JP2011116961A - Polymer compound - Google Patents

Polymer compound Download PDF

Info

Publication number
JP2011116961A
JP2011116961A JP2010242050A JP2010242050A JP2011116961A JP 2011116961 A JP2011116961 A JP 2011116961A JP 2010242050 A JP2010242050 A JP 2010242050A JP 2010242050 A JP2010242050 A JP 2010242050A JP 2011116961 A JP2011116961 A JP 2011116961A
Authority
JP
Japan
Prior art keywords
group
formula
substituted
polymer compound
structural unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010242050A
Other languages
Japanese (ja)
Inventor
Ken Yoshimura
研 吉村
Kenichiro Oya
健一郎 大家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2010242050A priority Critical patent/JP2011116961A/en
Publication of JP2011116961A publication Critical patent/JP2011116961A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1414Unsaturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/52Luminescence
    • C08G2261/522Luminescence fluorescent
    • C08G2261/5222Luminescence fluorescent electrofluorescent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1483Heterocyclic containing nitrogen and sulfur as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • H10K10/488Insulated gate field-effect transistors [IGFETs] characterised by the channel regions the channel region comprising a layer of composite material having interpenetrating or embedded materials, e.g. a mixture of donor and acceptor moieties, that form a bulk heterojunction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymer compound in which a light absorption terminal wavelength is a long wavelength. <P>SOLUTION: The polymer compound includes a structure unit represented by formula (1) and a structure unit different from the structure unit represented by formula (1), wherein Q<SP>1</SP>and Q<SP>2</SP>are the same or different and represent -S-, -O-, -Se- or -N(R<SP>3</SP>)-, R<SP>1</SP>, R<SP>2</SP>and R<SP>3</SP>are the same or different and represent a hydrogen atom, a halogen atom, an arylalkyl group, an arylalkyloxy group, an arylalkythio group, an aryl group, an aryloxy group, an arylthio group, an aralkyl group, an aralkyloxy group, an aralkylthio group, an acyl group, an acyloxy group, an amido group, an acid imido group, an amino group, a substituted amino group, a substituted silyl group, a substituted silyloxy group, a substituted silylthio group, a substituted silylamino group, a monovalent heterocyclic group, a heterocyclic oxy group, a heterocyclic thio group, an arylalkenyl group, an arylalkynyl group, a carboxyl group or a cyano group. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、特定の構造を有する高分子化合物に関する。   The present invention relates to a polymer compound having a specific structure.

近年、地球温暖化防止のため、大気中に放出されるCO2の削減が求められている。例えば、家屋の屋根にpn接合型のシリコン系太陽電池などを用いるソーラーシステムへの切り替えが提唱されているが、上記シリコン系太陽電池に用いられる単結晶、多結晶及びアモルファスシリコンは、その製造過程において高温、高真空条件が必要であるという問題がある。 In recent years, in order to prevent global warming, reduction of CO 2 released into the atmosphere has been demanded. For example, switching to a solar system using a pn junction type silicon solar cell or the like on the roof of a house has been proposed, and the single crystal, polycrystal and amorphous silicon used in the silicon solar cell are manufactured in the process However, there is a problem that high temperature and high vacuum conditions are required.

一方、光電変換素子の一態様である有機薄膜電子素子は、シリコン系電子素子の製造プロセスに用いられる高温、高真空プロセスを省略でき、塗布プロセスのみで安価に製造できる可能性があり、近年注目されてきている。有機薄膜太陽電池に用いる高分子化合物としては、繰り返し単位(A)及び繰り返し単位(B)からなる高分子化合物が記載されている(非特許文献1)。   On the other hand, the organic thin film electronic device which is one aspect of the photoelectric conversion device can omit the high temperature and high vacuum process used in the manufacturing process of the silicon-based electronic device, and can be manufactured at low cost only by the coating process. Has been. As a polymer compound used for an organic thin film solar cell, a polymer compound composed of a repeating unit (A) and a repeating unit (B) is described (Non-Patent Document 1).

Figure 2011116961
繰り返し単位(A) 繰り返し単位(B)
Figure 2011116961
Repeating unit (A) Repeating unit (B)

Applied Physics Letters Vol.84, No.10 1653−1655 (2004)Applied Physics Letters Vol. 84, No. 10 1653-1655 (2004).

しかしながら、前記高分子化合物は光吸収末端波長が短波長であり、吸収することができる太陽光の波長の範囲が十分でない。   However, the polymer compound has a short light absorption terminal wavelength, and the wavelength range of sunlight that can be absorbed is not sufficient.

本発明は、光吸収末端波長が長波長である高分子化合物を提供することを目的とする。   An object of this invention is to provide the high molecular compound whose light absorption terminal wavelength is a long wavelength.

即ち、本発明は第一に、式(1)で表される構造単位と、式(1)で表される構造単位とは異なる構造単位とを有する高分子化合物を提供する。

Figure 2011116961
(1)
〔式中、Q及びQは、同一又は相異なり、−S−、−O−、−Se−又は−N(R)−を表し、R、R及びRは、同一又は相異なり、水素原子、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、酸イミド基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1価の複素環基、複素環オキシ基、複素環チオ基、アリールアルケニル基、アリールアルキニル基、カルボキシル基又はシアノ基を表す。〕 That is, the present invention first provides a polymer compound having a structural unit represented by the formula (1) and a structural unit different from the structural unit represented by the formula (1).
Figure 2011116961
(1)
[Wherein, Q 1 and Q 2 are the same or different and represent —S—, —O—, —Se— or —N (R 3 ) —, and R 1 , R 2 and R 3 are the same or Differently, hydrogen atom, halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, acyl group, acyloxy group, amide group , Acid imide group, amino group, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, monovalent heterocyclic group, heterocyclic oxy group, heterocyclic thio group, arylalkenyl group, aryl An alkynyl group, a carboxyl group or a cyano group is represented. ]

本発明の高分子化合物は、光吸収末端波長が長波長であり、極めて有用である。   The polymer compound of the present invention has a long light absorption terminal wavelength and is extremely useful.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の高分子化合物は、式(1)で表される構造単位と式(1)で表される構造単位とは異なる構造単位とを有することを特徴とする。

Figure 2011116961
(1)
〔式中、Q及びQは、同一又は相異なり、−S−、−O−、−Se−又は−N(R)−を表し、R、R及びRは、同一又は相異なり、水素原子、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、酸イミド基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1価の複素環基、複素環オキシ基、複素環チオ基、アリールアルケニル基、アリールアルキニル基、カルボキシル基又はシアノ基を表す。〕 The polymer compound of the present invention is characterized by having a structural unit represented by the formula (1) and a structural unit different from the structural unit represented by the formula (1).
Figure 2011116961
(1)
[Wherein, Q 1 and Q 2 are the same or different and represent —S—, —O—, —Se— or —N (R 3 ) —, and R 1 , R 2 and R 3 are the same or Differently, hydrogen atom, halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, acyl group, acyloxy group, amide group , Acid imide group, amino group, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, monovalent heterocyclic group, heterocyclic oxy group, heterocyclic thio group, arylalkenyl group, aryl An alkynyl group, a carboxyl group or a cyano group is represented. ]

ここで、アルキル基は、直鎖状でも分岐状でもよく、シクロアルキル基であってもよい。アルキル基の炭素数は、通常1〜30である。アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル墓、n−ペンチル基、イソペンチル基、2−メチルブチル基、1−メチルブチル基、n−ヘキシル基、イソヘキシル基、3−メチルペンチル基、2−メチルペンチル基、1−メチルペンチル基、ヘプチル基、オクチル基、イソオクチル基、2−エチルヘキシル基、3,7−ジメチルオクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、テトラデシル基、ヘキサデシル墓、オクタデシル基、エイコシル基等の鎖状アルキル基、シクロペンチル基、シクロヘキシル基、アダマンチル基等のシクロアルキル基が挙げられる。   Here, the alkyl group may be linear or branched, and may be a cycloalkyl group. Carbon number of an alkyl group is 1-30 normally. Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl tomb, n-pentyl group, isopentyl group, 2- Methylbutyl group, 1-methylbutyl group, n-hexyl group, isohexyl group, 3-methylpentyl group, 2-methylpentyl group, 1-methylpentyl group, heptyl group, octyl group, isooctyl group, 2-ethylhexyl group, 3, 7-dimethyloctyl group, nonyl group, decyl group, undecyl group, dodecyl group, tetradecyl group, hexadecyl tomb, octadecyl group, eicosyl group and other chain alkyl groups, cyclopentyl group, cyclohexyl group, adamantyl group and other cycloalkyl groups Can be mentioned.

アルキルオキシ基は、直鎖状でも分岐状でもよく、シクロアルキルオキシ基であってもよい。アルキルオキシ基は、置換基を有していてもよい。アルキルオキシ基の炭素数は、通常1〜20程度であり、アルキルオキシ基の具体例としては、メトキシ基、エトキシ基、プロピルオキシ基、iso−プロピルオキシ基、ブトキシ基、iso−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7−ジメチルオクチルオキシ基、ラウリルオキシ基、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシル基、パーフルオロオクチル基、メトキシメチルオキシ基、2−メトキシエチルオキシ基が挙げられる。   The alkyloxy group may be linear or branched, and may be a cycloalkyloxy group. The alkyloxy group may have a substituent. The carbon number of the alkyloxy group is usually about 1 to 20, and specific examples of the alkyloxy group include methoxy group, ethoxy group, propyloxy group, iso-propyloxy group, butoxy group, iso-butoxy group, tert -Butoxy, pentyloxy, hexyloxy, cyclohexyloxy, heptyloxy, octyloxy, 2-ethylhexyloxy, nonyloxy, decyloxy, 3,7-dimethyloctyloxy, lauryloxy, tri Examples include a fluoromethoxy group, a pentafluoroethoxy group, a perfluorobutoxy group, a perfluorohexyl group, a perfluorooctyl group, a methoxymethyloxy group, and a 2-methoxyethyloxy group.

アルキルチオ基は、直鎖状でも分岐状でもよく、シクロアルキルチオ基であってもよい。アルキルチオ基は、置換基を有していてもよい。アルキルチオ基の炭素数は、通常1〜20程度であり、アルキルチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、iso−プロピルチオ基、ブチルチオ基、iso−ブチルチオ基、tert−ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、2−エチルヘキシルチオ基、ノニルチオ基、デシルチオ基、3,7−ジメチルオクチルチオ基、ラウリルチオ基、トリフルオロメチルチオ基が挙げられる。   The alkylthio group may be linear or branched, and may be a cycloalkylthio group. The alkylthio group may have a substituent. Carbon number of the alkylthio group is usually about 1 to 20, and specific examples of the alkylthio group include methylthio group, ethylthio group, propylthio group, iso-propylthio group, butylthio group, iso-butylthio group, tert-butylthio group, Examples include pentylthio group, hexylthio group, cyclohexylthio group, heptylthio group, octylthio group, 2-ethylhexylthio group, nonylthio group, decylthio group, 3,7-dimethyloctylthio group, laurylthio group, and trifluoromethylthio group.

アリール基は、その炭素数が通常6〜60程度であり、置換基を有していてもよい。アリール基の具体例としては、フェニル基、C1〜C12アルキルオキシフェニル基(C1〜C12アルキルは、炭素数1〜12のアルキルであることを示す。C1〜C12アルキルは、好ましくはC1〜C8アルキルであり、より好ましくはC1〜C6アルキルである。C1〜C8アルキルは、炭素数1〜8のアルキルであることを示し、C1〜C6アルキルは、炭素数1〜6のアルキルであることを示す。C1〜C12アルキル、C1〜C8アルキル及びC1〜C6アルキルの具体例としては、上記アルキル基で説明し例示したものが挙げられる。以下も同様である。)、C1〜C12アルキルフェニル基、1−ナフチル基、2−ナフチル基、ペンタフルオロフェニル基が挙げられる。   The aryl group usually has about 6 to 60 carbon atoms and may have a substituent. Specific examples of the aryl group include a phenyl group and a C1 to C12 alkyloxyphenyl group (C1 to C12 alkyl is an alkyl having 1 to 12 carbon atoms. The C1 to C12 alkyl is preferably a C1 to C8 alkyl. More preferably C1-C6 alkyl, C1-C8 alkyl indicates alkyl having 1 to 8 carbon atoms, and C1-C6 alkyl indicates alkyl having 1 to 6 carbon atoms. Specific examples of C1 to C12 alkyl, C1 to C8 alkyl, and C1 to C6 alkyl include those described and exemplified for the above alkyl group, and the same applies to the following.), C1 to C12 alkylphenyl group, 1 -A naphthyl group, 2-naphthyl group, a pentafluorophenyl group is mentioned.

アリールオキシ基は、その炭素数が通常6〜60程度であり、芳香環上に置換基を有していてもよい。アリールオキシ基の具体例としては、フェノキシ基、C1〜C12アルキルオキシフェノキシ基、C1〜C12アルキルフェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、ペンタフルオロフェニルオキシ基が挙げられる。   The aryloxy group usually has about 6 to 60 carbon atoms and may have a substituent on the aromatic ring. Specific examples of the aryloxy group include a phenoxy group, a C1-C12 alkyloxyphenoxy group, a C1-C12 alkylphenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, and a pentafluorophenyloxy group.

アリールチオ基は、その炭素数が通常6〜60程度であり、芳香環上に置換基を有していてもよい。アリールチオ基の具体例としては、フェニルチオ基、C1〜C12アルキルオキシフェニルチオ基、C1〜C12アルキルフェニルチオ基、1−ナフチルチオ基、2−ナフチルチオ基、ペンタフルオロフェニルチオ基が挙げられる。   The arylthio group usually has about 6 to 60 carbon atoms and may have a substituent on the aromatic ring. Specific examples of the arylthio group include a phenylthio group, a C1-C12 alkyloxyphenylthio group, a C1-C12 alkylphenylthio group, a 1-naphthylthio group, a 2-naphthylthio group, and a pentafluorophenylthio group.

アリールアルキル基は、その炭素数が通常7〜60程度であり、置換基を有していてもよい。アリールアルキル基の具体例としては、フェニル−C1〜C12アルキル基、C1〜C12アルキルオキシフェニル−C1〜C12アルキル基、C1〜C12アルキルフェニル−C1〜C12アルキル基、1−ナフチル−C1〜C12アルキル基、2−ナフチル−C1〜C12アルキル基が挙げられる。   The arylalkyl group usually has about 7 to 60 carbon atoms and may have a substituent. Specific examples of the arylalkyl group include a phenyl-C1-C12 alkyl group, a C1-C12 alkyloxyphenyl-C1-C12 alkyl group, a C1-C12 alkylphenyl-C1-C12 alkyl group, and a 1-naphthyl-C1-C12 alkyl group. Group, 2-naphthyl-C1-C12 alkyl group.

アリールアルキルオキシ基は、その炭素数が通常7〜60程度であり、置換基を有していてもよい。アリールアルキルオキシ基の具体例としては、フェニル−C1〜C12アルキルオキシ基、C1〜C12アルキルオキシフェニル−C1〜C12アルキルオキシ基、C1〜C12アルキルフェニル−C1〜C12アルキルオキシ基、1−ナフチル−C1〜C12アルキルオキシ基、2−ナフチル−C1〜C12アルキルオキシ基が挙げられる。   The arylalkyloxy group usually has about 7 to 60 carbon atoms and may have a substituent. Specific examples of the arylalkyloxy group include phenyl-C1-C12 alkyloxy group, C1-C12 alkyloxyphenyl-C1-C12 alkyloxy group, C1-C12 alkylphenyl-C1-C12 alkyloxy group, 1-naphthyl- A C1-C12 alkyloxy group and a 2-naphthyl-C1-C12 alkyloxy group are mentioned.

アリールアルキルチオ基は、その炭素数が通常7〜60程度であり、置換基を有していてもよい。アリールアルキルチオ基の具体例としては、フェニル−C1〜C12アルキルチオ基、C1〜C12アルキルオキシフェニル−C1〜C12アルキルチオ基、C1〜C12アルキルフェニル−C1〜C12アルキルチオ基、1−ナフチル−C1〜C12アルキルチオ基、2−ナフチル−C1〜C12アルキルチオ基が挙げられる。   The arylalkylthio group usually has about 7 to 60 carbon atoms and may have a substituent. Specific examples of the arylalkylthio group include a phenyl-C1-C12 alkylthio group, a C1-C12 alkyloxyphenyl-C1-C12 alkylthio group, a C1-C12 alkylphenyl-C1-C12 alkylthio group, and a 1-naphthyl-C1-C12 alkylthio group. Group, 2-naphthyl-C1-C12 alkylthio group.

アシル基は、その炭素数が通常2〜20程度である。アシル基の具体例としては、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ベンゾイル基、トリフルオロアセチル基、ペンタフルオロベンゾイル基が挙げられる。   The acyl group usually has about 2 to 20 carbon atoms. Specific examples of the acyl group include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a benzoyl group, a trifluoroacetyl group, and a pentafluorobenzoyl group.

アシルオキシ基は、その炭素数が通常2〜20程度である。アシルオキシ基の具体例としては、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基、トリフルオロアセチルオキシ基、ペンタフルオロベンゾイルオキシ基が挙げられる。   The acyloxy group usually has about 2 to 20 carbon atoms. Specific examples of the acyloxy group include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group, a trifluoroacetyloxy group, and a pentafluorobenzoyloxy group.

アミド基は、その炭素数が通常2〜20程度である。アミド基とは、アミドから窒素原子に結合した水素原子を除いて得られる基をいう。アミド基の具体例としては、ホルムアミド基、アセトアミド基、プロピオアミド基、ブチロアミド基、ベンズアミド基、トリフルオロアセトアミド基、ペンタフルオロベンズアミド基、ジホルムアミド基、ジアセトアミド基、ジプロピオアミド基、ジブチロアミド基、ジベンズアミド基、ジトリフルオロアセトアミド基、ジペンタフルオロベンズアミド基が挙げられる。   The amide group usually has about 2 to 20 carbon atoms. An amide group refers to a group obtained by removing a hydrogen atom bonded to a nitrogen atom from an amide. Specific examples of the amide group include a formamide group, an acetamide group, a propioamide group, a butyroamide group, a benzamide group, a trifluoroacetamide group, a pentafluorobenzamide group, a diformamide group, a diacetamide group, a dipropioamide group, a dibutyroamide group, and a dibenzamide group. , Ditrifluoroacetamide group and dipentafluorobenzamide group.

