WO2012173030A1 - Photoelectric conversion element - Google Patents

Photoelectric conversion element Download PDF

Info

Publication number
WO2012173030A1
WO2012173030A1 PCT/JP2012/064615 JP2012064615W WO2012173030A1 WO 2012173030 A1 WO2012173030 A1 WO 2012173030A1 JP 2012064615 W JP2012064615 W JP 2012064615W WO 2012173030 A1 WO2012173030 A1 WO 2012173030A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
ring
formula
optionally substituted
Prior art date
Application number
PCT/JP2012/064615
Other languages
French (fr)
Japanese (ja)
Inventor
吉村 研
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012173030A1 publication Critical patent/WO2012173030A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3244Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing only one kind of heteroatoms other than N, O, S
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a photoelectric conversion element using an organic compound having a specific structure.
  • a photoelectric conversion element there is a photoelectric conversion element having an organic layer containing a polymer compound composed of a repeating unit (A) and a repeating unit (B) (WO2007 / 011739).
  • the photoelectric conversion element does not have a sufficiently high open end voltage.
  • the present invention provides a photoelectric conversion element having a high open-circuit voltage. That is, the present invention is as follows. 1. A first electrode and a second electrode; an active layer between the first electrode and the second electrode; and a structural unit represented by formula (1) in the active layer: A photoelectric conversion element containing an organic compound.
  • R 1 is a hydrogen atom, a halogen atom (a fluorine atom, a chlorine atom, a bromine atom and an iodine atom), an optionally substituted alkyl group, an optionally substituted alkoxy group, or an optionally substituted atom.
  • the organic compound is further a structural unit represented by the formula (A-1), a structural unit represented by the formula (B-1), a structural unit represented by the formula (C-1), and the formula (D-1).
  • the said photoelectric conversion element containing the at least 1 sort (s) of structural unit chosen from the group 1 which consists of the structural unit represented by and the structural unit represented by Formula (E-1).
  • Group 1 (In formulas (A-1) to (E-1), Q 1 represents a sulfur atom, an oxygen atom, a selenium atom, —N (R 30 ) — or —CR 31 ⁇ CR 32 —.
  • R 30 , R 31 and R 32 each independently represents a hydrogen atom or a substituent
  • R 20 to R 25 each independently represents a hydrogen atom or a substituent
  • R 20 and R 21 are linked to form a cyclic structure.
  • G ring to N ring each independently represents an aromatic ring which may have a substituent.
  • Solar cell module including a photoelectric conversion element. 4). 1 above.
  • Image sensor including a photoelectric conversion element. 5.
  • An organic thin film transistor having a gate electrode, a source electrode, a drain electrode, and an active layer, and containing an organic compound containing a structural unit represented by formula (1) in the active layer. 6).
  • R 1 is a hydrogen atom, a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkylthio group, an optionally substituted aryl group, Aryloxy group which may be substituted, arylthio group which may be substituted, arylalkyl group which may be substituted, arylalkoxy group which may be substituted, arylalkylthio group which may be substituted, substituted Arylalkenyl group which may be substituted, arylalkynyl group which may be substituted, amino group, substituted amino group, silyl group, substituted silyl group, silyloxy group, substituted silyloxy group, heterocyclic group, acyl group, acyloxy group, Represents an amide group, a carboxyl group, a nitro group or a cyano group, wherein the D ′′ ring and the E ′′ ring are each independently May
  • a polymer compound comprising at least one structural unit selected from the group consisting of a unit, a structural unit represented by the formula (D-1), and a structural unit represented by the formula (E-1). 7.
  • R 1 is a hydrogen atom, a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkylthio group, an optionally substituted aryl group, Aryloxy group which may be substituted, arylthio group which may be substituted, arylalkyl group which may be substituted, arylalkoxy group which may be substituted, arylalkylthio group which may be substituted, substituted Arylalkenyl group which may be substituted, arylalkynyl group which may be substituted, amino group, substituted amino group, silyl group, substituted silyl group, silyloxy group, substituted silyloxy group, heterocyclic group, acyl group
  • the photoelectric conversion element of the present invention has a first electrode and a second electrode, and has an active layer between the first electrode and the second electrode, and the active layer has the above formula (
  • the organic compound containing the structural unit represented by 1) is contained.
  • R 1 The alkyl group represented by may be linear, branched or cyclic.
  • the alkyl group may have a substituent. Examples of the substituent that the alkyl group may have include a halogen atom.
  • the alkyl group usually has 1 to 30 carbon atoms.
  • alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl tomb, pentyl group, isopentyl group, 2-methylbutyl group, 1-methylbutyl.
  • hexyl group isohexyl group, 3-methylpentyl group, 2-methylpentyl group, 1-methylpentyl group, heptyl group, octyl group, isooctyl group, 2-ethylhexyl group, 3,7-dimethyloctyl group, nonyl group
  • chain alkyl groups such as decyl group, undecyl group, dodecyl group, tetradecyl group, hexadecyl tomb, octadecyl group and eicosyl group, and cycloalkyl groups such as cyclopentyl group, cyclohexyl group and adamantyl group.
  • the alkyl part of the alkoxy group may be linear, branched or cyclic.
  • the alkoxy group usually has 1 to 20 carbon atoms, and the alkoxy group may have a substituent.
  • substituents that the alkoxy group may have include a halogen atom and an alkoxy group (for example, having 1 to 20 carbon atoms).
  • the optionally substituted alkoxy group include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, Heptyloxy, octyloxy, 2-ethylhexyloxy, nonyloxy, decyloxy, 3,7-dimethyloctyloxy, lauryloxy, trifluoromethoxy, pentafluoroethoxy, perfluorobutoxy, perfluoro Examples include a hexyloxy group, a perfluorooctyloxy group, a methoxymethyloxy group, and a 2-methoxyethyloxy group.
  • the alkyl part of the alkylthio group may be linear, branched or cyclic.
  • the alkylthio group usually has 1 to 20 carbon atoms, and the alkylthio group may have a substituent.
  • Specific examples of the optionally substituted alkylthio group include methylthio group, ethylthio group, propylthio group, isopropylthio group, butylthio group, isobutylthio group, tert-butylthio group, pentylthio group, hexylthio group, cyclohexylthio group, heptylthio group.
  • An aryl group means a group obtained by removing one hydrogen atom on an aromatic ring from an aromatic hydrocarbon, and usually has 6 to 60 carbon atoms.
  • the aryl group may have a substituent, and examples of the substituent include a halogen atom and an optionally substituted alkoxy group.
  • Specific examples of the optionally substituted alkoxy group include R 1 Are the same as the specific examples of the alkoxy group which may be substituted.
  • the optionally substituted aryl group examples include a phenyl group, a C1-C12 alkoxyphenyl group, a C1-C12 alkylphenyl group, a 1-naphthyl group, a 2-naphthyl group, and a pentafluorophenyl group.
  • the aryloxy group usually has 6 to 60 carbon atoms, and the aryl moiety may have a substituent.
  • the substituent include a halogen atom and an optionally substituted alkoxy group.
  • Specific examples of the optionally substituted alkoxy group include R 1 Are the same as the specific examples of the alkoxy group which may be substituted.
  • the optionally substituted aryloxy group examples include a phenoxy group, a C1-C12 alkoxyphenoxy group, a C1-C12 alkylphenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, and a pentafluorophenoxy group. It is done.
  • the arylthio group usually has 6 to 60 carbon atoms, and the aryl moiety may have a substituent. Examples of the substituent include a halogen atom and an optionally substituted alkoxy group.
  • Specific examples of the optionally substituted alkoxy group include R 1 Are the same as the specific examples of the alkoxy group which may be substituted.
  • arylthio group which may be substituted include a phenylthio group, a C1-C12 alkoxyphenylthio group, a C1-C12 alkylphenylthio group, a 1-naphthylthio group, a 2-naphthylthio group, and a pentafluorophenylthio group. It is done.
  • the arylalkyl group usually has 7 to 60 carbon atoms, and the aryl moiety may have a substituent. Examples of the substituent include a halogen atom and an optionally substituted alkoxy group.
  • R 1 Are the same as the specific examples of the halogen atom represented by the formula (1) and the optionally substituted alkoxy group.
  • Specific examples of the optionally substituted arylalkyl group include a phenyl-C1 to C12 alkyl group, a C1 to C12 alkoxyphenyl-C1 to C12 alkyl group, a C1 to C12 alkylphenyl-C1 to C12 alkyl group, and 1-naphthyl. -C1-C12 alkyl group and 2-naphthyl-C1-C12 alkyl group are mentioned.
  • the arylalkoxy group usually has 7 to 60 carbon atoms, and the aryl moiety may have a substituent.
  • substituent include a halogen atom and an optionally substituted alkoxy group.
  • R 1 Are the same as the specific examples of the alkoxy group which may be substituted.
  • Specific examples of the optionally substituted arylalkoxy group include a phenyl-C1 to C12 alkoxy group, a C1 to C12 alkoxyphenyl-C1 to C12 alkoxy group, a C1 to C12 alkylphenyl-C1 to C12 alkoxy group, and 1-naphthyl.
  • the arylalkylthio group usually has 7 to 60 carbon atoms, and the aryl moiety may have a substituent.
  • the substituent include a halogen atom and an optionally substituted alkoxy group.
  • Specific examples of the optionally substituted alkoxy group include R 1 Are the same as the specific examples of the alkoxy group which may be substituted.
  • the optionally substituted arylalkylthio group include phenyl-C1-C12 alkylthio group, C1-C12 alkoxyphenyl-C1-C12 alkylthio group, C1-C12 alkylphenyl-C1-C12 alkylthio group, and 1-naphthyl. -C1-C12 alkylthio group and 2-naphthyl-C1-C12 alkylthio group are mentioned.
  • the arylalkenyl group usually has 8 to 20 carbon atoms, and the aryl moiety may have a substituent. Examples of the substituent include a halogen atom and an optionally substituted alkoxy group.
  • R 1 Are the same as the specific examples of the alkoxy group which may be substituted.
  • arylalkenyl group include a styryl group.
  • the arylalkynyl group usually has 8 to 20 carbon atoms, and the aryl moiety may have a substituent.
  • the substituent include a halogen atom and an optionally substituted alkoxy group.
  • R 1 Are the same as the specific examples of the alkoxy group which may be substituted.
  • Specific examples of the arylalkynyl group include a phenylacetylenyl group.
  • the substituted amino group is a group in which one or two hydrogen atoms of the amino group are substituted, and the substituent is, for example, an optionally substituted alkyl group or an optionally substituted aryl group.
  • the optionally substituted alkyl group and the optionally substituted aryl group include R 1
  • Specific examples of the alkyl group which may be substituted and the aryl group which may be substituted are the same as those described above.
  • the substituted amino group usually has 1 to 40 carbon atoms.
  • substituted amino group examples include methylamino group, dimethylamino group, ethylamino group, diethylamino group, propylamino group, dipropylamino group, isopropylamino group, diisopropylamino group, butylamino group, isobutylamino group, tert -Butylamino group, pentylamino group, hexylamino group, cyclohexylamino group, heptylamino group, octylamino group, 2-ethylhexylamino group, nonylamino group, decylamino group, 3,7-dimethyloctylamino group, laurylamino group, Cyclopentylamino group, dicyclopentylamino group, cyclohexylamino group, dicyclohexylamino group, pyrrolidyl group, piperidyl
  • a substituted silyl group is one in which one, two, or three of the hydrogen atoms of the silyl group are substituted, and in general, all three hydrogen atoms in the silyl group are substituted.
  • These are an optionally substituted alkyl group and an optionally substituted aryl group.
  • Specific examples of the optionally substituted alkyl group and the optionally substituted aryl group include R 1 Specific examples of the alkyl group which may be substituted and the aryl group which may be substituted are the same as those described above.
  • substituted silyl group examples include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, triisopropylsilyl group, tert-butyldimethylsilyl group, triphenylsilyl group, tri-p-xylylsilyl group, tribenzylsilyl group, Examples include a diphenylmethylsilyl group, a tert-butyldiphenylsilyl group, and a dimethylphenylsilyl group.
  • the substituted silyloxy group is a group in which an oxygen atom is bonded to the above substituted silyl group.
  • substituted silyloxy group examples include trimethylsilyloxy group, triethylsilyloxy group, tripropylsilyloxy group, triisopropylsilyloxy group, tert-butyldimethylsilyloxy group, triphenylsilyloxy group, tri-p-xylyl group.
  • examples thereof include a silyloxy group, a tribenzylsilyloxy group, a diphenylmethylsilyloxy group, a tert-butyldiphenylsilyloxy group, and a dimethylphenylsilyloxy group.
  • heterocyclic group optionally substituted furan, thiophene, pyrrole, pyrroline, pyrrolidine, oxazole, isoxazole, thiazole, isothiazole, imidazole, imidazoline, imidazolidine, pyrazole, pyrazoline, prazolidine, furazane, Triazole, thiadiazole, oxadiazole, tetrazole, pyran, pyridine, piperidine, thiopyran, pyridazine, pyrimidine, pyrazine, piperazine, morpholine, triazine, benzofuran, isobenzofuran, benzothiophene, indole, isoindole, indolizine, indoline, isoindoline , Chromene, chroman, isochroman, benzopyran, quinoline, isoquinoline, quinolidine, benzimid
  • an aromatic heterocyclic group is preferable.
  • Acyl group means a group excluding the hydroxyl group in the —COOH part of the carboxylic acid, and usually has 2 to 20 carbon atoms.
  • Specific examples of the acyl group include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a trifluoroacetyl group, an alkylcarbonyl group which may be substituted with a halogen having 2 to 20 carbon atoms, a benzoyl group, Examples thereof include a phenylcarbonyl group which may be substituted with a halogen such as a pentafluorobenzoyl group.
  • Acyloxy group means a group in which a hydrogen atom in the -COOH part of carboxylic acid is removed, and its carbon number is usually 2-20.
  • Specific examples of the acyloxy group include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group, a trifluoroacetyloxy group, and a pentafluorobenzoyloxy group.
  • An amide group means a group obtained by removing one hydrogen atom bonded to a nitrogen atom from an amide, and the carbon number is usually 2 to 20.
  • the amide group include a formamide group, an acetamide group, a propioamide group, a butyroamide group, a benzamide group, a trifluoroacetamide group, a pentafluorobenzamide group, a diformamide group, a diacetamide group, a dipropioamide group, a dibutyroamide group, and a dibenzamide group.
  • the D ring and the E ring each independently represent an aromatic ring which may have a substituent.
  • aromatic ring examples include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a pyrene ring, a perylene ring, and a tetracene ring.
  • Aromatic carbon rings such as pentacene ring, pyridine ring, pyrimidine ring, pyridazine ring, pyrazine ring, quinoline ring, isoquinoline ring, quinoxaline ring, quinazoline ring, acridine ring, phenanthroline ring, thiophene ring, benzothiophene ring, dibenzo Thiophene ring, thiophene oxide ring, benzothiophene oxide ring, dibenzothiophene oxide ring, thiophene dioxide ring, benzothiophene dioxide ring, dibenzothiophene dioxide ring, furan ring, benzofuran ring, dibenzofuran ring, pyrrole ring, indole ring, dibenzo Roll ring, silole ring, Benzoshiroru ring, dibenzosilole ring, Bororu ring, Benzoboron
  • the D ring and the E ring are preferably an aromatic heterocyclic ring which may have a substituent
  • the aromatic heterocyclic ring is preferably an aromatic heterocyclic ring containing a 5-membered ring, and a thiophene ring is More preferred.
  • the substituent of the aromatic ring represented by D ring and E ring include a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkylthio group, and a substituted group.
  • Examples of the structural unit represented by Formula (1) include structural units represented by Formula (601) to Formula (660).
  • R represents a hydrogen atom or a substituent.
  • a plurality of R may be the same or different, and may be bonded to each other to form a ring.
  • examples of the substituent include a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkylthio group, and a substituted group.
  • the structural units represented by the formulas (601) to (660) are preferable from the viewpoint of increasing the photoelectric conversion efficiency, and the formula (621) A structural unit represented by Formula (625) is more preferable.
  • the structural unit represented by the formula (1) preferably contains an aromatic heterocyclic ring. By including the aromatic heterocycle, the planarity of the organic compound containing the structural unit represented by the formula (1) is increased, and the light absorption intensity is improved. By improving the light absorption intensity, the light absorption amount of the organic compound is increased, and the short-circuit current density of the photoelectric conversion element of the present invention is improved.
  • the structural unit represented by the formula (1) preferably contains a thiophene ring.
  • a thiophene ring By having a thiophene ring, charge transfer inside the molecule occurs, and the light absorption terminal wavelength is increased.
  • the structural unit represented by the formula (1) includes a thiophene ring, the absorption strength of the organic compound and the fill factor of the photoelectric conversion element of the present invention are also improved. Conversion efficiency is increased.
  • R in the structural unit represented by the formula (1) 1 Is preferably a benzene ring having substituents at the 2-position and 5-position.
  • the substituent is preferably an isopropyl group.
  • the organic compound used in the photoelectric conversion element of the present invention preferably contains a structural unit different from the structural unit represented by the formula (1) in addition to the structural unit represented by the formula (1). In this case, it is preferable that the structural unit represented by Formula (1) and the structural unit different from the structural unit represented by Formula (1) form a conjugate. Conjugation in the present invention means that multiple bonds exist with one single bond in between.
  • Examples of the structural unit different from the structural unit represented by the formula (1) include an optionally substituted arylene group, an optionally substituted heteroarylene group, an alkenylene group, and an alkynylene group.
  • an optionally substituted arylene group and an optionally substituted heteroarylene group are preferable.
  • the arylene group means a group obtained by removing two hydrogen atoms on an aromatic ring from an aromatic hydrocarbon, and the carbon number is usually 6 to 60.
  • a heteroarylene group means a group obtained by removing two hydrogen atoms on an aromatic ring from an aromatic heterocycle.
  • aromatic ring are the same as the specific examples of the D ring and the E ring described above, and specific examples of the substituent of the arylene group and the heteroarylene group are specific examples of the substituent of the D ring and the E ring described above. Is the same.
  • the optionally substituted arylene group and the optionally substituted heteroarylene group include at least one structural unit selected from Group 1 described above.
  • the aromatic ring represented by ring G to ring N may be a monocyclic aromatic ring or a polycyclic aromatic ring.
  • the monocyclic aromatic ring for example, benzene ring, pyrrole ring, furan ring, thiophene ring, oxazole ring, thiazole ring, thiadiazole ring, pyrazole ring, pyridine ring, pyrazine ring, imidazole ring, triazole ring, isoxazole ring, Examples include isothiazole ring, pyrimidine ring, pyridazine ring and triazine ring.
  • the polycyclic aromatic ring include an aromatic ring in which an arbitrary ring is condensed to the monocyclic aromatic ring.
  • Examples of the ring condensed with the monocyclic aromatic ring include a furan ring, a thiophene ring, a pyrrole ring, a pyrroline ring, a pyrrolidine ring, an oxazole ring, an isoxazole ring, a thiazole ring, an isothiazole ring, a thiadiazole ring, an imidazole ring, and an imidazoline.
  • R 30 , R 31 And R 32 When is a substituent, examples of the substituent include a halogen atom (for example, a fluorine atom, a bromine atom, a chlorine atom) and a group having 1 to 30 carbon atoms.
  • examples of the group having 1 to 30 carbon atoms include an alkyl group such as a methyl group, an ethyl group, a butyl group, a hexyl group, an octyl group, and a dodecyl group, a methoxy group, an ethoxy group, a butoxy group, a hexyloxy group, and an octyloxy group.
  • R 20 ⁇ R 25 Represents a hydrogen atom or a substituent.
  • R 20 ⁇ R 25 When is a substituent, examples of the substituent include a halogen atom (for example, a fluorine atom, a bromine atom, a chlorine atom) and a group having 1 to 30 carbon atoms.
  • Examples of the group having 1 to 30 carbon atoms include an alkyl group such as a methyl group, an ethyl group, a butyl group, a hexyl group, an octyl group, and a dodecyl group, a methoxy group, an ethoxy group, a butoxy group, a hexyloxy group, and an octyloxy group. , Alkoxy groups such as dodecyloxy group, and aryl groups such as phenyl group and naphthyl group.
  • R 20 And R 21 May be connected to each other to form a ring structure. Specific examples of the cyclic structure formed by linking include structures of the following formulas (a) to (c).
  • R in formula (a) to formula (c) 70 And R 71 Each independently represents a hydrogen atom or a substituent.
  • R 70 And R 71 When is a substituent, examples of the substituent include a halogen atom (for example, a fluorine atom, a bromine atom, a chlorine atom) and a group having 1 to 30 carbon atoms.
  • Examples of the group having 1 to 30 carbon atoms include an alkyl group such as a methyl group, an ethyl group, a butyl group, a hexyl group, an octyl group, and a dodecyl group, a methoxy group, an ethoxy group, a butoxy group, a hexyloxy group, and an octyloxy group. , Alkoxy groups such as dodecyloxy group, and aryl groups such as phenyl group and naphthyl group.
  • X 30 And X 31 Each independently represents a sulfur atom or a selenium atom.
  • X 30 And X 31 Is preferably a sulfur atom.
  • Y 30 ⁇ Y 35 Each independently represents a nitrogen atom or ⁇ CH—. Y 30 ⁇ Y 35 Is preferably a nitrogen atom.
  • Ring G to Ring N are R 20 ⁇ R 25 Examples of the substituent include a halogen atom (for example, a fluorine atom, a bromine atom, a chlorine atom) and a group having 1 to 30 carbon atoms.
  • Examples of the group having 1 to 30 carbon atoms include an alkyl group such as a methyl group, an ethyl group, a butyl group, a hexyl group, an octyl group, and a dodecyl group, a methoxy group, an ethoxy group, a butoxy group, a hexyloxy group, and an octyloxy group. , Alkoxy groups such as dodecyloxy group, and aryl groups such as phenyl group and naphthyl group.
  • the structural units represented by Formula (A-2) to Formula (E-2) in Group 2 below are included.
  • (Group 2) Q in formula (A-2) to formula (E-2) 2 ⁇ Q 9
  • Each independently represents a sulfur atom, an oxygen atom, a selenium atom, -N (R 30 )-Or -CR 31 CR 32 -Represents.
  • R 30 , R 31 , R 32 Represents the same meaning as described above.
  • Q 2 ⁇ Q 9 Is preferably a sulfur atom.
  • Y 1 ⁇ Y 4 Each independently represents a nitrogen atom or ⁇ CH—.
  • Y 1 ⁇ Y 4 Is preferably a nitrogen atom.
  • R 40 ⁇ R 49 Each independently represents a hydrogen atom or a substituent.
  • Examples of the group having 1 to 30 carbon atoms include an alkyl group such as a methyl group, an ethyl group, a butyl group, a hexyl group, an octyl group and a dodecyl group, a methoxy group, an ethoxy group, a butoxy group, a hexyloxy group, and an octyloxy group. , Alkoxy groups such as dodecyloxy group, and aryl groups such as phenyl group and naphthyl group.
  • R 40 And R 41 , R 42 And R 43 May be connected to each other to form an annular structure.
  • R 40 And R 41 , R 42 And R 43 Specific examples of the cyclic structure formed by connecting are cyclic structures represented by the formula (a) and cyclic structures represented by the formula (b).
  • the structural unit represented by the formula (A-2) to the formula (E-2) from the viewpoint of increasing the light absorption intensity of the organic compound containing the structural unit represented by the formula (1), the formula (500 ) To groups represented by formula (522) are preferred. (Wherein R represents the same meaning as described above)
  • the groups represented by formula (500) to formula (522) from the viewpoint of increasing the light absorption terminal wavelength of the organic compound, the group represented by formula (500), represented by formula (506) And a group represented by formula (511) are preferred, and a group represented by formula (511) is more preferred.
  • the organic compound used in the photoelectric conversion device of the present invention is preferably a polymer compound from the viewpoint of ease of device production.
  • the polymer compound in the present invention refers to a polymer having a weight average molecular weight of 1000 or more, and a polymer compound having a weight average molecular weight of 3,000 to 10,000,000 is preferably used. If the weight average molecular weight is lower than 3000, defects may occur in film formation during device fabrication, and if it exceeds 10000000, solubility in a solvent and applicability during device fabrication may be degraded.
  • the weight average molecular weight is more preferably 8,000 to 5,000,000, particularly preferably 10,000 to 1,000,000.
  • the weight average molecular weight in this invention points out the weight average molecular weight of polystyrene conversion calculated using the standard sample of polystyrene using gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the photoelectric conversion element of this invention contains the high molecular compound containing the structural unit represented by Formula (1)
  • content of the structural unit represented by Formula (1) in this polymeric compound is in a compound. It suffices that at least one is included in.
  • the polymer compound contains an average of 2 or more per polymer chain, and more preferably an average of 3 or more per polymer chain.
  • a preferable compound used in the photoelectric conversion element of the present invention includes a structural unit represented by the formula (1-1) and is a structural unit represented by the formula (A-1), which is represented by the formula (B-1). Selected from the group consisting of a structural unit represented by formula (C-1), a structural unit represented by formula (D-1), and a structural unit represented by formula (E-1). It is a polymer compound containing at least one structural unit.
  • specific examples of the substituent that the thiophene ring represented by the D ′′ ring and the E ′′ ring may have are the substituents that the D ring and the E ring may have. The same as the specific example of the group.
  • a polymer compound comprising at least one structural unit selected from the group consisting of a structural unit represented by formula (D-1) and a structural unit represented by formula (E-1)
  • the content of the structural unit represented by the formula (1-1) is preferably 10 to 90, more preferably 20 to 80, and particularly preferably 30 to 70.
  • the polymer compound that can be used in the photoelectric conversion element of the present invention preferably has high solubility in a solvent from the viewpoint of ease of device production.
  • the open end voltage of the photoelectric conversion element is preferably high.
  • the organic compound containing the structural unit represented by Formula (1) as an electron-donating compound, the higher the ionization potential of the organic compound, the higher the open-circuit voltage of the photoelectric conversion element of the present invention.
  • the production method of the polymer compound that can be used in the present invention is not particularly limited, but from the viewpoint of the ease of synthesis of the polymer compound, a method using a Suzuki coupling reaction, and a Stille coupling reaction.
  • the method using is preferable.
  • the formula (100) for example, the formula (100): U 1 -E 1 -U 2 (100) [Where E 1 Represents a divalent group containing an aromatic ring. U 1 And U 2 Each independently represents a dihydroxyboryl group (—B (OH) 2 ) Or a borate ester residue.
  • T 1 -E 2 -T 2 (200) One or more compounds represented by formula (200): T 1 -E 2 -T 2 (200) [Where E 2 Represents a divalent group containing an aromatic ring. T 1 And T 2 Each independently represents a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom) or a sulfonic acid residue. ] The manufacturing method which has a process with which 1 or more types of compounds represented by these are made to react in presence of a palladium catalyst and a base is mentioned. Where E 1 Or E 2 Is a structural unit represented by the formula (1).
  • the total number of moles of the one or more compounds represented by the formula (200) used for the reaction is 0.8 to about the total number of moles of the one or more compounds represented by the formula (100).
  • the amount is preferably 1.2 mol, and more preferably 0.9 to 1.1 mol.
  • the boric acid ester residue means a group obtained by removing a hydroxyl group from a boric acid diester, and examples thereof include a dialkyl ester residue, a diaryl ester residue, and a di (arylalkyl) ester residue.
  • the borate ester residue the following formula: (In the formula, Me represents a methyl group, and Et represents an ethyl group.) The group represented by these is illustrated.
  • T 1 And T 2 The halogen atom is preferably a bromine atom or an iodine atom, more preferably a bromine atom.
  • T in equation (200) 1 And T 2 Is a sulfonic acid (-SO 3 H) means an atomic group obtained by removing acidic hydrogen from alkyl sulfonate group (for example, methane sulfonate group, ethane sulfonate group), aryl sulfonate group (for example, benzene sulfonate group, p-toluene sulfonate group).
  • the method for carrying out the Suzuki coupling reaction includes a method in which a reaction is carried out in the presence of a base using a palladium catalyst as a catalyst in an arbitrary solvent.
  • a palladium catalyst used in the Suzuki coupling reaction include a Pd (0) catalyst and a Pd (II) catalyst.
  • the addition amount of the palladium catalyst is not particularly limited as long as it is an effective amount as a catalyst, but is usually 0.0001 mol to 0.5 mol with respect to 1 mol of the compound represented by the formula (100). The amount is preferably 0.0003 mol to 0.1 mol.
  • a phosphorus compound such as triphenylphosphine, tri (o-tolyl) phosphine, tri (o-methoxyphenyl) phosphine is added as a ligand. can do.
  • the addition amount of the ligand is usually 0.5 mol to 100 mol, preferably 0.9 mol to 20 mol, more preferably 1 mol to 10 mol with respect to 1 mol of the palladium catalyst.
  • the base used for the Suzuki coupling reaction include inorganic bases, organic bases, inorganic salts and the like.
  • the inorganic base include potassium carbonate, sodium carbonate, and barium hydroxide.
  • the organic base include triethylamine and tributylamine.
  • An example of the inorganic salt is cesium fluoride.
  • the amount of the base added is usually 0.5 mol to 100 mol, preferably 0.9 mol to 20 mol, more preferably 1 mol to 10 mol, relative to 1 mol of the compound represented by the formula (100). is there.
  • the Suzuki coupling reaction is usually performed in a solvent.
  • the solvent include N, N-dimethylformamide, toluene, dimethoxyethane, and tetrahydrofuran. From the viewpoint of solubility of the polymer compound used in the present invention, toluene and tetrahydrofuran are preferred.
  • the base may be added as an aqueous solution and reacted in a two-phase system.
  • an inorganic salt When an inorganic salt is used as the base, it is usually added as an aqueous solution and reacted from the viewpoint of solubility of the inorganic salt.
  • phase transfer catalysts such as a quaternary ammonium salt, as needed.
  • the temperature at which the Suzuki coupling reaction is carried out depends on the solvent, but is usually about 50 to 160 ° C., and 60 to 120 ° C. is preferable from the viewpoint of increasing the molecular weight of the polymer compound. Alternatively, the temperature may be raised to near the boiling point of the solvent and refluxed.
  • the reaction time may be reached when the target degree of polymerization is reached, but is usually about 0.1 to 200 hours. About 1 to 30 hours is preferable from the viewpoint that the reaction proceeds efficiently.
  • the Suzuki coupling reaction is performed in a reaction system in which the Pd (0) catalyst is not deactivated under an inert atmosphere such as argon gas or nitrogen gas. For example, it is performed in a system sufficiently deaerated with argon gas or nitrogen gas.
  • the polymerization vessel was sufficiently replaced with nitrogen gas, degassed, and then degassed by adding a degassed solvent such as toluene by bubbling with nitrogen gas in advance.
  • a base degassed by bubbling with nitrogen gas in advance for example, an aqueous sodium carbonate solution, is dropped into this solution, and then heated and heated, for example, while maintaining an inert atmosphere at the reflux temperature for 8 hours. Polymerize.
  • the formula (300) U 3 -E 3 -U 4 (300) [Where E 3 Represents a divalent group containing an aromatic ring. U 3 And U 4 Each independently represents a substituted stannyl group. ] And a method of reacting one or more compounds represented by the formula (200) with one or more compounds represented by the formula (200) in the presence of a palladium catalyst.
  • E 3 Or E 2 Is a structural unit represented by the formula (1).
  • substituted stannyl group -SnR 100 3 The group etc. which are represented by these are mentioned.
  • Examples of the monovalent organic group include an alkyl group and an aryl group.
  • the carbon number of the alkyl group is usually 1 to 30, and specific examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl tomb, pentyl group, isopentyl Group, 2-methylbutyl group, 1-methylbutyl group, hexyl group, isohexyl group, 3-methylpentyl group, 2-methylpentyl group, 1-methylpentyl group, heptyl group, octyl group, isooctyl group, 2-ethylhexyl group, Examples thereof include chain alkyl groups such as nonyl group, decyl group, undecyl group, dodecyl group, tetradecyl group, hexadecyl tomb, octadecyl
  • Examples of the aryl group include a phenyl group and a naphthyl group.
  • the organotin residue is preferably -SnMe 3 , -SnEt 3 , -SnBu 3 , -SnPh 3 And more preferably -SnMe 3 , -SnEt 3 , -SnBu 3 It is.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group
  • Ph represents a phenyl group.
  • examples of the catalyst include a method of reacting in an arbitrary solvent under a palladium catalyst.
  • Examples of the palladium catalyst used in the Stille coupling reaction include Pd (0) catalyst, Pd (II) catalyst, and the like. Specifically, palladium [tetrakis (triphenylphosphine)], palladium acetates, dichlorobis (Triphenylphosphine) palladium, palladium acetate, tris (dibenzylideneacetone) dipalladium, bis (dibenzylideneacetone) palladium are mentioned. From the viewpoint of ease of reaction (polymerization) operation and reaction (polymerization) rate, palladium [ Tetrakis (triphenylphosphine)] and tris (dibenzylideneacetone) dipalladium are preferred.
  • the addition amount of the palladium catalyst used for the Stille coupling reaction is not particularly limited as long as it is an effective amount as a catalyst, but is usually 0.0001 per 1 mol of the compound represented by the formula (100). The amount is from mol to 0.5 mol, preferably from 0.0003 mol to 0.2 mol.
  • a ligand or a cocatalyst can be used as necessary.
  • the ligand include phosphorus compounds such as triphenylphosphine, tri (o-tolyl) phosphine, tri (o-methoxyphenyl) phosphine, tris (2-furyl) phosphine, triphenylarsine, and triphenoxyarsine.
  • Examples include arsenic compounds.
  • Examples of the cocatalyst include copper iodide, copper bromide, copper chloride, and copper (I) 2-thenoylate.
  • the amount of ligand or promoter added is usually 0.5 to 100 moles, preferably 0.9 to 20 moles per mole of palladium catalyst. More preferably, it is 1 mol to 10 mol.
  • the Stille coupling reaction is usually performed in a solvent. Examples of the solvent include N, N-dimethylformamide, N, N-dimethylacetamide, toluene, dimethoxyethane, and tetrahydrofuran.
  • the temperature at which the Stille coupling reaction is performed depends on the solvent, but is usually about 50 to 160 ° C., and preferably 60 to 120 ° C. from the viewpoint of increasing the molecular weight of the polymer compound. Alternatively, the temperature may be raised to near the boiling point of the solvent and refluxed.
  • the time for performing the reaction may be the end point when the target degree of polymerization is reached, but is usually about 0.1 to 200 hours. About 1 to 30 hours is preferable from the viewpoint that the reaction proceeds efficiently.
  • the Stille coupling reaction is performed in a reaction system in which the Pd catalyst is not deactivated under an inert atmosphere such as argon gas or nitrogen gas.
  • an inert atmosphere such as argon gas or nitrogen gas.
  • the polymerization vessel is charged with a compound represented by the formula (300), a compound represented by the formula (200), A palladium catalyst is charged, and the polymerization vessel is sufficiently replaced with nitrogen gas, degassed, and then bubbled with nitrogen gas in advance to add a degassed solvent, for example, toluene, and then coordinate as necessary.
  • the mixture After adding the catalyst and the cocatalyst, the mixture is heated and heated, for example, and polymerized while maintaining an inert atmosphere at the reflux temperature for 8 hours. If the polymerization active group remains at the end of the polymer compound that can be used in the photoelectric conversion device of the present invention, the properties and life of the device obtained when used in the production of the device may be reduced. It may be protected with a stable group.
  • the stable group is preferably a group having a conjugated bond continuous with the conjugated structure of the main chain.
  • the stable group may have a structure bonded to an aryl group or a heterocyclic group via a vinylene group.
  • Examples of the stable group include a phenyl group having no substituent, a naphthyl group, a methyl group, an ethyl group, a propyl group, a butyl group, a trifluoromethyl group, and a pentafluoroethyl group.
  • the compound used for the photoelectric conversion element of the present invention can be produced, for example, by polymerizing a compound represented by the formula (1-2) as one of raw materials. (Wherein R 1 , D 'ring, E' ring, W 1 And W 2 Has the same meaning as described above.
  • Specific examples of the aromatic heterocycle represented by the D ′ ring and the E ′ ring are the same as the specific examples of the aromatic heterocycle represented by the D ring and the E ring described above.
  • Specific examples of the substituent that the aromatic heterocycle represented by the D ′ ring and the E ′ ring may have include the aromatic heterocycle represented by the aforementioned D ring and E ring. It is the same as the specific example of a good substituent.
  • the D ′ ring and the E ′ ring are preferably a thiophene ring, a furan ring and a pyrrole ring, and more preferably a thiophene ring.
  • R 1 Is preferably an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted aryl group, an optionally substituted aryloxy group and an optionally substituted arylalkyl group.
  • An aryl group which may be substituted, an aryloxy group which may be substituted and an arylalkyl group which may be substituted are more preferable, and an aryl group is particularly preferable.
  • W in formula (1-2) 1 And W 2
  • the definition and specific examples of the boric acid ester residue represented by 1 And U 2 The definition and specific examples of the boric acid ester residue represented by W 1 And W 2
  • the definition and specific examples of the sulfonic acid residue represented by 1 And T 2 Are the same as the definitions and specific examples of the halogen atom and the sulfonic acid residue.
  • W 1 And W 2 The definition and specific examples of the substituted stannyl group represented by 3 And U 4 The definition and specific example of the substituted stannyl group represented by these are the same.
  • W 1 And W 2 The monohalogenated methyl group represented by the formula represents a group in which one hydrogen atom in the methyl group is substituted with a halogen atom.
  • W 1 And W 2 are each independently preferably a halogen atom, a sulfonic acid residue, a boric acid ester residue, a dihydroxyboryl group or a substituted stannyl group.
  • W in formula (1-2) 1 And W 2
  • a catalyst is usually used.
  • a known catalyst can be used.
  • the catalyst include a metal halide and a mixture of a metal halide and an amine complex (metal halide / amine complex).
  • metal halide examples include monovalent halides, divalent halides, and trivalent halides of metals such as copper, iron, vanadium, and chromium.
  • amine used for producing the amine complex examples include pyridine, lutidine, 2-methylimidazole, and N, N, N ′, N′-tetramethylethylenediamine.
  • a metal halide / amine complex can be prepared by mixing a metal halide and an amine in a solvent in the presence of oxygen. 1/0. It is about 1 to 1/200, preferably about 1 / 0.3 to 1/100.
  • iron chloride can also be used (Polym. Prep. Japan, Vol. 48, 309 (1999)).
  • any solvent can be used as long as the catalyst is not poisoned.
  • solvents include hydrocarbons, ethers, and alcohols.
  • hydrocarbon include toluene, benzene, xylene, trimethylbenzene, tetramethylbenzene, naphthalene, and tetralin.
  • ether examples include diethyl ether, diisopropyl ether, tetrahydrofuran, 1,4-dioxane, diphenyl ether, and tert-butyl methyl ether.
  • alcohols examples include methanol, ethanol, isopropanol, and 2-methoxyethanol.
  • the reaction temperature in oxidative polymerization is usually ⁇ 100 ° C. to 100 ° C., preferably ⁇ 50 to 50 ° C. Further, in the case of producing a copolymer, a method of polymerizing by mixing two or more types of monomers, a method of adding a second type of monomer after polymerizing one type of monomer, and the like can be mentioned.
  • the halogen atom represented by formula (1-2) is a halogen atom possessed by the D ′ ring and the E ′ ring, or W 1 And W 2
  • X 52 And X 53 Each independently represents a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom) or an optionally substituted alkoxy group.
  • X 52 And X 53 Are an optionally substituted alkoxy group, these may be linked to each other to form a ring.
  • X in formula (1-4) 52 And X 53 Specific examples of the optionally substituted alkoxy group represented by: 1 Are the same as the specific examples of the alkoxy group which may be substituted.
  • Examples of the base used in the reaction include lithium hydride, sodium hydride, potassium hydride, methyl lithium, butyl lithium (n-BuLi), tert-butyl lithium (tert-BuLi), phenyl lithium, lithium diisopropylamide, lithium hexa
  • Examples include methyl disilazide, sodium hexamethyl disilazide and potassium hexamethyl disilazide.
  • Solvents used in the reaction include saturated hydrocarbons such as pentane, hexane, heptane, octane and cyclohexane, unsaturated hydrocarbons such as benzene, toluene, ethylbenzene and xylene, carbon tetrachloride, chloroform, dichloromethane, chlorobutane and bromobutane.
  • Halogenated saturated hydrocarbons such as chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, halogenated unsaturated hydrocarbons such as chlorobenzene, dichlorobenzene, trichlorobenzene, methanol, ethanol, propanol, isopropanol, Alcohols such as butanol and tert-butyl alcohol, carboxylic acids such as formic acid, acetic acid and propionic acid, dimethyl ether, diethyl ether, methyl Ethers such as tert-butyl ether, tetrahydrofuran, tetrahydropyran, dioxane, trimethylamine, triethylamine, N, N, N ′, N′-tetramethylethylenediamine, amines such as pyridine, N, N-dimethylformamide, N, N,
  • Compound (C) which is one embodiment of the compound represented by Formula (1-2) can be produced, for example, by reacting Compound (B) with 2 equivalents of bromine in dichloromethane.
  • Compound (B) is obtained by reacting compound (A) with 2 equivalents of butyl lithium (n-BuLi) in tetrahydrofuran (hereinafter sometimes referred to as THF), and then 2,4,6-triisopropylphenyl.
  • Another method for producing the compound represented by the formula (1-2) includes a method of coupling the compound represented by the formula (1-5) in the molecule. (Wherein R 1 , W 1 , W 2 , D ′ ring and E ′ ring have the same meaning as described above.
  • X 54 And X 55 Represents a halogen atom (for example, a chlorine atom, a bromine atom and an iodine atom). ) X 54 And X 55 The halogen atom represented by is preferably a bromine atom or an iodine atom.
  • Intramolecular coupling is preferably performed in the presence of a metal. Examples of the metal include copper, iron, nickel, zinc, and the like, preferably copper. Examples of the solvent used for intramolecular coupling include aliphatic hydrocarbons, aromatic hydrocarbons, amides, sulfoxides, and lactams.
  • Examples of the aliphatic hydrocarbon include pentane, hexane, heptane, octane and cyclohexane.
  • Examples of the aromatic hydrocarbon include benzene, toluene, ethylbenzene, and xylene.
  • Examples of the amide include N, N-dimethylformamide, N, N-dimethylacetamide and N, N-diethylacetamide.
  • Examples of the sulfoxide include dimethyl sulfoxide. As a lactam, N-methylpyrrolidone is mentioned, for example.
  • the product After the reaction, for example, after adding water to the reaction system to stop the reaction, the product can be obtained by usual post-treatment such as extracting the product with an organic solvent and distilling off the solvent.
  • the product can be isolated and purified by methods such as chromatographic fractionation and recrystallization.
  • the compound represented by the formula (1-5) can be obtained, for example, by halogenating (for example, bromination or iodination) the compound represented by the formula (1-6). (Wherein R 1 , W 1 , W 2 , D ′ ring and E ′ ring have the same meaning as described above.
  • the compound represented by the formula (1-6) is brominated to form X 54 And X 55
  • a known method can be used as a bromination method, for example, represented by the formula (1-6) And bromination by bringing the compound into contact with bromine or N-bromosuccinimide (NBS).
  • NBS N-bromosuccinimide
  • the conditions for bromination can be arbitrarily set, but the method of reacting with NBS in a solvent is desirable from the viewpoint of high bromination rate and high selectivity of the bromine atom introduction position.
  • the solvent used in the method include N, N-dimethylformamide, chloroform, methylene chloride, carbon tetrachloride and the like.
  • the reaction time is usually about 1 minute to 10 hours, and the reaction temperature is usually about ⁇ 50 ° C. to 50 ° C.
  • the amount of bromine used is preferably about 1 mol to 5 mol with respect to 1 mol of the compound represented by the formula (1-6).
  • the product is extracted with an organic solvent and subjected to usual post-treatment such as evaporation of the solvent.
  • 52 And X 53 A compound represented by the formula (1-5) in which is a bromine atom can be obtained.
  • the product can be isolated and purified by a method such as chromatographic fractionation or recrystallization.
  • X is obtained by iodination of the compound represented by formula (1-6) 54 And X 55
  • the method for iodination is to react the compound represented by the formula (1-6) with a base and then react with iodine.
  • a method is mentioned.
  • the base and solvent used in the method are used in the step of reacting the compound represented by the above formula (1-3) with a base and then reacting with the boron compound represented by the formula (1-4). The same thing as a base and a solvent is mentioned.
  • the compound represented by the formula (1-6) is represented by the above formula (1-4) after reacting a halide containing an aromatic heterocycle corresponding to the D ′ ring and the E ′ ring with a base. It can be produced by reacting with a compound to be prepared.
  • the base and solvent used in the reaction are used in the step of reacting the compound represented by the above formula (1-3) with a base and then reacting with the boron compound represented by the formula (1-4).
  • the same thing as a base and a solvent is mentioned.
  • Compound (G) can be produced, for example, by adding 5 equivalents of copper powder to compound (F) in N, N-dimethylformamide and stirring at 100 ° C. with heating.
  • Compound (F) can be produced by reacting compound (E) with 2 equivalents of n-BuLi in THF and then reacting 2 equivalents of iodine.
  • Compound (E) can be produced by reacting compound (D) with 2 equivalents of n-BuLi in THF and then reacting 1 equivalent of 2,4,6-triisopropylphenyldimethoxyborane.
  • W 1 And W 2 As a method for producing a compound represented by the formula (1-2) in which is a bromine atom, W 1 And W 2 Bromine a compound represented by the formula (1-2) in which is hydrogen atom 1 And W 2 And the like, and the like.
  • a known method can be used as a method for converting benzene into a bromine atom. 1 And W 2 And bromine by bringing a compound represented by the formula (1-2) in which is a hydrogen atom into contact with bromine or N-bromosuccinimide (NBS).
  • the conditions for bromination can be arbitrarily set. For example, a method of reacting with NBS in a solvent is desirable because the bromination rate is high and the selectivity of the introduction position of bromine atoms is high.
  • the solvent used at this time include N, N-dimethylformamide, chloroform, methylene chloride, and carbon tetrachloride.
  • the reaction time is usually about 1 minute to 10 hours, and the reaction temperature is usually about ⁇ 50 ° C. to 50 ° C.
  • the amount of bromine used is W 1 , W 2 Is preferably about 1 mol to 5 mol with respect to 1 mol of the compound represented by the formula (1-2) in which is a hydrogen atom.
  • W 1 , W 2 Is preferably about 1 mol to 5 mol with respect to 1 mol of the compound represented by the formula (1-2) in which is a hydrogen atom.
  • W 2 A compound represented by the formula (1-2) in which is a bromine atom can be obtained.
  • the product can be isolated and purified by a method such as chromatographic fractionation or recrystallization.
  • the polymer compound that can be used in the present invention preferably has a long wavelength at the light absorption terminal wavelength.
  • the light absorption terminal wavelength in the present invention means a value obtained by the following method.
  • a spectrophotometer for example, JASCO-V670, made by JASCO Corporation
  • JASCO-V670 operating in the wavelength region of ultraviolet, visible, and near infrared
  • the measurement is performed in the wavelength range.
  • the absorption spectrum of the substrate used for measurement is measured.
  • a quartz substrate, a glass substrate, or the like is used.
  • a thin film containing the first compound is formed on the substrate from a solution containing the first compound or a melt containing the first compound.
  • film formation from a solution drying is performed after film formation.
  • an absorption spectrum of the laminate of the thin film and the substrate is obtained.
  • the difference between the absorption spectrum of the laminate of the thin film and the substrate and the absorption spectrum of the substrate is obtained as the absorption spectrum of the thin film.
  • the vertical axis represents the absorbance of the compound
  • the horizontal axis represents the wavelength. It is desirable to adjust the thickness of the thin film so that the absorbance at the largest absorption peak is about 0.5 to 2.
  • the absorbance of the absorption peak with the longest wavelength among the absorption peaks is defined as 100%, and the intersection of the absorption peak and a straight line parallel to the horizontal axis (wavelength axis) including the absorbance of 50% of the absorption peak.
  • the intersection point that is longer than the peak wavelength is taken as the first point.
  • the intersection point between the absorption peak and a straight line parallel to the wavelength axis containing 25% of the absorbance, which is longer than the peak wavelength of the absorption peak, is defined as a second point.
  • the intersection of the straight line connecting the first point and the second point and the reference line is defined as the light absorption terminal wavelength.
  • the reference line is the intersection of the absorption peak and the straight line parallel to the wavelength axis including the absorbance of 10% at the absorption peak of the longest wavelength, where the absorbance of the absorption peak is 100%.
  • the third point on the absorption spectrum that is 100 nm longer than the reference wavelength and the absorption spectrum that is 150 nm longer than the reference wavelength with reference to the wavelength of the intersection that is longer than the peak wavelength of the absorption peak A straight line connecting the top and the fourth point.
  • the photoelectric conversion element of the present invention has one or more active layers containing a compound having a structural unit represented by the formula (1) between a pair of electrodes at least one of which is transparent or translucent.
  • the photoelectric conversion element of the present invention has an active layer formed of a pair of electrodes, at least one of which is transparent or translucent, and an organic composition of a p-type organic semiconductor and an n-type organic semiconductor. .
  • the compound having the structural unit represented by the formula (1) is preferably used as a p-type organic semiconductor.
  • the photoelectric conversion element of the present invention is usually formed on a substrate.
  • the substrate may be any substrate that does not chemically change when the electrodes are formed and the organic layer is formed. Examples of the material for the substrate include glass, plastic, polymer film, and silicon.
  • the opposite electrode that is, the electrode far from the substrate is preferably transparent or translucent.
  • a first active layer containing the compound used in the present invention is adjacent to the first active layer between a pair of electrodes, at least one of which is transparent or translucent.
  • the photoelectric conversion element includes a second active layer containing an electron-accepting compound such as a fullerene derivative.
  • the transparent or translucent electrode material include a conductive metal oxide film and a translucent metal thin film.
  • ITO indium tin oxide
  • gold, platinum, silver, copper, or the like is used, and ITO, indium / zinc / oxide, and tin oxide are preferable.
  • the method for producing the electrode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like.
  • organic transparent conductive films such as polyaniline and its derivative (s), polythiophene, and its derivative (s) as an electrode material.
  • One electrode may not be transparent, and as the electrode material of the electrode, a metal, a conductive polymer, or the like can be used.
  • the electrode material include metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and the like.
  • one or more alloys selected from the group consisting of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, and tin.
  • Examples include alloys with metals, graphite, graphite intercalation compounds, polyaniline and derivatives thereof, and polythiophene and derivatives thereof.
  • Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
  • An additional intermediate layer other than the active layer may be used as a means for improving the photoelectric conversion efficiency.
  • Examples of the material used for the intermediate layer include alkali metals such as lithium fluoride, halides of alkaline earth metals, oxides such as titanium oxide, and PEDOT (poly-3,4-ethylenedioxythiophene).
  • the active layer may contain the compound having the structural unit represented by the formula (1) alone or in combination of two or more.
  • a compound other than the compound having the structural unit represented by the formula (1) is mixed as an electron donating compound and / or an electron accepting compound in the active layer. Can also be used.
  • the electron-donating compound and the electron-accepting compound are relatively determined from the energy levels of these compounds.
  • the electron-donating compound in addition to the compound having the structural unit represented by the formula (1), for example, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinylcarbazole and Derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having aromatic amine residues in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, polythienylene vinylene And derivatives thereof.
  • the electron-accepting compound in addition to the compound having the structural unit represented by the formula (1), for example, carbon materials, metal oxides such as titanium oxide, oxadiazole derivatives, anthraquinodimethane and derivatives thereof, Benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, diphenyldicyanoethylene and its derivatives, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and its derivatives, polyquinoline And derivatives thereof, polyquinoxaline and derivatives thereof, polyfluorene and derivatives thereof, phenanthroline derivatives such as 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (bathocuproine), fullerene, hula Include alkylene derivatives, preferably, titanium oxide, carbon nanotubes, fuller
  • the fullerene derivative represents a compound in which at least a part of fullerene is modified.
  • Examples of the fullerene derivative include a compound represented by formula (I), a compound represented by formula (II), a compound represented by formula (III), and a compound represented by formula (IV).
  • R a Is an alkyl group which may be substituted, an aryl group which may be substituted, a heteroaryl group or a group having an ester structure. Multiple R a May be the same or different.
  • R b Represents an optionally substituted alkyl group or an optionally substituted aryl group. Multiple R b May be the same or different.
  • R a And R b Definitions and specific examples of the optionally substituted alkyl group and the optionally substituted aryl group represented by 1 The definition and specific examples of the alkyl group which may be substituted and the aryl group which may be substituted are the same.
  • R a Examples of the group having an ester structure represented by the formula (V) include a group represented by the formula (V). (Wherein u1 represents an integer of 1 to 6, u2 represents an integer of 0 to 6, R c Represents an optionally substituted alkyl group, an optionally substituted aryl group or heteroaryl group. ) R c Definitions and specific examples of the optionally substituted alkyl group, the optionally substituted aryl group and the heteroaryl group represented by a The definition and specific examples of the alkyl group which may be substituted, the aryl group and the heteroaryl group which may be substituted are the same. C 60 Specific examples of the derivatives include the following. C 70 Specific examples of the derivatives include the following.
  • fullerene derivatives include [6,6] phenyl-C61 butyric acid methyl ester (C60PCBM, [6,6] -phenyl C61 butyric acid methyl ester), [6,6] phenyl-C71 butyric acid methyl ester (C70PCBM). [6,6] -Phenyl C71 butyric acid methyl ester), [6,6] Phenyl-C85 butyric acid methyl ester (C84PCBM, [6,6] -Phenyl C85 butyric acid methyl ester), [6,6] And C61 butyric acid methyl ester ([6,6] -Thienyl C61 butyric acid methyl ester).
  • the ratio of the fullerene derivative is preferably 10 to 1000 parts by weight with respect to 100 parts by weight of the compound. 20 to 500 parts by weight is more preferable.
  • the thickness of the active layer is usually preferably 1 nm to 100 ⁇ m, more preferably 2 nm to 1000 nm, still more preferably 5 nm to 500 nm, and more preferably 20 nm to 200 nm.
  • the method for producing the active layer may be produced by any method, and examples thereof include film formation from a solution containing a compound having the structural unit of formula (1), and film formation by vacuum deposition.
  • a preferred method for producing a photoelectric conversion element is a method for producing an element having a first electrode and a second electrode, and having an active layer between the first electrode and the second electrode, Applying a solution (ink) containing a compound having the structural unit of formula (1) and a solvent on the first electrode by a coating method to form an active layer; and forming a second electrode on the active layer It is the manufacturing method of the element which has the process to form.
  • the photoelectric conversion element of the present invention contains a polymer compound having the structural unit represented by the formula (1)
  • the solvent used for film formation from a solution dissolves the polymer compound used in the present invention. If it is.
  • solvent examples include unsaturated hydrocarbons such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, sec-butylbenzene, tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane, dichloroethane.
  • unsaturated hydrocarbons such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, sec-butylbenzene, tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane, dichloroethane.
  • Halogenated saturated hydrocarbons such as chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, halogenated unsaturated hydrocarbons such as chlorobenzene, dichlorobenzene, trichlorobenzene, tetrahydrofuran, tetrahydropyran And ethers.
  • the polymer compound used in the present invention can usually be dissolved in the solvent in an amount of 0.1% by weight or more.
  • slit coating method, knife coating method, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, Spray coating method, screen printing method, gravure printing method, flexographic printing method, offset printing method, ink jet coating method, dispenser printing method, nozzle coating method, capillary coating method etc. can be used, slit coating method, capillary A coating method, a gravure coating method, a micro gravure coating method, a bar coating method, a knife coating method, a nozzle coating method, an inkjet coating method, and a spin coating method are preferable. From the viewpoint of film formability, the surface tension of the solvent at 25 ° C.
  • the compound used in the present invention can also be used in an organic thin film transistor.
  • the organic thin film transistor has a configuration including a source electrode and a drain electrode, an organic semiconductor layer (active layer) serving as a current path between these electrodes, and a gate electrode for controlling the amount of current passing through the current path.
  • the organic semiconductor layer is constituted by the organic thin film described above. Examples of such an organic thin film transistor include a field effect type and an electrostatic induction type.
  • a field effect organic thin film transistor includes a source electrode and a drain electrode, an organic semiconductor layer (active layer) serving as a current path between them, a gate electrode for controlling the amount of current passing through the current path, and an organic semiconductor layer and a gate electrode It is preferable to provide an insulating layer disposed between the two.
  • the source electrode and the drain electrode are preferably provided in contact with the organic semiconductor layer (active layer), and the gate electrode is preferably provided with an insulating layer in contact with the organic semiconductor layer interposed therebetween.
  • the organic semiconductor layer is constituted by an organic thin film containing the polymer compound used in the present invention.
  • the electrostatic induction organic thin film transistor which is one embodiment of the organic thin film transistor of the present invention controls a source electrode and a drain electrode, an organic semiconductor layer (active layer) serving as a current path between them, and an amount of current passing through the current path. It is preferable to have a gate electrode, and this gate electrode is provided in the organic semiconductor layer. In particular, it is preferably provided in contact with the source electrode and the drain electrode.
  • the structure of the gate electrode may be a structure in which a current path flowing from the source electrode to the drain electrode is formed and the amount of current flowing through the current path can be controlled by a voltage applied to the gate electrode. An electrode is mentioned.
  • the organic semiconductor layer is composed of an organic thin film containing the compound used in the present invention.
  • the thickness of the active layer is usually preferably 1 nm to 100 ⁇ m, more preferably 2 nm to 1000 nm, still more preferably 5 nm to 500 nm, more preferably 20 nm to 200 nm.
  • the photoelectric conversion element of the present invention can be operated as an organic thin film solar cell by generating a photovoltaic force between the electrodes by irradiating light such as sunlight from a transparent or translucent electrode. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.
  • Organic thin-film solar cells can have basically the same module structure as conventional solar cell modules.
  • the solar cell module generally has a structure in which cells are formed on a support substrate such as metal or ceramic, and the cell is covered with a filling resin or protective glass, and light is taken in from the opposite side of the support substrate. It is also possible to use a transparent material such as tempered glass for the support substrate, configure a cell thereon, and take in light from the transparent support substrate side.
  • a module structure called a super straight type, a substrate type, and a potting type, a substrate integrated module structure used in an amorphous silicon solar cell, and the like are known.
  • the module structure of the organic thin film solar cell of the present invention can be appropriately selected depending on the purpose of use, the place of use and the environment.
  • a typical super straight type or substrate type module cells are arranged at regular intervals between support substrates that are transparent on one or both sides and subjected to antireflection treatment, and adjacent cells are connected by metal leads or flexible wiring.
  • the current collector electrode is connected to the outer edge portion, and the generated power is taken out to the outside.
  • Various types of plastic materials such as ethylene vinyl acetate (EVA) may be used between the substrate and the cell in the form of a film or a filling resin depending on the purpose in order to protect the cell and improve the current collection efficiency.
  • EVA ethylene vinyl acetate
  • the surface protection layer is made of a transparent plastic film, or the protective function is achieved by curing the filling resin. It is possible to eliminate the supporting substrate on one side.
  • the periphery of the support substrate is fixed in a sandwich shape with a metal frame in order to ensure internal sealing and module rigidity, and the support substrate and the frame are hermetically sealed with a sealing material.
  • a solar cell can be formed on the curved surface.
  • a solar cell using a flexible support such as a polymer film
  • cells are sequentially formed while feeding out a roll-shaped support, cut to a desired size, and then the periphery is sealed with a flexible and moisture-proof material.
  • the battery body can be produced.
  • a module structure called “SCAF” described in Solar Energy Materials and Solar Cells, 48, p383-391 may be used.
  • a solar cell using a flexible support can be used by being bonded and fixed to a curved glass or the like.
  • the flask was warmed to room temperature over 1 hour, and 50 mL of water was added to stop the reaction. Thereafter, ethyl acetate was added to the reaction solution to extract an organic layer containing the reaction product, the extracted organic layer was dried over sodium sulfate, filtered, and then the solvent was distilled off with an evaporator to obtain a crude product.
  • the obtained crude product is purified by a silica gel column whose developing solvent is hexane, and the obtained solid is recrystallized using ethanol to obtain the desired 3,3′-dibromo-5,5′-tetramethylsilyl- 3.5 g of 2,2′-bithiophene (1) was obtained.
  • reaction solution was stirred at ⁇ 10 ° C. for 1 hour, then stirred at 0 ° C. for 2 hours, and then stirred at 20 ° C. for 4 hours.
  • Example 2 Measurement of ionization potential of organic thin film
  • Polymer A was dissolved in o-dichlorobenzene at a concentration of 1.0% by weight to prepare a coating solution.
  • the obtained coating solution was applied onto a glass substrate by spin coating. The coating operation was performed at 23 ° C.
  • the organic thin film obtained was measured using an atmospheric photoelectron spectrometer (AC-2, manufactured by Riken Keiki Co., Ltd.), the ionization potential was 5.2 eV. Since the ionization potential of the polymer A is high, the open-circuit voltage of the organic photoelectric conversion element including the polymer A in the active layer is high.
  • polymer B After removing the aqueous layer, the organic layer was washed twice with 20 ml of water, then twice with 20 mL of 3% by weight acetic acid aqueous solution, and further washed twice with 20 mL of water. The resulting solution was poured into methanol. A polymer was precipitated. The polymer was filtered and dried, and the obtained polymer was redissolved in 30 mL of o-dichlorobenzene, passed through an alumina / silica gel column, and the resulting solution was poured into methanol to precipitate the polymer. The polymer was filtered and dried to obtain 280 mg of a purified polymer. Hereinafter, this polymer is referred to as polymer B.
  • Comparative Example 1 Measurement of ionization potential of organic thin film
  • Polymer B was dissolved in o-dichlorobenzene at a concentration of 1.0% by weight to prepare a coating solution.
  • the obtained coating solution was applied onto a glass substrate by spin coating.
  • the coating operation was performed at 23 ° C.
  • the ionization potential of the organic thin film obtained using an atmospheric photoelectron spectrometer (AC-2 manufactured by Riken Keiki Co., Ltd.) was measured, the ionization potential was 5.0 eV.
  • the photoelectric conversion element of the present invention has a high open end voltage and is useful.

