WO2019237456A1 - 一种多功能海缆水下终端光电分离器 - Google Patents

一种多功能海缆水下终端光电分离器 Download PDF

Info

Publication number
WO2019237456A1
WO2019237456A1 PCT/CN2018/097132 CN2018097132W WO2019237456A1 WO 2019237456 A1 WO2019237456 A1 WO 2019237456A1 CN 2018097132 W CN2018097132 W CN 2018097132W WO 2019237456 A1 WO2019237456 A1 WO 2019237456A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric
submarine cable
conversion module
flange plate
pressure
Prior art date
Application number
PCT/CN2018/097132
Other languages
English (en)
French (fr)
Inventor
王雄
Original Assignee
江苏亨通海洋光网系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏亨通海洋光网系统有限公司 filed Critical 江苏亨通海洋光网系统有限公司
Publication of WO2019237456A1 publication Critical patent/WO2019237456A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4251Sealed packages
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4427Pressure resistant cables, e.g. undersea cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/44384Means specially adapted for strengthening or protecting the cables the means comprising water blocking or hydrophobic materials

Definitions

  • the invention relates to the technical field of communication of an underwater observation network system, in particular to a multifunctional submarine cable underwater terminal photoelectric separator.
  • the communication optical fiber and power supply conductor in the photoelectric composite submarine cable must be separated into the main junction box through the underwater photoelectric separator.
  • the main junction box and the secondary junction box are connected by a watertight cable.
  • the designed underwater photoelectric separator generally requires easy installation, good compatibility in different marine engineering equipment, and good stability during long-term operation.
  • the mechanical connection and fixing method of the optical composite cable and the optical separator generally adopts the self-locking method of the armor, which can only be applied to the armored Steel wire layer photoelectric composite cable, not suitable for unshielded steel wire photoelectric composite cable;
  • the existing underwater photoelectric separator does not have the photoelectric conversion function, and can only be limited to the physical separation of the communication optical fiber and the power supply conductor , And then connect the watertight optical plug connector and the watertight electrical plug connector with other underwater equipment; (3) compared to the watertight electrical plug connector, the watertight optical plug connector technology is still immature, The reliability is low and the price is expensive.
  • the number of optical cores in watertight optical plug connectors is limited, generally less than 8 cores, which cannot meet the connection requirements between large-capacity optical fiber composite cables and other underwater devices; (4)
  • the photoelectric separator lacks effective seawater corrosion protection measures, and the overall seawater corrosion resistance is poor, resulting in a short service life.
  • the technical problem mainly solved by the present invention is to provide a multifunctional submarine cable underwater terminal photoelectric separator, which separates and distributes the communication optical fiber and power supply conductor in the photoelectric composite cable underwater, and reduces the main connection box and optical plug connector. Use, reducing maintenance costs and reducing water seepage problems.
  • a technical solution adopted by the present invention is to provide a multifunctional submarine cable underwater terminal photoelectric separator for photoelectric separation of a photoelectric composite cable, including: a watertight connector, a bearing flange plate, Pressure-resistant cavity structure, penetration plate and built-in function module, the load-bearing flange plate and penetration plate are respectively provided at both ends of the pressure-resistant cavity structure, and the built-in function module is provided in the pressure-resistant cavity structure
  • the built-in function module includes a power distribution module, an optical fiber connection box, a high-low voltage conversion module, and a photoelectric conversion module fixed in a pressure-resistant cavity structure.
  • the photoelectric composite cable enters the pressure-resistant cavity structure through a bearing flange plate and A plurality of communication optical fibers and power supply conductors are separated, and the ends of the communication optical fibers are fused with the optical fiber jumper on the photoelectric conversion module and protected by the optical fiber heat shrinkable tube and fixed in the optical fiber connection box.
  • the input end of the distribution module is connected, and a first high-voltage branch line is provided between the output end of the power distribution module and the input end of the corresponding high-low voltage conversion module.
  • a first low-voltage branch line is provided between the output end of the pressure conversion module and the corresponding photoelectric conversion module, the watertight connector is disposed at the middle position of the through-board, and a watertight connector is provided between the output end of the photoelectric conversion module and the watertight connector.