酸イミド基とは、酸イミドから窒素原子に結合した水素原子を除いて得られる基をいう。酸イミド基の具体例としては、スクシンイミド基、フタル酸イミド基が挙げられる。   An acid imide group refers to a group obtained by removing a hydrogen atom bonded to a nitrogen atom from an acid imide. Specific examples of the acid imide group include a succinimide group and a phthalimide group.

置換アミノ基は、その炭素数が通常1〜40程度である。置換基アミノ基の具体例としては、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基、イソプロピルアミノ基、ジイソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、tert−ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、シクロヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、2−エチルヘキシルアミノ基、ノニルアミノ基、デシルアミノ基、3,7−ジメチルオクチルアミノ基、ラウリルアミノ基、シクロペンチルアミノ基、ジシクロペンチルアミノ基、シクロヘキシルアミノ基、ジシクロヘキシルアミノ基、ピロリジル基、ピペリジル基、ジトリフルオロメチルアミノ基、フェニルアミノ基、ジフェニルアミノ基、C1〜C12アルキルオキシフェニルアミノ基、ジ(C1〜C12アルキルオキシフェニル)アミノ基、ジ(C1〜C12アルキルフェニル)アミノ基、1−ナフチルアミノ基、2−ナフチルアミノ基、ペンタフルオロフェニルアミノ基、ピリジルアミノ基、ピリダジニルアミノ基、ピリミジルアミノ基、ピラジルアミノ基、トリアジルアミノ基、フェニル−C1〜C12アルキルアミノ基、C1〜C12アルキルオキシフェニル−C1〜C12アルキルアミノ基、C1〜C12アルキルフェニル−C1〜C12アルキルアミノ基、ジ(C1〜C12アルキルオキシフェニル−C1〜C12アルキル)アミノ基、ジ(C1〜C12アルキルフェニル−C1〜C12アルキル)アミノ基、1−ナフチル−C1〜C12アルキルアミノ基、2−ナフチル−C1〜C12アルキルアミノ基が挙げられる。   The substituted amino group usually has about 1 to 40 carbon atoms. Specific examples of the substituent amino group include methylamino group, dimethylamino group, ethylamino group, diethylamino group, propylamino group, dipropylamino group, isopropylamino group, diisopropylamino group, butylamino group, isobutylamino group, tert-Butylamino group, pentylamino group, hexylamino group, cyclohexylamino group, heptylamino group, octylamino group, 2-ethylhexylamino group, nonylamino group, decylamino group, 3,7-dimethyloctylamino group, laurylamino group , Cyclopentylamino group, dicyclopentylamino group, cyclohexylamino group, dicyclohexylamino group, pyrrolidyl group, piperidyl group, ditrifluoromethylamino group, phenylamino group, diphenylamino group, C1-C12 al Ruoxyphenylamino group, di (C1-C12 alkyloxyphenyl) amino group, di (C1-C12 alkylphenyl) amino group, 1-naphthylamino group, 2-naphthylamino group, pentafluorophenylamino group, pyridylamino group, Pyridazinylamino group, pyrimidylamino group, pyrazylamino group, triazylamino group, phenyl-C1-C12 alkylamino group, C1-C12 alkyloxyphenyl-C1-C12 alkylamino group, C1-C12 alkylphenyl-C1-C12 Alkylamino group, di (C1-C12 alkyloxyphenyl-C1-C12 alkyl) amino group, di (C1-C12 alkylphenyl-C1-C12 alkyl) amino group, 1-naphthyl-C1-C12 alkylamino group, 2- Naphthyl-C1-C 2 alkylamino group.

置換シリル基としては、トリメチルシリル基、トリエチルシリル基、トリ−n−プロピルシリル基、トリ−iso−プロピルシリル基、tert−ブチルジメチルシリル基、トリフェニルシリル基、トリ−p−キシリルシリル基、トリベンジルシリル基、ジフェニルメチルシリル基、tert−ブチルジフェニルシリル基、ジメチルフェニルシリル基などが挙げられる。   Examples of the substituted silyl group include trimethylsilyl group, triethylsilyl group, tri-n-propylsilyl group, tri-iso-propylsilyl group, tert-butyldimethylsilyl group, triphenylsilyl group, tri-p-xylylsilyl group, and tribenzyl. Examples thereof include a silyl group, a diphenylmethylsilyl group, a tert-butyldiphenylsilyl group, and a dimethylphenylsilyl group.

置換シリルオキシ基としては、トリメチルシリルオキシ基、トリエチルシリルオキシ基、トリ−n−プロピルシリルオキシ基、トリ−iso−プロピルシリルオキシ基、tert−ブチルジメチルシリルオキシ基、トリフェニルシリルオキシ基、トリ−p−キシリルシリルオキシ基、トリベンジルシリルオキシ基、ジフェニルメチルシリルオキシ基、tert−ブチルジフェニルシリルオキシ基、ジメチルフェニルシリルオキシ基などが挙げられる。   Examples of the substituted silyloxy group include trimethylsilyloxy group, triethylsilyloxy group, tri-n-propylsilyloxy group, tri-iso-propylsilyloxy group, tert-butyldimethylsilyloxy group, triphenylsilyloxy group, tri-p -Xylylsilyloxy group, tribenzylsilyloxy group, diphenylmethylsilyloxy group, tert-butyldiphenylsilyloxy group, dimethylphenylsilyloxy group and the like.

置換シリルチオ基としては、トリメチルシリルチオ基、トリエチルシリルチオ基、トリ−n−プロピルシリルチオ基、トリ−iso−プロピルシリルチオ基、tert−ブチルジメチルシリルチオ基、トリフェニルシリルチオ基、トリ−p−キシリルシリルチオ基、トリベンジルシリルチオ基、ジフェニルメチルシリルチオ基、tert−ブチルジフェニルシリルチオ基、ジメチルフェニルシリルチオ基などが挙げられる。   Examples of the substituted silylthio group include trimethylsilylthio group, triethylsilylthio group, tri-n-propylsilylthio group, tri-iso-propylsilylthio group, tert-butyldimethylsilylthio group, triphenylsilylthio group, tri-p -Xylylsilylthio group, tribenzylsilylthio group, diphenylmethylsilylthio group, tert-butyldiphenylsilylthio group, dimethylphenylsilylthio group and the like.

置換シリルアミノ基としては、トリメチルシリルアミノ基、トリエチルシリルアミノ基、トリ−n−プロピルシリルアミノ基、トリ−iso−プロピルシリルアミノ基、tert−ブチルジメチルシリルアミノ基、トリフェニルシリルアミノ基、トリ−p−キシリルシリルアミノ基、トリベンジルシリルアミノ基、ジフェニルメチルシリルアミノ基、tert−ブチルジフェニルシリルアミノ基、ジメチルフェニルシリルアミノ基、ジ(トリメチルシリル)アミノ基、ジ(トリエチルシリル)アミノ基、ジ(トリ−n−プロピルシリル)アミノ基、ジ(トリ−iso−プロピルシリル)アミノ基、ジ(tert−ブチルジメチルシリル)アミノ基、ジ(トリフェニルシリル)アミノ基、ジ(トリ−p−キシリルシリル)アミノ基、ジ(トリベンジルシリル)アミノ基、ジ(ジフェニルメチルシリル)アミノ基、ジ(tert−ブチルジフェニルシリル)アミノ基、ジ(ジメチルフェニルシリル)アミノ基が挙げられる。   Examples of the substituted silylamino group include trimethylsilylamino group, triethylsilylamino group, tri-n-propylsilylamino group, tri-iso-propylsilylamino group, tert-butyldimethylsilylamino group, triphenylsilylamino group, tri-p -Xylylsilylamino group, tribenzylsilylamino group, diphenylmethylsilylamino group, tert-butyldiphenylsilylamino group, dimethylphenylsilylamino group, di (trimethylsilyl) amino group, di (triethylsilyl) amino group, di ( Tri-n-propylsilyl) amino group, di (tri-iso-propylsilyl) amino group, di (tert-butyldimethylsilyl) amino group, di (triphenylsilyl) amino group, di (tri-p-xylylsilyl) Amino group, di (tribe Jirushiriru) amino group, di (diphenylmethyl silyl) amino, di (tert- butyldiphenylsilyl) amino group, di (dimethylphenylsilyl) and amino group.

1価の複素環基としては、フラン、チオフェン、ピロール、ピロリン、ピロリジン、オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、イミダゾール、イミダゾリン、イミダゾリジン、ピラゾール、ピラゾリン、プラゾリジン、フラザン、トリアゾール、チアジアゾール、オキサジアゾール、テトラゾール、ピラン、ピリジン、ピペリジン、チオピラン、ピリダジン、ピリミジン、ピラジン、ピペラジン、モルホリン、トリアジン、ベンゾフラン、イソベンゾフラン、ベンゾチオフェン、インドール、イソインドール、インドリジン、インドリン、イソインドリン、クロメン、クロマン、イソクロマン、ベンゾピラン、キノリン、イソキノリン、キノリジン、ベンゾイミダゾール、ベンゾチアゾール、インダゾール、ナフチリジン、キノキサリン、キナゾリン、キナゾリジン、シンノリン、フタラジン、プリン、プテリジン、カルバゾール、キサンテン、フェナントリジン、アクリジン、β-カルボリン、ペリミジン、フェナントロリン、チアントレン、フェノキサチイン、フェノキサジン、フェノチアジン、フェナジン等の複素環化合物から水素原子を1個除いた基が挙げられる。1価の複素環基としては、1価の芳香族複素環基が好ましい。   Examples of the monovalent heterocyclic group include furan, thiophene, pyrrole, pyrroline, pyrrolidine, oxazole, isoxazole, thiazole, isothiazole, imidazole, imidazoline, imidazolidine, pyrazole, pyrazoline, prazolidine, furazane, triazole, thiadiazole, oxadi Azole, tetrazole, pyran, pyridine, piperidine, thiopyran, pyridazine, pyrimidine, pyrazine, piperazine, morpholine, triazine, benzofuran, isobenzofuran, benzothiophene, indole, isoindole, indolizine, indoline, isoindoline, chromene, chroman, isochroman , Benzopyran, quinoline, isoquinoline, quinolidine, benzimidazole, benzothiazole, indazole, naphthyl Quinoxaline, quinazoline, quinazoline, quinazolidine, cinnoline, phthalazine, purine, pteridine, carbazole, xanthene, phenanthridine, acridine, β-carboline, perimidine, phenanthroline, thianthrene, phenoxathiin, phenoxazine, phenothiazine, phenazine, etc. A group obtained by removing one hydrogen atom from a compound can be mentioned. As the monovalent heterocyclic group, a monovalent aromatic heterocyclic group is preferable.

複素環オキシ基、複素環チオ基としては、前記1価の複素環基に酸素原子又は硫黄原子が結合した基が挙げられる。
複素環オキシ基は、その炭素数が通常4〜60程度である。複素環オキシ基の具体例としては、チエニルオキシ基、C1〜C12アルキルチエニルオキシ基、ピロリルオキシ基、フリルオキシ基、ピリジルオキシ基、C1〜C12アルキルピリジルオキシ基、イミダゾリルオキシ基、ピラゾリルオキシ基、トリアゾリルオキシ基、オキサゾリルオキシ基、チアゾールオキシ基、チアジアゾールオキシ基が挙げられる。
複素環チオ基は、その炭素数が通常4〜60程度である。複素環チオ基の具体例としては、チエニルメルカプト基、C1〜C12アルキルチエニルメルカプト基、ピロリルメルカプト基、フリルメルカプト基、ピリジルメルカプト基、C1〜C12アルキルピリジルメルカプト基、イミダゾリルメルカプト基、ピラゾリルメルカプト基、トリアゾリルメルカプト基、オキサゾリルメルカプト基、チアゾールメルカプト基、チアジアゾールメルカプト基が挙げられる。
Examples of the heterocyclic oxy group and the heterocyclic thio group include a group in which an oxygen atom or a sulfur atom is bonded to the monovalent heterocyclic group.
The heterocyclic oxy group usually has about 4 to 60 carbon atoms. Specific examples of the heterocyclic oxy group include thienyloxy group, C1-C12 alkylthienyloxy group, pyrrolyloxy group, furyloxy group, pyridyloxy group, C1-C12 alkylpyridyloxy group, imidazolyloxy group, pyrazolyloxy group, triazolyl group. And a ruoxy group, an oxazolyloxy group, a thiazoleoxy group, and a thiadiazoleoxy group.
The heterocyclic thio group usually has about 4 to 60 carbon atoms. Specific examples of the heterocyclic thio group include thienyl mercapto group, C1-C12 alkyl thienyl mercapto group, pyrrolyl mercapto group, furyl mercapto group, pyridyl mercapto group, C1-C12 alkyl pyridyl mercapto group, imidazolyl mercapto group, pyrazolyl mercapto group. , Triazolyl mercapto group, oxazolyl mercapto group, thiazole mercapto group and thiadiazole mercapto group.

アリールアルケニル基は、通常、その炭素数7〜20であり、アリールアルケニル基の具体例としては、スチリル基が挙げられる。   The arylalkenyl group usually has 7 to 20 carbon atoms, and specific examples of the arylalkenyl group include a styryl group.

アリールアルキニル基は、通常、その炭素数7〜20であり、アリールアルキニル基の具体例としては、フェニルアセチレニル基が挙げられる。   The arylalkynyl group usually has 7 to 20 carbon atoms, and specific examples of the arylalkynyl group include a phenylacetylenyl group.

ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。   Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.

、Rは、溶媒への溶解性の観点からは、少なくとも一方がアルキル基であることが好ましい。 From the viewpoint of solubility in a solvent, at least one of R 1 and R 2 is preferably an alkyl group.

、Qは、光吸収末端波長を長波長吸収にする観点からは、−S−、−O−が好ましい。中でも、Q、Qの少なくとも一方が、−S−であることが好ましい。 Q 1 and Q 2 are preferably —S— and —O— from the viewpoint of making the light absorption terminal wavelength long-wave absorption. Among these, at least one of Q 1 and Q 2 is preferably —S—.

式(1)で表される構造単位としては、例えば、式301〜式351で表される構造単位が挙げられる。   As a structural unit represented by Formula (1), the structural unit represented by Formula 301-Formula 351 is mentioned, for example.

Figure 2011116961
Figure 2011116961

Figure 2011116961
Figure 2011116961

Figure 2011116961
Figure 2011116961

Figure 2011116961
Figure 2011116961

Figure 2011116961
Figure 2011116961

Figure 2011116961
Figure 2011116961

Figure 2011116961
Figure 2011116961

式301〜式351中、R10はアルキル基、アリール基、アリールアルキル基又は1価の複素環基を表す。アルキル基、アリール基、アリールアルキル基、1価の複素環基の定義、具体例としては、前述のRで表されるアルキル基、アリール基、アリールアルキル基、1価の複素環基の定義、具体例と同じである。R10としては、好ましくはアルキル基である。
10はハロゲン原子を表す。ハロゲン原子の具体例としては、前述のRで表されるハロゲン原子の具体例と同じである。Rは前述と同じ意味を表す。
In Formula 301 to Formula 351, R 10 represents an alkyl group, an aryl group, an arylalkyl group, or a monovalent heterocyclic group. Definition of alkyl group, aryl group, arylalkyl group, monovalent heterocyclic group, specific examples include definition of alkyl group, aryl group, arylalkyl group, monovalent heterocyclic group represented by R 1 described above The same as the specific example. R 10 is preferably an alkyl group.
X 10 represents a halogen atom. Specific examples of the halogen atom are the same as the specific examples of the halogen atom represented by R 1 described above. R 3 represents the same meaning as described above.

式301〜式351で表される構造単位の中でも、好ましくは式301〜式306で表される構造単位であり、より好ましくは式302、式303で表される構造単位であり、特に好ましくは式302で表される構造単位である。   Among the structural units represented by the formula 301 to the formula 351, the structural unit represented by the formula 301 to the formula 306 is preferable, the structural unit represented by the formula 302 and the formula 303 is more preferable, and particularly preferable. This is a structural unit represented by Formula 302.

また、式(1)で表される構造単位の好ましい一態様は、式(3)で表される構造単位である。

Figure 2011116961
(式中、R50はアルキル基を表す。) Moreover, the preferable one aspect | mode of the structural unit represented by Formula (1) is a structural unit represented by Formula (3).
Figure 2011116961
(In the formula, R 50 represents an alkyl group.)

本発明の高分子化合物は、式(1)で表される構造単位のほかに、式(1)で表される構造単位とは異なる構造単位を有している。式(1)で表される構造単位と式(1)で表される構造単位とは異なる構造単位とが、共役を形成していることが好ましい。本発明における共役とは、不飽和結合−単結合−不飽和結合の順に連鎖し、π軌道の2個のπ結合が隣り合い、それぞれのπ電子が平行に配置し、ある二重結合又は三重結合上にπ電子が局在するのではなく、隣の単結合上にπ電子が広がって非局在化している状態のことを指す。ここで不飽和結合とは二重結合や三重結合を指す。
式(1)で表される構造単位とは異なる構造単位としては、例えば、アリーレン基、2価の複素環基が挙げられる。好ましくは、式(1)で表される構造単位とは異なる構造単位は、アリーレン基、2価の芳香族複素環基である。
The polymer compound of the present invention has a structural unit different from the structural unit represented by the formula (1) in addition to the structural unit represented by the formula (1). It is preferable that the structural unit represented by the formula (1) and the structural unit different from the structural unit represented by the formula (1) form a conjugate. Conjugation in the present invention is chained in the order of unsaturated bond-single bond-unsaturated bond, two π bonds in π orbitals are adjacent, and each π electron is arranged in parallel to form a double bond or triple bond. It refers to a state in which π electrons are not localized on the bond but are spread and delocalized on the adjacent single bond. Here, the unsaturated bond refers to a double bond or a triple bond.
Examples of the structural unit different from the structural unit represented by the formula (1) include an arylene group and a divalent heterocyclic group. Preferably, the structural unit different from the structural unit represented by the formula (1) is an arylene group or a divalent aromatic heterocyclic group.