Abstract

A useful photoelectric conversion element that has a high open-circuit voltage. Said photoelectric conversion element has a first electrode, a second electrode, and an active layer between said first and second electrodes. Said active layer contains an organic compound containing a constitutional unit represented by formula (1). (In the formula, R1 represents a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an aryl alkyl group, an aryl alkoxy group, an aryl alkylthio group, an aryl alkenyl group, an aryl alkynyl group, an amino group, a substituted amino group, a silyl group, a substituted silyl group, a silyloxy group, a substituted silyloxy group, a heterocyclic group, an acyl group, an acyloxy group, an amide group, a carboxyl group, a nitro group, or a cyano group; and each of rings D and E independently represent an aromatic ring that may have a substituent.)

Description

光電変換素子Photoelectric conversion element
 本発明は、特定の構造を有する有機化合物を用いた光電変換素子に関する。 The present invention relates to a photoelectric conversion element using an organic compound having a specific structure.
 近年、地球温暖化防止のため、大気中に放出されるCOの削減が求められている。例えば、家屋の屋根にpn接合型のシリコン系太陽電池などを用いるソーラーシステムへの切り替えが提唱されているが、上記シリコン系太陽電池に用いられる単結晶、多結晶及びアモルファスシリコンは、その製造過程において高温、高真空条件が必要であるという問題がある。
 一方、有機化合物を含む活性層を有する光電変換素子は、シリコン系太陽電池の製造プロセスに用いられる高温、高真空プロセスが省略でき、塗布プロセスのみで安価に製造できる可能性があり、近年注目されてきている。光電変換素子としては、繰り返し単位(A)及び繰り返し単位(B)からなる高分子化合物を含む有機層を有する光電変換素子がある(WO2007/011739)。
Figure JPOXMLDOC01-appb-I000007
 しかしながら、該光電変換素子は、開放端電圧が十分に高くはない。
In recent years, in order to prevent global warming, reduction of CO 2 released into the atmosphere has been demanded. For example, it has been proposed to switch to a solar system using a pn-junction type silicon solar cell on the roof of a house. The single crystal, polycrystalline and amorphous silicon used in the silicon solar cell are manufactured in the process of However, there is a problem that high temperature and high vacuum conditions are required.
On the other hand, a photoelectric conversion element having an active layer containing an organic compound can omit the high-temperature and high-vacuum process used in the production process of silicon-based solar cells, and can be manufactured at low cost only by a coating process. It is coming. As a photoelectric conversion element, there is a photoelectric conversion element having an organic layer containing a polymer compound composed of a repeating unit (A) and a repeating unit (B) (WO2007 / 011739).
Figure JPOXMLDOC01-appb-I000007
However, the photoelectric conversion element does not have a sufficiently high open end voltage.
 本発明は、開放端電圧が高い光電変換素子を提供する。
 即ち、本発明は以下の通りである。
1.第1の電極と第2の電極とを有し、該第1の電極と該第2の電極との間に活性層を有し、該活性層に式(1)で表される構成単位を含む有機化合物を含有する光電変換素子。
Figure JPOXMLDOC01-appb-I000008
(式中、Rは、水素原子、ハロゲン原子(フッ素原子、塩素原子、臭素原子及びヨウ素原子)、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルキルチオ基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基、置換されていてもよいアリールアルキルチオ基、置換されていてもよいアリールアルケニル基、置換されていてもよいアリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、複素環基、アシル基、アシルオキシ基、アミド基、カルボキシル基、ニトロ基又はシアノ基を表す。D環及びE環は、それぞれ独立に、置換基を有していてもよい芳香環を表す。)
2.有機化合物が、さらに式(A−1)で表される構成単位、式(B−1)で表される構成単位、式(C−1)で表される構成単位、式(D−1)で表される構成単位及び式(E−1)で表される構成単位からなる群1から選ばれる少なくとも1種の構成単位を含有する前記光電変換素子。
(群1)
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
(式(A−1)~(E−1)中、Qは、硫黄原子、酸素原子、セレン原子、−N(R30)−又は−CR31=CR32−を表す。R30、R31及びR32は、それぞれ独立に、水素原子又は置換基を表す。R20~R25は、それぞれ独立に、水素原子又は置換基を表す。R20とR21は、連結して環状構造を形成してもよい。G環~N環は、それぞれ独立に、置換基を有していてもよい芳香環を表す。)
3.前記1.又は2.の光電変換素子を含む太陽電池モジュール。
4.前記1.又は2.の光電変換素子を含むイメージセンサー。
5.ゲート電極と、ソース電極と、ドレイン電極と、活性層とを有し、該活性層に式(1)で表される構成単位を含む有機化合物を含有する有機薄膜トランジスタ。
6.式(1−1)
Figure JPOXMLDOC01-appb-I000011
(式中、Rは、水素原子、ハロゲン原子、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルキルチオ基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基、置換されていてもよいアリールアルキルチオ基、置換されていてもよいアリールアルケニル基、置換されていてもよいアリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、複素環基、アシル基、アシルオキシ基、アミド基、カルボキシル基、ニトロ基又はシアノ基を示す。D’’環及びE’’環は、それぞれ独立に、置換基を有していてもよいチオフェン環を表す。)
で表される構成単位を含み、かつ、上述の式(A−1)で表される構成単位、式(B−1)で表される構成単位、式(C−1)で表される構成単位、式(D−1)で表される構成単位及び式(E−1)で表される構成単位からなる群1から選ばれる少なくとも1種の構成単位を有する高分子化合物。
7.式(1−2)で表される化合物。
Figure JPOXMLDOC01-appb-I000012
(式中、Rは、水素原子、ハロゲン原子、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルキルチオ基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基、置換されていてもよいアリールアルキルチオ基、置換されていてもよいアリールアルケニル基、置換されていてもよいアリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、複素環基、アシル基、アシルオキシ基、アミド基、カルボキシル基、ニトロ基又はシアノ基を示す。D’環及びE’環は、それぞれ独立に、置換基を有していてもよい芳香族複素環を表す。W及びWは、それぞれ独立に、水素原子、ハロゲン原子、スルホン酸残基、ホウ酸エステル残基、モノハロゲン化メチル基、ジヒドロキシボリル基、ホルミル基、ビニル基又は置換スタンニル基を表す。)
The present invention provides a photoelectric conversion element having a high open-circuit voltage.
That is, the present invention is as follows.
1. A first electrode and a second electrode; an active layer between the first electrode and the second electrode; and a structural unit represented by formula (1) in the active layer: A photoelectric conversion element containing an organic compound.
Figure JPOXMLDOC01-appb-I000008
(In the formula, R 1 is a hydrogen atom, a halogen atom (a fluorine atom, a chlorine atom, a bromine atom and an iodine atom), an optionally substituted alkyl group, an optionally substituted alkoxy group, or an optionally substituted atom. A good alkylthio group, an optionally substituted aryl group, an optionally substituted aryloxy group, an optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy Group, arylalkylthio group which may be substituted, arylalkenyl group which may be substituted, arylalkynyl group which may be substituted, amino group, substituted amino group, silyl group, substituted silyl group, silyloxy group, substituted Silyloxy group, heterocyclic group, acyl group, acyloxy group, amide group, carboxyl group, nitro group or Represents an ano group, and the D ring and the E ring each independently represent an aromatic ring optionally having a substituent.)
2. The organic compound is further a structural unit represented by the formula (A-1), a structural unit represented by the formula (B-1), a structural unit represented by the formula (C-1), and the formula (D-1). The said photoelectric conversion element containing the at least 1 sort (s) of structural unit chosen from the group 1 which consists of the structural unit represented by and the structural unit represented by Formula (E-1).
(Group 1)
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
(In formulas (A-1) to (E-1), Q 1 represents a sulfur atom, an oxygen atom, a selenium atom, —N (R 30 ) — or —CR 31 ═CR 32 —. R 30 , R 31 and R 32 each independently represents a hydrogen atom or a substituent, R 20 to R 25 each independently represents a hydrogen atom or a substituent, and R 20 and R 21 are linked to form a cyclic structure. (G ring to N ring each independently represents an aromatic ring which may have a substituent.)
3. 1 above. Or 2. Solar cell module including a photoelectric conversion element.
4). 1 above. Or 2. Image sensor including a photoelectric conversion element.
5. An organic thin film transistor having a gate electrode, a source electrode, a drain electrode, and an active layer, and containing an organic compound containing a structural unit represented by formula (1) in the active layer.
6). Formula (1-1)
Figure JPOXMLDOC01-appb-I000011
Wherein R 1 is a hydrogen atom, a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkylthio group, an optionally substituted aryl group, Aryloxy group which may be substituted, arylthio group which may be substituted, arylalkyl group which may be substituted, arylalkoxy group which may be substituted, arylalkylthio group which may be substituted, substituted Arylalkenyl group which may be substituted, arylalkynyl group which may be substituted, amino group, substituted amino group, silyl group, substituted silyl group, silyloxy group, substituted silyloxy group, heterocyclic group, acyl group, acyloxy group, Represents an amide group, a carboxyl group, a nitro group or a cyano group, wherein the D ″ ring and the E ″ ring are each independently May have a substituent represents an thiophene ring.)
And a structural unit represented by the above formula (A-1), a structural unit represented by the formula (B-1), and a structure represented by the formula (C-1). A polymer compound comprising at least one structural unit selected from the group consisting of a unit, a structural unit represented by the formula (D-1), and a structural unit represented by the formula (E-1).
7. A compound represented by formula (1-2).
Figure JPOXMLDOC01-appb-I000012
Wherein R 1 is a hydrogen atom, a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkylthio group, an optionally substituted aryl group, Aryloxy group which may be substituted, arylthio group which may be substituted, arylalkyl group which may be substituted, arylalkoxy group which may be substituted, arylalkylthio group which may be substituted, substituted Arylalkenyl group which may be substituted, arylalkynyl group which may be substituted, amino group, substituted amino group, silyl group, substituted silyl group, silyloxy group, substituted silyloxy group, heterocyclic group, acyl group, acyloxy group, An amide group, a carboxyl group, a nitro group or a cyano group, each of the D ′ ring and the E ′ ring independently; .W 1 and W 2 representing an aromatic heterocyclic ring optionally having a substituent are each independently a hydrogen atom, a halogen atom, a sulfonic acid residue, a boric acid ester residue, a monohalogenated methyl group, (Represents a dihydroxyboryl group, a formyl group, a vinyl group or a substituted stannyl group.)
 以下、本発明を詳細に説明する。
 本発明の光電変換素子は第1の電極と第2の電極とを有し、該第1の電極と該第2の電極との間に活性層を有し、該活性層に上述の式(1)で表される構成単位を含む有機化合物を含有する。
 式(1)において、Rで表されるアルキル基は、直鎖状でも分岐状でもよく、環状であってもよい。アルキル基は置換基を有していてもよい。アルキル基が有していてもよい置換基としては、ハロゲン原子が挙げられる。アルキル基の炭素数は、通常1~30である。アルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル墓、ペンチル基、イソペンチル基、2−メチルブチル基、1−メチルブチル基、ヘキシル基、イソヘキシル基、3−メチルペンチル基、2−メチルペンチル基、1−メチルペンチル基、ヘプチル基、オクチル基、イソオクチル基、2−エチルヘキシル基、3,7−ジメチルオクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、テトラデシル基、ヘキサデシル墓、オクタデシル基、エイコシル基等の鎖状アルキル基、シクロペンチル基、シクロヘキシル基、アダマンチル基等のシクロアルキル基が挙げられる。
 アルコキシ基のアルキル部分は、直鎖状でも分岐状でもよく、環状であってもよい。アルコキシ基の炭素数は、通常1~20であり、アルコキシ基は置換基を有していてもよい。アルコキシ基が有していてもよい置換基としては、ハロゲン原子及びアルコキシ基(例えば、炭素数1~20)が挙げられる。置換されていてもよいアルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7−ジメチルオクチルオキシ基、ラウリルオキシ基、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシルオキシ基、パーフルオロオクチルオキシ基、メトキシメチルオキシ基及び2−メトキシエチルオキシ基が挙げられる。
 アルキルチオ基のアルキル部分は、直鎖状でも分岐状でもよく、環状であってもよい。アルキルチオ基の炭素数は、通常1~20であり、アルキルチオ基は置換基を有していてもよい。アルキルチオ基が有していてもよい置換基としては、ハロゲン原子が挙げられる。置換されていてもよいアルキルチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、tert−ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、2−エチルヘキシルチオ基、ノニルチオ基、デシルチオ基、3,7−ジメチルオクチルチオ基、ラウリルチオ基及びトリフルオロメチルチオ基が挙げられる。
 アリール基とは、芳香族炭化水素から芳香環上の水素原子1個を除いた基を意味し、その炭素数は通常6~60である。アリール基は、置換基を有していてもよく、置換基としては、ハロゲン原子及び置換されていてもよいアルコキシ基が挙げられる。置換されていてもよいアルコキシ基の具体例は、Rで表される置換されていてもよいアルコキシ基の具体例と同じである。置換されていてもよいアリール基の具体例としては、フェニル基、C1~C12アルコキシフェニル基、C1~C12アルキルフェニル基、1−ナフチル基、2−ナフチル基及びペンタフルオロフェニル基が挙げられる。
 アリールオキシ基は、その炭素数が通常6~60であり、アリール部分が置換基を有していてもよい。置換基としては、ハロゲン原子及び置換されていてもよいアルコキシ基が挙げられる。置換されていてもよいアルコキシ基の具体例は、Rで表される置換されていてもよいアルコキシ基の具体例と同じである。置換されていてもよいアリールオキシ基の具体例としては、フェノキシ基、C1~C12アルコキシフェノキシ基、C1~C12アルキルフェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基及びペンタフルオロフェノキシ基が挙げられる。
 アリールチオ基は、その炭素数が通常6~60であり、アリール部分が置換基を有していてもよい。置換基としては、ハロゲン原子及び置換されていてもよいアルコキシ基が挙げられる。置換されていてもよいアルコキシ基の具体例は、Rで表される置換されていてもよいアルコキシ基の具体例と同じである。置換されていてもよいアリールチオ基の具体例としては、フェニルチオ基、C1~C12アルコキシフェニルチオ基、C1~C12アルキルフェニルチオ基、1−ナフチルチオ基、2−ナフチルチオ基及びペンタフルオロフェニルチオ基が挙げられる。
 アリールアルキル基は、その炭素数が通常7~60であり、アリール部分が置換基を有していてもよい。置換基としては、ハロゲン原子及び置換されていてもよいアルコキシ基が挙げられる。置換されていてもよいアルコキシ基の具体例は、Rで表されるハロゲン原子及び置換されていてもよいアルコキシ基の具体例と同じである。置換されていてもよいアリールアルキル基の具体例としては、フェニル−C1~C12アルキル基、C1~C12アルコキシフェニル−C1~C12アルキル基、C1~C12アルキルフェニル−C1~C12アルキル基、1−ナフチル−C1~C12アルキル基及び2−ナフチル−C1~C12アルキル基が挙げられる。
 アリールアルコキシ基は、その炭素数が通常7~60であり、アリール部分が置換基を有していてもよい。置換基としては、ハロゲン原子及び置換されていてもよいアルコキシ基が挙げられる。置換されていてもよいアルコキシ基の具体例は、Rで表される置換されていてもよいアルコキシ基の具体例と同じである。置換されていてもよいアリールアルコキシ基の具体例としては、フェニル−C1~C12アルコキシ基、C1~C12アルコキシフェニル−C1~C12アルコキシ基、C1~C12アルキルフェニル−C1~C12アルコキシ基、1−ナフチル−C1~C12アルコキシ基及び2−ナフチル−C1~C12アルコキシ基が挙げられる。
 アリールアルキルチオ基は、その炭素数が通常7~60であり、アリール部分が置換基を有していてもよい。置換基としては、ハロゲン原子及び置換されていてもよいアルコキシ基が挙げられる。置換されていてもよいアルコキシ基の具体例は、Rで表される置換されていてもよいアルコキシ基の具体例と同じである。置換されていてもよいアリールアルキルチオ基の具体例としては、フェニル−C1~C12アルキルチオ基、C1~C12アルコキシフェニル−C1~C12アルキルチオ基、C1~C12アルキルフェニル−C1~C12アルキルチオ基、1−ナフチル−C1~C12アルキルチオ基及び2−ナフチル−C1~C12アルキルチオ基が挙げられる。
 アリールアルケニル基は、その炭素数が通常8~20であり、アリール部分が置換基を有していてもよい。置換基としては、ハロゲン原子及び置換されていてもよいアルコキシ基が挙げられる。置換されていてもよいアルコキシ基の具体例は、Rで表される置換されていてもよいアルコキシ基の具体例と同じである。アリールアルケニル基の具体例としては、スチリル基が挙げられる。
 アリールアルキニル基は、その炭素数が通常8~20であり、アリール部分が置換基を有していてもよい。置換基としては、ハロゲン原子及び置換されていてもよいアルコキシ基が挙げられる。置換されていてもよいアルコキシ基の具体例は、Rで表される置換されていてもよいアルコキシ基の具体例と同じである。アリールアルキニル基の具体例としては、フェニルアセチレニル基が挙げられる。
 置換アミノ基とは、アミノ基の水素原子の1個又は2個が置換されたものであり、置換基は、例えば、置換されていてもよいアルキル基及び置換されていてもよいアリール基である。置換されていてもよいアルキル基及び置換されていてもよいアリール基の具体例は、Rで表される置換されていてもよいアルキル基及び置換されていてもよいアリール基の具体例と同じである。置換アミノ基の炭素数は通常1~40である。置換アミノ基の具体例としては、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基、イソプロピルアミノ基、ジイソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、tert−ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、シクロヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、2−エチルヘキシルアミノ基、ノニルアミノ基、デシルアミノ基、3,7−ジメチルオクチルアミノ基、ラウリルアミノ基、シクロペンチルアミノ基、ジシクロペンチルアミノ基、シクロヘキシルアミノ基、ジシクロヘキシルアミノ基、ピロリジル基、ピペリジル基、ジトリフルオロメチルアミノ基、フェニルアミノ基、ジフェニルアミノ基、C1~C12アルコキシフェニルアミノ基、ジ(C1~C12アルコキシフェニル)アミノ基、ジ(C1~C12アルキルフェニル)アミノ基、1−ナフチルアミノ基、2−ナフチルアミノ基、ペンタフルオロフェニルアミノ基、ピリジルアミノ基、ピリダジニルアミノ基、ピリミジルアミノ基、ピラジルアミノ基、トリアジルアミノ基、フェニル−C1~C12アルキルアミノ基、C1~C12アルコキシフェニル−C1~C12アルキルアミノ基、C1~C12アルキルフェニル−C1~C12アルキルアミノ基、ジ(C1~C12アルコキシフェニル−C1~C12アルキル)アミノ基、ジ(C1~C12アルキルフェニル−C1~C12アルキル)アミノ基、1−ナフチル−C1~C12アルキルアミノ基及び2−ナフチル−C1~C12アルキルアミノ基が挙げられる。
 置換シリル基とは、シリル基の水素原子の1個、2個又は3個が置換されたもの、一般に、シリル基の3水素原子全てが置換されたものであり、置換基は、例えば、置換されていてもよいアルキル基及び置換されていてもよいアリール基である。置換されていてもよいアルキル基及び置換されていてもよいアリール基の具体例は、Rで表される置換されていてもよいアルキル基及び置換されていてもよいアリール基の具体例と同じである。置換シリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリイソプロピルシリル基、tert−ブチルジメチルシリル基、トリフェニルシリル基、トリ−p−キシリルシリル基、トリベンジルシリル基、ジフェニルメチルシリル基、tert−ブチルジフェニルシリル基及びジメチルフェニルシリル基が挙げられる。
 置換シリルオキシ基とは、上記の置換シリル基に酸素原子が結合した基である。置換シリルオキシ基の具体例としては、トリメチルシリルオキシ基、トリエチルシリルオキシ基、トリプロピルシリルオキシ基、トリイソプロピルシリルオキシ基、tert−ブチルジメチルシリルオキシ基、トリフェニルシリルオキシ基、トリ−p−キシリルシリルオキシ基、トリベンジルシリルオキシ基、ジフェニルメチルシリルオキシ基、tert−ブチルジフェニルシリルオキシ基及びジメチルフェニルシリルオキシ基が挙げられる。
 複素環基としては、置換基を有していてもよいフラン、チオフェン、ピロール、ピロリン、ピロリジン、オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、イミダゾール、イミダゾリン、イミダゾリジン、ピラゾール、ピラゾリン、プラゾリジン、フラザン、トリアゾール、チアジアゾール、オキサジアゾール、テトラゾール、ピラン、ピリジン、ピペリジン、チオピラン、ピリダジン、ピリミジン、ピラジン、ピペラジン、モルホリン、トリアジン、ベンゾフラン、イソベンゾフラン、ベンゾチオフェン、インドール、イソインドール、インドリジン、インドリン、イソインドリン、クロメン、クロマン、イソクロマン、ベンゾピラン、キノリン、イソキノリン、キノリジン、ベンゾイミダゾール、ベンゾチアゾール、インダゾール、ナフチリジン、キノキサリン、キナゾリン、キナゾリジン、シンノリン、フタラジン、プリン、プテリジン、カルバゾール、キサンテン、フェナントリジン、アクリジン、β−カルボリン、ペリミジン、フェナントロリン、チアントレン、フェノキサチイン、フェノキサジン、フェノチアジン、フェナジン等の複素環化合物から水素原子を1個除いた基が挙げられる。複素環基としては、芳香族複素環基が好ましい。
 アシル基とは、カルボン酸の−COOH部分中の水酸基を除いた基を意味し、その炭素数は通常2~20である。アシル基の具体例としては、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、トリフルオロアセチル基等の炭素数2~20のハロゲンで置換されていてもよいアルキルカルボニル基、ベンゾイル基、ペンタフルオロベンゾイル基等のハロゲンで置換されていてもよいフェニルカルボニル基が挙げられる。
 アシルオキシ基とは、カルボン酸の−COOH部分中の水素原子を除いた基を意味し、その炭素数は通常2~20である。アシルオキシ基の具体例としては、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基、トリフルオロアセチルオキシ基及びペンタフルオロベンゾイルオキシ基が挙げられる。
 アミド基とは、アミドから窒素原子に結合した水素原子1個を除いた基を意味し、その炭素数は通常2~20である。アミド基の具体例としては、ホルムアミド基、アセトアミド基、プロピオアミド基、ブチロアミド基、ベンズアミド基、トリフルオロアセトアミド基、ペンタフルオロベンズアミド基、ジホルムアミド基、ジアセトアミド基、ジプロピオアミド基、ジブチロアミド基、ジベンズアミド基、ジトリフルオロアセトアミド基及びジペンタフルオロベンズアミド基が挙げられる。
 D環及びE環は、それぞれ独立に、置換基を有していてもよい芳香環を表し、芳香環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ピレン環、ペリレン環、テトラセン環、ペンタセン環などの芳香族炭素環、及び、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、キノリン環、イソキノリン環、キノキサリン環、キナゾリン環、アクリジン環、フェナントロリン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、チオフェンオキシド環、ベンゾチオフェンオキシド環、ジベンゾチオフェンオキシド環、チオフェンジオキシド環、ベンゾチオフェンジオキシド環、ジベンゾチオフェンジオキシド環、フラン環、ベンゾフラン環、ジベンゾフラン環、ピロール環、インドール環、ジベンゾピロール環、シロール環、ベンゾシロール環、ジベンゾシロール環、ボロール環、ベンゾボロール環、ジベンゾボロール環などの芳香族複素環が挙げられる。
 式(1)中、D環及びE環は、置換基を有していてもよい芳香族複素環が好ましく、該芳香族複素環は、5員環含む芳香族複素環が好ましく、チオフェン環がより好ましい。
 D環及びE環で表される芳香環の置換基としては、例えば、ハロゲン原子、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルキルチオ基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基、置換されていてもよいアリールアルキルチオ基、置換されていてもよいアリールアルケニル基、置換されていてもよいアリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、複素環基、アシル基、アシルオキシ基、アミド基、カルボキシル基、ニトロ基及びシアノ基が挙げられる。置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルキルチオ基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基、置換されていてもよいアリールアルキルチオ基、置換されていてもよいアリールアルケニル基、置換されていてもよいアリールアルキニル基、置換アミノ基、置換シリル基、シリルオキシ基、置換シリルオキシ基、複素環基、アシル基、アシルオキシ基及びアミド基の定義及び具体例は、前述のRで表される置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルキルチオ基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基、置換されていてもよいアリールアルキルチオ基、置換されていてもよいアリールアルケニル基、置換されていてもよいアリールアルキニル基、置換アミノ基、置換シリル基、シリルオキシ基、置換シリルオキシ基、複素環基、アシル基、アシルオキシ基及びアミド基の定義及び具体例と同じである。
 式(1)で表される構成単位としては、例えば、式(601)~式(660)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
 式(601)~式(660)中、Rは水素原子又は置換基を表す。複数個あるRは、同一でも相異なっていてもよく、互いに結合して環を形成していてもよい。Rが置換基である場合、該置換基の例としては、ハロゲン原子、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルキルチオ基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基、置換されていてもよいアリールアルキルチオ基、置換されていてもよいアリールアルケニル基、置換されていてもよいアリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、複素環基、アシル基、アシルオキシ基、アミド基、カルボキシル基、ニトロ基及びシアノ基が挙げられる。置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルキルチオ基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基、置換されていてもよいアリールアルキルチオ基、置換されていてもよいアリールアルケニル基、置換されていてもよいアリールアルキニル基、置換アミノ基、置換シリル基、シリルオキシ基、置換シリルオキシ基、複素環基、アシル基、アシルオキシ基及びアミド基の定義及び具体例は、前述のRで表される置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルキルチオ基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基、置換されていてもよいアリールアルキルチオ基、置換されていてもよいアリールアルケニル基、置換されていてもよいアリールアルキニル基、置換アミノ基、置換シリル基、シリルオキシ基、置換シリルオキシ基、複素環基、アシル基、アシルオキシ基及びアミド基の定義及び具体例と同じである。
 式(601)~式(660)で表される構成単位の中では、光電変換効率を高める観点からは、式(621)~式(640)で表される構成単位が好ましく、式(621)~式(625)で表される構成単位がより好ましい。
 式(1)で表される構成単位を含む有機化合物の光吸収強度を高める観点からは、式(1)で表される構成単位が芳香族複素環を含有することが好ましい。芳香族複素環を含むことによって、式(1)で表される構成単位を含む有機化合物の平面性が高まり、光吸収強度が向上する。光吸収強度が向上することにより、該有機化合物の光吸収量が増大し、本発明の光電変換素子の短絡電流密度が向上する。
 式(1)で表される構成単位を含む有機化合物の光吸収末端波長を長波長化する観点からは、式(1)で表される構成単位がチオフェン環を含有することが好ましい。チオフェン環を有することによって分子内部の電荷移動が発生し、光吸収末端波長の長波長化が達成される。光吸収末端波長が長波長化することにより、該有機化合物の光吸収量が増大し、短絡電流密度が向上する。
 式(1)で表される構成単位がチオフェン環を含むことにより、さらに、該有機化合物の吸収強度の向上や、本発明の光電変換素子の曲線因子(フィルファクター)の向上も達成され、光電変換効率が高くなる。
 光電変換素子の耐久性を高める観点からは、式(1)で表される構成単位中のRは、2位及び5位に置換基を有するベンゼン環が好ましい。該置換基は、イソプロピル基が好ましい。
 本発明の光電変換素子に用いられる有機化合物は、式(1)で表される構成単位のほかに、式(1)で表される構成単位とは異なる構成単位を含むことが好ましい。この場合、式(1)で表される構成単位と式(1)で表される構成単位とは異なる構成単位とが、共役を形成していることが好ましい。本発明における共役とは、多重結合が単結合を間に1個挟んで存在することを指す。
 式(1)で表される構成単位とは異なる構成単位としては、例えば、置換されていてもよいアリーレン基、置換されていてもよいヘテロアリーレン基、アルケニレン基及びアルキニレン基が挙げられる。本発明の光電変換素子の光電変換効率を高める観点からは、置換されていてもよいアリーレン基及び置換されていてもよいヘテロアリーレン基が好ましい。
 ここで、アリーレン基とは、芳香族炭化水素から芳香環上の水素原子2個を除いた基を意味し、その炭素数は通常6~60である。ヘテロアリーレン基とは、芳香族複素環から芳香環上の水素原子2個を除いた基を意味する。該芳香環の具体例は、上述のD環及びE環の具体例と同じであり、アリーレン基及びヘテロアリーレン基の置換基の具体例は、上述のD環及びE環の置換基の具体例と同じである。
 置換されていてもよいアリーレン基及び置換されていてもよいヘテロアリーレン基としては、上述の群1から選ばれる少なくとも1種の構成単位が挙げられる。
 群1において、環G~環Nで表される芳香環は、単環式芳香環であっても、多環式芳香環であってもよい。単環式芳香環としては、例えば、ベンゼン環、ピロール環、フラン環、チオフェン環、オキサゾール環、チアゾール環、チアジアゾール環、ピラゾール環、ピリジン環、ピラジン環、イミダゾール環、トリアゾール環、イソオキサゾール環、イソチアゾール環、ピリミジン環、ピリダジン環及びトリアジン環が挙げられる。
 多環式芳香環としては、前記の単環式芳香環に任意の環が縮合した芳香環が挙げられる。単環式芳香環に縮合する環としては、例えば、フラン環、チオフェン環、ピロール環、ピロリン環、ピロリジン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、チアジアゾール環、イミダゾール環、イミダゾリン環、イミダゾリジン環、ピラゾール環、ピラゾリン環、プラゾリジン環、フラザン環、トリアゾール環、チアジアゾール環、オキサジアゾール環、テトラゾール環、ピラン環、ピリジン環,ピペリジン環、チオピラン環、リダジン環、ピリミジン環、ピラジン環、ピペラジン環、モルホリン環、トリアジン環、ベンゾフラン環、イソベンゾフラン環、ベンゾチオフェン環、インドール環、イソインドール環、インドリジン環、インドリン環、イソインドリン環、クロメン環、クロマン環、イソクロマン環、ベンゾピラン環、キノリン環、イソキノリン環、キノリジン環、ベンゾイミダゾール環、ベンゾチアゾール環、インダゾール環、ナフチリジン環、キノキサリン環、キナゾリン環、キナゾリジン環、シンノリン環、フタラジン環、プリン環、プテリジン環、カルバゾール環、キサンテン環、フェナントリジン環、アクリジン環、β−カルボリン環、ペリミジン環、フェナントロリン環、チアントレン環、フェノキサチイン環、フェノキサジン環、フェノチアジン環及びフェナジン環が挙げられる。
 R30、R31及びR32が置換基である場合、該置換基としては、ハロゲン原子(例えば、フッ素原子、臭素原子、塩素原子)及び炭素数1~30の基が挙げられる。炭素数1~30の基としては、例えば、メチル基、エチル基、ブチル基、ヘキシル基、オクチル基、ドデシル基などのアルキル基、メトキシ基、エトキシ基、ブトキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基などのアルコキシ基、及び、フェニル基、ナフチル基などのアリール基が挙げられる。
 群1中、R20~R25は水素原子又は置換基を表す。R20~R25が置換基である場合、該置換基としては、ハロゲン原子(例えば、フッ素原子、臭素原子、塩素原子)及び炭素数1~30の基が挙げられる。炭素数1~30の基としては、例えば、メチル基、エチル基、ブチル基、ヘキシル基、オクチル基、ドデシル基などのアルキル基、メトキシ基、エトキシ基、ブトキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基などのアルコキシ基、及び、フェニル基、ナフチル基などのアリール基が挙げられる。
 R20とR21は、相互に連結して環状構造を形成してもよい。連結して形成した環状構造の具体例としては、以下の式(a)~式(c)の構造が挙げられる。
Figure JPOXMLDOC01-appb-I000016
 式(a)~式(c)中、R70及びR71は、それぞれ独立に、水素原子又は置換基を表す。R70及びR71が置換基の場合、該置換基としては、ハロゲン原子(例えば、フッ素原子、臭素原子、塩素原子)及び炭素数1~30の基が挙げられる。炭素数1~30の基としては、例えば、メチル基、エチル基、ブチル基、ヘキシル基、オクチル基、ドデシル基などのアルキル基、メトキシ基、エトキシ基、ブトキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基などのアルコキシ基、及び、フェニル基、ナフチル基などのアリール基が挙げられる。
 X30及びX31は、それぞれ独立に、硫黄原子又はセレン原子を表す。X30及びX31は、硫黄原子が好ましい。Y30~Y35は、それぞれ独立に、窒素原子又は=CH−を表す。Y30~Y35は、窒素原子が好ましい。
 環G~環Nは、R20~R25以外の置換基を有していてもよく、該置換基の例としては、ハロゲン原子(例えば、フッ素原子、臭素原子、塩素原子)及び炭素数1~30の基が挙げられる。炭素数1~30の基としては、例えば、メチル基、エチル基、ブチル基、ヘキシル基、オクチル基、ドデシル基などのアルキル基、メトキシ基、エトキシ基、ブトキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基などのアルコキシ基、及び、フェニル基、ナフチル基などのアリール基が挙げられる。
 群1に含まれる構成単位の中でも、本発明の光電変換素子の光電変換効率を高める観点からは、下記群2の式(A−2)~式(E−2)で表される構成単位が好ましい。
(群2)
Figure JPOXMLDOC01-appb-I000017
 式(A−2)~式(E−2)中、Q~Qは、それぞれ独立に、硫黄原子、酸素原子、セレン原子、−N(R30)−又は−CR31=CR32−を表す。R30、R31、R32は、前述と同じ意味を表す。Q~Qは、硫黄原子が好ましい。Y~Yは、それぞれ独立に、窒素原子又は=CH−を表す。Y~Yは、窒素原子が好ましい。
 R40~R49は、それぞれ独立に、水素原子又は置換基を表す。R40~R49が置換基である場合、該置換基の例としては、ハロゲン原子(例えば、フッ素原子、臭素原子、塩素原子)及び炭素数1~30の基が挙げられる。炭素数1~30の基としては、例えば、メチル基、エチル基、ブチル基、ヘキシル基、オクチル基、ドデシル基などのアルキル基、メトキシ基、エトキシ基、ブトキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基などのアルコキシ基、及び、フェニル基、ナフチル基などのアリール基が挙げられる。また、R40とR41、R42とR43は、それぞれ連結して環状構造を形成してもよい。
 R40とR41、R42とR43が連結して形成した環状構造の具体例としては、式(a)で表される環状構造、式(b)で表される環状構造が挙げられる。
 式(A−2)~式(E−2)で表される構成単位としては、式(1)で表される構成単位を含む有機化合物の光の吸収強度を高める観点からは、式(500)~式(522)で表される基が好ましい。
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000019
(式中Rは前述と同じ意味を表す)
 式(500)~式(522)で表される基の中でも、有機化合物の光吸収末端波長を長波長化する観点からは、式(500)で表される基、式(506)で表される基、及び、式(511)で表される基が好ましく、式(511)で表される基がより好ましい。光吸収末端波長が長波長化することによって光吸収量が増大し、本発明の光電変換効率の短絡電流密度が向上する。
 本発明の光電変換素子に用いられる有機化合物は、素子作製の容易さの観点からは、高分子化合物であることが好ましい。
 本発明における高分子化合物とは、重量平均分子量が1000以上のものを指すが、重量平均分子量が3000~10000000の高分子化合物が好ましく用いられる。重量平均分子量が3000より低いとデバイス作製時の膜形成に欠陥が生じることがあり、10000000より大きいと溶媒への溶解性や素子作製時の塗布性が低下することがある。重量平均分子量としてさらに好ましくは8000~5000000であり、特に好ましくは10000~1000000である。
 なお、本発明における重量平均分子量とは、ゲルパーミエーションクロマトグラフィ(GPC)を用い、ポリスチレンの標準試料を用いて算出したポリスチレン換算の重量平均分子量のことを指す。
 本発明の光電変換素子が式(1)で表される構成単位を含む高分子化合物を含有する場合、該高分子化合物中の式(1)で表される構成単位の含有量は、化合物中に少なくとも1つ含まれていればよい。好ましくは高分子化合物中、高分子鎖一本あたり平均2個以上、さらに好ましくは高分子鎖一本あたり平均3個以上含まれる。
 本発明の光電変換素子に用いられる好ましい化合物は、式(1−1)で表される構成単位を含み、かつ、式(A−1)で表される構成単位、式(B−1)で表される構成単位、式(C−1)で表される構成単位、式(D−1)で表される構成単位及び式(E−1)で表される構成単位からなる群から選ばれる少なくとも1種の構成単位を含む高分子化合物である。
 式(1−1)中、D’’環及びE’’環で表されるチオフェン環が有していてもよい置換基の具体例は、D環及びE環が有していてもよい置換基の具体例と同じである。
 前記式(1−1)で表される構成単位と、式(A−1)で表される構成単位、式(B−1)で表される構成単位、式(C−1)で表される構成単位、式(D−1)で表される構成単位及び式(E−1)で表される構成単位からなる群から選ばれる少なくとも1種の構成単位とを含む高分子化合物が有する構成単位の合計を100とした場合、式(1−1)で表される構成単位の含有量は、10~90であることが好ましく、さらに好ましくは20~80、特に好ましくは30~70が好ましい。
 また、本発明の光電変換素子に用いることができる高分子化合物は、デバイス作製の容易性から、溶媒への溶解度が高いことが望ましい。具体的には、該高分子化合物を0.01重量(wt)%以上含む溶液を作製し得る溶解性を有することが好ましく、0.1wt%以上含む溶液を作製し得る溶解性を有することがより好ましく、0.4wt%以上含む溶液を作製し得る溶解性を有することがさらに好ましい。
 光電変換素子の光電変換効率を高める観点から、光電変換素子の開放端電圧が高いことが好ましい。式(1)で表される構成単位を含む有機化合物を電子供与性化合物として用いる場合、該有機化合物のイオン化ポテンシャルが高い程、本発明の光電変換素子の開放端電圧が高くなる。
 本発明に用いることができる高分子化合物の製造方法としては、特に制限されるものではないが、高分子化合物の合成の容易さからは、Suzukiカップリング反応を用いる方法、及び、Stilleカップリング反応を用いる方法が好ましい。
 Suzukiカップリング反応を用いる方法としては、例えば、式(100):
 U−E−U   (100)
〔式中、Eは、芳香環を含む2価の基を表す。U及びUは、それぞれ独立に、ジヒドロキシボリル基(−B(OH))又はホウ酸エステル残基を表す。〕
で表される1種類以上の化合物と、式(200):
 T−E−T   (200)
〔式中、Eは、芳香環を含む2価の基を表す。T及びTは、それぞれ独立に、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)又はスルホン酸残基を表す。〕
で表される1種類以上の化合物とを、パラジウム触媒及び塩基の存在下で反応させる工程を有する製造方法が挙げられる。ここで、E又はEの少なくとも一方が式(1)で表される構成単位である。
 この場合、反応に用いる式(200)で表わされる1種類以上の化合物のモル数の合計が、式(100)で表わされる1種類以上の化合物のモル数の合計に対して、0.8~1.2モルであることが好ましく、0.9~1.1モルであることがさらに好ましい。
 ホウ酸エステル残基とは、ホウ酸ジエステルから水酸基を除去した基を意味し、ジアルキルエステル残基、ジアリールエステル残基、ジ(アリールアルキル)エステル残基などが挙げられる。ホウ酸エステル残基としては、下記式:
Figure JPOXMLDOC01-appb-I000020
(式中、Meはメチル基を表し、Etはエチル基を表す。)
で表される基が例示される。
 高分子化合物の合成の容易さから、T及びTのハロゲン原子は、臭素原子及びヨウ素原子が好ましく、臭素原子がより好ましい。
 式(200)における、T及びTで表されるスルホン酸残基とは、スルホン酸(−SOH)から酸性水素を除いた原子団を意味し、具体例としては、アルキルスルホネート基(例えば、メタンスルホネート基、エタンスルホネート基)、アリールスルホネート基(例えば、ベンゼンスルホネート基、p−トルエンスルホネート基)、アリールアルキルスルホネート基(例えば、ベンジルスルホネート基)及びトリフルオロメタンスルホネート基が挙げられる。
 具体的には、Suzukiカップリング反応を行う方法としては、任意の溶媒中において、触媒としてパラジウム触媒を用い、塩基の存在下で反応させる方法が挙げられる。
 Suzukiカップリング反応に使用するパラジウム触媒としては、例えば、Pd(0)触媒、Pd(II)触媒が挙げられ、具体的には、パラジウム[テトラキス(トリフェニルホスフィン)]、パラジウムアセテート類、ジクロロビス(トリフェニルホスフィン)パラジウム、パラジウムアセテート、トリス(ジベンジリデンアセトン)ジパラジウム、ビス(ジベンジリデンアセトン)パラジウムが挙げられ、反応(重合)操作の容易さ、反応(重合)速度の観点からは、ジクロロビス(トリフェニルホスフィン)パラジウム、パラジウムアセテート、トリス(ジベンジリデンアセトン)ジパラジウムが好ましい。
 パラジウム触媒の添加量は、特に限定されず、触媒としての有効量であればよいが、式(100)で表される化合物1モルに対して、通常、0.0001モル~0.5モル、好ましくは0.0003モル~0.1モルである。
 Suzukiカップリング反応に使用するパラジウム触媒としてパラジウムアセテート類を用いる場合は、例えば、トリフェニルホスフィン、トリ(o−トリル)ホスフィン、トリ(o−メトキシフェニル)ホスフィン等のリン化合物を配位子として添加することができる。この場合、配位子の添加量は、パラジウム触媒1モルに対して、通常、0.5モル~100モルであり、好ましくは0.9モル~20モル、さらに好ましくは1モル~10モルである。
 Suzukiカップリング反応に使用する塩基としては、無機塩基、有機塩基、無機塩等が挙げられる。無機塩基としては、例えば、炭酸カリウム、炭酸ナトリウム、水酸化バリウムが挙げられる。有機塩基としては、例えば、トリエチルアミン、トリブチルアミンが挙げられる。無機塩としては、例えば、フッ化セシウムが挙げられる。
 塩基の添加量は、式(100)で表される化合物1モルに対して、通常、0.5モル~100モル、好ましくは0.9モル~20モル、さらに好ましくは1モル~10モルである。
 Suzukiカップリング反応は、通常、溶媒中で行われる。溶媒としては、N,N−ジメチルホルムアミド、トルエン、ジメトキシエタン、テトラヒドロフランが例示される。本発明に用いられる高分子化合物の溶解性の観点からは、トルエン、テトラヒドロフランが好ましい。また、塩基は、水溶液として加え、2相系で反応させてもよい。塩基として無機塩を用いる場合は、無機塩の溶解性の観点から、通常、水溶液として加えて反応させる。
 なお、塩基を水溶液として加え、2相系で反応させる場合は、必要に応じて、第4級アンモニウム塩などの相間移動触媒を加えてもよい。
 Suzukiカップリング反応を行う温度は、前記溶媒にもよるが、通常、50~160℃程度であり、高分子化合物の高分子量化の観点からは、60~120℃が好ましい。また、溶媒の沸点近くまで昇温し、還流させてもよい。反応時間は、目的の重合度に達したときを終点としてもよいが、通常、0.1時間~200時間程度である。1時間~30時間程度が、反応が効率的に進行する観点から好ましい。
 Suzukiカップリング反応は、アルゴンガス、窒素ガス等の不活性雰囲気下、Pd(0)触媒が失活しない反応系で行う。例えば、アルゴンガスや窒素ガス等で、十分脱気された系で行う。具体的には、重合容器(反応系)内を窒素ガスで十分置換し、脱気した後、この重合容器に、式(100)で表される化合物、式(200)で表される化合物、ジクロロビス(トリフェニルホスフィン)パラジウム(II)を仕込み、さらに、重合容器を窒素ガスで十分置換し、脱気した後、あらかじめ窒素ガスでバブリングすることにより、脱気した溶媒、例えば、トルエンを加えた後、この溶液に、あらかじめ窒素ガスでバブリングすることにより脱気した塩基、例えば、炭酸ナトリウム水溶液を滴下した後、加熱、昇温し、例えば、還流温度で8時間、不活性雰囲気を保持しながら重合する。
 Stilleカップリング反応を用いる方法としては、例えば、式(300):
 U−E−U   (300)
〔式中、Eは、芳香環を含む2価の基を表す。U及びUは、それぞれ独立に、置換スタンニル基を表す。〕
で表される1種類以上の化合物と、前記式(200)で表される1種類以上の化合物とを、パラジウム触媒の存在下で反応させる工程を有する製造方法が挙げられる。ここで、E又はEの少なくとも一方が式(1)で表される構成単位である。
 置換スタンニル基としては、−SnR100 で表される基等が挙げられる。ここでR100は1価の有機基を表す。1価の有機基としては、アルキル基、アリール基などが挙げられる。
 アルキル基の炭素数は通常1~30であり、具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル墓、ペンチル基、イソペンチル基、2−メチルブチル基、1−メチルブチル基、ヘキシル基、イソヘキシル基、3−メチルペンチル基、2−メチルペンチル基、1−メチルペンチル基、ヘプチル基、オクチル基、イソオクチル基、2−エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基、テトラデシル基、ヘキサデシル墓、オクタデシル基、エイコシル基等の鎖状アルキル基、シクロペンチル基、シクロヘキシル基、アダマンチル基等のシクロアルキル基が挙げられる。アリール基としてはフェニル基、ナフチル基などが挙げられる。有機スズ残基として好ましくは−SnMe、−SnEt、−SnBu、−SnPhであり、さらに好ましくは−SnMe、−SnEt、−SnBuである。上記好ましい例において、Meはメチル基を、Etはエチル基を、Buはブチル基を、Phはフェニル基を表す。
 具体的には、触媒として、例えば、パラジウム触媒下で任意の溶媒中で反応する方法が挙げられる。
 Stilleカップリング反応に使用するパラジウム触媒としては、例えば、Pd(0)触媒、Pd(II)触媒等が挙げられ、具体的には、パラジウム[テトラキス(トリフェニルホスフィン)]、パラジウムアセテート類、ジクロロビス(トリフェニルホスフィン)パラジウム、パラジウムアセテート、トリス(ジベンジリデンアセトン)ジパラジウム、ビス(ジベンジリデンアセトン)パラジウムが挙げられ、反応(重合)操作の容易さ、反応(重合)速度の観点から、パラジウム[テトラキス(トリフェニルホスフィン)]、トリス(ジベンジリデンアセトン)ジパラジウムが好ましい。
 Stilleカップリング反応に使用するパラジウム触媒の添加量は、特に限定されず、触媒としての有効量であればよいが、式(100)で表される化合物1モルに対して、通常、0.0001モル~0.5モル、好ましくは0.0003モル~0.2モルである。
 また、Stilleカップリング反応において、必要に応じて配位子や助触媒を用いることもできる。配位子としては、例えば、トリフェニルホスフィン、トリ(o−トリル)ホスフィン、トリ(o−メトキシフェニル)ホスフィン、トリス(2−フリル)ホスフィン等のリン化合物やトリフェニルアルシン、トリフェノキシアルシン等の砒素化合物が挙げられる。助触媒としてはヨウ化銅、臭化銅、塩化銅、2−テノイル酸銅(I)などが挙げられる。
