WO2011137846A1 - 海底光缆设备的绝缘抗压筒体、海底光缆设备及制造方法 - Google Patents

海底光缆设备的绝缘抗压筒体、海底光缆设备及制造方法 Download PDF

Info

Publication number
WO2011137846A1
WO2011137846A1 PCT/CN2011/074908 CN2011074908W WO2011137846A1 WO 2011137846 A1 WO2011137846 A1 WO 2011137846A1 CN 2011074908 W CN2011074908 W CN 2011074908W WO 2011137846 A1 WO2011137846 A1 WO 2011137846A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
insulating
groove
submarine cable
pressure
Prior art date
Application number
PCT/CN2011/074908
Other languages
English (en)
French (fr)
Inventor
李起忠
陈凤龙
金戈
杨绪光
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP11777265.7A priority Critical patent/EP2592456B1/en
Publication of WO2011137846A1 publication Critical patent/WO2011137846A1/zh
Priority to US13/542,411 priority patent/US8995811B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4427Pressure resistant cables, e.g. undersea cables
    • G02B6/4428Penetrator systems in pressure-resistant devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4427Pressure resistant cables, e.g. undersea cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables

Definitions

  • Embodiments of the present invention relate to the technical field of protection of submarine cable equipment, and in particular, to an insulation and compression cylinder of a submarine cable equipment, a submarine cable equipment, and a manufacturing method thereof. Background technique
  • the entire submarine cable system mainly includes submarine line terminal equipment (SLTE), network protection equipment (NPE), ower feeding equipment (PFE), submarine repeater (submarine repeater, RPT), Submarine cable, Branching Unit (BU), Optical Equalizer (OEQ) and Submarine Line Monitor (SLM).
  • SLTE submarine line terminal equipment
  • NPE network protection equipment
  • PFE ower feeding equipment
  • RPT submarine repeater
  • RPT Submarine cable
  • BU Branching Unit
  • OFEQ Optical Equalizer
  • SLM Submarine Line Monitor
  • SLTE is a transmission device for DWDM.
  • NPE also known as SDH interconnect equipment (SIE)
  • SIE SDH interconnect equipment
  • the PFE is installed on a land landing station to power subsea equipment.
  • the submarine cable includes fiber optic cables and cables.
  • the SLM is used to monitor the point of failure of submarine cables and location cables.
  • the RPT is an underwater optical amplifier device for amplifying the transmission signal of the SLTE, and providing the monitoring device SLM with a loopback of the optical signal, that is, for optical signal amplification and relay. In the long-distance submarine cable system, due to the weakening of the optical signal, it is necessary to add a repeater to the system to increase the optical signal.
  • RPT Since RPT, BU, OEQ, etc. are underwater equipment, it is necessary to withstand the high water pressure of the sea floor. Moreover, the RPT has a high voltage of about 20KV inside, and the outside is connected to the seawater, so it is also required to have good insulation properties.
  • the middle part of the RPT is provided with an insulating and compressing cylinder body of an insulating capacity cylinder, that is, a submarine cable device, which is used for insulating from seawater and resisting high water pressure of the seabed, and is mounted for the device.
  • an insulating and compressing cylinder body of an insulating capacity cylinder that is, a submarine cable device, which is used for insulating from seawater and resisting high water pressure of the seabed, and is mounted for the device.
  • BU and OEQ are also equipped with an insulating and compressing cylinder to insulate from seawater and resist the high water pressure of the seabed, providing space for device installation.
  • the insulating and compressing cylinder of the submarine cable equipment has a three-layer structure: the outer layer is a compression cylinder for resisting the huge seabed water pressure; the middle layer is an insulating layer for maintaining the insulation between the interior and the seawater: The inner layer is the mounting barrel for mounting the internal optoelectronic components.
  • the insulating material between the pressure cylinder and the mounting cylinder is epoxy resin and glass fiber.
  • the epoxy resin and the glass fiber are first cast on the aluminum installation cylinder, and then the pressure cylinder is heated to expand the radius, and the cast installation cylinder is pressed into the heating compression pressure. In the cylinder, after cooling, the insulation cylinder is fixed in the pressure cylinder.
  • the insulation layer is not tightly mounted and is easy to shake. Summary of the invention
  • the embodiment of the invention provides an insulation and compression cylinder body, a submarine cable equipment and a manufacturing method for the submarine cable equipment, which are used to solve the problem that the installation tightness of the cylinder insulation layer is not high and easy to shake.
  • the embodiment of the invention provides an insulation and compression cylinder of a submarine cable equipment, comprising: a mounting cylinder, an insulation layer and a compression cylinder which are sequentially arranged from the inside to the outside;
  • a first groove is formed on an outer surface of the mounting cylinder, and an inner surface of the pressure-resistant cylinder defines a second groove that is staggered with the first groove;
  • the insulating layer is in close contact with an outer surface of the mounting cylinder and an inner surface of the anti-pressure cylinder.
