WO2011138889A1 - Organic photoelectric conversion element - Google Patents

Organic photoelectric conversion element Download PDF

Info

Publication number
WO2011138889A1
WO2011138889A1 PCT/JP2011/059129 JP2011059129W WO2011138889A1 WO 2011138889 A1 WO2011138889 A1 WO 2011138889A1 JP 2011059129 W JP2011059129 W JP 2011059129W WO 2011138889 A1 WO2011138889 A1 WO 2011138889A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
optionally substituted
substituted
formula
fluorine
Prior art date
Application number
PCT/JP2011/059129
Other languages
French (fr)
Japanese (ja)
Inventor
上谷 保則
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2011138889A1 publication Critical patent/WO2011138889A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an organic photoelectric conversion element.
  • an organic photoelectric conversion element such as an organic solar cell or an optical sensor
  • an organic photoelectric conversion element including a composition containing various polymer compounds has been studied.
  • an organic solar cell having an organic layer containing poly-3-hexylthiophene as a conjugated polymer compound and C60PCBM as a fullerene derivative is described (Advanced Functional Materials, Vol. 13, p.85, 2003).
  • the organic photoelectric conversion element has a problem that an open circuit voltage (Voc) is not always sufficient.
  • the present invention provides an organic photoelectric conversion element that can provide a high open-circuit voltage. That is, the present invention has a pair of electrodes and an organic layer provided between the electrodes, and the organic layer has the formula (1): (In the formula, T represents an n-valent aromatic group. N represents an integer of 2 to 4. R represents a hydrogen atom, a halogen atom, an optionally substituted alkyl group, or a fluorine-substituted group.
  • the organic photoelectric conversion element containing the compound represented by these and a conjugated polymer compound is provided.
  • the organic photoelectric conversion element of the present invention has an organic layer containing the compound represented by the above formula (1) and a conjugated polymer compound.
  • examples of the halogen atom represented by R include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the alkyl group represented by R usually has 1 to 20 carbon atoms, and may be linear, branched or cyclic.
  • alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, sec-butyl group, 3-methylbutyl group, pentyl group, hexyl group and 2-ethylhexyl.
  • the hydrogen atom in the alkyl group may be substituted with a fluorine atom.
  • alkyl group in which a hydrogen atom is substituted with a fluorine atom examples include a trifluoromethyl group, a pentafluoroethyl group, a perfluorobutyl group, a perfluorohexyl group, and a perfluorooctyl group.
  • the alkoxy group represented by R usually has 1 to 20 carbon atoms, and the alkyl portion may be linear or branched, or may be cyclic.
  • alkoxy group examples include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyl
  • examples thereof include an oxy group, an octyloxy group, a 2-ethylhexyloxy group, a nonyloxy group, a decyloxy group, a 3,7-dimethyloctyloxy group, and a lauryloxy group.
  • a hydrogen atom in the alkoxy group may be substituted with a fluorine atom.
  • alkoxy group in which a hydrogen atom is substituted with a fluorine atom examples include a trifluoromethoxy group, a pentafluoroethoxy group, a perfluorobutoxy group, a perfluorohexyloxy group, and a perfluorooctyloxy group.
  • the alkylthio group represented by R usually has 1 to 20 carbon atoms, and the alkyl portion may be linear or branched or cyclic.
  • alkylthio group examples include methylthio group, ethylthio group, propylthio group, isopropylthio group, butylthio group, isobutylthio group, sec-butylthio group, tert-butylthio group, pentylthio group, hexylthio group, cyclohexylthio group, heptylthio group.
  • a hydrogen atom in the alkylthio group may be substituted with a fluorine atom.
  • Examples of the alkylthio group in which a hydrogen atom is substituted with a fluorine atom include a trifluoromethylthio group.
  • the alkoxyalkyl group represented by R usually has 2 to 20 carbon atoms. Specific examples thereof include the formula (9): (In the formula, p represents an integer of 1 to 10, and q represents an integer of 0 to 9.) The group represented by these is mentioned.
  • the aryl group represented by R is an atomic group obtained by removing one hydrogen atom on an aromatic ring from an aromatic hydrocarbon, having a benzene ring, having a condensed ring, independent And those obtained by bonding two or more benzene rings or condensed rings directly or via a group such as vinylene.
  • the aryl group usually has 6 to 60 carbon atoms, preferably 6 to 48 carbon atoms.
  • the aryl group may have a substituent.
  • substituents examples include a linear or branched alkyl group having 1 to 20 carbon atoms or an alkoxy group having a cycloalkyl group having 3 to 20 carbon atoms in the structure thereof, formula (6): (In the formula, g represents an integer of 1 to 6, and h represents an integer of 0 to 5.) And an alkoxyalkoxy group represented by the formula:
  • aryl group include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, a 2-anthracenyl group, a 9-anthracenyl group, and a linear alkyl group having 1 to 20 carbon atoms.
  • a phenyl group substituted with a branched alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms include C 1 ⁇ C 12 Alkoxyphenyl group (C 1 ⁇ C 12 Indicates that the number of carbon atoms is 1-12. The same applies to the following. ) And pentafluorophenyl groups.
  • a preferred optionally substituted aryl group is C 1 ⁇ C 12 Alkoxyphenyl group and C 1 ⁇ C 12 An alkylphenyl group; C 1 ⁇ C 12 Specific examples of the alkoxyphenyl group include a methoxyphenyl group, an ethoxyphenyl group, a propoxyphenyl group, an isopropoxyphenyl group, a butoxyphenyl group, an isobutoxyphenyl group, a sec-butoxyphenyl group, a tert-butoxyphenyl group, and a pentyloxyphenyl group.
  • alkylphenyl group examples include methylphenyl group, ethylphenyl group, dimethylphenyl group, propylphenyl group, mesityl group, methylethylphenyl group, isopropylphenyl group, butylphenyl group, isobutylphenyl group, sec-butylphenyl group, A tert-butylphenyl group, a pentylphenyl group, an isoamylphenyl group, a hexylphenyl group, a heptylphenyl group, an octylphenyl group, a nonylphenyl group, a decylphenyl group, and a dodecylphenyl group.
  • the aryloxy group represented by R usually has 6 to 60 carbon atoms, preferably 6 to 48 carbon atoms.
  • the aryloxy group may have a substituent.
  • Specific examples of the substituent are the same as those described above as the substituent of the aryl group represented by R.
  • Specific examples of the optionally substituted aryloxy group include a phenoxy group, C 1 ⁇ C 12 Alkylphenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, C 1 ⁇ C 12 An alkoxyphenoxy group and a pentafluorophenyloxy group, and C 1 ⁇ C 12 Alkoxyphenoxy group and C 1 ⁇ C 12 Alkylphenoxy groups are preferred.
  • alkoxy examples include methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentyloxy, hexyloxy, cyclohexyloxy, heptyloxy, octyloxy, 2-ethylhexyloxy, nonyloxy, Examples include decyloxy, 3,7-dimethyloctyloxy and lauryloxy.
  • alkylphenoxy group examples include methylphenoxy group, ethylphenoxy group, dimethylphenoxy group, propylphenoxy group, 1,3,5-trimethylphenoxy group, methylethylphenoxy group, isopropylphenoxy group, butylphenoxy group, isobutylphenoxy group.
  • the arylthio group represented by R usually has 6 to 60 carbon atoms.
  • the arylthio group may have a substituent.
  • Specific examples of the substituent are the same as those described above as the substituent of the aryl group represented by R.
  • Specific examples of the optionally substituted arylthio group include a phenylthio group, C 1 ⁇ C 12 Alkoxyphenylthio group, C 1 ⁇ C 12 Examples thereof include an alkylphenylthio group, a 1-naphthylthio group, a 2-naphthylthio group, and a pentafluorophenylthio group.
  • the arylalkyl group represented by R usually has 7 to 60 carbon atoms.
  • the arylalkyl group may have a substituent.
  • Specific examples of the substituent are the same as those described above as the substituent of the aryl group represented by R.
  • Specific examples of the optionally substituted arylalkyl group include phenyl-C 1 ⁇ C 12 Alkyl group, C 1 ⁇ C 12 Alkoxyphenyl-C 1 ⁇ C 12 Alkyl group, C 1 ⁇ C 12 Alkylphenyl-C 1 ⁇ C 12 Alkyl group, 1-naphthyl-C 1 ⁇ C 12 Alkyl group and 2-naphthyl-C 1 ⁇ C 12 An alkyl group is mentioned.
  • the arylalkoxy group represented by R usually has 7 to 60 carbon atoms.
  • the arylalkoxy group may have a substituent.
  • Specific examples of the substituent are the same as those described above as the substituent of the aryl group represented by R.
  • Specific examples of the optionally substituted arylalkoxy group include phenyl-C 1 ⁇ C 12 Alkoxy group, C 1 ⁇ C 12 Alkoxyphenyl-C 1 ⁇ C 12 Alkoxy group, C 1 ⁇ C 12 Alkylphenyl-C 1 ⁇ C 12 Alkoxy group, 1-naphthyl-C 1 ⁇ C 12 Alkoxy groups and 2-naphthyl-C 1 ⁇ C 12 An alkoxy group is mentioned.
  • the arylalkylthio group represented by R usually has 7 to 60 carbon atoms.
  • the arylalkylthio group may have a substituent. Specific examples of the substituent are the same as those described above as the substituent of the aryl group represented by R.
  • arylalkylthio group examples include phenyl-C 1 ⁇ C 12 Alkylthio group, C 1 ⁇ C 12 Alkoxyphenyl-C 1 ⁇ C 12 Alkylthio group, C 1 ⁇ C 12 Alkylphenyl-C 1 ⁇ C 12 Alkylthio group, 1-naphthyl-C 1 ⁇ C 12 Alkylthio group and 2-naphthyl-C 1 ⁇ C 12 An alkylthio group is mentioned.
  • the acyl group represented by R is a group obtained by removing a hydroxyl group (OH of the —COOH moiety) from carboxylic acid, and is, for example, a group represented by the following formula.
  • R ′ represents an alkyl group which may be substituted with fluorine or an aryl group which may be substituted.
  • Specific examples of the optionally substituted alkyl group represented by R ′ and the optionally substituted aryl group include the optionally substituted fluorine group represented by R and the optionally substituted aryl group. Same as aryl group.
  • R is preferably a hydrogen atom, an alkyl group or a halogen atom from the viewpoint of charge transportability.
  • T in Formula (1) is an n-valent aromatic group, and represents an n-valent aromatic carbocyclic group or an n-valent aromatic heterocyclic group.
  • An n-valent aromatic carbocyclic group is an n-valent organic group obtained by removing n hydrogen atoms on an aromatic ring from an aromatic carbocyclic compound, and an n-valent aromatic heterocyclic group is an aromatic complex.
  • aromatic carbocyclic compound examples include benzene, naphthalene, anthracene, pyrene, perylene, fluorene, benzofluorene, biphenyl, terphenyl, and these compounds having a substituent.
  • aromatic heterocyclic compound examples include pyrrole, pyridine, indole, imidazole, quinoline, isoquinoline, carbazole, thiophene, benzothiophene, dibenzothiophene, furan, benzofuran, dibenzofuran and these compounds having a substituent.
  • substituent of the aromatic carbocyclic compound and aromatic heterocyclic compound include those described above as the substituent of the aryl group represented by R and alkyl groups having 1 to 20 carbon atoms.
  • Examples of the compound represented by the formula (1) include the following compounds. In the formula (1), a preferred embodiment of n is 2.
  • a preferred embodiment of the aromatic group represented by T is the formula (2): (Wherein R 1 Is a hydrogen atom, a halogen atom, an alkyl group that may be substituted with fluorine, an alkoxy group that may be substituted with fluorine, an alkylthio group that may be substituted with fluorine, an alkoxyalkyl group, or an aryl group that may be substituted An optionally substituted aryloxy group, an optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group or an optionally substituted arylalkylthio group; To express. 4 R 1 May be the same or different. ) It is group represented by these.
  • R 1 A halogen atom represented by: an alkyl group which may be fluorine-substituted, an alkoxy group which may be fluorine-substituted, an alkylthio group which may be fluorine-substituted, an alkoxyalkyl group, an aryl group which may be substituted, Definitions of an optionally substituted aryloxy group, an optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group, and an optionally substituted arylalkylthio group And specific examples include a halogen atom represented by R, an alkyl group which may be substituted with fluorine, an alkoxy group which may be substituted with fluorine, an alkylthio group which may be substituted with fluorine, an alkoxyalkyl group, substituted Optionally substituted aryl group, optionally substituted aryloxy group, substituted Which may be aryl
  • R 1 are preferably a hydrogen atom or an alkyl group.
  • Another preferred embodiment of the aromatic group represented by T is the formula (3): (Wherein R 2 Is a hydrogen atom, a halogen atom, an alkyl group that may be substituted with fluorine, an alkoxy group that may be substituted with fluorine, an alkylthio group that may be substituted with fluorine, an alkoxyalkyl group, or an aryl group that may be substituted An optionally substituted aryloxy group, an optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group or an optionally substituted arylalkylthio group; To express.
  • R 2 It is an organic group represented by.
  • R 2 A halogen atom represented by: an alkyl group which may be fluorine-substituted, an alkoxy group which may be fluorine-substituted, an alkylthio group which may be fluorine-substituted, an alkoxyalkyl group, an aryl group which may be substituted, Definitions of an optionally substituted aryloxy group, an optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group, and an optionally substituted arylalkylthio group And specific examples include a halogen atom represented by R, an alkyl group which may be substituted with fluorine, an alkoxy group which may be substituted with fluorine, an alkylthio group which may be substituted with fluorine, an alkoxyalkyl group, substituted Optionally substituted aryl group
  • R 2 are preferably a hydrogen atom or an alkyl group.
  • Another preferred embodiment of the aromatic group represented by T is the formula (4): (In the formula, A ring and B ring are the same or different and each represents an aromatic carbocyclic ring or an aromatic heterocyclic ring. 2 Represents a divalent group which forms a 5-membered ring or a 6-membered ring by bonding to -S-, -O- or A ring and B ring. ) It is an organic group represented by.
  • examples of the aromatic carbocycles of the A ring and the B ring include a benzene ring, a naphthalene ring, and an anthracene ring.
  • Examples of the aromatic heterocycle include a thiophene ring, a pyridine ring, and a furan ring.
  • the A ring and the B ring are preferably a benzene ring and a naphthalene ring, and more preferably a benzene ring.
  • a 2 Represents a divalent group which forms a 5-membered ring or a 6-membered ring by bonding to -S-, -O- or A ring and B ring.
  • Examples of the divalent group that forms a 5-membered or 6-membered ring include -C (R 4 ) 2 -, -O-C (R 5 ) 2 , -N (R 6 )-, -Si (R 7 ) 2 -, -B (R 8 )-, -C (R 9 ) 2 -C (R 9 ) 2 -Etc. are mentioned.
  • R 4 ⁇ R 9 Are the same or different and each represents a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group, an optionally substituted arylalkyl group or a heterocyclic group. 2 R 4 May be the same or different.
  • 2 R 4 may be bonded to each other to form a ring structure.
  • 2 R 5 May be the same or different.
  • 2 R 7 May be the same or different.
  • 4 R 9 May be the same or different.
  • R 4 ⁇ R 9 Definitions and specific examples of the optionally substituted alkyl group, the optionally substituted aryl group, and the optionally substituted arylalkyl group represented by R are as follows: The definition and specific examples of a good alkyl group, an optionally substituted aryl group and an optionally substituted arylalkyl group are the same.
  • R 4 ⁇ R 9 Is generally an aromatic heterocyclic group, and specific examples thereof include an optionally substituted pyridyl group, furyl group, piperidyl group, quinolyl group. , Isoquinolyl group and pyrrolyl group.
  • a 2 Is -C (R 4 ) 2 -, -N (R 6 )-Is preferred.
  • R 4 Is preferably an alkyl group or an aryl group.
  • R 6 Is preferably an alkyl group or an aryl group.
  • R 20 Is a hydrogen atom, a halogen atom, an alkyl group that may be substituted with fluorine, an alkoxy group that may be substituted with fluorine, an alkylthio group that may be substituted with fluorine, an alkoxyalkyl group, or an aryl group that may be substituted
  • R 20 May be the same or different.
  • R 20 A halogen atom represented by: an alkyl group which may be fluorine-substituted, an alkoxy group which may be fluorine-substituted, an alkylthio group which may be fluorine-substituted, an alkoxyalkyl group, an aryl group which may be substituted, Definitions of an optionally substituted aryloxy group, an optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group, and an optionally substituted arylalkylthio group And specific examples include a halogen atom represented by R, an alkyl group which may be substituted with fluorine, an alkoxy group which may be substituted with fluorine, an alkylthio group which may be substituted with fluorine, an alkoxyalkyl group, substituted Optionally substituted aryl group, optionally substituted aryloxy group, substituted Which may be aryl
  • R 20 are preferably a hydrogen atom or an alkyl group.
  • Another preferred embodiment of the aromatic group represented by T is the formula (21): (Wherein R 21 Is a hydrogen atom, a halogen atom, an alkyl group that may be substituted with fluorine, an alkoxy group that may be substituted with fluorine, an alkylthio group that may be substituted with fluorine, an alkoxyalkyl group, or an aryl group that may be substituted An optionally substituted aryloxy group, an optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group or an optionally substituted arylalkylthio group; To express.
  • R 21 It is an organic group represented by.
  • R 21 A halogen atom represented by: an alkyl group which may be fluorine-substituted, an alkoxy group which may be fluorine-substituted, an alkylthio group which may be fluorine-substituted, an alkoxyalkyl group, an aryl group which may be substituted, Definitions of an optionally substituted aryloxy group, an optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group, and an optionally substituted arylalkylthio group And specific examples include a halogen atom represented by R, an alkyl group which may be substituted with fluorine, an alkoxy group which may be substituted with fluorine, an alkylthio group which may be substituted with fluorine, an alkoxyalkyl group, substituted Optionally substituted aryl group
  • R 21 are preferably a hydrogen atom or an alkyl group.
  • n is 4.
  • Another preferred embodiment of the aromatic group represented by T is the formula (5): (Wherein R 3 Is a hydrogen atom, a halogen atom, an alkyl group that may be substituted with fluorine, an alkoxy group that may be substituted with fluorine, an alkylthio group that may be substituted with fluorine, an alkoxyalkyl group, or an aryl group that may be substituted An optionally substituted aryloxy group, an optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group or an optionally substituted arylalkylthio group; To express.
  • R 3 It is an organic group represented by.
  • R 3 A halogen atom represented by: an alkyl group which may be fluorine-substituted, an alkoxy group which may be fluorine-substituted, an alkylthio group which may be fluorine-substituted, an alkoxyalkyl group, an aryl group which may be substituted, Definitions of an optionally substituted aryloxy group, an optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group, and an optionally substituted arylalkylthio group And specific examples include a halogen atom represented by R, an alkyl group which may be substituted with fluorine, an alkoxy group which may be substituted with fluorine, an alkylthio group which may be substituted with fluorine, an alkoxyalkyl group, substituted Optionally substituted aryl group
  • R 6 are preferably a hydrogen atom or an alkyl group.
  • the compound represented by the formula (1) contained in the organic layer of the organic photoelectric conversion element of the present invention may be one type or two or more types.
  • the conjugated polymer compound used in the organic photoelectric conversion device of the present invention includes (1) a polymer compound substantially composed of a structure in which double bonds and single bonds are alternately arranged, and (2) double bonds and single bonds.
  • conjugated polymer compound when the repeating units are bonded via a linking group, examples of the linking group include phenylene, biphenyl-4.4′-diyl, naphthalenediyl, anthracenediyl, and the like.
  • the conjugated polymer compound used in the present invention preferably has one or more repeating units selected from the group consisting of formula (7) and formula (8) from the viewpoint of charge transportability.
  • R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 And R 19 are the same or different and are a hydrogen atom, an alkyl group which may be substituted with fluorine, an alkoxy group which may be substituted with fluorine, an alkylthio group which may be substituted with fluorine, an alkoxyalkyl group, which may be substituted
  • An aryl group, an optionally substituted aryloxy group, an optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group or an optionally substituted arylalkylthio Represents a group.
  • R 10 ⁇ R 19 An optionally substituted fluorine-substituted alkyl group, an optionally substituted fluorine-substituted alkoxy group, an optionally substituted fluorine-substituted alkylthio group, an alkoxyalkyl group, an optionally substituted aryl group, Definitions and specific examples of an optionally substituted aryloxy group, an optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group and an optionally substituted arylalkylthio group Is a fluorine-substituted alkyl group, a fluorine-substituted alkoxy group, a fluorine-substituted alkylthio group, a alkoxyalkyl group, or a substituted aryl represented by the aforementioned R.
  • the conjugated polymer compound has a polystyrene-equivalent weight average molecular weight of 5 ⁇ 10 5 from the viewpoint of film forming ability and solubility in a solvent.
  • 2 ⁇ 1 ⁇ 10 7 Is preferably 1 ⁇ 10 3 ⁇ 1 ⁇ 10 6 More preferably, 1 ⁇ 10 4 ⁇ 1 ⁇ 10 6 More preferably.
  • the conjugated polymer compound contained in the organic layer of the organic photoelectric conversion element of the present invention may be one type or two or more types.
  • the conjugated polymer compound is prepared by synthesizing a monomer having a functional group suitable for the polymerization reaction used for its production, and then, if necessary, dissolving the monomer in an organic solvent to obtain an alkali or a suitable catalyst. It can be produced by polymerizing the monomer by a known polymerization method such as aryl coupling using a ligand.
  • the organic layer of the organic photoelectric conversion element of the present invention includes a compound represented by the formula (1) and a conjugated polymer compound.
  • the weight of the compound represented by the formula (1) in the organic layer is preferably 0.1 to 10000 parts by weight, more preferably 1 to 1000 parts by weight with respect to 100 parts by weight of the conjugated polymer compound.
  • the organic layer of the organic photoelectric conversion device of the present invention may contain only the compound represented by the formula (1) and the conjugated polymer compound, and may further contain an electron accepting compound.
  • Examples of the electron-accepting compound include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, diphenyldicyanoethylene And derivatives thereof, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof, polyfluorene and derivatives thereof, C 60 And phenanthroline derivatives such as carbon nanotubes and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline.
  • Fullerene and derivatives thereof are particularly preferable.
  • the weight of the electron-accepting compound in the organic layer is 1 to 1 when the total weight of the compound represented by the formula (1) and the weight of the conjugated polymer compound is 100 parts by weight.
  • the amount is preferably 10,000 parts by weight, and more preferably 10 to 2000 parts by weight.
  • Fullerene and its derivatives include C 60 , C 70 , C 84 And derivatives thereof.
  • the fullerene derivative represents a compound in which at least a part of fullerene is modified. Examples of the fullerene derivative include a compound represented by the formula (11), a compound represented by the formula (12), a compound represented by the formula (13), and a compound represented by the formula (14).
  • R a Is a group having an alkyl group which may be substituted with fluorine, an aryl group which may be substituted, an aromatic heterocyclic group or an ester structure. Multiple R a May be the same or different.
  • R b Represents an alkyl group which may be fluorine-substituted or an aryl group which may be substituted. Multiple R b May be the same or different.
  • R a And R b The definition and specific examples of the optionally substituted fluorine group and optionally substituted aryl group represented by the formula are as follows: the optionally substituted fluorine group represented by R and optionally substituted The definition and specific examples of the aryl group are the same.
  • R a In general, the aromatic heterocyclic group represented by the formula has 3 to 60 carbon atoms, and examples thereof include a thienyl group, a pyrrolyl group, a furyl group, a pyridyl group, a piperidyl group, a quinolyl group, and an isoquinolyl group.
  • R c Definitions and specific examples of an optionally substituted alkyl group, an optionally substituted aryl group and an aromatic heterocyclic group represented by a
  • the definition and specific examples of the optionally substituted fluorine-substituted alkyl group, the optionally substituted aryl group and the aromatic heterocyclic group are as follows.
  • C 60 Specific examples of the derivatives include the following.
  • C 70 Specific examples of the derivatives include the following.
  • the organic layer of the organic photoelectric conversion device of the present invention may further contain an electron donating compound.
  • Examples of the electron donating compound include pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, and aromatic amines in side chains or main chains. And polysiloxane derivatives, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, and polythienylene vinylene and derivatives thereof.
  • the weight of the electron donating compound in the organic layer is 1 to 1 when the total of the weight of the compound represented by the formula (1) and the weight of the conjugated polymer compound is 100 parts by weight.
  • the amount is preferably 100,000 parts by weight, more preferably 10 to 1,000 parts by weight.
  • the organic layer of the organic photoelectric conversion device of the present invention has a compound represented by the formula (1), a conjugated polymer compound, an electron donating compound, and an electron accepting property as long as the charge transporting property and the charge injecting property are not impaired. Components other than the compound may be included.
  • the organic photoelectric conversion element of the present invention has a pair of electrodes and an organic layer containing a compound represented by the formula (1) and a conjugated polymer compound between the electrodes.
  • the composition of the compound represented by the formula (1) and the conjugated polymer compound can be used as an electron accepting compound or an electron donating compound.
  • the composition is preferably used as an electron donating compound. It is preferable that at least one of the pair of electrodes is transparent or translucent.
  • An organic photoelectric conversion element having a pair of electrodes and an organic layer containing a compound represented by the formula (1), a conjugated polymer compound, and an electron-accepting compound between the electrodes; 5.
  • the weight of the fullerene derivative in the organic layer is 10 to 1000 parts by weight when the total of the weight of the compound represented by the formula (1) and the weight of the conjugated polymer compound is 100 parts by weight.
  • the amount is 50 to 500 parts by weight.
  • the organic photoelectric conversion element of the present invention 3. 4. 5. From the standpoint of including a large number of heterojunction interfaces, the above organic photoelectric conversion element is preferable. The organic photoelectric conversion element is more preferable.
  • an additional layer may be provided between at least one electrode and the organic layer in the element. Examples of the additional layer include a charge transport layer that transports holes or electrons.
  • the electron acceptor suitably used for the organic photoelectric conversion element has a conjugated polymer in which the HOMO energy of the electron acceptor is The HOMO energy of the compound and the HOMO energy of the compound represented by the formula (1) are higher, and the LUMO energy of the electron acceptor is the LUMO energy of the conjugated polymer compound and the LUMO energy of the compound represented by the formula (1) Is a higher compound.
  • the electron donor used suitably for an organic photoelectric conversion element has the HOMO energy of an electron donor.
  • the HOMO energy of the conjugated polymer compound is lower than the HOMO energy of the compound represented by the formula (1), and the LUMO energy of the electron donor is the LUMO energy of the conjugated polymer compound and the compound represented by the formula (1) This is a compound having a lower LUMO energy.
  • the organic photoelectric conversion element of the present invention is usually formed on a substrate.
  • the substrate may be any substrate that does not chemically change when an electrode is formed and an organic layer is formed. Examples of the material for the substrate include glass, plastic, polymer film, and silicon.
  • the opposite electrode that is, the electrode far from the substrate is preferably transparent or translucent.
  • a metal, a conductive polymer, or the like can be used, and one of the pair of electrodes is preferably a material having a low work function.
  • metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and two of them
  • One or more alloys, or one or more of them and an alloy of one or more of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin, graphite, or a graphite intercalation compound are used.
  • the alloy examples include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
  • the material of the transparent or translucent electrode examples include a conductive metal oxide film and a translucent metal thin film. Specifically, a film formed using a conductive material made of indium oxide, zinc oxide, tin oxide, and indium tin oxide (ITO), indium zinc oxide, etc., which is a composite thereof, NESA Gold, platinum, silver, and copper are used, and ITO, indium / zinc / oxide, and tin oxide are preferable.
  • Examples of the method for producing the electrode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like.
  • organic transparent conductive films such as polyaniline and its derivative (s), polythiophene, and its derivative (s) as an electrode material.
  • the charge transport layer As the material used for the charge transport layer as the additional layer, that is, the hole transport layer and the electron transport layer, the aforementioned electron donating compound and electron accepting compound can be used, respectively.
  • As a material used for the buffer layer as an additional layer an alkali metal such as lithium fluoride, an alkaline earth metal halide, an oxide, or the like can be used.
  • the organic thin film containing the compound and conjugated polymer compound which are represented by Formula (1) can be used, for example.
  • the organic thin film generally has a thickness of 1 nm to 100 ⁇ m, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm, and further preferably 20 nm to 200 nm.
  • a low molecular compound and / or a conjugated polymer compound other than the compound represented by the formula (1) as an electron donating compound and / or an electron accepting compound in the organic thin film Polymers other than these can also be mixed and used.
  • the organic layer contained in the organic photoelectric conversion element of the present invention can be produced using a composition of a compound represented by the formula (1) and a conjugated polymer compound.
  • the organic layer further contains an electron-accepting compound it can be produced using a composition of the compound represented by formula (1), a conjugated polymer compound, and an electron-accepting compound.
  • the organic layer further contains an electron donating compound it can be produced by using a composition of a compound represented by the formula (1), a conjugated polymer compound and an electron donating compound.
  • the weight of the compound represented by the formula (1) in the composition is preferably 0.1 to 10000 parts by weight, more preferably 1 to 1000 parts by weight with respect to 100 parts by weight of the conjugated polymer compound. is there.
  • the weight of the electron-accepting compound in the composition is 100 parts by weight of the sum of the weight of the compound represented by formula (1) and the weight of the conjugated polymer compound. Then, it is preferably 1 to 10000 parts by weight, and more preferably 10 to 2000 parts by weight.
  • the weight of the electron donating compound in the composition is 100 parts by weight of the sum of the weight of the compound represented by the formula (1) and the weight of the conjugated polymer compound. Then, it is preferably 1 to 100,000 parts by weight, and more preferably 10 to 1000 parts by weight.
  • the method for producing the organic thin film is not particularly limited, and examples thereof include a method by film formation from a solution containing the composition and a solvent, but the thin film may be formed by a vacuum deposition method.
  • Examples of a method for producing an organic thin film by film formation from a solution include a method of producing an organic thin film by applying the solution on one electrode and then evaporating the solvent.
  • the solvent used for film formation from a solution is not particularly limited as long as it dissolves the compound represented by the formula (1) and the conjugated polymer compound.
  • solvent examples include hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, butylbenzene, sec-butylbesen, and tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane, dichloroethane, chlorobutane, and bromobutane.
  • hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, butylbenzene, sec-butylbesen, and tert-butylbenzene
  • carbon tetrachloride chloroform
  • dichloromethane dichloroethane
  • chlorobutane chlorobutane
  • bromobutane bromobutane
  • Aliphatic halogenated hydrocarbon solvents such as chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, aromatic halogenated hydrocarbon solvents such as chlorobenzene, dichlorobenzene, trichlorobenzene, tetrahydrofuran, tetrahydropyran, etc.
  • ether solvents ether solvents.
  • the composition of the compound represented by formula (1) and the conjugated polymer compound used in the present invention can be usually dissolved in the solvent in an amount of 0.1% by weight or more.
  • spin coating method For film formation from solution, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic method Coating methods such as a printing method, an offset printing method, an ink jet printing method, a dispenser printing method, a nozzle coating method, a capillary coating method can be used, and a spin coating method, a flexographic printing method, an ink jet printing method, and a dispenser printing method are preferable.
  • the organic photoelectric conversion element By irradiating light such as sunlight from a transparent or translucent electrode, the organic photoelectric conversion element generates a photovoltaic force between the electrodes and can be operated as an organic thin film solar cell.
  • It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.
  • a photocurrent flows and it can be operated as an organic photosensor.
  • It can also be used as an organic image sensor by integrating a plurality of organic photosensors.
  • the molecular weight of the conjugated polymer compound was determined by GPC Laboratories GPC (PL-GPC2000).
  • the conjugated polymer compound was dissolved in o-dichlorobenzene to a concentration of about 1% by weight.
  • As the mobile phase of GPC o-dichlorobenzene was used and allowed to flow at a measurement temperature of 140 ° C. at a flow rate of 1 mL / min.
  • the column three PLGEL 10 ⁇ m MIXED-B (manufactured by PL Laboratory) were connected in series.
  • conjugated polymer compound 1 a pentathienyl-fluorene copolymer represented by the following (hereinafter referred to as “conjugated polymer compound 1”) was obtained.
  • the conjugated polymer compound 1 had a polystyrene-equivalent number average molecular weight of 5.4 ⁇ 10 4 and a polystyrene-equivalent weight average molecular weight of 1.1 ⁇ 10 5 .
  • Example 1 (Production and Evaluation of Organic Thin Film Solar Cell) The conjugated polymer compound 1 was dissolved in o-dichlorobenzene at a concentration of 0.5% (weight%). Thereafter, C60PCBM (phenyl C61-butyric acid methyl ester, trade name E100, manufactured by Frontier Carbon Co., Ltd.) 3 times the weight of conjugated polymer compound 1 was mixed into the solution as an electron acceptor.
  • C60PCBM phenyl C61-butyric acid methyl ester, trade name E100, manufactured by Frontier Carbon Co., Ltd.
  • the compound (E) was mixed with the solution in an equal weight with respect to the weight of the conjugated polymer compound 1.
  • the solution was filtered through a Teflon (registered trademark) filter having a pore size of 1.0 ⁇ m to prepare a coating solution.
  • a glass substrate provided with an ITO film with a thickness of 150 nm by a sputtering method was subjected to surface treatment by ozone UV treatment.
  • the coating solution was applied onto the ITO film by spin coating to obtain an active layer (film thickness of about 100 nm) of the organic thin film solar cell.
  • lithium fluoride was vapor-deposited with a thickness of 4 nm by a vacuum vapor deposition machine, and then Al was vapor-deposited with a thickness of 100 nm.
  • the degree of vacuum at the time of vapor deposition was 1 to 9 ⁇ 10 ⁇ 3 Pa in all cases.
  • the shape of the obtained organic thin-film solar cell was a regular square of 2 mm ⁇ 2 mm.
  • the organic thin film solar cell obtained was measured with Voc (open end voltage was measured with a solar simulator (trade name OTENTO-SUNII: AM1.5G filter, irradiance 100 mW / cm 2 , manufactured by Spectrometer Co., Ltd.). .
  • Example 2 (Production and Evaluation of Organic Thin Film Solar Cell) An organic thin film solar cell was produced in the same manner as in Example 1 except that the compound (F) was used instead of the compound (E), and Voc was measured. The measurement results are shown in Table 1.
  • Example 3 (Production and Evaluation of Organic Thin Film Solar Cell) An organic thin film solar cell was produced in the same manner as in Example 1 except that the compound (G) was used instead of the compound (E), and Voc was measured. The measurement results are shown in Table 1.
  • Example 4 (Production and Evaluation of Organic Thin Film Solar Cell) An organic thin film solar cell was produced in the same manner as in Example 1 except that the compound (H) was used instead of the compound (E), and Voc was measured. The measurement results are shown in Table 1.
  • Example 5 (Production and Evaluation of Organic Thin Film Solar Cell) An organic thin film solar cell was produced in the same manner as in Example 1 except that the compound (I) produced by the method of Synthesis Example 14 of JP-A-2006-97008 was used instead of the compound (E), and Voc was measured. The measurement results are shown in Table 1.
  • Example 6 (Production and Evaluation of Organic Thin Film Solar Cell) An organic thin film solar cell was produced in the same manner as in Example 1 except that the compound (J) was used instead of the compound (E), and Voc was measured. The measurement results are shown in Table 1.
  • Example 7 (Production and Evaluation of Organic Thin Film Solar Cell) An organic thin film solar cell was produced in the same manner as in Example 5 except that the amount of compound (J) added was 0.5 times the weight of the conjugated polymer compound 1, and Voc was measured. The measurement results are shown in Table 1.
  • Example 8 (Production and Evaluation of Organic Thin Film Solar Cell) An organic thin-film solar cell was prepared in the same manner as in Example 1 except that the compound (K) was used instead of the compound (E), and Voc was measured. The measurement results are shown in Table 1.
  • Example 9 (Production and Evaluation of Organic Thin Film Solar Cell) An organic thin-film solar cell was prepared in the same manner as in Example 1 except that the compound (L) was used instead of the compound (E), and Voc was measured.
  • Example 10 (Production and Evaluation of Organic Thin Film Solar Cell) An organic thin-film solar cell was prepared in the same manner as in Example 1 except that the compound (M) was used instead of the compound (E), and Voc was measured. The measurement results are shown in Table 1.
  • Example 11 (Production and Evaluation of Organic Thin Film Solar Cell) An organic thin film solar cell was produced in the same manner as in Example 1 except that the compound (N) was used instead of the compound (E), and Voc was measured. The measurement results are shown in Table 1.
  • Example 12 (Production and Evaluation of Organic Thin Film Solar Cell) An organic thin-film solar cell was produced in the same manner as in Example 1 except that the compound (O) was used instead of the compound (E), and Voc was measured.
  • Example 13 (Production and Evaluation of Organic Thin Film Solar Cell) An organic thin-film solar cell was prepared in the same manner as in Example 1 except that the compound (P) was used instead of the compound (E), and Voc was measured. The measurement results are shown in Table 1.
  • Synthesis Example 2 (Synthesis of Compound (Q-1)) Under an argon atmosphere, 125.0 g (0.379 mol) of 1,4-diiodobenzene, 15.84 g (0.095 mol) of carbazole, and 39.3 g (0.284 mol) of potassium carbonate in a 1000 ml three-necked flask.
  • the reaction product was filtered, and solid content on a filter was wash
  • the filtrate and the washing solution were combined and concentrated under reduced pressure with an evaporator at 70 to 75 ° C. to obtain 132.3 g of a light brown resinous product.
  • the resinous product was purified by silica gel chromatography to obtain 19.7 g of white crystals.
  • the volume ratio of hexane to chloroform was 10. To this crystal, 200 ml of hexane was added, stirred under reflux for 1 hour, and then cooled to room temperature (25 ° C.).
  • the product was filtered, washed with 20 ml of toluene, and then the filtrate was dried under reduced pressure at 70 to 75 ° C. to obtain 3.60 g of a skin-colored solid.
  • This solid was dissolved in 500 ml of tetrahydrofuran under the conditions of 50 to 55 ° C., 4.0 g of activated carbon was added, and the mixture was stirred at 50 to 55 ° C. for 1 hour. Thereafter, the activated carbon was filtered off, and the activated carbon was washed with 30 ml of tetrahydrofuran. Using an evaporator, the filtrate was concentrated under reduced pressure at 75 ° C. to obtain 3.40 g of a white solid.
  • the volume ratio of hexane to chloroform was set to 1.
  • the collected solution was concentrated, and the resulting crude product was repulped with 20 times the weight of toluene with respect to the crude product, and purified again by column chromatography to obtain 2.53 g of the purified product.
  • 500 g of silica gel was used, and a solvent in which hexane and chloroform were mixed was used as a solvent.
  • the volume ratio of hexane to chloroform was 1.
  • the purified product was dissolved in 500 ml of tetrahydrofuran while heating at 50 ° C., 2.3 g of activated carbon was added, and the mixture was further heated and stirred at 50 ° C. for 30 minutes.
  • Example 14 (Production and Evaluation of Organic Thin Film Solar Cell) An organic thin film solar cell was produced in the same manner as in Example 1 except that the compound (Q) was used instead of the compound (E), and Voc was measured. The measurement results are shown in Table 1.
  • Example 15 (Production and Evaluation of Organic Thin Film Solar Cell) An organic thin-film solar cell was produced in the same manner as in Example 1 except that the compound (R) was used instead of the compound (E), and Voc was measured.
  • Example 16 (Production and Evaluation of Organic Thin Film Solar Cell) An organic thin film solar cell was produced in the same manner as in Example 1 except that the compound (T) was used instead of the compound (E), and Voc was measured. The measurement results are shown in Table 1.
  • Example 17 (Production and Evaluation of Organic Thin Film Solar Cell) An organic thin film solar cell was produced in the same manner as in Example 1 except that the compound (U) was used instead of the compound (E), and Voc was measured. The measurement results are shown in Table 1.
  • Comparative Example 1 (Production and Evaluation of Organic Thin Film Solar Cell) An organic thin film solar cell was produced in the same manner as in Example 1 except that the compound represented by the formula (1) was not used, and Voc was measured. The measurement results are shown in Table 1.
  • the organic photoelectric conversion element of the present invention exhibits a high open-circuit voltage, the present invention is extremely useful.