 配位子又は助触媒を用いる場合、配位子又は助触媒の添加量は、パラジウム触媒1モルに対して、通常、0.5モル~100モルであり、好ましくは0.9モル~20モル、さらに好ましくは1モル~10モルである。
 Stilleカップリング反応は、通常、溶媒中で行われる。溶媒としては、N,N−ジメチルホルムアミド、N、N−ジメチルアセトアミド、トルエン、ジメトキシエタン、テトラヒドロフランが例示される。本発明に用いられる高分子化合物の溶解性の観点から、トルエン、テトラヒドロフランが好ましい。
 Stilleカップリング反応を行う温度は、前記溶媒にもよるが、通常、50~160℃程度であり、高分子化合物の高分子量化の観点から、60~120℃が好ましい。また、溶媒の沸点近くまで昇温し、還流させてもよい。
 前記反応を行う時間(反応時間)は、目的の重合度に達したときを終点としてもよいが、通常、0.1時間~200時間程度である。1時間~30時間程度が、反応が効率的に進行する観点から好ましい。
 Stilleカップリング反応は、アルゴンガス、窒素ガス等の不活性雰囲気下、Pd触媒が失活しない反応系で行う。例えば、アルゴンガスや窒素ガス等で、十分脱気された系で行う。具体的には、重合容器(反応系)内を窒素ガスで十分置換し、脱気した後、この重合容器に、式(300)で表される化合物、式(200)で表される化合物、パラジウム触媒を仕込み、さらに、重合容器を窒素ガスで十分置換し、脱気した後、あらかじめ窒素ガスでバブリングすることにより、脱気した溶媒、例えば、トルエンを加えた後、必要に応じて配位子や助触媒を加え、その後、加熱、昇温し、例えば、還流温度で8時間、不活性雰囲気を保持しながら重合する。
 本発明の光電変換素子に用いることができる高分子化合物の末端に重合活性基が残っていると、素子の作製に用いたときに得られる素子の特性や寿命が低下する可能性があるため、安定な基で保護されていてもよい。該安定な基は、主鎖の共役構造と連続した共役結合を有している基が好ましい。また、該安定な基は、ビニレン基を介してアリール基又は複素環基と結合している構造を有していてもよい。該安定な基としては、置換基を有さないフェニル基、ナフチル基、メチル基、エチル基、プロピル基、ブチル基、トリフルオロメチル基、ペンタフルオロエチル基などが挙げられる。
 本発明の光電変換素子に用いられる化合物は、例えば、式(1−2)で示される化合物を原料の一つとして重合させることにより製造することができる。
Figure JPOXMLDOC01-appb-I000021
(式中、R、D’環、E’環、W及びWは、上述と同じ意味を有する。)
 D’環及びE’環で表される芳香族複素環の具体例は、前述のD環及びE環で表される芳香族複素環の具体例と同じである。D’環及びE’環で表される芳香族複素環が有していてもよい置換基の具体例は、前述のD環及びE環で表される芳香族複素環が有していてもよい置換基の具体例と同じである。D’環及びE’環は、チオフェン環、フラン環及びピロール環が好ましく、チオフェン環がより好ましい。
 式(1−2)中、Rは、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基及び置換されていてもよいアリールアルキル基が好ましく、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基及び置換されていてもよいアリールアルキル基がより好ましく、アリール基が特に好ましい。
 式(1−2)中、W及びWで表されるホウ酸エステル残基の定義及び具体例は、前述のU及びUで表されるホウ酸エステル残基の定義及び具体例と同じである。W及びWで表されるスルホン酸残基の定義及び具体例は、前述のT及びTで表されるハロゲン原子及びスルホン酸残基の定義及び具体例と同じである。W及びWで表される置換スタンニル基の定義及び具体例は、前述のU及びUで表される置換スタンニル基の定義及び具体例と同じである。W及びWで表されるモノハロゲン化メチル基とは、メチル基中の水素原子1個がハロゲン原子で置換された基を表す。
 高分子量の化合物を製造する観点からは、W及びWは、それぞれ独立に、ハロゲン原子、スルホン酸残基、ホウ酸エステル残基、ジヒドロキシボリル基及び置換スタンニル基が好ましい。
 式(1−2)中のW及びWが水素原子である化合物を反応に用いる場合、酸化重合を行うことで、式(1)で表される構成単位を有する高分子化合物を製造することが出来る。酸化重合においては、通常触媒が用いられる。かかる触媒としては、公知の触媒を用いることが可能である。該触媒としては、例えば、金属ハロゲン化物、及び、金属ハロゲン化物とアミン錯体との混合物(金属ハロゲン化物/アミン錯体)が挙げられる。ここで金属ハロゲン化物としては、例えば、銅、鉄、バナジウム、クロムなどの金属の1価のハロゲン化物、2価のハロゲン化物、及び、3価のハロゲン化物が挙げられる。アミン錯体の製造に用いるアミンとしては、例えば、ピリジン、ルチジン、2−メチルイミダゾール、及び、N,N,N’,N’−テトラメチルエチレンジアミンが挙げられる。金属ハロゲン化物/アミン錯体は溶媒中、酸素存在下で金属ハロゲン化物とアミンを混合することによって製造することが可能であり、金属ハロゲン化物とアミンの混合モル比は、例えば金属ハロゲン化物/アミン=1/0.l~1/200、好ましくは1/0.3~1/100程度である。
 触媒としては、塩化鉄を用いることもできる(Polym.Prep.Japan,Vol.48,309(1999))。さらに銅/アミン触媒系を用いる(J.Org.Chem.,64,2264(1999)、J.Polym.Sci.PartA,Polym.Chem.,37,3702(1999))ことにより、高分子化合物の分子量を高めることができる。
 酸化重合における溶媒としては、触媒が被毒を受けない溶媒であれば特に制限なく使用することができる。かかる溶媒としては、例えば、炭化水素、エーテル、アルコール類が挙げられる。ここで、該炭化水素としては、例えば、トルエン、ベンゼン、キシレン、トリメチルベンゼン、テトラメチルベンゼン、ナフタリン及びテトラリンが挙げられる。該エーテルとしては、例えば、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、1,4−ジオキサン、ジフェニルエーテル及びtert−ブチルメチルエーテルが挙げられる。アルコール類としては、例えば、メタノール、エタノール、イソプロパノール及び2−メトキシエタノールが挙げられる。
 酸化重合における反応温度は、通常−100℃~100℃、好ましくは−50~50℃である。
 また共重合体を製造する場合にはモノマーを2種類以上混合して重合する方法や、1種類のモノマーを重合した後に2種目のモノマーを添加する方法などが挙げられる。これらの方法を用いること、又は組み合わせることにより、ブロック共重合体、ランダム共重合体、交互共重合体、マルチブロック共重合体、グラフト共重合体などを製造することが可能である。
 式(1−2)で表される化合物の製法としては、式(1−3)で表される化合物とホウ素化合物との反応により製造することができる。
Figure JPOXMLDOC01-appb-I000022
(式中、W、W、D’環及びE’環は、上述と同じ意味を有する。X50及びX51はハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)を表す。)
 式(1−3)で表される化合物において、そのD’環及びE’環が置換基としてハロゲン原子を有する場合、又は、W及びWのいずれかがハロゲン原子の場合には、X50及びX51で表されるハロゲン原子は、式(1−2)で表される化合物の収率を高める点からは、D’環及びE’環が有するハロゲン原子、又は、W及びWで表されるハロゲン原子よりも塩基及び金属との反応性が高いハロゲン原子が好ましい。
 式(1−2)で表される化合物の製造方法としては、例えば、式(1−3)で表される化合物を塩基と反応させた後に、式(1−4)で表されるホウ素化合物を反応させる方法が挙げられる。
Figure JPOXMLDOC01-appb-I000023
(式中、Rは上述と同じ意味を有する。X52及びX53は、それぞれ独立に、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)又は置換されていてもよいアルコキシ基を表す。X52及びX53が置換されていてもよいアルコキシ基である場合、これらは互いに連結して環を形成していてもよい。)
 式(1−4)中、X52及びX53で表される置換されていてもよいアルコキシ基の具体例は、前述のRで表される置換されていてもよいアルコキシ基の具体例と同じである。
 該反応に用いられる塩基としては、例えば、リチウムヒドリド、ナトリウムヒドリド、カリウムヒドリド、メチルリチウム、ブチルリチウム(n−BuLi)、tert−ブチルリチウム(tert−BuLi)、フェニルリチウム、リチウムジイソプロピルアミド、リチウムヘキサメチルジシラジド、ナトリウムヘキサメチルジシラジド及びカリウムヘキサメチルジシラジドが挙げられる。
 また、反応に用いられる溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサンなどの飽和炭化水素、ベンゼン、トルエン、エチルベンゼン、キシレンなどの不飽和炭化水素、四塩化炭素、クロロホルム、ジクロロメタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサンなどのハロゲン化飽和炭化水素、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼンなどのハロゲン化不飽和炭化水素、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、tert−ブチルアルコールなどのアルコール類、蟻酸、酢酸、プロピオン酸などのカルボン酸、ジメチルエーテル、ジエチルエーテル、メチル−tert−ブチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ジオキサンなどのエーテル、トリメチルアミン、トリエチルアミン、N,N,N’,N’−テトラメチルエチレンジアミン、ピリジンなどのアミン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、N−メチルモルホリンオキシドなどのアミド類が例示され、反応に応じてこれらのなかから単一溶媒、又はこれらの混合溶媒を用いることができる。
 反応後は、例えば、水で反応を停止した後、有機溶媒で生成物を抽出し、溶媒を留去するなど、通常の後処理で生成物を得ることができる。生成物の単離及び精製はクロマトグラフィーによる分取や再結晶などの方法によっておこなうことができる。
 式(1−2)で表される化合物の一態様である化合物(C)は、例えば、化合物(B)に、ジクロロメタン中で臭素を2当量反応させることにより製造することができる。
Figure JPOXMLDOC01-appb-I000024
 化合物(B)は、テトラヒドロフラン(以下、THFと呼称することもある)中、化合物(A)に2当量のブチルリチウム(n−BuLi)を反応させ、その後に2,4,6−トリイソプロピルフェニルジメトキシボランを1当量反応させることにより製造することができる。
 また、化合物(B)は、THF中、化合物(A)に2当量のn−BuLiを反応させ、その後、化合物(A)に対してマグネシウムブロミドを2当量反応させ、2,4,6−トリイソプロピルフェニルジメトキシボランを1当量反応させることでも製造することができる。
 式(1−2)で表される化合物の他の製法としては、式(1−5)で表される化合物を分子内でカップリングする方法が挙げられる。
Figure JPOXMLDOC01-appb-I000025
(式中、R、W、W、D’環及びE’環は、前述と同じ意味を表す。X54及びX55はハロゲン原子(例えば、塩素原子、臭素原子及びヨウ素原子)を表す。)
 X54及びX55で表されるハロゲン原子としては、臭素原子及びヨウ素原子が好ましい。
 分子内でカップリングは、金属の存在下で行うことが好ましい。該金属としては、銅、鉄、ニッケル、亜鉛などが挙げられ、好ましくは、銅である。
 分子内でのカップリングに用いる溶媒としては、例えば、脂肪族炭化水素、芳香族炭化水素、アミド、スルホキシド、及び、ラクタムが挙げられる。脂肪族炭化水素としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン及びシクロヘキサンが挙げられる。芳香族炭化水素としては、例えば、ベンゼン、トルエン、エチルベンゼン及びキシレンが挙げられる。アミドとしては、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド及びN,N−ジエチルアセトアミドが挙げられる。スルホキシドとしては、例えば、ジメチルスルホキシドが挙げられる。ラクタムとしては、例えば、N−メチルピロリドンが挙げられる。
 反応後は、例えば、反応系中に水を加えて反応を停止した後、有機溶媒で生成物を抽出し、溶媒を留去するなど、通常の後処理で生成物を得ることができる。生成物の単離及び精製はクロマトグラフィーによる分取や再結晶などの方法によっておこなうことができる。
 式(1−5)で表される化合物は、例えば、式(1−6)で表される化合物をハロゲン化(例えば、臭素化、ヨウ素化)することで得ることができる。
Figure JPOXMLDOC01-appb-I000026
(式中、R、W、W、D’環及びE’環は、前述と同じ意味を表す。)
 式(1−6)で表される化合物を臭素化してX54及びX55が臭素原子である式(1−5)で表される化合物を製造する方法において、臭素化する方法としては、公知の方法を使用することができ、例えば、式(1−6)で表される化合物と臭素又はN−ブロモスクシンイミド(NBS)とを接触させて臭素化する方法が挙げられる。臭素化の条件は任意に設定することができるが、溶媒中でNBSと反応させる方法は、臭素化率が高く、かつ臭素原子の導入位置の選択性が高くなる観点から望ましい。該方法に使用する溶媒としては、N,N−ジメチルホルムアミド、クロロホルム、塩化メチレン、四塩化炭素などが挙げられる。反応時間は通常1分から10時間程度、反応温度は通常−50℃~50℃程度である。使用する臭素の量は、式(1−6)で表される化合物1モルに対して1モル~5モル程度が好ましい。反応後は、例えば、反応系中に水を加えて反応を停止した後、生成物を有機溶媒で抽出し、溶媒を留去するなどの通常の後処理を行い、X52及びX53が臭素原子である式(1−5)で表される化合物を得ることができる。生成物の単離後及び精製はクロマトグラフィーによる分取や再結晶などの方法により行うことができる。
 式(1−6)で表される化合物をヨウ素化してX54及びX55がヨウ素原子である式(1−5)で表される化合物を製造する方法において、ヨウ素化する方法としては式(1−6)で表される化合物を塩基と反応させた後にヨウ素を反応させる方法が挙げられる。該方法に用いられる塩基及び溶媒としては、前述の式(1−3)で表される化合物を塩基と反応させた後に、式(1−4)で表されるホウ素化合物と反応させる工程に用いる塩基及び溶媒と同じものが挙げられる。
 式(1−6)で表される化合物は、D’環及びE’環に対応する芳香族複素環を含有するハロゲン化物を塩基と反応させた後に、前述の式(1−4)で表される化合物と反応させることにより製造することができる。該反応に用いられる塩基及び溶媒としては、前述の式(1−3)で表される化合物を塩基と反応させた後に、式(1−4)で表されるホウ素化合物と反応させる工程に用いる塩基及び溶媒と同じものが挙げられる。
 化合物(G)は、例えば、N,N−ジメチルホルムアミド中、化合物(F)に5当量の銅粉を加え、100℃で過熱攪拌することにより製造することができる。
Figure JPOXMLDOC01-appb-I000027
 化合物(F)は、THF中、化合物(E)にn−BuLiを2当量反応させ、その後、ヨウ素を2当量反応させることにより製造することができる。
 化合物(E)は、THF中、化合物(D)に2当量のn−BuLiを反応させ、その後、2,4,6−トリイソプロピルフェニルジメトキシボランを1当量反応させることにより製造することができる。
 W及びWが臭素原子である式(1−2)で表される化合物を製造する方法としては、W及びWが水素原子である式(1−2)で表される化合物を臭素化してW及びWを臭素原子に変換する方法等が挙がられる。W及びWを臭素原子に変換する方法としては、公知の方法を使用することが出来るが、例えば、W及びWが水素原子である式(1−2)で表される化合物と臭素又はN−ブロモスクシンイミド(NBS)とを接触させて臭素化する方法が挙げられる。臭素化の条件は任意に設定することができるが、例えば、溶媒中でNBSと反応させる方法は、臭素化率が高く、かつ臭素原子の導入位置の選択性が高くなるために望ましい。この時に使用する溶媒としては、N,N−ジメチルホルムアミド、クロロホルム、塩化メチレン、四塩化炭素などが挙げられる。反応時間は通常1分から10時間程度、反応温度は通常−50℃~50℃程度である。使用する臭素の量はW、Wが水素原子である式(1−2)で表される化合物1モルに対して1モル~5モル程度が好ましい。反応後は、例えば、水を加えて反応を停止した後に生成物を有機溶媒で抽出し、溶媒を留去するなどの通常の後処理を行い、W及びWが臭素原子である式(1−2)で表される化合物を得ることができる。生成物の単離後及び精製はクロマトグラフィーによる分取や再結晶などの方法により行うことができる。
 本発明に用いることができる高分子化合物は、光吸収末端波長が長波長であることが好ましい。本発明における光吸収末端波長とは以下の方法で求められた値のことを意味する。
 測定には、紫外、可視、近赤外の波長領域で動作する分光光度計(例えば、日本分光製、紫外可視近赤外分光光度計JASCO−V670)を用いる。JASCO−V670を用いる場合、測定可能な波長範囲が200~1500nmであるため、該波長範囲で測定を行う。まず、測定に用いる基板の吸収スペクトルを測定する。基板としては、石英基板、ガラス基板等を用いる。次いで、その基板の上に第1の化合物を含む溶液若しくは第1の化合物を含む溶融体から第1の化合物を含む薄膜を形成する。溶液からの製膜では、製膜後乾燥を行う。その後、薄膜と基板との積層体の吸収スペクトルを得る。薄膜と基板との積層体の吸収スペクトルと基板の吸収スペクトルとの差を、薄膜の吸収スペクトルとして得る。
 該薄膜の吸収スペクトルは、縦軸が化合物の吸光度を、横軸が波長を示す。最も大きい吸収ピークの吸光度が0.5~2程度になるよう、薄膜の膜厚を調整することが望ましい。吸収ピークの中で一番長波長の吸収ピークの吸光度を100%とし、その50%の吸光度を含む横軸(波長軸)に平行な直線と該吸収ピークとの交点であって、該吸収ピークのピーク波長よりも長波長である交点を第1の点とする。その25%の吸光度を含む波長軸に平行な直線と該吸収ピークとの交点であって、該吸収ピークのピーク波長よりも長波長である交点を第2の点とする。第1の点と第2の点とを結ぶ直線と基準線の交点を光吸収末端波長と定義する。ここで、基準線とは、最も長波長の吸収ピークにおいて、該吸収ピークの吸光度を100%とし、その10%の吸光度を含む波長軸に平行な直線と該吸収ピークの交点であって、該吸収ピークのピーク波長よりも長波長である交点の波長を基準として、基準となる波長より100nm長波長である吸収スペクトル上の第3の点と、基準となる波長より150nm長波長である吸収スペクトル上と第4の点を結んだ直線をいう。
 本発明の光電変換素子は、少なくとも一方が透明又は半透明である一対の電極間に、式(1)で表される構成単位を有する化合物を含む1層以上の活性層を有する。
 本発明の光電変換素子の好ましい形態としては、少なくとも一方が透明又は半透明である一対の電極と、p型の有機半導体とn型の有機半導体との有機組成物から形成される活性層を有する。式(1)で表される構成単位を有する化合物は、p型の有機半導体として用いることが好ましい。
 本発明の光電変換素子は、通常、基板上に形成される。この基板は、電極を形成し、有機物の層を形成する際に化学的に変化しないものであればよい。基板の材料としては、例えば、ガラス、プラスチック、高分子フィルム、シリコンが挙げられる。不透明な基板の場合には、反対の電極(即ち、基板から遠い方の電極)が透明又は半透明であることが好ましい。
 本発明の光電変換素子の他の態様は、少なくとも一方が透明又は半透明である一対の電極間に、本発明に用いられる化合物を含む第1の活性層と、該第1の活性層に隣接して、フラーレン誘導体等の電子受容性化合物を含む第2の活性層を含む光電変換素子である。
 前記の透明又は半透明の電極材料としては、導電性の金属酸化物膜、半透明の金属薄膜等が挙げられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等からなる導電性材料を用いて作製された膜、NESAや、金、白金、銀、銅等が用いられ、ITO、インジウム・亜鉛・オキサイド、酸化スズが好ましい。電極の作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。また、電極材料として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。
 一方の電極は透明でなくてもよく、該電極の電極材料としては、金属、導電性高分子等を用いることができる。電極材料の具体例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、及びそれらのうち2つ以上の合金、又は、1種以上の前記金属と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン及び錫からなる群から選ばれる1種以上の金属との合金、グラファイト、グラファイト層間化合物、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体が挙げられる。合金としては、マグネシウム−銀合金、マグネシウム−インジウム合金、マグネシウム−アルミニウム合金、インジウム−銀合金、リチウム−アルミニウム合金、リチウム−マグネシウム合金、リチウム−インジウム合金、カルシウム−アルミニウム合金等が挙げられる。
 光電変換効率を向上させるための手段として活性層以外の付加的な中間層を使用してもよい。中間層として用いられる材料としては、フッ化リチウム等のアルカリ金属、アルカリ土類金属のハロゲン化物、酸化チタン等の酸化物、PEDOT(ポリ−3,4−エチレンジオキシチオフェン)などが挙げられる。
 前記活性層は、式(1)で表される構成単位を有する化合物を一種単独で含んでいても二種以上を組み合わせて含んでいてもよい。また、前記活性層のホール輸送性を高めるため、前記活性層中に電子供与性化合物及び/又は電子受容性化合物として、式(1)で表される構成単位を有する化合物以外の化合物を混合して用いることもできる。なお、前記電子供与性化合物、前記電子受容性化合物は、これらの化合物のエネルギー準位のエネルギーレベルから相対的に決定される。
 前記電子供与性化合物としては、式(1)で表される構成単位を有する化合物のほか、例えば、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、オリゴチオフェン及びその誘導体、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミン残基を有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体が挙げられる。
 前記電子受容性化合物としては、式(1)で表される構成単位を有する化合物のほか、例えば、炭素材料、酸化チタン等の金属酸化物、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8−ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、2、9−ジメチル−4、7−ジフェニル−1、10−フェナントロリン(バソクプロイン)等のフェナントロリン誘導体、フラーレン、フラーレン誘導体が挙げられ、好ましくは、酸化チタン、カーボンナノチューブ、フラーレン、フラーレン誘導体であり、特に好ましくはフラーレン、フラーレン誘導体である。
 フラーレン、フラーレン誘導体としてはC60、C70、C76、C78、C84及びその誘導体が挙げられる。フラーレン誘導体は、フラーレンの少なくとも一部が修飾された化合物を表す。
 フラーレン誘導体としては、例えば、式(I)で表される化合物、式(II)で表される化合物、式(III)で表される化合物、式(IV)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000028
(式(I)~(IV)中、Rは、置換されていてもよいアルキル基、置換されていてもよいアリール基、ヘテロアリール基又はエステル構造を有する基である。複数個あるRは、同一であっても相異なってもよい。Rは置換されていてもよいアルキル基又は置換されていてもよいアリール基を表す。複数個あるRは、同一であっても相異なってもよい。)
 R及びRで表される置換されていてもよいアルキル基及び置換されていてもよいアリール基の定義及び具体例は、Rで表される置換されていてもよいアルキル基及び置換されていてもよいアリール基の定義及び具体例と同じである。
 Rで表されるヘテロアリール基は、例えば、チオフェンジイル基、ピリジンジイル基、フランジイル基及びピロールジイル基が挙げられる。
 Rで表されるエステル構造を有する基は、例えば、式(V)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-I000029
(式中、u1は、1~6の整数を表す、u2は、0~6の整数を表す、Rは、置換されていてもよいアルキル基、置換されていてもよいアリール基又はヘテロアリール基を表す。)
 Rで表される置換されていてもよいアルキル基、置換されていてもよいアリール基及びヘテロアリール基の定義及び具体例は、Rで表される置換されていてもよいアルキル基、置換されていてもよいアリール基及びヘテロアリール基の定義及び具体例と同じである。
 C60の誘導体の具体例としては、以下のようなものが挙げられる。
Figure JPOXMLDOC01-appb-I000030
 C70の誘導体の具体例としては、以下のようなものが挙げられる。
Figure JPOXMLDOC01-appb-I000031
 また、フラーレン誘導体の例としては、[6,6]フェニル−C61酪酸メチルエステル(C60PCBM、[6,6]−Phenyl C61 butyric acid methyl ester)、[6,6]フェニル−C71酪酸メチルエステル(C70PCBM、[6,6]−Phenyl C71 butyric acid methyl ester)、[6,6]フェニル−C85酪酸メチルエステル(C84PCBM、[6,6]−Phenyl C85 butyric acid methyl ester)、[6,6]チェニル−C61酪酸メチルエステル([6,6]−Thienyl C61 butyric acid methyl ester)が挙げられる。
 活性層中に式(1)で表される構成単位を有する化合物とフラーレン誘導体とを含む場合、フラーレン誘導体の割合が、該化合物100重量部に対して、10~1000重量部であることが好ましく、20~500重量部であることがより好ましい。
 活性層の厚さは、通常、1nm~100μmが好ましく、より好ましくは2nm~1000nmであり、さらに好ましくは5nm~500nmであり、より好ましくは20nm~200nmである。
 前記活性層の製造方法は、如何なる方法で製造してもよく、例えば、式(1)の構成単位を有する化合物を含む溶液からの成膜や、真空蒸着法による成膜方法が挙げられる。
 光電変換素子の好ましい製造方法は、第1の電極と第2の電極とを有し、該第1の電極と該第2の電極との間に活性層を有する素子の製造方法であって、該第1の電極上に式(1)の構成単位を有する化合物と溶媒とを含む溶液(インク)を塗布法により塗布して活性層を形成する工程、該活性層上に第2の電極を形成する工程を有する素子の製造方法である。
 本発明の光電変換素子が、式(1)で表される構成単位を有する高分子化合物を含有する場合、溶液からの成膜に用いる溶媒は、本発明に用いられる高分子化合物を溶解させるものであればよい。該溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、n−ブチルベンゼン、sec−ブチルベンゼン、tert−ブチルベンゼン等の不飽和炭化水素、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素、テトラヒドロフラン、テトラヒドロピラン等のエーテルが挙げられる。本発明に用いられる高分子化合物は、通常、前記溶媒に0.1重量%以上溶解させることができる。
 溶液を用いて成膜する場合、スリットコート法、ナイフコート法、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法、オフセット印刷法、インクジェットコート法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法を用いることができ、スリットコート法、キャピラリーコート法、グラビアコート法、マイクログラビアコート法、バーコート法、ナイフコート法、ノズルコート法、インクジェットコート法、スピンコート法が好ましい。
 成膜性の観点からは、25℃における溶媒の表面張力が15mN/mより大きいことが好ましく、15mN/mより大きく100mN/mよりも小さいことがより好ましく、25mN/mより大きく60mN/mよりも小さいことがさらに好ましい。
 本発明に用いられる化合物は、有機薄膜トランジスタにも用いることができる。有機薄膜トランジスタとしては、ソース電極及びドレイン電極と、これらの電極間の電流経路となる有機半導体層(活性層)と、この電流経路を通る電流量を制御するゲート電極とを備えた構成を有するものが挙げられ、有機半導体層が上述した有機薄膜によって構成されるものである。このような有機薄膜トランジスタとしては、電界効果型、静電誘導型等が挙げられる。
 電界効果型有機薄膜トランジスタは、ソース電極及びドレイン電極、これらの間の電流経路となる有機半導体層(活性層)、この電流経路を通る電流量を制御するゲート電極、並びに、有機半導体層とゲート電極との間に配置される絶縁層を備えることが好ましい。特に、ソース電極及びドレイン電極が、有機半導体層(活性層)に接して設けられており、さらに有機半導体層に接した絶縁層を挟んでゲート電極が設けられていることが好ましい。電界効果型有機薄膜トランジスタにおいては、有機半導体層が、本発明に用いられる高分子化合物を含む有機薄膜によって構成される。
 本発明の有機薄膜トランジスタの一態様である静電誘導型有機薄膜トランジスタは、ソース電極及びドレイン電極、これらの間の電流経路となる有機半導体層(活性層)、並びに電流経路を通る電流量を制御するゲート電極を有し、このゲート電極が有機半導体層中に設けられていることが好ましい。特に、ソース電極、ドレイン電極に接して設けられていることが好ましい。ここで、ゲート電極の構造としては、ソース電極からドレイン電極へ流れる電流経路が形成され、且つゲート電極に印加した電圧で電流経路を流れる電流量が制御できる構造であればよく、例えば、くし形電極が挙げられる。静電誘導型有機薄膜トランジスタにおいて、有機半導体層は、本発明に用いられる化合物を含む有機薄膜によって構成される。活性層の厚さは、通常、1nm~100μmが好ましく、より好ましくは2nm~1000nmであり、さらに好ましくは5nm~500nmであり、より好ましくは20nm~200nmである。
 本発明の光電変換素子は、透明又は半透明の電極から太陽光等の光を照射することにより、電極間に光起電力が発生し、有機薄膜太陽電池として動作させることができる。有機薄膜太陽電池を複数集積することにより有機薄膜太陽電池モジュールとして用いることもできる。
 また、電極間に電圧を印加した状態、あるいは無印加の状態で、透明又は半透明の電極から光を照射することにより、光電流が流れ、有機光センサーとして動作させることができる。有機光センサーを複数集積することにより有機イメージセンサーとして用いることもできる。
 有機薄膜太陽電池は、従来の太陽電池モジュールと基本的には同様のモジュール構造をとりうる。太陽電池モジュールは、一般的には金属、セラミック等の支持基板の上にセルが構成され、その上を充填樹脂や保護ガラス等で覆い、支持基板の反対側から光を取り込む構造をとるが、支持基板に強化ガラス等の透明材料を用い、その上にセルを構成してその透明の支持基板側から光を取り込む構造とすることも可能である。具体的には、スーパーストレートタイプ、サブストレートタイプ、ポッティングタイプと呼ばれるモジュール構造、アモルファスシリコン太陽電池などで用いられる基板一体型モジュール構造等が知られている。本発明の有機薄膜太陽電池も使用目的や使用場所及び環境により、適宜これらのモジュール構造を選択できる。
 代表的なスーパーストレートタイプあるいはサブストレートタイプのモジュールは、片側又は両側が透明で反射防止処理を施された支持基板の間に一定間隔にセルが配置され、隣り合うセル同士が金属リード又はフレキシブル配線等によって接続され、外縁部に集電電極が配置されており、発生した電力を外部に取り出される構造となっている。基板とセルの間には、セルの保護や集電効率向上のため、目的に応じエチレンビニルアセテート(EVA)等様々な種類のプラスチック材料をフィルム又は充填樹脂の形で用いてもよい。また、外部からの衝撃が少ないところなど表面を硬い素材で覆う必要のない場所において使用する場合には、表面保護層を透明プラスチックフィルムで構成し、又は上記充填樹脂を硬化させることによって保護機能を付与し、片側の支持基板をなくすことが可能である。支持基板の周囲は、内部の密封及びモジュールの剛性を確保するため金属製のフレームでサンドイッチ状に固定し、支持基板とフレームの間は封止材料で密封シールする。また、セルそのものや支持基板、充填材料及び封止材料に可撓性の素材を用いれば、曲面の上に太陽電池を構成することもできる。ポリマーフィルム等のフレキシブル支持体を用いた太陽電池の場合、ロール状の支持体を送り出しながら順次セルを形成し、所望のサイズに切断した後、周縁部をフレキシブルで防湿性のある素材でシールすることにより電池本体を作製できる。また、Solar Energy Materials and Solar Cells,48,p383−391記載の「SCAF」とよばれるモジュール構造とすることもできる。更に、フレキシブル支持体を用いた太陽電池は曲面ガラス等に接着固定して使用することもできる。
Hereinafter, the present invention will be described in detail.
The photoelectric conversion element of the present invention has a first electrode and a second electrode, and has an active layer between the first electrode and the second electrode, and the active layer has the above formula ( The organic compound containing the structural unit represented by 1) is contained.
In equation (1), R1The alkyl group represented by may be linear, branched or cyclic. The alkyl group may have a substituent. Examples of the substituent that the alkyl group may have include a halogen atom. The alkyl group usually has 1 to 30 carbon atoms. Specific examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl tomb, pentyl group, isopentyl group, 2-methylbutyl group, 1-methylbutyl. Group, hexyl group, isohexyl group, 3-methylpentyl group, 2-methylpentyl group, 1-methylpentyl group, heptyl group, octyl group, isooctyl group, 2-ethylhexyl group, 3,7-dimethyloctyl group, nonyl group And chain alkyl groups such as decyl group, undecyl group, dodecyl group, tetradecyl group, hexadecyl tomb, octadecyl group and eicosyl group, and cycloalkyl groups such as cyclopentyl group, cyclohexyl group and adamantyl group.
The alkyl part of the alkoxy group may be linear, branched or cyclic. The alkoxy group usually has 1 to 20 carbon atoms, and the alkoxy group may have a substituent. Examples of the substituent that the alkoxy group may have include a halogen atom and an alkoxy group (for example, having 1 to 20 carbon atoms). Specific examples of the optionally substituted alkoxy group include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, Heptyloxy, octyloxy, 2-ethylhexyloxy, nonyloxy, decyloxy, 3,7-dimethyloctyloxy, lauryloxy, trifluoromethoxy, pentafluoroethoxy, perfluorobutoxy, perfluoro Examples include a hexyloxy group, a perfluorooctyloxy group, a methoxymethyloxy group, and a 2-methoxyethyloxy group.
The alkyl part of the alkylthio group may be linear, branched or cyclic. The alkylthio group usually has 1 to 20 carbon atoms, and the alkylthio group may have a substituent. Examples of the substituent that the alkylthio group may have include a halogen atom. Specific examples of the optionally substituted alkylthio group include methylthio group, ethylthio group, propylthio group, isopropylthio group, butylthio group, isobutylthio group, tert-butylthio group, pentylthio group, hexylthio group, cyclohexylthio group, heptylthio group. Group, octylthio group, 2-ethylhexylthio group, nonylthio group, decylthio group, 3,7-dimethyloctylthio group, laurylthio group and trifluoromethylthio group.
An aryl group means a group obtained by removing one hydrogen atom on an aromatic ring from an aromatic hydrocarbon, and usually has 6 to 60 carbon atoms. The aryl group may have a substituent, and examples of the substituent include a halogen atom and an optionally substituted alkoxy group. Specific examples of the optionally substituted alkoxy group include R1Are the same as the specific examples of the alkoxy group which may be substituted. Specific examples of the optionally substituted aryl group include a phenyl group, a C1-C12 alkoxyphenyl group, a C1-C12 alkylphenyl group, a 1-naphthyl group, a 2-naphthyl group, and a pentafluorophenyl group.
The aryloxy group usually has 6 to 60 carbon atoms, and the aryl moiety may have a substituent. Examples of the substituent include a halogen atom and an optionally substituted alkoxy group. Specific examples of the optionally substituted alkoxy group include R1Are the same as the specific examples of the alkoxy group which may be substituted. Specific examples of the optionally substituted aryloxy group include a phenoxy group, a C1-C12 alkoxyphenoxy group, a C1-C12 alkylphenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, and a pentafluorophenoxy group. It is done.
The arylthio group usually has 6 to 60 carbon atoms, and the aryl moiety may have a substituent. Examples of the substituent include a halogen atom and an optionally substituted alkoxy group. Specific examples of the optionally substituted alkoxy group include R1Are the same as the specific examples of the alkoxy group which may be substituted. Specific examples of the arylthio group which may be substituted include a phenylthio group, a C1-C12 alkoxyphenylthio group, a C1-C12 alkylphenylthio group, a 1-naphthylthio group, a 2-naphthylthio group, and a pentafluorophenylthio group. It is done.
The arylalkyl group usually has 7 to 60 carbon atoms, and the aryl moiety may have a substituent. Examples of the substituent include a halogen atom and an optionally substituted alkoxy group. Specific examples of the optionally substituted alkoxy group include R1Are the same as the specific examples of the halogen atom represented by the formula (1) and the optionally substituted alkoxy group. Specific examples of the optionally substituted arylalkyl group include a phenyl-C1 to C12 alkyl group, a C1 to C12 alkoxyphenyl-C1 to C12 alkyl group, a C1 to C12 alkylphenyl-C1 to C12 alkyl group, and 1-naphthyl. -C1-C12 alkyl group and 2-naphthyl-C1-C12 alkyl group are mentioned.
The arylalkoxy group usually has 7 to 60 carbon atoms, and the aryl moiety may have a substituent. Examples of the substituent include a halogen atom and an optionally substituted alkoxy group. Specific examples of the optionally substituted alkoxy group include R1Are the same as the specific examples of the alkoxy group which may be substituted. Specific examples of the optionally substituted arylalkoxy group include a phenyl-C1 to C12 alkoxy group, a C1 to C12 alkoxyphenyl-C1 to C12 alkoxy group, a C1 to C12 alkylphenyl-C1 to C12 alkoxy group, and 1-naphthyl. -C1-C12 alkoxy group and 2-naphthyl-C1-C12 alkoxy group are mentioned.
The arylalkylthio group usually has 7 to 60 carbon atoms, and the aryl moiety may have a substituent. Examples of the substituent include a halogen atom and an optionally substituted alkoxy group. Specific examples of the optionally substituted alkoxy group include R1Are the same as the specific examples of the alkoxy group which may be substituted. Specific examples of the optionally substituted arylalkylthio group include phenyl-C1-C12 alkylthio group, C1-C12 alkoxyphenyl-C1-C12 alkylthio group, C1-C12 alkylphenyl-C1-C12 alkylthio group, and 1-naphthyl. -C1-C12 alkylthio group and 2-naphthyl-C1-C12 alkylthio group are mentioned.
The arylalkenyl group usually has 8 to 20 carbon atoms, and the aryl moiety may have a substituent. Examples of the substituent include a halogen atom and an optionally substituted alkoxy group. Specific examples of the optionally substituted alkoxy group include R1Are the same as the specific examples of the alkoxy group which may be substituted. Specific examples of the arylalkenyl group include a styryl group.
The arylalkynyl group usually has 8 to 20 carbon atoms, and the aryl moiety may have a substituent. Examples of the substituent include a halogen atom and an optionally substituted alkoxy group. Specific examples of the optionally substituted alkoxy group include R1Are the same as the specific examples of the alkoxy group which may be substituted. Specific examples of the arylalkynyl group include a phenylacetylenyl group.
The substituted amino group is a group in which one or two hydrogen atoms of the amino group are substituted, and the substituent is, for example, an optionally substituted alkyl group or an optionally substituted aryl group. . Specific examples of the optionally substituted alkyl group and the optionally substituted aryl group include R1Specific examples of the alkyl group which may be substituted and the aryl group which may be substituted are the same as those described above. The substituted amino group usually has 1 to 40 carbon atoms. Specific examples of the substituted amino group include methylamino group, dimethylamino group, ethylamino group, diethylamino group, propylamino group, dipropylamino group, isopropylamino group, diisopropylamino group, butylamino group, isobutylamino group, tert -Butylamino group, pentylamino group, hexylamino group, cyclohexylamino group, heptylamino group, octylamino group, 2-ethylhexylamino group, nonylamino group, decylamino group, 3,7-dimethyloctylamino group, laurylamino group, Cyclopentylamino group, dicyclopentylamino group, cyclohexylamino group, dicyclohexylamino group, pyrrolidyl group, piperidyl group, ditrifluoromethylamino group, phenylamino group, diphenylamino group, C1-C12 alkoxy Siphenylamino group, di (C1-C12 alkoxyphenyl) amino group, di (C1-C12 alkylphenyl) amino group, 1-naphthylamino group, 2-naphthylamino group, pentafluorophenylamino group, pyridylamino group, pyrida Dinylamino group, pyrimidylamino group, pyrazylamino group, triazylamino group, phenyl-C1-C12 alkylamino group, C1-C12 alkoxyphenyl-C1-C12 alkylamino group, C1-C12 alkylphenyl-C1-C12 alkylamino group , Di (C1-C12 alkoxyphenyl-C1-C12 alkyl) amino group, di (C1-C12 alkylphenyl-C1-C12 alkyl) amino group, 1-naphthyl-C1-C12 alkylamino group and 2-naphthyl-C1- A C12 alkylamino group is mentioned.
A substituted silyl group is one in which one, two, or three of the hydrogen atoms of the silyl group are substituted, and in general, all three hydrogen atoms in the silyl group are substituted. These are an optionally substituted alkyl group and an optionally substituted aryl group. Specific examples of the optionally substituted alkyl group and the optionally substituted aryl group include R1Specific examples of the alkyl group which may be substituted and the aryl group which may be substituted are the same as those described above. Specific examples of the substituted silyl group include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, triisopropylsilyl group, tert-butyldimethylsilyl group, triphenylsilyl group, tri-p-xylylsilyl group, tribenzylsilyl group, Examples include a diphenylmethylsilyl group, a tert-butyldiphenylsilyl group, and a dimethylphenylsilyl group.
The substituted silyloxy group is a group in which an oxygen atom is bonded to the above substituted silyl group. Specific examples of the substituted silyloxy group include trimethylsilyloxy group, triethylsilyloxy group, tripropylsilyloxy group, triisopropylsilyloxy group, tert-butyldimethylsilyloxy group, triphenylsilyloxy group, tri-p-xylyl group. Examples thereof include a silyloxy group, a tribenzylsilyloxy group, a diphenylmethylsilyloxy group, a tert-butyldiphenylsilyloxy group, and a dimethylphenylsilyloxy group.
As the heterocyclic group, optionally substituted furan, thiophene, pyrrole, pyrroline, pyrrolidine, oxazole, isoxazole, thiazole, isothiazole, imidazole, imidazoline, imidazolidine, pyrazole, pyrazoline, prazolidine, furazane, Triazole, thiadiazole, oxadiazole, tetrazole, pyran, pyridine, piperidine, thiopyran, pyridazine, pyrimidine, pyrazine, piperazine, morpholine, triazine, benzofuran, isobenzofuran, benzothiophene, indole, isoindole, indolizine, indoline, isoindoline , Chromene, chroman, isochroman, benzopyran, quinoline, isoquinoline, quinolidine, benzimidazole, benzothiazole, Such as dazole, naphthyridine, quinoxaline, quinazoline, quinazolidine, cinnoline, phthalazine, purine, pteridine, carbazole, xanthene, phenanthridine, acridine, β-carboline, perimidine, phenanthroline, thianthrene, phenoxathiin, phenoxazine, phenothiazine, phenazine And a group obtained by removing one hydrogen atom from a heterocyclic compound. As the heterocyclic group, an aromatic heterocyclic group is preferable.
Acyl group means a group excluding the hydroxyl group in the —COOH part of the carboxylic acid, and usually has 2 to 20 carbon atoms. Specific examples of the acyl group include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a trifluoroacetyl group, an alkylcarbonyl group which may be substituted with a halogen having 2 to 20 carbon atoms, a benzoyl group, Examples thereof include a phenylcarbonyl group which may be substituted with a halogen such as a pentafluorobenzoyl group.
Acyloxy group means a group in which a hydrogen atom in the -COOH part of carboxylic acid is removed, and its carbon number is usually 2-20. Specific examples of the acyloxy group include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group, a trifluoroacetyloxy group, and a pentafluorobenzoyloxy group.