  • An electric signal line, a second high-voltage branch line is provided between the output end of the power distribution module and the watertight connector, and a second low-voltage branch line is provided between the output end of the high-low voltage conversion module and the watertight connector.
  • a submarine cable locking structure corresponding to the photoelectric composite cable is provided on the outside of the bearing flange plate.
  • the pressure-resistant cavity structure includes a pressure-resistant cylinder and a nozzle flange plate provided at both ends of the pressure-resistant cylinder.
  • the nozzle flange plate is fixed to the end of the pressure-resistant cylinder by welding, and the bearing flange plate and the penetration plate are respectively bolted to the corresponding nozzle flange plate.
  • annular groove is recessed on the outside of the flange plate of the nozzle, and an O-ring is arranged in the annular groove.
  • the bearing flange plate is provided with a sealing structure corresponding to the photoelectric composite cable, and the sealing structure includes at least one tapered sealing ring.
  • a bending end corresponding to the photoelectric composite cable is provided at the tail end of the submarine cable locking structure.
  • an electrochemical corrosion protection member is installed on the submarine cable locking structure and the pressure-resistant cavity structure.
  • the beneficial effects of the present invention are: a multifunctional submarine cable underwater terminal photoelectric separator pointed out by the present invention, realizes bidirectional conversion between optical signals and electrical signals, and avoids the use of expensive optical fiber plug connections with high risk of failure Device to improve the reliability of such an underwater optoelectronic composite cable observation network system and reduce the cost of networking; to achieve the conversion between high voltage and low voltage, the shore-based optical composite cable will be used as the photoelectric conversion module and the underwater Observation network system supplies power to other equipment (secondary junction box); realizes the distribution of optical signals and electrical signals, uses optical fiber fusion disks and power distribution modules to distribute optical signals and electrical signals respectively, and provides redundant photoelectric conversion modules, The high and low voltage conversion modules and other equipment (secondary junction boxes) of the system provide power at the same time, further improving the reliability of the communication system of the underwater observation network.
  • FIG. 1 is a schematic structural view of a preferred embodiment of a multifunctional submarine cable underwater terminal photoelectric separator according to the present invention
  • Figure 2 is a schematic diagram of the connection of the underwater observation network system
  • FIG. 3 is a schematic diagram of the internal structure of the pressure-resistant cavity structure in FIG. 1;
  • FIG. 4 is a schematic diagram of a connection structure of a built-in function module.
  • an embodiment of the present invention includes:
  • the electric energy and optical signals provided by the shore-side base station in the underwater observation network system are connected to the multifunctional submarine cable underwater terminal photoelectric separator through the photoelectric composite cable 1 for separation, and then pass through a watertight plug.
  • the watertight cable that pulls out the connector (watertight connector 19) is connected to the external underwater equipment (secondary junction box).
  • a multifunctional submarine cable underwater terminal photoelectric separator for photoelectric separation of a photoelectric composite cable comprising: a watertight connector 19, a bearing flange plate 6, a pressure-resistant cavity structure 2, a bulkhead 8 and a built-in function Modules and underwater photoelectric separators generally require easy installation, good compatibility in different marine engineering equipment, and good stability during long-term operation.
  • the load-bearing flange plate 6 and the penetration plate 8 are respectively provided at both ends of the pressure-resistant cavity structure 2, and the built-in function module is provided in the pressure-resistant cavity structure 2, and the built-in function module includes Power distribution module (17, 18) in the cavity structure 2, optical fiber junction box 16, two high-low voltage conversion modules (14, 15) and corresponding photoelectric conversion modules (12, 13), high-low voltage conversion function and photoelectricity
  • Power distribution module (17, 18) in the cavity structure 2 optical fiber junction box 16
  • two high-low voltage conversion modules (14, 15) and corresponding photoelectric conversion modules (12, 13) high-low voltage conversion function and photoelectricity
  • the conversion function is transplanted into the cavity of the photoelectric separator, which eliminates the use of the main underwater junction box, and greatly reduces the networking cost of the observation network system.
  • the optical signal is converted into an Ethernet electrical signal in a photoelectric separation cavity and then output through a watertight cable, avoiding the use of high-priced and relatively low-reliability optical plug connectors, while further reducing the cost of the networking system, it also Can improve system reliability.