Abstract

Disclosed is an organic photoelectric conversion element which comprises a pair of electrodes and an organic layer arranged between the electrodes, wherein the organic layer comprises a compound represented by formula (1) (wherein T represents an aromatic group; n represents an integer of 2 to 4; and R represents a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkoxy group, an arylalkylthio group, an acyl group, or the like) and a conjugated polymeric compound. The organic photoelectric conversion element can apply a high open circuit voltage.

Description

有機光電変換素子Organic photoelectric conversion element
 本発明は、有機光電変換素子に関する。 The present invention relates to an organic photoelectric conversion element.
 近年、有機半導体材料を有機光電変換素子(有機太陽電池、光センサー等)の活性層に用いる検討が活発に行われている。中でも、有機半導体材料として高分子化合物を含む組成物を用いれば、安価な塗布法で活性層を作製することができるため、様々な高分子化合物を含有する組成物を含む有機光電変換素子が検討されている。例えば、共役高分子化合物であるポリ3−ヘキシルチオフェンとフラーレン誘導体であるC60PCBMとを含む有機層を有する有機太陽電池が記載されている(アドバンスト ファンクショナル マテリアルズ(Advanced Functional Materials)、第13巻、p.85、2003年)。
 しかし、前記有機光電変換素子は、開放端電圧(Voc)が必ずしも十分ではないという問題がある。
In recent years, studies using an organic semiconductor material for an active layer of an organic photoelectric conversion element (such as an organic solar cell or an optical sensor) have been actively conducted. In particular, if a composition containing a polymer compound is used as an organic semiconductor material, an active layer can be produced by an inexpensive coating method. Therefore, an organic photoelectric conversion element including a composition containing various polymer compounds has been studied. Has been. For example, an organic solar cell having an organic layer containing poly-3-hexylthiophene as a conjugated polymer compound and C60PCBM as a fullerene derivative is described (Advanced Functional Materials, Vol. 13, p.85, 2003).
However, the organic photoelectric conversion element has a problem that an open circuit voltage (Voc) is not always sufficient.
 本発明は、高い開放端電圧を付与しうる有機光電変換素子を提供する。
 即ち、本発明は、一対の電極と、該電極間に設けられた有機層とを有し、該有機層が式(1):
Figure JPOXMLDOC01-appb-I000010
(式中、Tは、n価の芳香族基を表す。nは、2~4の整数を表す。Rは、水素原子、ハロゲン原子、フッ素置換されていてもよいアルキル基、フッ素置換されていてもよいアルコキシ基、フッ素置換されていてもよいアルキルチオ基、アルコキシアルキル基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基、置換されていてもよいアリールアルキルチオ基又はアシル基を表す。複数個あるRは、同一であっても相異なってもよい。)
で表される化合物と共役高分子化合物とを含む有機光電変換素子を提供する。
The present invention provides an organic photoelectric conversion element that can provide a high open-circuit voltage.
That is, the present invention has a pair of electrodes and an organic layer provided between the electrodes, and the organic layer has the formula (1):
Figure JPOXMLDOC01-appb-I000010
(In the formula, T represents an n-valent aromatic group. N represents an integer of 2 to 4. R represents a hydrogen atom, a halogen atom, an optionally substituted alkyl group, or a fluorine-substituted group. An optionally substituted alkoxy group, an optionally substituted fluorine-substituted alkylthio group, an alkoxyalkyl group, an optionally substituted aryl group, an optionally substituted aryloxy group, an optionally substituted arylthio group, a substituted Represents an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group, an optionally substituted arylalkylthio group, or an acyl group, and a plurality of R may be the same or different. )
The organic photoelectric conversion element containing the compound represented by these and a conjugated polymer compound is provided.
 以下、本発明を詳細に説明する。
 本発明の有機光電変換素子は、上記式(1)で表される化合物と共役高分子化合物とを含む有機層を有する。
 式(1)中、Rで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 式(1)中、Rで表されるアルキル基は、その炭素数が通常1~20であり、直鎖状でも分岐状でもよく、また環状であってもよい。アルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、sec−ブチル基、3−メチルブチル基、ペンチル基、ヘキシル基、2−エチルヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、3,7−ジメチルオクチル基及びラウリル基が挙げられる。前記アルキル基中の水素原子はフッ素原子で置換されていてもよい。フッ素原子で水素原子が置換されたアルキル基としては、例えば、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基及びパーフルオロオクチル基が挙げられる。
 式(1)中、Rで表されるアルコキシ基は、その炭素数が通常1~20であり、そのアルキル部分が直鎖状でも分岐状でもよく、また、環状であってもよい。アルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7−ジメチルオクチルオキシ基及びラウリルオキシ基が挙げられる。前記アルコキシ基中の水素原子はフッ素原子で置換されていてもよい。フッ素原子で水素原子が置換されたアルコキシ基としては、例えば、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシルオキシ基及びパーフルオロオクチルオキシ基が挙げられる。
 式(1)中、Rで表されるアルキルチオ基は、その炭素数が通常1~20であり、そのアルキル部分が直鎖状でも分岐状でもよく、また、環状であってもよい。アルキルチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、sec−ブチルチオ基、tert−ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、2−エチルヘキシルチオ基、ノニルチオ基、デシルチオ基、3,7−ジメチルオクチルチオ基及びラウリルチオ基が挙げられる。前記アルキルチオ基中の水素原子はフッ素原子で置換されていてもよい。フッ素原子で水素原子が置換されたアルキルチオ基としては、例えば、トリフルオロメチルチオ基が挙げられる。
 式(1)中、Rで表されるアルコキシアルキル基は、その炭素数が通常2~20であり、その具体例としては、式(9):
Figure JPOXMLDOC01-appb-I000011
(式中、pは1~10の整数を表し、qは0~9の整数を表す。)
で表される基が挙げられる。
 式(1)中、Rで表されるアリール基は、芳香族炭化水素から、芳香環上の水素原子1個を除いた原子団であり、ベンゼン環を持つもの、縮合環を持つもの、独立したベンゼン環又は縮合環2個以上が直接又はビニレン等の基を介して結合したものが含まれる。アリール基は、その炭素数が通常6~60であり、好ましくは6~48である。該アリール基は、置換基を有していてもよい。該置換基としては、炭素数1~20の直鎖状若しくは分岐状のアルキル基又は炭素数3~20のシクロアルキル基をその構造中に含むアルコキシ基、式(6):
Figure JPOXMLDOC01-appb-I000012
(式中、gは1~6の整数を表し、hは0~5の整数を表す。)
で表されるアルコキシアルコキシ基及びフッ素原子が挙げられる。
 アリール基の具体例としては、フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、及び、炭素数1~20の直鎖状のアルキル基、炭素数1~20の分岐状のアルキル基又は炭素数3~20のシクロアルキル基で置換されたフェニル基が挙げられる。置換されたアリール基の具体例としては、C~C12アルコキシフェニル基(C~C12は、炭素数1~12であることを示す。以下も同様である。)及びペンタフルオロフェニル基が挙げられる。好ましい置換されていてもよいアリール基は、C~C12アルコキシフェニル基及びC~C12アルキルフェニル基である。C~C12アルコキシフェニル基の具体例は、メトキシフェニル基、エトキシフェニル基、プロポキシフェニル基、イソプロポキシフェニル基、ブトキシフェニル基、イソブトキシフェニル基、sec−ブトキシフェニル基、tert−ブトキシフェニル基、ペンチルオキシフェニル基、ヘキシルオキシフェニル基、シクロヘキシルオキシフェニル基、ヘプチルオキシフェニル基、オクチルオキシフェニル基、2−エチルヘキシルオキシフェニル基、ノニルオキシフェニル基、デシルオキシフェニル基、3,7−ジメチルオクチルオキシフェニル基及びラウリルオキシフェニル基である。C~C12アルキルフェニル基の具体例は、メチルフェニル基、エチルフェニル基、ジメチルフェニル基、プロピルフェニル基、メシチル基、メチルエチルフェニル基、イソプロピルフェニル基、ブチルフェニル基、イソブチルフェニル基、sec−ブチルフェニル基、tert−ブチルフェニル基、ペンチルフェニル基、イソアミルフェニル基、ヘキシルフェニル基、ヘプチルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基及びドデシルフェニル基である。
 式(1)中、Rで表されるアリールオキシ基は、その炭素数が通常6~60であり、好ましくは6~48である。該アリールオキシ基は、置換基を有していてもよい。該置換基の具体例は、Rで表されるアリール基の置換基として前述したものと同じである。置換されていてもよいアリールオキシ基の具体例としては、フェノキシ基、C~C12アルキルフェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、C~C12アルコキシフェノキシ基及びペンタフルオロフェニルオキシ基が挙げられ、C~C12アルコキシフェノキシ基及びC~C12アルキルフェノキシ基が好ましい。C~C12アルコキシとして具体的には、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、sec−ブトキシ、tert−ブトキシ、ペンチルオキシ、ヘキシルオキシ、シクロヘキシルオキシ、ヘプチルオキシ、オクチルオキシ、2−エチルヘキシルオキシ、ノニルオキシ、デシルオキシ、3,7−ジメチルオクチルオキシ及びラウリルオキシが挙げられる。C~C12アルキルフェノキシ基として具体的には、メチルフェノキシ基、エチルフェノキシ基、ジメチルフェノキシ基、プロピルフェノキシ基、1,3,5−トリメチルフェノキシ基、メチルエチルフェノキシ基、イソプロピルフェノキシ基、ブチルフェノキシ基、イソブチルフェノキシ基、sec−ブチルフェノキシ基、tert−ブチルフェノキシ基、ペンチルフェノキシ基、イソアミルフェノキシ基、ヘキシルフェノキシ基、ヘプチルフェノキシ基、オクチルフェノキシ基、ノニルフェノキシ基、デシルフェノキシ基及びドデシルフェノキシ基が挙げられる。
 式(1)中、Rで表されるアリールチオ基は、その炭素数が通常6~60である。該アリールチオ基は、置換基を有していてもよい。該置換基の具体例は、Rで表されるアリール基の置換基として前述したものと同じである。置換されていてもよいアリールチオ基の具体例としては、フェニルチオ基、C~C12アルコキシフェニルチオ基、C~C12アルキルフェニルチオ基、1−ナフチルチオ基、2−ナフチルチオ基及びペンタフルオロフェニルチオ基が挙げられる。
 式(1)中、Rで表されるアリールアルキル基は、その炭素数が通常7~60である。該アリールアルキル基は、置換基を有していてもよい。該置換基の具体例は、Rで表されるアリール基の置換基として前述したものと同じである。置換されていてもよいアリールアルキル基の具体例としては、フェニル−C~C12アルキル基、C~C12アルコキシフェニル−C~C12アルキル基、C~C12アルキルフェニル−C~C12アルキル基、1−ナフチル−C~C12アルキル基及び2−ナフチル−C~C12アルキル基が挙げられる。
 式(1)中、Rで表されるアリールアルコキシ基は、その炭素数が通常7~60である。該アリールアルコキシ基は、置換基を有していてもよい。該置換基の具体例は、Rで表されるアリール基の置換基として前述したものと同じである。置換されていてもよいアリールアルコキシ基の具体例としては、フェニル−C~C12アルコキシ基、C~C12アルコキシフェニル−C~C12アルコキシ基、C~C12アルキルフェニル−C~C12アルコキシ基、1−ナフチル−C~C12アルコキシ基及び2−ナフチル−C~C12アルコキシ基が挙げられる。
 式(1)中、Rで表されるアリールアルキルチオ基は、その炭素数が通常7~60である。該アリールアルキルチオ基は、置換基を有していてもよい。該置換基の具体例は、Rで表されるアリール基の置換基として前述したものと同じである。置換されていてもよいアリールアルキルチオ基の具体例としては、フェニル−C~C12アルキルチオ基、C~C12アルコキシフェニル−C~C12アルキルチオ基、C~C12アルキルフェニル−C~C12アルキルチオ基、1−ナフチル−C~C12アルキルチオ基及び2−ナフチル−C~C12アルキルチオ基が挙げられる。
 式(1)中、Rで表されるアシル基は、カルボン酸から水酸基(−COOH部分のOH)を除いた基であり、例えば、下記式で表される基である。
Figure JPOXMLDOC01-appb-I000013
(式中、R’は、フッ素置換されていてもよいアルキル基又は置換されていてもよいアリール基を表す。)
 R’で表されるフッ素置換されていてもよいアルキル基及び置換されていてもよいアリール基の具体例は、Rで表されるフッ素置換されていてもよいアルキル基及び置換されていてもよいアリール基と同じである。
 Rは、電荷輸送性の観点から、水素原子、アルキル基及びハロゲン原子が好ましい。
 式(1)中のTはn価の芳香族基であり、n価の芳香族炭素環基又はn価の芳香族複素環基を表す。n価の芳香族炭素環基とは、芳香族炭素環化合物から芳香環上の水素原子をn個取り除いたn価の有機基であり、n価の芳香族複素環基とは、芳香族複素環式化合物から芳香環上の水素原子をn個取り除いたn価の有機基を表す。
 芳香族炭素環化合物としては、例えば、ベンゼン、ナフタレン、アントラセン、ピレン、ペリレン、フルオレン、ベンゾフルオレン、ビフェニル、ターフェニル及び置換基を有するこれらの化合物が挙げられる。
 芳香族複素環式化合物としては、例えば、ピロール、ピリジン、インドール、イミダゾール、キノリン、イソキノリン、カルバゾール、チオフェン、ベンゾチオフェン、ジベンゾチオフェン、フラン、ベンゾフラン、ジベンゾフラン及び置換基を有するこれらの化合物が挙げられる。
 芳香族炭素環化合物及び芳香族複素環式化合物の上記置換基の具体例はRで表されるアリール基の置換基として前述したもの及び炭素数1~20のアルキル基が挙げられる。
 式(1)で表される化合物としては、例えば下記の化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000014
 式(1)において、nの好ましい一態様は2である。
 Tで表される芳香族基の好ましい一態様は、式(2):
Figure JPOXMLDOC01-appb-I000015
(式中、Rは、水素原子、ハロゲン原子、フッ素置換されていてもよいアルキル基、フッ素置換されていてもよいアルコキシ基、フッ素置換されていてもよいアルキルチオ基、アルコキシアルキル基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基又は置換されていてもよいアリールアルキルチオ基を表す。4個あるRは、同一であっても相異なってもよい。)
で表される基である。
 Rで表されるハロゲン原子、フッ素置換されていてもよいアルキル基、フッ素置換されていてもよいアルコキシ基、フッ素置換されていてもよいアルキルチオ基、アルコキシアルキル基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基及び置換されていてもよいアリールアルキルチオ基の定義及び具体例は、Rで表されるハロゲン原子、フッ素置換されていてもよいアルキル基、フッ素置換されていてもよいアルコキシ基、フッ素置換されていてもよいアルキルチオ基、アルコキシアルキル基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基及び置換されていてもよいアリールアルキルチオ基の定義及び具体例と同じである。
 Rは、水素原子及びアルキル基が好ましい。
 Tで表される芳香族基の他の好ましい態様は、式(3):
Figure JPOXMLDOC01-appb-I000016
(式中、Rは、水素原子、ハロゲン原子、フッ素置換されていてもよいアルキル基、フッ素置換されていてもよいアルコキシ基、フッ素置換されていてもよいアルキルチオ基、アルコキシアルキル基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基又は置換されていてもよいアリールアルキルチオ基を表す。8個あるRは、同一であっても相異なってもよい。)
で表される有機基である。
 Rで表されるハロゲン原子、フッ素置換されていてもよいアルキル基、フッ素置換されていてもよいアルコキシ基、フッ素置換されていてもよいアルキルチオ基、アルコキシアルキル基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基及び置換されていてもよいアリールアルキルチオ基の定義及び具体例は、Rで表されるハロゲン原子、フッ素置換されていてもよいアルキル基、フッ素置換されていてもよいアルコキシ基、フッ素置換されていてもよいアルキルチオ基、アルコキシアルキル基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基及び置換されていてもよいアリールアルキルチオ基の定義及び具体例と同じである。
 Rは、水素原子及びアルキル基が好ましい。
 Tで表される芳香族基の他の好ましい態様は、式(4):
Figure JPOXMLDOC01-appb-I000017
(式中、A環及びB環は、同一又は相異なり、芳香族炭素環又は芳香族複素環を表す。Aは、−S−、−O−又はA環及びB環と結合して5員環若しくは6員環を形成する2価の基を表す。)
で表される有機基である。
 式(4)中、A環及びB環の芳香族炭素環としては、ベンゼン環、ナフタレン環、アントラセン環等が挙げられる。芳香族複素環としては、チオフェン環、ピリジン環、フラン環等が挙げられる。A環及びB環は、ベンゼン環、ナフタレン環が好ましく、ベンゼン環がより好ましい。
 式(4)中、Aは、−S−、−O−又はA環及びB環と結合して5員環若しくは6員環を形成する2価の基を表す。5員環若しくは6員環を形成する2価の基としては、−C(R−、−O−C(R、−N(R)−、−Si(R−、−B(R)−、−C(R−C(R−等が挙げられる。R~Rは、同一又は相異なり、水素原子、フッ素置換されていてもよいアルキル基、置換されていてもよいアリール基、置換されていてもよいアリールアルキル基又は複素環基を表す。2個あるRは、同一であっても相異なっていてもよい。2個あるRが、互いに結合して環状構造を形成してもよい。2個あるRは、同一であっても相異なっていてもよい。2個あるRは、同一であっても相異なっていてもよい。4個あるRは、同一であっても相異なっていてもよい。
 R~Rで表されるフッ素置換されていてもよいアルキル基、置換されていてもよいアリール基及び置換されていてもよいアリールアルキル基の定義及び具体例は、Rで表されるフッ素置換されていてもよいアルキル基、置換されていてもよいアリール基及び置換されていてもよいアリールアルキル基の定義及び具体例と同じである。
 R~Rで表される複素環基は、その炭素数が通常2~60であり、芳香族複素環基が好ましく、具体例としては、置換されていてもよいピリジル基、フリル基、ピペリジル基、キノリル基、イソキノリル基及びピロリル基が挙げられる。
 Aは、−C(R−、−N(R)−が好ましい。
 Rは、アルキル基及びアリール基が好ましい。Rは、アルキル基及びアリール基が好ましい。
 Tで表される芳香族基の他の好ましい態様は、式(20):
Figure JPOXMLDOC01-appb-I000018
(式中、R20は、水素原子、ハロゲン原子、フッ素置換されていてもよいアルキル基、フッ素置換されていてもよいアルコキシ基、フッ素置換されていてもよいアルキルチオ基、アルコキシアルキル基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基又は置換されていてもよいアリールアルキルチオ基を表す。8個あるR20は、同一であっても相異なってもよい。)
で表される有機基である。
 R20で表されるハロゲン原子、フッ素置換されていてもよいアルキル基、フッ素置換されていてもよいアルコキシ基、フッ素置換されていてもよいアルキルチオ基、アルコキシアルキル基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基及び置換されていてもよいアリールアルキルチオ基の定義及び具体例は、Rで表されるハロゲン原子、フッ素置換されていてもよいアルキル基、フッ素置換されていてもよいアルコキシ基、フッ素置換されていてもよいアルキルチオ基、アルコキシアルキル基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基及び置換されていてもよいアリールアルキルチオ基の定義及び具体例と同じである。
 R20は、水素原子及びアルキル基が好ましい。
 Tで表される芳香族基の他の好ましい態様は、式(21):
Figure JPOXMLDOC01-appb-I000019
(式中、R21は、水素原子、ハロゲン原子、フッ素置換されていてもよいアルキル基、フッ素置換されていてもよいアルコキシ基、フッ素置換されていてもよいアルキルチオ基、アルコキシアルキル基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基又は置換されていてもよいアリールアルキルチオ基を表す。12個あるR21は、同一であっても相異なってもよい。)
で表される有機基である。
 R21で表されるハロゲン原子、フッ素置換されていてもよいアルキル基、フッ素置換されていてもよいアルコキシ基、フッ素置換されていてもよいアルキルチオ基、アルコキシアルキル基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基及び置換されていてもよいアリールアルキルチオ基の定義及び具体例は、Rで表されるハロゲン原子、フッ素置換されていてもよいアルキル基、フッ素置換されていてもよいアルコキシ基、フッ素置換されていてもよいアルキルチオ基、アルコキシアルキル基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基及び置換されていてもよいアリールアルキルチオ基の定義及び具体例と同じである。
 R21は、水素原子及びアルキル基が好ましい。
 式(1)において、nの他の好ましい態様は、4である。
 Tで表される芳香族基の他の好ましい態様は、式(5):
Figure JPOXMLDOC01-appb-I000020
(式中、Rは、水素原子、ハロゲン原子、フッ素置換されていてもよいアルキル基、フッ素置換されていてもよいアルコキシ基、フッ素置換されていてもよいアルキルチオ基、アルコキシアルキル基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基又は置換されていてもよいアリールアルキルチオ基を表す。12個あるRは、同一であっても相異なってもよい。)
で表される有機基である。
 Rで表されるハロゲン原子、フッ素置換されていてもよいアルキル基、フッ素置換されていてもよいアルコキシ基、フッ素置換されていてもよいアルキルチオ基、アルコキシアルキル基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基及び置換されていてもよいアリールアルキルチオ基の定義及び具体例は、Rで表されるハロゲン原子、フッ素置換されていてもよいアルキル基、フッ素置換されていてもよいアルコキシ基、フッ素置換されていてもよいアルキルチオ基、アルコキシアルキル基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基及び置換されていてもよいアリールアルキルチオ基の定義及び具体例と同じである。
 Rは、水素原子及びアルキル基が好ましい。
 本発明の有機光電変換素子が有する有機層中に含まれる式(1)で示される化合物は、一種類であっても二種類以上であってもよい。
 本発明の有機光電変換素子に用いられる共役高分子化合物は、(1)二重結合と単結合とが交互に並んだ構造から実質的になる高分子化合物、(2)二重結合と単結合とが窒素原子を介して並んだ構造から実質的になる高分子化合物、(3)二重結合と単結合とが交互に並んだ構造及び二重結合と単結合とが窒素原子を介して並んだ構造から実質的になる高分子化合物等を意味し、本明細書において、具体的には、置換されていてもよいフルオレンジイル基、置換されていてもよいベンゾフルオレンジイル基、置換されていてもよいジベンゾフランジイル基、置換されていてもよいジベンゾチオフェンジイル基、置換されていてもよいカルバゾールジイル基、置換されていてもよいチオフェンジイル基、置換されていてもよいフランジイル基、置換されていてもよいピロールジイル基、置換されていてもよいベンゾチアジアゾールジイル基、置換されていてもよいトリフェニルアミンジイル基、及び下記構造式で表される基
Figure JPOXMLDOC01-appb-I000021
からなる群から選ばれる一種又は二種以上を繰り返し単位とし、該繰り返し単位同士が直接又は連結基を介して結合した高分子化合物である。
 前記共役高分子化合物において、前記繰り返し単位同士が連結基を介して結合している場合、該連結基としては、フェニレン、ビフェニル−4.4’−ジイル、ナフタレンジイル、アントラセンジイル等が挙げられる。
 本発明に用いられる共役高分子化合物は、電荷輸送性の観点から、式(7)及び式(8)からなる群から選ばれる1種以上の繰り返し単位を有することが好ましい。
Figure JPOXMLDOC01-appb-I000022
〔式中、R10、R11、R12、R13、R14、R15、R16、R17、R18及びR19は、同一又は相異なり、水素原子、フッ素置換されていてもよいアルキル基、フッ素置換されていてもよいアルコキシ基、フッ素置換されていてもよいアルキルチオ基、アルコキシアルキル基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基又は置換されていてもよいアリールアルキルチオ基を表す。〕
 R10~R19で表されるフッ素置換されていてもよいアルキル基、フッ素置換されていてもよいアルコキシ基、フッ素置換されていてもよいアルキルチオ基、アルコキシアルキル基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基及び置換されていてもよいアリールアルキルチオ基の定義及び具体例は、前述のRで表されるフッ素置換されていてもよいアルキル基、フッ素置換されていてもよいアルコキシ基、フッ素置換されていてもよいアルキルチオ基、アルコキシアルキル基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基及び置換されていてもよいアリールアルキルチオ基の定義及び具体例と同じである。
 前記共役高分子化合物は、膜形成能、溶剤への溶解性の観点から、ポリスチレン換算の重量平均分子量が5×10~1×10であることが好ましく、1×10~1×10であることがより好ましく、1×10~1×10であることがさらに好ましい。
 本発明の有機光電変換素子が有する有機層中に含まれる共役高分子化合物は、一種類であっても二種類以上であってもよい。
 前記共役系高分子化合物は、その製造に用いる重合反応に適した官能基を有する単量体を合成した後に、必要に応じて、該単量体を有機溶媒に溶解し、アルカリや適当な触媒、配位子を用いた公知のアリールカップリング等の重合方法により、該単量体を重合することで製造することができる。
 本発明の有機光電変換素子が有する有機層には、式(1)で表される化合物と共役高分子化合物とが含まれる。有機層中の式(1)で表される化合物の重量は、共役高分子化合物100重量部に対して、好ましくは0.1~10000重量部であり、より好ましくは1~1000重量部である。
 本発明の有機光電変換素子が有する有機層には、式(1)で表される化合物と共役高分子化合物のみが含まれていてもよく、さらに電子受容性化合物が含まれていてもよい。電子受容性化合物としては、例えば、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8−ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、C60等のフラーレン及びその誘導体、カーボンナノチューブ、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン等のフェナントロリン誘導体が挙げられ、とりわけフラーレン及びその誘導体が好ましい。
 電子受容性化合物が含まれる場合、有機層中の電子受容性化合物の重量は、式(1)で表される化合物の重量と共役高分子化合物の重量の合計を100重量部とすると、1~10000重量部であることが好ましく、10~2000重量部であることがより好ましい。
 フラーレン及びその誘導体としては、C60、C70、C84及びその誘導体が挙げられる。フラーレン誘導体は、フラーレンの少なくとも一部が修飾された化合物を表す。
 フラーレン誘導体としては、例えば、式(11)で表される化合物、式(12)で表される化合物、式(13)で表される化合物、式(14)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000023
(式(11)~(14)中、Rは、フッ素置換されていてもよいアルキル基、置換されていてもよいアリール基、芳香族複素環基又はエステル構造を有する基である。複数個あるRは、同一であっても相異なってもよい。Rはフッ素置換されていてもよいアルキル基又は置換されていてもよいアリール基を表す。複数個あるRは、同一であっても相異なってもよい。)
 R及びRで表されるフッ素置換されていてもよいアルキル基及び置換されていてもよいアリール基の定義及び具体例は、Rで表されるフッ素置換されていてもよいアルキル基及び置換されていてもよいアリール基の定義及び具体例と同じである。
 Rで表される芳香族複素環基は、通常、炭素数が3~60であり、例えば、チエニル基、ピロリル基、フリル基、ピリジル基、ピペリジル基、キノリル基、イソキノリル基が挙げられる。
 Rで表されるエステル構造を有する基は、例えば、式(15):
Figure JPOXMLDOC01-appb-I000024
(式中、u1は、1~6の整数を表す、u2は、0~6の整数を表す、Rは、フッ素置換されていてもよいアルキル基、置換されていてもよいアリール基又は芳香族複素環基を表す。)
で表される基が挙げられる。
 Rで表されるフッ素置換されていてもよいアルキル基、置換されていてもよいアリール基及び芳香族複素環基の定義及び具体例は、Rで表されるフッ素置換されていてもよいアルキル基、置換されていてもよいアリール基及び芳香族複素環基の定義及び具体例と同じである。
 C60の誘導体の具体例としては、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-I000025
 C70の誘導体の具体例としては、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-I000026
 本発明の有機光電変換素子が有する有機層には、さらに電子供与性化合物が含まれていてもよい。電子供与性化合物としては、例えば、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、オリゴチオフェン及びその誘導体、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体が挙げられる。
 電子供与性化合物が含まれる場合、有機層中の電子供与性化合物の重量は、式(1)で表される化合物の重量と共役高分子化合物の重量の合計を100重量部とすると、1~100000重量部であることが好ましく、10~1000重量部であることがより好ましい。
 本発明の有機光電変換素子が有する有機層には、電荷輸送性、電荷注入性を損なわない範囲で、式(1)で表される化合物、共役高分子化合物、電子供与性化合物、電子受容性化合物以外の成分を含んでいてもよい。
 本発明の有機光電変換素子は、一対の電極と、該電極間に式(1)で表される化合物と共役高分子化合物とを含む有機層を有する。式(1)で表される化合物と共役高分子化合物との組成物は、電子受容性化合物として用いることも電子供与性化合物として用いることもできる。また、式(1)で表される化合物と共役高分子化合物の一方が電子供与性化合物であり、他の一方が電子受容性化合物である場合は、電子供与性体と電子受容体の両方の機能を有する場合がある。これらの態様の中では、該組成物が電子供与性化合物として用いられることが好ましい。一対の電極は、少なくとも一方が透明又は半透明であることが好ましい。
 次に、有機光電変換素子の動作機構を説明する。透明又は半透明の電極から入射した光エネルギーが電子受容性化合物及び/又は電子供与性化合物で吸収され、電子とホールの結合した励起子を生成する。生成した励起子が移動して、電子受容性化合物と電子供与性化合物が隣接しているヘテロ接合界面に達すると界面でのそれぞれのHOMOエネルギー及びLUMOエネルギーの違いにより電子とホールが分離し、独立に動くことができる電荷(電子とホール)が発生する。発生した電荷は、それぞれ電極へ移動することにより外部へ電気エネルギー(電流)として取り出すことができる。
 Voc(開放端電圧)とは、外部に流す電流がゼロの時の電圧であり、Vocの値が高いことが、高い光電変換効率を発現する要因の一つとなる。
 本発明の有機光電変換素子の具体例としては、下記1.~5.の有機光電変換素子が挙げられる。
1.一対の電極と、該電極間に式(1)で表される化合物と共役高分子化合物とを含有する第一の有機層と、該第一の有機層に隣接して設けられた電子供与性化合物を含有する第二の有機層とを有する有機光電変換素子;
2.一対の電極と、該電極間に電子受容性化合物を含有する第一の有機層と、該第一の有機層に隣接して設けられた式(1)で表される合物と共役高分子化合物とを含有する第二の有機層とを有する有機光電変換素子;
3.一対の電極と、該電極間に式(1)で表される化合物と共役高分子化合物と電子供与性化合物とを含有する有機層を少なくとも一層有する有機光電変換素子;
4.一対の電極と、該電極間に式(1)で表される化合物と共役高分子化合物と電子受容性化合物とを含有する有機層を有する有機光電変換素子;
5.一対の電極と、該電極間に式(1)で表される化合物と共役高分子化合物と電子受容性化合物とを含有する有機層を少なくとも一層有する有機光電変換素子であって、該電子受容性化合物がフラーレン誘導体である有機光電変換素子;
 また、前記5.の有機光電変換素子では、有機層中におけるフラーレン誘導体の重量が、式(1)で表される化合物の重量と共役高分子化合物の重量との合計を100重量部とすると、10~1000重量部であることが好ましく、50~500重量部であることがより好ましい。
 本発明の有機光電変換素子としては、前記3.、前記4.、前記5.の有機光電変換素子が好ましく、ヘテロ接合界面を多く含むという観点からは、前記5.の有機光電変換素子がより好ましい。また、本発明の有機光電変換素子には、少なくとも一方の電極と該素子中の有機層との間に付加的な層を設けてもよい。付加的な層としては、例えば、ホール又は電子を輸送する電荷輸送層が挙げられる。
 式(1)で表される化合物と共役高分子化合物との組成物を電子供与体として用いる場合、有機光電変換素子に好適に用いられる電子受容体は、電子受容体のHOMOエネルギーが共役高分子化合物のHOMOエネルギー及び式(1)で表される化合物のHOMOエネルギーよりも高く、かつ、電子受容体のLUMOエネルギーが共役高分子化合物のLUMOエネルギー及び式(1)で表される化合物のLUMOエネルギーよりも高い化合物である。また、式(1)で表される化合物と共役高分子化合物との高分子化合物を電子受容体として用いる場合、有機光電変換素子に好適に用いられる電子供与体は、電子供与体のHOMOエネルギーが共役高分子化合物のHOMOエネルギー及び式(1)で表される化合物のHOMOエネルギーよりも低く、かつ、電子供与体のLUMOエネルギーが共役高分子化合物のLUMOエネルギー及び式(1)で表される化合物のLUMOエネルギーよりも低い化合物である。
 本発明の有機光電変換素子は、通常、基板上に形成される。該基板は、電極を形成し、有機物の層を形成する際に化学的に変化しないものであればよい。基板の材料としては、例えば、ガラス、プラスチック、高分子フィルム、シリコンが挙げられる。不透明な基板の場合には、反対の電極(即ち、基板から遠い方の電極)が透明又は半透明であることが好ましい。
 一対の電極の材料としては、金属、導電性高分子等を用いることができ、好ましくは一対の電極のうち一方の電極は仕事関数の小さい材料が好ましい。例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、及びそれらのうち2つ以上の合金、又はそれらのうち1つ以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1つ以上との合金、グラファイト又はグラファイト層間化合物等が用いられる。合金の例としては、マグネシウム−銀合金、マグネシウム−インジウム合金、マグネシウム−アルミニウム合金、インジウム−銀合金、リチウム−アルミニウム合金、リチウム−マグネシウム合金、リチウム−インジウム合金、カルシウム−アルミニウム合金が挙げられる。