An amide group means a group obtained by removing one hydrogen atom bonded to a nitrogen atom from an amide, and the carbon number is usually 2 to 20. Specific examples of the amide group include a formamide group, an acetamide group, a propioamide group, a butyroamide group, a benzamide group, a trifluoroacetamide group, a pentafluorobenzamide group, a diformamide group, a diacetamide group, a dipropioamide group, a dibutyroamide group, and a dibenzamide group. , Ditrifluoroacetamide group and dipentafluorobenzamide group.
The D ring and the E ring each independently represent an aromatic ring which may have a substituent. Examples of the aromatic ring include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a pyrene ring, a perylene ring, and a tetracene ring. , Aromatic carbon rings such as pentacene ring, pyridine ring, pyrimidine ring, pyridazine ring, pyrazine ring, quinoline ring, isoquinoline ring, quinoxaline ring, quinazoline ring, acridine ring, phenanthroline ring, thiophene ring, benzothiophene ring, dibenzo Thiophene ring, thiophene oxide ring, benzothiophene oxide ring, dibenzothiophene oxide ring, thiophene dioxide ring, benzothiophene dioxide ring, dibenzothiophene dioxide ring, furan ring, benzofuran ring, dibenzofuran ring, pyrrole ring, indole ring, dibenzo Roll ring, silole ring, Benzoshiroru ring, dibenzosilole ring, Bororu ring, Benzobororu ring, aromatic heterocyclic ring such as dibenzo ball roll ring.
In the formula (1), the D ring and the E ring are preferably an aromatic heterocyclic ring which may have a substituent, and the aromatic heterocyclic ring is preferably an aromatic heterocyclic ring containing a 5-membered ring, and a thiophene ring is More preferred.
Examples of the substituent of the aromatic ring represented by D ring and E ring include a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkylthio group, and a substituted group. Aryl group which may be substituted, aryloxy group which may be substituted, arylthio group which may be substituted, arylalkyl group which may be substituted, arylalkoxy group which may be substituted, substituted Arylalkylthio group which may be substituted, arylalkenyl group which may be substituted, arylalkynyl group which may be substituted, amino group, substituted amino group, silyl group, substituted silyl group, silyloxy group, substituted silyloxy group, heterocyclic ring Groups, acyl groups, acyloxy groups, amide groups, carboxyl groups, nitro groups and cyano groups.An optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkylthio group, an optionally substituted aryl group, an optionally substituted aryloxy group, a substituted An optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group, an optionally substituted arylalkylthio group, an optionally substituted arylalkenyl group, an optionally substituted Definitions and specific examples of a good arylalkynyl group, substituted amino group, substituted silyl group, silyloxy group, substituted silyloxy group, heterocyclic group, acyl group, acyloxy group and amide group are the above-mentioned R1An optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkylthio group, an optionally substituted aryl group, an optionally substituted aryloxy group, An optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group, an optionally substituted arylalkylthio group, an optionally substituted arylalkenyl group, a substituted The definition and specific examples of arylalkynyl group, substituted amino group, substituted silyl group, silyloxy group, substituted silyloxy group, heterocyclic group, acyl group, acyloxy group and amide group which may be used are the same.
Examples of the structural unit represented by Formula (1) include structural units represented by Formula (601) to Formula (660).
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
In the formulas (601) to (660), R represents a hydrogen atom or a substituent. A plurality of R may be the same or different, and may be bonded to each other to form a ring. When R is a substituent, examples of the substituent include a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkylthio group, and a substituted group. An optionally substituted aryloxy group, an optionally substituted aryloxy group, an optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group, an optionally substituted Arylalkylthio group, optionally substituted arylalkenyl group, optionally substituted arylalkynyl group, amino group, substituted amino group, silyl group, substituted silyl group, silyloxy group, substituted silyloxy group, heterocyclic group, acyl Groups, acyloxy groups, amide groups, carboxyl groups, nitro groups and cyano groups. An optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkylthio group, an optionally substituted aryl group, an optionally substituted aryloxy group, a substituted An optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group, an optionally substituted arylalkylthio group, an optionally substituted arylalkenyl group, an optionally substituted Definitions and specific examples of a good arylalkynyl group, substituted amino group, substituted silyl group, silyloxy group, substituted silyloxy group, heterocyclic group, acyl group, acyloxy group and amide group are the above-mentioned R1An optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkylthio group, an optionally substituted aryl group, an optionally substituted aryloxy group, An optionally substituted arylthio group, an optionally substituted arylalkyl group, an optionally substituted arylalkoxy group, an optionally substituted arylalkylthio group, an optionally substituted arylalkenyl group, a substituted The definition and specific examples of arylalkynyl group, substituted amino group, substituted silyl group, silyloxy group, substituted silyloxy group, heterocyclic group, acyl group, acyloxy group and amide group which may be used are the same.
Among the structural units represented by the formulas (601) to (660), the structural units represented by the formulas (621) to (640) are preferable from the viewpoint of increasing the photoelectric conversion efficiency, and the formula (621) A structural unit represented by Formula (625) is more preferable.
From the viewpoint of increasing the light absorption intensity of the organic compound containing the structural unit represented by the formula (1), the structural unit represented by the formula (1) preferably contains an aromatic heterocyclic ring. By including the aromatic heterocycle, the planarity of the organic compound containing the structural unit represented by the formula (1) is increased, and the light absorption intensity is improved. By improving the light absorption intensity, the light absorption amount of the organic compound is increased, and the short-circuit current density of the photoelectric conversion element of the present invention is improved.
From the viewpoint of lengthening the light absorption terminal wavelength of the organic compound containing the structural unit represented by the formula (1), the structural unit represented by the formula (1) preferably contains a thiophene ring. By having a thiophene ring, charge transfer inside the molecule occurs, and the light absorption terminal wavelength is increased. By increasing the light absorption terminal wavelength, the light absorption amount of the organic compound is increased, and the short-circuit current density is improved.
When the structural unit represented by the formula (1) includes a thiophene ring, the absorption strength of the organic compound and the fill factor of the photoelectric conversion element of the present invention are also improved. Conversion efficiency is increased.
From the viewpoint of enhancing the durability of the photoelectric conversion element, R in the structural unit represented by the formula (1)1Is preferably a benzene ring having substituents at the 2-position and 5-position. The substituent is preferably an isopropyl group.
The organic compound used in the photoelectric conversion element of the present invention preferably contains a structural unit different from the structural unit represented by the formula (1) in addition to the structural unit represented by the formula (1). In this case, it is preferable that the structural unit represented by Formula (1) and the structural unit different from the structural unit represented by Formula (1) form a conjugate. Conjugation in the present invention means that multiple bonds exist with one single bond in between.
Examples of the structural unit different from the structural unit represented by the formula (1) include an optionally substituted arylene group, an optionally substituted heteroarylene group, an alkenylene group, and an alkynylene group. From the viewpoint of increasing the photoelectric conversion efficiency of the photoelectric conversion element of the present invention, an optionally substituted arylene group and an optionally substituted heteroarylene group are preferable.
Here, the arylene group means a group obtained by removing two hydrogen atoms on an aromatic ring from an aromatic hydrocarbon, and the carbon number is usually 6 to 60. A heteroarylene group means a group obtained by removing two hydrogen atoms on an aromatic ring from an aromatic heterocycle. Specific examples of the aromatic ring are the same as the specific examples of the D ring and the E ring described above, and specific examples of the substituent of the arylene group and the heteroarylene group are specific examples of the substituent of the D ring and the E ring described above. Is the same.
Examples of the optionally substituted arylene group and the optionally substituted heteroarylene group include at least one structural unit selected from Group 1 described above.
In Group 1, the aromatic ring represented by ring G to ring N may be a monocyclic aromatic ring or a polycyclic aromatic ring. As the monocyclic aromatic ring, for example, benzene ring, pyrrole ring, furan ring, thiophene ring, oxazole ring, thiazole ring, thiadiazole ring, pyrazole ring, pyridine ring, pyrazine ring, imidazole ring, triazole ring, isoxazole ring, Examples include isothiazole ring, pyrimidine ring, pyridazine ring and triazine ring.
Examples of the polycyclic aromatic ring include an aromatic ring in which an arbitrary ring is condensed to the monocyclic aromatic ring. Examples of the ring condensed with the monocyclic aromatic ring include a furan ring, a thiophene ring, a pyrrole ring, a pyrroline ring, a pyrrolidine ring, an oxazole ring, an isoxazole ring, a thiazole ring, an isothiazole ring, a thiadiazole ring, an imidazole ring, and an imidazoline. Ring, imidazolidine ring, pyrazole ring, pyrazoline ring, prazolidine ring, furazane ring, triazole ring, thiadiazole ring, oxadiazole ring, tetrazole ring, pyran ring, pyridine ring, piperidine ring, thiopyran ring, lidazine ring, pyrimidine ring, Pyrazine ring, piperazine ring, morpholine ring, triazine ring, benzofuran ring, isobenzofuran ring, benzothiophene ring, indole ring, isoindole ring, indolizine ring, indoline ring, isoindoline ring, chromene ring, chroman ring, isochroma Ring, benzopyran ring, quinoline ring, isoquinoline ring, quinolidine ring, benzimidazole ring, benzothiazole ring, indazole ring, naphthyridine ring, quinoxaline ring, quinazoline ring, quinazolidine ring, cinnoline ring, phthalazine ring, purine ring, pteridine ring, carbazole Ring, xanthene ring, phenanthridine ring, acridine ring, β-carboline ring, perimidine ring, phenanthroline ring, thianthrene ring, phenoxathiin ring, phenoxazine ring, phenothiazine ring and phenazine ring.
R30, R31And R32When is a substituent, examples of the substituent include a halogen atom (for example, a fluorine atom, a bromine atom, a chlorine atom) and a group having 1 to 30 carbon atoms. Examples of the group having 1 to 30 carbon atoms include an alkyl group such as a methyl group, an ethyl group, a butyl group, a hexyl group, an octyl group, and a dodecyl group, a methoxy group, an ethoxy group, a butoxy group, a hexyloxy group, and an octyloxy group. , Alkoxy groups such as dodecyloxy group, and aryl groups such as phenyl group and naphthyl group.
In group 1, R20~ R25Represents a hydrogen atom or a substituent. R20~ R25When is a substituent, examples of the substituent include a halogen atom (for example, a fluorine atom, a bromine atom, a chlorine atom) and a group having 1 to 30 carbon atoms. Examples of the group having 1 to 30 carbon atoms include an alkyl group such as a methyl group, an ethyl group, a butyl group, a hexyl group, an octyl group, and a dodecyl group, a methoxy group, an ethoxy group, a butoxy group, a hexyloxy group, and an octyloxy group. , Alkoxy groups such as dodecyloxy group, and aryl groups such as phenyl group and naphthyl group.
R20And R21May be connected to each other to form a ring structure. Specific examples of the cyclic structure formed by linking include structures of the following formulas (a) to (c).
Figure JPOXMLDOC01-appb-I000016
R in formula (a) to formula (c)70And R71Each independently represents a hydrogen atom or a substituent. R70And R71When is a substituent, examples of the substituent include a halogen atom (for example, a fluorine atom, a bromine atom, a chlorine atom) and a group having 1 to 30 carbon atoms. Examples of the group having 1 to 30 carbon atoms include an alkyl group such as a methyl group, an ethyl group, a butyl group, a hexyl group, an octyl group, and a dodecyl group, a methoxy group, an ethoxy group, a butoxy group, a hexyloxy group, and an octyloxy group. , Alkoxy groups such as dodecyloxy group, and aryl groups such as phenyl group and naphthyl group.
X30And X31Each independently represents a sulfur atom or a selenium atom. X30And X31Is preferably a sulfur atom. Y30~ Y35Each independently represents a nitrogen atom or ═CH—. Y30~ Y35Is preferably a nitrogen atom.
Ring G to Ring N are R20~ R25Examples of the substituent include a halogen atom (for example, a fluorine atom, a bromine atom, a chlorine atom) and a group having 1 to 30 carbon atoms. Examples of the group having 1 to 30 carbon atoms include an alkyl group such as a methyl group, an ethyl group, a butyl group, a hexyl group, an octyl group, and a dodecyl group, a methoxy group, an ethoxy group, a butoxy group, a hexyloxy group, and an octyloxy group. , Alkoxy groups such as dodecyloxy group, and aryl groups such as phenyl group and naphthyl group.
Among the structural units included in Group 1, from the viewpoint of increasing the photoelectric conversion efficiency of the photoelectric conversion element of the present invention, the structural units represented by Formula (A-2) to Formula (E-2) in Group 2 below are included. preferable.
(Group 2)
Figure JPOXMLDOC01-appb-I000017
Q in formula (A-2) to formula (E-2)2~ Q9Each independently represents a sulfur atom, an oxygen atom, a selenium atom, -N (R30)-Or -CR31= CR32-Represents. R30, R31, R32Represents the same meaning as described above. Q2~ Q9Is preferably a sulfur atom. Y1~ Y4Each independently represents a nitrogen atom or ═CH—. Y1~ Y4Is preferably a nitrogen atom.
R40~ R49Each independently represents a hydrogen atom or a substituent. R40~ R49When is a substituent, examples of the substituent include a halogen atom (for example, a fluorine atom, a bromine atom, a chlorine atom) and a group having 1 to 30 carbon atoms. Examples of the group having 1 to 30 carbon atoms include an alkyl group such as a methyl group, an ethyl group, a butyl group, a hexyl group, an octyl group and a dodecyl group, a methoxy group, an ethoxy group, a butoxy group, a hexyloxy group, and an octyloxy group. , Alkoxy groups such as dodecyloxy group, and aryl groups such as phenyl group and naphthyl group. R40And R41, R42And R43May be connected to each other to form an annular structure.
R40And R41, R42And R43Specific examples of the cyclic structure formed by connecting are cyclic structures represented by the formula (a) and cyclic structures represented by the formula (b).
As the structural unit represented by the formula (A-2) to the formula (E-2), from the viewpoint of increasing the light absorption intensity of the organic compound containing the structural unit represented by the formula (1), the formula (500 ) To groups represented by formula (522) are preferred.
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000019
(Wherein R represents the same meaning as described above)
Among the groups represented by formula (500) to formula (522), from the viewpoint of increasing the light absorption terminal wavelength of the organic compound, the group represented by formula (500), represented by formula (506) And a group represented by formula (511) are preferred, and a group represented by formula (511) is more preferred. As the light absorption terminal wavelength becomes longer, the amount of light absorption increases, and the short-circuit current density of the photoelectric conversion efficiency of the present invention improves.
The organic compound used in the photoelectric conversion device of the present invention is preferably a polymer compound from the viewpoint of ease of device production.
The polymer compound in the present invention refers to a polymer having a weight average molecular weight of 1000 or more, and a polymer compound having a weight average molecular weight of 3,000 to 10,000,000 is preferably used. If the weight average molecular weight is lower than 3000, defects may occur in film formation during device fabrication, and if it exceeds 10000000, solubility in a solvent and applicability during device fabrication may be degraded. The weight average molecular weight is more preferably 8,000 to 5,000,000, particularly preferably 10,000 to 1,000,000.
In addition, the weight average molecular weight in this invention points out the weight average molecular weight of polystyrene conversion calculated using the standard sample of polystyrene using gel permeation chromatography (GPC).
When the photoelectric conversion element of this invention contains the high molecular compound containing the structural unit represented by Formula (1), content of the structural unit represented by Formula (1) in this polymeric compound is in a compound. It suffices that at least one is included in. Preferably, the polymer compound contains an average of 2 or more per polymer chain, and more preferably an average of 3 or more per polymer chain.
A preferable compound used in the photoelectric conversion element of the present invention includes a structural unit represented by the formula (1-1) and is a structural unit represented by the formula (A-1), which is represented by the formula (B-1). Selected from the group consisting of a structural unit represented by formula (C-1), a structural unit represented by formula (D-1), and a structural unit represented by formula (E-1). It is a polymer compound containing at least one structural unit.
In the formula (1-1), specific examples of the substituent that the thiophene ring represented by the D ″ ring and the E ″ ring may have are the substituents that the D ring and the E ring may have. The same as the specific example of the group.
The structural unit represented by the formula (1-1), the structural unit represented by the formula (A-1), the structural unit represented by the formula (B-1), and the formula (C-1). And a polymer compound comprising at least one structural unit selected from the group consisting of a structural unit represented by formula (D-1) and a structural unit represented by formula (E-1) When the total number of units is 100, the content of the structural unit represented by the formula (1-1) is preferably 10 to 90, more preferably 20 to 80, and particularly preferably 30 to 70. .
In addition, the polymer compound that can be used in the photoelectric conversion element of the present invention preferably has high solubility in a solvent from the viewpoint of ease of device production. Specifically, it preferably has a solubility capable of producing a solution containing 0.01% by weight (wt)% or more of the polymer compound, and has a solubility capable of producing a solution containing 0.1% by weight or more. More preferably, it has a solubility capable of producing a solution containing 0.4 wt% or more.
From the viewpoint of increasing the photoelectric conversion efficiency of the photoelectric conversion element, the open end voltage of the photoelectric conversion element is preferably high. When using the organic compound containing the structural unit represented by Formula (1) as an electron-donating compound, the higher the ionization potential of the organic compound, the higher the open-circuit voltage of the photoelectric conversion element of the present invention.
The production method of the polymer compound that can be used in the present invention is not particularly limited, but from the viewpoint of the ease of synthesis of the polymer compound, a method using a Suzuki coupling reaction, and a Stille coupling reaction. The method using is preferable.
As a method using the Suzuki coupling reaction, for example, the formula (100):
U1-E1-U2(100)
[Where E1Represents a divalent group containing an aromatic ring. U1And U2Each independently represents a dihydroxyboryl group (—B (OH)2) Or a borate ester residue. ]
One or more compounds represented by formula (200):
T1-E2-T2(200)
[Where E2Represents a divalent group containing an aromatic ring. T1And T2Each independently represents a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom) or a sulfonic acid residue. ]
The manufacturing method which has a process with which 1 or more types of compounds represented by these are made to react in presence of a palladium catalyst and a base is mentioned. Where E1Or E2Is a structural unit represented by the formula (1).
In this case, the total number of moles of the one or more compounds represented by the formula (200) used for the reaction is 0.8 to about the total number of moles of the one or more compounds represented by the formula (100). The amount is preferably 1.2 mol, and more preferably 0.9 to 1.1 mol.
The boric acid ester residue means a group obtained by removing a hydroxyl group from a boric acid diester, and examples thereof include a dialkyl ester residue, a diaryl ester residue, and a di (arylalkyl) ester residue. As the borate ester residue, the following formula:
Figure JPOXMLDOC01-appb-I000020
(In the formula, Me represents a methyl group, and Et represents an ethyl group.)
The group represented by these is illustrated.
Because of the ease of polymer compound synthesis, T1And T2The halogen atom is preferably a bromine atom or an iodine atom, more preferably a bromine atom.
T in equation (200)1And T2Is a sulfonic acid (-SO3H) means an atomic group obtained by removing acidic hydrogen from alkyl sulfonate group (for example, methane sulfonate group, ethane sulfonate group), aryl sulfonate group (for example, benzene sulfonate group, p-toluene sulfonate group). , Arylalkyl sulfonate groups (eg, benzyl sulfonate groups) and trifluoromethane sulfonate groups.
Specifically, the method for carrying out the Suzuki coupling reaction includes a method in which a reaction is carried out in the presence of a base using a palladium catalyst as a catalyst in an arbitrary solvent.
Examples of the palladium catalyst used in the Suzuki coupling reaction include a Pd (0) catalyst and a Pd (II) catalyst. Specifically, palladium [tetrakis (triphenylphosphine)], palladium acetates, dichlorobis ( Triphenylphosphine) palladium, palladium acetate, tris (dibenzylideneacetone) dipalladium, and bis (dibenzylideneacetone) palladium. From the viewpoint of ease of reaction (polymerization) operation and reaction (polymerization) rate, dichlorobis ( Triphenylphosphine) palladium, palladium acetate, and tris (dibenzylideneacetone) dipalladium are preferred.
The addition amount of the palladium catalyst is not particularly limited as long as it is an effective amount as a catalyst, but is usually 0.0001 mol to 0.5 mol with respect to 1 mol of the compound represented by the formula (100). The amount is preferably 0.0003 mol to 0.1 mol.
When palladium acetate is used as a palladium catalyst used in the Suzuki coupling reaction, for example, a phosphorus compound such as triphenylphosphine, tri (o-tolyl) phosphine, tri (o-methoxyphenyl) phosphine is added as a ligand. can do. In this case, the addition amount of the ligand is usually 0.5 mol to 100 mol, preferably 0.9 mol to 20 mol, more preferably 1 mol to 10 mol with respect to 1 mol of the palladium catalyst. is there.
Examples of the base used for the Suzuki coupling reaction include inorganic bases, organic bases, inorganic salts and the like. Examples of the inorganic base include potassium carbonate, sodium carbonate, and barium hydroxide. Examples of the organic base include triethylamine and tributylamine. An example of the inorganic salt is cesium fluoride.
The amount of the base added is usually 0.5 mol to 100 mol, preferably 0.9 mol to 20 mol, more preferably 1 mol to 10 mol, relative to 1 mol of the compound represented by the formula (100). is there.
The Suzuki coupling reaction is usually performed in a solvent. Examples of the solvent include N, N-dimethylformamide, toluene, dimethoxyethane, and tetrahydrofuran. From the viewpoint of solubility of the polymer compound used in the present invention, toluene and tetrahydrofuran are preferred. Further, the base may be added as an aqueous solution and reacted in a two-phase system. When an inorganic salt is used as the base, it is usually added as an aqueous solution and reacted from the viewpoint of solubility of the inorganic salt.
In addition, when adding a base as aqueous solution and making it react by a two-phase system, you may add phase transfer catalysts, such as a quaternary ammonium salt, as needed.
The temperature at which the Suzuki coupling reaction is carried out depends on the solvent, but is usually about 50 to 160 ° C., and 60 to 120 ° C. is preferable from the viewpoint of increasing the molecular weight of the polymer compound. Alternatively, the temperature may be raised to near the boiling point of the solvent and refluxed. The reaction time may be reached when the target degree of polymerization is reached, but is usually about 0.1 to 200 hours. About 1 to 30 hours is preferable from the viewpoint that the reaction proceeds efficiently.
The Suzuki coupling reaction is performed in a reaction system in which the Pd (0) catalyst is not deactivated under an inert atmosphere such as argon gas or nitrogen gas. For example, it is performed in a system sufficiently deaerated with argon gas or nitrogen gas. Specifically, after the inside of the polymerization vessel (reaction system) is sufficiently substituted with nitrogen gas and degassed, the compound represented by the formula (100), the compound represented by the formula (200), Dichlorobis (triphenylphosphine) palladium (II) was charged, the polymerization vessel was sufficiently replaced with nitrogen gas, degassed, and then degassed by adding a degassed solvent such as toluene by bubbling with nitrogen gas in advance. Thereafter, a base degassed by bubbling with nitrogen gas in advance, for example, an aqueous sodium carbonate solution, is dropped into this solution, and then heated and heated, for example, while maintaining an inert atmosphere at the reflux temperature for 8 hours. Polymerize.
As a method using Stille coupling reaction, for example, the formula (300):
U3-E3-U4(300)
[Where E3Represents a divalent group containing an aromatic ring. U3And U4Each independently represents a substituted stannyl group. ]