  • the photoelectric composite cable 1 enters the pressure-resistant cavity structure 2 through the bearing flange plate 6 and separates a plurality of communication optical fibers and power supply conductors.
  • the jumper wire is welded and protected with an optical fiber heat shrinkable tube, and is fixed in the optical fiber splicing box 16 with a stable structure.
  • the power supply conductor is divided into a first power supply conductor 10 and a second power supply conductor 11.
  • the first power supply conductor 10 and the second power supply conductor 11 respectively include positive and negative conductors.
  • the first power supply conductor 10 and the input of the corresponding power distribution module 17 The second power supply conductor 11 is connected to the input of the corresponding power distribution module 18, and a first high-voltage branch line 22 is provided between the output of the power distribution module 17 and the input of the corresponding high-low voltage conversion module 14.
  • a first low-voltage branch line 23 is provided between the output end of the high-low voltage conversion module 14 and the corresponding photoelectric conversion module 12 to power the photoelectric conversion module 12, and the output end of the power distribution module 18 and the corresponding high-low voltage conversion module.
  • a first high-voltage branch line 27 is provided between the 15 input terminals, and a first low-voltage branch line 26 is provided between the output terminal of the high-low voltage conversion module 15 and the corresponding photoelectric conversion module 13 to supply power to the photoelectric conversion
  • the watertight connector 19 is disposed in the middle position of the transom plate 8.
  • An electrical signal line 20 is provided between the output end of the photoelectric conversion module (12, 13) and the watertight connector 19 to realize the conversion of the optical signal to the electrical signal.
  • a second high-voltage branch line 25 is provided between the output end of the power distribution module (17, 18) and the watertight connector 19 to output high-voltage electricity, and the output end of the high-low voltage conversion module (14, 15) is connected to
  • a second low-voltage branch line 24 is provided between the watertight connectors 19 to output low-voltage electricity.
  • a submarine cable locking structure 5 corresponding to the photoelectric composite cable 1 is provided on the outside of the bearing flange plate 6. After the photoelectric composite cable 1 is connected to the photoelectric separator, it is clamped and locked by the submarine cable locking structure 5.
  • the submarine cable locking structure 5 can be used for both the optoelectronic composite cable with armored steel wire and the unarmored steel wire.
  • the optical cable composite cable is connected and fixed with the submarine cable locking structure 5 and the bearing flange plate 6.
  • the end of the submarine cable locking structure 5 is provided with a bend-resisting device 3 corresponding to the photoelectric composite cable 1, and the bending-resisting effect is good.
  • Electrochemical corrosion protection 21 is installed on the submarine cable locking structure 5 and the pressure-resistant cavity structure 2, which can effectively prevent seawater corrosion of the mechanical structure of the multifunctional submarine cable underwater terminal photoelectric separator.
  • the pressure-resistant cavity structure 2 includes a pressure-resistant cylinder and nozzle flange plates 4 provided at both ends of the pressure-resistant cylinder.
  • the nozzle flange plate 4 is welded and fixed to the end of the pressure-resistant cylinder, and has a firm structure. The airtightness is good.
  • the bearing flange plate 6 and the penetration plate 8 are respectively fixed with the corresponding nozzle flange plate 4 by bolts, which is convenient for installation and removal.
  • the outside of the nozzle flange plate 4 is recessed. There is an annular groove, and an O-shaped sealing ring is arranged in the annular groove, which has good sealing performance.
  • the load-bearing flange plate 6 is provided with a sealing structure 7 corresponding to the photoelectric composite cable 1.
  • the sealing structure 7 includes 1 to 3 tapered sealing rings, which are squeezed and sealed.
  • the multifunctional submarine cable underwater terminal photoelectric separator pointed out by the present invention particularly uses a built-in function module to convert an optical signal into an electrical signal, and converts high voltage electricity to low voltage electricity.
  • the direct connection between the photoelectric composite cable and the secondary junction box avoids the economic loss caused by water seepage, and the bottom voltage conversion and photoelectric conversion functions of the main junction box in the conventional underwater observation network are transplanted into the photoelectric separator, which effectively reduces
  • the use of the main connection box and optical plug connector in the system greatly reduces the system networking cost, reduces the risk of water leakage and maintenance costs.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Cable Accessories (AREA)
  • Connector Housings Or Holding Contact Members (AREA)

