fluorescent lamp of the LED lamp of the present invention can also be used, the original fluorescent lamp can be directly replaced with the LED lamp of the present invention, thereby saving labor costs; at the end of the life of the electronic ballast of a fluorescent lamp, only The electronic ballast of the fluorescent lamp is removed, and the LED lamp of the present invention can be continuously used by simply modifying the circuit, thereby saving the cost of purchasing a lamp tube.
  • the leakage current protection circuit when one end of the LED lamp of the present invention is charged, at this time, when the human body touches the other end of the lamp tube, there is no danger of electric shock, and the safety performance is high.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

本发明涉及一种兼容电子镇流器和市电的LED驱动电路及LED灯具,包括:用于接收交流电的第一输入端、第二输入端、与第一输入端和第二输入端连接的降压电路、与降压电路连接的整流电路、与整流电路连接的泄漏电流限制电路、与泄漏电流限制电路连接的恒流输出电路、分别与第二输入端和泄漏电流限制电路连接的信号采样电路、以及与泄漏电流限制电路连接的开关。本发明可以同时兼容电子镇流器和市电,在接电子镇流器时可自动降低电子镇流器输出的高频电压,有效保护后级电路;在接市电时,可满足单端接电和双端接电,且双端接电可以通过泄漏电流测试。

Description

一种兼容电子镇流器和市电的LED驱动电路及LED灯具 技术领域
本发明涉及LED技术领域,更具体地说,涉及一种兼容电子镇流器和市电的LED驱动电路及LED灯具。
背景技术
近年来,在全面提倡节能减排的大形式和环境之下,对节能降耗管控力度的不断加大,对环保的重视程度越来越重视,人们环保意识也不断提高,LED光源是新一代半导体光源,与现有光源相比具有高效、寿命长特点。LED属于绿色环保光源,无汞、铅等有害物质,以LED作为光源的照明产品迅猛发展,替代传统照明已成为趋势。
目前市面上LED灯管基本分为以下类型:
(1)只满足Type A(电子镇流器)类型的灯管;
(2)只满足Type B(市电)类型的灯管,但只能单端接电,双端接电无法通过泄漏电流测试;
(3)满足Type A+Type B(单端接电)类型的灯管,但作为Type B使用时,只能单端接电,双端接电无法通过UL认证标准的泄漏电流测试。
技术问题
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种兼容电子镇流器和市电的LED驱动电路及LED灯具。
技术解决方案
本发明解决其技术问题所采用的技术方案是:构造一种兼容电子镇流器和市电的LED驱动电路,包括:
用于接收交流电的第一输入端、第二输入端、与所述第一输入端和所述第二输入端连接的降压电路、与所述降压电路连接的整流电路、与所述整流电路连接的泄漏电流限制电路、与所述泄漏电流限制电路连接的恒流输出电路、分别与所述第二输入端和所述泄漏电流限制电路连接的信号采样电路、以及与所述泄漏电流限制电路连接的开关;
在所述交流电为电子镇流器输出的高频交流电时,所述降压电路对所述高频交流电进行降压,并输出降压信号;所述整流电路用于将所述降压信号或者低频的交流电整流为直流电;所述信号采样电路检测所述第二输入端的交流电,并在所述第二输入端的交流电为高频交流电时旁路所述泄漏电流限制电路;
在所述交流电为低频交流电时,所述泄漏电流限制电路用于检测LED驱动电路的回路电压,并在LED驱动电路的回路电压达到阈值时控制所述开关断开,使所述恒流输出电路与所述整流电路断开。。
优选地,所述第一输入端包括第一管脚和第二管脚;
所述兼容电子镇流器和市电的LED驱动电路还包括串联在所述第一管脚与所述降压电路之间的第一过流保护电路、串联在所述第二管脚与所述降压电路之间的第三过流保护电路、以及串联在所述第二输入端与所述降压电路之间的第二过流保护电路。
优选地,所述降压电路包括第一电容和第二电容;
所述第一电容的第一端与所述第一过流保护电路连接,所述第一电容的第二端和所述第二电容的第一端一并连接所述第二过流保护电路,所述第二电容的第二端与所述第三过流保护电路连接。
优选地,所述泄漏电流限制电路包括:限流电路和控制电路;
所述限流电路的输入端与所述整流电路的输出端连接,所述限流电路的输出端与所述控制电路的供电端连接。
优选地,所述限流电路包括二极管D3、电阻R5、电阻R6和电阻R9;
所述二极管D3的阳极连接所述整流电路的输出端,所述二极管D3的阴极连接所述电阻R5的第一端,所述电阻R5的第二端连接所述电阻R6的第一端,所述电阻R6的第二端连接所述电阻R9的第一端,所述电阻R9的第二端连接所述控制电路的供电端。
优选地,所述控制电路包括控制芯片U1、电容C5、电容C7、电阻R7、电阻R8、电容C6;
所述开关包括MOS管Q,所述MOS管Q内置于所述控制芯片U1内;
所述控制芯片U1包括供电电路、逻辑控制电路和驱动电路,所述供电电路的输入端连接所述控制芯片U1的第八引脚,所述供电电路的输出端连接所述逻辑控制电路,所述逻辑控制电路连接所述驱动电路的输入端,所述驱动电路的输出端连接所述MOS管Q的栅极,所述MOS管Q的漏极连接所述控制芯片U1的第三引脚和第四引脚,所述MOS管Q的源极和所述逻辑控制电路一并连接所述控制芯片U1的第五引脚;
所述控制芯片U1的第八引脚作为所述控制电路的供电端连接所述电阻R9的第二端,所述控制芯片U1的第八引脚还通过所述电容C5连接第一电源地;
所述控制芯片U1的第二引脚连接第一电源地,所述控制芯片U1的第六引脚通过所述电容C6连接第一电源地,所述控制芯片U1的第五引脚通过所述电阻R8连接第一电源地,所述电容C7与所述电阻R7并联后再并联在所述电阻R8的两端;所述控制芯片U1的第三引脚和第四引脚短接并连接第二电源地。
优选地,所述信号采样电路包括:滤波整流电路和MOS管Q1;
所述滤波整流电路的输入端与所述第二输入端连接,所述滤波整流电路的输出端与所述MOS管Q1的栅极连接,所述MOS管Q1的源极连接第一电源地,所述MOS管Q1的漏极连接所述泄漏电流限制电路。
优选地,所述滤波整流电路包括:电感L2、电容C9、二极管D9、二极管D10、电容C10、电阻R16、稳压管D11;
所述电感L2的第一端连接所述第二输入端,所述电感L2的第二端连接所述电容C9的第一端,所述电容C9的第二端分别连接所述二极管D9的阳极和所述二极管D10的阴极;所述二极管D9的阴极连接所述MOS管Q1的栅极,所述二极管D9的阴极还通过所述电容C10连接第一电源地;所述二极管D10的阴极连接第一电源地,所述电阻R9并联在所述电容C10的两端,所述稳压管D11的阴极连接所述MOS管Q1的栅极,所述稳压管D11的阳极连接第一电源地。
优选地,所述信号采样电路还包括:连接在所述泄漏电流限制电路与所述MOS管Q1的漏极之间的防反电路;
所述防反电路包括二极管D12和二极管D13;
所述二极管D12的阳极连接所述泄漏电流限制电路,所述二极管D12的阴极连接所述MOS管Q1的漏极,所述二极管D13与所述二极管D12并联。
本发明还提供一种LED灯具,包括以上所述的兼容电子镇流器和市电的LED驱动电路。
有益效果
实施本发明的兼容电子镇流器和市电的LED驱动电路,具有以下有益效果:本发明可以同时兼容电子镇流器和市电,在接电子镇流器时可自动降低电子镇流器输出的高频电压,有效保护后级电路;在接市电时,可满足单端接电和双端接电,且双端接电可以通过泄漏电流测试。
另外,本发明的LED灯具在荧光灯的电子镇流器还可以使用时,可直接用本发明的LED灯替换原有荧光灯,节省人工成本;在荧光灯的电子镇流器寿命结束时,也只需去掉荧光灯电子镇流器,对电路进行简单改装便可继续使用本发明的LED灯,节省购置灯管成本。同时由于有泄漏电流保护电路,本发明的LED灯一端带电时,此时人体触摸到灯管另一端时不会有触电的危险,安全性能高。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明兼容电子镇流器和市电的LED驱动电路的原理框图;
图2是本发明兼容电子镇流器和市电的LED驱动电路的电路原理图;
图3为开关内置于控制芯片U1内的原理框图。
本发明的最佳实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
参考图1,图1为本发明兼容电子镇流器和市电的LED驱动电路的原理框图。如图1所示,本发明实施例的兼容电子镇流器和市电的LED驱动电路包括用于输入交流电的第一输入端10、第二输入端20、与第一输入端10和第二输入端20连接的降压电路30、与降压电路30连接的整流电路40、与整流电路40连接的泄漏电流限制电路50、与泄漏电流限制电路50连接的恒流输出电路70、分别与第二输入端20和泄漏电流限制电路50连接的信号采样电路60、以及与泄漏电流限制电路50连接的开关80。
具体的,第一输入端10和第二输入端20所输入的交流电包括电子镇流器输出的高频交流电和低频交流电。其中,当所接的外部电源为市电时,所输入的交流电为50/60Hz的低频交流电;当所接的外部电源为电子镇流器(实际为市电经过电子镇流器后才输入第一输入端10和第二输入端20)时,所输入的交流电为高频交流电。一般地,电子镇流器输出的高频交流电为60~80KHz、600~800V范围。
本发明实施例中,降压电路30主要在所输入的交流电为高频交流电时产生作用。即在所输入的交流电为高频交流电时(即外部电源为市电,且需先经过电子镇流器),降压电路30对高频交流电进行降压,并输出降压信号。通过在第一输入端10和第二输入端20之间设置该降压电路30,可以在接入的交流电为高频交流电时,有效降低电子镇流器输出的高频交流电压,避免高频交流电压对后级电路产生的影响,有效保护后级电路。而且由于设置该降压电路30,可以使采用本发明的LED驱动电路的LED灯管在替代传统的荧光灯管时,可直接兼容电子镇流器。例如,在荧光灯的电子镇流器还可以使用的时候,可直接采用本发明的LED驱动电路的LED灯管替代原有的荧光灯,节省人工成本,同时,用LED灯管替代荧光灯管,还可以达到有效节能的目的。另外,在原有荧光灯管的电子镇流器寿命结束时,也只需去掉荧光灯管的电子镇流器,对电路进行简单改装,即可继续采用本发明的LED驱动电路的LED灯管,大大节省了购置灯管的成本。
进一步地,本发明实施例的降压电路30在输入的交流电为低频交流电时,该降压电路30不产生作用,对低频交流电不产生影响,所输入的低频交流电直接流入后级电路。
可选的,本发明实施例的降压电路30可以通过电容实现。其中,所选择的电容为耐压电容,例如,可以采用容值为1~4.7nF的耐压电容。
本发明实施例中,整流电路40用于将降压信号或者低频的交流电整流为直流电。具体的,当所输入的交流电为低频交流电时(即外部电源为市电,不接电子镇流器),所输入的低频交流电直接流入整流电路40,由整流电路40对该低频交流电进行整流处理,并整流为相应的直流电以提供给后级电路。当所输入的交流电为高频交流电时(由电子镇流器输出高频交流电),该高频交流电先由降压电路30进行降压处理后,再传送至整流电路40,整流电路40再对降压电路30所输出的降压信号进行整流处理,并整流为相应的直流电以提供给后级电路。
可选的,本发明实施例的整流电路40可以为桥式整流电路。
本发明实施例中,泄漏电流限制电路50用于检测LED驱动电路的回路电压,并在LED驱动电路的回路电压达到阈值时控制开关80断开,使恒流输出电路70与整流电路40断开。具体的,当作为Type B类型正常接电时(即灯管接市电),该泄漏电流限制电路50在所输入的交流电为低频交流电时不对开关80产生影响,开关80保持关闭状态,整流电路40输出的直流电传送至输出电路70,输出电路70可正常输出电流给负载(LED灯)供电;当作为Type B类型使用,且当第一输入端10或第二输入端20中的任一端接入到市电的L端,另一端有人体阻抗接到大地时,该泄漏电流限制电路50即可通过检测其内置的电路检测LED驱动电路的回路电压,并在回路电压达到阈值时,控制开关80断开,以断开泄漏电流,避免发生触电危险。即当第一输入端10或第二输入端20中的任一端接入到市电的L端时,若人体触摸到另一端时,该泄漏电流限制电路50即可检测到有人体阻抗到大地,判断有泄漏电流,该泄漏电流限制电路50即控制开关80断开,以将第一电源地和第二电源地断开,输出电路70不能输出电流,断开了泄漏电流回路,降低泄漏电流,避免人体发生触电。
可选的,该泄漏电流限制电路50可以包括限流电路和控制电路。
限流电路的输入端与整流电路40的输出端连接,限流电路的输出端与控制电路的供电端连接。具体的,限流电路主要用于对流入控制电路的供电电压起到限流作用,而控制电路主要用于检测LED驱动电路的回路电压,并在回路电压达到阈值时输出控制信号控制开关80断开,以使第一电源地和第二电源地断开。
本发明实施例中,开关80主要用于根据控制电路输出的控制信号断开或闭合。其中,该开关80可以为NMOS管。
本发明实施例中,信号采样电路60用于检测第二输入端20的交流电,并在第二输入端20的交流电为高频交流电时旁路泄漏电流限制电路50。具体的,当所输入的交流电为低频交流电时,该信号采样电路60不工作,泄漏电流限制电路50正常工作。当第二输入端20所输入的交流电为高频交流电时,该信号采样电路60启动,并将泄漏电流限制电路50旁路。在此需要说明的是,由于本发明实施例的泄漏电流限制电路50在作为Type A使用时(即所输入的交流电为高频交流电),由于该泄漏电流限制电路50无法检测电子镇流器的高频信号,该泄漏电流限制电路50无控制作用,会导致第一电源地和第二电源地无法正常导通,输出电路70无法通过该泄漏电流限制电路50形成电流回路。所以通过设置该信号采样电路60,可以在所输入的交流电为高频交流电时启动,使第一电源地和第二电源地导通,输出电路70可以通过信号采样电路60形成电流回路,以正常输出电流给负载供电,避免了因为泄漏电流限制电路50不能工作而导致输出电路70无电流回路无法正常输出电流给负载供电。
进一步地,该兼容电子镇流器和市电的LED驱动电路还包括串联在第一管脚与降压电路30之间的第一过流保护电路、串联在第二管脚与降压电路30之间的第三过流保护电路、以及串联在第二输入端20与降压电路30之间的第二过流保护电路。
以下以一个具体的实施例对本发明的兼容电子镇流器和市电的LED驱动电路的工作原理进行说明。
如图2所示,第一输入端10包括第一管脚和第二管脚;第二输入端20包括第三管脚和第四管脚。其中,第一管脚为图2中的ACL1,第二管脚为图2中ACN,第三管脚短接后为图2中的ACL2。
第一过流保护电路包括第一熔断器F1,第一熔断器F1的第一端连接第一管脚(ACL1),第一熔断器F1的第二端连接第一电容CX1的第一端和整流电路40的第一输入端10。第二过流保护电路包括第二熔断器F2,第二熔断器F2的第一端连接第二管脚和第四管脚(ACL2),第二熔断器F2的第二端连接第一电容CX1的第二端和第二电容CX2的第一端,并连接至整流电路40的第二输入端20;第三过流保护电路包括第三熔断器F3,第三熔断器F3的第一端连接第二管脚(ACN),第三熔断器F3的第二端连接第二电容CX2的第二端,并连接至整流电路40的第三输入端。
降压电路30包括第一电容CX1和第二电容CX2。第一电容CX1的第一端与第一过流保护电路连接,第一电容CX1的第二端和第二电容CX2的第一端一并连接第二过流保护电路,第二电容CX2的第二端与第三过流保护电路连接。其中,更具体的连接关系如前述。
整流电路40包括二极管D1、二极管D2、二极管D5、二极管D6、二极管D14以及二极管D15。
其中,二极管D15的阳极与二极管D14的阴极连接,且二极管D15的阳极与二极管D14的阴极连接的节点为整流电路40的第一输入端;二极管D2的阳极与二极管D6的阴极连接,且二极管D2的阳极与二极管D6的阴极连接的节点为整流电路40的第二输入端;二极管D1的阳极与二极管D5的阴极连接,且二极管D1的阳极与二极管D5的阴极连接的节点为整流电路40的第三输入端;二极管D14的阳极、二极管D6的阳极和二极管D5的阳极共同连接第一电源地(GND1),二极管D15的阴极、二极管D2的阴极和二极管D1的阴极为整流电路40的输出端,共同连接至泄漏电流限制电路50和输出电路70。
泄漏电流限制电路50包括:限流电路和控制电路。
具体的,如图2所示,限流电路包括二极管D3、电阻R5、电阻R6和电阻R9。控制电路包括控制芯片U1、电容C5、电容C7、电阻R7、电阻R8、电容C6。进一步地,在该实施例中,以开关80内置于控制芯片U1内为例。其中,控制芯片U1内部的等效电路图如图3所示。
开关80包括MOS管Q,MOS管Q内置于所述控制芯片U1内;
所述控制芯片U1包括供电电路、逻辑控制电路和驱动电路,所述供电电路的输入端连接所述控制芯片U1的第八引脚,所述供电电路的输出端连接所述逻辑控制电路,所述逻辑控制电路连接所述驱动电路的输入端,所述驱动电路的输出端连接所述MOS管Q的栅极,所述MOS管Q的漏极连接所述控制芯片U1的第三引脚和第四引脚,所述MOS管Q的源极和所述逻辑控制电路一并连接所述控制芯片U1的第五引脚。
二极管D3的阳极连接整流电路40的输出端,二极管D3的阴极连接电阻R5的第一端,电阻R5的第二端连接电阻R6的第一端,电阻R6的第二端连接电阻R9的第一端,电阻R9的第二端连接控制电路的供电端(即控制芯片U1的第八引脚)。当然,在其他实施例中,也可以省略二极管D3。
控制芯片U1的第八引脚作为控制电路的供电端连接电阻R9的第二端,控制芯片U1的第八引脚还通过电容C5连接第一电源地(GND1);控制芯片U1的第二引脚连接第一电源地(GND1),控制芯片U1的第六引脚通过电容C6连接第一电源地(GND1),控制芯片U1的第五引脚通过电阻R8连接第一电源地(GND1),电容C7与电阻R7并联后再并联在电阻R8的两端;控制芯片U1的第三引脚和第四引脚短接并连接第二电源地(GND)。当然,在其他实施例中,本发明的开关80也可以外置于控制芯片U1外。该实施例采用的是开关80内置于控制芯片U1内。其中,当开关80采用内置结构时,控制芯片U1可以采用DL002型号的控制芯片;当开关80采用外置结构时,控制芯片U1可以采用DIO8275型号的控制芯片。开关80可以采用NMOS管。
这里需要说明的是,第一电源地(GND1)和第二电源地(GND)均为电源地,其中,第一电源地(GND1)为整流电路40至泄漏电流限制电路50之间的电源地,第二电源地(GND)为泄漏电流限制电路50至输出电路70之间的电源地。
信号采样电路60包括:滤波整流电路和MOS管Q1。
滤波整流电路的输入端与第二输入端20连接,滤波整流电路的输出端与MOS管Q1的栅极连接,MOS管Q1的源极连接第一电源地,MOS管Q1的漏极连接泄漏电流限制电路50。
具体的,滤波整流电路包括:电感L2、电容C9、二极管D9、二极管D10、电容C10、电阻R16、稳压管D11。
电感L2的第一端连接第二输入端20(ACL2),电感L2的第二端连接电容C9的第一端,电容C9的第二端分别连接二极管D9的阳极和二极管D10的阴极;二极管D9的阴极连接MOS管Q1的栅极,二极管D9的阴极还通过电容C10连接第一电源地(GND1);二极管D10的阳极连接第一电源地(GND1),电阻R9并联在电容C10的两端,稳压管D11的阴极连接MOS管Q1的栅极,稳压管D11的阳极连接第一电源地(GND1)。
进一步地,该信号采样电路60还包括:连接在泄漏电流限制电路50与MOS管Q1的漏极之间的防反电路。防反电路包括二极管D12和二极管D13。
二极管D12的阳极连接泄漏电流限制电路50(如图2所示,二极管D12的阳极连接控制芯片U1的第四引脚和第二电源地(GND)),二极管D12的阴极连接MOS管Q1的漏极,二极管D13与二极管D12并联。可以理解地,在该实施例中,防反电路由二极管 D12和二极管D13组成,在其他一些实施例中,该防反电路也可以由二极管D12和二极管D13中的任意一个组成,或者,在其他一些实施例中,还可以采用两个以上的二极管来实现防反作用。
在该实施例中,电感L2可以起到滤波作用,电容C9可以起到对第二输入端20(ACL2)输入的信号的检测作用,二极管D9可以起到整流作用,电容C10可以起到充电和电压维持的作用,电阻R16可以起到放电的作用,稳压管D11可以起到钳位作用,避免MOS管Q1损坏。
如图2所示,输出电路70包括:电容C2、电阻R2、电阻R3、二极管D7、变压器L1、电容CE1、电阻R15、电阻R11、电阻R12、二极管D8、电阻R10、电容C4、电容C8、电阻R13、电阻R17、MOS管Q2、电阻Rs1、电阻Rs2和芯片U2。变压器L1包括主绕组L1A和辅助供电绕组L1B。
电容C2的第一端连接整流电路40的输出端,电容C2的第二端连接第二电源地(GND);电阻R2的第一端连接电容C2的第一端,电阻R2的第二端通过电阻R3连接芯片U2的PIN5引脚;二极管D7的阴极连接电阻R2的第一端,二极管D7的阳极通过主绕组L1A连接输出电路70的负输出端(LED-),二极管D7的阳极还连接MOS管Q2的漏极;电容CE1连接在输出电路70的正输出端(LED+)和负输出端(LED-)电阻R15并联在电容CE1的两端。
芯片U2的PIN5引脚通过电阻R10连接二极管D8的阴极,二极管D8的阳极通过辅助供电绕组L1B连接第二电源地(GND),二极管D8的阳极还依次通过电阻R11和电阻R12连接第二电源地(GND),电阻R11和电阻R12的连接节点还连接芯片U2的PIN4引脚;芯片的PIN2引脚接地,电容C4连接在芯片U2的PIN5引脚和PIN2引脚之间;芯片U2的PIN3引脚依次通过电容C8和电阻R13连接第二电源地(GND),芯片U2的PIN2引脚通过电阻R17连接MOS管Q2的栅极,芯片U2的PIN1引脚连接MOS管Q2的源极,芯片U2的PIN1引脚还分别通过电阻Rs1、电阻Rs2连接第二电源地(GND)。
该实施例的兼容电子镇流器和市电的LED驱动电路可以同时兼容市电(Type B类型)单端接电/双端接电和兼容电子镇流器(Type A类型),也可以作为Type A类型或者Type B类型单独使用。下面以不同的情形进行说明:
第一种情形:作为Type B类型(市电)双端正常接电时:
信号采用电路中的电容C9检测到ACL2输入的信号为低频50/60Hz的交流电信号,此时,由电容C9的作用,没有电流流过二极管D9,MOS管Q1的栅极未达到其开启电压,此时,MOS管Q1处于截止状态,信号采用电路不产生作用。泄漏电流限制电路50中的控制芯片U1检测其第五引脚的电压,在第五引脚的电压未达到阈值时,使内置的开关80保持闭合状态,以使第一电源地(GND1)和第二电源地(GND)连通,输出电路70可以正常恒流输出,给负载(LED灯)供电。可以理解地,控制芯片U1在第五引脚的电压为LED驱动电路的回路电压的采样电压,该采样电压可以反馈回路电压的情况,通过检测该采样电压(控制芯片U1第五引脚的电压)可以检测LED驱动电路的回路电压。
第二种情形:作为Type B类型单端正常接电时:
第二输入端20(ACL2)没有电压,信号采样电路60检测到ACL2端没有输入信号,此时,MOS管Q1也处于截止状态,信号采用电路不产生作用。泄漏电流限制电路50中的控制芯片U1检测其第五引脚的电压,在第五引脚的电压未达到阈值时,使内置的开关80保持闭合状态,使第一电源地(GND1)和第二电源地(GND)连通,输出电路70可以正常恒流输出,给负载(LED灯)供电。
第三种情形:作为Type B类型人体触摸到接电端时:
当灯管一端(假设第一输入端10接入到市电L端(火线)),人体触摸到另外一端(ACL2)时,此时,泄漏电流限制电路50中的控制芯片U1判断有泄漏电流,进而控制内置的开关80断开,此时,第一电源地(GND1)和第二电源地(GND)断开,泄漏电流回路被断开,降低了泄漏电流,使人体不会发生触电。具体的,如图3所示,控制芯片U1的逻辑控制电路实时检测第五引脚的电压,通过第五引脚的电压判断LED驱动电路的回路阻抗。一般情况下,人体阻抗为1~2KΩ左右,当回路阻抗≥500Ω,泄露电流瞬时峰值>5mA时,泄漏电流在R7,R8上产生的电压达到IC泄漏电流保护触发点电压(阈值),逻辑控制电路给驱动电路低电压控制信号,关断MOS管Q,断开泄漏电流回路,降低泄漏电流,关断一段时间后逻辑控制会重新打开MOS管Q再次检测,一旦电流峰值达到5mA立刻关断MOS管Q,降低泄漏电流,如此周期性检测,使得泄漏电流的有效值能保持在5mA以内。当MOS管Q开启后泄漏电流<5mA时,MOS管Q会一直打开,使得后面的输出电路70可以正常工作。
第四种情形:作为Type A类型(接电子镇流器)接电时:
降压电路30中的第一电容CX1和/或第二电容CX2对电子镇流器输出的高频交流电压进行降压,输出一定范围内的交流电压(例如,可以为<300V,60~80KHz的交流电压),进而达到保护后级电路的作用,使后级电路不会被过高的电压击穿导致损坏,而且,此时输出电路70可以正常恒流输出,给负载(LED灯)供电。
具体的,由于泄漏电流限制电路50在此情形下,无法检测电子镇流器输出的高频信号,泄漏电流限制电路50无控制作用,此时第一电源地(GND1)和第二电源地(GND)无法正常导通,导致输出电路70无法通过泄漏电流限制电路50形成电流回路;而由于信号采样电路60可以检测到ACL2端的信号为高频(60~80KHz)的高频信号,此时有电流流至MOS管Q1的栅极,MOS管Q1开启,此时第一电源地(GND1)和第二电源地(GND)导通,使输出电路70可以通过信号采样电路60形成电流回路,避免因为泄漏电流限制电路50不能工作而导致输出电路70无电流回路无法工作。
本发明还提供了一种LED灯具,该LED灯具可以包括前述的兼容电子镇流器和市电的LED驱动电路。
本发明可以同时兼容电子镇流器和市电,在接电子镇流器时可自动降低电子镇流器输出的高频电压,有效保护后级电路;在接市电时,可满足单端接电和双端接电,且双端接电可以通过泄漏电流测试。
另外,本发明的LED灯具在荧光灯的电子镇流器还可以使用时,可直接用本发明的LED灯替换原有荧光灯,节省人工成本;在荧光灯的电子镇流器寿命结束时,也只需去掉荧光灯电子镇流器,对电路进行简单改装便可继续使用本发明的LED灯,节省购置灯管成本。同时由于有泄漏电流保护电路,本发明的LED灯一端带电时,此时人体触摸到灯管另一端时不会有触电的危险,安全性能高。
以上实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据此实施,并不能限制本发明的保护范围。凡跟本发明权利要求范围所做的均等变化与修饰,均应属于本发明权利要求的涵盖范围。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

  1. 一种兼容电子镇流器和市电的LED驱动电路,其特征在于,包括:
    用于接收交流电的第一输入端、第二输入端、与所述第一输入端和所述第二输入端连接的降压电路、与所述降压电路连接的整流电路、与所述整流电路连接的泄漏电流限制电路、与所述泄漏电流限制电路连接的恒流输出电路、分别与所述第二输入端和所述泄漏电流限制电路连接的信号采样电路、以及与所述泄漏电流限制电路连接的开关;
    在所述交流电为电子镇流器输出的高频交流电时,所述降压电路对所述高频交流电进行降压,并输出降压信号;所述整流电路用于将所述降压信号或者低频的交流电整流为直流电;所述信号采样电路检测所述第二输入端的交流电,并在所述第二输入端的交流电为高频交流电时旁路所述泄漏电流限制电路;
    在所述交流电为低频交流电时,所述泄漏电流限制电路用于检测LED驱动电路的回路电压,并在LED驱动电路的回路电压达到阈值时控制所述开关断开,使所述恒流输出电路与所述整流电路断开。
  2. 根据权利要求1所述的兼容电子镇流器和市电的LED驱动电路,其特征在于,所述第一输入端包括第一管脚和第二管脚;
    所述兼容电子镇流器和市电的LED驱动电路还包括串联在所述第一管脚与所述降压电路之间的第一过流保护电路、串联在所述第二管脚与所述降压电路之间的第三过流保护电路、以及串联在所述第二输入端与所述降压电路之间的第二过流保护电路。
  3. 根据权利要求2所述的兼容电子镇流器和市电的LED驱动电路,其特征在于,所述降压电路包括第一电容和第二电容;
    所述第一电容的第一端与所述第一过流保护电路连接,所述第一电容的第二端和所述第二电容的第一端一并连接所述第二过流保护电路,所述第二电容的第二端与所述第三过流保护电路连接。
  4. 根据权利要求3所述的兼容电子镇流器和市电的LED驱动电路,其特征在于,所述泄漏电流限制电路包括:限流电路和控制电路;
    所述限流电路的输入端与所述整流电路的输出端连接,所述限流电路的输出端与所述控制电路的供电端连接。
  5. 根据权利要求4所述的兼容电子镇流器和市电的LED驱动电路,其特征在于,所述限流电路包括二极管D3、电阻R5、电阻R6和电阻R9;
    所述二极管D3的阳极连接所述整流电路的输出端,所述二极管D3的阴极连接所述电阻R5的第一端,所述电阻R5的第二端连接所述电阻R6的第一端,所述电阻R6的第二端连接所述电阻R9的第一端,所述电阻R9的第二端连接所述控制电路的供电端。
  6. 根据权利要求5所述的兼容电子镇流器和市电的LED驱动电路,其特征在于,所述控制电路包括控制芯片U1、电容C5、电容C7、电阻R7、电阻R8、电容C6;
    所述开关包括MOS管Q,所述MOS管Q内置于所述控制芯片U1内;
    所述控制芯片U1包括供电电路、逻辑控制电路和驱动电路,所述供电电路的输入端连接所述控制芯片U1的第八引脚,所述供电电路的输出端连接所述逻辑控制电路,所述逻辑控制电路连接所述驱动电路的输入端,所述驱动电路的输出端连接所述MOS管Q的栅极,所述MOS管Q的漏极连接所述控制芯片U1的第三引脚和第四引脚,所述MOS管Q的源极和所述逻辑控制电路一并连接所述控制芯片U1的第五引脚;
    所述控制芯片U1的第八引脚作为所述控制电路的供电端连接所述电阻R9的第二端,所述控制芯片U1的第八引脚还通过所述电容C5连接第一电源地;
    所述控制芯片U1的第二引脚连接第一电源地,所述控制芯片U1的第六引脚通过所述电容C6连接第一电源地,所述控制芯片U1的第五引脚通过所述电阻R8连接第一电源地,所述电容C7与所述电阻R7并联后再并联在所述电阻R8的两端;所述控制芯片U1的第三引脚和第四引脚短接并连接第二电源地。
  7. 根据权利要求1所述的兼容电子镇流器和市电的LED驱动电路,其特征在于,所述信号采样电路包括:滤波整流电路和MOS管Q1;
    所述滤波整流电路的输入端与所述第二输入端连接,所述滤波整流电路的输出端与所述MOS管Q1的栅极连接,所述MOS管Q1的源极连接第一电源地,所述MOS管Q1的漏极连接所述泄漏电流限制电路。
  8. 根据权利要求7所述的兼容电子镇流器和市电的LED驱动电路,其特征在于,所述滤波整流电路包括:电感L2、电容C9、二极管D9、二极管D10、电容C10、电阻R16、稳压管D11;
    所述电感L2的第一端连接所述第二输入端,所述电感L2的第二端连接所述电容C9的第一端,所述电容C9的第二端分别连接所述二极管D9的阳极和所述二极管D10的阴极;所述二极管D9的阴极连接所述MOS管Q1的栅极,所述二极管D9的阴极还通过所述电容C10连接第一电源地;所述二极管D10的阴极连接第一电源地,所述电阻R9并联在所述电容C10的两端,所述稳压管D11的阴极连接所述MOS管Q1的栅极,所述稳压管D11的阳极连接第一电源地。
  9. 根据权利要求7所述的兼容电子镇流器和市电的LED驱动电路,其特征在于,所述信号采样电路还包括:连接在所述泄漏电流限制电路与所述MOS管Q1的漏极之间的防反电路;
    所述防反电路包括二极管D12和二极管D13;
    所述二极管D12的阳极连接所述泄漏电流限制电路,所述二极管D12的阴极连接所述MOS管Q1的漏极,所述二极管D13与所述二极管D12并联。
  10. 一种LED灯具,其特征在于,包括权利要求1-9任一项所述的兼容电子镇流器和市电的LED驱动电路。
PCT/CN2018/098942 2018-08-06 2018-08-06 一种兼容电子镇流器和市电的led驱动电路及led灯具 WO2020029006A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/098942 WO2020029006A1 (zh) 2018-08-06 2018-08-06 一种兼容电子镇流器和市电的led驱动电路及led灯具
US16/606,771 US11259383B2 (en) 2018-08-06 2018-08-06 LED driving circuit compatible with electronic ballast and electronic supply, and LED lamp thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/098942 WO2020029006A1 (zh) 2018-08-06 2018-08-06 一种兼容电子镇流器和市电的led驱动电路及led灯具

Publications (1)

Publication Number Publication Date
WO2020029006A1 true WO2020029006A1 (zh) 2020-02-13

Family

ID=69413904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098942 WO2020029006A1 (zh) 2018-08-06 2018-08-06 一种兼容电子镇流器和市电的led驱动电路及led灯具

Country Status (2)

Country Link
US (1) US11259383B2 (zh)
WO (1) WO2020029006A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113938060A (zh) * 2021-10-22 2022-01-14 中国船舶工业系统工程研究院 水下推进器的永磁无刷电机的控制器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201898641U (zh) * 2010-05-14 2011-07-13 皇家飞利浦电子股份有限公司 自适应电路
CN204616166U (zh) * 2015-05-08 2015-09-02 马文浩 Led灯功能转换电路
WO2016178727A1 (en) * 2015-04-16 2016-11-10 Lightel Technologies, Inc. Linear solid-state lighting with a wide range of input voltage and frequency free of fire and shock hazards
CN106413182A (zh) * 2016-08-31 2017-02-15 惠州市时宇虹光电科技有限公司 一种兼容市电和镇流器输入的led光源驱动控制装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9668308B2 (en) * 2012-06-15 2017-05-30 Lightel Technologies, Inc. Linear solid-state lighting compatible with ballasts in double ends and operable with AC mains in a single end
US9986619B2 (en) * 2012-06-15 2018-05-29 Aleddra Inc. Linear solid-state lighting with electric shock prevention

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201898641U (zh) * 2010-05-14 2011-07-13 皇家飞利浦电子股份有限公司 自适应电路
WO2016178727A1 (en) * 2015-04-16 2016-11-10 Lightel Technologies, Inc. Linear solid-state lighting with a wide range of input voltage and frequency free of fire and shock hazards
CN204616166U (zh) * 2015-05-08 2015-09-02 马文浩 Led灯功能转换电路
CN106413182A (zh) * 2016-08-31 2017-02-15 惠州市时宇虹光电科技有限公司 一种兼容市电和镇流器输入的led光源驱动控制装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113938060A (zh) * 2021-10-22 2022-01-14 中国船舶工业系统工程研究院 水下推进器的永磁无刷电机的控制器
CN113938060B (zh) * 2021-10-22 2024-04-12 中国船舶集团有限公司系统工程研究院 水下推进器的永磁无刷电机的控制器

Also Published As

Publication number Publication date
US20210410249A1 (en) 2021-12-30
US11259383B2 (en) 2022-02-22

Similar Documents

Publication Publication Date Title
CN109068442B (zh) 一种兼容电子镇流器和市电的led驱动电路及led灯具
CN103442501B (zh) 强制恒流源调光的led灯
WO2018040119A1 (zh) 一种兼容市电和镇流器输入的led光源驱动控制装置
US7102297B2 (en) Ballast with end-of-lamp-life protection circuit
CN109709440B (zh) 漏电保护检测电路及其控制方法
US9955561B2 (en) Electrodeless fluorescent ballast driving circuit and resonance circuit with added filtration and protection
CN208581381U (zh) 一种兼容电子镇流器和市电的led驱动电路及led灯具
CN110753421A (zh) 一种led驱动电路和灯管
TWI478471B (zh) Pfc電路的供電電壓開啓電路及應用其之開關電源
CN204578876U (zh) 一种交直流两用的电源驱动电路
WO2020029006A1 (zh) 一种兼容电子镇流器和市电的led驱动电路及led灯具
TWM460457U (zh) 功率因數校正電路的供電電壓開啓電路構造及開關電源供應器
CN104253535A (zh) 无高压电解电容器的电源供应器
CN208190964U (zh) Led驱动电路和led灯具
CN108040400A (zh) Led驱动电路和led灯具
CN102149245A (zh) 一种高效可调光气体放电灯电子镇流器
CN210202125U (zh) 一种自镇流器的防触电电路以及灯管
CN208402180U (zh) 一种无极灯电源驱动电路
CN105828472A (zh) 一种抗干扰led路灯电路
CN201789672U (zh) 电子镇流器
CN203814028U (zh) 一种电力线载波控制的荧光灯电子镇流器
KR101228303B1 (ko) 세라믹-유리질 복합체 전극을 사용한 형광램프용 디밍용 전자식 안정기
CN217985464U (zh) 兼具防泄漏安全功能和连续调光功能的led控制电路
CN108712812A (zh) 一种无极灯电源驱动电路及控制方法
CN101945521B (zh) 电力线载波控制的无极灯电子镇流器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 16/06/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18929048

Country of ref document: EP

Kind code of ref document: A1