And a method of reacting one or more compounds represented by the formula (200) with one or more compounds represented by the formula (200) in the presence of a palladium catalyst. Where E3Or E2Is a structural unit represented by the formula (1).
As substituted stannyl group, -SnR100 3The group etc. which are represented by these are mentioned. Where R100Represents a monovalent organic group. Examples of the monovalent organic group include an alkyl group and an aryl group.
The carbon number of the alkyl group is usually 1 to 30, and specific examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl tomb, pentyl group, isopentyl Group, 2-methylbutyl group, 1-methylbutyl group, hexyl group, isohexyl group, 3-methylpentyl group, 2-methylpentyl group, 1-methylpentyl group, heptyl group, octyl group, isooctyl group, 2-ethylhexyl group, Examples thereof include chain alkyl groups such as nonyl group, decyl group, undecyl group, dodecyl group, tetradecyl group, hexadecyl tomb, octadecyl group and eicosyl group, and cycloalkyl groups such as cyclopentyl group, cyclohexyl group and adamantyl group. Examples of the aryl group include a phenyl group and a naphthyl group. The organotin residue is preferably -SnMe3, -SnEt3, -SnBu3, -SnPh3And more preferably -SnMe3, -SnEt3, -SnBu3It is. In the above preferred examples, Me represents a methyl group, Et represents an ethyl group, Bu represents a butyl group, and Ph represents a phenyl group.
Specifically, examples of the catalyst include a method of reacting in an arbitrary solvent under a palladium catalyst.
Examples of the palladium catalyst used in the Stille coupling reaction include Pd (0) catalyst, Pd (II) catalyst, and the like. Specifically, palladium [tetrakis (triphenylphosphine)], palladium acetates, dichlorobis (Triphenylphosphine) palladium, palladium acetate, tris (dibenzylideneacetone) dipalladium, bis (dibenzylideneacetone) palladium are mentioned. From the viewpoint of ease of reaction (polymerization) operation and reaction (polymerization) rate, palladium [ Tetrakis (triphenylphosphine)] and tris (dibenzylideneacetone) dipalladium are preferred.
The addition amount of the palladium catalyst used for the Stille coupling reaction is not particularly limited as long as it is an effective amount as a catalyst, but is usually 0.0001 per 1 mol of the compound represented by the formula (100). The amount is from mol to 0.5 mol, preferably from 0.0003 mol to 0.2 mol.
In the Stille coupling reaction, a ligand or a cocatalyst can be used as necessary. Examples of the ligand include phosphorus compounds such as triphenylphosphine, tri (o-tolyl) phosphine, tri (o-methoxyphenyl) phosphine, tris (2-furyl) phosphine, triphenylarsine, and triphenoxyarsine. Examples include arsenic compounds. Examples of the cocatalyst include copper iodide, copper bromide, copper chloride, and copper (I) 2-thenoylate.
When a ligand or promoter is used, the amount of ligand or promoter added is usually 0.5 to 100 moles, preferably 0.9 to 20 moles per mole of palladium catalyst. More preferably, it is 1 mol to 10 mol.
The Stille coupling reaction is usually performed in a solvent. Examples of the solvent include N, N-dimethylformamide, N, N-dimethylacetamide, toluene, dimethoxyethane, and tetrahydrofuran. From the viewpoint of solubility of the polymer compound used in the present invention, toluene and tetrahydrofuran are preferable.
The temperature at which the Stille coupling reaction is performed depends on the solvent, but is usually about 50 to 160 ° C., and preferably 60 to 120 ° C. from the viewpoint of increasing the molecular weight of the polymer compound. Alternatively, the temperature may be raised to near the boiling point of the solvent and refluxed.
The time for performing the reaction (reaction time) may be the end point when the target degree of polymerization is reached, but is usually about 0.1 to 200 hours. About 1 to 30 hours is preferable from the viewpoint that the reaction proceeds efficiently.
The Stille coupling reaction is performed in a reaction system in which the Pd catalyst is not deactivated under an inert atmosphere such as argon gas or nitrogen gas. For example, it is performed in a system sufficiently deaerated with argon gas or nitrogen gas. Specifically, after the inside of the polymerization vessel (reaction system) is sufficiently substituted with nitrogen gas and degassed, the polymerization vessel is charged with a compound represented by the formula (300), a compound represented by the formula (200), A palladium catalyst is charged, and the polymerization vessel is sufficiently replaced with nitrogen gas, degassed, and then bubbled with nitrogen gas in advance to add a degassed solvent, for example, toluene, and then coordinate as necessary. After adding the catalyst and the cocatalyst, the mixture is heated and heated, for example, and polymerized while maintaining an inert atmosphere at the reflux temperature for 8 hours.
If the polymerization active group remains at the end of the polymer compound that can be used in the photoelectric conversion device of the present invention, the properties and life of the device obtained when used in the production of the device may be reduced. It may be protected with a stable group. The stable group is preferably a group having a conjugated bond continuous with the conjugated structure of the main chain. The stable group may have a structure bonded to an aryl group or a heterocyclic group via a vinylene group. Examples of the stable group include a phenyl group having no substituent, a naphthyl group, a methyl group, an ethyl group, a propyl group, a butyl group, a trifluoromethyl group, and a pentafluoroethyl group.
The compound used for the photoelectric conversion element of the present invention can be produced, for example, by polymerizing a compound represented by the formula (1-2) as one of raw materials.
Figure JPOXMLDOC01-appb-I000021
(Wherein R1, D 'ring, E' ring, W1And W2Has the same meaning as described above. )
Specific examples of the aromatic heterocycle represented by the D ′ ring and the E ′ ring are the same as the specific examples of the aromatic heterocycle represented by the D ring and the E ring described above. Specific examples of the substituent that the aromatic heterocycle represented by the D ′ ring and the E ′ ring may have include the aromatic heterocycle represented by the aforementioned D ring and E ring. It is the same as the specific example of a good substituent. The D ′ ring and the E ′ ring are preferably a thiophene ring, a furan ring and a pyrrole ring, and more preferably a thiophene ring.
In formula (1-2), R1Is preferably an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted aryl group, an optionally substituted aryloxy group and an optionally substituted arylalkyl group. An aryl group which may be substituted, an aryloxy group which may be substituted and an arylalkyl group which may be substituted are more preferable, and an aryl group is particularly preferable.
W in formula (1-2)1And W2The definition and specific examples of the boric acid ester residue represented by1And U2The definition and specific examples of the boric acid ester residue represented by W1And W2The definition and specific examples of the sulfonic acid residue represented by1And T2Are the same as the definitions and specific examples of the halogen atom and the sulfonic acid residue. W1And W2The definition and specific examples of the substituted stannyl group represented by3And U4The definition and specific example of the substituted stannyl group represented by these are the same. W1And W2The monohalogenated methyl group represented by the formula represents a group in which one hydrogen atom in the methyl group is substituted with a halogen atom.
From the viewpoint of producing high molecular weight compounds, W1And W2Are each independently preferably a halogen atom, a sulfonic acid residue, a boric acid ester residue, a dihydroxyboryl group or a substituted stannyl group.
W in formula (1-2)1And W2When a compound in which is a hydrogen atom is used in the reaction, a polymer compound having a structural unit represented by the formula (1) can be produced by oxidative polymerization. In oxidative polymerization, a catalyst is usually used. As such a catalyst, a known catalyst can be used. Examples of the catalyst include a metal halide and a mixture of a metal halide and an amine complex (metal halide / amine complex). Examples of the metal halide include monovalent halides, divalent halides, and trivalent halides of metals such as copper, iron, vanadium, and chromium. Examples of the amine used for producing the amine complex include pyridine, lutidine, 2-methylimidazole, and N, N, N ′, N′-tetramethylethylenediamine. A metal halide / amine complex can be prepared by mixing a metal halide and an amine in a solvent in the presence of oxygen. 1/0. It is about 1 to 1/200, preferably about 1 / 0.3 to 1/100.
As the catalyst, iron chloride can also be used (Polym. Prep. Japan, Vol. 48, 309 (1999)). Further, by using a copper / amine catalyst system (J. Org. Chem., 64, 2264 (1999), J. Polym. Sci. Part A, Polym. Chem., 37, 3702 (1999)) The molecular weight can be increased.
As the solvent in the oxidative polymerization, any solvent can be used as long as the catalyst is not poisoned. Examples of such solvents include hydrocarbons, ethers, and alcohols. Here, examples of the hydrocarbon include toluene, benzene, xylene, trimethylbenzene, tetramethylbenzene, naphthalene, and tetralin. Examples of the ether include diethyl ether, diisopropyl ether, tetrahydrofuran, 1,4-dioxane, diphenyl ether, and tert-butyl methyl ether. Examples of alcohols include methanol, ethanol, isopropanol, and 2-methoxyethanol.
The reaction temperature in oxidative polymerization is usually −100 ° C. to 100 ° C., preferably −50 to 50 ° C.
Further, in the case of producing a copolymer, a method of polymerizing by mixing two or more types of monomers, a method of adding a second type of monomer after polymerizing one type of monomer, and the like can be mentioned. By using or combining these methods, it is possible to produce block copolymers, random copolymers, alternating copolymers, multiblock copolymers, graft copolymers, and the like.
As a manufacturing method of the compound represented by Formula (1-2), it can manufacture by reaction of the compound represented by Formula (1-3), and a boron compound.
Figure JPOXMLDOC01-appb-I000022
(Where1, W2, D 'ring and E' ring have the same meaning as described above. X50And X51Represents a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom). )
In the compound represented by formula (1-3), when the D ′ ring and the E ′ ring have a halogen atom as a substituent, or W1And W2X is a halogen atom, X50And X51In terms of increasing the yield of the compound represented by formula (1-2), the halogen atom represented by formula (1-2) is a halogen atom possessed by the D ′ ring and the E ′ ring, or W1And W2A halogen atom having higher reactivity with a base and a metal than a halogen atom represented by
As a manufacturing method of the compound represented by Formula (1-2), for example, after reacting the compound represented by Formula (1-3) with a base, the boron compound represented by Formula (1-4) The method of making this react is mentioned.
Figure JPOXMLDOC01-appb-I000023
(Wherein R1Has the same meaning as described above. X52And X53Each independently represents a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom) or an optionally substituted alkoxy group. X52And X53Are an optionally substituted alkoxy group, these may be linked to each other to form a ring. )
X in formula (1-4)52And X53Specific examples of the optionally substituted alkoxy group represented by:1Are the same as the specific examples of the alkoxy group which may be substituted.
Examples of the base used in the reaction include lithium hydride, sodium hydride, potassium hydride, methyl lithium, butyl lithium (n-BuLi), tert-butyl lithium (tert-BuLi), phenyl lithium, lithium diisopropylamide, lithium hexa Examples include methyl disilazide, sodium hexamethyl disilazide and potassium hexamethyl disilazide.
Solvents used in the reaction include saturated hydrocarbons such as pentane, hexane, heptane, octane and cyclohexane, unsaturated hydrocarbons such as benzene, toluene, ethylbenzene and xylene, carbon tetrachloride, chloroform, dichloromethane, chlorobutane and bromobutane. , Halogenated saturated hydrocarbons such as chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, halogenated unsaturated hydrocarbons such as chlorobenzene, dichlorobenzene, trichlorobenzene, methanol, ethanol, propanol, isopropanol, Alcohols such as butanol and tert-butyl alcohol, carboxylic acids such as formic acid, acetic acid and propionic acid, dimethyl ether, diethyl ether, methyl Ethers such as tert-butyl ether, tetrahydrofuran, tetrahydropyran, dioxane, trimethylamine, triethylamine, N, N, N ′, N′-tetramethylethylenediamine, amines such as pyridine, N, N-dimethylformamide, N, N-dimethylacetamide Amides such as N, N-diethylacetamide and N-methylmorpholine oxide are exemplified, and a single solvent or a mixed solvent thereof can be used depending on the reaction.
After the reaction, for example, after stopping the reaction with water, the product can be obtained by usual post-treatment such as extraction of the product with an organic solvent and distillation of the solvent. The product can be isolated and purified by methods such as chromatographic fractionation and recrystallization.
Compound (C) which is one embodiment of the compound represented by Formula (1-2) can be produced, for example, by reacting Compound (B) with 2 equivalents of bromine in dichloromethane.
Figure JPOXMLDOC01-appb-I000024
Compound (B) is obtained by reacting compound (A) with 2 equivalents of butyl lithium (n-BuLi) in tetrahydrofuran (hereinafter sometimes referred to as THF), and then 2,4,6-triisopropylphenyl. It can be produced by reacting 1 equivalent of dimethoxyborane.
Compound (B) is obtained by reacting compound (A) with 2 equivalents of n-BuLi in THF, then reacting compound (A) with 2 equivalents of magnesium bromide, and 2,4,6-tri It can also be produced by reacting 1 equivalent of isopropylphenyldimethoxyborane.
Another method for producing the compound represented by the formula (1-2) includes a method of coupling the compound represented by the formula (1-5) in the molecule.
Figure JPOXMLDOC01-appb-I000025
(Wherein R1, W1, W2, D ′ ring and E ′ ring have the same meaning as described above. X54And X55Represents a halogen atom (for example, a chlorine atom, a bromine atom and an iodine atom). )
X54And X55The halogen atom represented by is preferably a bromine atom or an iodine atom.
Intramolecular coupling is preferably performed in the presence of a metal. Examples of the metal include copper, iron, nickel, zinc, and the like, preferably copper.
Examples of the solvent used for intramolecular coupling include aliphatic hydrocarbons, aromatic hydrocarbons, amides, sulfoxides, and lactams. Examples of the aliphatic hydrocarbon include pentane, hexane, heptane, octane and cyclohexane. Examples of the aromatic hydrocarbon include benzene, toluene, ethylbenzene, and xylene. Examples of the amide include N, N-dimethylformamide, N, N-dimethylacetamide and N, N-diethylacetamide. Examples of the sulfoxide include dimethyl sulfoxide. As a lactam, N-methylpyrrolidone is mentioned, for example.
After the reaction, for example, after adding water to the reaction system to stop the reaction, the product can be obtained by usual post-treatment such as extracting the product with an organic solvent and distilling off the solvent. The product can be isolated and purified by methods such as chromatographic fractionation and recrystallization.
The compound represented by the formula (1-5) can be obtained, for example, by halogenating (for example, bromination or iodination) the compound represented by the formula (1-6).
Figure JPOXMLDOC01-appb-I000026
(Wherein R1, W1, W2, D ′ ring and E ′ ring have the same meaning as described above. )
The compound represented by the formula (1-6) is brominated to form X54And X55In the method for producing the compound represented by the formula (1-5) in which is a bromine atom, a known method can be used as a bromination method, for example, represented by the formula (1-6) And bromination by bringing the compound into contact with bromine or N-bromosuccinimide (NBS). The conditions for bromination can be arbitrarily set, but the method of reacting with NBS in a solvent is desirable from the viewpoint of high bromination rate and high selectivity of the bromine atom introduction position. Examples of the solvent used in the method include N, N-dimethylformamide, chloroform, methylene chloride, carbon tetrachloride and the like. The reaction time is usually about 1 minute to 10 hours, and the reaction temperature is usually about −50 ° C. to 50 ° C. The amount of bromine used is preferably about 1 mol to 5 mol with respect to 1 mol of the compound represented by the formula (1-6). After the reaction, for example, after adding water to the reaction system to stop the reaction, the product is extracted with an organic solvent and subjected to usual post-treatment such as evaporation of the solvent.52And X53A compound represented by the formula (1-5) in which is a bromine atom can be obtained. The product can be isolated and purified by a method such as chromatographic fractionation or recrystallization.
X is obtained by iodination of the compound represented by formula (1-6)54And X55In the method for producing the compound represented by the formula (1-5) in which is an iodine atom, the method for iodination is to react the compound represented by the formula (1-6) with a base and then react with iodine. A method is mentioned. The base and solvent used in the method are used in the step of reacting the compound represented by the above formula (1-3) with a base and then reacting with the boron compound represented by the formula (1-4). The same thing as a base and a solvent is mentioned.
The compound represented by the formula (1-6) is represented by the above formula (1-4) after reacting a halide containing an aromatic heterocycle corresponding to the D ′ ring and the E ′ ring with a base. It can be produced by reacting with a compound to be prepared. The base and solvent used in the reaction are used in the step of reacting the compound represented by the above formula (1-3) with a base and then reacting with the boron compound represented by the formula (1-4). The same thing as a base and a solvent is mentioned.
Compound (G) can be produced, for example, by adding 5 equivalents of copper powder to compound (F) in N, N-dimethylformamide and stirring at 100 ° C. with heating.
Figure JPOXMLDOC01-appb-I000027
Compound (F) can be produced by reacting compound (E) with 2 equivalents of n-BuLi in THF and then reacting 2 equivalents of iodine.
Compound (E) can be produced by reacting compound (D) with 2 equivalents of n-BuLi in THF and then reacting 1 equivalent of 2,4,6-triisopropylphenyldimethoxyborane.
W1And W2As a method for producing a compound represented by the formula (1-2) in which is a bromine atom, W1And W2Bromine a compound represented by the formula (1-2) in which is hydrogen atom1And W2And the like, and the like. W1And W2A known method can be used as a method for converting benzene into a bromine atom.1And W2And bromine by bringing a compound represented by the formula (1-2) in which is a hydrogen atom into contact with bromine or N-bromosuccinimide (NBS). The conditions for bromination can be arbitrarily set. For example, a method of reacting with NBS in a solvent is desirable because the bromination rate is high and the selectivity of the introduction position of bromine atoms is high. Examples of the solvent used at this time include N, N-dimethylformamide, chloroform, methylene chloride, and carbon tetrachloride. The reaction time is usually about 1 minute to 10 hours, and the reaction temperature is usually about −50 ° C. to 50 ° C. The amount of bromine used is W1, W2Is preferably about 1 mol to 5 mol with respect to 1 mol of the compound represented by the formula (1-2) in which is a hydrogen atom. After the reaction, for example, after stopping the reaction by adding water, the product is extracted with an organic solvent and subjected to usual post-treatment such as distilling off the solvent.1And W2A compound represented by the formula (1-2) in which is a bromine atom can be obtained. The product can be isolated and purified by a method such as chromatographic fractionation or recrystallization.
The polymer compound that can be used in the present invention preferably has a long wavelength at the light absorption terminal wavelength. The light absorption terminal wavelength in the present invention means a value obtained by the following method.
For the measurement, a spectrophotometer (for example, JASCO-V670, made by JASCO Corporation) operating in the wavelength region of ultraviolet, visible, and near infrared is used. When JASCO-V670 is used, since the measurable wavelength range is 200 to 1500 nm, the measurement is performed in the wavelength range. First, the absorption spectrum of the substrate used for measurement is measured. As the substrate, a quartz substrate, a glass substrate, or the like is used. Next, a thin film containing the first compound is formed on the substrate from a solution containing the first compound or a melt containing the first compound. In film formation from a solution, drying is performed after film formation. Thereafter, an absorption spectrum of the laminate of the thin film and the substrate is obtained. The difference between the absorption spectrum of the laminate of the thin film and the substrate and the absorption spectrum of the substrate is obtained as the absorption spectrum of the thin film.
In the absorption spectrum of the thin film, the vertical axis represents the absorbance of the compound, and the horizontal axis represents the wavelength. It is desirable to adjust the thickness of the thin film so that the absorbance at the largest absorption peak is about 0.5 to 2. The absorbance of the absorption peak with the longest wavelength among the absorption peaks is defined as 100%, and the intersection of the absorption peak and a straight line parallel to the horizontal axis (wavelength axis) including the absorbance of 50% of the absorption peak. The intersection point that is longer than the peak wavelength is taken as the first point. The intersection point between the absorption peak and a straight line parallel to the wavelength axis containing 25% of the absorbance, which is longer than the peak wavelength of the absorption peak, is defined as a second point. The intersection of the straight line connecting the first point and the second point and the reference line is defined as the light absorption terminal wavelength. Here, the reference line is the intersection of the absorption peak and the straight line parallel to the wavelength axis including the absorbance of 10% at the absorption peak of the longest wavelength, where the absorbance of the absorption peak is 100%. The third point on the absorption spectrum that is 100 nm longer than the reference wavelength and the absorption spectrum that is 150 nm longer than the reference wavelength with reference to the wavelength of the intersection that is longer than the peak wavelength of the absorption peak A straight line connecting the top and the fourth point.
The photoelectric conversion element of the present invention has one or more active layers containing a compound having a structural unit represented by the formula (1) between a pair of electrodes at least one of which is transparent or translucent.
As a preferable form of the photoelectric conversion element of the present invention, it has an active layer formed of a pair of electrodes, at least one of which is transparent or translucent, and an organic composition of a p-type organic semiconductor and an n-type organic semiconductor. . The compound having the structural unit represented by the formula (1) is preferably used as a p-type organic semiconductor.
The photoelectric conversion element of the present invention is usually formed on a substrate. The substrate may be any substrate that does not chemically change when the electrodes are formed and the organic layer is formed. Examples of the material for the substrate include glass, plastic, polymer film, and silicon. In the case of an opaque substrate, the opposite electrode (that is, the electrode far from the substrate) is preferably transparent or translucent.
In another aspect of the photoelectric conversion element of the present invention, a first active layer containing the compound used in the present invention is adjacent to the first active layer between a pair of electrodes, at least one of which is transparent or translucent. Thus, the photoelectric conversion element includes a second active layer containing an electron-accepting compound such as a fullerene derivative.
Examples of the transparent or translucent electrode material include a conductive metal oxide film and a translucent metal thin film. Specifically, a film formed using a conductive material made of indium oxide, zinc oxide, tin oxide, and indium tin oxide (ITO), indium zinc oxide, etc., which is a composite thereof, NESA Alternatively, gold, platinum, silver, copper, or the like is used, and ITO, indium / zinc / oxide, and tin oxide are preferable. Examples of the method for producing the electrode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like. Moreover, you may use organic transparent conductive films, such as polyaniline and its derivative (s), polythiophene, and its derivative (s) as an electrode material.
One electrode may not be transparent, and as the electrode material of the electrode, a metal, a conductive polymer, or the like can be used. Specific examples of the electrode material include metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and the like. And one or more alloys selected from the group consisting of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, and tin. Examples include alloys with metals, graphite, graphite intercalation compounds, polyaniline and derivatives thereof, and polythiophene and derivatives thereof. Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
An additional intermediate layer other than the active layer may be used as a means for improving the photoelectric conversion efficiency. Examples of the material used for the intermediate layer include alkali metals such as lithium fluoride, halides of alkaline earth metals, oxides such as titanium oxide, and PEDOT (poly-3,4-ethylenedioxythiophene).
The active layer may contain the compound having the structural unit represented by the formula (1) alone or in combination of two or more. In order to improve the hole transport property of the active layer, a compound other than the compound having the structural unit represented by the formula (1) is mixed as an electron donating compound and / or an electron accepting compound in the active layer. Can also be used. The electron-donating compound and the electron-accepting compound are relatively determined from the energy levels of these compounds.
As the electron-donating compound, in addition to the compound having the structural unit represented by the formula (1), for example, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinylcarbazole and Derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having aromatic amine residues in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, polythienylene vinylene And derivatives thereof.