Abstract

本发明公开了一种多功能海缆水下终端光电分离器,用于光电复合缆的光电分离,包括:水密连接器、承力法兰板、耐压腔体结构、穿舱板和内置功能模块,所述内置功能模块包括固定在耐压腔体结构内的电能分配模块、光纤接续盒、高低电压转换模块及光电转换模块,所述高低电压转换模块输出端与对应的光电转换模块之间设置有第一低压分线,所述光电转换模块输出端与水密连接器之间设置有电信号线,所述电能分配模块输出端与水密连接器之间设置有第二高压分线。通过上述方式,本发明所述的多功能海缆水下终端光电分离器,将光信号转为电信号,将高压电转换成低压电,有效减少系统中主接驳盒和光插拔连接器的使用。

Description

一种多功能海缆水下终端光电分离器 技术领域
本发明涉及水下观测网系统通信技术领域,特别是涉及一种多功能海缆水下终端光电分离器。
背景技术
当前在海洋科学研究、海底资源开发、水下环境监测等领域中,长时间实时远程观测水下环境的需要越来越强烈,由于电缆通信系统难以实现远距离、大容量的数据传输,因此需要采用以光电复合通信海缆作为信号传输介质的光纤通信系统。
为实现岸端基站与水下设备之间的实时数据传输和电能传输,必须通过水下光电分离器将光电复合海缆中的通信光纤和供电导体在水下进行分离后接入主接驳盒中,进而再通过水密电缆将主接驳盒与次级接驳盒进行连接。设计的水下光电分离器一般要求易于安装、应用在不同海洋工程装备上的兼容性好、长时间运行时稳定性好。
目前海底光缆光电分离器技术由于结构和功能设计欠缺,存在如下不足:(1)光电复合缆与光电分离器之间机械连接固定方式一般采用压铠自锁紧方式,只能适用于有铠装钢丝层的光电复合缆,而不适用于无铠装钢丝的光电复合缆;(2)现有水下光电分离器不具备光电转换功能,只能局限在实现通信光纤和供电导体经物理分离后,再用水密光插拔连接器和水密电插拔连接器与其它水下设备连接起来;(3)而相对于水密电插拔连接器而言,水密光插拔连接器技术尚不成熟,可靠性偏低,且价格昂贵,此外,水密光插拔连接器中光插芯数有限,一般低于8芯,无法满足大容量光纤的光电复合缆与其它水下装置之间的连接需求;(4)光电分离器缺乏有效的耐海水腐蚀保护措施,整体耐海水腐蚀性差,导致使用寿命短。
发明内容
本发明主要解决的技术问题是提供一种多功能海缆水下终端光电分离器,将光电复合缆中的通信光纤和供电导体在水下分离和分配,减少主接驳盒和光插拔连接器的使用,降低维护成本,减少渗水问题。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种多功能海缆水下终端光电分离器,用于光电复合缆的光电分离,包括:水密连接器、承力法兰板、耐压腔体结构、穿舱板和内置功能模块,所述承力法兰板和穿舱板分别设置在耐压腔体结构的两端,所述内置功能模块设置在耐压腔体结构内,所述内置功能模块包括固定在耐压腔体结构内的电能分配模块、光纤接续盒、高低电压转换模块及光电转换模块,光电复合缆通过承力法兰板进入耐压腔体结构中并分离出多个通信光纤和供电导体,所述通信光纤端部与光电转换模块上的光纤跳线进行熔接并用光纤热缩管保护后固定在光纤接续盒中,所述供电导体分别与对应的电能分配模块输入端相连接,所述电能分配模块输出端与对应的高低电压转换模块输入端之间设置有第一高压分线,所述高低电压转换模块输出端与对应的光电转换模块之间设置有第一低压分线,所述水密连接器设置在穿舱板的中间位置,所述光电转换模块输出端与水密连接器之间设置有电信号线,所述电能分配模块输出端与水密连接器之间设置有第二高压分线,所述高低电压转换模块输出端与水密连接器之间设置有第二低压分线。