 前記の透明又は半透明の電極の材料としては、導電性の金属酸化物膜、半透明の金属薄膜等が挙げられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等からなる導電性材料を用いて作製された膜、NESA、金、白金、銀、銅が用いられ、ITO、インジウム・亜鉛・オキサイド、酸化スズが好ましい。電極の作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。また、電極材料として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。
 前記付加的な層としての電荷輸送層、即ち、ホール輸送層、電子輸送層に用いられる材料として、それぞれ前述の電子供与性化合物、電子受容性化合物を用いることができる。
 付加的な層としてのバッファ層に用いられる材料としては、フッ化リチウム等のアルカリ金属、アルカリ土類金属のハロゲン化物、酸化物等を用いることができる。また、酸化チタン等無機半導体の微粒子を用いることもできる。
 本発明の有機光電変換素子における前記有機層としては、例えば、式(1)で表される化合物と共役高分子化合物とを含有する有機薄膜を用いることができる。
 前記有機薄膜は、膜厚が、通常、1nm~100μmであり、好ましくは2nm~1000nmであり、より好ましくは5nm~500nmであり、さらに好ましくは20nm~200nmである。
 前記有機薄膜のホール輸送性を高めるため、前記有機薄膜中に電子供与性化合物及び/又は電子受容性化合物として、式(1)で表される化合物以外の低分子化合物及び/又は共役高分子化合物以外の重合体を混合して用いることもできる。
 本発明の有機光電変換素子に含まれる有機層は、式(1)で表される化合物と共役高分子化合物との組成物を用いて製造することができる。有機層中に、さらに電子受容性化合物を含む場合は、式(1)で表される化合物と共役高分子化合物と電子受容性化合物との組成物を用いて製造することができる。また、有機層中に、さらに電子供与性化合物を含む場合は、式(1)で表される化合物と共役高分子化合物と電子供与性化合物との組成物を用いて製造することができる。
 前記組成物中の式(1)で表される化合物の重量は、共役高分子化合物100重量部に対して、好ましくは0.1~10000重量部であり、より好ましくは1~1000重量部である。組成物中に電子受容性化合物が含まれる場合、組成物中の電子受容性化合物の重量は、式(1)で表される化合物の重量と共役高分子化合物の重量の合計を100重量部とすると、1~10000重量部であることが好ましく、10~2000重量部であることがより好ましい。組成物中に電子供与性化合物が含まれる場合、組成物中の電子供与性化合物の重量は、式(1)で表される化合物の重量と共役高分子化合物の重量の合計を100重量部とすると、1~100000重量部であることが好ましく、10~1000重量部であることがより好ましい。
 前記有機薄膜の製造方法は、特に制限されず、例えば、前記組成物と溶媒とを含む溶液からの成膜による方法が挙げられるが、真空蒸着法により薄膜を形成してもよい。溶液からの成膜により有機薄膜を製造する方法としては、例えば、一方の電極上に該溶液を塗布し、その後、溶媒を蒸発させて有機薄膜を製造する方法が挙げられる。
 溶液からの成膜に用いる溶媒は、式(1)で表される化合物と共役高分子化合物とを溶解させるものであれば特に制限はない。この溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、ブチルベンゼン、sec−ブチルベゼン、tert−ブチルベンゼン等の炭化水素溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等の脂肪族ハロゲン化炭化水素溶媒、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等の芳香族ハロゲン化炭化水素溶媒、テトラヒドロフラン、テトラヒドロピラン等のエーテル溶媒が挙げられる。本発明に用いられる式(1)で表される化合物と共役高分子化合物との組成物は、通常、前記溶媒に0.1重量%以上溶解させることができる。
 溶液からの成膜には、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法を用いることができ、スピンコート法、フレキソ印刷法、インクジェット印刷法、ディスペンサー印刷法が好ましい。
 有機光電変換素子は、透明又は半透明の電極から太陽光等の光を照射することにより、電極間に光起電力が発生し、有機薄膜太陽電池として動作させることができる。有機薄膜太陽電池を複数集積することにより有機薄膜太陽電池モジュールとして用いることもできる。
 また、電極間に電圧を印加した状態で、透明又は半透明の電極から光を照射することにより、光電流が流れ、有機光センサーとして動作させることができる。有機光センサーを複数集積することにより有機イメージセンサーとして用いることもできる。
Hereinafter, the present invention will be described in detail.
The organic photoelectric conversion element of the present invention has an organic layer containing the compound represented by the above formula (1) and a conjugated polymer compound.
In the formula (1), examples of the halogen atom represented by R include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
In the formula (1), the alkyl group represented by R usually has 1 to 20 carbon atoms, and may be linear, branched or cyclic. Specific examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, sec-butyl group, 3-methylbutyl group, pentyl group, hexyl group and 2-ethylhexyl. Group, heptyl group, octyl group, nonyl group, decyl group, 3,7-dimethyloctyl group and lauryl group. The hydrogen atom in the alkyl group may be substituted with a fluorine atom. Examples of the alkyl group in which a hydrogen atom is substituted with a fluorine atom include a trifluoromethyl group, a pentafluoroethyl group, a perfluorobutyl group, a perfluorohexyl group, and a perfluorooctyl group.
In the formula (1), the alkoxy group represented by R usually has 1 to 20 carbon atoms, and the alkyl portion may be linear or branched, or may be cyclic. Specific examples of the alkoxy group include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyl Examples thereof include an oxy group, an octyloxy group, a 2-ethylhexyloxy group, a nonyloxy group, a decyloxy group, a 3,7-dimethyloctyloxy group, and a lauryloxy group. A hydrogen atom in the alkoxy group may be substituted with a fluorine atom. Examples of the alkoxy group in which a hydrogen atom is substituted with a fluorine atom include a trifluoromethoxy group, a pentafluoroethoxy group, a perfluorobutoxy group, a perfluorohexyloxy group, and a perfluorooctyloxy group.
In the formula (1), the alkylthio group represented by R usually has 1 to 20 carbon atoms, and the alkyl portion may be linear or branched or cyclic. Specific examples of the alkylthio group include methylthio group, ethylthio group, propylthio group, isopropylthio group, butylthio group, isobutylthio group, sec-butylthio group, tert-butylthio group, pentylthio group, hexylthio group, cyclohexylthio group, heptylthio group. Octylthio group, 2-ethylhexylthio group, nonylthio group, decylthio group, 3,7-dimethyloctylthio group and laurylthio group. A hydrogen atom in the alkylthio group may be substituted with a fluorine atom. Examples of the alkylthio group in which a hydrogen atom is substituted with a fluorine atom include a trifluoromethylthio group.
In the formula (1), the alkoxyalkyl group represented by R usually has 2 to 20 carbon atoms. Specific examples thereof include the formula (9):
Figure JPOXMLDOC01-appb-I000011
(In the formula, p represents an integer of 1 to 10, and q represents an integer of 0 to 9.)
The group represented by these is mentioned.
In formula (1), the aryl group represented by R is an atomic group obtained by removing one hydrogen atom on an aromatic ring from an aromatic hydrocarbon, having a benzene ring, having a condensed ring, independent And those obtained by bonding two or more benzene rings or condensed rings directly or via a group such as vinylene. The aryl group usually has 6 to 60 carbon atoms, preferably 6 to 48 carbon atoms. The aryl group may have a substituent. Examples of the substituent include a linear or branched alkyl group having 1 to 20 carbon atoms or an alkoxy group having a cycloalkyl group having 3 to 20 carbon atoms in the structure thereof, formula (6):
Figure JPOXMLDOC01-appb-I000012
(In the formula, g represents an integer of 1 to 6, and h represents an integer of 0 to 5.)
And an alkoxyalkoxy group represented by the formula:
Specific examples of the aryl group include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, a 2-anthracenyl group, a 9-anthracenyl group, and a linear alkyl group having 1 to 20 carbon atoms. And a phenyl group substituted with a branched alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms. Specific examples of the substituted aryl group include C 1 ~ C 12 Alkoxyphenyl group (C 1 ~ C 12 Indicates that the number of carbon atoms is 1-12. The same applies to the following. ) And pentafluorophenyl groups. A preferred optionally substituted aryl group is C 1 ~ C 12 Alkoxyphenyl group and C 1 ~ C 12 An alkylphenyl group; C 1 ~ C 12 Specific examples of the alkoxyphenyl group include a methoxyphenyl group, an ethoxyphenyl group, a propoxyphenyl group, an isopropoxyphenyl group, a butoxyphenyl group, an isobutoxyphenyl group, a sec-butoxyphenyl group, a tert-butoxyphenyl group, and a pentyloxyphenyl group. Hexyloxyphenyl group, cyclohexyloxyphenyl group, heptyloxyphenyl group, octyloxyphenyl group, 2-ethylhexyloxyphenyl group, nonyloxyphenyl group, decyloxyphenyl group, 3,7-dimethyloctyloxyphenyl group and lauryloxy It is a phenyl group. C 1 ~ C 12 Specific examples of the alkylphenyl group include methylphenyl group, ethylphenyl group, dimethylphenyl group, propylphenyl group, mesityl group, methylethylphenyl group, isopropylphenyl group, butylphenyl group, isobutylphenyl group, sec-butylphenyl group, A tert-butylphenyl group, a pentylphenyl group, an isoamylphenyl group, a hexylphenyl group, a heptylphenyl group, an octylphenyl group, a nonylphenyl group, a decylphenyl group, and a dodecylphenyl group.
In the formula (1), the aryloxy group represented by R usually has 6 to 60 carbon atoms, preferably 6 to 48 carbon atoms. The aryloxy group may have a substituent. Specific examples of the substituent are the same as those described above as the substituent of the aryl group represented by R. Specific examples of the optionally substituted aryloxy group include a phenoxy group, C 1 ~ C 12 Alkylphenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, C 1 ~ C 12 An alkoxyphenoxy group and a pentafluorophenyloxy group, and C 1 ~ C 12 Alkoxyphenoxy group and C 1 ~ C 12 Alkylphenoxy groups are preferred. C 1 ~ C 12 Specific examples of alkoxy include methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentyloxy, hexyloxy, cyclohexyloxy, heptyloxy, octyloxy, 2-ethylhexyloxy, nonyloxy, Examples include decyloxy, 3,7-dimethyloctyloxy and lauryloxy. C 1 ~ C 12 Specific examples of the alkylphenoxy group include methylphenoxy group, ethylphenoxy group, dimethylphenoxy group, propylphenoxy group, 1,3,5-trimethylphenoxy group, methylethylphenoxy group, isopropylphenoxy group, butylphenoxy group, isobutylphenoxy group. Group, sec-butylphenoxy group, tert-butylphenoxy group, pentylphenoxy group, isoamylphenoxy group, hexylphenoxy group, heptylphenoxy group, octylphenoxy group, nonylphenoxy group, decylphenoxy group and dodecylphenoxy group.
In formula (1), the arylthio group represented by R usually has 6 to 60 carbon atoms. The arylthio group may have a substituent. Specific examples of the substituent are the same as those described above as the substituent of the aryl group represented by R. Specific examples of the optionally substituted arylthio group include a phenylthio group, C 1 ~ C 12 Alkoxyphenylthio group, C 1 ~ C 12 Examples thereof include an alkylphenylthio group, a 1-naphthylthio group, a 2-naphthylthio group, and a pentafluorophenylthio group.
In the formula (1), the arylalkyl group represented by R usually has 7 to 60 carbon atoms. The arylalkyl group may have a substituent. Specific examples of the substituent are the same as those described above as the substituent of the aryl group represented by R. Specific examples of the optionally substituted arylalkyl group include phenyl-C 1 ~ C 12 Alkyl group, C 1 ~ C 12 Alkoxyphenyl-C 1 ~ C 12 Alkyl group, C 1 ~ C 12 Alkylphenyl-C 1 ~ C 12 Alkyl group, 1-naphthyl-C 1 ~ C 12 Alkyl group and 2-naphthyl-C 1 ~ C 12 An alkyl group is mentioned.
In formula (1), the arylalkoxy group represented by R usually has 7 to 60 carbon atoms. The arylalkoxy group may have a substituent. Specific examples of the substituent are the same as those described above as the substituent of the aryl group represented by R. Specific examples of the optionally substituted arylalkoxy group include phenyl-C 1 ~ C 12 Alkoxy group, C 1 ~ C 12 Alkoxyphenyl-C 1 ~ C 12 Alkoxy group, C 1 ~ C 12 Alkylphenyl-C 1 ~ C 12 Alkoxy group, 1-naphthyl-C 1 ~ C 12 Alkoxy groups and 2-naphthyl-C 1 ~ C 12 An alkoxy group is mentioned.
In formula (1), the arylalkylthio group represented by R usually has 7 to 60 carbon atoms. The arylalkylthio group may have a substituent. Specific examples of the substituent are the same as those described above as the substituent of the aryl group represented by R. Specific examples of the optionally substituted arylalkylthio group include phenyl-C 1 ~ C 12 Alkylthio group, C 1 ~ C 12 Alkoxyphenyl-C 1 ~ C 12 Alkylthio group, C 1 ~ C 12 Alkylphenyl-C 1 ~ C 12 Alkylthio group, 1-naphthyl-C 1 ~ C 12 Alkylthio group and 2-naphthyl-C 1 ~ C 12 An alkylthio group is mentioned.
In formula (1), the acyl group represented by R is a group obtained by removing a hydroxyl group (OH of the —COOH moiety) from carboxylic acid, and is, for example, a group represented by the following formula.
Figure JPOXMLDOC01-appb-I000013
(In the formula, R ′ represents an alkyl group which may be substituted with fluorine or an aryl group which may be substituted.)
Specific examples of the optionally substituted alkyl group represented by R ′ and the optionally substituted aryl group include the optionally substituted fluorine group represented by R and the optionally substituted aryl group. Same as aryl group.
R is preferably a hydrogen atom, an alkyl group or a halogen atom from the viewpoint of charge transportability.
T in Formula (1) is an n-valent aromatic group, and represents an n-valent aromatic carbocyclic group or an n-valent aromatic heterocyclic group. An n-valent aromatic carbocyclic group is an n-valent organic group obtained by removing n hydrogen atoms on an aromatic ring from an aromatic carbocyclic compound, and an n-valent aromatic heterocyclic group is an aromatic complex. An n-valent organic group obtained by removing n hydrogen atoms on an aromatic ring from a cyclic compound.
Examples of the aromatic carbocyclic compound include benzene, naphthalene, anthracene, pyrene, perylene, fluorene, benzofluorene, biphenyl, terphenyl, and these compounds having a substituent.
Examples of the aromatic heterocyclic compound include pyrrole, pyridine, indole, imidazole, quinoline, isoquinoline, carbazole, thiophene, benzothiophene, dibenzothiophene, furan, benzofuran, dibenzofuran and these compounds having a substituent.
Specific examples of the substituent of the aromatic carbocyclic compound and aromatic heterocyclic compound include those described above as the substituent of the aryl group represented by R and alkyl groups having 1 to 20 carbon atoms.
Examples of the compound represented by the formula (1) include the following compounds.
Figure JPOXMLDOC01-appb-I000014
In the formula (1), a preferred embodiment of n is 2.
A preferred embodiment of the aromatic group represented by T is the formula (2):
Figure JPOXMLDOC01-appb-I000015
(Wherein R 1 Is a hydrogen atom, a halogen atom, an alkyl group that may be substituted with fluorine, an alkoxy group that may be substituted with fluorine, an alkylthio group that may be substituted with fluorine, an alkoxyalkyl group, or an aryl group that may be substituted An optionally substituted aryloxy group, an optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group or an optionally substituted arylalkylthio group; To express. 4 R 1 May be the same or different. )
It is group represented by these.
R 1 A halogen atom represented by: an alkyl group which may be fluorine-substituted, an alkoxy group which may be fluorine-substituted, an alkylthio group which may be fluorine-substituted, an alkoxyalkyl group, an aryl group which may be substituted, Definitions of an optionally substituted aryloxy group, an optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group, and an optionally substituted arylalkylthio group And specific examples include a halogen atom represented by R, an alkyl group which may be substituted with fluorine, an alkoxy group which may be substituted with fluorine, an alkylthio group which may be substituted with fluorine, an alkoxyalkyl group, substituted Optionally substituted aryl group, optionally substituted aryloxy group, substituted Which may be arylthio group, an optionally substituted arylalkyl group, the same definition and specific examples of the optionally substituted arylalkoxy group and an optionally substituted arylalkylthio group.
R 1 Are preferably a hydrogen atom or an alkyl group.
Another preferred embodiment of the aromatic group represented by T is the formula (3):
Figure JPOXMLDOC01-appb-I000016
(Wherein R 2 Is a hydrogen atom, a halogen atom, an alkyl group that may be substituted with fluorine, an alkoxy group that may be substituted with fluorine, an alkylthio group that may be substituted with fluorine, an alkoxyalkyl group, or an aryl group that may be substituted An optionally substituted aryloxy group, an optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group or an optionally substituted arylalkylthio group; To express. 8 R 2 May be the same or different. )
It is an organic group represented by.
R 2 A halogen atom represented by: an alkyl group which may be fluorine-substituted, an alkoxy group which may be fluorine-substituted, an alkylthio group which may be fluorine-substituted, an alkoxyalkyl group, an aryl group which may be substituted, Definitions of an optionally substituted aryloxy group, an optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group, and an optionally substituted arylalkylthio group And specific examples include a halogen atom represented by R, an alkyl group which may be substituted with fluorine, an alkoxy group which may be substituted with fluorine, an alkylthio group which may be substituted with fluorine, an alkoxyalkyl group, substituted Optionally substituted aryl group, optionally substituted aryloxy group, substituted Which may be arylthio group, an optionally substituted arylalkyl group, the same definition and specific examples of the optionally substituted arylalkoxy group and an optionally substituted arylalkylthio group.
R 2 Are preferably a hydrogen atom or an alkyl group.
Another preferred embodiment of the aromatic group represented by T is the formula (4):
Figure JPOXMLDOC01-appb-I000017
(In the formula, A ring and B ring are the same or different and each represents an aromatic carbocyclic ring or an aromatic heterocyclic ring. 2 Represents a divalent group which forms a 5-membered ring or a 6-membered ring by bonding to -S-, -O- or A ring and B ring. )
It is an organic group represented by.
In the formula (4), examples of the aromatic carbocycles of the A ring and the B ring include a benzene ring, a naphthalene ring, and an anthracene ring. Examples of the aromatic heterocycle include a thiophene ring, a pyridine ring, and a furan ring. The A ring and the B ring are preferably a benzene ring and a naphthalene ring, and more preferably a benzene ring.
In formula (4), A 2 Represents a divalent group which forms a 5-membered ring or a 6-membered ring by bonding to -S-, -O- or A ring and B ring. Examples of the divalent group that forms a 5-membered or 6-membered ring include -C (R 4 ) 2 -, -O-C (R 5 ) 2 , -N (R 6 )-, -Si (R 7 ) 2 -, -B (R 8 )-, -C (R 9 ) 2 -C (R 9 ) 2 -Etc. are mentioned. R 4 ~ R 9 Are the same or different and each represents a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group, an optionally substituted arylalkyl group or a heterocyclic group. 2 R 4 May be the same or different. 2 R 4 However, they may be bonded to each other to form a ring structure. 2 R 5 May be the same or different. 2 R 7 May be the same or different. 4 R 9 May be the same or different.
R 4 ~ R 9 Definitions and specific examples of the optionally substituted alkyl group, the optionally substituted aryl group, and the optionally substituted arylalkyl group represented by R are as follows: The definition and specific examples of a good alkyl group, an optionally substituted aryl group and an optionally substituted arylalkyl group are the same.
R 4 ~ R 9 Is generally an aromatic heterocyclic group, and specific examples thereof include an optionally substituted pyridyl group, furyl group, piperidyl group, quinolyl group. , Isoquinolyl group and pyrrolyl group.