As the electron-accepting compound, in addition to the compound having the structural unit represented by the formula (1), for example, carbon materials, metal oxides such as titanium oxide, oxadiazole derivatives, anthraquinodimethane and derivatives thereof, Benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, diphenyldicyanoethylene and its derivatives, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and its derivatives, polyquinoline And derivatives thereof, polyquinoxaline and derivatives thereof, polyfluorene and derivatives thereof, phenanthroline derivatives such as 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (bathocuproine), fullerene, hula Include alkylene derivatives, preferably, titanium oxide, carbon nanotubes, fullerene, a fullerene derivative, particularly preferably a fullerene, a fullerene derivative.
Fullerene and C as fullerene derivatives60, C70, C76, C78, C84And derivatives thereof. The fullerene derivative represents a compound in which at least a part of fullerene is modified.
Examples of the fullerene derivative include a compound represented by formula (I), a compound represented by formula (II), a compound represented by formula (III), and a compound represented by formula (IV).
Figure JPOXMLDOC01-appb-I000028
(In the formulas (I) to (IV), RaIs an alkyl group which may be substituted, an aryl group which may be substituted, a heteroaryl group or a group having an ester structure. Multiple RaMay be the same or different. RbRepresents an optionally substituted alkyl group or an optionally substituted aryl group. Multiple RbMay be the same or different. )
RaAnd RbDefinitions and specific examples of the optionally substituted alkyl group and the optionally substituted aryl group represented by1The definition and specific examples of the alkyl group which may be substituted and the aryl group which may be substituted are the same.
RaExamples of the heteroaryl group represented by: include a thiophenediyl group, a pyridinediyl group, a furandiyl group, and a pyrrolediyl group.
RaExamples of the group having an ester structure represented by the formula (V) include a group represented by the formula (V).
Figure JPOXMLDOC01-appb-I000029
(Wherein u1 represents an integer of 1 to 6, u2 represents an integer of 0 to 6, RcRepresents an optionally substituted alkyl group, an optionally substituted aryl group or heteroaryl group. )
RcDefinitions and specific examples of the optionally substituted alkyl group, the optionally substituted aryl group and the heteroaryl group represented byaThe definition and specific examples of the alkyl group which may be substituted, the aryl group and the heteroaryl group which may be substituted are the same.
C60Specific examples of the derivatives include the following.
Figure JPOXMLDOC01-appb-I000030
C70Specific examples of the derivatives include the following.
Figure JPOXMLDOC01-appb-I000031
Examples of fullerene derivatives include [6,6] phenyl-C61 butyric acid methyl ester (C60PCBM, [6,6] -phenyl C61 butyric acid methyl ester), [6,6] phenyl-C71 butyric acid methyl ester (C70PCBM). [6,6] -Phenyl C71 butyric acid methyl ester), [6,6] Phenyl-C85 butyric acid methyl ester (C84PCBM, [6,6] -Phenyl C85 butyric acid methyl ester), [6,6] And C61 butyric acid methyl ester ([6,6] -Thienyl C61 butyric acid methyl ester).
When the active layer contains the compound having the structural unit represented by formula (1) and the fullerene derivative, the ratio of the fullerene derivative is preferably 10 to 1000 parts by weight with respect to 100 parts by weight of the compound. 20 to 500 parts by weight is more preferable.
The thickness of the active layer is usually preferably 1 nm to 100 μm, more preferably 2 nm to 1000 nm, still more preferably 5 nm to 500 nm, and more preferably 20 nm to 200 nm.
The method for producing the active layer may be produced by any method, and examples thereof include film formation from a solution containing a compound having the structural unit of formula (1), and film formation by vacuum deposition.
A preferred method for producing a photoelectric conversion element is a method for producing an element having a first electrode and a second electrode, and having an active layer between the first electrode and the second electrode, Applying a solution (ink) containing a compound having the structural unit of formula (1) and a solvent on the first electrode by a coating method to form an active layer; and forming a second electrode on the active layer It is the manufacturing method of the element which has the process to form.
When the photoelectric conversion element of the present invention contains a polymer compound having the structural unit represented by the formula (1), the solvent used for film formation from a solution dissolves the polymer compound used in the present invention. If it is. Examples of the solvent include unsaturated hydrocarbons such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, sec-butylbenzene, tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane, dichloroethane. , Halogenated saturated hydrocarbons such as chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, halogenated unsaturated hydrocarbons such as chlorobenzene, dichlorobenzene, trichlorobenzene, tetrahydrofuran, tetrahydropyran And ethers. The polymer compound used in the present invention can usually be dissolved in the solvent in an amount of 0.1% by weight or more.
When forming a film using a solution, slit coating method, knife coating method, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, Spray coating method, screen printing method, gravure printing method, flexographic printing method, offset printing method, ink jet coating method, dispenser printing method, nozzle coating method, capillary coating method etc. can be used, slit coating method, capillary A coating method, a gravure coating method, a micro gravure coating method, a bar coating method, a knife coating method, a nozzle coating method, an inkjet coating method, and a spin coating method are preferable.
From the viewpoint of film formability, the surface tension of the solvent at 25 ° C. is preferably larger than 15 mN / m, more preferably larger than 15 mN / m and smaller than 100 mN / m, larger than 25 mN / m and larger than 60 mN / m. It is more preferable that the value is small.
The compound used in the present invention can also be used in an organic thin film transistor. The organic thin film transistor has a configuration including a source electrode and a drain electrode, an organic semiconductor layer (active layer) serving as a current path between these electrodes, and a gate electrode for controlling the amount of current passing through the current path. The organic semiconductor layer is constituted by the organic thin film described above. Examples of such an organic thin film transistor include a field effect type and an electrostatic induction type.
A field effect organic thin film transistor includes a source electrode and a drain electrode, an organic semiconductor layer (active layer) serving as a current path between them, a gate electrode for controlling the amount of current passing through the current path, and an organic semiconductor layer and a gate electrode It is preferable to provide an insulating layer disposed between the two. In particular, the source electrode and the drain electrode are preferably provided in contact with the organic semiconductor layer (active layer), and the gate electrode is preferably provided with an insulating layer in contact with the organic semiconductor layer interposed therebetween. In the field effect organic thin film transistor, the organic semiconductor layer is constituted by an organic thin film containing the polymer compound used in the present invention.
The electrostatic induction organic thin film transistor which is one embodiment of the organic thin film transistor of the present invention controls a source electrode and a drain electrode, an organic semiconductor layer (active layer) serving as a current path between them, and an amount of current passing through the current path. It is preferable to have a gate electrode, and this gate electrode is provided in the organic semiconductor layer. In particular, it is preferably provided in contact with the source electrode and the drain electrode. Here, the structure of the gate electrode may be a structure in which a current path flowing from the source electrode to the drain electrode is formed and the amount of current flowing through the current path can be controlled by a voltage applied to the gate electrode. An electrode is mentioned. In the static induction organic thin film transistor, the organic semiconductor layer is composed of an organic thin film containing the compound used in the present invention. The thickness of the active layer is usually preferably 1 nm to 100 μm, more preferably 2 nm to 1000 nm, still more preferably 5 nm to 500 nm, more preferably 20 nm to 200 nm.
The photoelectric conversion element of the present invention can be operated as an organic thin film solar cell by generating a photovoltaic force between the electrodes by irradiating light such as sunlight from a transparent or translucent electrode. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.
Also, by applying light from a transparent or translucent electrode in a state where a voltage is applied between the electrodes or in a state where no voltage is applied, a photocurrent flows and it can be operated as an organic photosensor. It can also be used as an organic image sensor by integrating a plurality of organic photosensors.
Organic thin-film solar cells can have basically the same module structure as conventional solar cell modules. The solar cell module generally has a structure in which cells are formed on a support substrate such as metal or ceramic, and the cell is covered with a filling resin or protective glass, and light is taken in from the opposite side of the support substrate. It is also possible to use a transparent material such as tempered glass for the support substrate, configure a cell thereon, and take in light from the transparent support substrate side. Specifically, a module structure called a super straight type, a substrate type, and a potting type, a substrate integrated module structure used in an amorphous silicon solar cell, and the like are known. The module structure of the organic thin film solar cell of the present invention can be appropriately selected depending on the purpose of use, the place of use and the environment.
In a typical super straight type or substrate type module, cells are arranged at regular intervals between support substrates that are transparent on one or both sides and subjected to antireflection treatment, and adjacent cells are connected by metal leads or flexible wiring. The current collector electrode is connected to the outer edge portion, and the generated power is taken out to the outside. Various types of plastic materials such as ethylene vinyl acetate (EVA) may be used between the substrate and the cell in the form of a film or a filling resin depending on the purpose in order to protect the cell and improve the current collection efficiency. In addition, when used in a place where it is not necessary to cover the surface with a hard material such as a place where there is little impact from the outside, the surface protection layer is made of a transparent plastic film, or the protective function is achieved by curing the filling resin. It is possible to eliminate the supporting substrate on one side. The periphery of the support substrate is fixed in a sandwich shape with a metal frame in order to ensure internal sealing and module rigidity, and the support substrate and the frame are hermetically sealed with a sealing material. In addition, if a flexible material is used for the cell itself, the support substrate, the filling material, and the sealing material, a solar cell can be formed on the curved surface. In the case of a solar cell using a flexible support such as a polymer film, cells are sequentially formed while feeding out a roll-shaped support, cut to a desired size, and then the periphery is sealed with a flexible and moisture-proof material. Thus, the battery body can be produced. Also, a module structure called “SCAF” described in Solar Energy Materials and Solar Cells, 48, p383-391 may be used. Furthermore, a solar cell using a flexible support can be used by being bonded and fixed to a curved glass or the like.
 以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。
参考例1 (3,3’−ジブロモ−5,5’−テトラメチルシリル−2,2’−ビチオフェン(1)の合成)
Figure JPOXMLDOC01-appb-I000032
 フラスコ内の空気をアルゴンで置換した200mLフラスコに、ヘテロサイクルズ(Heterocycles)、1991年、第32巻、第9号、p.1805に記載された方法で合成した3,3’5,5’−テトラブロモ−2,2’−ビチオフェンを5.00g(10.4mmol)、脱水テトラヒドロフランを(以下、THFと呼称することもある)100mL入れて均一溶液とした。フラスコを−78℃に冷却し、2.6Mのブチルリチウム(n−BuLi)のヘキサン溶液を7.98mL(20.74mmol)滴下した。反応液を−78℃で2時間攪拌し、その後、テトラメチルクロロシランを2.50g(23.0mmol)滴下した。1時間かけてフラスコを室温まで昇温し、水50mLを加えて反応を停止させた。その後、反応液に酢酸エチルを加えて反応生成物を含む有機層を抽出し、抽出した有機層を硫酸ナトリウムで乾燥させ、濾過後、溶媒をエバポレーターで留去し、粗生成物を得た。得られた粗生成物を展開溶媒がヘキサンであるシリカゲルカラムで精製し、得られた固体をエタノールを用いて再結晶させ、目的の3,3’−ジブロモ−5,5’−テトラメチルシリル−2,2’−ビチオフェン(1)を3.5g得た。
H NMR:7.12(S、2H)、0.34(S、18H)
参考例2 (化合物(2)の合成)
Figure JPOXMLDOC01-appb-I000033
 フラスコ内の空気をアルゴンで置換した100mLフラスコに化合物(1)を0.424g(0.905mmol)、脱水THFを20mL入れて均一溶液とした。フラスコを−78℃に冷却し、2.6Mのn−BuLiのヘキサン溶液0.71mL(1.85mmol)を5分かけて滴下した。反応液を−78℃で30分攪拌後、−30℃で30分攪拌した。その後、フラスコを−78℃に冷却して無水マグネシウムブロミドを0.535g(2.91mmol)加えた。反応液を−78℃で30分攪拌した後、0℃で2時間攪拌した。その後、フラスコを−78℃に冷却し、2,4,6−トリイソプロピルフェニルジメトキシボランを0.25g(0.905mmol)加えた。反応液を−78℃で30分攪拌後、0℃で7時間攪拌した。その後、反応液に水100mLを加えて反応を停止させ、反応液に酢酸エチルを加え、有機層を抽出した。有機層を硫酸ナトリウムで乾燥させ、濾過した。その後、エバポレーターを用いて濾液中の溶媒を留去させた。残渣をシリカゲルカラムクロマトグラフィ(ヘキサン:酢酸エチル=4:1(体積比))で精製して化合物(2)を281mg得た。
H NMR:7.07(s、2H)、6.92(s、2H)、2.94(m、1H)、2.75(m、2H)、1.35(d、6H)、1.23(d、12H)、0.29(s、18H)
参考例3 (化合物(3)の合成)
Figure JPOXMLDOC01-appb-I000034
 フラスコ内の空気をアルゴンで置換した100mLフラスコに、化合物(2)を281mg(0.538mmol)、ジクロロメタンを10mL入れて均一溶液とした。フラスコを−30℃に冷却し、臭素100mgをジクロロメタン5mLに溶解させた溶液を30分かけて滴下した。滴下後、反応液を−10℃で1時間攪拌し、その後、0℃で2時間攪拌し、その後、20℃で4時間攪拌した。攪拌後、反応液に水50mLを加えて反応を停止させ、反応液にジクロロメタンを加え、有機層を抽出した。有機層を硫酸ナトリウムで乾燥させ、濾過後、エバポレーターを用いて濾液中の溶媒を留去させた。残った固体をシリカゲルカラム(ヘキサン:酢酸エチル=9:1(体積比))で精製し、目的の化合物(3)を132mg(0.246mmol)得た。
H NMR:7.07(s、2H)、6.64(s、2H)、1.22(s、18H)
実施例1 (重合体(A)の合成)
Figure JPOXMLDOC01-appb-I000035
 フラスコ内の空気をアルゴンで置換した100mLフラスコに、化合物(3)を69mg(0.129mmol)、化合物(4)(4,7−bis(4,4,5,5−tetramethyl−1,3,2−dioxaborolan−2−yl)−2,1,3−benzothiadiazole)(Aldrich社製)を50mg(0.129mmol)、メチルトリアルキルアンモニウムクロリド(商品名Aliquat336(登録商標)、Aldrich社製)を35mg加え、トルエン10mLに溶解させ、得られたトルエン溶液をアルゴンで30分バブリングした。その後、トルエン溶液に、酢酸パラジウムを0.43mg、トリス(2−メトキシフェニル)ホスフィン(Tris(2−methoxyphenyl)phosphine)を2.38mg、16.7重量(wt)%の炭酸ナトリウム水溶液を1mL加え、100℃で8時間攪拌を行った。その後、反応液にジエチルジチオカルバミン酸ナトリウム1gと水10mLとを加え、還流下で2時間攪拌を行った。反応終了後、反応液を室温(25℃)付近まで冷却した後、得られた反応液を静置し、分液したトルエン層を回収した。該トルエン層を水10mLで2回、3重量%の酢酸水10mLで2回、さらに水10mLで2回洗浄し、得られたトルエン層をメタノール中に注ぎ込み、析出した沈殿物を回収した。該沈殿物を減圧乾燥させた後、クロロホルムに溶解させた。次に、得られた液を濾過し、不溶物を除去した後、アルミナカラムに通し、精製した。得られたクロロホルム溶液を減圧濃縮した後、メタノール中に注ぎ込み、沈殿させ、生成した沈殿を回収した。該沈殿をメタノールで洗浄した後、減圧乾燥させ、重合体25mgを得た。以下、この重合体を重合体(A)と呼称する。
実施例2 (有機薄膜のイオン化ポテンシャルの測定)
 重合体Aを1.0重量%の濃度でo−ジクロロベンゼンに溶解させ、塗布溶液を作製した。得られた塗布溶液をガラス基板上に、スピンコートにより塗布した。塗布操作は23℃で行った。その後、大気下、120℃で5分間ベークし、膜厚約70nmの有機薄膜を得た。大気中光電子分光装置(理研計器製、AC−2)を用いて得られた有機薄膜のイオン化ポテンシャルを測定したところ、イオン化ポテンシャルは、5.2eVであった。
 重合体Aのイオン化ポテンシャルが高いため、重合体Aを活性層に含む有機光電変換素子は、開放端電圧が高くなる。
参考例4 (化合物(6)の合成)
Figure JPOXMLDOC01-appb-I000036
 フラスコ内の空気をアルゴンで置換した200mLフラスコに、化合物(5)を1.78g(10.0mmol)、2−エチルヘキシルブロミドを5.83g(25.0mmol)、ヨウ化カリウムを41.5mg(0.25mmol)、水酸化カリウムを1.68g(30.0mmol)入れ、ジメチルスルホキシド35mLに溶解させ、室温(25℃)で24時間攪拌した。反応後、反応液に水100mLを加え、さらにヘキサンを加えて生成物を含む有機層を抽出し、展開溶媒がヘキサンであるシリカゲルカラムで精製を行い、化合物(6)を2.61g得た。
参考例5 (化合物(7)の合成)
Figure JPOXMLDOC01-appb-I000037
 フラスコ内の空気をアルゴンで置換した200mLフラスコに、化合物(6)を1.31g(3.25mmol)、ジメチルホルムアミド(DMF)を25mL加え、フラスコを0℃に冷却し、N−ブロモスクシンイミド(NBS)を1.21g加え、12時間攪拌した。反応液中に水100mLを加えて反応を停止させ、反応液にジエチルエーテルを加えて生成物を含む有機層を抽出した。展開溶媒がヘキサンであるシリカゲルカラムで精製を行い、化合物(7)を1.70g得た。
参考例6 (重合体Bの合成)
Figure JPOXMLDOC01-appb-I000038
 フラスコ内の空気をアルゴンで置換した200mLフラスコに、化合物(7)を561mg(1.00mmol)、化合物(4)を388.1mg(1.00mmol)、メチルトリアルキルアンモニウムクロリド(商品名Aliquat336(登録商標)、Aldrich社製)を202mg加え、トルエン20mlに溶解させ、得られたトルエン溶液をアルゴンで30分バブリングした。その後、反応液に酢酸パラジウムを2.25mg、トリス(2−メトキシフェニル)ホスフィン(Tris(2−methoxyphenyl)phosphine)を12.3mg、16.7重量%の炭酸ナトリウム水溶液を6.5mL加え、100℃で5時間攪拌を行った。その後、反応液にフェニルホウ酸50mgを加え、さらに70℃で2時間反応させた。その後、反応液にジエチルジチオカルバミン酸ナトリウム2gと水20mLを加え、2時間還流下で攪拌を行った。水層を除去後、有機層を水20mlで2回洗浄し、次いで、3重量%の酢酸水溶液20mLで2回洗浄し、さらに水20mLで2回洗浄し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーを濾過後、乾燥させ、得られたポリマーをo−ジクロロベンゼン30mLに再度溶解させ、アルミナ/シリカゲルカラムに通し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーを濾過後、乾燥させ、精製された重合体280mgを得た。以下、この重合体を重合体Bと呼称する。
比較例1 (有機薄膜のイオン化ポテンシャルの測定)
 重合体Bを1.0重量%の濃度でo−ジクロロベンゼンに溶解させ、塗布溶液を作製した。得られた塗布溶液をガラス基板上に、スピンコートにより塗布した。塗布操作は23℃で行った。その後、大気下、120℃で5分間ベークし、膜厚約100nmの有機薄膜を得た。大気中光電子分光装置(理研計器製AC−2)を用いて得られた有機薄膜のイオン化ポテンシャルを測定したところ、イオン化ポテンシャルは、5.0eVであった。
Examples will be shown below for illustrating the present invention in more detail, but the present invention is not limited to these examples.
Reference Example 1 (Synthesis of 3,3′-dibromo-5,5′-tetramethylsilyl-2,2′-bithiophene (1))
Figure JPOXMLDOC01-appb-I000032
In a 200 mL flask in which the air in the flask was replaced with argon, Heterocycles, 1991, Vol. 32, No. 9, p. 5.00 g (10.4 mmol) of 3,3′5,5′-tetrabromo-2,2′-bithiophene synthesized by the method described in 1805 and dehydrated tetrahydrofuran (hereinafter sometimes referred to as THF) 100 mL was added to obtain a uniform solution. The flask was cooled to −78 ° C., and 7.98 mL (20.74 mmol) of a hexane solution of 2.6 M butyllithium (n-BuLi) was added dropwise. The reaction solution was stirred at −78 ° C. for 2 hours, and then 2.50 g (23.0 mmol) of tetramethylchlorosilane was added dropwise. The flask was warmed to room temperature over 1 hour, and 50 mL of water was added to stop the reaction. Thereafter, ethyl acetate was added to the reaction solution to extract an organic layer containing the reaction product, the extracted organic layer was dried over sodium sulfate, filtered, and then the solvent was distilled off with an evaporator to obtain a crude product. The obtained crude product is purified by a silica gel column whose developing solvent is hexane, and the obtained solid is recrystallized using ethanol to obtain the desired 3,3′-dibromo-5,5′-tetramethylsilyl- 3.5 g of 2,2′-bithiophene (1) was obtained.
1 H NMR: 7.12 (S, 2H), 0.34 (S, 18H)
Reference Example 2 (Synthesis of Compound (2))
Figure JPOXMLDOC01-appb-I000033
0.424 g (0.905 mmol) of compound (1) and 20 mL of dehydrated THF were added to a 100 mL flask in which the air in the flask was replaced with argon to obtain a uniform solution. The flask was cooled to −78 ° C., and 0.71 mL (1.85 mmol) of 2.6M n-BuLi in hexane was added dropwise over 5 minutes. The reaction solution was stirred at -78 ° C for 30 minutes and then stirred at -30 ° C for 30 minutes. Thereafter, the flask was cooled to −78 ° C., and 0.535 g (2.91 mmol) of anhydrous magnesium bromide was added. The reaction solution was stirred at -78 ° C for 30 minutes and then stirred at 0 ° C for 2 hours. Thereafter, the flask was cooled to −78 ° C., and 0.25 g (0.905 mmol) of 2,4,6-triisopropylphenyldimethoxyborane was added. The reaction solution was stirred at -78 ° C for 30 minutes and then stirred at 0 ° C for 7 hours. Thereafter, 100 mL of water was added to the reaction solution to stop the reaction, ethyl acetate was added to the reaction solution, and the organic layer was extracted. The organic layer was dried over sodium sulfate and filtered. Thereafter, the solvent in the filtrate was distilled off using an evaporator. The residue was purified by silica gel column chromatography (hexane: ethyl acetate = 4: 1 (volume ratio)) to obtain 281 mg of compound (2).
1 H NMR: 7.07 (s, 2H), 6.92 (s, 2H), 2.94 (m, 1H), 2.75 (m, 2H), 1.35 (d, 6H), 1 .23 (d, 12H), 0.29 (s, 18H)
Reference Example 3 (Synthesis of Compound (3))
Figure JPOXMLDOC01-appb-I000034
In a 100 mL flask in which the air in the flask was replaced with argon, 281 mg (0.538 mmol) of compound (2) and 10 mL of dichloromethane were added to obtain a homogeneous solution. The flask was cooled to −30 ° C., and a solution in which 100 mg of bromine was dissolved in 5 mL of dichloromethane was added dropwise over 30 minutes. After the dropping, the reaction solution was stirred at −10 ° C. for 1 hour, then stirred at 0 ° C. for 2 hours, and then stirred at 20 ° C. for 4 hours. After stirring, 50 mL of water was added to the reaction solution to stop the reaction, dichloromethane was added to the reaction solution, and the organic layer was extracted. The organic layer was dried over sodium sulfate and filtered, and then the solvent in the filtrate was distilled off using an evaporator. The remaining solid was purified with a silica gel column (hexane: ethyl acetate = 9: 1 (volume ratio)) to obtain 132 mg (0.246 mmol) of the desired compound (3).
1 H NMR: 7.07 (s, 2H), 6.64 (s, 2H), 1.22 (s, 18H)
Example 1 (Synthesis of polymer (A))
Figure JPOXMLDOC01-appb-I000035
In a 100 mL flask in which the air in the flask was replaced with argon, 69 mg (0.129 mmol) of compound (3) and compound (4) (4,7-bis (4,4,5,5-tetramethyl-1,3,3) were added. 2-dioxabolol-2-yl) -2,1,3-benzothiadiazole) (Aldrich) 50 mg (0.129 mmol), methyltrialkylammonium chloride (trade name Aliquat 336 (registered trademark), Aldrich) 35 mg In addition, it was dissolved in 10 mL of toluene, and the resulting toluene solution was bubbled with argon for 30 minutes. Thereafter, 0.43 mg of palladium acetate, 2.38 mg of tris (2-methoxyphenyl) phosphine) and 1 mL of 16.7 wt (wt)% aqueous sodium carbonate solution were added to the toluene solution. And stirring at 100 ° C. for 8 hours. Thereafter, 1 g of sodium diethyldithiocarbamate and 10 mL of water were added to the reaction solution, and the mixture was stirred under reflux for 2 hours. After completion of the reaction, the reaction solution was cooled to around room temperature (25 ° C.), and then the obtained reaction solution was allowed to stand and a separated toluene layer was recovered. The toluene layer was washed twice with 10 mL of water, twice with 10 mL of 3% by weight acetic acid aqueous solution and twice with 10 mL of water, and the obtained toluene layer was poured into methanol, and the deposited precipitate was recovered. The precipitate was dried under reduced pressure and then dissolved in chloroform. Next, the obtained liquid was filtered to remove insoluble matters, and then passed through an alumina column for purification. The obtained chloroform solution was concentrated under reduced pressure, poured into methanol and precipitated, and the generated precipitate was collected. The precipitate was washed with methanol and then dried under reduced pressure to obtain 25 mg of a polymer. Hereinafter, this polymer is referred to as a polymer (A).
Example 2 (Measurement of ionization potential of organic thin film)
Polymer A was dissolved in o-dichlorobenzene at a concentration of 1.0% by weight to prepare a coating solution. The obtained coating solution was applied onto a glass substrate by spin coating. The coating operation was performed at 23 ° C. Then, it baked at 120 degreeC under air | atmosphere for 5 minutes, and obtained the organic thin film with a film thickness of about 70 nm. When the ionization potential of the organic thin film obtained was measured using an atmospheric photoelectron spectrometer (AC-2, manufactured by Riken Keiki Co., Ltd.), the ionization potential was 5.2 eV.
Since the ionization potential of the polymer A is high, the open-circuit voltage of the organic photoelectric conversion element including the polymer A in the active layer is high.
Reference Example 4 (Synthesis of Compound (6))
Figure JPOXMLDOC01-appb-I000036
In a 200 mL flask in which the air in the flask was replaced with argon, 1.78 g (10.0 mmol) of compound (5), 5.83 g (25.0 mmol) of 2-ethylhexyl bromide, and 41.5 mg (0 .25 mmol) and 1.68 g (30.0 mmol) of potassium hydroxide were dissolved in 35 mL of dimethyl sulfoxide and stirred at room temperature (25 ° C.) for 24 hours. After the reaction, 100 mL of water was added to the reaction solution, hexane was further added to extract the organic layer containing the product, and purification was performed with a silica gel column whose developing solvent was hexane to obtain 2.61 g of Compound (6).
Reference Example 5 (Synthesis of Compound (7))
Figure JPOXMLDOC01-appb-I000037
To a 200 mL flask in which the air in the flask was replaced with argon, 1.31 g (3.25 mmol) of compound (6) and 25 mL of dimethylformamide (DMF) were added, the flask was cooled to 0 ° C., and N-bromosuccinimide (NBS) was added. ) Was added and stirred for 12 hours. 100 mL of water was added to the reaction solution to stop the reaction, and diethyl ether was added to the reaction solution to extract an organic layer containing the product. Purification was performed on a silica gel column in which the developing solvent was hexane to obtain 1.70 g of compound (7).
Reference Example 6 (Synthesis of Polymer B)
Figure JPOXMLDOC01-appb-I000038
In a 200 mL flask in which the air in the flask was replaced with argon, 561 mg (1.00 mmol) of compound (7), 388.1 mg (1.00 mmol) of compound (4), methyltrialkylammonium chloride (trade name Aliquat 336 (registered) (Trademark) and Aldrich) were added in an amount of 202 mg, dissolved in 20 ml of toluene, and the resulting toluene solution was bubbled with argon for 30 minutes. Then, 2.25 mg of palladium acetate, 12.3 mg of tris (2-methoxyphenyl) phosphine (Tris (2-methoxyphenyl) phosphine), 6.5 mL of 16.7 wt% sodium carbonate aqueous solution were added to the reaction solution, and 100 Stirring was carried out at 5 ° C. for 5 hours. Thereafter, 50 mg of phenylboric acid was added to the reaction solution, and further reacted at 70 ° C. for 2 hours. Thereafter, 2 g of sodium diethyldithiocarbamate and 20 mL of water were added to the reaction solution, followed by stirring under reflux for 2 hours. After removing the aqueous layer, the organic layer was washed twice with 20 ml of water, then twice with 20 mL of 3% by weight acetic acid aqueous solution, and further washed twice with 20 mL of water. The resulting solution was poured into methanol. A polymer was precipitated. The polymer was filtered and dried, and the obtained polymer was redissolved in 30 mL of o-dichlorobenzene, passed through an alumina / silica gel column, and the resulting solution was poured into methanol to precipitate the polymer. The polymer was filtered and dried to obtain 280 mg of a purified polymer. Hereinafter, this polymer is referred to as polymer B.
Comparative Example 1 (Measurement of ionization potential of organic thin film)
Polymer B was dissolved in o-dichlorobenzene at a concentration of 1.0% by weight to prepare a coating solution. The obtained coating solution was applied onto a glass substrate by spin coating. The coating operation was performed at 23 ° C. Then, it baked for 5 minutes at 120 degreeC in air | atmosphere, and obtained the organic thin film with a film thickness of about 100 nm. When the ionization potential of the organic thin film obtained using an atmospheric photoelectron spectrometer (AC-2 manufactured by Riken Keiki Co., Ltd.) was measured, the ionization potential was 5.0 eV.
 本発明の光電変換素子は、開放端電圧が高く有用である。 The photoelectric conversion element of the present invention has a high open end voltage and is useful.