ここで、アリーレン基とは、芳香族炭化水素から、水素原子2個を除いた原子団であり、環を構成する炭素数は通常6〜60程度であり、好ましくは6〜20である。ここに芳香族炭化水素としては、ベンゼン環をもつもの、縮合環をもつもの、独立したベンゼン環又は縮合環2個以上が直接結合してもの又はビニレン等の基を介して結合したものも含まれる。   Here, the arylene group is an atomic group obtained by removing two hydrogen atoms from an aromatic hydrocarbon, and the number of carbon atoms constituting the ring is usually about 6 to 60, preferably 6 to 20. Here, aromatic hydrocarbons include those having a benzene ring, those having a condensed ring, those having two or more independent benzene rings or condensed rings directly bonded, or bonded via a group such as vinylene. It is.

アリーレン基としては、フェニレン基(例えば、下図の式1〜3)、ナフタレンジイル基(下図の式4〜13)、アントラセンジイル基(下図の式14〜19)、ビフェニル−ジイル基(下図の式20〜25)、ターフェニル−ジイル基(下図の式26〜28)、縮合環化合物基(下図の式29〜38)などが例示される。縮合環化合物基には、フルオレン−ジイル基(下図の式36〜38)が含まれる。   Examples of the arylene group include a phenylene group (for example, formulas 1 to 3 in the following figure), a naphthalenediyl group (formulas 4 to 13 in the following figure), an anthracenediyl group (formulas 14 to 19 in the following figure), a biphenyl-diyl group (the formula in the following figure). 20-25), a terphenyl-diyl group (formulas 26 to 28 in the lower figure), a condensed ring compound group (formulas 29 to 38 in the lower figure), and the like. The condensed ring compound group includes a fluorene-diyl group (formulas 36 to 38 in the following figure).

2価の複素環基とは、複素環化合物から水素原子2個を除いた残りの原子団をいい、環を構成する炭素数は通常3〜60程度である。
ここに複素環化合物とは、環式構造をもつ有機化合物のうち、環を構成する元素が炭素原子だけでなく、酸素、硫黄、窒素、リン、ホウ素、ヒ素などのヘテロ原子を環内に含むものをいう。
The divalent heterocyclic group refers to the remaining atomic group obtained by removing two hydrogen atoms from a heterocyclic compound, and the number of carbon atoms constituting the ring is usually about 3 to 60.
Here, the heterocyclic compound is an organic compound having a cyclic structure, and the elements constituting the ring include not only carbon atoms but also hetero atoms such as oxygen, sulfur, nitrogen, phosphorus, boron, and arsenic in the ring. Say things.

2価の複素環基としては、例えば以下のものが挙げられる。
ヘテロ原子として、窒素を含む2価の複素環基:ピリジン−ジイル基(下図の式39〜44)、ジアザフェニレン基(下図の式45〜48)、キノリンジイル基(下図の式49〜63)、キノキサリンジイル基(下図の式64〜68)、アクリジンジイル基(下図の式69〜72)、ビピリジルジイル基(下図の式73〜75)、フェナントロリンジイル基(下図の式76〜78);
ヘテロ原子としてけい素、窒素、硫黄、セレンなどを含みフルオレン構造を有する基(下図の式79〜93);
ヘテロ原子としてけい素、窒素、硫黄、セレンなどを含む5員環複素環基(下図の式94〜98);
ヘテロ原子としてけい素、窒素、硫黄、セレンなどを含む5員環縮合複素基(下図の式99〜110);
ヘテロ原子としてけい素、窒素、硫黄、セレンなどを含む5員環複素環基でそのヘテロ原子のα位で結合し2量体やオリゴマーになっている基(下図の式111〜112);
ヘテロ原子としてけい素、窒素、硫黄、セレンなどを含む5員環複素環基でそのヘテロ原子のα位でフェニル基に結合している基(下図の式113〜119);
ヘテロ原子として酸素、窒素、硫黄、などを含む5員環縮合複素環基にフェニル基やフリル基、チエニル基が置換した基(下図の式120〜127);
ヘテロ原子として窒素、硫黄、セレンなどを含む5員環複素環が縮合した基(下記の図128〜139);ベンゼン環とチオフェン環が縮合した基(下記の図140〜143)などを例示することが出来る。
Examples of the divalent heterocyclic group include the following.
Divalent heterocyclic group containing nitrogen as a hetero atom: pyridine-diyl group (formulas 39 to 44 in the following figure), diazaphenylene group (formulas 45 to 48 in the following figure), quinoline diyl group (formulas 49 to 63 in the following figure) A quinoxaline diyl group (formulas 64-68 in the figure below), an acridine diyl group (formulas 69-72 in the figure below), a bipyridyldiyl group (formulas 73-75 in the figure below), a phenanthroline diyl group (formulas 76-78 in the figure below);
Groups having a fluorene structure containing silicon, nitrogen, sulfur, selenium and the like as a hetero atom (formulas 79 to 93 in the following figure);
A 5-membered heterocyclic group containing silicon, nitrogen, sulfur, selenium and the like as a hetero atom (formulae 94 to 98 in the following figure);
5-membered ring condensed hetero groups containing silicon, nitrogen, sulfur, selenium and the like as a hetero atom (formulas 99 to 110 in the following figure);
A 5-membered ring heterocyclic group containing silicon, nitrogen, sulfur, selenium, etc. as a heteroatom, bonded at the α-position of the heteroatom to form a dimer or oligomer (formulas 111 to 112 in the following figure);
A 5-membered heterocyclic group containing silicon, nitrogen, sulfur, selenium or the like as a heteroatom, which is bonded to the phenyl group at the α-position of the heteroatom (formulas 113 to 119 in the following figure)
Groups in which a phenyl group, a furyl group, or a thienyl group is substituted on a 5-membered condensed heterocyclic group containing oxygen, nitrogen, sulfur, etc. as a hetero atom (formulas 120 to 127 in the following figure);
Examples include groups in which a 5-membered heterocyclic ring containing nitrogen, sulfur, selenium, etc. as a hetero atom is condensed (see FIGS. 128 to 139 below); groups in which a benzene ring and a thiophene ring are condensed (see FIGS. 140 to 143 below). I can do it.

Figure 2011116961
Figure 2011116961

Figure 2011116961
Figure 2011116961

Figure 2011116961
Figure 2011116961

Figure 2011116961
Figure 2011116961

Figure 2011116961
Figure 2011116961

Figure 2011116961
Figure 2011116961

Figure 2011116961
Figure 2011116961

Figure 2011116961
Figure 2011116961

Figure 2011116961
Figure 2011116961

Figure 2011116961
Figure 2011116961

Figure 2011116961
Figure 2011116961

Figure 2011116961
Figure 2011116961

Figure 2011116961
Figure 2011116961

Figure 2011116961
Figure 2011116961

Figure 2011116961
Figure 2011116961

Figure 2011116961
Figure 2011116961

Figure 2011116961
Figure 2011116961

式1〜式143中、Rは水素原子又は置換基を表す。複数個あるRは、同一でも相異なっていてもよく、互いに結合して環を形成していてもよい。Rが置換基である場合、該置換基の例としては、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、アミド基、1価の複素環基、カルボキシル基、置換カルボキシル基、ニトロ基、シアノ基から選ばれる基があげられる。これらの置換基に含まれる水素原子は、フッ素原子で置換されていてもよい。   In Formula 1 to Formula 143, R represents a hydrogen atom or a substituent. A plurality of R may be the same or different, and may be bonded to each other to form a ring. When R is a substituent, examples of the substituent include an alkyl group, an alkyloxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkyloxy group, an arylalkylthio group, an aryl Alkenyl group, arylalkynyl group, amino group, substituted amino group, silyl group, substituted silyl group, halogen atom, acyl group, acyloxy group, amide group, monovalent heterocyclic group, carboxyl group, substituted carboxyl group, nitro group, And a group selected from a cyano group. The hydrogen atom contained in these substituents may be substituted with a fluorine atom.

Rで表されるアルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、置換アミノ基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、アミド基、1価の複素環基の定義、具体例は、前述のRで表されるアルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、置換アミノ基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、アミド基、1価の複素環基の定義、具体例と同じである。 An alkyl group represented by R, an alkyloxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkyloxy group, an arylalkylthio group, an arylalkenyl group, an arylalkynyl group, a substituted amino group, Definition of substituted silyl group, halogen atom, acyl group, acyloxy group, amide group, monovalent heterocyclic group, specific examples are the alkyl group, alkyloxy group, alkylthio group, aryl group represented by R 1 described above, Aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, arylalkenyl group, arylalkynyl group, substituted amino group, substituted silyl group, halogen atom, acyl group, acyloxy group, amide group, monovalent Definition of the heterocyclic group of, the same as the specific example It is.

置換カルボキシル基としては、通常炭素数2〜20のものが用いられ、メチルエステル構造を有する基、エチルエステル構造を有する基、ブチルエステル構造を有する基などが挙げられる。   As the substituted carboxyl group, those having 2 to 20 carbon atoms are usually used, and examples thereof include a group having a methyl ester structure, a group having an ethyl ester structure, and a group having a butyl ester structure.

a、bは、同一又は相異なり、繰り返しの数を表し、通常1〜5であり、好ましくは1〜3であり、特に好ましくは1である。   a and b are the same or different and represent the number of repetitions, and are usually 1 to 5, preferably 1 to 3, and particularly preferably 1.

式(1)で表される構造単位とは異なる構造単位としては、光電変換効率の観点からは、式(A−1)〜式(H−1)で表される構造単位が好ましい。

Figure 2011116961
〔式(A−1)〜式(H−1)中、Q〜Q15は、同一又は相異なり、−S−、−O−、−Se−又は−N(R)−を表す。R40〜R52は、同一又は相異なり、水素原子、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、酸イミド基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1価の複素環基、複素環オキシ基、複素環チオ基、アリールアルケニル基、アリールアルキニル基、カルボキシル基又はシアノ基を表す。R40とR41 42とR43は、それぞれ連結して環状構造を形成してもよい。Y1〜Yは、同一又は相異なり、窒素原子または=CH−を表す。〕 As a structural unit different from the structural unit represented by Formula (1), the structural unit represented by Formula (A-1)-Formula (H-1) is preferable from a viewpoint of photoelectric conversion efficiency.
Figure 2011116961
[In Formula (A-1) to Formula (H-1), Q 3 to Q 15 are the same or different and represent —S—, —O—, —Se—, or —N (R 3 ) —. R 40 to R 52 are the same or different and are a hydrogen atom, a halogen atom, an alkyl group, an alkyloxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkyloxy group, an arylalkylthio group. , Acyl group, acyloxy group, amide group, acid imide group, amino group, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, monovalent heterocyclic group, heterocyclic oxy group, complex A ring thio group, an arylalkenyl group, an arylalkynyl group, a carboxyl group or a cyano group is represented. R 40 and R 41 , R 42 and R 43 may be connected to each other to form a cyclic structure. Y 1 to Y 6 are the same or different and each represents a nitrogen atom or ═CH—. ]

40とR41 42とR43が連結して形成した環状構造の具体例としては、式(二)で表される環状構造、式(ホ)で表される環状構造が挙げられる。

Figure 2011116961
Specific examples of the cyclic structure formed by connecting R 40 and R 41 , R 42 and R 43 include a cyclic structure represented by the formula (2) and a cyclic structure represented by the formula (e).

Figure 2011116961

式(ニ)及び式(ホ)中、R32、R33は、同一又は相異なり、水素原子又は置換基を表す。R32、R33が置換基の場合、該置換基としては、炭素数1〜30の基が好ましい。該炭素数1〜30の基の例としては、メチル基、エチル基、ブチル基、ヘキシル基、オクチル基、ドデシル基などのアルキル基、メトキシ基、エトキシ基、ブトキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基などのアルキルオキシ基、フェニル基、ナフチル基などのアリール基が挙げられる。X32は、硫黄原子又はセレン原子を表す。X32は、好ましくは硫黄原子である。Y36〜Y39は、同一又は相異なり、窒素原子又は=CH−を表す。Y36〜Y39は、好ましくは窒素原子である。 In formula (d) and formula (e), R 32 and R 33 are the same or different and each represents a hydrogen atom or a substituent. When R 32 and R 33 are substituents, the substituent is preferably a group having 1 to 30 carbon atoms. Examples of the group having 1 to 30 carbon atoms include alkyl groups such as methyl group, ethyl group, butyl group, hexyl group, octyl group, dodecyl group, methoxy group, ethoxy group, butoxy group, hexyloxy group, octyloxy group Groups, alkyloxy groups such as dodecyloxy group, and aryl groups such as phenyl group and naphthyl group. X 32 represents a sulfur atom or a selenium atom. X 32 is preferably a sulfur atom. Y 36 to Y 39 are the same or different and each represents a nitrogen atom or ═CH—. Y 36 to Y 39 are preferably nitrogen atoms.

式(A−1)〜式(H−1)で表される構造単位として、好ましくは式(500)〜式(525)で表される基が挙げられる。   As the structural unit represented by the formula (A-1) to the formula (H-1), a group represented by the formula (500) to the formula (525) is preferable.

Figure 2011116961
Figure 2011116961

Figure 2011116961
(式中、Rは前記式1〜式143中のRと同じ意味を表す)
Figure 2011116961
(Wherein R represents the same meaning as R in formulas 1 to 143)

式(500)〜式(525)で表される構造単位の中でも、式(500)、式(504)、式(505)、式(506)、式(511)、式(523)、式(524)、式(525)で表される構造単位が好ましい。   Among the structural units represented by Formula (500) to Formula (525), Formula (500), Formula (504), Formula (505), Formula (506), Formula (511), Formula (523), Formula ( 524) and a structural unit represented by the formula (525) are preferable.

本発明における高分子化合物とは、重量平均分子量が1000以上のものを指すが、重量平均分子量が3000〜10000000の高分子化合物が好ましく用いられる。重量平均分子量が3000より低いとデバイス作製時の膜形成に欠陥が生じることがあり、10000000より大きいと溶媒への溶解性や素子作製時の塗布性が低下することがある。重量平均分子量としてさらに好ましくは8000〜5000000であり、特に好ましくは10000〜1000000である。
なお、本発明における重量平均分子量とは、ゲルパーミエーションクロマトグラフィ(GPC)を用い、ポリスチレンの標準試料を用いて算出したポリスチレン換算の重量平均分子量のことを指す。
The polymer compound in the present invention refers to a polymer having a weight average molecular weight of 1000 or more, and a polymer compound having a weight average molecular weight of 3000 to 10,000,000 is preferably used. If the weight average molecular weight is lower than 3000, defects may occur in film formation during device fabrication, and if it exceeds 10000000, solubility in a solvent and applicability during device fabrication may be degraded. More preferably, it is 8000-5 million as a weight average molecular weight, Most preferably, it is 10,000-1 million.
In addition, the weight average molecular weight in this invention points out the weight average molecular weight of polystyrene conversion calculated using the standard sample of polystyrene using gel permeation chromatography (GPC).

本発明の高分子化合物中の式(1)で表される構造単位の含有量は、化合物中に少なくとも1つ含まれていればよい。好ましくは高分子化合物中、高分子鎖一本あたり平均2個以上、さらに好ましくは高分子鎖一本あたり平均3個以上含まれる。   The content of the structural unit represented by the formula (1) in the polymer compound of the present invention may be at least one in the compound. Preferably, the polymer compound contains an average of 2 or more per polymer chain, more preferably an average of 3 or more per polymer chain.

また、本発明の高分子化合物は、素子に用いられる場合、デバイス作製の容易性から、溶媒への溶解度が高いことが望ましい。具体的には、本発明の高分子化合物が、該高分子化合物を0.01重量(wt)%以上含む溶液を作製し得る溶解性を有することが好ましく、0.1wt%以上含む溶液を作製し得る溶解性を有することがより好ましく、0.4wt%以上含む溶液を作製し得る溶解性を有することがさらに好ましい。   In addition, when the polymer compound of the present invention is used in an element, it is desirable that the solubility in a solvent is high in terms of ease of device production. Specifically, the polymer compound of the present invention preferably has a solubility capable of producing a solution containing 0.01% by weight (wt)% or more of the polymer compound, and a solution containing 0.1% by weight or more is produced. It is more preferable that it has the solubility which can be made, and it is further more preferable that it has the solubility which can produce the solution containing 0.4 wt% or more.