在本发明一个较佳实施例中,所述承力法兰板外侧设置有与光电复合缆对应的海缆锁紧结构。
在本发明一个较佳实施例中,所述耐压腔体结构包括耐压筒体及设置在耐压筒体两端的管口法兰板。
在本发明一个较佳实施例中,所述管口法兰板与耐压筒体端部焊接固定, 所述承力法兰板和穿舱板分别与对应的管口法兰板采用螺栓固定。
在本发明一个较佳实施例中,所述管口法兰板外侧内凹设置有环形槽,所述环形槽内设置有O型密封圈。
在本发明一个较佳实施例中,所述承力法兰板中设置有与光电复合缆对应的密封结构,所述密封结构包括至少一个锥形密封圈。
在本发明一个较佳实施例中,所述海缆锁紧结构尾端设置有与光电复合缆对应的抗弯器。
在本发明一个较佳实施例中,所述海缆锁紧结构和耐压腔体结构上均安装有电化学腐蚀保护件。
本发明的有益效果是:本发明指出的一种多功能海缆水下终端光电分离器,实现光信号和电信号之间的双向转化,避免使用价格昂贵且故障风险较高的光纤插拔连接器,从而提高此类水下光电复合缆观测网系统可靠性并降低组网成本;实现高电压与低电压之间的转化,将由岸基经主管光电复合缆为所述光电转化模块以及水下观测网系统中其它设备(次级接驳盒)供电;实现光信号和电信号分配,采用光纤熔接盘和电能分线模块对光信号和电信号分别进行分配,为冗余的光电转化模块、高低电压转化模块以及系统其它设备(次级接驳盒)同时进行供电,进一步提升水下观测网通信系可靠性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是本发明一种多功能海缆水下终端光电分离器一较佳实施例的结构示 意图;
图2是水下观测网系统连接示意图;
图3是图1中耐压腔体结构的内部结构示意图;
图4是内置功能模块的连接结构示意图。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请参阅图1~图4,本发明实施例包括:
如图2所示,水下观测网系统中岸端基站提供的电能和光信号通过光电复合缆1接入所述的多功能海缆水下终端光电分离器中进行分离,再通过带有水密插拔连接器(水密连接器19)的水密缆接入到外部的水下设备(次级接驳盒)中。
一种多功能海缆水下终端光电分离器,用于光电复合缆的光电分离,包括:水密连接器19、承力法兰板6、耐压腔体结构2、穿舱板8和内置功能模块,水下光电分离器一般要求易于安装、应用在不同海洋工程装备上的兼容性好、长时间运行时稳定性好。
所述承力法兰板6和穿舱板8分别设置在耐压腔体结构2的两端,所述内置功能模块设置在耐压腔体结构2内,所述内置功能模块包括固定在耐压腔体结构2内的电能分配模块(17、18)、光纤接续盒16、2个高低电压转换模块(14、15)及对应的光电转换模块(12、13),高低电压转换功能和光电转换功能移植到光电分离器腔体中,免去水下主接驳盒的使用,在较大程度上降低观测网系统组网成本。同时,光信号在光电分离腔中转换成以太网电信号后再通过水密 电缆输出,避免使用价格高且可靠性相对较低的光插拔连接器,在进一步降低组网系统成本的同时,还能提高系统可靠性。