  • the embodiment of the invention further provides a submarine cable repeater, comprising the insulated compression cylinder of the above submarine cable equipment.
  • the embodiment of the invention further provides a submarine cable branching device, comprising the insulating pressure cylinder of the above-mentioned submarine cable equipment.
  • the embodiment of the invention further provides a submarine cable equalizer, comprising the insulating and compressing cylinder of the above-mentioned submarine cable equipment.
  • the embodiment of the invention further provides a method for manufacturing an insulation and compression cylinder of the above-mentioned submarine cable equipment, comprising the steps of:
  • a pressure-resistant cylinder and a mounting cylinder Forming a pressure-resistant cylinder and a mounting cylinder, wherein a first groove is formed on an outer surface of the mounting cylinder, and a second groove that is staggered with the first groove is formed on an inner surface of the pressure-resistant cylinder;
  • the resin potting glue is directly poured into the cavity between the pressure cylinder and the mounting cylinder to become an insulating layer;
  • the resin potting compound of the insulating layer is cured with the pressure resistant cylinder and the mounting cylinder to form an insulating and compressing cylinder.
  • the technical solution provided by the above embodiment improves the stability of the cylinder by integrally forming the groove of the outer surface of the mounting cylinder and the groove of the inner surface of the pressure cylinder, so that the insulating layer is tightly integrated with the mounting cylinder and the cylinder body. . DRAWINGS
  • FIG. 1 is a schematic structural view of an insulation and compression cylinder of a submarine cable equipment according to an embodiment of the present invention
  • FIG. 2A and FIG. 2B are schematic diagrams showing a structure of an anti-pressure cylinder in an insulation and compression cylinder of a submarine cable equipment according to an embodiment of the present invention
  • FIG. 3A and FIG. 3B are schematic diagrams showing a structure of a mounting cylinder in an insulating and compressing cylinder of a submarine cable equipment according to an embodiment of the present invention
  • FIG. 4A and FIG. 4B are schematic diagrams showing another structure of an anti-pressure cylinder in an insulating and compressing cylinder of a submarine cable equipment according to an embodiment of the present invention
  • FIG. 5A and FIG. 5B are schematic diagrams showing another structure of an installation cylinder in an insulating and compressing cylinder of a submarine cable equipment according to an embodiment of the present invention
  • FIG. 6 is a flowchart of a method for manufacturing an insulation and compression cylinder of a submarine cable equipment according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of an RPT according to an embodiment of the present invention. detailed description
  • the insulating and compressing cylinder of the submarine cable equipment comprises a mounting cylinder 1, an insulating layer 2 and a pressure resistant cylinder 3 which are sequentially arranged from the inside to the outside. It is to be noted that, in order to more clearly show the internal structure of the insulating and compressing cylinder of the present embodiment, Fig. 1 shows only a half of the insulating and compressing cylinder.
  • the pressure cylinder 3 is located on the outer layer and the material can be a high strength corrosion resistant metal.
  • the insulating layer 2 is located in the middle layer, and the material may be a resin potting compound.
  • the mounting cylinder 1 is the innermost layer and the material can be metal such as aluminum or copper for mounting internal components.
  • the outer surface of the mounting cylinder 1 is provided with a first groove (see FIGS. 3A, 3B, 5A and 5B), and the inner surface of the pressure cylinder 3 defines a second groove which is staggered with the first groove (see FIG. 2A, Fig. 2B, Fig. 4A and Fig. 4B).
  • the resin potting compound is directly poured into the cavity between the anti-pressure cylinder and the mounting cylinder using a simple mold to become the insulating layer 2. After a period of time, the resin potting compound of the insulating layer 2 will fix the anti-pressure cylinder and the mounting cylinder, and the three will be solidified into one body.
  • the insulating layer 2 is in close contact with the outer surface of the mounting cylinder 1 and the inner surface of the pressure cylinder 3.
  • the main material of the resin potting compound is silica gel
  • the resin potting compound is made of a mixture of silica gel and other resins, and has good insulating properties.
  • the insulating and compressing cylinder body of the submarine cable equipment passes through the groove of the outer surface of the mounting cylinder which is staggered and the groove of the inner surface of the anti-pressure cylinder, so that the insulating layer is closely integrated with the mounting cylinder and the pressing cylinder body. , to improve the stability of the cylinder.
  • the insulating layer is made of a resin potting glue, so that the insulating layer is directly cast between the mounting cylinder and the anti-pressure cylinder, and the assembly of the cylinder can be completed, and the present solution is solved.