本発明の高分子化合物は、式(1)で表される構造単位を有することを特徴とするが、該高分子化合物は、例えば、式(1−2)で表される化合物を原料の一つとして用いることにより合成することが出来る。

Figure 2011116961
〔式中、W、Wは、同一又は相異なり、水素原子、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基、ホウ酸エステル残基、スルホニウムメチル基、ホスホニウムメチル基、ホスホネートメチル基、モノハロゲン化メチル基、ボロン酸残基、ホルミル基、ビニル基又は有機スズ残基を表す。R、Rは前述と同じ意味を表す。〕 The polymer compound of the present invention is characterized by having a structural unit represented by the formula (1). For example, the polymer compound is a compound represented by the formula (1-2) as a raw material. It can be synthesized by using as one.
Figure 2011116961
[Wherein W 1 and W 2 are the same or different and are a hydrogen atom, a halogen atom, an alkyl sulfonate group, an aryl sulfonate group, an aryl alkyl sulfonate group, a boric acid ester residue, a sulfonium methyl group, a phosphonium methyl group, or a phosphonate. Represents a methyl group, a monohalogenated methyl group, a boronic acid residue, a formyl group, a vinyl group or an organotin residue. R 1 and R 2 represent the same meaning as described above. ]

式(1−2)で表される化合物は、式(1−3)で表される化合物に公知のウィッティヒ反応などで置換基を導入することにより製造しうる。

Figure 2011116961
〔式中、W、Wは前記と同じ意味を表す。〕 The compound represented by the formula (1-2) can be produced by introducing a substituent into the compound represented by the formula (1-3) by a known Wittig reaction or the like.
Figure 2011116961
[Wherein W 1 and W 2 represent the same meaning as described above. ]

ウィッティヒ反応は、公知の方法を用いることができる。例えば、ウィッティヒ試薬存在下、芳香族炭化水素類、エーテル類、ハロゲン化炭化水素類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N―メチルピロリドン、ジメチルスルホキシド、アセトニトリル等の溶媒中、冷却下又は加熱下で反応を行うことができる。ウィッティヒ試薬は、例えば、対応するホスホニウム塩を炭酸カリウム、tert−ブトキシカリウム、水素化ナトリウム、n−ブチルリチウム等のアルキルリチウム等の塩基と反応させることにより得ることが出来る。   A well-known method can be used for the Wittig reaction. For example, in the presence of a Wittig reagent, in a solvent such as aromatic hydrocarbons, ethers, halogenated hydrocarbons, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, dimethyl sulfoxide, acetonitrile, The reaction can be carried out under cooling or heating. The Wittig reagent can be obtained, for example, by reacting the corresponding phosphonium salt with a base such as alkyl lithium such as potassium carbonate, tert-butoxy potassium, sodium hydride or n-butyl lithium.

式(1−2)で表される化合物を高分子量化することにより、本発明の高分子化合物を製造することが出来る。本発明の高分子化合物の製造方法としては、特に制限されるものではないが、高分子化合物の合成の容易さからは、Suzukiカップリング反応やStilleカップリング反応を用いる方法が好ましい。   The polymer compound of the present invention can be produced by increasing the molecular weight of the compound represented by the formula (1-2). The method for producing the polymer compound of the present invention is not particularly limited, but a method using a Suzuki coupling reaction or a Stille coupling reaction is preferable from the viewpoint of ease of synthesis of the polymer compound.

Suzukiカップリング反応を用いる方法としては、例えば、式(100):
100−E1−Q200 (100)
〔式中、Eは、芳香環を含む2価の基を表す。Q100及びQ200は、同一又は相異なり、ボロン酸残基又はホウ酸エステル残基を表す。〕
で表される1種類以上の化合物と、式(200):
1−E2−T2 (200)
〔式中、Eは、式(1)で表される基を含む構造単位を表す。T及びTは、同一又は相異なり、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基又はアリールアルキルスルホネート基を表す。〕
で表される1種類以上の化合物とを、パラジウム触媒及び塩基の存在下で反応させる工程を有する製造方法が挙げられる。Eとして好ましくは2価の芳香族基であり、さらに好ましくは前述の式1〜式143で表される基が挙げられる。
この場合、反応に用いる式(200)で表わされる1種類以上の化合物のモル数の合計が、式(100)で表わされる1種類以上の化合物のモル数の合計に対して、過剰であることが好ましい。反応に用いる式(200)で表わされる1種類以上の化合物のモル数の合計を1モルとすると、式(100)で表わされる1種類以上の化合物のモル数の合計が0.6〜0.99モルであることが好ましく、0.7〜0.95モルであることがさらに好ましい。
As a method using the Suzuki coupling reaction, for example, the formula (100):
Q 100 -E 1 -Q 200 (100)
[Wherein E 1 represents a divalent group containing an aromatic ring. Q 100 and Q 200 are the same or different and represent a boronic acid residue or a boric acid ester residue. ]
One or more compounds represented by formula (200):
T 1 -E 2 -T 2 (200)
Wherein, E 2 represents a structural unit containing a group represented by the formula (1). T 1 and T 2 are the same or different and each represents a halogen atom, an alkyl sulfonate group, an aryl sulfonate group, or an arylalkyl sulfonate group. ]
The manufacturing method which has a process with which 1 or more types of compounds represented by these are made to react in presence of a palladium catalyst and a base is mentioned. E 1 is preferably a divalent aromatic group, more preferably a group represented by the above-mentioned formulas 1 to 143.
In this case, the total number of moles of one or more compounds represented by formula (200) used in the reaction is excessive with respect to the total number of moles of one or more compounds represented by formula (100). Is preferred. When the total number of moles of one or more compounds represented by formula (200) used in the reaction is 1 mole, the total number of moles of one or more compounds represented by formula (100) is 0.6 to 0.00. It is preferably 99 mol, and more preferably 0.7 to 0.95 mol.

ホウ酸エステル残基としては、下記式:

Figure 2011116961
(式中、Meはメチル基を表し、Etはエチル基を表す。)
で表される基等が例示される。 As the borate ester residue, the following formula:
Figure 2011116961
(In the formula, Me represents a methyl group, and Et represents an ethyl group.)
The group etc. which are represented by these are illustrated.

式(200)における、T及びTで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。高分子化合物の合成の容易さからは、臭素原子、ヨウ素原子であることが好ましく、臭素原子であることがさらに好ましい。 Examples of the halogen atom represented by T 1 and T 2 in Formula (200) include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. In view of ease of synthesis of the polymer compound, a bromine atom and an iodine atom are preferable, and a bromine atom is more preferable.

式(200)における、T及びTで表されるアルキルスルホネート基としては、メタンスルホネート基、エタンスルホネート基、トリフルオロメタンスルホネート基が例示される。アリールスルホネート基としては、ベンゼンスルホネート基、p−トルエンスルホネート基が例示される。アリールアルキルスルホネート基としては、ベンジルスルホネート基が例示される。 Examples of the alkyl sulfonate group represented by T 1 and T 2 in Formula (200) include a methane sulfonate group, an ethane sulfonate group, and a trifluoromethane sulfonate group. Examples of the aryl sulfonate group include a benzene sulfonate group and a p-toluene sulfonate group. A benzyl sulfonate group is illustrated as an arylalkyl sulfonate group.

具体的には、Suzukiカップリング反応を行う方法としては、任意の溶媒中において、触媒としてパラジウム触媒を用い、塩基の存在下で反応させる方法等が挙げられる。   Specifically, the method for carrying out the Suzuki coupling reaction includes a method in which a palladium catalyst is used as a catalyst in an arbitrary solvent and the reaction is performed in the presence of a base.

Suzukiカップリング反応に使用するパラジウム触媒としては、例えば、Pd(0)触媒、Pd(II)触媒が挙げられる。パラジウム職場の具体例としては、パラジウム[テトラキス(トリフェニルホスフィン)]、パラジウムアセテート類、ジクロロビス(トリフェニルホスフィン)パラジウム、パラジウムアセテート、トリス(ジベンジリデンアセトン)ジパラジウム、ビス(ジベンジリデンアセトン)パラジウムが挙げられるが、反応(重合)操作の容易さ、反応(重合)速度の観点からは、ジクロロビス(トリフェニルホスフィン)パラジウム、パラジウムアセテート、トリス(ジベンジリデンアセトン)ジパラジウム類が好ましい。
パラジウム触媒の添加量は、特に限定されず、触媒としての有効量であればよいが、式(100)で表される化合物1モルに対して、通常、0.0001モル〜0.5モル、好ましくは0.0003モル〜0.1モルである。
Examples of the palladium catalyst used in the Suzuki coupling reaction include a Pd (0) catalyst and a Pd (II) catalyst. Specific examples of palladium workplaces include palladium [tetrakis (triphenylphosphine)], palladium acetates, dichlorobis (triphenylphosphine) palladium, palladium acetate, tris (dibenzylideneacetone) dipalladium, and bis (dibenzylideneacetone) palladium. Examples thereof include dichlorobis (triphenylphosphine) palladium, palladium acetate, and tris (dibenzylideneacetone) dipalladium from the viewpoint of ease of reaction (polymerization) operation and reaction (polymerization) rate.
The addition amount of the palladium catalyst is not particularly limited as long as it is an effective amount as a catalyst, but is usually 0.0001 mol to 0.5 mol, preferably 0.0003 mol, relative to 1 mol of the compound represented by the formula (100). ~ 0.1 mol.

Suzukiカップリング反応に使用するパラジウム触媒としてパラジウムアセテート類を用いる場合は、例えば、トリフェニルホスフィン、トリ(o−トリル)ホスフィン、トリ(o−メトキシフェニル)ホスフィン等のリン化合物を配位子として添加することができる。この場合、配位子の添加量は、パラジウム触媒1モルに対して、通常、0.5モル〜100モルであり、好ましくは0.9モル〜20モル、さらに好ましくは1モル〜10モルである。   When using palladium acetate as the palladium catalyst used in the Suzuki coupling reaction, for example, phosphorus compounds such as triphenylphosphine, tri (o-tolyl) phosphine, tri (o-methoxyphenyl) phosphine are added as ligands can do. In this case, the addition amount of the ligand is usually 0.5 mol to 100 mol, preferably 0.9 mol to 20 mol, more preferably 1 mol to 10 mol, relative to 1 mol of the palladium catalyst.

Suzukiカップリング反応に使用する塩基としては、無機塩基、有機塩基、無機塩等が挙げられる。無機塩基としては、例えば、炭酸カリウム、炭酸ナトリウム、水酸化バリウムが挙げられる。有機塩基としては、例えば、トリエチルアミン、トリブチルアミンが挙げられる。無機塩としては、例えば、フッ化セシウムが挙げられる。
塩基の添加量は、式(100)で表される化合物1モルに対して、通常、0.5モル〜100モル、好ましくは0.9モル〜20モル、さらに好ましくは1モル〜10モルである。
Examples of the base used for the Suzuki coupling reaction include inorganic bases, organic bases, and inorganic salts. Examples of the inorganic base include potassium carbonate, sodium carbonate, and barium hydroxide. Examples of the organic base include triethylamine and tributylamine. An example of the inorganic salt is cesium fluoride.
The addition amount of the base is usually 0.5 mol to 100 mol, preferably 0.9 mol to 20 mol, more preferably 1 mol to 10 mol, relative to 1 mol of the compound represented by the formula (100).

Suzukiカップリング反応は、通常、溶媒中で行われる。溶媒としては、N,N−ジメチルホルムアミド、トルエン、ジメトキシエタン、テトラヒドロフランが例示される。本発明に用いられる高分子化合物の溶解性の観点からは、トルエン、テトラヒドロフランが好ましい。また、塩基は、水溶液として加え、水相と有機相の2相系で反応させてもよい。塩基として無機塩を用いる場合は、無機塩の溶解性の観点から、通常、水溶液として加えて反応させる。
なお、塩基を水溶液として加え、2相系で反応させる場合は、必要に応じて、第4級アンモニウム塩などの相間移動触媒を加えてもよい。
The Suzuki coupling reaction is usually performed in a solvent. Examples of the solvent include N, N-dimethylformamide, toluene, dimethoxyethane, and tetrahydrofuran. From the viewpoint of solubility of the polymer compound used in the present invention, toluene and tetrahydrofuran are preferred. Further, the base may be added as an aqueous solution and reacted in a two-phase system of an aqueous phase and an organic phase. When an inorganic salt is used as the base, it is usually added as an aqueous solution and reacted from the viewpoint of solubility of the inorganic salt.
In addition, when adding a base as aqueous solution and making it react with a two-phase system, you may add phase transfer catalysts, such as a quaternary ammonium salt, as needed.

Suzukiカップリング反応を行う温度は、前記溶媒にもよるが、通常、50〜160℃程度であり、高分子化合物の高分子量化の観点から、60〜120℃が好ましい。また、溶媒の沸点近くまで昇温し、還流させてもよい。反応時間は、目的の重合度に達したときを終点としてもよいが、通常、0.1時間〜200時間程度である。1時間〜30時間程度が効率的で好ましい。   The temperature at which the Suzuki coupling reaction is carried out depends on the solvent, but is usually about 50 to 160 ° C., and preferably 60 to 120 ° C. from the viewpoint of increasing the molecular weight of the polymer compound. Alternatively, the temperature may be raised to near the boiling point of the solvent and refluxed. The reaction time may end when the target degree of polymerization is reached, but is usually about 0.1 hour to 200 hours. About 1 to 30 hours is efficient and preferable.

Suzukiカップリング反応は、アルゴンガス、窒素ガス等の不活性雰囲気下、Pd(0)触媒が失活しない反応系で行う。例えば、アルゴンガスや窒素ガス等で、十分脱気された系で行う。具体的には、重合容器(反応系)内を窒素ガスで十分置換し、脱気した後、この重合容器に、式(100)で表される化合物、式(200)で表される化合物、ジクロロビス(トリフェニルホスフィン)パラジウム(II)を仕込み、さらに、重合容器を窒素ガスで十分置換し、脱気した後、あらかじめ窒素ガスでバブリングすることにより、脱気した溶媒、例えば、トルエンを加えた後、この溶液に、あらかじめ窒素ガスでバブリングすることにより脱気した塩基、例えば、炭酸ナトリウム水溶液を滴下した後、加熱、昇温し、例えば、還流温度で8時間、不活性雰囲気を保持しながら重合する。   The Suzuki coupling reaction is performed in a reaction system in which the Pd (0) catalyst is not deactivated under an inert atmosphere such as argon gas or nitrogen gas. For example, it is performed in a system sufficiently deaerated with argon gas or nitrogen gas. Specifically, after the inside of the polymerization vessel (reaction system) is sufficiently substituted with nitrogen gas and degassed, the compound represented by the formula (100), the compound represented by the formula (200), Dichlorobis (triphenylphosphine) palladium (II) was charged, the polymerization vessel was sufficiently replaced with nitrogen gas, degassed, and then degassed by adding a degassed solvent such as toluene by bubbling with nitrogen gas in advance. Thereafter, a base degassed by bubbling with nitrogen gas in advance, for example, an aqueous sodium carbonate solution, is dropped into this solution, and then heated and heated, for example, while maintaining an inert atmosphere at the reflux temperature for 8 hours. Polymerize.

Stilleカップリング反応を用いる方法としては、例えば、式(300):
300−E−Q400 (300)
〔式中、Eは、芳香環を含む2価の基を表す。Q300及びQ400は、同一又は相異なり、有機スズ残基を表す。〕
で表される1種類以上の化合物と、前記式(200)で表される1種類以上の化合物とを、パラジウム触媒の存在下で反応させる工程を有する製造方法が挙げられる。Eとして好ましくは2価の芳香族基であり、さらに好ましくは前述の式1〜式143で表される基である。
As a method using Stille coupling reaction, for example, formula (300):
Q 300 -E 3 -Q 400 (300)
[Wherein E 3 represents a divalent group containing an aromatic ring. Q 300 and Q 400 are the same or different and represent an organotin residue. ]
And a method of reacting one or more compounds represented by the formula (200) with one or more compounds represented by the formula (200) in the presence of a palladium catalyst. E 3 is preferably a divalent aromatic group, and more preferably a group represented by the above-mentioned formulas 1 to 143.

有機スズ残基としては、−SnR100 で表される基等が挙げられる。ここでR100は1価の有機基を表す。1価の有機基としては、アルキル基、アリール基などが挙げられる。
アルキル基としてはメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル墓、n−ペンチル基、イソペンチル基、2−メチルブチル基、1−メチルブチル基、n−ヘキシル基、イソヘキシル基、3−メチルペンチル基、2一メチルペンチル基、1−メチルペンチル基、ヘプチル基、オクチル基、イソオクチル基、2−エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基、テトラデシル基、ヘキサデシル墓、オクタデシル基、エイコシル基等の鎖状アルキル基、シクロペンチル基、シクロヘキシル基、アダマンチル基等のシクロアルキル基が挙げられる。アリール基としてはフェニル基、ナフチル基などが挙げられる。有機スズ残基として好ましくは-SnMe、-SnEt、-SnBu、-SnPhであり、さらに好ましくは-SnMe、-SnEt、-SnBuである。上記好ましい例において、Meはメチル基を、Etはエチル基を、Buはブチル基を、Phはフェニル基を表す。
Examples of the organic tin residue include a group represented by —SnR 100 3 . Here, R 100 represents a monovalent organic group. Examples of the monovalent organic group include an alkyl group and an aryl group.
Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl tomb, n-pentyl group, isopentyl group, 2-methylbutyl group, 1 -Methylbutyl group, n-hexyl group, isohexyl group, 3-methylpentyl group, 21-methylpentyl group, 1-methylpentyl group, heptyl group, octyl group, isooctyl group, 2-ethylhexyl group, nonyl group, decyl group, Examples include chain alkyl groups such as undecyl group, dodecyl group, tetradecyl group, hexadecyl tomb, octadecyl group, and eicosyl group, and cycloalkyl groups such as cyclopentyl group, cyclohexyl group, and adamantyl group. Examples of the aryl group include a phenyl group and a naphthyl group. Preferably -SnMe 3 as organotin residue, -SnEt 3, -SnBu 3, an -SnPh 3, more preferably -SnMe 3, -SnEt 3, is -SnBu 3. In the above preferred examples, Me represents a methyl group, Et represents an ethyl group, Bu represents a butyl group, and Ph represents a phenyl group.

式(200)における、T及びTで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。高分子化合物の合成の容易さからは、臭素原子、ヨウ素原子であることが好ましい。 Examples of the halogen atom represented by T 1 and T 2 in Formula (200) include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. In view of ease of synthesis of the polymer compound, a bromine atom and an iodine atom are preferable.

式(200)における、T及びTで表されるアルキルスルホネート基としては、メタンスルホネート基、エタンスルホネート基、トリフルオロメタンスルホネート基が例示される。アリールスルホネート基としては、ベンゼンスルホネート基、p−トルエンスルホネート基が例示される。アリールスルホネート基としては、ベンジルスルホネート基が例示される。 Examples of the alkyl sulfonate group represented by T 1 and T 2 in Formula (200) include a methane sulfonate group, an ethane sulfonate group, and a trifluoromethane sulfonate group. Examples of the aryl sulfonate group include a benzene sulfonate group and a p-toluene sulfonate group. A benzyl sulfonate group is illustrated as an aryl sulfonate group.