Claims (10)

  1.  第1の電極と第2の電極とを有し、該第1の電極と該第2の電極との間に活性層を有し、該活性層に式(1)で表される構成単位を含む有機化合物を含有する光電変換素子。
    Figure JPOXMLDOC01-appb-I000001
    (式中、Rは、水素原子、ハロゲン原子、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルキルチオ基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基、置換されていてもよいアリールアルキルチオ基、置換されていてもよいアリールアルケニル基、置換されていてもよいアリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、複素環基、アシル基、アシルオキシ基、アミド基、カルボキシル基、ニトロ基又はシアノ基を表す。D環及びE環は、それぞれ独立に、置換基を有していてもよい芳香環を表す。)
    A first electrode and a second electrode; an active layer between the first electrode and the second electrode; and a structural unit represented by formula (1) in the active layer: A photoelectric conversion element containing an organic compound.
    Figure JPOXMLDOC01-appb-I000001
    (In the formula, R 1 is a hydrogen atom, a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkylthio group, an optionally substituted aryl group, Aryloxy group which may be substituted, arylthio group which may be substituted, arylalkyl group which may be substituted, arylalkoxy group which may be substituted, arylalkylthio group which may be substituted, substituted Arylalkenyl group which may be substituted, arylalkynyl group which may be substituted, amino group, substituted amino group, silyl group, substituted silyl group, silyloxy group, substituted silyloxy group, heterocyclic group, acyl group, acyloxy group, Represents an amide group, a carboxyl group, a nitro group or a cyano group, and the D ring and the E ring are each independently Represents an aromatic ring optionally having a substituent.)
  2.  有機化合物が、さらに式(A−1)で表される構成単位、式(B−1)で表される構成単位、式(C−1)で表される構成単位、式(D−1)で表される構成単位及び式(E−1)で表される構成単位からなる群から選ばれる少なくとも1種の構成単位を含有する請求項1に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-I000002
    (式(A−1)~(E−1)中、Qは、硫黄原子、酸素原子、セレン原子、−N(R30)−又は−CR31=CR32−を表す。R30、R31及びR32は、それぞれ独立に、水素原子又は置換基を表す。R20~R25は、それぞれ独立に、水素原子又は置換基を表す。R20とR21は、連結して環状構造を形成してもよい。G環~N環は、それぞれ独立に、置換基を有していてもよい芳香環を表す。)
    The organic compound is further a structural unit represented by the formula (A-1), a structural unit represented by the formula (B-1), a structural unit represented by the formula (C-1), and the formula (D-1). The photoelectric conversion element of Claim 1 containing the at least 1 sort (s) of structural unit chosen from the group which consists of the structural unit represented by and the structural unit represented by Formula (E-1).
    Figure JPOXMLDOC01-appb-I000002
    (In formulas (A-1) to (E-1), Q 1 represents a sulfur atom, an oxygen atom, a selenium atom, —N (R 30 ) — or —CR 31 ═CR 32 —. R 30 , R 31 and R 32 each independently represents a hydrogen atom or a substituent, R 20 to R 25 each independently represents a hydrogen atom or a substituent, and R 20 and R 21 are linked to form a cyclic structure. (G ring to N ring each independently represents an aromatic ring which may have a substituent.)
  3.  D環及びE環の少なくとも一方が置換基を有していてもよい芳香族複素環である請求項1又は2に記載の光電変換素子。 The photoelectric conversion device according to claim 1, wherein at least one of the D ring and the E ring is an aromatic heterocyclic ring which may have a substituent.
  4.  D環及びE環の少なくとも一方がチオフェン環である請求項3に記載の光電変換素子。 The photoelectric conversion element according to claim 3, wherein at least one of the D ring and the E ring is a thiophene ring.
  5.  請求項1~4のいずれかに記載の光電変換素子を含む太陽電池モジュール。 A solar cell module comprising the photoelectric conversion element according to any one of claims 1 to 4.
  6.  請求項1~4のいずれかに記載の光電変換素子を含むイメージセンサー。 An image sensor comprising the photoelectric conversion element according to any one of claims 1 to 4.
  7.  ゲート電極と、ソース電極と、ドレイン電極と、活性層とを有し、該活性層に式(1)で表される構成単位を含む有機化合物を含有する有機薄膜トランジスタ。
    Figure JPOXMLDOC01-appb-I000003
    (式中、Rは、水素原子、ハロゲン原子、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルキルチオ基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基、置換されていてもよいアリールアルキルチオ基、置換されていてもよいアリールアルケニル基、置換されていてもよいアリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、複素環基、アシル基、アシルオキシ基、アミド基、カルボキシル基、ニトロ基又はシアノ基を表す。D環及びE環は、それぞれ独立に、置換基を有していてもよい芳香環を表す。)
    An organic thin film transistor having a gate electrode, a source electrode, a drain electrode, and an active layer, and containing an organic compound containing a structural unit represented by formula (1) in the active layer.
    Figure JPOXMLDOC01-appb-I000003
    (In the formula, R 1 is a hydrogen atom, a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkylthio group, an optionally substituted aryl group, Aryloxy group which may be substituted, arylthio group which may be substituted, arylalkyl group which may be substituted, arylalkoxy group which may be substituted, arylalkylthio group which may be substituted, substituted Arylalkenyl group which may be substituted, arylalkynyl group which may be substituted, amino group, substituted amino group, silyl group, substituted silyl group, silyloxy group, substituted silyloxy group, heterocyclic group, acyl group, acyloxy group, Represents an amide group, a carboxyl group, a nitro group or a cyano group, and the D ring and the E ring are each independently Represents an aromatic ring optionally having a substituent.)
  8.  式(1−1)
    Figure JPOXMLDOC01-appb-I000004
    (式中、Rは、水素原子、ハロゲン原子、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルキルチオ基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基、置換されていてもよいアリールアルキルチオ基、置換されていてもよいアリールアルケニル基、置換されていてもよいアリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、複素環基、アシル基、アシルオキシ基、アミド基、カルボキシル基、ニトロ基又はシアノ基を示す。D’’環及びE’’環は、それぞれ独立に、置換基を有していてもよいチオフェン環を表す。)
    で表される構成単位を含み、かつ、式(A−1)で表される構成単位、式(B−1)で表される構成単位、式(C−1)で表される構成単位、式(D−1)で表される構成単位及び式(E−1)で表される構成単位からなる群から選ばれる少なくとも1種の構成単位を含む高分子化合物。
    Figure JPOXMLDOC01-appb-I000005
    (式(A−1)~(E−1)中、Qは、硫黄原子、酸素原子、セレン原子、−N(R30)−又は−CR31=CR32−を表す。R30、R31及びR32は、それぞれ独立に、水素原子又は置換基を表す。R20~R25は、それぞれ独立に、水素原子又は置換基を表す。R20とR21は、連結して環状構造を形成してもよい。G環~N環は、それぞれ独立に、置換基を有していてもよい芳香環を表す。)
    Formula (1-1)
    Figure JPOXMLDOC01-appb-I000004
    Wherein R 1 is a hydrogen atom, a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkylthio group, an optionally substituted aryl group, Aryloxy group which may be substituted, arylthio group which may be substituted, arylalkyl group which may be substituted, arylalkoxy group which may be substituted, arylalkylthio group which may be substituted, substituted Arylalkenyl group which may be substituted, arylalkynyl group which may be substituted, amino group, substituted amino group, silyl group, substituted silyl group, silyloxy group, substituted silyloxy group, heterocyclic group, acyl group, acyloxy group, Represents an amide group, a carboxyl group, a nitro group or a cyano group, wherein the D ″ ring and the E ″ ring are each independently May have a substituent represents an thiophene ring.)
    A structural unit represented by formula (A-1), a structural unit represented by formula (B-1), a structural unit represented by formula (C-1), A polymer compound comprising at least one structural unit selected from the group consisting of a structural unit represented by formula (D-1) and a structural unit represented by formula (E-1).
    Figure JPOXMLDOC01-appb-I000005
    (In formulas (A-1) to (E-1), Q 1 represents a sulfur atom, an oxygen atom, a selenium atom, —N (R 30 ) — or —CR 31 ═CR 32 —. R 30 , R 31 and R 32 each independently represents a hydrogen atom or a substituent, R 20 to R 25 each independently represents a hydrogen atom or a substituent, and R 20 and R 21 are linked to form a cyclic structure. (G ring to N ring each independently represents an aromatic ring which may have a substituent.)
  9.  式(1−2)で表される化合物。
    Figure JPOXMLDOC01-appb-I000006
    (式中、Rは、水素原子、ハロゲン原子、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルキルチオ基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基、置換されていてもよいアリールアルキルチオ基、置換されていてもよいアリールアルケニル基、置換されていてもよいアリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、複素環基、アシル基、アシルオキシ基、アミド基、カルボキシル基、ニトロ基又はシアノ基を示す。D’環及びE’環は、それぞれ独立に、置換基を有していてもよい芳香族複素環を表す。W及びWは、それぞれ独立に、水素原子、ハロゲン原子、スルホン酸残基、ホウ酸エステル残基、モノハロゲン化メチル基、ジヒドロキシボリル基、ホルミル基、ビニル基又は置換スタンニル基を表す。)
    A compound represented by formula (1-2).
    Figure JPOXMLDOC01-appb-I000006
    Wherein R 1 is a hydrogen atom, a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkylthio group, an optionally substituted aryl group, Aryloxy group which may be substituted, arylthio group which may be substituted, arylalkyl group which may be substituted, arylalkoxy group which may be substituted, arylalkylthio group which may be substituted, substituted Arylalkenyl group which may be substituted, arylalkynyl group which may be substituted, amino group, substituted amino group, silyl group, substituted silyl group, silyloxy group, substituted silyloxy group, heterocyclic group, acyl group, acyloxy group, An amide group, a carboxyl group, a nitro group or a cyano group, each of the D ′ ring and the E ′ ring independently; .W 1 and W 2 representing an aromatic heterocyclic ring optionally having a substituent are each independently a hydrogen atom, a halogen atom, a sulfonic acid residue, a boric acid ester residue, a monohalogenated methyl group, (Represents a dihydroxyboryl group, a formyl group, a vinyl group or a substituted stannyl group.)
  10.  D’環及びE’環の少なくとも一方がチオフェン環である請求項9記載の化合物。 The compound according to claim 9, wherein at least one of the D ′ ring and the E ′ ring is a thiophene ring.
PCT/JP2012/064615 2011-06-16 2012-05-31 Photoelectric conversion element WO2012173030A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011134140A JP2013004722A (en) 2011-06-16 2011-06-16 Photoelectric conversion element
JP2011-134140 2011-06-16