  • the use of cast epoxy resin requires large molds, complicated process, high cost, high precision of casting processing, high temperature of the cylinder, and high assembly process. It simplifies the assembly process of the cylinder and reduces the barrel. cost.
  • the inner surface of the anti-pressure cylinder 3 is provided with a warp-latched groove 31. It is to be noted that, in order to more clearly show the internal structure of the pressure-resistant cylinder 3 in the insulating and compressing cylinder of the present embodiment, only one half of the pressure-resistant cylinder 3 is shown in Fig. 2A.
  • the outer surface of the mounting cylinder 1 is also provided with a warp and weft groove 11.
  • the warp and weft groove 11 is staggered with the course of the warp and weft groove 31, so that the resin potting compound cast in the groove can withstand axial and radial directions after the mounting cylinder 1 and the pressure resistant cylinder 3 are cast and the insulating layer 2 is solidified.
  • the force and the impact make the installation cylinder 1, the insulation layer 2 and the anti-pressure cylinder 3 closely integrated into one body, ensuring that the insulation layer 2 and the installation cylinder 1 do not fall off and shift under the impact of the compression cylinder 3 under 100G. .
  • the inner surface of the pressure cylinder 3 is provided with a spiral groove 32. It is to be noted that, in order to more clearly show the internal structure of the anti-pressure cylinder 3 in the insulating and compressing cylinder of the present embodiment, only one half of the anti-pressure cylinder 3 is shown in Fig. 4A.
  • the outer surface of the mounting cylinder 1 is also provided with a spiral groove 12.
  • the spiral direction of the spiral groove 32 is opposite to the spiral direction of the spiral groove 12.
  • the resin potting compound is directly poured into the cavity between the anti-pressure cylinder and the mounting cylinder using a simple mold to become the insulating layer 2. After a period of time, the resin potting compound of the insulating layer 2 will fix the anti-pressure cylinder and the mounting cylinder, and the three will be solidified into one body.
  • the first groove formed by the outer surface of the mounting cylinder 1 and the second groove formed by the inner surface of the pressure cylinder 3 are not limited to the warp and weft shape and the spiral shape given in the above embodiment, as long as the first groove and the second groove
  • the orientation of the grooves may be staggered, for example, the first groove is a closed line shape surrounding the axis of the installation cylinder, the second groove is a closed ring shape surrounding the axis of the compression cylinder, and the plane of the first groove and the second groove The planes in which they intersect intersect.
  • FIG. 6 is a flowchart of a method for manufacturing an insulation and compression cylinder of a submarine cable equipment according to an embodiment of the present invention. As shown in FIG. 6, the manufacturing method of the insulating and compressing cylinder of the submarine cable equipment provided by the above embodiment may include the following steps:
  • Step 61 forming a pressure-resistant cylinder and a mounting cylinder, wherein a first groove is formed on an outer surface of the mounting cylinder, and a second surface that is staggered with the first groove is formed on an inner surface of the pressure cylinder Step 62, using a mold, pouring the resin potting glue directly into the cavity between the pressure tube and the mounting barrel to become an insulating layer;
  • Step 63 The resin potting compound of the insulating layer is solidified with the pressure resistant cylinder and the mounting cylinder to form an insulating and compressing cylinder.
  • the insulating and compressing cylinder body of the submarine cable equipment provided by the above device embodiment can be obtained, and the insulating layer in the obtained insulating and compressing cylinder body is closely integrated with the mounting cylinder and the pressing cylinder body, thereby improving The stability of the cylinder.
  • the assembly of the cylinder can be completed, and the large-scale mold required by the prior art using the cast epoxy resin is solved. The process is complicated, the cost is high, the precision of casting processing, the heating temperature of the cylinder and the assembly process are high, which simplifies the assembly process of the cylinder and reduces the cost of the cylinder.
  • the submarine cable equipment such as RPT, BU, OEQ, etc. may include any of the cylinders provided in the above embodiments, so as to extend the submarine cable through the high water pressure and seawater corrosion resistance of the cylinder against the sea floor, and to better seal the insulation. The life of the equipment while reducing costs.
  • the RPT includes a barrel 6, a universal joint 7 and a submarine cable connector 8.
  • the cylinder 6 is located in the middle, and both ends are provided with a universal joint 7 and a submarine cable connector 8 which are sequentially connected.
  • the cylinder 6 can be the insulating and compressing cylinder of any submarine cable equipment provided by the above embodiments, and the assembly is simple, the installation tightness is high, the cost is low, and the overall cost of the RPT is also reduced, and the use is extended. life.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Insulated Conductors (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Cable Accessories (AREA)