具体的には、触媒として、例えば、パラジウム触媒下で任意の溶媒中で反応する方法が挙げられる。
Stilleカップリング反応に使用するパラジウム触媒としては、例えば、Pd(0)触媒、Pd(II)触媒が挙げられる。パラジウム触媒の具体例としては、パラジウム[テトラキス(トリフェニルホスフィン)]、パラジウムアセテート類、ジクロロビス(トリフェニルホスフィン)パラジウム、パラジウムアセテート、トリス(ジベンジリデンアセトン)ジパラジウム、ビス(ジベンジリデンアセトン)パラジウムが挙げられ、反応(重合)操作の容易さ、反応(重合)速度の観点からは、パラジウム[テトラキス(トリフェニルホスフィン)]、トリス(ジベンジリデンアセトン)ジパラジウムが好ましい。
Stilleカップリング反応に使用するパラジウム触媒の添加量は、特に限定されず、触媒としての有効量であればよいが、式(100)で表される化合物1モルに対して、通常、0.0001モル〜0.5モル、好ましくは0.0003モル〜0.2モルである。
Specifically, examples of the catalyst include a method of reacting in an arbitrary solvent under a palladium catalyst.
Examples of the palladium catalyst used in the Stille coupling reaction include a Pd (0) catalyst and a Pd (II) catalyst. Specific examples of the palladium catalyst include palladium [tetrakis (triphenylphosphine)], palladium acetates, dichlorobis (triphenylphosphine) palladium, palladium acetate, tris (dibenzylideneacetone) dipalladium, and bis (dibenzylideneacetone) palladium. Palladium [tetrakis (triphenylphosphine)] and tris (dibenzylideneacetone) dipalladium are preferable from the viewpoint of ease of reaction (polymerization) operation and reaction (polymerization) speed.
The addition amount of the palladium catalyst used for the Stille coupling reaction is not particularly limited as long as it is an effective amount as a catalyst, but is usually 0.0001 mol to 1 mol of the compound represented by the formula (100). 0.5 mol, preferably 0.0003 mol to 0.2 mol.

また、Stilleカップリング反応において、必要に応じて配位子や助触媒を用いることもできる。配位子としては、例えば、トリフェニルホスフィン、トリ(o−トリル)ホスフィン、トリ(o−メトキシフェニル)ホスフィン、トリス(2−フリル)ホスフィン等のリン化合物やトリフェニルアルシン、トリフェノキシアルシン等の砒素化合物が挙げられる。助触媒としてはヨウ化銅、臭化銅、塩化銅、2−テノイル酸銅(I)が挙げられる。
配位子又は助触媒を用いる場合、配位子又は助触媒の添加量は、パラジウム触媒1モルに対して、通常、0.5モル〜100モルであり、好ましくは0.9モル〜20モル、さらに好ましくは1モル〜10モルである。
Further, in the Stille coupling reaction, a ligand or a cocatalyst can be used as necessary. Examples of the ligand include phosphorus compounds such as triphenylphosphine, tri (o-tolyl) phosphine, tri (o-methoxyphenyl) phosphine, tris (2-furyl) phosphine, triphenylarsine, and triphenoxyarsine. Examples include arsenic compounds. Examples of the cocatalyst include copper iodide, copper bromide, copper chloride, and copper (I) 2-thenoylate.
When using a ligand or a cocatalyst, the amount of the ligand or cocatalyst added is usually 0.5 mol to 100 mol, preferably 0.9 mol to 20 mol, more preferably, relative to 1 mol of the palladium catalyst. 1 mol to 10 mol.

Stilleカップリング反応は、通常、溶媒中で行われる。溶媒としては、N,N−ジメチルホルムアミド、N、N−ジメチルアセトアミド、トルエン、ジメトキシエタン、テトラヒドロフランが例示される。本発明に用いられる高分子化合物の溶解性の観点からは、トルエン、テトラヒドロフランが好ましい。   The Stille coupling reaction is usually performed in a solvent. Examples of the solvent include N, N-dimethylformamide, N, N-dimethylacetamide, toluene, dimethoxyethane, and tetrahydrofuran. From the viewpoint of solubility of the polymer compound used in the present invention, toluene and tetrahydrofuran are preferred.

Stilleカップリング反応を行う温度は、前記溶媒にもよるが、通常、50〜160℃程度であり、高分子化合物の高分子量化の観点から、60〜120℃が好ましい。また、溶媒の沸点近くまで昇温し、還流させてもよい。
前記反応を行う時間(反応時間)は、目的の重合度に達したときを終点としてもよいが、通常、0.1時間〜200時間程度である。1時間〜30時間程度が効率的で好ましい。
The temperature at which the Stille coupling reaction is performed depends on the solvent, but is usually about 50 to 160 ° C., and preferably 60 to 120 ° C. from the viewpoint of increasing the molecular weight of the polymer compound. Alternatively, the temperature may be raised to near the boiling point of the solvent and refluxed.
The time for carrying out the reaction (reaction time) may be the end point when the target degree of polymerization is reached, but is usually about 0.1 to 200 hours. About 1 to 30 hours is efficient and preferable.

Stilleカップリング反応は、アルゴンガス、窒素ガス等の不活性雰囲気下、Pd触媒が失活しない反応系で行う。例えば、アルゴンガスや窒素ガス等で、十分脱気された系で行う。具体的には、重合容器(反応系)内を窒素ガスで十分置換し、脱気した後、この重合容器に、式(300)で表される化合物、式(200)で表される化合物、パラジウム触媒を仕込み、さらに、重合容器を窒素ガスで十分置換し、脱気した後、あらかじめ窒素ガスでバブリングすることにより、脱気した溶媒、例えば、トルエンを加えた後、必要に応じて配位子や助触媒を加え、その後、加熱、昇温し、例えば、還流温度で8時間、不活性雰囲気を保持しながら重合する。   The Stille coupling reaction is performed in a reaction system in which the Pd catalyst is not deactivated under an inert atmosphere such as argon gas or nitrogen gas. For example, it is performed in a system sufficiently deaerated with argon gas or nitrogen gas. Specifically, after the inside of the polymerization vessel (reaction system) is sufficiently substituted with nitrogen gas and degassed, the polymerization vessel is charged with a compound represented by the formula (300), a compound represented by the formula (200), A palladium catalyst is charged, and the polymerization vessel is sufficiently replaced with nitrogen gas, degassed, and then bubbled with nitrogen gas in advance to add a degassed solvent, for example, toluene, and then coordinate as necessary. After adding the catalyst and the cocatalyst, the mixture is heated and heated, for example, and polymerized while maintaining an inert atmosphere at the reflux temperature for 8 hours.

前記高分子化合物のポリスチレン換算の数平均分子量は、好ましくは1×10〜1×10である。ポリスチレン換算の数平均分子量が1×10以上である場合には、強靭な薄膜が得られやすくなる。一方、10以下である場合には、溶解性が高く、薄膜の作製が容易である。 The number average molecular weight in terms of polystyrene of the polymer compound is preferably 1 × 10 3 to 1 × 10 8 . When the number average molecular weight in terms of polystyrene is 1 × 10 3 or more, a tough thin film is easily obtained. On the other hand, when it is 10 8 or less, the solubility is high and the production of the thin film is easy.

本発明の高分子化合物の末端基は、重合活性基がそのまま残っていると、素子の作製に用いたときに得られる素子の特性や寿命が低下する可能性があるので、安定な基で保護されていてもよい。主鎖の共役構造と連続した共役結合を有しているものが好ましく、また、例えば、ビニレン基を介してアリール基又は複素環基と結合している構造であってもよい。   The terminal group of the polymer compound of the present invention is protected with a stable group because if the polymerization active group remains as it is, there is a possibility that the characteristics and life of the element obtained when used for the preparation of the element may be reduced. May be. Those having a conjugated bond continuous with the conjugated structure of the main chain are preferable, and for example, a structure bonded to an aryl group or a heterocyclic group via a vinylene group may be used.

本発明の高分子化合物は、光吸収末端波長が長波長であることが好ましい。光吸収末端波長は以下の方法で求めることができる。
測定には、紫外、可視、近赤外の波長領域で動作する分光光度計(例えば、日本分光製、紫外可視近赤外分光光度計JASCO−V670)を用いる。JASCO−V670を用いる場合、測定可能な波長範囲が200〜1500nmであるため、該波長範囲で測定を行う。まず、測定に用いる基板の吸収スペクトルを測定する。基板としては、石英基板、ガラス基板等を用いる。次いで、その基板の上に第1の化合物を含む溶液若しくは第1の化合物を含む溶融体から第1の化合物を含む薄膜を形成する。溶液からの製膜では、製膜後乾燥を行う。その後、薄膜と基板との積層体の吸収スペクトルを得る。薄膜と基板との積層体の吸収スペクトルと基板の吸収スペクトルとの差を、薄膜の吸収スペクトルとして得る。
該薄膜の吸収スペクトルは、縦軸が第1の化合物の吸光度を、横軸が波長を示す。最も大きい吸収ピークの吸光度が0.5〜2程度になるよう、薄膜の膜厚を調整することが望ましい。吸収ピークの中で一番長波長の吸収ピークの吸光度を100%とし、その50%の吸光度を含む横軸(波長軸)に平行な直線と該吸収ピークとの交点であって、該吸収ピークのピーク波長よりも長波長である交点を第1の点とする。その25%の吸光度を含む波長軸に平行な直線と該吸収ピークとの交点であって、該吸収ピークのピーク波長よりも長波長である交点を第2の点とする。第1の点と第2の点とを結ぶ直線と基準線の交点を光吸収末端波長と定義する。ここで、基準線とは、最も長波長の吸収ピークにおいて、該吸収ピークの吸光度を100%とし、その10%の吸光度を含む波長軸に平行な直線と該吸収ピークの交点であって、該吸収ピークのピーク波長よりも長波長である交点の波長を基準として、基準となる波長より100nm長波長である吸収スペクトル上の第3の点と、基準となる波長より150nm長波長である吸収スペクトル上と第4の点を結んだ直線をいう。
In the polymer compound of the present invention, the light absorption terminal wavelength is preferably a long wavelength. The light absorption terminal wavelength can be determined by the following method.
For the measurement, a spectrophotometer (for example, JASCO-V670, made by JASCO Corporation) that operates in the wavelength region of ultraviolet, visible, and near infrared is used. When JASCO-V670 is used, since the measurable wavelength range is 200 to 1500 nm, the measurement is performed in the wavelength range. First, the absorption spectrum of the substrate used for measurement is measured. As the substrate, a quartz substrate, a glass substrate, or the like is used. Next, a thin film containing the first compound is formed on the substrate from a solution containing the first compound or a melt containing the first compound. In film formation from a solution, drying is performed after film formation. Thereafter, an absorption spectrum of the laminate of the thin film and the substrate is obtained. The difference between the absorption spectrum of the laminate of the thin film and the substrate and the absorption spectrum of the substrate is obtained as the absorption spectrum of the thin film.
In the absorption spectrum of the thin film, the vertical axis represents the absorbance of the first compound, and the horizontal axis represents the wavelength. It is desirable to adjust the thickness of the thin film so that the absorbance at the largest absorption peak is about 0.5 to 2. The absorbance of the absorption peak with the longest wavelength among the absorption peaks is defined as 100%, and the intersection of the absorption peak and a straight line parallel to the horizontal axis (wavelength axis) including the absorbance of 50% of the absorption peak. The intersection point that is longer than the peak wavelength is taken as the first point. The intersection point between the absorption peak and a straight line parallel to the wavelength axis containing 25% of the absorbance, which is longer than the peak wavelength of the absorption peak, is defined as a second point. The intersection of the straight line connecting the first point and the second point and the reference line is defined as the light absorption terminal wavelength. Here, the reference line is the intersection of the absorption peak and the straight line parallel to the wavelength axis including the absorbance of 10% at the absorption peak of the longest wavelength, where the absorbance of the absorption peak is 100%. The third point on the absorption spectrum that is 100 nm longer than the reference wavelength and the absorption spectrum that is 150 nm longer than the reference wavelength with reference to the wavelength of the intersection that is longer than the peak wavelength of the absorption peak A straight line connecting the top and the fourth point.

本発明の高分子化合物は、高い電子及び/又はホール輸送性を発揮し得ることから、該化合物を含む有機薄膜を素子に用いた場合、電極から注入された電子やホール、或いは、光吸収によって発生した電荷を輸送することができる。これらの特性を活かして光電変換素子、有機薄膜トランジスタ、有機エレクトロルミネッセンス素子等の種々の素子に好適に用いることができる。以下、これらの素子について個々に説明する。   Since the polymer compound of the present invention can exhibit high electron and / or hole transport properties, when an organic thin film containing the compound is used in a device, electrons or holes injected from an electrode, or light absorption. The generated charge can be transported. Taking advantage of these characteristics, it can be suitably used for various devices such as a photoelectric conversion device, an organic thin film transistor, and an organic electroluminescence device. Hereinafter, these elements will be described individually.

<光電変換素子>
本発明の高分子化合物を有する光電変換素子は、少なくとも一方が透明又は半透明である一対の電極間に、本発明の高分子化合物を含む1層以上の活性層を有する。
本発明の高分子化合物を有する光電変換素子の好ましい形態としては、少なくとも一方が透明又は半透明である一対の電極と、p型の有機半導体とn型の有機半導体との有機組成物から形成される活性層を有する。本発明の高分子化合物は、p型の有機半導体として用いることが好ましい。この形態の光電変換素子の動作機構を説明する。透明又は半透明の電極から入射した光エネルギーがフラーレン誘導体等の電子受容性化合物(n型の有機半導体)及び/又は本発明の高分子化合物等の電子供与性化合物(p型の有機半導体)で吸収され、電子とホールが結合した励起子を生成する。生成した励起子が移動して、電子受容性化合物と電子供与性化合物が隣接しているヘテロ接合界面に達すると、界面でのそれぞれのHOMOエネルギー及びLUMOエネルギーの違いにより電子とホールが分離し、独立に動くことができる電荷(電子とホール)が発生する。発生した電荷は、それぞれ電極へ移動することにより外部へ電気エネルギー(電流)として取り出すことができる。
本発明の高分子化合物を用いて製造される光電変換素子は、通常、基板上に形成される。この基板は、電極を形成し、有機物の層を形成する際に化学的に変化しないものであればよい。基板の材料としては、例えば、ガラス、プラスチック、高分子フィルム、シリコンが挙げられる。不透明な基板の場合には、反対の電極(即ち、基板から遠い方の電極)が透明又は半透明であることが好ましい。
<Photoelectric conversion element>
The photoelectric conversion element having the polymer compound of the present invention has one or more active layers containing the polymer compound of the present invention between a pair of electrodes, at least one of which is transparent or translucent.
A preferred form of the photoelectric conversion element having the polymer compound of the present invention is formed from a pair of electrodes, at least one of which is transparent or translucent, and an organic composition of a p-type organic semiconductor and an n-type organic semiconductor. Having an active layer. The polymer compound of the present invention is preferably used as a p-type organic semiconductor. The operation mechanism of the photoelectric conversion element of this embodiment will be described. Light energy incident from a transparent or translucent electrode is an electron-accepting compound (n-type organic semiconductor) such as a fullerene derivative and / or an electron-donating compound (p-type organic semiconductor) such as a polymer compound of the present invention. Absorbed, producing excitons in which electrons and holes are combined. When the generated excitons move and reach the heterojunction interface where the electron-accepting compound and the electron-donating compound are adjacent to each other, electrons and holes are separated due to the difference in HOMO energy and LUMO energy at the interface, Electric charges (electrons and holes) that can move independently are generated. The generated charges can be taken out as electric energy (current) by moving to the electrodes.
The photoelectric conversion element manufactured using the polymer compound of the present invention is usually formed on a substrate. The substrate may be any substrate that does not chemically change when the electrodes are formed and the organic layer is formed. Examples of the material for the substrate include glass, plastic, polymer film, and silicon. In the case of an opaque substrate, the opposite electrode (that is, the electrode far from the substrate) is preferably transparent or translucent.

本発明の高分子化合物を有する光電変換素子の他の態様は、少なくとも一方が透明又は半透明である一対の電極間に、本発明の高分子化合物を含む第1の活性層と、該第1の活性層に隣接して、フラーレン誘導体等の電子受容性化合物を含む第2の活性層を含む光電変換素子である。   In another aspect of the photoelectric conversion element having the polymer compound of the present invention, the first active layer containing the polymer compound of the present invention is interposed between a pair of electrodes, at least one of which is transparent or translucent, and the first A photoelectric conversion element including a second active layer containing an electron accepting compound such as a fullerene derivative adjacent to the active layer.

前記の透明又は半透明の電極材料としては、導電性の金属酸化物膜、半透明の金属薄膜等が挙げられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等からなる導電性材料を用いて作製された膜、NESA、金、白金、銀、銅等が用いられ、ITO、インジウム・亜鉛・オキサイド、酸化スズが好ましい。電極の作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。また、電極材料として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。   Examples of the transparent or translucent electrode material include a conductive metal oxide film and a translucent metal thin film. Specifically, a film formed using a conductive material made of indium oxide, zinc oxide, tin oxide, and indium tin oxide (ITO), indium zinc oxide, etc., which is a composite thereof, NESA Gold, platinum, silver, copper and the like are used, and ITO, indium / zinc / oxide, and tin oxide are preferable. Examples of the method for producing the electrode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like. Moreover, you may use organic transparent conductive films, such as polyaniline and its derivative (s), polythiophene, and its derivative (s) as an electrode material.

一方の電極は透明でなくてもよく、該電極の電極材料としては、金属、導電性高分子等を用いることができる。電極材料の具体例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、及びそれらのうち2つ以上の合金、又は、1種以上の前記金属と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン及び錫からなる群から選ばれる1種以上の金属との合金、グラファイト、グラファイト層間化合物、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体が挙げられる。合金としては、マグネシウム−銀合金、マグネシウム−インジウム合金、マグネシウム−アルミニウム合金、インジウム−銀合金、リチウム−アルミニウム合金、リチウム−マグネシウム合金、リチウム−インジウム合金、カルシウム−アルミニウム合金等が挙げられる。   One electrode may not be transparent, and a metal, a conductive polymer, etc. can be used as an electrode material of the electrode. Specific examples of the electrode material include metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and the like. And one or more alloys selected from the group consisting of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, and tin. Examples include alloys with metals, graphite, graphite intercalation compounds, polyaniline and derivatives thereof, and polythiophene and derivatives thereof. Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.