A 2 Is -C (R 4 ) 2 -, -N (R 6 )-Is preferred.
R 4 Is preferably an alkyl group or an aryl group. R 6 Is preferably an alkyl group or an aryl group.
Another preferred embodiment of the aromatic group represented by T is the formula (20):
Figure JPOXMLDOC01-appb-I000018
(Wherein R 20 Is a hydrogen atom, a halogen atom, an alkyl group that may be substituted with fluorine, an alkoxy group that may be substituted with fluorine, an alkylthio group that may be substituted with fluorine, an alkoxyalkyl group, or an aryl group that may be substituted An optionally substituted aryloxy group, an optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group or an optionally substituted arylalkylthio group; To express. 8 R 20 May be the same or different. )
It is an organic group represented by.
R 20 A halogen atom represented by: an alkyl group which may be fluorine-substituted, an alkoxy group which may be fluorine-substituted, an alkylthio group which may be fluorine-substituted, an alkoxyalkyl group, an aryl group which may be substituted, Definitions of an optionally substituted aryloxy group, an optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group, and an optionally substituted arylalkylthio group And specific examples include a halogen atom represented by R, an alkyl group which may be substituted with fluorine, an alkoxy group which may be substituted with fluorine, an alkylthio group which may be substituted with fluorine, an alkoxyalkyl group, substituted Optionally substituted aryl group, optionally substituted aryloxy group, substituted Which may be arylthio group, an optionally substituted arylalkyl group, the same definition and specific examples of the optionally substituted arylalkoxy group and an optionally substituted arylalkylthio group.
R 20 Are preferably a hydrogen atom or an alkyl group.
Another preferred embodiment of the aromatic group represented by T is the formula (21):
Figure JPOXMLDOC01-appb-I000019
(Wherein R 21 Is a hydrogen atom, a halogen atom, an alkyl group that may be substituted with fluorine, an alkoxy group that may be substituted with fluorine, an alkylthio group that may be substituted with fluorine, an alkoxyalkyl group, or an aryl group that may be substituted An optionally substituted aryloxy group, an optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group or an optionally substituted arylalkylthio group; To express. 12 R 21 May be the same or different. )
It is an organic group represented by.
R 21 A halogen atom represented by: an alkyl group which may be fluorine-substituted, an alkoxy group which may be fluorine-substituted, an alkylthio group which may be fluorine-substituted, an alkoxyalkyl group, an aryl group which may be substituted, Definitions of an optionally substituted aryloxy group, an optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group, and an optionally substituted arylalkylthio group And specific examples include a halogen atom represented by R, an alkyl group which may be substituted with fluorine, an alkoxy group which may be substituted with fluorine, an alkylthio group which may be substituted with fluorine, an alkoxyalkyl group, substituted Optionally substituted aryl group, optionally substituted aryloxy group, substituted Which may be arylthio group, an optionally substituted arylalkyl group, the same definition and specific examples of the optionally substituted arylalkoxy group and an optionally substituted arylalkylthio group.
R 21 Are preferably a hydrogen atom or an alkyl group.
In Formula (1), another preferred embodiment of n is 4.
Another preferred embodiment of the aromatic group represented by T is the formula (5):
Figure JPOXMLDOC01-appb-I000020
(Wherein R 3 Is a hydrogen atom, a halogen atom, an alkyl group that may be substituted with fluorine, an alkoxy group that may be substituted with fluorine, an alkylthio group that may be substituted with fluorine, an alkoxyalkyl group, or an aryl group that may be substituted An optionally substituted aryloxy group, an optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group or an optionally substituted arylalkylthio group; To express. 12 R 3 May be the same or different. )
It is an organic group represented by.
R 3 A halogen atom represented by: an alkyl group which may be fluorine-substituted, an alkoxy group which may be fluorine-substituted, an alkylthio group which may be fluorine-substituted, an alkoxyalkyl group, an aryl group which may be substituted, Definitions of an optionally substituted aryloxy group, an optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group, and an optionally substituted arylalkylthio group And specific examples include a halogen atom represented by R, an alkyl group which may be substituted with fluorine, an alkoxy group which may be substituted with fluorine, an alkylthio group which may be substituted with fluorine, an alkoxyalkyl group, substituted Optionally substituted aryl group, optionally substituted aryloxy group, substituted Which may be arylthio group, an optionally substituted arylalkyl group, the same definition and specific examples of the optionally substituted arylalkoxy group and an optionally substituted arylalkylthio group.
R 6 Are preferably a hydrogen atom or an alkyl group.
The compound represented by the formula (1) contained in the organic layer of the organic photoelectric conversion element of the present invention may be one type or two or more types.
The conjugated polymer compound used in the organic photoelectric conversion device of the present invention includes (1) a polymer compound substantially composed of a structure in which double bonds and single bonds are alternately arranged, and (2) double bonds and single bonds. Compound consisting essentially of a structure in which double bonds are arranged through nitrogen atoms, (3) a structure in which double bonds and single bonds are arranged alternately, and double bonds and single bonds are arranged through nitrogen atoms In the present specification, specifically, a fluorenediyl group which may be substituted, a benzofluorenediyl group which may be substituted, Dibenzofurandiyl group which may be substituted, dibenzothiophenediyl group which may be substituted, carbazolediyl group which may be substituted, thiophenediyl group which may be substituted, furanyl group which may be substituted Optionally substituted pyrrolediyl group, an optionally substituted benzothiadiazole-diyl group, an optionally substituted triphenylamine-diyl group, and a group represented by the following structural formula
Figure JPOXMLDOC01-appb-I000021
A polymer compound in which one or two or more selected from the group consisting of is used as a repeating unit and the repeating units are bonded directly or via a linking group.
In the conjugated polymer compound, when the repeating units are bonded via a linking group, examples of the linking group include phenylene, biphenyl-4.4′-diyl, naphthalenediyl, anthracenediyl, and the like.
The conjugated polymer compound used in the present invention preferably has one or more repeating units selected from the group consisting of formula (7) and formula (8) from the viewpoint of charge transportability.
Figure JPOXMLDOC01-appb-I000022
[In the formula, R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 And R 19 Are the same or different and are a hydrogen atom, an alkyl group which may be substituted with fluorine, an alkoxy group which may be substituted with fluorine, an alkylthio group which may be substituted with fluorine, an alkoxyalkyl group, which may be substituted An aryl group, an optionally substituted aryloxy group, an optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group or an optionally substituted arylalkylthio Represents a group. ]
R 10 ~ R 19 An optionally substituted fluorine-substituted alkyl group, an optionally substituted fluorine-substituted alkoxy group, an optionally substituted fluorine-substituted alkylthio group, an alkoxyalkyl group, an optionally substituted aryl group, Definitions and specific examples of an optionally substituted aryloxy group, an optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group and an optionally substituted arylalkylthio group Is a fluorine-substituted alkyl group, a fluorine-substituted alkoxy group, a fluorine-substituted alkylthio group, a alkoxyalkyl group, or a substituted aryl represented by the aforementioned R. Group, aryloxy group which may be substituted, arylthio which may be substituted , Optionally substituted arylalkyl group, the same definition and specific examples of the optionally substituted arylalkoxy group and an optionally substituted arylalkylthio group.
The conjugated polymer compound has a polystyrene-equivalent weight average molecular weight of 5 × 10 5 from the viewpoint of film forming ability and solubility in a solvent. 2 ~ 1 × 10 7 Is preferably 1 × 10 3 ~ 1 × 10 6 More preferably, 1 × 10 4 ~ 1 × 10 6 More preferably.
The conjugated polymer compound contained in the organic layer of the organic photoelectric conversion element of the present invention may be one type or two or more types.
The conjugated polymer compound is prepared by synthesizing a monomer having a functional group suitable for the polymerization reaction used for its production, and then, if necessary, dissolving the monomer in an organic solvent to obtain an alkali or a suitable catalyst. It can be produced by polymerizing the monomer by a known polymerization method such as aryl coupling using a ligand.
The organic layer of the organic photoelectric conversion element of the present invention includes a compound represented by the formula (1) and a conjugated polymer compound. The weight of the compound represented by the formula (1) in the organic layer is preferably 0.1 to 10000 parts by weight, more preferably 1 to 1000 parts by weight with respect to 100 parts by weight of the conjugated polymer compound. .
The organic layer of the organic photoelectric conversion device of the present invention may contain only the compound represented by the formula (1) and the conjugated polymer compound, and may further contain an electron accepting compound. Examples of the electron-accepting compound include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, diphenyldicyanoethylene And derivatives thereof, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof, polyfluorene and derivatives thereof, C 60 And phenanthroline derivatives such as carbon nanotubes and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline. Fullerene and derivatives thereof are particularly preferable.
When the electron-accepting compound is contained, the weight of the electron-accepting compound in the organic layer is 1 to 1 when the total weight of the compound represented by the formula (1) and the weight of the conjugated polymer compound is 100 parts by weight. The amount is preferably 10,000 parts by weight, and more preferably 10 to 2000 parts by weight.
Fullerene and its derivatives include C 60 , C 70 , C 84 And derivatives thereof. The fullerene derivative represents a compound in which at least a part of fullerene is modified.
Examples of the fullerene derivative include a compound represented by the formula (11), a compound represented by the formula (12), a compound represented by the formula (13), and a compound represented by the formula (14).
Figure JPOXMLDOC01-appb-I000023
(In the formulas (11) to (14), R a Is a group having an alkyl group which may be substituted with fluorine, an aryl group which may be substituted, an aromatic heterocyclic group or an ester structure. Multiple R a May be the same or different. R b Represents an alkyl group which may be fluorine-substituted or an aryl group which may be substituted. Multiple R b May be the same or different. )
R a And R b The definition and specific examples of the optionally substituted fluorine group and optionally substituted aryl group represented by the formula are as follows: the optionally substituted fluorine group represented by R and optionally substituted The definition and specific examples of the aryl group are the same.
R a In general, the aromatic heterocyclic group represented by the formula has 3 to 60 carbon atoms, and examples thereof include a thienyl group, a pyrrolyl group, a furyl group, a pyridyl group, a piperidyl group, a quinolyl group, and an isoquinolyl group.
R a Examples of the group having an ester structure represented by the formula (15):
Figure JPOXMLDOC01-appb-I000024
(Wherein u1 represents an integer of 1 to 6, u2 represents an integer of 0 to 6, R c Represents an optionally substituted fluorine-substituted alkyl group, an optionally substituted aryl group or an aromatic heterocyclic group. )
The group represented by these is mentioned.
R c Definitions and specific examples of an optionally substituted alkyl group, an optionally substituted aryl group and an aromatic heterocyclic group represented by a The definition and specific examples of the optionally substituted fluorine-substituted alkyl group, the optionally substituted aryl group and the aromatic heterocyclic group are as follows.
C 60 Specific examples of the derivatives include the following.
Figure JPOXMLDOC01-appb-I000025
C 70 Specific examples of the derivatives include the following.
Figure JPOXMLDOC01-appb-I000026
The organic layer of the organic photoelectric conversion device of the present invention may further contain an electron donating compound. Examples of the electron donating compound include pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, and aromatic amines in side chains or main chains. And polysiloxane derivatives, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, and polythienylene vinylene and derivatives thereof.
When the electron donating compound is included, the weight of the electron donating compound in the organic layer is 1 to 1 when the total of the weight of the compound represented by the formula (1) and the weight of the conjugated polymer compound is 100 parts by weight. The amount is preferably 100,000 parts by weight, more preferably 10 to 1,000 parts by weight.
The organic layer of the organic photoelectric conversion device of the present invention has a compound represented by the formula (1), a conjugated polymer compound, an electron donating compound, and an electron accepting property as long as the charge transporting property and the charge injecting property are not impaired. Components other than the compound may be included.
The organic photoelectric conversion element of the present invention has a pair of electrodes and an organic layer containing a compound represented by the formula (1) and a conjugated polymer compound between the electrodes. The composition of the compound represented by the formula (1) and the conjugated polymer compound can be used as an electron accepting compound or an electron donating compound. In addition, when one of the compound represented by the formula (1) and the conjugated polymer compound is an electron donating compound and the other is an electron accepting compound, both the electron donating substance and the electron acceptor are It may have a function. In these embodiments, the composition is preferably used as an electron donating compound. It is preferable that at least one of the pair of electrodes is transparent or translucent.
Next, the operation mechanism of the organic photoelectric conversion element will be described. Light energy incident from a transparent or translucent electrode is absorbed by the electron-accepting compound and / or the electron-donating compound to generate excitons in which electrons and holes are combined. When the generated excitons move and reach the heterojunction interface where the electron-accepting compound and the electron-donating compound are adjacent to each other, electrons and holes are separated due to the difference in HOMO energy and LUMO energy at the interface. Electric charges (electrons and holes) that can move are generated. The generated charges can be taken out as electric energy (current) by moving to the electrodes.
Voc (open-circuit voltage) is a voltage when the current flowing to the outside is zero, and a high value of Voc is one factor that develops high photoelectric conversion efficiency.
Specific examples of the organic photoelectric conversion device of the present invention include the following 1. ~ 5. The organic photoelectric conversion element of this is mentioned.
1. A pair of electrodes, a first organic layer containing a compound represented by formula (1) and a conjugated polymer compound between the electrodes, and an electron donating property provided adjacent to the first organic layer An organic photoelectric conversion element having a second organic layer containing a compound;
2. A pair of electrodes, a first organic layer containing an electron-accepting compound between the electrodes, a compound represented by formula (1) and a conjugated polymer provided adjacent to the first organic layer An organic photoelectric conversion element having a second organic layer containing a compound;
3. An organic photoelectric conversion element having at least one organic layer containing a pair of electrodes and a compound represented by the formula (1), a conjugated polymer compound, and an electron-donating compound between the electrodes;
4). An organic photoelectric conversion element having a pair of electrodes and an organic layer containing a compound represented by the formula (1), a conjugated polymer compound, and an electron-accepting compound between the electrodes;
5. An organic photoelectric conversion element having a pair of electrodes and at least one organic layer containing a compound represented by the formula (1), a conjugated polymer compound, and an electron-accepting compound between the electrodes, An organic photoelectric conversion element in which the compound is a fullerene derivative;
In addition, said 5. In the organic photoelectric conversion element, the weight of the fullerene derivative in the organic layer is 10 to 1000 parts by weight when the total of the weight of the compound represented by the formula (1) and the weight of the conjugated polymer compound is 100 parts by weight. Preferably, the amount is 50 to 500 parts by weight.
As the organic photoelectric conversion element of the present invention, 3. 4. 5. From the standpoint of including a large number of heterojunction interfaces, the above organic photoelectric conversion element is preferable. The organic photoelectric conversion element is more preferable. In the organic photoelectric conversion element of the present invention, an additional layer may be provided between at least one electrode and the organic layer in the element. Examples of the additional layer include a charge transport layer that transports holes or electrons.
When the composition of the compound represented by the formula (1) and the conjugated polymer compound is used as an electron donor, the electron acceptor suitably used for the organic photoelectric conversion element has a conjugated polymer in which the HOMO energy of the electron acceptor is The HOMO energy of the compound and the HOMO energy of the compound represented by the formula (1) are higher, and the LUMO energy of the electron acceptor is the LUMO energy of the conjugated polymer compound and the LUMO energy of the compound represented by the formula (1) Is a higher compound. Moreover, when using the high molecular compound of the compound represented by Formula (1) and a conjugated high molecular compound as an electron acceptor, the electron donor used suitably for an organic photoelectric conversion element has the HOMO energy of an electron donor. The HOMO energy of the conjugated polymer compound is lower than the HOMO energy of the compound represented by the formula (1), and the LUMO energy of the electron donor is the LUMO energy of the conjugated polymer compound and the compound represented by the formula (1) This is a compound having a lower LUMO energy.
The organic photoelectric conversion element of the present invention is usually formed on a substrate. The substrate may be any substrate that does not chemically change when an electrode is formed and an organic layer is formed. Examples of the material for the substrate include glass, plastic, polymer film, and silicon. In the case of an opaque substrate, the opposite electrode (that is, the electrode far from the substrate) is preferably transparent or translucent.
As a material of the pair of electrodes, a metal, a conductive polymer, or the like can be used, and one of the pair of electrodes is preferably a material having a low work function. For example, metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and two of them One or more alloys, or one or more of them and an alloy of one or more of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin, graphite, or a graphite intercalation compound are used. It is done. Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
Examples of the material of the transparent or translucent electrode include a conductive metal oxide film and a translucent metal thin film. Specifically, a film formed using a conductive material made of indium oxide, zinc oxide, tin oxide, and indium tin oxide (ITO), indium zinc oxide, etc., which is a composite thereof, NESA Gold, platinum, silver, and copper are used, and ITO, indium / zinc / oxide, and tin oxide are preferable. Examples of the method for producing the electrode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like. Moreover, you may use organic transparent conductive films, such as polyaniline and its derivative (s), polythiophene, and its derivative (s) as an electrode material.
As the material used for the charge transport layer as the additional layer, that is, the hole transport layer and the electron transport layer, the aforementioned electron donating compound and electron accepting compound can be used, respectively.
As a material used for the buffer layer as an additional layer, an alkali metal such as lithium fluoride, an alkaline earth metal halide, an oxide, or the like can be used. In addition, fine particles of an inorganic semiconductor such as titanium oxide can be used.
As said organic layer in the organic photoelectric conversion element of this invention, the organic thin film containing the compound and conjugated polymer compound which are represented by Formula (1) can be used, for example.
The organic thin film generally has a thickness of 1 nm to 100 μm, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm, and further preferably 20 nm to 200 nm.
In order to enhance the hole transport property of the organic thin film, a low molecular compound and / or a conjugated polymer compound other than the compound represented by the formula (1) as an electron donating compound and / or an electron accepting compound in the organic thin film Polymers other than these can also be mixed and used.
The organic layer contained in the organic photoelectric conversion element of the present invention can be produced using a composition of a compound represented by the formula (1) and a conjugated polymer compound. When the organic layer further contains an electron-accepting compound, it can be produced using a composition of the compound represented by formula (1), a conjugated polymer compound, and an electron-accepting compound. Further, when the organic layer further contains an electron donating compound, it can be produced by using a composition of a compound represented by the formula (1), a conjugated polymer compound and an electron donating compound.
The weight of the compound represented by the formula (1) in the composition is preferably 0.1 to 10000 parts by weight, more preferably 1 to 1000 parts by weight with respect to 100 parts by weight of the conjugated polymer compound. is there. When an electron-accepting compound is contained in the composition, the weight of the electron-accepting compound in the composition is 100 parts by weight of the sum of the weight of the compound represented by formula (1) and the weight of the conjugated polymer compound. Then, it is preferably 1 to 10000 parts by weight, and more preferably 10 to 2000 parts by weight. When the composition includes an electron donating compound, the weight of the electron donating compound in the composition is 100 parts by weight of the sum of the weight of the compound represented by the formula (1) and the weight of the conjugated polymer compound. Then, it is preferably 1 to 100,000 parts by weight, and more preferably 10 to 1000 parts by weight.
The method for producing the organic thin film is not particularly limited, and examples thereof include a method by film formation from a solution containing the composition and a solvent, but the thin film may be formed by a vacuum deposition method. Examples of a method for producing an organic thin film by film formation from a solution include a method of producing an organic thin film by applying the solution on one electrode and then evaporating the solvent.
The solvent used for film formation from a solution is not particularly limited as long as it dissolves the compound represented by the formula (1) and the conjugated polymer compound. Examples of the solvent include hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, butylbenzene, sec-butylbesen, and tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane, dichloroethane, chlorobutane, and bromobutane. , Aliphatic halogenated hydrocarbon solvents such as chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, aromatic halogenated hydrocarbon solvents such as chlorobenzene, dichlorobenzene, trichlorobenzene, tetrahydrofuran, tetrahydropyran, etc. Of ether solvents. The composition of the compound represented by formula (1) and the conjugated polymer compound used in the present invention can be usually dissolved in the solvent in an amount of 0.1% by weight or more.
For film formation from solution, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic method Coating methods such as a printing method, an offset printing method, an ink jet printing method, a dispenser printing method, a nozzle coating method, a capillary coating method can be used, and a spin coating method, a flexographic printing method, an ink jet printing method, and a dispenser printing method are preferable.
By irradiating light such as sunlight from a transparent or translucent electrode, the organic photoelectric conversion element generates a photovoltaic force between the electrodes and can be operated as an organic thin film solar cell. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.
In addition, by applying light from a transparent or translucent electrode in a state where a voltage is applied between the electrodes, a photocurrent flows and it can be operated as an organic photosensor. It can also be used as an organic image sensor by integrating a plurality of organic photosensors.
 以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。
 −分子量の測定方法−
 以下の実施例において、共役高分子化合物の分子量は、GPCラボラトリー製GPC(PL−GPC2000)により、求めた。共役高分子化合物を約1重量%の濃度となるようにo−ジクロロベンゼンに溶解させた。GPCの移動相はo−ジクロロベンゼンを用い、測定温度140℃で、1mL/分の流速で流した。カラムは、PLGEL 10μm MIXED−B(PLラボラトリー製)を3本直列で繋げた。
合成例1 (共役高分子化合物1の合成)
Figure JPOXMLDOC01-appb-I000027
 フラスコ内の気体をアルゴンで置換した2L四つ口フラスコに、化合物(C)7.928g(16.72mmol)、化合物(D)13.00g(17.60mmol)、メチルトリオクチルアンモニウムクロライド(商品名:aliquat336(登録商標)、Aldrich製、CHN[(CHCHCl、density 0.884g/ml,25℃) 4.979g、及びトルエン405mlを入れ、撹拌しながら反応系内を30分間アルゴンバブリングした。フラスコ内にジクロロビス(トリフェニルホスフィン)パラジウム(II) 0.02gを加え、105℃に昇温し、撹拌しながら2mol/Lの炭酸ナトリウム水溶液42.2mlを滴下した。滴下終了後5時間反応させ、反応液にフェニルボロン酸2.6gとトルエン1.8mlとを加え、105℃で16時間撹拌した。その後、反応液にトルエン700ml及び7.5%ジエチルジチオカルバミン酸ナトリウム三水和物水溶液200mlを加え、85℃で3時間撹拌した。反応液の水層を除去後、有機層を60℃のイオン交換水300mlで2回、60℃の3%酢酸300mlで1回、さらに60℃のイオン交換水300mlで3回洗浄した。有機層をセライト、アルミナ及びシリカを充填したカラムに通し、濾液を回収した。その後、熱トルエン800mlでカラムを洗浄し、洗浄後のトルエン溶液を濾液に加えた。得られた溶液を700mlまで濃縮した後、濃縮した溶液を2Lのメタノールに加え、重合体を再沈殿させた。重合体を濾取し、500mlのメタノール、500mlのアセトン、500mlのメタノールで重合体を洗浄した。重合体を50℃で一晩真空乾燥することにより、下記式:
Figure JPOXMLDOC01-appb-I000028
で表されるペンタチエニル−フルオレンコポリマー(以下、「共役高分子化合物1」という) 12.21gを得た。共役高分子化合物1のポリスチレン換算の数平均分子量は5.4×10、ポリスチレン換算の重量平均分子量は1.1×10であった。
実施例1 (有機薄膜太陽電池の作製、評価)
 共役高分子化合物1を0.5%(重量%)の濃度でo−ジクロロベンゼンに溶解させた。その後、共役高分子化合物1に対して3倍重量のC60PCBM(Phenyl C61−butyric acid methyl ester、フロンティアカーボン社製、商品名E100)を電子受容体として溶液に混合した。さらに、共役高分子化合物1の重量に対して化合物(E)を等倍重量、溶液に混合した。該溶液を孔径1.0μmのテフロン(登録商標)フィルターで濾過し、塗布溶液を作製した。
Figure JPOXMLDOC01-appb-I000029
 スパッタリング法により150nmの厚みでITO膜を付けたガラス基板をオゾンUV処理して表面処理を行った。次に、前記塗布溶液を、スピンコートによりITO膜上に塗布し、有機薄膜太陽電池の活性層(膜厚約100nm)を得た。その後、真空蒸着機によりフッ化リチウムを厚さ4nmで蒸着し、次いでAlを厚さ100nmで蒸着した。蒸着のときの真空度は、すべて1~9×10−3Paであった。また、得られた有機薄膜太陽電池の形状は、2mm×2mmの正四角形であった。
 得られた有機薄膜太陽電池のVoc(開放端電圧をソーラシミュレーター(分光計器製、商品名OTENTO−SUNII:AM1.5Gフィルター、放射照度100mW/cm)で測定した。測定結果を表1に示す。
実施例2 (有機薄膜太陽電池の作製、評価)
 化合物(E)にかえて化合物(F)を用いた以外は実施例1と同様の方法で有機薄膜太陽電池を作製し、Vocを測定した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-I000030
実施例3 (有機薄膜太陽電池の作製、評価)
 化合物(E)にかえて化合物(G)を用いた以外は実施例1と同様の方法で有機薄膜太陽電池を作製し、Vocを測定した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-I000031
実施例4 (有機薄膜太陽電池の作製、評価)
 化合物(E)にかえて化合物(H)を用いた以外は実施例1と同様の方法で有機薄膜太陽電池を作製し、Vocを測定した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-I000032
実施例5 (有機薄膜太陽電池の作製、評価)
 化合物(E)にかえて、特開2006−97008号公報の合成例14の方法で製造した化合物(I)を用いた以外は実施例1と同様の方法で有機薄膜太陽電池を作製し、Vocを測定した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-I000033
実施例6 (有機薄膜太陽電池の作製、評価)
 化合物(E)にかえて化合物(J)を用いた以外は実施例1と同様の方法で有機薄膜太陽電池を作製し、Vocを測定した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-I000034
実施例7 (有機薄膜太陽電池の作製、評価)
 化合物(J)の添加量が共役高分子化合物1の重量に対して0.5倍重量である以外は実施例5と同様の方法で有機薄膜太陽電池を作製し、Vocを測定した。測定結果を表1に示す。
実施例8 (有機薄膜太陽電池の作製、評価)
 化合物(E)にかえて化合物(K)を用いた以外は実施例1と同様の方法で有機薄膜太陽電池を作製し、Vocを測定した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-I000035
実施例9 (有機薄膜太陽電池の作製、評価)
 化合物(E)にかえて化合物(L)を用いた以外は実施例1と同様の方法で有機薄膜太陽電池を作製し、Vocを測定した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-I000036
実施例10 (有機薄膜太陽電池の作製、評価)
 化合物(E)にかえて化合物(M)を用いた以外は実施例1と同様の方法で有機薄膜太陽電池を作製し、Vocを測定した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-I000037
実施例11 (有機薄膜太陽電池の作製、評価)
 化合物(E)にかえて化合物(N)を用いた以外は実施例1と同様の方法で有機薄膜太陽電池を作製し、Vocを測定した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-I000038
実施例12 (有機薄膜太陽電池の作製、評価)
 化合物(E)にかえて化合物(O)を用いた以外は実施例1と同様の方法で有機薄膜太陽電池を作製し、Vocを測定した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-I000039
実施例13 (有機薄膜太陽電池の作製、評価)
 化合物(E)にかえて化合物(P)を用いた以外は実施例1と同様の方法で有機薄膜太陽電池を作製し、Vocを測定した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-I000040
合成例2 (化合物(Q−1)の合成)
Figure JPOXMLDOC01-appb-I000041
 アルゴン雰囲気下、1000mlの三つ口フラスコに、1,4−ジヨードベンゼンを125.0g(0.379mol)、カルバゾールを15.84g(0.095mol)、炭酸カリウムを39.3g(0.284mol)、酢酸パラジウムを0.43g(1.89mmol)、トルエンを625.0g入れた。フラスコ内を50mmHgまで減圧し、その後、フラスコ内にアルゴンを導入して常圧に戻す操作を行った。減圧及び常圧に戻す操作は5回行った。その後、フラスコ内の気体をアルゴンで置換した。70℃まで昇温し、トリ−tert−ブチルホスフィンを50重量%含むトルエン溶液2.3ml(4.7mmol)を加え、さらに昇温し、還流下で58時間撹拌した。その後、50℃まで冷却し、反応生成物を濾過し、フィルター上の固形分をクロロホルム100mlで洗浄した。濾液と洗浄液とを合わせ、70~75℃の条件下にエバポレータで減圧濃縮し、淡褐色の樹脂状生成物132.3gを得た。展開溶媒としてクロロホルムとヘキサンとを混合した溶媒を用い、シリカゲルクロマトグラフィーで樹脂状生成物を精製することにより、白色結晶19.7gを得た。展開溶媒において、クロロホルムに対するヘキサンの容積比は10であった。この結晶にヘキサン200mlを加え、還流下1時間撹拌し、その後、室温(25℃)まで冷却した。生成物を濾過し、ヘキサン30mlで洗浄後、70~75℃の条件下で減圧乾燥して化合物(Q−1)を17.5g(収率63.1%)得た。
H−NMR(300MHz/CDCl):
 δ7.26~7.44(m、8H)、7.90~7.94(d、2H)、8.12~8.15(d、2H)
(化合物(Q−2)の合成)
Figure JPOXMLDOC01-appb-I000042
 アルゴン雰囲気下、100mlの三つ口フラスコに、化合物(Q−1)を3.69g(10.0mmol)、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリドを0.35g(0.5mmol)、トリフェニルホスフィンを0.26g(1.0mmol)、ヨウ化銅(I)を0.19g(1.0mmol)、トリエチルアミンを20.2g(0.2mol)、酢酸エチルを22.1g入れ、70℃まで昇温した。次に、70~75℃で、トリメチルシリルアセチレン1.89g(15.0mmol)を35分かけてフラスコ内に滴下した。70~75℃で2.5時間撹拌し、その後、室温(25℃)まで冷却した。エバポレータを用い、75℃で反応生成物を減圧濃縮し、濃縮物5.65gを得た。展開溶媒としてクロロホルムとヘキサンとトリエチルアミンとを混合した溶媒を用い、シリカゲルクロマトグラフィーで濃縮物を精製し、白色の化合物(Q−2)を3.29g(収率96.7%)得た。展開溶媒において、クロロホルムに対するヘキサンの容積比は10であり、トリエチルアミンに対するクロロホルムの容積比は1000であった。
H−NMR(300MHz/CDCl):
 δ0.30(s、9H)、7.26~7.31(m、2H)、7.40~7.42(m、4H)、7.50~7.53(d、2H)、7.68~7.71(d、2H)、8.12~8.15(d、2H)
(化合物(Q−3)の合成)
Figure JPOXMLDOC01-appb-I000043
 窒素雰囲気下、100mlの三つ口フラスコに、化合物(Q−2)を3.29g(9.7mmol)、クロロホルムを20.0g入れ、化合物(Q−2)が溶解した後、エタノールを40.0g加えた。次に、炭酸ナトリウムを0.5g(9.7mmol)加え、20~23℃で18時間撹拌した。エバポレータを用いて、75℃で反応生成物を減圧濃縮し、濃縮物4.24gを得た。展開溶媒としてクロロホルムとヘキサンとトリエチルアミンとを混合した溶媒を用い、シリカゲルクロマトグラフィーで濃縮物を精製し、白色の化合物(Q−3)を2.59g(収率100%)得た。展開溶媒において、クロロホルムに対するヘキサンの容積比は5であり、トリエチルアミンに対するクロロホルムの容積比は1000であった。
H−NMR(270MHz/CDCl):
 δ3.18(s、1H)、7.26~7.34(m、2H)、7.40~7.42(m、4H)、7.53~7.56(m、2H)、7.71~7.75(d、2H)、8.12~8.15(d、2H)
(化合物(Q)の合成)
Figure JPOXMLDOC01-appb-I000044
 アルゴン雰囲気下、100mlの三つ口フラスコに、化合物(Q−1)を5.18g(14.0mmol)、化合物(Q−3)を2.50g(9.4mol)、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリドを0.33g(0.68mmol)、トリフェニルホスフィンを0.25g(0.94mmol)、ヨウ化銅(I)を0.18g(1.0mmol)、トリエチルアミンを18.9g(0.187mol)、酢酸エチル31.1gを入れ、70~75℃で2時間撹拌し、その後、室温(25℃)まで冷却した。エバポレータを用いて、75℃で反応生成物を減圧濃縮し、濃縮物11.0gを得た。展開溶媒としてクロロホルムとヘキサンとを混合した溶液を用い、シリカゲルクロマトグラフィーで濃縮物を精製し、褐色の固体4.06gを得た。展開溶媒において、クロロホルムに対するヘキサンの容積比は2であった。この固体をトルエン100gに分散させ、80~85℃で1時間撹拌し、その後、室温(25℃)まで冷却した。生成物を濾過し、トルエン20mlで洗浄し、その後、70~75℃で濾物を減圧乾燥し、肌色の固体3.60gを得た。この固体を、50~55℃の条件で、テトラヒドロフラン500mlに溶解し、その後、活性炭4.0gを加え、50~55℃で1時間撹拌した。その後、活性炭を濾別し、テトラヒドロフラン30mlで活性炭を洗浄した。エバポレータを用い、75℃で濾洗液を減圧濃縮し、白色固体3.40gを得た。この固体をトルエン68gに分散させ、80~85℃で1時間撹拌し、その後、室温(25℃)まで冷却した。生成物を濾過し、トルエン20mlで洗浄後、70~75℃で減圧乾燥して無色の固体として化合物(Q)2.55g(収率53.6%)を得た。
H−NMR(300MHz/CDCl):
 δ7.29~7.34(m、4H)、7.41~7.49(m、8H)、7.60~7.63(d、4H)、7.80~7.83(d、4H)、8.15~8.17(d、4H)
合成例3 (化合物(R−1)の合成)
Figure JPOXMLDOC01-appb-I000045
 アルゴン雰囲気下、100mlの三つ口フラスコに、ジヨードベンゼンを9.90g(30.0mmol)、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリドを0.42g(0.6mmol)、ヨウ化銅(I)を0.39g(1.5mmol)、トリエチルアミンを30.4g(0.3mol)、酢酸エチルを30.4g入れ、60℃まで昇温した。次に、65~70℃でトリメチルシリルアセチレン7.37g(75.0mmol)を1時間かけてフラスコ内に滴下した。65~70℃で2.5時間撹拌した後、室温(25℃)まで冷却した。エバポレータを用い、70℃で反応生成物を減圧濃縮し、濃縮物9.08gを得た。展開溶媒としてクロロホルムとヘキサンとトリエチルアミンとを混合した溶媒を用い、シリカゲルクロマトグラフィーで濃縮物を精製し、白色の化合物(R−1)を7.30g(収率88.9%)得た。展開溶媒において、クロロホルムに対するヘキサンの容積比は5であり、トリエチルアミンに対するクロロホルムの容積比は10であった。
(化合物(R−2)の合成)
Figure JPOXMLDOC01-appb-I000046
 窒素雰囲気下、100mlの三つ口フラスコに、化合物(R−1)を7.3g(27mmol)、エタノールを73.0g入れ、化合物(R−1)を溶解させた。次に、炭酸カリウムを0.75g(5.4mmol)加え、20~23℃で21時間撹拌した。濾過した生成物を、クロロホルムと水で洗浄後、エバポレータを用いて70℃で減圧濃縮し、化合物(R−2)を3.10g(収率91.1%)得た。
(化合物(R)の合成)
Figure JPOXMLDOC01-appb-I000047
 アルゴン雰囲気下、100mlの三つ口フラスコに、化合物(Q−1)を5.54g(15.0mmol)、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリドを0.42g(0.6mmol)、トリフェニルホスフィンを0.16g(0.6mmol)、ヨウ化銅(I)を0.11g(0.6mmol)、トリエチルアミンを18.2g(0.18mol)、酢酸エチルを22.2g入れ、70℃に昇温した。その後、70~75℃で攪拌しながら、化合物(R−2)0.76g(9.4mol)を3gの酢酸エチルに溶かした溶液を4.5時間かけて滴下し、5.5時間攪拌した。得られた反応液をエバポレータで濃縮し、得られた残渣をカラムクロマトグラフィーで精製し、目的物である化合物(R)が含まれる分画の溶液を回収した。カラムクロマトグラフィーにはシリカゲル200gを使用し、溶媒としてヘキサンとクロロホルムとを混合した溶媒を用いた。クロロホルムに対するヘキサンの容積比が3の条件で精製を開始し、グラジエントをかけ、クロロホルムに対するヘキサンの容積比を1とした。回収した溶液を濃縮し、得られた粗精製物を粗生成物に対して20重量倍の重量のトルエンでリパルプ洗浄を行い、再度カラムクロマトグラフィーで精製し、精製物を2.53g得た。カラムクロマトグラフィーにはシリカゲル500gを使用し、溶媒としてヘキサンとクロロホルムとを混合した溶媒を用いた。クロロホルムに対するヘキサンの容積比は1であった。精製物を、50℃で加熱しながらテトラヒドロフラン500mlに溶解し、活性炭2.3gを入れ、さらに50℃で30分加熱攪拌した。反応液をセライトろ過した後、濾液をエバポレータで濃縮し、残渣をトルエン50mlでリパルプ洗浄し、さらにトルエン50mlで洗浄し、75℃、400Paで減圧乾燥することで化合物(R)を1.95g(収率53.4%)得た。
H−NMR(300MHz/CDCl):
 δ7.25~7.39(m、4H)、7.40~7.50(m、8H)、7.55~7.65(d、8H)、7.77~7.80(d、4H)、8.14~8.17(d、4H)
実施例14 (有機薄膜太陽電池の作製、評価)
 化合物(E)にかえて化合物(Q)を用いた以外は実施例1と同様の方法で有機薄膜太陽電池を作製し、Vocを測定した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-I000048
実施例15 (有機薄膜太陽電池の作製、評価)
 化合物(E)にかえて化合物(R)を用いた以外は実施例1と同様の方法で有機薄膜太陽電池を作製し、Vocを測定した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-I000049
実施例16 (有機薄膜太陽電池の作製、評価)
 化合物(E)にかえて化合物(T)を用いた以外は実施例1と同様の方法で有機薄膜太陽電池を作製し、Vocを測定した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-I000050
実施例17 (有機薄膜太陽電池の作製、評価)
 化合物(E)にかえて化合物(U)を用いた以外は実施例1と同様の方法で有機薄膜太陽電池を作製し、Vocを測定した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-I000051
 比較例1 (有機薄膜太陽電池の作製、評価)
 式(1)で表される化合物を用いない以外は実施例1と同様の方法で有機薄膜太陽電池を作製し、Vocを測定した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-I000053
Examples will be shown below for illustrating the present invention in more detail, but the present invention is not limited to these examples.
-Method for measuring molecular weight-
In the following Examples, the molecular weight of the conjugated polymer compound was determined by GPC Laboratories GPC (PL-GPC2000). The conjugated polymer compound was dissolved in o-dichlorobenzene to a concentration of about 1% by weight. As the mobile phase of GPC, o-dichlorobenzene was used and allowed to flow at a measurement temperature of 140 ° C. at a flow rate of 1 mL / min. As the column, three PLGEL 10 μm MIXED-B (manufactured by PL Laboratory) were connected in series.
Synthesis Example 1 (Synthesis of Conjugated Polymer Compound 1)
Figure JPOXMLDOC01-appb-I000027