Abstract

一种海底光缆设备的绝缘抗压筒体、海底光缆设备及制造方法。绝缘抗压筒体包括:从内到外依次套设的安装筒(1)、绝缘层(2)及抗压筒(3);安装筒(1)的外表面设置第一沟槽(11,12),抗压筒(3)的内表面开设与第一沟槽走向交错的第二沟槽(31,32);绝缘层(2)与安装筒(1)的外表面、抗压筒(3)的内表面紧密贴合,从而提高了筒体的稳固性。

Description

海底光缆设备的绝缘抗压筒体、 海底光缆设备及制造方法 技术领域
本发明实施例涉及海底电缆设备防护技术领域, 尤其涉及一种海底光缆 设备的绝缘抗压筒体、 海底光缆设备及制造方法。 背景技术
整个海缆系统主要包括海底光缆终端设备 ( submarine line terminal equipment, SLTE )、 网洛保护设备 ( network protection equipment, NPE )、 供 电设备 ( ower feeding equipment, PFE )、海底光缆中继器 ( submarine repeater, RPT )、 海底光缆( Submarine cable )、 海底光缆分支器( Branching Unit, BU )、 海底光缆均衡器( Optical Equalizer, OEQ )及海底光缆监视器( Submarine Line Monitor, SLM )。
SLTE是 DWDM 的传输设备。 NPE 又称为 SDH 内部连接设备 ( SDH interconnect equipment, SIE ), 是 SDH的交叉连接设备。 PFE安装在陆地登 陆站上, 用于给海底设备供电。 海缆包括光缆和电缆。 SLM用于监控海缆和 定位海缆的故障点。 RPT是水下的光放大器设备, 用于放大 SLTE的传输信 号, 同时给监控设备 SLM提供光学信号的环回, 即用于光信号放大、 中继。 在长距离海缆系统中, 由于光信号的衰弱, 需要在系统中加入中继器进行光 信号的发大。
由于 RPT、 BU、 OEQ等是水下的设备, 因而需要抵御海底的高水压。 并且, RPT内部通有约 20KV的高电压, 而外部和海水相通, 因而还需要具 有很好的绝缘性能。
为了解决上述问题, RPT的中部设置有具有绝缘能力的筒体即海底光缆 设备的绝缘抗压筒体, 用来与海水绝缘, 并抵御海底的高水压, 为器件安装 提供空间。 类似地, BU、 OEQ也设置有绝缘抗压筒体, 以与海水绝缘, 并抵 御海底的高水压, 为器件安装提供空间。
现有技术中, 海底光缆设备的绝缘抗压筒体为三层结构: 外层是抗压筒, 用来抵抗巨大的海底水压; 中间层是绝缘层, 用来保持内部和海水的绝缘: 里层是安装筒, 用来安装内部光电器件。
抗压筒和安装筒之间的绝缘材料是环氧树脂加玻纤。 加工海底光缆设备 的绝缘抗压筒体时, 先将环氧树脂加玻纤浇铸在铝制安装筒上, 后加热抗压 筒, 使之半径扩大, 将浇铸的安装筒压入加热的抗压筒中, 冷却后, 绝缘筒 固定在抗压筒中。
现有技术存在的缺陷在于: 绝缘层的安装紧密度不高, 容易晃动。 发明内容
本发明实施例提供一种海底光缆设备的绝缘抗压筒体、 海底光缆设备及 制造方法, 用以解决现有技术中筒体绝缘层的安装紧密度不高, 容易晃动的 问题。
本发明实施例提供一种海底光缆设备的绝缘抗压筒体, 包括: 从内到外 依次套设的安装筒、 绝缘层及抗压筒;
所述安装筒的外表面开设有第一沟槽, 所述抗压筒的内表面开设与所述 第一沟槽走向交错的第二沟槽;
所述绝缘层与所述安装筒的外表面、 所述抗压筒的内表面紧密贴合。 本发明实施例还提供一种海底光缆中继器, 包括上述海底光缆设备的绝 缘抗压筒体。
本发明实施例还提供一种海底光缆分支器, 包括上述海底光缆设备的绝 缘抗压筒体。
本发明实施例还提供一种海底光缆均衡器, 包括上述海底光缆设备的绝 缘抗压筒体。 本发明实施例还提供一种上述海底光缆设备的绝缘抗压筒体的制造方 法, 包括步骤:
加工形成抗压筒和安装筒,其中在所述安装筒的外表面开设有第一沟槽, 在所述抗压筒的内表面开设与所述第一沟槽走向交错的第二沟槽;
使用模具, 将树脂灌封胶直接倒入所述抗压筒和安装筒之间的腔体中, 成为绝缘层;
所述绝缘层的树脂灌封胶与所述抗压筒和安装筒固化形成绝缘抗压筒 体。
上述实施例提供的技术方案通过走向交错的安装筒外表面的沟槽以及抗 压筒内表面的沟槽, 使得绝缘层与安装筒、 压筒体紧密结合为一体, 提高了 筒体的稳固性。 附图说明
图 1 为本发明实施例提供的海底光缆设备的绝缘抗压筒体的结构示意 图;
图 2A、 图 2B为本发明实施例提供的海底光缆设备的绝缘抗压筒体中抗 压筒的一种结构示意图;
图 3A、 图 3B为本发明实施例提供的海底光缆设备的绝缘抗压筒体中安 装筒的一种结构示意图;