光電変換効率を向上させるための手段として活性層以外の付加的な中間層を使用してもよい。中間層として用いられる材料としては、フッ化リチウム等のアルカリ金属、アルカリ土類金属のハロゲン化物、酸化チタン等の酸化物、PEDOT(ポリ−3,4−エチレンジオキシチオフェン)などが挙げられる。   An additional intermediate layer other than the active layer may be used as a means for improving the photoelectric conversion efficiency. Examples of the material used for the intermediate layer include alkali metals such as lithium fluoride, halides of alkaline earth metals, oxides such as titanium oxide, and PEDOT (poly-3,4-ethylenedioxythiophene).

<活性層>
前記活性層は、本発明の高分子化合物を一種単独で含んでいても二種以上を組み合わせて含んでいてもよい。また、前記活性層のホール輸送性を高めるため、前記活性層中に電子供与性化合物及び/又は電子受容性化合物として、本発明の高分子化合物以外の化合物を混合して用いることもできる。なお、前記電子供与性化合物、前記電子受容性化合物は、これらの化合物のエネルギー準位のエネルギーレベルから相対的に決定される。
<Active layer>
The active layer may contain the polymer compound of the present invention alone or in combination of two or more. Moreover, in order to improve the hole transport property of the said active layer, compounds other than the polymer compound of this invention can also be mixed and used as an electron-donating compound and / or an electron-accepting compound in the said active layer. The electron-donating compound and the electron-accepting compound are relatively determined from the energy levels of these compounds.

前記電子供与性化合物としては、本発明の高分子化合物のほか、例えば、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、オリゴチオフェン及びその誘導体、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミン残基を有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体が挙げられる。   Examples of the electron-donating compound include, in addition to the polymer compound of the present invention, for example, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof. And polysiloxane derivatives having an aromatic amine residue in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, and polythienylene vinylene and derivatives thereof.

前記電子受容性化合物としては、本発明の高分子化合物のほか、例えば、炭素材料、酸化チタン等の金属酸化物、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8−ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、2、9−ジメチル−4、7−ジフェニル−1、10−フェナントロリン(バソクプロイン)等のフェナントレン誘導体、フラーレン、フラーレン誘導体が挙げられ、好ましくは、酸化チタン、カーボンナノチューブ、フラーレン、フラーレン誘導体であり、特に好ましくはフラーレン、フラーレン誘導体である。
フラーレン、フラーレン誘導体としてはC60、C70、C76、C78、C84及びその誘導体が挙げられる。フラーレン誘導体は、フラーレンの少なくとも一部が修飾された化合物を表す。
As the electron-accepting compound, in addition to the polymer compound of the present invention, for example, carbon materials, metal oxides such as titanium oxide, oxadiazole derivatives, anthraquinodimethane and derivatives thereof, benzoquinone and derivatives thereof, naphthoquinone and Derivatives thereof, anthraquinones and derivatives thereof, tetracyanoanthraquinodimethane and derivatives thereof, fluorenone derivatives, diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and derivatives thereof, polyquinolines and derivatives thereof, polyquinoxalines and Derivatives thereof, polyfluorene and derivatives thereof, phenanthrene derivatives such as 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (basocproline), fullerene, fullerene derivatives, Mashiku are titanium oxide, carbon nanotubes, fullerene, a fullerene derivative, particularly preferably a fullerene, a fullerene derivative.
Examples of fullerene and fullerene derivatives include C 60 , C 70 , C 76 , C 78 , C 84 and derivatives thereof. The fullerene derivative represents a compound in which at least a part of fullerene is modified.

フラーレン誘導体としては、例えば、式(4)で表される化合物、式(5)で表される化合物、式(6)で表される化合物、式(7)で表される化合物が挙げられる。

Figure 2011116961
(4) (5) (6) (7)

(式(4)〜(7)中、Rは、アルキル基、アリール基、ヘテロアリール基又はエステル構造を有する基である。複数個あるRは、同一であっても相異なってもよい。Rはアルキル基又はアリール基を表す。複数個あるRは、同一であっても相異なってもよい。) Examples of the fullerene derivative include a compound represented by the formula (4), a compound represented by the formula (5), a compound represented by the formula (6), and a compound represented by the formula (7).
Figure 2011116961
(4) (5) (6) (7)

(In the formulas (4) to (7), R a is an alkyl group, an aryl group, a heteroaryl group or a group having an ester structure. A plurality of R a may be the same or different. R b represents an alkyl group or an aryl group, and a plurality of R b may be the same or different.)

及びRで表されるアルキル基、アリール基の定義、具体例は、Rで表されるアルキル基、アリール基の定義、具体例と同じである。 The definitions and specific examples of the alkyl group and aryl group represented by R a and R b are the same as the definitions and specific examples of the alkyl group and aryl group represented by R 1 .

で表されるヘテロアリール基は、通常、炭素数が3〜60であり、チエニル基、ピロリル基、フリル基、ピリジル基、キノリル基、イソキノリル基等が挙げられる。 The heteroaryl group represented by Ra usually has 3 to 60 carbon atoms, and examples thereof include a thienyl group, a pyrrolyl group, a furyl group, a pyridyl group, a quinolyl group, and an isoquinolyl group.

で表されるエステル構造を有する基は、例えば、式(8)で表される基が挙げられる。

Figure 2011116961
(8)
(式中、u1は、1〜6の整数を表す、u2は、0〜6の整数を表す、Rは、アルキル基、アリール基又はヘテロアリール基を表す。) Examples of the group having an ester structure represented by Ra include a group represented by the formula (8).
Figure 2011116961
(8)
(In the formula, u1 represents an integer of 1 to 6, u2 represents an integer of 0 to 6, and R c represents an alkyl group, an aryl group, or a heteroaryl group.)

で表されるアルキル基、アリール基、ヘテロアリール基の定義、具体例は、Rで表されるアルキル基、アリール基、ヘテロアリール基の定義、具体例と同じである。 The definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R c are the same as the definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R a .

60フラーレンの誘導体の具体的構造としては、以下のようなものが挙げられる。

Figure 2011116961
Specific examples of the C 60 fullerene derivative include the following.
Figure 2011116961

70フラーレンの誘導体の具体的構造としては、以下のようなものが挙げられる。

Figure 2011116961
Specific examples of the C 70 fullerene derivative include the following.
Figure 2011116961

また、フラーレン誘導体の例としては、[6,6]フェニル−C61酪酸メチルエステル(C60PCBM、[6,6]-Phenyl C61 butyric acid methyl ester)、[6,6]フェニル−C71酪酸メチルエステル(C70PCBM、[6,6]-Phenyl C71 butyric acid methyl ester)、[6,6]フェニル−C85酪酸メチルエステル(C84PCBM、[6,6]-Phenyl C85 butyric acid methyl ester)、[6,6]チェニル−C61酪酸メチルエステル([6,6]-Thienyl C61 butyric acid methyl ester)などが挙げられる。   Examples of fullerene derivatives include [6,6] phenyl-C61 butyric acid methyl ester (C60PCBM, [6,6] -Phenyl C61 butyric acid methyl ester), [6,6] phenyl-C71 butyric acid methyl ester (C70PCBM). [6,6] -Phenyl C71 butyric acid methyl ester), [6,6] phenyl-C85 butyric acid methyl ester (C84PCBM, [6,6] -Phenyl C85 butyric acid methyl ester), [6,6] Examples thereof include C61 butyric acid methyl ester ([6,6] -Thienyl C61 butyric acid methyl ester).

活性層中に本発明の高分子化合物とフラーレン誘導体とを含む場合、フラーレン誘導体の割合が、本発明の高分子化合物100重量部に対して、10〜1000重量部であることが好ましく、20〜500重量部であることがより好ましい。   When the active layer contains the polymer compound of the present invention and the fullerene derivative, the ratio of the fullerene derivative is preferably 10 to 1000 parts by weight with respect to 100 parts by weight of the polymer compound of the present invention. More preferably, it is 500 parts by weight.

活性層の厚さは、通常、1nm〜100μmが好ましく、より好ましくは2nm〜1000nmであり、さらに好ましくは5nm〜500nmであり、より好ましくは20nm〜200nmである。   The thickness of the active layer is usually preferably 1 nm to 100 μm, more preferably 2 nm to 1000 nm, still more preferably 5 nm to 500 nm, and more preferably 20 nm to 200 nm.

前記活性層の製造方法は、如何なる方法で製造してもよく、例えば、高分子化合物を含む溶液からの成膜や、真空蒸着法による成膜方法が挙げられる。   The method for producing the active layer may be produced by any method, and examples thereof include film formation from a solution containing a polymer compound and film formation by a vacuum deposition method.

<光電変換素子の製造方法>
光電変換素子の好ましい製造方法は、第1の電極と第2の電極とを有し、該第1の電極と該第2の電極との間に活性層を有する素子の製造方法であって、該第1の電極上に本発明の高分子化合物と溶媒とを含む溶液(インク)を塗布法により塗布して活性層を形成する工程、該活性層上に第2の電極を形成する工程を有する素子の製造方法である。
<Method for producing photoelectric conversion element>
A preferred method for producing a photoelectric conversion element is a method for producing an element having a first electrode and a second electrode, and having an active layer between the first electrode and the second electrode, Applying a solution (ink) containing the polymer compound of the present invention and a solvent on the first electrode by a coating method to form an active layer; and forming a second electrode on the active layer. The manufacturing method of the element which has.

溶液からの成膜に用いる溶媒は、本発明の高分子化合物を溶解させるものであればよい。該溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、n−ブチルベンゼン、sec−ブチルベンゼン、tert−ブチルベンゼン等の不飽和炭化水素系溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素系溶媒、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素系溶媒、テトラヒドロフラン、テトラヒドロピラン等のエーテル系溶媒が挙げられる。本発明の高分子化合物は、通常、前記溶媒に0.1重量%以上溶解させることができる。   The solvent used for film formation from a solution may be any one that dissolves the polymer compound of the present invention. Examples of the solvent include unsaturated hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, sec-butylbenzene, and tert-butylbenzene, carbon tetrachloride, chloroform, and dichloromethane. , Halogenated saturated hydrocarbon solvents such as dichloroethane, chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, and halogenated unsaturated hydrocarbons such as chlorobenzene, dichlorobenzene, and trichlorobenzene Examples of the solvent include ether solvents such as tetrahydrofuran and tetrahydropyran. The polymer compound of the present invention can usually be dissolved in the solvent in an amount of 0.1% by weight or more.

溶液を用いて成膜する場合、スリットコート法、ナイフコート法、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法、オフセット印刷法、インクジェットコート法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法を用いることができ、スリットコート法、キャピラリーコート法、グラビアコート法、マイクログラビアコート法、バーコート法、ナイフコート法、ノズルコート法、インクジェットコート法、スピンコート法が好ましい。
成膜性の観点からは、25℃における溶媒の表面張力が15mN/mより大きいことが好ましく、15mN/mより大きく100mN/mよりも小さいことがより好ましく、25mN/mより大きく60mN/mよりも小さいことがさらに好ましい。
When forming a film using a solution, slit coating method, knife coating method, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, Application methods such as spray coating, screen printing, gravure printing, flexographic printing, offset printing, inkjet coating, dispenser printing, nozzle coating, capillary coating, slit coating, capillary A coating method, a gravure coating method, a micro gravure coating method, a bar coating method, a knife coating method, a nozzle coating method, an ink jet coating method, and a spin coating method are preferable.
From the viewpoint of film formability, the surface tension of the solvent at 25 ° C. is preferably larger than 15 mN / m, more preferably larger than 15 mN / m and smaller than 100 mN / m, larger than 25 mN / m and larger than 60 mN / m. It is more preferable that the value is small.

<有機薄膜トランジスタ>
本発明の高分子化合物は、有機薄膜トランジスタにも用いることができる。有機薄膜トランジスタとしては、ソース電極及びドレイン電極と、これらの電極間の電流経路となる有機半導体層(活性層)と、この電流経路を通る電流量を制御するゲート電極とを備えた構成を有するものが挙げられ、有機半導体層が上述した有機薄膜によって構成されるものである。このような有機薄膜トランジスタとしては、電界効果型、静電誘導型等が挙げられる。
<Organic thin film transistor>
The polymer compound of the present invention can also be used for organic thin film transistors. The organic thin film transistor has a configuration including a source electrode and a drain electrode, an organic semiconductor layer (active layer) serving as a current path between these electrodes, and a gate electrode for controlling the amount of current passing through the current path. The organic semiconductor layer is constituted by the organic thin film described above. Examples of such an organic thin film transistor include a field effect type and an electrostatic induction type.

電界効果型有機薄膜トランジスタは、ソース電極及びドレイン電極、これらの間の電流経路となる有機半導体層(活性層)、この電流経路を通る電流量を制御するゲート電極、並びに、有機半導体層とゲート電極との間に配置される絶縁層を備えることが好ましい。
特に、ソース電極及びドレイン電極が、有機半導体層(活性層)に接して設けられており、さらに有機半導体層に接した絶縁層を挟んでゲート電極が設けられていることが好ましい。電界効果型有機薄膜トランジスタにおいては、有機半導体層が、本発明の高分子化合物を含む有機薄膜によって構成される。
A field effect organic thin film transistor includes a source electrode and a drain electrode, an organic semiconductor layer (active layer) serving as a current path between them, a gate electrode for controlling the amount of current passing through the current path, and an organic semiconductor layer and a gate electrode It is preferable to provide an insulating layer disposed between the two.
In particular, the source electrode and the drain electrode are preferably provided in contact with the organic semiconductor layer (active layer), and the gate electrode is preferably provided with an insulating layer in contact with the organic semiconductor layer interposed therebetween. In the field effect organic thin film transistor, the organic semiconductor layer is constituted by an organic thin film containing the polymer compound of the present invention.

静電誘導型有機薄膜トランジスタは、ソース電極及びドレイン電極、これらの間の電流経路となる有機半導体層(活性層)、並びに電流経路を通る電流量を制御するゲート電極を有し、このゲート電極が有機半導体層中に設けられていることが好ましい。特に、ソース電極、ドレイン電極及び有機半導体層中に設けられたゲート電極が、有機半導体層に接して設けられていることが好ましい。ここで、ゲート電極の構造としては、ソース電極からドレイン電極へ流れる電流経路が形成され、且つゲート電極に印加した電圧で電流経路を流れる電流量が制御できる構造であればよく、例えば、くし形電極が挙げられる。静電誘導型有機薄膜トランジスタにおいても、有機半導体層が、本発明の高分子化合物を含む有機薄膜によって構成される。   The static induction organic thin film transistor has a source electrode and a drain electrode, an organic semiconductor layer (active layer) serving as a current path between them, and a gate electrode that controls the amount of current passing through the current path. It is preferable to be provided in the organic semiconductor layer. In particular, the source electrode, the drain electrode, and the gate electrode provided in the organic semiconductor layer are preferably provided in contact with the organic semiconductor layer. Here, the structure of the gate electrode may be a structure in which a current path flowing from the source electrode to the drain electrode is formed and the amount of current flowing through the current path can be controlled by a voltage applied to the gate electrode. An electrode is mentioned. Also in the static induction organic thin film transistor, the organic semiconductor layer is constituted by an organic thin film containing the polymer compound of the present invention.

<素子の用途>
本発明の高分子化合物を用いた光電変換素子は、透明又は半透明の電極から太陽光等の光を照射することにより、電極間に光起電力が発生し、有機薄膜太陽電池として動作させることができる。有機薄膜太陽電池を複数集積することにより有機薄膜太陽電池モジュールとして用いることもできる。
<Application of device>
The photoelectric conversion element using the polymer compound of the present invention is operated as an organic thin film solar cell by generating photovoltaic power between the electrodes by irradiating light such as sunlight from a transparent or translucent electrode. Can do. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.

また、電極間に電圧を印加した状態、あるいは無印加の状態で、透明又は半透明の電極から光を照射することにより、光電流が流れ、有機光センサーとして動作させることができる。有機光センサーを複数集積することにより有機イメージセンサーとして用いることもできる。
上述の有機薄膜トランジスタは、例えば電気泳動ディスプレイ、液晶ディスプレイ、有機エレクトロルミネッセンスディスプレイ等の画面輝度の均一性や画面書き換え速度を制御するために用いられる画素駆動素子等として用いることができる。
Further, by applying light from a transparent or translucent electrode in a state where a voltage is applied between the electrodes or in a state where no voltage is applied, a photocurrent flows and the organic light sensor can be operated. It can also be used as an organic image sensor by integrating a plurality of organic photosensors.
The above-mentioned organic thin film transistor can be used as a pixel driving element used for controlling the uniformity of screen brightness and the screen rewriting speed of an electrophoretic display, a liquid crystal display, an organic electroluminescence display, and the like.

<太陽電池モジュール>
有機薄膜太陽電池は、従来の太陽電池モジュールと基本的には同様のモジュール構造をとりうる。太陽電池モジュールは、一般的には金属、セラミック等の支持基板の上にセルが構成され、その上を充填樹脂や保護ガラス等で覆い、支持基板の反対側から光を取り込む構造をとるが、支持基板に強化ガラス等の透明材料を用い、その上にセルを構成してその透明の支持基板側から光を取り込む構造とすることも可能である。具体的には、スーパーストレートタイプ、サブストレートタイプ、ポッティングタイプと呼ばれるモジュール構造、アモルファスシリコン太陽電池などで用いられる基板一体型モジュール構造等が知られている。本発明の高分子を用いて製造される有機薄膜太陽電池も使用目的や使用場所及び環境により、適宜これらのモジュール構造を選択できる。
<Solar cell module>
The organic thin film solar cell can basically have the same module structure as a conventional solar cell module. The solar cell module generally has a structure in which cells are formed on a support substrate such as metal or ceramic, and the cell is covered with a filling resin or protective glass, and light is taken in from the opposite side of the support substrate. It is also possible to use a transparent material such as tempered glass for the support substrate, configure a cell thereon, and take in light from the transparent support substrate side. Specifically, a module structure called a super straight type, a substrate type, and a potting type, a substrate integrated module structure used in an amorphous silicon solar cell, and the like are known. The organic thin-film solar cell manufactured using the polymer of the present invention can also be appropriately selected from these module structures depending on the purpose of use, the place of use, and the environment.