Publications (1)

Publication Number Publication Date
WO2012173030A1 true WO2012173030A1 (en) 2012-12-20

Family

ID=47357019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064615 WO2012173030A1 (en) 2011-06-16 2012-05-31 Photoelectric conversion element

Country Status (2)

Country Link
JP (1) JP2013004722A (en)
WO (1) WO2012173030A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108191897A (en) * 2017-12-04 2018-06-22 中节能万润股份有限公司 A kind of organic photoelectrical material of boracic bridging union II thiophene-structure and its application

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189721A (en) * 2013-03-28 2014-10-06 Sumitomo Chemical Co Ltd Polymer compound

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093670A (en) * 1999-09-28 2001-04-06 Konica Corp Organic electroluminescence element
JP2003206289A (en) * 2002-01-04 2003-07-22 Kansai Tlo Kk Functional 9-metal-substituted fluorene derivative and method for producing the same
WO2006070817A1 (en) * 2004-12-28 2006-07-06 Nagoya Industrial Science Research Institute ORGANOBORON π-ELECTRON-SYSTEM COMPOUNDS AND INTERMEDIATE THEREFOR
WO2011052728A1 (en) * 2009-10-30 2011-05-05 住友化学株式会社 Compound and element using same
WO2011055914A1 (en) * 2009-11-04 2011-05-12 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
JP2011165789A (en) * 2010-02-08 2011-08-25 Sumitomo Chemical Co Ltd Photoelectric conversion element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093670A (en) * 1999-09-28 2001-04-06 Konica Corp Organic electroluminescence element
JP2003206289A (en) * 2002-01-04 2003-07-22 Kansai Tlo Kk Functional 9-metal-substituted fluorene derivative and method for producing the same
WO2006070817A1 (en) * 2004-12-28 2006-07-06 Nagoya Industrial Science Research Institute ORGANOBORON π-ELECTRON-SYSTEM COMPOUNDS AND INTERMEDIATE THEREFOR
WO2011052728A1 (en) * 2009-10-30 2011-05-05 住友化学株式会社 Compound and element using same
WO2011055914A1 (en) * 2009-11-04 2011-05-12 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
JP2011165789A (en) * 2010-02-08 2011-08-25 Sumitomo Chemical Co Ltd Photoelectric conversion element

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BO HU ET AL.: "Theoretical investigation on the white-light emission from a single-polymer system with simultaneous blue and orange emission (Part II)", EUROPEAN POLYMER JOURNAL, vol. 47, no. ISS.2, 7 December 2010 (2010-12-07), pages 208 - 224 *
YUEXING ZHANG ET AL.: "Heteroatom Substitution of Oligothionoacenes: From Good p-Type Semiconductors to Good Ambipolar Semiconductors", ORGANIC FIELD-EFFECT TRANSISTORS, JOURNAL OF PHYSICAL CHEMISTRY C, vol. 112, no. ISS.13, 7 March 2008 (2008-03-07), pages 5148 - 5159 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108191897A (en) * 2017-12-04 2018-06-22 中节能万润股份有限公司 A kind of organic photoelectrical material of boracic bridging union II thiophene-structure and its application

Also Published As

Publication number Publication date
JP2013004722A (en) 2013-01-07

Similar Documents

Publication Publication Date Title
JP5720178B2 (en) High molecular compound
JP5720179B2 (en) High molecular compound
JP5999095B2 (en) Polymer compound and electronic device
JP5742422B2 (en) Polymer compounds, compounds and uses thereof
JP5720180B2 (en) Photoelectric conversion element
JP5740836B2 (en) Photoelectric conversion element
WO2011052702A1 (en) Polymeric compound and electronic element
JP5742494B2 (en) Polymer compound and electronic device using the same
WO2011052725A1 (en) Polymeric compound
WO2013183549A1 (en) Composition and electronic element using same
WO2012147564A1 (en) High-molecular-weight compound and electronic element comprising same
JP2015180621A (en) compound
JP2013095813A (en) Polymer compound and photoelectric conversion element using the same
WO2011052726A1 (en) Composition and electronic element
JP5807497B2 (en) Polymer compound and electronic device using the same
WO2012173030A1 (en) Photoelectric conversion element
JP2011165789A (en) Photoelectric conversion element
JP2013220994A (en) Compound and electronic element using the same
JP5893846B2 (en) Method for producing compound
JP6373567B2 (en) Compound and electronic device using the same
JP2014189721A (en) Polymer compound
WO2011052727A1 (en) Compound and element using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12799835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12799835

Country of ref document: EP

Kind code of ref document: A1