图 4A、 图 4B为本发明实施例提供的海底光缆设备的绝缘抗压筒体中抗 压筒的另一种结构示意图;
图 5A、 图 5B为本发明实施例提供的海底光缆设备的绝缘抗压筒体中安 装筒的另一种结构示意图;
图 6为本发明实施例提供的海底光缆设备的绝缘抗压筒体的制造方法的 流程图;
图 7为本发明实施例提供的 RPT结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
如图 1所示, 海底光缆设备的绝缘抗压筒体包括从内到外依次套设的安 装筒 1、 绝缘层 2及抗压筒 3。 需要说明的是, 为了更清楚地示出本实施例的 绝缘抗压筒体内部结构, 图 1仅示出了半个绝缘抗压筒体。
抗压筒 3位于外层, 材料可以为高强度防腐蚀金属。 绝缘层 2位于中间 层, 材料可以为树脂灌封胶。 安装筒 1为最里层, 材料可以为铝、 铜等金属, 用于安装内部器件。
安装筒 1的外表面开设有第一沟槽(参见图 3A、图 3B、图 5A及图 5B ), 抗压筒 3的内表面开设与第一沟槽走向交错的第二沟槽(参见图 2A、 图 2B、 图 4A及图 4B )。
将抗压筒 3和安装筒 1加工好后, 使用简单模具, 将树脂灌封胶直接倒 入抗压筒和安装筒之间的腔体中, 成为绝缘层 2。 一段时间后, 绝缘层 2的 树脂灌封胶会将抗压筒和安装筒固定, 三者固化成为一体。 绝缘层 2与安装 筒 1的外表面、 抗压筒 3的内表面紧密贴合。
其中, 树脂灌封胶的主体材料是硅胶, 树脂灌封胶由硅胶和其它树脂混 合而成, 有艮好的绝缘性能。
本上述实施例中, 海底光缆设备的绝缘抗压筒体通过走向交错的安装筒 外表面的沟槽以及抗压筒内表面的沟槽, 使得绝缘层与安装筒、 压筒体紧密 结合为一体, 提高了筒体的稳固性。 进一步地, 绝缘层使用树脂灌封胶, 使 得绝缘层在安装筒与抗压筒之间直接浇铸, 便可完成筒体的装配, 解决了现 有技术使用浇铸环氧树脂带来的需要大型模具、 过程复杂、 成本高、 对浇铸 加工精度、 抗压筒加热温度及装配过程要求高等问题, 简化了筒体的装配工 艺, 降低了筒体的成本。
如图 2A、 图 2B所示, 抗压筒 3的内表面开设有经纬线形沟槽 31。 需要 说明的是, 为了更清楚地示出本实施例的绝缘抗压筒体中抗压筒 3的内部结 构, 图 2A仅示出了半个抗压筒 3。
如图 3A、 图 3B所示, 安装筒 1的外表面也开设有经纬线形沟槽 11。 经纬线形沟槽 11与经纬线形沟槽 31的走向相交错, 使得安装筒 1与抗 压筒 3浇铸绝缘层 2固化后, 浇铸在沟槽中的树脂灌封胶能够承受轴向和径 向的力和冲击, 使得安装筒 1、 绝缘层 2、 抗压筒 3三者紧密结合为一体, 保 证了在抗压筒 3承受 100G的冲击下, 绝缘层 2和安装筒 1不发生脱落和偏 移。
如图 4A、 4B所示, 抗压筒 3的内表面开设有螺旋线型沟槽 32。 需要说 明的是,为了更清楚地示出本实施例的绝缘抗压筒体中抗压筒 3的内部结构, 图 4A仅示出了半个抗压筒 3。
如图 5A、 5B所示, 安装筒 1的外表面也开设有螺旋线型沟槽 12。
螺旋线型沟槽 32的螺旋方向与螺旋线型沟槽 12的螺旋方向相反。
将抗压筒 3和安装筒 1加工好后, 使用简单模具, 将树脂灌封胶直接倒 入抗压筒和安装筒之间的腔体中, 成为绝缘层 2。 一段时间后, 绝缘层 2的 树脂灌封胶会将抗压筒和安装筒固定, 三者固化成为一体。
安装筒 1的外表面开设的第一沟槽及抗压筒 3的内表面开设的第二沟槽 不限于上述实施例中给出的经纬线形和螺旋线形, 只要是第一沟槽与第二沟 槽的走向交错即可, 如第一沟槽为环绕安装筒轴线的封闭线形, 第二沟槽为 环绕抗压筒轴线的封闭环线形, 且第一沟槽所在的平面与第二沟槽所在的平 面相交。
使得海底中继器筒体装配简单, 无需特别设备, 无需开模, 降低了成本。 图 6为本发明实施例提供的海底光缆设备的绝缘抗压筒体的制造方法的 流程图。 如图 6所示, 上述实施例提供的海底光缆设备的绝缘抗压筒体的制 造方法, 可包括以下步骤:
步骤 61、 加工形成抗压筒和安装筒, 其中在所述安装筒的外表面开设有 第一沟槽,在所述抗压筒的内表面开设与所述第一沟槽走向交错的第二沟槽; 步骤 62、 使用模具, 将树脂灌封胶直接倒入所述抗压筒和安装筒之间的 腔体中, 成为绝缘层;
步骤 63、 所述绝缘层的树脂灌封胶与所述抗压筒和安装筒固化形成绝缘 抗压筒体。
通过上述步骤 61〜步骤 63 , 能够获得上述装置实施例提供的海底光缆设 备的绝缘抗压筒体, 且获得的绝缘抗压筒体中绝缘层与安装筒、 压筒体紧密 结合为一体, 提高了筒体的稳固性。 本实施例中, 通过在安装筒与抗压筒之 间直接浇铸树脂灌封胶, 形成绝缘层, 便可完成筒体的装配, 解决了现有技 术使用浇铸环氧树脂带来的需要大型模具、 过程复杂、 成本高、 对浇铸加工 精度、 抗压筒加热温度及装配过程要求高等问题, 简化了筒体的装配工艺, 降低了筒体的成本。