代表的なスーパーストレートタイプあるいはサブストレートタイプのモジュールは、片側又は両側が透明で反射防止処理を施された支持基板の間に一定間隔にセルが配置され、隣り合うセル同士が金属リード又はフレキシブル配線等によって接続され、外縁部に集電電極が配置されており、発生した電力を外部に取り出される構造となっている。基板とセルの間には、セルの保護や集電効率向上のため、目的に応じエチレンビニルアセテート(EVA)等様々な種類のプラスチック材料をフィルム又は充填樹脂の形で用いてもよい。また、外部からの衝撃が少ないところなど表面を硬い素材で覆う必要のない場所において使用する場合には、表面保護層を透明プラスチックフィルムで構成し、又は上記充填樹脂を硬化させることによって保護機能を付与し、片側の支持基板をなくすことが可能である。支持基板の周囲は、内部の密封及びモジュールの剛性を確保するため金属製のフレームでサンドイッチ状に固定し、支持基板とフレームの間は封止材料で密封シールする。また、セルそのものや支持基板、充填材料及び封止材料に可撓性の素材を用いれば、曲面の上に太陽電池を構成することもできる。
ポリマーフィルム等のフレキシブル支持体を用いた太陽電池の場合、ロール状の支持体を送り出しながら順次セルを形成し、所望のサイズに切断した後、周縁部をフレキシブルで防湿性のある素材でシールすることにより電池本体を作製できる。また、Solar Energy Materials and Solar Cells, 48,p383-391記載の「SCAF」とよばれるモジュール構造とすることもできる。更に、フレキシブル支持体を用いた太陽電池は曲面ガラス等に接着固定して使用することもできる。
In a typical super straight type or substrate type module, cells are arranged at regular intervals between support substrates that are transparent on one or both sides and subjected to antireflection treatment, and adjacent cells are connected by metal leads or flexible wiring. The current collector electrode is connected to the outer edge portion, and the generated power is taken out to the outside. Various types of plastic materials such as ethylene vinyl acetate (EVA) may be used between the substrate and the cell in the form of a film or a filling resin depending on the purpose in order to protect the cell and improve the current collection efficiency. In addition, when used in a place where it is not necessary to cover the surface with a hard material such as a place where there is little impact from the outside, the surface protection layer is made of a transparent plastic film, or the protective function is achieved by curing the filling resin. It is possible to eliminate the supporting substrate on one side. The periphery of the support substrate is fixed in a sandwich shape with a metal frame in order to ensure internal sealing and module rigidity, and the support substrate and the frame are hermetically sealed with a sealing material. In addition, if a flexible material is used for the cell itself, the support substrate, the filling material, and the sealing material, a solar cell can be formed on the curved surface.
In the case of a solar cell using a flexible support such as a polymer film, cells are sequentially formed while feeding out a roll-shaped support, cut to a desired size, and then the periphery is sealed with a flexible and moisture-proof material. Thus, the battery body can be produced. A module structure called “SCAF” described in Solar Energy Materials and Solar Cells, 48, p383-391 can also be used. Furthermore, a solar cell using a flexible support can be used by being bonded and fixed to a curved glass or the like.

本発明の高分子化合物は、有機エレクトロルミネッセンス素子(有機EL素子)に用いることもできる。有機EL素子は、少なくとも一方が透明又は半透明である一対の電極間に発光層を有する。有機EL素子は、発光層の他にも、正孔輸送層、電子輸送層を含んでいてもよい。該発光層、正孔輸送層、電子輸送層のいずれかの層中に本発明の高分子化合物が含まれる。発光層中には、本発明の高分子化合物の他にも、電荷輸送材料(電子輸送材料と正孔輸送材料の総称を意味する)を含んでいてもよい。有機EL素子としては、陽極と発光層と陰極とを有する素子、さらに陰極と発光層の間に、該発光層に隣接して電子輸送材料を含有する電子輸送層を有する陽極と発光層と電子輸送層と陰極とを有する素子、さらに陽極と発光層の間に、該発光層に隣接して正孔輸送材料を含む正孔輸送層を有する陽極と正孔輸送層と発光層と陰極とを有する素子、陽極と正孔輸送層と発光層と電子輸送層と陰極とを有する素子等が挙げられる。   The polymer compound of the present invention can also be used for an organic electroluminescence device (organic EL device). An organic EL element has a light emitting layer between a pair of electrodes, at least one of which is transparent or translucent. The organic EL element may include a hole transport layer and an electron transport layer in addition to the light emitting layer. The polymer compound of the present invention is contained in any one of the light emitting layer, the hole transport layer, and the electron transport layer. In addition to the polymer compound of the present invention, the light emitting layer may contain a charge transport material (which means a generic term for an electron transport material and a hole transport material). As an organic EL element, an element having an anode, a light emitting layer, and a cathode, and an anode, a light emitting layer, and an electron having an electron transport layer containing an electron transport material adjacent to the light emitting layer between the cathode and the light emitting layer. An element having a transport layer and a cathode, and an anode, a hole transport layer, a light emitting layer, and a cathode having a hole transport layer containing a hole transport material adjacent to the light emitting layer between the anode and the light emitting layer. And an element having an anode, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode.

以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。   Examples will be shown below for illustrating the present invention in more detail, but the present invention is not limited to these examples.

(NMR測定)
NMR測定は、化合物を重クロロホルムに溶解させ、NMR装置(Varian社製、INOVA300)を用いて行った。
(NMR measurement)
The NMR measurement was performed by dissolving the compound in deuterated chloroform and using an NMR apparatus (Varian, INOVA300).

(数平均分子量及び重量平均分子量の測定)
数平均分子量及び重量平均分子量については、ゲルパーミエーションクロマトグラフィー(GPC)(島津製作所製、商品名:LC−10Avp)によりポリスチレン換算の数平均分子量及び重量平均分子量を求めた。測定する高分子化合物は、約0.5重量%の濃度になるようにテトラヒドロフランに溶解させ、GPCに30μL注入した。GPCの移動相はテトラヒドロフランを用い、0.6mL/分の流速で流した。カラムは、TSKgel SuperHM−H(東ソー製)2本とTSKgel SuperH2000(東ソー製)1本を直列に繋げた。検出器には示差屈折率検出器(島津製作所製、商品名:RID−10A)を用いた。
(Measurement of number average molecular weight and weight average molecular weight)
Regarding the number average molecular weight and the weight average molecular weight, the number average molecular weight and the weight average molecular weight in terms of polystyrene were determined by gel permeation chromatography (GPC) (manufactured by Shimadzu Corporation, trade name: LC-10Avp). The polymer compound to be measured was dissolved in tetrahydrofuran to a concentration of about 0.5% by weight, and 30 μL was injected into GPC. Tetrahydrofuran was used as the mobile phase of GPC, and flowed at a flow rate of 0.6 mL / min. As for the column, two TSKgel SuperHM-H (manufactured by Tosoh) and one TSKgel SuperH2000 (manufactured by Tosoh) were connected in series. A differential refractive index detector (manufactured by Shimadzu Corporation, trade name: RID-10A) was used as the detector.

参考例1
(化合物1の合成)

Figure 2011116961
アルゴン置換した(以下、フラスコ内の気体をアルゴンで置換したことを「アルゴン置換した」と記載する場合がある。)1000mLの4つ口フラスコに3−ブロモチオフェン13.0g(80.0mmol)、ジエチルエーテル80mLを入れて均一な溶液とした。該溶液を−78℃に保ったままn−ブチルリチウム(n−BuLi)のヘキサン溶液(2.6M、31mL、80.6mmol)を滴下した。−78℃で2時間反応させた後、3−チオフェンアルデヒド8.96g(80.0mmol)をジエチルエーテル20mLに溶解させた溶液を滴下した。滴下後−78℃で30分攪拌し、さらに室温(25℃)で30分攪拌した。反応液を再度−78℃に冷却し、n−BuLiのヘキサン溶液(2.6M、62mL、161mmol)を15分かけて滴下した。滴下後、反応液を−25℃で2時間攪拌し、さらに室温(25℃)で1時間攪拌した。その後、反応液を−25℃に冷却し、ヨウ素60g(236mmol)をジエチルエーテル1000mLに溶解させた溶液を30分かけて滴下した。滴下後、室温(25℃)で2時間攪拌し、1規定のチオ硫酸ナトリウム水溶液50mLを加えて反応を停止させた。ジエチルエーテルで反応生成物を抽出した後、硫酸マグネシウムで反応生成物を乾燥し、ろ過後、ろ液を濃縮して35gの粗生成物を得た。クロロホルムを用いて粗生成物を再結晶することにより精製し、化合物1を28g得た。 Reference example 1
(Synthesis of Compound 1)
Figure 2011116961
Argon substitution (Hereinafter, the fact that the gas in the flask was substituted with argon may be referred to as “argon substitution.”) 3-bromothiophene 13.0 g (80.0 mmol) in a 1000 mL four-necked flask, Diethyl ether (80 mL) was added to make a uniform solution. A hexane solution (2.6 M, 31 mL, 80.6 mmol) of n-butyllithium (n-BuLi) was added dropwise while keeping the solution at −78 ° C. After reacting at −78 ° C. for 2 hours, a solution prepared by dissolving 8.96 g (80.0 mmol) of 3-thiophenaldehyde in 20 mL of diethyl ether was added dropwise. After dropping, the mixture was stirred at -78 ° C for 30 minutes, and further stirred at room temperature (25 ° C) for 30 minutes. The reaction solution was again cooled to −78 ° C., and a hexane solution of n-BuLi (2.6 M, 62 mL, 161 mmol) was added dropwise over 15 minutes. After dropping, the reaction solution was stirred at −25 ° C. for 2 hours, and further stirred at room temperature (25 ° C.) for 1 hour. Thereafter, the reaction solution was cooled to −25 ° C., and a solution in which 60 g (236 mmol) of iodine was dissolved in 1000 mL of diethyl ether was added dropwise over 30 minutes. After dropping, the mixture was stirred at room temperature (25 ° C.) for 2 hours, and 50 mL of 1N aqueous sodium thiosulfate solution was added to stop the reaction. After extracting the reaction product with diethyl ether, the reaction product was dried with magnesium sulfate, filtered, and the filtrate was concentrated to obtain 35 g of a crude product. The crude product was purified by recrystallization using chloroform to obtain 28 g of Compound 1.

参考例2
(化合物2の合成)

Figure 2011116961
300mLの4つ口フラスコに、参考例1で合成したビスヨードチエニルメタノール(化合物1) 10.5g(23.4mmol)、塩化メチレン150mLを加えて均一な溶液とした。該溶液にクロロクロム酸ピリジニウム7.50g(34.8mmol)を加えて室温(25℃)で10時間攪拌した。反応液をろ過して不溶物を除去後、ろ液を濃縮し、化合物2を10.0g(22.4mmol)得た。 Reference example 2
(Synthesis of Compound 2)
Figure 2011116961
To a 300 mL four-necked flask, 10.5 g (23.4 mmol) of bisiodothienylmethanol (compound 1) synthesized in Reference Example 1 and 150 mL of methylene chloride were added to obtain a uniform solution. To the solution, 7.50 g (34.8 mmol) of pyridinium chlorochromate was added and stirred at room temperature (25 ° C.) for 10 hours. The reaction solution was filtered to remove insoluble matters, and then the filtrate was concentrated to obtain 10.0 g (22.4 mmol) of Compound 2.

参考例3
(化合物3の合成)

Figure 2011116961
アルゴン置換した300mLフラスコに、参考例2で合成した化合物2を10.0g(22.4mmol)、銅粉末を6.0g(94.5mmol)、脱水N,N−ジメチルホルムアミド(以下、DMFと呼称することもある)を120mL加えて、120℃で4時間攪拌した。反応後、フラスコを室温(25℃)まで冷却し、反応液をシリカゲルカラムに通して不溶成分を除去した。その後、水500mLを加え、クロロホルムで反応生成物を抽出した。クロロホルム溶液である有機層を硫酸マグネシウムで乾燥し、有機層をろ過し、ろ液を濃縮して粗製物を得た。組成物をシリカゲルカラム(展開液:クロロホルム)で精製し、化合物3を3.26g得た。 Reference example 3
(Synthesis of Compound 3)
Figure 2011116961
In a 300 mL flask purged with argon, 10.0 g (22.4 mmol) of Compound 2 synthesized in Reference Example 2, 6.0 g (94.5 mmol) of copper powder, dehydrated N, N-dimethylformamide (hereinafter referred to as DMF). 120 mL) was added and stirred at 120 ° C. for 4 hours. After the reaction, the flask was cooled to room temperature (25 ° C.), and the reaction solution was passed through a silica gel column to remove insoluble components. Thereafter, 500 mL of water was added, and the reaction product was extracted with chloroform. The organic layer as a chloroform solution was dried over magnesium sulfate, the organic layer was filtered, and the filtrate was concentrated to obtain a crude product. The composition was purified with a silica gel column (developing solution: chloroform) to obtain 3.26 g of compound 3.

参考例4
(化合物4の合成)

Figure 2011116961
アルゴン置換した200mLの4つ口フラスコに参考例3で合成した化合物3を2.27g(11.8mmol)と脱水DMFを48mL入れて均一な溶液とした。フラスコを0℃に保ち、N−ブロモスクシンイミド4.86g(26.0mmol)を加えた。0℃で2時間攪拌した後、1Nのチオ硫酸ナトリウム水溶液200mLを加えて反応を停止した。クロロホルムで有機層を抽出し、有機層を硫酸マグネシウムで乾燥した。有機層をろ過し、ろ液を濃縮して粗製物を得た。これをシリカゲルカラム(展開液:クロロホルム)で精製し、目的の化合物4を3.88g(11.1mmol)得た。 Reference example 4
(Synthesis of Compound 4)
Figure 2011116961
Argon-substituted 200 mL four-necked flask was charged with 2.27 g (11.8 mmol) of compound 3 synthesized in Reference Example 3 and 48 mL of dehydrated DMF to make a uniform solution. The flask was kept at 0 ° C. and 4.86 g (26.0 mmol) of N-bromosuccinimide was added. After stirring at 0 ° C. for 2 hours, the reaction was stopped by adding 200 mL of 1N aqueous sodium thiosulfate solution. The organic layer was extracted with chloroform, and the organic layer was dried over magnesium sulfate. The organic layer was filtered and the filtrate was concentrated to obtain a crude product. This was purified with a silica gel column (developing solution: chloroform) to obtain 3.88 g (11.1 mmol) of the target compound 4.

参考例5
(化合物5の合成)

Figure 2011116961
アルゴン置換した200mLの4つ口フラスコにトリフェニル(テトラデシル)ホスホニウムブロミド0.700g(1.30mmol)と脱水テトラヒドロフラン10mLを入れて均一溶液とした。フラスコを−78℃に保ってn−ブチルリチウム(2.6Mヘキサン溶液)を0.48mL(1.25mmol)加えた。−78℃で1時間攪拌した後に、参考例4で合成した0.350g(1.00mmol)の化合物4をテトラヒドロフラン(THF)5mLに溶解させた溶液を滴下した。−78℃で3時間反応した後、水50mL加えて反応を停止し、酢酸エチルで有機層を抽出した。有機層を硫酸マグネシウムで乾燥し、ろ過後、ろ液の溶媒を留去した。シリカゲルカラム(溶出液:ヘキサン)で精製して化合物5を350mg(0.648mmol)得た。 Reference Example 5
(Synthesis of Compound 5)
Figure 2011116961
Argon-substituted 200 mL four-necked flask was charged with 0.700 g (1.30 mmol) of triphenyl (tetradecyl) phosphonium bromide and 10 mL of dehydrated tetrahydrofuran to obtain a homogeneous solution. The flask was kept at −78 ° C., and 0.48 mL (1.25 mmol) of n-butyllithium (2.6 M hexane solution) was added. After stirring at −78 ° C. for 1 hour, a solution of 0.350 g (1.00 mmol) of Compound 4 synthesized in Reference Example 4 in 5 mL of tetrahydrofuran (THF) was added dropwise. After reacting at −78 ° C. for 3 hours, 50 mL of water was added to stop the reaction, and the organic layer was extracted with ethyl acetate. The organic layer was dried over magnesium sulfate and filtered, and then the solvent of the filtrate was distilled off. Purification with a silica gel column (eluent: hexane) gave 350 mg (0.648 mmol) of Compound 5.