光电复合缆1通过承力法兰板6进入耐压腔体结构2中并分离出多个通信光纤和供电导体,所述通信光纤9端部与对应光电转换模块(12、13)上的光纤跳线进行熔接并用光纤热缩管保护后固定在光纤接续盒16中,结构稳定。
所述供电导体分为第一供电导体10和第二供电导体11,第一供电导体10和第二供电导体11分别包括正负极导体,第一供电导体10与对应的电能分配模块17的输入端相连接,第二供电导体11与对应的电能分配模块18的输入端相连接,所述电能分配模块17输出端与对应的高低电压转换模块14输入端之间设置有第一高压分线22,所述高低电压转换模块14输出端与对应的光电转换模块12之间设置有第一低压分线23,为光电转换模块12供电,所述电能分配模块18输出端与对应的高低电压转换模块15输入端之间设置有第一高压分线27,所述高低电压转换模块15输出端与对应的光电转换模块13之间设置有第一低压分线26,为光电转换模块13供电。
所述水密连接器19设置在穿舱板8的中间位置,所述光电转换模块(12、13)输出端与水密连接器19之间设置有电信号线20,实现光信号向电信号的转换和输出,所述电能分配模块(17、18)输出端与水密连接器19之间设置有第二高压分线25,输出高压电,所述高低电压转换模块(14、15)输出端与水密连接器19之间设置有第二低压分线24,输出低压电。
所述承力法兰板6外侧设置有与光电复合缆1对应的海缆锁紧结构5。光电复合缆1接入光电分离器后经过海缆锁紧结构5夹持锁紧,该海缆锁紧结构5既可适用于带铠装钢丝的光电复合缆也可适用于不带铠装钢丝的光电复合缆,再将海缆锁紧结构5与承力法兰板6连接固定。
所述海缆锁紧结构5尾端设置有与光电复合缆1对应的抗弯器3,抗弯效果好。所述海缆锁紧结构5和耐压腔体结构2上均安装有电化学腐蚀保护件21,可以有效防止多功能海缆水下终端光电分离器的机械结构发生海水腐蚀。
所述耐压腔体结构2包括耐压筒体及设置在耐压筒体两端的管口法兰板4,所述管口法兰板4与耐压筒体端部焊接固定,结构牢固,气密性好,所述承力法兰板6和穿舱板8分别与对应的管口法兰板4采用螺栓固定,安装和拆卸比较方便,所述管口法兰板4外侧内凹设置有环形槽,所述环形槽内设置有O型密封圈,密封性好。
所述承力法兰板6中设置有与光电复合缆1对应的密封结构7,所述密封结构7包括1~3个锥形密封圈,挤压密封。
综上所述,本发明指出的一种多功能海缆水下终端光电分离器,特别采用了内置功能模块,将光信号转为电信号,将高压电转换成低压电,既隔开了光电复合缆与次级接驳盒的直接连接而避免渗水引发的经济损失,又将常规水下观测网中的主接驳盒的到底电压转化和光电转化功能移植到光电分离器中,有效减少系统中主接驳盒和光插拔连接器的使用,大大降低系统组网成本,减少渗水风险和维护成本。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (8)