RPT、 BU、 OEQ等海底光缆设备可包括上述实施例提供的任一筒体, 以 通过筒体抗海底的高水压、 抗海水腐蚀, 并起到较好的绝缘密封作用, 从而 延长海底光缆设备的使用寿命, 同时降低成本。
如图 7所示, RPT包括筒体 6、 万向节 7及海底光缆连接器 8。 筒体 6位 于中部, 两端各设置有依次连接的万向节 7及海底光缆连接器 8。 筒体 6可 为上述实施例提供的任一种海底光缆设备的绝缘抗压筒体, 其装配简单, 且 安装紧密度高, 成本低, 使得 RPT的整体成本也随之降低, 且延长了使用寿 命。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权利 要求 书
1、 一种海底光缆设备的绝缘抗压筒体, 其特征在于, 包括: 从内到外依 次套设的安装筒、 绝缘层及抗压筒;
所述安装筒的外表面开设有第一沟槽, 所述抗压筒的内表面开设与所述 第一沟槽走向交错的第二沟槽;
所述绝缘层与所述安装筒的外表面、 所述抗压筒的内表面紧密贴合。
2、 根据权利要求 1所述的海底光缆设备的绝缘抗压筒体, 其特征在于, 所述第一沟槽、 第二沟槽均为经纬线形沟槽。
3、 根据权利要求 1所述的海底光缆设备的绝缘抗压筒体, 其特征在于, 所述第一沟槽为螺旋线形沟槽, 所述第二沟槽为与所述第一沟槽螺旋方向相 反的螺旋线形沟槽。
4、 根据权利要求 1-3任一项所述的海底光缆设备的绝缘抗压筒体, 其特 征在于, 所述绝缘层为树脂灌封胶层。
5、 根据权利要求 4所述的海底光缆设备的绝缘抗压筒体, 其特征在于, 所述树脂灌封胶层的材料包括硅胶。
6、 根据权利要求 4所述的海底光缆设备的绝缘抗压筒体, 其特征在于, 所述安装筒、 抗压筒为金属制品。
7、 一种海底光缆中继器, 其特征在于, 包括上述权利要求 1-6任一项所 述的海底光缆设备的绝缘抗压筒体。
8、 一种海底光缆分支器, 其特征在于, 包括上述权利要求 1-6任一项所 述的海底光缆设备的绝缘抗压筒体。
9、 一种海底光缆均衡器, 其特征在于, 包括上述权利要求 1-6任一项所 述的海底光缆设备的绝缘抗压筒体。
10、 一种上述权利要求 1-6任一项所述的海底光缆设备的绝缘抗压筒体 的制造方法, 其特征在于, 包括步骤:
加工形成抗压筒和安装筒,其中在所述安装筒的外表面开设有第一沟槽, 在所述抗压筒的内表面开设与所述第一沟槽走向交错的第二沟槽;
使用模具, 将树脂灌封胶直接倒入所述抗压筒和安装筒之间的腔体中, 成为绝缘层;
所述绝缘层的树脂灌封胶与所述抗压筒和安装筒固化形成绝缘抗压筒 体。
PCT/CN2011/074908 2010-10-21 2011-05-30 海底光缆设备的绝缘抗压筒体、海底光缆设备及制造方法 WO2011137846A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11777265.7A EP2592456B1 (en) 2010-10-21 2011-05-30 Insulating anti-pressure tube body for submarine optical fiber cable device, submarine optical fiber cable device and manufacturing method thereof
US13/542,411 US8995811B2 (en) 2010-10-21 2012-07-05 Insulation pressure-resistance cylinder body of submarine cable equipment, submarine cable equipment, and manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010105268831A CN102147514B (zh) 2010-10-21 2010-10-21 海底光缆设备的绝缘抗压筒体、海底光缆设备及制造方法
CN201010526883.1 2010-10-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/542,411 Continuation US8995811B2 (en) 2010-10-21 2012-07-05 Insulation pressure-resistance cylinder body of submarine cable equipment, submarine cable equipment, and manufacturing method