In a 2 L four-necked flask in which the gas in the flask was replaced with argon, 7.928 g (16.72 mmol) of compound (C), 13.00 g (17.60 mmol) of compound (D), methyltrioctylammonium chloride (trade name) : Aliquat 336 (registered trademark), manufactured by Aldrich, CH 3 N [(CH 2 ) 7 CH 3 ] 3 Cl, density 0.884 g / ml, 25 ° C.) 4.979 g, and toluene 405 ml were added, and the reaction system was stirred The inside was bubbled with argon for 30 minutes. 0.02 g of dichlorobis (triphenylphosphine) palladium (II) was added to the flask, the temperature was raised to 105 ° C., and 42.2 ml of a 2 mol / L sodium carbonate aqueous solution was added dropwise with stirring. After completion of the dropwise addition, the reaction was allowed to proceed for 5 hours, and 2.6 g of phenylboronic acid and 1.8 ml of toluene were added to the reaction solution, followed by stirring at 105 ° C. for 16 hours. Thereafter, 700 ml of toluene and 200 ml of 7.5% sodium diethyldithiocarbamate trihydrate aqueous solution were added to the reaction solution, followed by stirring at 85 ° C. for 3 hours. After removing the aqueous layer from the reaction solution, the organic layer was washed twice with 300 ml of ion exchanged water at 60 ° C., once with 300 ml of 3% acetic acid at 60 ° C., and further three times with 300 ml of ion exchanged water at 60 ° C. The organic layer was passed through a column packed with celite, alumina and silica, and the filtrate was collected. Thereafter, the column was washed with 800 ml of hot toluene, and the washed toluene solution was added to the filtrate. After the obtained solution was concentrated to 700 ml, the concentrated solution was added to 2 L of methanol to reprecipitate the polymer. The polymer was collected by filtration, and the polymer was washed with 500 ml of methanol, 500 ml of acetone and 500 ml of methanol. By vacuum drying the polymer at 50 ° C. overnight, the following formula:
Figure JPOXMLDOC01-appb-I000028
12.21 g of a pentathienyl-fluorene copolymer represented by the following (hereinafter referred to as “conjugated polymer compound 1”) was obtained. The conjugated polymer compound 1 had a polystyrene-equivalent number average molecular weight of 5.4 × 10 4 and a polystyrene-equivalent weight average molecular weight of 1.1 × 10 5 .
Example 1 (Production and Evaluation of Organic Thin Film Solar Cell)
The conjugated polymer compound 1 was dissolved in o-dichlorobenzene at a concentration of 0.5% (weight%). Thereafter, C60PCBM (phenyl C61-butyric acid methyl ester, trade name E100, manufactured by Frontier Carbon Co., Ltd.) 3 times the weight of conjugated polymer compound 1 was mixed into the solution as an electron acceptor. Furthermore, the compound (E) was mixed with the solution in an equal weight with respect to the weight of the conjugated polymer compound 1. The solution was filtered through a Teflon (registered trademark) filter having a pore size of 1.0 μm to prepare a coating solution.
Figure JPOXMLDOC01-appb-I000029
A glass substrate provided with an ITO film with a thickness of 150 nm by a sputtering method was subjected to surface treatment by ozone UV treatment. Next, the coating solution was applied onto the ITO film by spin coating to obtain an active layer (film thickness of about 100 nm) of the organic thin film solar cell. Then, lithium fluoride was vapor-deposited with a thickness of 4 nm by a vacuum vapor deposition machine, and then Al was vapor-deposited with a thickness of 100 nm. The degree of vacuum at the time of vapor deposition was 1 to 9 × 10 −3 Pa in all cases. Moreover, the shape of the obtained organic thin-film solar cell was a regular square of 2 mm × 2 mm.
The organic thin film solar cell obtained was measured with Voc (open end voltage was measured with a solar simulator (trade name OTENTO-SUNII: AM1.5G filter, irradiance 100 mW / cm 2 , manufactured by Spectrometer Co., Ltd.). .
Example 2 (Production and Evaluation of Organic Thin Film Solar Cell)
An organic thin film solar cell was produced in the same manner as in Example 1 except that the compound (F) was used instead of the compound (E), and Voc was measured. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-I000030
Example 3 (Production and Evaluation of Organic Thin Film Solar Cell)
An organic thin film solar cell was produced in the same manner as in Example 1 except that the compound (G) was used instead of the compound (E), and Voc was measured. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-I000031
Example 4 (Production and Evaluation of Organic Thin Film Solar Cell)
An organic thin film solar cell was produced in the same manner as in Example 1 except that the compound (H) was used instead of the compound (E), and Voc was measured. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-I000032
Example 5 (Production and Evaluation of Organic Thin Film Solar Cell)
An organic thin film solar cell was produced in the same manner as in Example 1 except that the compound (I) produced by the method of Synthesis Example 14 of JP-A-2006-97008 was used instead of the compound (E), and Voc Was measured. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-I000033
Example 6 (Production and Evaluation of Organic Thin Film Solar Cell)
An organic thin film solar cell was produced in the same manner as in Example 1 except that the compound (J) was used instead of the compound (E), and Voc was measured. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-I000034
Example 7 (Production and Evaluation of Organic Thin Film Solar Cell)
An organic thin film solar cell was produced in the same manner as in Example 5 except that the amount of compound (J) added was 0.5 times the weight of the conjugated polymer compound 1, and Voc was measured. The measurement results are shown in Table 1.
Example 8 (Production and Evaluation of Organic Thin Film Solar Cell)
An organic thin-film solar cell was prepared in the same manner as in Example 1 except that the compound (K) was used instead of the compound (E), and Voc was measured. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-I000035
Example 9 (Production and Evaluation of Organic Thin Film Solar Cell)
An organic thin-film solar cell was prepared in the same manner as in Example 1 except that the compound (L) was used instead of the compound (E), and Voc was measured. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-I000036
Example 10 (Production and Evaluation of Organic Thin Film Solar Cell)
An organic thin-film solar cell was prepared in the same manner as in Example 1 except that the compound (M) was used instead of the compound (E), and Voc was measured. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-I000037
Example 11 (Production and Evaluation of Organic Thin Film Solar Cell)
An organic thin film solar cell was produced in the same manner as in Example 1 except that the compound (N) was used instead of the compound (E), and Voc was measured. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-I000038
Example 12 (Production and Evaluation of Organic Thin Film Solar Cell)
An organic thin-film solar cell was produced in the same manner as in Example 1 except that the compound (O) was used instead of the compound (E), and Voc was measured. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-I000039
Example 13 (Production and Evaluation of Organic Thin Film Solar Cell)
An organic thin-film solar cell was prepared in the same manner as in Example 1 except that the compound (P) was used instead of the compound (E), and Voc was measured. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-I000040
Synthesis Example 2 (Synthesis of Compound (Q-1))
Figure JPOXMLDOC01-appb-I000041
Under an argon atmosphere, 125.0 g (0.379 mol) of 1,4-diiodobenzene, 15.84 g (0.095 mol) of carbazole, and 39.3 g (0.284 mol) of potassium carbonate in a 1000 ml three-necked flask. ), 0.43 g (1.89 mmol) of palladium acetate and 625.0 g of toluene. The inside of the flask was decompressed to 50 mmHg, and then argon was introduced into the flask to return to normal pressure. The operation of reducing the pressure and returning to normal pressure was performed 5 times. Thereafter, the gas in the flask was replaced with argon. The temperature was raised to 70 ° C., 2.3 ml (4.7 mmol) of a toluene solution containing 50% by weight of tri-tert-butylphosphine was added, the temperature was further raised, and the mixture was stirred under reflux for 58 hours. Then, it cooled to 50 degreeC, the reaction product was filtered, and solid content on a filter was wash | cleaned with 100 ml of chloroform. The filtrate and the washing solution were combined and concentrated under reduced pressure with an evaporator at 70 to 75 ° C. to obtain 132.3 g of a light brown resinous product. Using a mixed solvent of chloroform and hexane as a developing solvent, the resinous product was purified by silica gel chromatography to obtain 19.7 g of white crystals. In the developing solvent, the volume ratio of hexane to chloroform was 10. To this crystal, 200 ml of hexane was added, stirred under reflux for 1 hour, and then cooled to room temperature (25 ° C.). The product was filtered, washed with 30 ml of hexane, and dried under reduced pressure at 70 to 75 ° C. to obtain 17.5 g (yield 63.1%) of compound (Q-1).
1 H-NMR (300 MHz / CDCl 3 ):
δ 7.26 to 7.44 (m, 8H), 7.90 to 7.94 (d, 2H), 8.12 to 8.15 (d, 2H)
(Synthesis of Compound (Q-2))
Figure JPOXMLDOC01-appb-I000042
In a 100 ml three-necked flask under an argon atmosphere, 3.69 g (10.0 mmol) of compound (Q-1), 0.35 g (0.5 mmol) of bis (triphenylphosphine) palladium (II) dichloride, 0.26 g (1.0 mmol) of phenylphosphine, 0.19 g (1.0 mmol) of copper (I) iodide, 20.2 g (0.2 mol) of triethylamine, 22.1 g of ethyl acetate, and up to 70 ° C. The temperature rose. Next, at 70 to 75 ° C., 1.89 g (15.0 mmol) of trimethylsilylacetylene was dropped into the flask over 35 minutes. The mixture was stirred at 70 to 75 ° C. for 2.5 hours, and then cooled to room temperature (25 ° C.). The reaction product was concentrated under reduced pressure at 75 ° C. using an evaporator to obtain 5.65 g of a concentrate. Using a mixed solvent of chloroform, hexane and triethylamine as a developing solvent, the concentrate was purified by silica gel chromatography to obtain 3.29 g (yield 96.7%) of white compound (Q-2). In the developing solvent, the volume ratio of hexane to chloroform was 10, and the volume ratio of chloroform to triethylamine was 1000.
1 H-NMR (300 MHz / CDCl 3 ):
δ 0.30 (s, 9H), 7.26 to 7.31 (m, 2H), 7.40 to 7.42 (m, 4H), 7.50 to 7.53 (d, 2H), 7. 68 to 7.71 (d, 2H), 8.12 to 8.15 (d, 2H)
(Synthesis of Compound (Q-3))
Figure JPOXMLDOC01-appb-I000043
Under a nitrogen atmosphere, 3.29 g (9.7 mmol) of compound (Q-2) and 20.0 g of chloroform were placed in a 100 ml three-necked flask, and after dissolving compound (Q-2), 40. 0 g was added. Next, 0.5 g (9.7 mmol) of sodium carbonate was added and stirred at 20-23 ° C. for 18 hours. The reaction product was concentrated under reduced pressure using an evaporator at 75 ° C. to obtain 4.24 g of a concentrate. Using a mixed solvent of chloroform, hexane and triethylamine as a developing solvent, the concentrate was purified by silica gel chromatography to obtain 2.59 g (yield: 100%) of white compound (Q-3). In the developing solvent, the volume ratio of hexane to chloroform was 5, and the volume ratio of chloroform to triethylamine was 1000.
1 H-NMR (270 MHz / CDCl 3 ):
δ 3.18 (s, 1H), 7.26 to 7.34 (m, 2H), 7.40 to 7.42 (m, 4H), 7.53 to 7.56 (m, 2H), 7. 71-7.75 (d, 2H), 8.12-8.15 (d, 2H)
(Synthesis of Compound (Q))
Figure JPOXMLDOC01-appb-I000044
In a 100 ml three-necked flask under an argon atmosphere, 5.18 g (14.0 mmol) of compound (Q-1), 2.50 g (9.4 mol) of compound (Q-3), bis (triphenylphosphine) 0.33 g (0.68 mmol) of palladium (II) dichloride, 0.25 g (0.94 mmol) of triphenylphosphine, 0.18 g (1.0 mmol) of copper (I) iodide, and 18.9 g of triethylamine ( 0.187 mol) and 31.1 g of ethyl acetate were added, and the mixture was stirred at 70 to 75 ° C. for 2 hours, and then cooled to room temperature (25 ° C.). The reaction product was concentrated under reduced pressure at 75 ° C. using an evaporator to obtain 11.0 g of a concentrate. Using a mixed solution of chloroform and hexane as a developing solvent, the concentrate was purified by silica gel chromatography to obtain 4.06 g of a brown solid. In the developing solvent, the volume ratio of hexane to chloroform was 2. This solid was dispersed in 100 g of toluene, stirred at 80 to 85 ° C. for 1 hour, and then cooled to room temperature (25 ° C.). The product was filtered, washed with 20 ml of toluene, and then the filtrate was dried under reduced pressure at 70 to 75 ° C. to obtain 3.60 g of a skin-colored solid. This solid was dissolved in 500 ml of tetrahydrofuran under the conditions of 50 to 55 ° C., 4.0 g of activated carbon was added, and the mixture was stirred at 50 to 55 ° C. for 1 hour. Thereafter, the activated carbon was filtered off, and the activated carbon was washed with 30 ml of tetrahydrofuran. Using an evaporator, the filtrate was concentrated under reduced pressure at 75 ° C. to obtain 3.40 g of a white solid. This solid was dispersed in 68 g of toluene, stirred at 80 to 85 ° C. for 1 hour, and then cooled to room temperature (25 ° C.). The product was filtered, washed with 20 ml of toluene, and dried under reduced pressure at 70 to 75 ° C. to obtain 2.55 g (yield 53.6%) of compound (Q) as a colorless solid.
1 H-NMR (300 MHz / CDCl 3 ):
δ 7.29 to 7.34 (m, 4H), 7.41 to 7.49 (m, 8H), 7.60 to 7.63 (d, 4H), 7.80 to 7.83 (d, 4H) ), 8.15-8.17 (d, 4H)
Synthesis Example 3 (Synthesis of Compound (R-1))
Figure JPOXMLDOC01-appb-I000045
In an argon atmosphere, in a 100 ml three-necked flask, 9.90 g (30.0 mmol) of diiodobenzene, 0.42 g (0.6 mmol) of bis (triphenylphosphine) palladium (II) dichloride, copper iodide ( 0.39 g (1.5 mmol) of I), 30.4 g (0.3 mol) of triethylamine, and 30.4 g of ethyl acetate were added, and the temperature was raised to 60 ° C. Next, 7.37 g (75.0 mmol) of trimethylsilylacetylene was dropped into the flask at 65 to 70 ° C. over 1 hour. The mixture was stirred at 65 to 70 ° C. for 2.5 hours, and then cooled to room temperature (25 ° C.). Using an evaporator, the reaction product was concentrated under reduced pressure at 70 ° C. to obtain 9.08 g of a concentrate. Using a mixed solvent of chloroform, hexane and triethylamine as a developing solvent, the concentrate was purified by silica gel chromatography to obtain 7.30 g (yield 88.9%) of white compound (R-1). In the developing solvent, the volume ratio of hexane to chloroform was 5, and the volume ratio of chloroform to triethylamine was 10.
(Synthesis of Compound (R-2))
Figure JPOXMLDOC01-appb-I000046
Under a nitrogen atmosphere, 7.3 g (27 mmol) of compound (R-1) and 73.0 g of ethanol were placed in a 100 ml three-necked flask to dissolve compound (R-1). Next, 0.75 g (5.4 mmol) of potassium carbonate was added, and the mixture was stirred at 20 to 23 ° C. for 21 hours. The filtered product was washed with chloroform and water and then concentrated under reduced pressure at 70 ° C. using an evaporator to obtain 3.10 g (yield 91.1%) of compound (R-2).
(Synthesis of Compound (R))
Figure JPOXMLDOC01-appb-I000047
In a 100 ml three-necked flask under an argon atmosphere, 5.54 g (15.0 mmol) of compound (Q-1), 0.42 g (0.6 mmol) of bis (triphenylphosphine) palladium (II) dichloride, Add 0.16 g (0.6 mmol) of phenylphosphine, 0.11 g (0.6 mmol) of copper (I) iodide, 18.2 g (0.18 mol) of triethylamine, and 22.2 g of ethyl acetate. The temperature rose. Thereafter, a solution prepared by dissolving 0.76 g (9.4 mol) of compound (R-2) in 3 g of ethyl acetate was added dropwise over 4.5 hours while stirring at 70 to 75 ° C., and the mixture was stirred for 5.5 hours. . The obtained reaction solution was concentrated by an evaporator, and the obtained residue was purified by column chromatography to collect a fraction solution containing the target compound (R). For column chromatography, 200 g of silica gel was used, and a solvent in which hexane and chloroform were mixed was used as a solvent. Purification was started under the condition that the volume ratio of hexane to chloroform was 3, and a gradient was applied. The volume ratio of hexane to chloroform was set to 1. The collected solution was concentrated, and the resulting crude product was repulped with 20 times the weight of toluene with respect to the crude product, and purified again by column chromatography to obtain 2.53 g of the purified product. For column chromatography, 500 g of silica gel was used, and a solvent in which hexane and chloroform were mixed was used as a solvent. The volume ratio of hexane to chloroform was 1. The purified product was dissolved in 500 ml of tetrahydrofuran while heating at 50 ° C., 2.3 g of activated carbon was added, and the mixture was further heated and stirred at 50 ° C. for 30 minutes. After the reaction solution was filtered through Celite, the filtrate was concentrated with an evaporator, and the residue was repulped with 50 ml of toluene, further washed with 50 ml of toluene, and dried under reduced pressure at 75 ° C. and 400 Pa to obtain 1.95 g of Compound (R) ( Yield 53.4%).
1 H-NMR (300 MHz / CDCl 3 ):
δ 7.25 to 7.39 (m, 4H), 7.40 to 7.50 (m, 8H), 7.55 to 7.65 (d, 8H), 7.77 to 7.80 (d, 4H) ), 8.14-8.17 (d, 4H)
Example 14 (Production and Evaluation of Organic Thin Film Solar Cell)
An organic thin film solar cell was produced in the same manner as in Example 1 except that the compound (Q) was used instead of the compound (E), and Voc was measured. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-I000048
Example 15 (Production and Evaluation of Organic Thin Film Solar Cell)
An organic thin-film solar cell was produced in the same manner as in Example 1 except that the compound (R) was used instead of the compound (E), and Voc was measured. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-I000049
Example 16 (Production and Evaluation of Organic Thin Film Solar Cell)
An organic thin film solar cell was produced in the same manner as in Example 1 except that the compound (T) was used instead of the compound (E), and Voc was measured. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-I000050
Example 17 (Production and Evaluation of Organic Thin Film Solar Cell)
An organic thin film solar cell was produced in the same manner as in Example 1 except that the compound (U) was used instead of the compound (E), and Voc was measured. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-I000051
Comparative Example 1 (Production and Evaluation of Organic Thin Film Solar Cell)
An organic thin film solar cell was produced in the same manner as in Example 1 except that the compound represented by the formula (1) was not used, and Voc was measured. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-I000053
 本発明の有機光電変換素子は、高い開放端電圧を示すので、本発明は極めて有用である。 Since the organic photoelectric conversion element of the present invention exhibits a high open-circuit voltage, the present invention is extremely useful.