実施例1
(重合体Aの合成)

Figure 2011116961
アルゴン置換した100mLフラスコに、参考例5で合成した化合物5を150mg(0.282mmol)、化合物6(4,7−bis(4,4,5,5−tetramethyl−1,3,2−dioxaborolan−2−yl)−2,1,3−benzothiadiazole)(Aldrich社製)を107mg(0.276mmol)、メチルトリアルキルアンモニウムクロリド(商品名Aliquat336(登録商標)、アルドリッチ社製)を100mg加え、トルエン5mLに溶解させ、得られたトルエン溶液をアルゴンで30分バブリングした。その後、酢酸パラジウム2.0mg、トリス(2−メトキシフェニル)ホスフィン(Tris(2−methoxyphenyl)phosphine)10.0mg、炭酸ナトリウム水溶液(16.7wt%)4.0mLを加え、100℃で5時間攪拌を行った。その後、フェニルホウ酸30mgを加え、さらに100℃で2時間反応させた。その後、ジエチルジチオカルバミン酸ナトリウム1gと水10mLを加え、2時間還流下で攪拌を行った。水層を除去後、有機層を水20mlで2回、酢酸水溶液(3wt%)20mLで2回、さらに水20mLで2回洗浄し、メタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、得られたポリマーをトルエン5mLに再度溶解し、アルミナ/シリカゲルカラムを通した。得られた溶液をメタノールに注いでポリマーを析出させ、ポリマーをろ過後、乾燥し、精製した重合体102mgを得た。以下、この重合体を重合体Aと呼称する。GPCで測定した重合体Aのポリスチレン換算の分子量は、重量平均分子量(Mw)が8200であり、数平均分子量(Mn)が3200であった。重合体Aの光吸収末端波長を測定したところ、865nmであった。 Example 1
(Synthesis of polymer A)
Figure 2011116961
In a 100 mL flask purged with argon, 150 mg (0.282 mmol) of compound 5 synthesized in Reference Example 5 and compound 6 (4,7-bis (4,4,5,5-tetramethyl-1,3,2-dioxabolanan-) were prepared. 2-yl) -2,1,3-benzazodiazole (Aldrich) 107 mg (0.276 mmol), methyltrialkylammonium chloride (trade name Aliquat 336 (registered trademark), Aldrich) 100 mg was added, and toluene 5 mL The obtained toluene solution was bubbled with argon for 30 minutes. Thereafter, 2.0 mg of palladium acetate, 10.0 mg of tris (2-methoxyphenyl) phosphine (10.0 mg), 4.0 mL of an aqueous sodium carbonate solution (16.7 wt%) were added, and the mixture was stirred at 100 ° C. for 5 hours. Went. Thereafter, 30 mg of phenylboric acid was added, and the mixture was further reacted at 100 ° C. for 2 hours. Thereafter, 1 g of sodium diethyldithiocarbamate and 10 mL of water were added, and the mixture was stirred under reflux for 2 hours. After removing the aqueous layer, the organic layer was washed twice with 20 ml of water, twice with 20 mL of an acetic acid aqueous solution (3 wt%) and twice with 20 mL of water, and poured into methanol to precipitate a polymer. The polymer was filtered and dried, and the resulting polymer was dissolved again in 5 mL of toluene and passed through an alumina / silica gel column. The obtained solution was poured into methanol to precipitate a polymer, and the polymer was filtered and then dried to obtain 102 mg of a purified polymer. Hereinafter, this polymer is referred to as polymer A. Regarding the molecular weight in terms of polystyrene of the polymer A measured by GPC, the weight average molecular weight (Mw) was 8,200, and the number average molecular weight (Mn) was 3,200. It was 865 nm when the light absorption terminal wavelength of the polymer A was measured.

比較例1
(重合体Bの合成)
Jounal of Materials Chemistry,Vol.12,2887−2892(2002)に記載の方法で下記構造を有する重合体Bを製造し、光吸収末端波長を測定したところ、650nmであった。

Figure 2011116961
重合体B Comparative Example 1
(Synthesis of polymer B)
Journal of Materials Chemistry, Vol. The polymer B having the following structure was produced by the method described in 12, 2887-2892 (2002), and the light absorption terminal wavelength was measured and found to be 650 nm.
Figure 2011116961
Polymer B

参考例6
(化合物8の合成)

Figure 2011116961
フラスコ内の気体をアルゴンで置換した200mLフラスコに、化合物5を1.00g(1.89 mmol)、脱水THFを50mL入れて均一な溶液とした。該溶液を−78℃に保ち、該溶液に2.6Mのn−ブチルリチウムのヘキサン溶液1.81mL(4.71mmol)を10分かけて滴下した。滴下後、反応液を−78℃で3時間攪拌した。その後、フラスコを−78℃に保ったまま、反応液にトリブチルスズクロリドを1.69g(5.20mmol)加えた。添加後、反応液を−78℃で30分攪拌し、次いで、室温(25℃)で5時間攪拌した。その後、反応液に水200mlを加えて反応を停止し、酢酸エチルを加えて反応生成物を含む有機層を抽出した。酢酸エチル溶液である有機層を硫酸ナトリウムで乾燥し、ろ過後、ろ液をエバポレーターで濃縮し、溶媒を留去した。得られたオイル状の物質を展開溶媒がヘキサンであるシリカゲルカラムで精製した。シリカゲルカラムのシリカゲルには、あらかじめ5wt%のトリエチルアミンを含むヘキサンに5分間浸し、その後、ヘキサンで濯いだシリカゲルを用いた。精製後、化合物8を1.14g(1.20mmol)得た。 Reference Example 6
(Synthesis of Compound 8)
Figure 2011116961
A 200 mL flask in which the gas in the flask was replaced with argon was charged with 1.00 g (1.89 mmol) of Compound 5 and 50 mL of dehydrated THF to obtain a uniform solution. The solution was kept at −78 ° C., and 1.81 mL (4.71 mmol) of a 2.6M n-butyllithium hexane solution was added dropwise to the solution over 10 minutes. After the dropwise addition, the reaction solution was stirred at −78 ° C. for 3 hours. Thereafter, 1.69 g (5.20 mmol) of tributyltin chloride was added to the reaction solution while keeping the flask at −78 ° C. After the addition, the reaction solution was stirred at −78 ° C. for 30 minutes, and then stirred at room temperature (25 ° C.) for 5 hours. Thereafter, 200 ml of water was added to the reaction solution to stop the reaction, and ethyl acetate was added to extract an organic layer containing the reaction product. The organic layer, which is an ethyl acetate solution, was dried over sodium sulfate and filtered, and then the filtrate was concentrated with an evaporator and the solvent was distilled off. The obtained oily substance was purified by a silica gel column whose developing solvent was hexane. As the silica gel of the silica gel column, silica gel previously immersed in hexane containing 5 wt% triethylamine for 5 minutes and then rinsed with hexane was used. After purification, 1.14 g (1.20 mmol) of Compound 8 was obtained.

実施例2
(重合体Cの合成)

Figure 2011116961
フラスコ内の気体をアルゴンで置換した100mLフラスコに、化合物8を300mg(0.316mmol)、化合物9(4,7−dibromo−2,1,3−benzothiadiazole)(Aldrich社製)を88mg(0.299mmol)、トルエン19mlを入れて均一溶液とした。得られたトルエン溶液を、アルゴンで30分バブリングした。その後、トルエン溶液に、トリス(ジベンジリデンアセトン)ジパラジウムを4.33mg(0.00473mmol)、トリス(2−トルイル)ホスフィンを8.6mg(0.0284mmol)加え、100℃で5時間攪拌した。その後、反応液にフェニルブロミドを500mg加え、さらに5時間攪拌した。その後、フラスコを25℃に冷却し、反応液をメタノール200mLに注いだ。析出したポリマーをろ過して回収し、得られたポリマーを、円筒ろ紙に入れ、ソックスレー抽出器を用いて、メタノール、アセトン及びヘキサンでそれぞれ5時間抽出した。円筒ろ紙内に残ったポリマーを、o−ジクロロベンゼン100mLに溶解させ、ジエチルジチオカルバミン酸ナトリウム2gと水50mLを加え、8時間還流下で攪拌を行った。水層を除去後、有機層を水50mlで2回洗浄し、次いで、3wt%の酢酸水溶液50mLで2回洗浄し、次いで、水50mLで2回洗浄し、次いで、5%フッ化カリウム水溶液50mLで2回洗浄し、次いで、水50mLで2回洗浄し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、得られたポリマーをo−ジクロロベンゼン50mLに再度溶解し、アルミナ/シリカゲルカラムを通した。得られた溶液をメタノールに注いでポリマーを析出させ、ポリマーをろ過後、乾燥し、精製された重合体185mgを得た。以下、この重合体を重合体Cと呼称する。GPCで測定した重合体Cのポリスチレン換算の分子量は、Mwが23000であり、Mnが13000であった。重合体Cの光吸収末端波長は865nmであった。 Example 2
(Synthesis of polymer C)
Figure 2011116961
In a 100 mL flask in which the gas in the flask was replaced with argon, 300 mg (0.316 mmol) of Compound 8 and 88 mg (0. 0.1 of Compound 9 (4,7-dibromo-2,1,3-benzothiadiazole) (Aldrich)) were added. 299 mmol) and 19 ml of toluene to make a homogeneous solution. The resulting toluene solution was bubbled with argon for 30 minutes. Thereafter, 4.33 mg (0.00473 mmol) of tris (dibenzylideneacetone) dipalladium and 8.6 mg (0.0284 mmol) of tris (2-toluyl) phosphine were added to the toluene solution, and the mixture was stirred at 100 ° C. for 5 hours. Thereafter, 500 mg of phenyl bromide was added to the reaction solution, and the mixture was further stirred for 5 hours. Thereafter, the flask was cooled to 25 ° C., and the reaction solution was poured into 200 mL of methanol. The precipitated polymer was collected by filtration, and the obtained polymer was put into a cylindrical filter paper and extracted with methanol, acetone and hexane for 5 hours each using a Soxhlet extractor. The polymer remaining in the cylindrical filter paper was dissolved in 100 mL of o-dichlorobenzene, 2 g of sodium diethyldithiocarbamate and 50 mL of water were added, and the mixture was stirred under reflux for 8 hours. After removing the aqueous layer, the organic layer was washed twice with 50 ml of water, then twice with 50 mL of a 3 wt% aqueous acetic acid solution, then twice with 50 mL of water, and then 50 mL of 5% aqueous potassium fluoride solution. And then washed twice with 50 mL of water, and the resulting solution was poured into methanol to precipitate a polymer. The polymer was filtered and dried, and the obtained polymer was dissolved again in 50 mL of o-dichlorobenzene and passed through an alumina / silica gel column. The obtained solution was poured into methanol to precipitate a polymer, and the polymer was filtered and dried to obtain 185 mg of a purified polymer. Hereinafter, this polymer is referred to as polymer C. The molecular weight in terms of polystyrene of the polymer C measured by GPC was Mw of 23000 and Mn of 13,000. The light absorption terminal wavelength of the polymer C was 865 nm.

Claims (7)

式(1)で表される構造単位と、式(1)で表される構造単位とは異なる構造単位とを有する高分子化合物。
Figure 2011116961
(1)
〔式中、Q及びQは、同一又は相異なり、−S−、−O−、−Se−又は−N(R)−を表し、R、R及びRは、同一又は相異なり、水素原子、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、酸イミド基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1価の複素環基、複素環オキシ基、複素環チオ基、アリールアルケニル基、アリールアルキニル基、カルボキシル基又はシアノ基を表す。〕
A polymer compound having a structural unit represented by formula (1) and a structural unit different from the structural unit represented by formula (1).
Figure 2011116961
(1)
[Wherein, Q 1 and Q 2 are the same or different and represent —S—, —O—, —Se— or —N (R 3 ) —, and R 1 , R 2 and R 3 are the same or Differently, hydrogen atom, halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, acyl group, acyloxy group, amide group , Acid imide group, amino group, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, monovalent heterocyclic group, heterocyclic oxy group, heterocyclic thio group, arylalkenyl group, aryl An alkynyl group, a carboxyl group or a cyano group is represented. ]
式(1)で表される構造単位とは異なる構造単位が、2価の芳香族基である請求項1に記載の高分子化合物。   The polymer compound according to claim 1, wherein the structural unit different from the structural unit represented by the formula (1) is a divalent aromatic group. 式(1)で表される構造単位とは異なる構造単位が、式(A−1)〜式(H−1)で表される基である請求項1又は2に記載の高分子化合物。
Figure 2011116961

〔式(A−1)〜式(H−1)中、Q〜Q15は、同一又は相異なり、−S−、−O−、−Se−又は−N(R)−を表す。R40〜R52は、同一又は相異なり、水素原子、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、酸イミド基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1価の複素環基、複素環オキシ基、複素環チオ基、アリールアルケニル基、アリールアルキニル基、カルボキシル基又はシアノ基を表す。R40とR41 42とR43は、それぞれ連結して環状構造を形成してもよい。Y1〜Yは、同一又は相異なり、窒素原子または=CH−を表す。〕
The polymer compound according to claim 1 or 2, wherein the structural unit different from the structural unit represented by the formula (1) is a group represented by the formula (A-1) to the formula (H-1).
Figure 2011116961

[In Formula (A-1) to Formula (H-1), Q 3 to Q 15 are the same or different and represent —S—, —O—, —Se—, or —N (R 3 ) —. R 40 to R 52 are the same or different and are a hydrogen atom, a halogen atom, an alkyl group, an alkyloxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkyloxy group, an arylalkylthio group. , Acyl group, acyloxy group, amide group, acid imide group, amino group, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, monovalent heterocyclic group, heterocyclic oxy group, complex A ring thio group, an arylalkenyl group, an arylalkynyl group, a carboxyl group or a cyano group is represented. R 40 and R 41 , R 42 and R 43 may be connected to each other to form a cyclic structure. Y 1 to Y 6 are the same or different and each represents a nitrogen atom or ═CH—. ]
、Qの少なくとも一方が、−S−である請求項1〜3のいずれか一項に記載の高分子化合物。 The polymer compound according to claim 1, wherein at least one of Q 1 and Q 2 is —S—. 、Rの少なくとも一方が、アルキル基である請求項1〜4のいずれか一項に記載の高分子化合物。 5. The polymer compound according to claim 1, wherein at least one of R 1 and R 2 is an alkyl group. 式(1)で表される構造単位が、式(3)で表される構造単位である請求項5に記載の高分子化合物。
Figure 2011116961
(式中、R50はアルキル基を表す。)
The polymer compound according to claim 5, wherein the structural unit represented by the formula (1) is a structural unit represented by the formula (3).
Figure 2011116961
(In the formula, R 50 represents an alkyl group.)
ポリスチレン換算の重量平均分子量が3000以上である請求項1〜6のいずれか一項に記載の高分子化合物。   The polymer compound according to any one of claims 1 to 6, which has a polystyrene-equivalent weight average molecular weight of 3000 or more.
JP2010242050A 2009-10-30 2010-10-28 Polymer compound Withdrawn JP2011116961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010242050A JP2011116961A (en) 2009-10-30 2010-10-28 Polymer compound

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009250295 2009-10-30
JP2009250295 2009-10-30
JP2010242050A JP2011116961A (en) 2009-10-30 2010-10-28 Polymer compound

Publications (1)

Publication Number Publication Date
JP2011116961A true JP2011116961A (en) 2011-06-16

Family

ID=43922146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010242050A Withdrawn JP2011116961A (en) 2009-10-30 2010-10-28 Polymer compound

Country Status (2)

Country Link
JP (1) JP2011116961A (en)
WO (1) WO2011052725A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3504259A4 (en) * 2016-08-23 2020-06-17 Jason D. Azoulay Narrow band gap conjugated polymers employing cross-conjugated donors useful in electronic devices
US11359049B2 (en) 2017-09-21 2022-06-14 The University Of Southern Mississippi Gold catalyzed polymerization reactions of unsaturated substrates
US11649320B2 (en) 2018-09-21 2023-05-16 University Of Southern Mississippi Thiol-based post-modification of conjugated polymers
US11773211B2 (en) 2018-05-05 2023-10-03 University Of Southern Mississippi Open-shell conjugated polymer conductors, composites, and compositions
US11781986B2 (en) 2019-12-31 2023-10-10 University Of Southern Mississippi Methods for detecting analytes using conjugated polymers and the inner filter effect

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104854175A (en) 2012-12-18 2015-08-19 默克专利股份有限公司 Polymer comprising a thiadiazol group, the production of such polymer and its use in organic electronic devices

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5274058A (en) * 1991-09-12 1993-12-28 Board Of Regents, The University Of Texas System Low bandgap polymers rf fused bithiophenes

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3504259A4 (en) * 2016-08-23 2020-06-17 Jason D. Azoulay Narrow band gap conjugated polymers employing cross-conjugated donors useful in electronic devices
US11312819B2 (en) 2016-08-23 2022-04-26 The University Of Southern Mississippi Narrow band gap conjugated polymers employing cross-conjugated donors useful in electronic devices
US11359049B2 (en) 2017-09-21 2022-06-14 The University Of Southern Mississippi Gold catalyzed polymerization reactions of unsaturated substrates
US11773211B2 (en) 2018-05-05 2023-10-03 University Of Southern Mississippi Open-shell conjugated polymer conductors, composites, and compositions
US11649320B2 (en) 2018-09-21 2023-05-16 University Of Southern Mississippi Thiol-based post-modification of conjugated polymers
US11781986B2 (en) 2019-12-31 2023-10-10 University Of Southern Mississippi Methods for detecting analytes using conjugated polymers and the inner filter effect

Also Published As

Publication number Publication date
WO2011052725A1 (en) 2011-05-05

Similar Documents

Publication Publication Date Title
JP5720179B2 (en) High molecular compound
JP5999095B2 (en) Polymer compound and electronic device
JP5720178B2 (en) High molecular compound
JP5742422B2 (en) Polymer compounds, compounds and uses thereof
JP5720180B2 (en) Photoelectric conversion element
JP5740836B2 (en) Photoelectric conversion element
WO2011052702A1 (en) Polymeric compound and electronic element
WO2011052728A1 (en) Compound and element using same
JP2011116961A (en) Polymer compound
WO2013183549A1 (en) Composition and electronic element using same
WO2012147564A1 (en) High-molecular-weight compound and electronic element comprising same
JP2015180621A (en) compound
JP2011116962A (en) Composition and electronic element
JP2013095813A (en) Polymer compound and photoelectric conversion element using the same
JP5807497B2 (en) Polymer compound and electronic device using the same
WO2012173030A1 (en) Photoelectric conversion element
JP2013220994A (en) Compound and electronic element using the same
JP5893846B2 (en) Method for producing compound
JP2011165789A (en) Photoelectric conversion element
JP5887814B2 (en) Polymer compound and electronic device using the same
JP2014189721A (en) Polymer compound
JP6373567B2 (en) Compound and electronic device using the same
JPWO2015108206A1 (en) Compound and electronic device
WO2011052727A1 (en) Compound and element using same
JP2013185047A (en) Method of manufacturing compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130912

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20140214