Publications (1)

Publication Number Publication Date
WO2011137846A1 true WO2011137846A1 (zh) 2011-11-10

Family

ID=44421872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074908 WO2011137846A1 (zh) 2010-10-21 2011-05-30 海底光缆设备的绝缘抗压筒体、海底光缆设备及制造方法

Country Status (4)

Country Link
US (1) US8995811B2 (zh)
EP (1) EP2592456B1 (zh)
CN (1) CN102147514B (zh)
WO (1) WO2011137846A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540371B (zh) * 2012-02-28 2014-06-04 中国电子科技集团公司第八研究所 水下一分多复合光缆分支器
JP2021521674A (ja) * 2018-04-06 2021-08-26 アイピージー フォトニクス コーポレーション 高電圧絶縁を有する海中光学リピーター
CN108732700B (zh) * 2018-05-30 2019-12-31 烽火海洋网络设备有限公司 一种海底光缆分支单元
CN110190497A (zh) * 2019-07-08 2019-08-30 江苏亨通海洋光网系统有限公司 一种柔性可扩展的海缆放大器结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86105424A (zh) * 1986-08-29 1988-03-09 美国电话电报公司 光纤电缆及其制造方法
CN1142434A (zh) * 1995-02-14 1997-02-12 金尾千鹤子 具有凹凸表面的合成树脂波纹管
JPH1166978A (ja) * 1997-08-21 1999-03-09 Showa Electric Wire & Cable Co Ltd 複合海底ケーブル
CN2528033Y (zh) * 2002-01-31 2002-12-25 信息产业部电子第八研究所 浅海光缆
CN101241213A (zh) * 2008-02-13 2008-08-13 中天科技海缆有限公司 深海光缆及其制作方法
JP2008191374A (ja) * 2007-02-05 2008-08-21 Swcc Showa Cable Systems Co Ltd 光ファイバケーブル
CN101707082A (zh) * 2009-11-09 2010-05-12 王春鸿 抗冲击的光电缆