  1. 一种多功能海缆水下终端光电分离器,用于光电复合缆的光电分离,其特征在于,包括:水密连接器、承力法兰板、耐压腔体结构、穿舱板和内置功能模块,所述承力法兰板和穿舱板分别设置在耐压腔体结构的两端,所述内置功能模块设置在耐压腔体结构内,所述内置功能模块包括固定在耐压腔体结构内的电能分配模块、光纤接续盒、高低电压转换模块及光电转换模块,光电复合缆通过承力法兰板进入耐压腔体结构中并分离出多个通信光纤和供电导体,所述通信光纤端部与光电转换模块上的光纤跳线进行熔接并用光纤热缩管保护后固定在光纤接续盒中,所述供电导体分别与对应的电能分配模块输入端相连接,所述电能分配模块输出端与对应的高低电压转换模块输入端之间设置有第一高压分线,所述高低电压转换模块输出端与对应的光电转换模块之间设置有第一低压分线,所述水密连接器设置在穿舱板的中间位置,所述光电转换模块输出端与水密连接器之间设置有电信号线,所述电能分配模块输出端与水密连接器之间设置有第二高压分线,所述高低电压转换模块输出端与水密连接器之间设置有第二低压分线。
  2. 根据权利要求1所述的多功能海缆水下终端光电分离器,其特征在于,所述承力法兰板外侧设置有与光电复合缆对应的海缆锁紧结构。
  3. 根据权利要求1所述的多功能海缆水下终端光电分离器,其特征在于,所述耐压腔体结构包括耐压筒体及设置在耐压筒体两端的管口法兰板。
  4. 根据权利要求3所述的多功能海缆水下终端光电分离器,其特征在于,所述管口法兰板与耐压筒体端部焊接固定,所述承力法兰板和穿舱板分别与对应的管口法兰板采用螺栓固定。
  5. 根据权利要求4所述的多功能海缆水下终端光电分离器,其特征在于, 所述管口法兰板外侧内凹设置有环形槽,所述环形槽内设置有O型密封圈。
  6. 根据权利要求1所述的多功能海缆水下终端光电分离器,其特征在于,所述承力法兰板中设置有与光电复合缆对应的密封结构,所述密封结构包括至少一个锥形密封圈。
  7. 根据权利要求2所述的多功能海缆水下终端光电分离器,其特征在于,所述海缆锁紧结构尾端设置有与光电复合缆对应的抗弯器。
  8. 根据权利要求2所述的多功能海缆水下终端光电分离器,其特征在于,所述海缆锁紧结构和耐压腔体结构上均安装有电化学腐蚀保护件。
PCT/CN2018/097132 2018-06-15 2018-07-26 一种多功能海缆水下终端光电分离器 WO2019237456A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810616966.6 2018-06-15
CN201810616966.6A CN108535824B (zh) 2018-06-15 2018-06-15 一种多功能海缆水下终端光电分离器

Publications (1)

Publication Number Publication Date
WO2019237456A1 true WO2019237456A1 (zh) 2019-12-19

Family

ID=63471119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097132 WO2019237456A1 (zh) 2018-06-15 2018-07-26 一种多功能海缆水下终端光电分离器

Country Status (2)

Country Link
CN (1) CN108535824B (zh)
WO (1) WO2019237456A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116991110A (zh) * 2023-09-27 2023-11-03 深之蓝(天津)水下智能科技有限公司 控制水下机器人开关机的控制装置及方法和水下机器人

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109842085A (zh) * 2019-03-22 2019-06-04 中国科学院声学研究所 一种压力平衡式海底主基站光电分离装置
CN109979674A (zh) * 2019-04-30 2019-07-05 青岛罗博飞海洋探测装备应用技术研究院有限公司 一种水下光电复合缆及其应用
CN115421187B (zh) * 2022-09-01 2023-06-06 中国科学院声学研究所 缆式海底地震海啸监测系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6195487B1 (en) * 1998-06-30 2001-02-27 Pirelli Cable Corporation Composite cable for access networks
CN201107440Y (zh) * 2007-11-23 2008-08-27 陈广生 可带电操作的光纤复合相线光电隔离接续装置
CN201821053U (zh) * 2010-09-10 2011-05-04 广东电网公司电力通信设备运维中心 一种用于光纤复合相线的光电分离器
CN202121265U (zh) * 2011-06-03 2012-01-18 广东岱敏电网技术咨询服务中心 可用于带电作业的光纤复合相线光电分离装置
CN102810837A (zh) * 2012-03-16 2012-12-05 远东电缆有限公司 光纤复合电力电缆中间续接盒及其续接方法
CN104518476A (zh) * 2013-09-26 2015-04-15 中国科学院沈阳自动化研究所 一种水下光电分离舱
CN205490561U (zh) * 2016-03-16 2016-08-17 同济大学 海缆终端光电分离转换器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105699618B (zh) * 2016-03-15 2018-07-03 中天科技海缆有限公司 一种水质实时在线监测系统
CN105634621B (zh) * 2016-03-16 2017-11-07 上海同济资产经营有限公司 海缆终端光电分离转换器
CN105933067A (zh) * 2016-05-16 2016-09-07 浙江大学 一种基于海底信号传输的光电转换装置
CN208399752U (zh) * 2018-06-15 2019-01-18 江苏亨通海洋光网系统有限公司 一种多功能海缆水下终端光电分离器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6195487B1 (en) * 1998-06-30 2001-02-27 Pirelli Cable Corporation Composite cable for access networks
CN201107440Y (zh) * 2007-11-23 2008-08-27 陈广生 可带电操作的光纤复合相线光电隔离接续装置
CN201821053U (zh) * 2010-09-10 2011-05-04 广东电网公司电力通信设备运维中心 一种用于光纤复合相线的光电分离器
CN202121265U (zh) * 2011-06-03 2012-01-18 广东岱敏电网技术咨询服务中心 可用于带电作业的光纤复合相线光电分离装置
CN102810837A (zh) * 2012-03-16 2012-12-05 远东电缆有限公司 光纤复合电力电缆中间续接盒及其续接方法
CN104518476A (zh) * 2013-09-26 2015-04-15 中国科学院沈阳自动化研究所 一种水下光电分离舱
CN205490561U (zh) * 2016-03-16 2016-08-17 同济大学 海缆终端光电分离转换器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116991110A (zh) * 2023-09-27 2023-11-03 深之蓝(天津)水下智能科技有限公司 控制水下机器人开关机的控制装置及方法和水下机器人
CN116991110B (zh) * 2023-09-27 2024-02-13 深之蓝(天津)水下智能科技有限公司 控制水下机器人开关机的控制装置及方法和水下机器人

Also Published As

Publication number Publication date
CN108535824A (zh) 2018-09-14
CN108535824B (zh) 2024-02-23

Similar Documents

Publication Publication Date Title
WO2019237456A1 (zh) 一种多功能海缆水下终端光电分离器
WO2019237457A1 (zh) 一种海底光电复合缆深海终端分离装置
CN205490561U (zh) 海缆终端光电分离转换器
CN207096519U (zh) 海底光缆终端分离装置
CN102540371B (zh) 水下一分多复合光缆分支器
CN102540357B (zh) 可拔插光电复合连接器
CN110932220B (zh) 一种海底光电分离设备
CN105634621B (zh) 海缆终端光电分离转换器
CN208399762U (zh) 一种海底光电复合缆深海终端分离装置
CN112543058A (zh) 基于集成式接驳盒的海底观测网络系统
CN208399752U (zh) 一种多功能海缆水下终端光电分离器
CN110212485A (zh) 一种三芯高压海底电缆接头盒及其安装方法
CN217133431U (zh) 一种用于海底通信系统的接头盒
CN106199878B (zh) 一种可监测电性能的海陆缆接头盒及其电性能监测方法
CN114221855A (zh) 一种基于冗余式接驳盒的海底观测网络系统
CN105785532A (zh) 一种大容量铠装海底光缆快速连接接头盒及其连接方法
CN204190342U (zh) 新型110kV及以上复合外套终端尾管
CN110542963B (zh) 一种柔性光中继阵列
CN205787260U (zh) 一种大容量铠装海底光缆快速连接接头盒
CN101832427B (zh) 密封光电分壁连接装置及密封舱装置
CN116454820A (zh) 用于复合海缆的干式插拔式终端盒及配合结构
CN114114577B (zh) 一种海缆岸滩登入的光电分离装置
CN211123395U (zh) 柔性光中继阵列
CN209786772U (zh) 一种三芯高压海底电缆接头盒
CN220021772U (zh) 用于复合海缆的干式插拔式终端盒及配合结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922893

Country of ref document: EP

Kind code of ref document: A1