Claims (15)

  1.  一対の電極と、該電極間に設けられた有機層とを有し、該有機層が式(1):
    Figure JPOXMLDOC01-appb-I000001
     式中、Tは、n価の芳香族基を表す。nは、2~4の整数を表す。Rは、水素原子、ハロゲン原子、フッ素置換されていてもよいアルキル基、フッ素置換されていてもよいアルコキシ基、フッ素置換されていてもよいアルキルチオ基、アルコキシアルキル基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基、置換されていてもよいアリールアルキルチオ基又はアシル基を表す。複数個あるRは、同一であっても相異なってもよい。
    で表される化合物と共役高分子化合物とを含む有機光電変換素子。
    It has a pair of electrodes and an organic layer provided between the electrodes, and the organic layer has the formula (1):
    Figure JPOXMLDOC01-appb-I000001
    In the formula, T represents an n-valent aromatic group. n represents an integer of 2 to 4. R is a hydrogen atom, a halogen atom, an alkyl group which may be substituted with fluorine, an alkoxy group which may be substituted with fluorine, an alkylthio group which may be substituted with fluorine, an alkoxyalkyl group or an aryl which may be substituted Group, aryloxy group which may be substituted, arylthio group which may be substituted, arylalkyl group which may be substituted, arylalkoxy group which may be substituted, arylalkylthio group which may be substituted Or represents an acyl group. A plurality of R may be the same or different.
    The organic photoelectric conversion element containing the compound represented by these, and a conjugated polymer compound.
  2.  nが2である請求項1に記載の有機光電変換素子。 2. The organic photoelectric conversion element according to claim 1, wherein n is 2.
  3.  Tが、式(2):
    Figure JPOXMLDOC01-appb-I000002
     式中、Rは、水素原子、ハロゲン原子、フッ素置換されていてもよいアルキル基、フッ素置換されていてもよいアルコキシ基、フッ素置換されていてもよいアルキルチオ基、アルコキシアルキル基、置換されていてもよいアリール基、アリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基又は置換されていてもよいアリールアルキルチオ基を表す。4個あるRは、同一であっても相異なってもよい。
    で表される有機基である請求項2に記載の有機光電変換素子。
    T is the formula (2):
    Figure JPOXMLDOC01-appb-I000002
    In the formula, R 1 represents a hydrogen atom, a halogen atom, an alkyl group which may be substituted with fluorine, an alkoxy group which may be substituted with fluorine, an alkylthio group which may be substituted with fluorine, an alkoxyalkyl group, or a substituted group. Represents an optionally substituted aryl group, an aryloxy group, an optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group or an optionally substituted arylalkylthio group . The four R 1 s may be the same or different.
    The organic photoelectric conversion element according to claim 2, which is an organic group represented by the formula:
  4.  Tが、式(3):
    Figure JPOXMLDOC01-appb-I000003
     式中、Rは、水素原子、ハロゲン原子、フッ素置換されていてもよいアルキル基、フッ素置換されていてもよいアルコキシ基、フッ素置換されていてもよいアルキルチオ基、アルコキシアルキル基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基又は置換されていてもよいアリールアルキルチオ基を表す。8個あるRは、同一であっても相異なってもよい。
    で表される有機基である請求項2に記載の有機光電変換素子。
    T is the formula (3):
    Figure JPOXMLDOC01-appb-I000003
    In the formula, R 2 represents a hydrogen atom, a halogen atom, an alkyl group which may be substituted with fluorine, an alkoxy group which may be substituted with fluorine, an alkylthio group which may be substituted with fluorine, an alkoxyalkyl group, or a substituted group. An optionally substituted aryl group, an optionally substituted aryloxy group, an optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group or an optionally substituted Represents a good arylalkylthio group. Eight R 2 may be the same or different.
    The organic photoelectric conversion element according to claim 2, which is an organic group represented by the formula:
  5.  Tが、式(4):
    Figure JPOXMLDOC01-appb-I000004
     式中、A環及びB環は、同一又は相異なり、芳香族炭化水素環又は芳香族複素環を表す。Aは、A環及びB環と結合して5員環若しくは6員環を形成する2価の基、−S−又は−O−を表す。
    で表される有機基である請求項2に記載の有機光電変換素子。
    T is the formula (4):
    Figure JPOXMLDOC01-appb-I000004
    In formula, A ring and B ring are the same or different, and represent an aromatic-hydrocarbon ring or an aromatic heterocyclic ring. A 2 represents a divalent group, —S— or —O—, which is bonded to the A ring and the B ring to form a 5-membered ring or a 6-membered ring.
    The organic photoelectric conversion element according to claim 2, which is an organic group represented by the formula:
  6.  Tが、式(20):
    Figure JPOXMLDOC01-appb-I000005
     式中、R20は、水素原子、ハロゲン原子、フッ素置換されていてもよいアルキル基、フッ素置換されていてもよいアルコキシ基、フッ素置換されていてもよいアルキルチオ基、アルコキシアルキル基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基又は置換されていてもよいアリールアルキルチオ基を表す。8個あるR20は、同一であっても相異なってもよい。
    で表される有機基である請求項2に記載の有機光電変換素子。
    T is the formula (20):
    Figure JPOXMLDOC01-appb-I000005
    In the formula, R 20 is a hydrogen atom, a halogen atom, an alkyl group which may be substituted with fluorine, an alkoxy group which may be substituted with fluorine, an alkylthio group which may be substituted with fluorine, an alkoxyalkyl group or a substituted group. An optionally substituted aryl group, an optionally substituted aryloxy group, an optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group or an optionally substituted Represents a good arylalkylthio group. The eight R 20 may be the same or different.
    The organic photoelectric conversion element according to claim 2, which is an organic group represented by the formula:
  7.  Tが、式(21):
    Figure JPOXMLDOC01-appb-I000006
     式中、R21は、水素原子、ハロゲン原子、フッ素置換されていてもよいアルキル基、フッ素置換されていてもよいアルコキシ基、フッ素置換されていてもよいアルキルチオ基、アルコキシアルキル基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基又は置換されていてもよいアリールアルキルチオ基を表す。12個あるR21は、同一であっても相異なってもよい。
    で表される有機基である請求項2に記載の有機光電変換素子。
    T is the formula (21):
    Figure JPOXMLDOC01-appb-I000006
    In the formula, R 21 represents a hydrogen atom, a halogen atom, an alkyl group which may be substituted with fluorine, an alkoxy group which may be substituted with fluorine, an alkylthio group which may be substituted with fluorine, an alkoxyalkyl group, or a substituted group. An optionally substituted aryl group, an optionally substituted aryloxy group, an optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group or an optionally substituted Represents a good arylalkylthio group. The twelve R 21s may be the same or different.
    The organic photoelectric conversion element according to claim 2, which is an organic group represented by the formula:
  8.  nが4である請求項1に記載の有機光電変換素子。 N is 4, The organic photoelectric conversion element of Claim 1.
  9.  Tが、式(5):
    Figure JPOXMLDOC01-appb-I000007
     式中、Rは、水素原子、ハロゲン原子、フッ素置換されていてもよいアルキル基、フッ素置換されていてもよいアルコキシ基、フッ素置換されていてもよいアルキルチオ基、アルコキシアルキル基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基又は置換されていてもよいアリールアルキルチオ基を表す。12個あるRは、同一であっても相異なってもよい。
    で表される芳香族基である請求項8に記載の有機光電変換素子。
    T is the formula (5):
    Figure JPOXMLDOC01-appb-I000007
    In the formula, R 3 represents a hydrogen atom, a halogen atom, an alkyl group which may be substituted with fluorine, an alkoxy group which may be substituted with fluorine, an alkylthio group which may be substituted with fluorine, an alkoxyalkyl group, or a substituted group. An optionally substituted aryl group, an optionally substituted aryloxy group, an optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group or an optionally substituted Represents a good arylalkylthio group. The 12 R 3 s may be the same or different.
    The organic photoelectric conversion element according to claim 8, which is an aromatic group represented by the formula:
  10. 式(1)で表される化合物が下記のいずれかの化合物:
    Figure JPOXMLDOC01-appb-I000008
    である請求項1に記載の有機光電変換素子。
    The compound represented by the formula (1) is any one of the following compounds:
    Figure JPOXMLDOC01-appb-I000008
    The organic photoelectric conversion element according to claim 1.
  11.  共役高分子化合物が式(7)及び式(8):
    Figure JPOXMLDOC01-appb-I000009
     式中、R10、R11、R12、R13、R14、R15、R16、R17、R18及びR19は、同一又は相異なり、水素原子、フッ素置換されていてもよいアルキル基、フッ素置換されていてもよいアルコキシ基、フッ素置換されていてもよいアルキルチオ基、アルコキシアルキル基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基又は置換されていてもよいアリールアルキルチオ基を表す。
    からなる群から選ばれる1種以上の繰り返し単位を有する共役高分子化合物である請求項1に記載の有機光電変換素子。
    The conjugated polymer compound is represented by formula (7) and formula (8):
    Figure JPOXMLDOC01-appb-I000009
    In the formula, R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 and R 19 are the same or different and are a hydrogen atom or an alkyl optionally substituted with fluorine. Group, optionally substituted fluorine-substituted alkoxy group, optionally substituted fluorine-substituted alkylthio group, alkoxyalkyl group, optionally substituted aryl group, optionally substituted aryloxy group, optionally substituted A preferable arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group or an optionally substituted arylalkylthio group is represented.
    The organic photoelectric conversion device according to claim 1, which is a conjugated polymer compound having one or more repeating units selected from the group consisting of:
  12.  有機層中の式(1)で表される化合物の重量が、共役高分子化合物100重量部に対して、0.1~10000重量部である請求項1~11のいずれか一項に記載の有機光電変換素子。 The weight of the compound represented by the formula (1) in the organic layer is 0.1 to 10000 parts by weight with respect to 100 parts by weight of the conjugated polymer compound. Organic photoelectric conversion element.
  13.  有機層中に、さらに電子受容性化合物が含まれる請求項12に記載の有機光電変換素子。 The organic photoelectric conversion device according to claim 12, wherein the organic layer further contains an electron-accepting compound.
  14.  電子受容性化合物が、フラーレン誘導体である請求項13に記載の有機光電変換素子。 The organic photoelectric conversion element according to claim 13, wherein the electron-accepting compound is a fullerene derivative.
  15.  有機層中に、さらに電子供与性化合物が含まれる請求項1~11のいずれか一項に記載の有機光電変換素子。 The organic photoelectric conversion device according to any one of claims 1 to 11, wherein an electron donating compound is further contained in the organic layer.
PCT/JP2011/059129 2010-05-07 2011-04-06 Organic photoelectric conversion element WO2011138889A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010107142 2010-05-07
JP2010-107142 2010-05-07
JP2010143556 2010-06-24
JP2010-143556 2010-06-24

Publications (1)

Publication Number Publication Date
WO2011138889A1 true WO2011138889A1 (en) 2011-11-10

Family

ID=44903741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059129 WO2011138889A1 (en) 2010-05-07 2011-04-06 Organic photoelectric conversion element

Country Status (2)

Country Link
JP (1) JP5673333B2 (en)
WO (1) WO2011138889A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102977143A (en) * 2012-11-19 2013-03-20 中国科学院长春应用化学研究所 Phosphoryl and/or sulfo-phosphoryl-modified N-phenyl carbazole compound, preparation method of the phosphoryl and/or sulfo-phosphoryl-modified N-phenyl carbazole compound, and organic electroluminescent device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101857892B1 (en) * 2013-09-30 2018-05-14 후지필름 가부시키가이샤 Photoelectric conversion element and imaging element
WO2015178116A1 (en) * 2014-05-23 2015-11-26 ソニー株式会社 Photoelectric conversion element, solid-state imaging device, organic light-absorbing material, and organic light-absorbing material intermediate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265172A (en) * 2005-03-24 2006-10-05 Japan Science & Technology Agency New carbazole derivative and organic electroluminescent element and organic semiconductor laser element
JP2008166561A (en) * 2006-12-28 2008-07-17 Idemitsu Kosan Co Ltd Material for photoelectric conversion element, and photoelectric conversion element using the same
JP2008239594A (en) * 2007-02-26 2008-10-09 Sumitomo Chemical Co Ltd Cbp compound
JP2009246355A (en) * 2008-03-12 2009-10-22 Sumitomo Chemical Co Ltd Wiring board and method of making the same
WO2010050197A1 (en) * 2008-10-30 2010-05-06 出光興産株式会社 Organic thin-film solar cell
WO2010110164A1 (en) * 2009-03-26 2010-09-30 コニカミノルタホールディングス株式会社 Organic photoelectric converter, solar cell using the same, and optical sensor array
EP2259358A2 (en) * 2009-06-03 2010-12-08 Fujifilm Corporation Photoelectric conversion device and imaging device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19711714A1 (en) * 1997-03-20 1998-10-01 Hoechst Ag Spiro compounds and their use
JP2006511939A (en) * 2002-12-23 2006-04-06 コビオン・オーガニック・セミコンダクターズ・ゲーエムベーハー Organic electroluminescence device
DE10328627A1 (en) * 2003-06-26 2005-02-17 Covion Organic Semiconductors Gmbh New materials for electroluminescence
JP4982984B2 (en) * 2004-08-31 2012-07-25 住友化学株式会社 Polymer light emitter composition and polymer light emitting device
JP5140945B2 (en) * 2006-05-31 2013-02-13 住友化学株式会社 Polymer composition and polymer light emitting device using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265172A (en) * 2005-03-24 2006-10-05 Japan Science & Technology Agency New carbazole derivative and organic electroluminescent element and organic semiconductor laser element
JP2008166561A (en) * 2006-12-28 2008-07-17 Idemitsu Kosan Co Ltd Material for photoelectric conversion element, and photoelectric conversion element using the same
JP2008239594A (en) * 2007-02-26 2008-10-09 Sumitomo Chemical Co Ltd Cbp compound
JP2009246355A (en) * 2008-03-12 2009-10-22 Sumitomo Chemical Co Ltd Wiring board and method of making the same
WO2010050197A1 (en) * 2008-10-30 2010-05-06 出光興産株式会社 Organic thin-film solar cell
WO2010110164A1 (en) * 2009-03-26 2010-09-30 コニカミノルタホールディングス株式会社 Organic photoelectric converter, solar cell using the same, and optical sensor array
EP2259358A2 (en) * 2009-06-03 2010-12-08 Fujifilm Corporation Photoelectric conversion device and imaging device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102977143A (en) * 2012-11-19 2013-03-20 中国科学院长春应用化学研究所 Phosphoryl and/or sulfo-phosphoryl-modified N-phenyl carbazole compound, preparation method of the phosphoryl and/or sulfo-phosphoryl-modified N-phenyl carbazole compound, and organic electroluminescent device

Also Published As

Publication number Publication date
JP5673333B2 (en) 2015-02-18
JP2012028739A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
JP5375218B2 (en) Organic photoelectric conversion element
JP5375161B2 (en) Composition and organic photoelectric conversion device using the same
JP6024785B2 (en) Organic photoelectric conversion element
DE112010004202T5 (en) Macromolecular compound
KR20120100898A (en) Polymeric compound
KR20120100951A (en) Photoelectric conversion element
TW201206983A (en) Macromolecular compound
JP2008266459A (en) Copolymer and organic photoelectric conversion element using the same
JP5332934B2 (en) Organic photoelectric conversion element
TW201302843A (en) High molecular compound and electronic component using the same
JP5434027B2 (en) Organic photoelectric conversion element
JP2011116961A (en) Polymer compound
JP5673333B2 (en) Organic photoelectric conversion element
JP5834682B2 (en) Polymer compound and electronic device using the same
JP2009215349A (en) Polymer compound and organic photoelectric transducer using the same
JP5601276B2 (en) Organic photoelectric conversion element
JP5810837B2 (en) Polymer compound and organic photoelectric conversion device using the same
JP2011116962A (en) Composition and electronic element
JP5884423B2 (en) Polymer compound and organic photoelectric conversion device using the same
JP5104074B2 (en) Polymer and organic photoelectric conversion element using the same
WO2013047293A1 (en) Photoelectric conversion element
JP2013004722A (en) Photoelectric conversion element
WO2011138902A1 (en) Organic photoelectric conversion element
WO2012124515A1 (en) Organic photoelectric conversion element
WO2015108206A1 (en) Compound and electronic element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11777408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11777408

Country of ref document: EP

Kind code of ref document: A1