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1461139A (en) 1974-10-29 1977-01-13 Standard Telephones Cables Ltd Submersible housings
US4172212A (en) 1978-07-24 1979-10-23 International Telephone And Telegraph Corporation Submarine housing for submarine cable system repeater components or the like
GB2101257B (en) * 1981-06-19 1985-07-24 Barry Wootton Staynes Joining tubular members
DE3940414A1 (de) * 1989-12-07 1991-06-13 Kabelmetal Electro Gmbh Zugfeste verbindung zwischen zwei lichtwellenleiterkabeln
FR2691519B1 (fr) * 1992-05-22 1995-11-03 Marchal Philippe Joint pour tubes, procede pour reunir deux troncons de tubes a l'aide d'un tel joint et canalisation realisee a partir de troncons de tubes reunis par de tels joints.
BR9604901A (pt) * 1995-04-12 1998-07-14 Rxs Schrumpftech Garnituren Caixa de proteção de campânula
JPH09218320A (ja) * 1996-02-14 1997-08-19 Fujitsu Ltd 光海底中継器
JP3355437B2 (ja) * 1998-06-08 2002-12-09 東拓工業株式会社 合成樹脂製波形管
WO2002033796A2 (en) * 2000-10-17 2002-04-25 Preformed Line Products Company Cable closure and assembly
US7278789B2 (en) * 2005-09-08 2007-10-09 Tyco Telecommunications (Us) Inc. Undersea equipment housing with molded terminations

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86105424A (zh) * 1986-08-29 1988-03-09 美国电话电报公司 光纤电缆及其制造方法
CN1142434A (zh) * 1995-02-14 1997-02-12 金尾千鹤子 具有凹凸表面的合成树脂波纹管
JPH1166978A (ja) * 1997-08-21 1999-03-09 Showa Electric Wire & Cable Co Ltd 複合海底ケーブル
CN2528033Y (zh) * 2002-01-31 2002-12-25 信息产业部电子第八研究所 浅海光缆
JP2008191374A (ja) * 2007-02-05 2008-08-21 Swcc Showa Cable Systems Co Ltd 光ファイバケーブル
CN101241213A (zh) * 2008-02-13 2008-08-13 中天科技海缆有限公司 深海光缆及其制作方法
CN101707082A (zh) * 2009-11-09 2010-05-12 王春鸿 抗冲击的光电缆

Also Published As

Publication number Publication date
EP2592456A4 (en) 2013-12-11
US8995811B2 (en) 2015-03-31
CN102147514A (zh) 2011-08-10
EP2592456A1 (en) 2013-05-15
EP2592456B1 (en) 2018-05-16
US20120275752A1 (en) 2012-11-01
CN102147514B (zh) 2013-01-23

Similar Documents

Publication Publication Date Title
WO2011137846A1 (zh) 海底光缆设备的绝缘抗压筒体、海底光缆设备及制造方法
CN109842085A (zh) 一种压力平衡式海底主基站光电分离装置
CN207096519U (zh) 海底光缆终端分离装置
WO2019237457A1 (zh) 一种海底光电复合缆深海终端分离装置
CN114520078B (zh) 一种新能源光伏智慧型电缆
CN103544998A (zh) 一种用于双层安全壳的新型玻璃或陶瓷烧结电气贯穿件
CN102110503B (zh) 一种空芯支柱复合绝缘子内伞裙的制备工艺
WO2019237456A1 (zh) 一种多功能海缆水下终端光电分离器
NO320708B1 (no) Transformator
CN104216081A (zh) 一种深海光缆挤塑分支接头盒及其安装工艺
CN102313929B (zh) 光纤熔接保护器及保护方法
US8676020B2 (en) Repair box for optical fibre composite electric power cable
CN110212485A (zh) 一种三芯高压海底电缆接头盒及其安装方法
CN210607837U (zh) 一种高压水密电连接器
CN106654693B (zh) 光电混装纵向水密连接器
CN101832427B (zh) 密封光电分壁连接装置及密封舱装置
CN204680451U (zh) 气动吹入式光纤复合智慧能源用电力电缆
CN203839912U (zh) 15kV肘型电缆接头
CN105655964A (zh) 一种用于水下电缆连接的灌胶式绝缘密封对接方法
CN204271808U (zh) 一种防爆电机的引线安全连接装置
CN202917935U (zh) 用于电缆中间接头的保护壳
CN209823032U (zh) 矿物绝缘电缆组件
CN116345226A (zh) 一种小尺寸多功能水下扩展接驳器
CN218275168U (zh) 一种小型浇筑成型纵向水密传输组件
JPS6151766B2 (zh)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011777265

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11777265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE