WO2011137689A1 - 真空动密封精确传动装置 - Google Patents

真空动密封精确传动装置 Download PDF

Info

Publication number
WO2011137689A1
WO2011137689A1 PCT/CN2011/071857 CN2011071857W WO2011137689A1 WO 2011137689 A1 WO2011137689 A1 WO 2011137689A1 CN 2011071857 W CN2011071857 W CN 2011071857W WO 2011137689 A1 WO2011137689 A1 WO 2011137689A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixing seat
vacuum
bellows
seal assembly
coupling
Prior art date
Application number
PCT/CN2011/071857
Other languages
English (en)
French (fr)
Inventor
杨明生
王银果
刘惠森
范继良
王勇
王曼媛
张华�
Original Assignee
东莞宏威数码机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞宏威数码机械有限公司 filed Critical 东莞宏威数码机械有限公司
Publication of WO2011137689A1 publication Critical patent/WO2011137689A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/12Details
    • F16J9/14Joint-closures

Definitions

  • the present invention relates to a transmission device, and more particularly to a vacuum dynamic seal precision transmission device. Background technique
  • the transmission can change the way, direction or speed of the motion provided by the power and is used purposefully.
  • Common transmission mechanisms mainly gear transmission, belt transmission and hydraulic transmission, the technical means of transmitting power are widely used in various machines and equipment.
  • Vacuum technology has become an indispensable technology and has been widely applied to various technical fields. For example, it is made of a thin plate such as a glass substrate.
  • the power source is generally transmitted from the outside to the inside.
  • the first solution is to seal between the transmission system and the vacuum chamber.
  • the power transmission to the vacuum chamber is mostly driven by a dynamic seal transmission.
  • the sealing of the vacuum chamber is maintained, and the power can be smoothly transmitted to the vacuum chamber.
  • higher requirements are also placed on the vacuum transmission.
  • the existing vacuum transmission The device does not accurately control the transmission speed and fails to provide accurate power output to the cavity. Therefore, a vacuum dynamic sealing precision transmission device capable of achieving precise transmission is needed to solve the above problem. Summary of the invention
  • the technical solution of the present invention is: providing a vacuum dynamic sealing precision transmission device, comprising a gear shaft, a vacuum chamber providing a vacuum environment, and a dynamic sealing assembly and a dynamic sealing assembly fixing seat outside the vacuum chamber a first coupling, a motor, a motor mount, one end of the dynamic seal assembly fixing seat is fixed on a sidewall of the vacuum chamber, and the other end of the dynamic seal assembly fixing seat and the motor mount a fixed connection, the dynamic seal assembly fixing seat is provided with a cavity, the dynamic seal assembly is fixed on the dynamic seal assembly fixing seat and is received in the cavity, and the first coupling is accommodated in the
  • the motor is fixed between the dynamic seal assembly and the motor mount, and the motor mount is provided with a mounting hole, the motor is fixed on the motor mount, and the motor has an output shaft The output shaft is connected to the first coupling through the mounting hole, and a sidewall of the vacuum cavity is provided with a through hole corresponding to a portion of the dynamic seal assembly, the gear One end of the first coupling
  • the vacuum dynamic sealing precision transmission device further includes a second coupling, a linkage shaft, a bellows, a first bellows fixing seat, a second bellows fixing seat and at least two pillars, the second joint a shaft, a bellows, a first bellows mount, a second bellows mount, and the post are disposed between the vacuum chamber and the dynamic seal assembly mount, and the dynamic seal assembly mount passes a pillar is fixedly connected to a sidewall of the vacuum chamber, the first bellows fixing seat is fixed on a sidewall of the vacuum chamber, and the second bellows fixing seat is fixed to the dynamic seal assembly fixing seat Upper, one end of the bellows The first bellows mount is fixedly connected, the other end is fixedly connected to the second bellows mount, the second coupling is suspended in the bellows, and the gear shaft is located at one end of the outside of the vacuum chamber.
  • the second coupling is fixedly connected, one end of the linkage shaft is fixedly connected to the second coupling, and the other end passes through the dynamic sealing assembly and is fixedly connected with the first coupling,
  • the linkage shaft is pivotally connected to the dynamic seal assembly, and the sensing piece is fixed on the linkage shaft.
  • a bearing is disposed between the through hole and the gear shaft.
  • the pivotal connection between the gear shaft and the through hole can be better realized, and the gear shaft and the through hole are protected at the same time, thereby avoiding damage during the transmission process, thereby making the transmission more stable and reliable.
  • the sensing piece has a disk structure, and the sensing piece is provided with two through grooves, and the two through grooves are located in the same diameter direction of the sensing piece.
  • the photoelectric sensor transmits an optical signal to the other detecting arm from one end of the detecting arm, when the sensing piece is rotated to the groove and the detecting arms are in the same plane, the optical signal can be effectively used by the other detecting arm.
  • Received that is, when the motor drives the gear shaft to rotate, the sensing piece rotates, and the detecting arm can record the starting position of the motor starting by the received signal information. Each time a signal is received, it represents a half rotation, and can be synchronized by calculation. Detect the actual speed of the motor to the vacuum gear shaft, which is convenient for accurately controlling the speed of the transmission.
  • the vacuum dynamic sealing precision transmission device of the invention utilizes a dynamic sealing transmission, and at the same time, the vacuum moving body precision is installed, and a speed measuring component is added in the vacuum dynamic sealing precision transmission device.
  • the on-axis coaxially fixes the sensing piece and defines a through slot on the sensing piece, and the sensing piece is disposed between the two detecting arms of the photoelectric sensor, and has a compact structure, and the photoelectric sensor transmits an optical signal from one end of the detecting arm to another detecting
  • the arm when the motor drives the gear shaft to rotate, synchronously drives the sensing piece to perform a rotating motion, and when the sensing piece rotates to the slot and is located on the same plane as the two detecting arms, the optical signal can be effectively used by the other
  • the detection arm receives, and the signal information received by the detection arm can record electricity.
  • the starting position of the machine start defines the starting point and rotation angle of the gear shaft rotation, which is convenient for accurately controlling the speed of the motor input into the vacuum chamber.
  • the photoelectric sensor senses and records the signal, and can synchronously detect the actual speed of the motor to the vacuum gear shaft. , to achieve the purpose of precise transmission.
  • Figure 1 is a schematic view showing the structure of a vacuum dynamic sealing precision transmission device of the present invention.
  • the vacuum dynamic sealing precision transmission device of the present invention can record the starting position of the motor starting by adding the speed measuring component, and the actual rotation speed of the motor to the gear shaft can be synchronously detected by the cooperation of the photoelectric sensor and the sensing piece, and can Accurate and smooth transmission while ensuring vacuum cleanliness.
  • a vacuum dynamic sealing precision transmission device includes a gear shaft 10, a vacuum chamber 20 for providing a vacuum environment, and a dynamic seal assembly 30 and a dynamic seal assembly fixing seat 32 outside the vacuum chamber 20.
  • the dynamic seal assembly holder 32 is fixedly coupled to the motor mount 52, and the dynamic seal assembly mount 32 and the vacuum chamber 20 are
  • a second coupling 42 is a bellows 70 , a first bellows fixing seat 72 , a second bellows fixing seat 74 and at least two pillars 80 through which the dynamic seal assembly fixing seat 32 passes.
  • the gear shaft 10 is The second coupling 42 is connected, and the other end extends through the through hole 22 into the vacuum chamber 20, the gear shaft 10 is pivotally connected to the through hole 22, and the gear shaft 10 is located in the vacuum chamber 20.
  • the inner end of the inner sleeve is provided with a gear 12, and the power component of the vacuum chamber 20 can be driven by the gear 12, and the bearing 24 and the retaining ring are disposed between the through hole 22 and the gear shaft 10.
  • the vacuum dynamic sealing precision transmission device further includes a linkage shaft 14 , one end of the linkage shaft 14 is fixedly connected to the second coupling 42 , and the other end passes through the dynamic seal assembly 30 and the first coupling shaft
  • the device 40 is fixedly connected, and the linkage shaft 14 is pivotally connected to the dynamic seal assembly 30.
  • a sealing ring 90 is disposed between the first bellows fixing base 72 and the vacuum chamber 20, and between the second bellows fixing seat 74 and the dynamic seal assembly fixing seat 32.
  • the sealing performance is enhanced to further ensure a high degree of cleanliness in the vacuum chamber 20.
  • the vacuum dynamic sealing precision transmission device further includes a speed measuring component 60.
  • the speed measuring component 60 includes a photoelectric sensor 62, an induction piece 66 and a sensor fixing seat 64.
  • the sensor fixing seat 64 is fixed to the motor.
  • the photo sensor 62 is fixed on the sensor holder 64.
  • the sensor holder 64 can be respectively provided with a wire holder for electrically connecting the photoelectric sensor 62 to the external control mechanism.
  • Photosensor 62 is electrically coupled to the circuit control mechanism. Two ends of one side of the photosensor 62 are horizontally protruded to form two detecting arms, which are a first detecting arm 65a and a second detecting arm 65b, respectively, and the two detecting arms 65a, 65b respectively pass through the dynamic sealing assembly fixing seat 32.
  • the sensing piece 66 is coaxially fixed on the linkage shaft 14 and located at the photoelectric Between the first detecting arm 65a and the second detecting arm 65b of the sensor 62, the tail end of the first detecting arm 65a forms a signal transmitting end, and the tail end of the second detecting arm 65b forms a signal receiving end, which is understandably The signal may be sent by the second detecting arm 65b and received by the first detecting arm 65a.
  • the sensing piece 66 is provided with a through slot 67.
  • the sensing piece 66 has a disk structure, and the sensing piece 66 is provided with two through grooves 67, and the two through grooves 67 are located in the same diameter direction of the sensing piece 66.
  • the photosensor 62 transmits an optical signal to the second detecting arm 65b from one end of the first detecting arm 65a, when the sensing piece 66 is rotated to the through groove 67 and the detecting arms 65a, 65b are located on the same plane, the light
  • the signal can be effectively received by the second detecting arm 65b, that is, when the interlocking shaft 14 is rotated by the motor 50, the sensing piece 66 is driven to rotate at the same time, and the second detecting arm 65b can record the start of the motor 50 by the received signal information.
  • the starting position, each time a signal is received, represents a half turn.
  • the actual speed of the motor 50 transmitted to the linkage shaft 14 can be synchronously detected, which facilitates accurate control of the speed of the transmission.
  • the dynamic seal assembly fixing seat 32 of the vacuum dynamic sealing precision transmission device of the present invention can also be directly fixed on the side wall of the vacuum chamber 20, and the gear shaft 10 extends through the through hole 22 to extend the vacuum.
  • One end of the cavity 20 is fixedly connected to the first coupling 40 through the dynamic seal assembly 30.
  • the gear shaft 10 is pivotally connected to the dynamic seal assembly 30, and the sensing piece 66 is coaxially fixed.
  • the other end of the dynamic seal assembly fixing seat 32 is fixedly connected to the motor fixing base 52 on the gear shaft 10.
  • the working principle of the vacuum dynamic sealing precision transmission device of the embodiment of the present invention is: when starting work, the photoelectric sensor 62 can be connected to a computer, and the motor 50 rotates through the output shaft 54 and the first
  • the coupling 40 drives the linkage shaft 14 to rotate, and the linkage shaft 14 drives the gear shaft 10 through the second coupling 42 to perform a rotary motion as shown by the arrow in the figure, thereby further driving the gear 12 in the vacuum chamber 20 to rotate synchronously.
  • the sensing piece 66 Since the sensing piece 66 is coaxially fixed on the linkage shaft 14, the sensing piece 66 rotates synchronously with the linkage shaft 14, and the photoelectric sensor 62 emits light from the first detecting arm 65a, since the sensing piece 66 is located at the two detecting arms 65a, 65b. Between the blocking of the transmission of light, the second detecting arm 65b fails to receive the light signal, only when the sensing piece 66 is rotated to the through groove 67 and the detecting arms 65a, 65b are in the same plane, the second The detecting arm 65b can receive the light, record the information of the first received light, define the starting point and the rotation angle of the rotation of the gear shaft 10, and conveniently control the motor 50 to be input into the vacuum chamber 20. The size of the speed, while the received signal by a time interval of the subject in real time The actual speed of the motor 50 transmitted to the vacuum gear shaft 10 is measured to achieve precise transmission.
  • the vacuum dynamic sealing precision transmission device of the present invention utilizes a dynamic seal transmission to add a speed measuring component 60 to the vacuum dynamic sealing precision transmission device while ensuring the cleanliness of the vacuum chamber 20,
  • the sensing plate 66 is coaxially fixed on the gear shaft 10, and a through groove 67 is formed in the sensing piece 66.
  • the sensing piece 66 is disposed between the two detecting arms 65a and 65b of the photoelectric sensor 62, and has a compact structure.
  • the optical signal is sent from the one end of the first detecting arm 65a to the second detecting arm 65b.
  • the sensing piece 66 When the motor 50 drives the gear shaft 10 to rotate, the sensing piece 66 is synchronously rotated, and when the sensing piece 66 is rotated to the through slot 67,
  • the optical signal can be effectively received by the second detecting arm 65b, and the signal information received by the second detecting arm 65b can record the start of the starting of the motor 50.
  • the position defines the starting point and the rotation angle of the rotation of the gear shaft 10, so as to accurately control the rotation speed of the motor 50 input into the vacuum chamber 20, and the sense of the photoelectric sensor 62 And the recording signal, the actual motor speed can be synchronized detection gear 50 transmitted to the vacuum shaft 10, to achieve precise drive.
  • the fixed connection between the first bellows fixing seat 72, the second bellows fixing seat 74, the dynamic seal assembly fixing seat 32, the motor fixing seat 52 and the strut 80 is mostly passed.
  • the screw connection is achieved.
  • the structure of the dynamic seal assembly 30 and the sealing principle of the dynamic seal assembly 30 are known to those skilled in the art and will not be described.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Sealing Devices (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

真空动密封精确传动装置 技术领域
本发明涉及一种传动装置, 更具体地涉及一种真空动密封精确传动装置。 背景技术
传动装置, 可以将动力所提供的运动的方式、 方向或速度加以改变, 被人 们有目的地加以利用。 常见的传动机构, 主要有齿轮传动、 皮带传动和液压式 传动, 作用传递动力的技术手段广泛应用于各种机器设备中。 随着现代科学技 术的发展, 对产品质量和生产工艺要求不断提高, 真空技术成为一门不可缺少 的技术, 已被广泛应用到各个技术领域中。 例如在利用玻璃基材等薄板制造
LCD-TFT 显示屏、 有机发光显示器件 (OLED ) 面板、 薄膜太阳能面板的制程 中, 大多需要在洁净玻璃上镀覆薄膜晶体管, 这类大型玻璃基材的制程通常包 含实施多个连续步骤, 包括如化学气相沉积制程 (CVD )、 物理气相沉积制程 ( PVD )、 有机物质蒸镀、 磁控溅射沉积或蚀刻制程, 该制程的工艺要求比较严 格, 大部分必须在真空状态下以及完全洁净的空间环境中进行, 由于提供真空 环境的真空腔体与大气环境的内外环境不同, 真空腔体内要求较高的真空度及 洁净度, 需要通过传动装置实现腔体内外动力的传递, 此过程中如果密封不好、 真空环境不足将严重影响辉光放电的程度, 同时空气中的氧气和水汽也会将靶 材侵蚀, 导致磁控溅射制程中断或 /和沉积薄膜受到影响。 在真空传动装置中, 动力源一般由外部传到内部这样首先就要解决的是传动系统与真空腔体间的密 封, 现有技术中, 对真空腔的动力传动大都釆用动密封传动, 既保持了真空腔 体的密封性, 又能将动力平稳地传送至真空腔体内, 然而, 随着人们对产品质 量要求的不断提高, 对真空传动也提出了更高的要求, 现有的真空传动装置并 未能对传动速度进行精确控制, 未能为腔体内提供精确的动力输出, 因此, 需 要一种能够实现精确传动的真空动密封精确传动装置来解决上述问题。 发明内容
本发明的目的是提供一种结构紧凑、 传动平稳且精准而又能同时保证真空 洁净度的真空动密封精确传动装置。
为实现上述目的, 本发明的技术方案为: 提供一种真空动密封精确传动装 置, 包括齿轮轴、 提供真空环境的真空腔体及位于所述真空腔体外的动密封组 件、 动密封组件固定座、 第一联轴器、 电机、 电机固定座, 所述动密封组件固 定座的一端固定在所述真空腔体的侧壁上, 所述动密封组件固定座的另一端与 所述电机固定座固定连接, 所述动密封组件固定座开设有空腔, 所述动密封组 件固定在所述动密封组件固定座上并容置在所述空腔内, 所述第一联轴器容置 在所述空腔内并位于所述动密封组件与所述电机固定座之间, 所述电机固定座 上开设有安装孔, 所述电机固定在所述电机固定座上, 所述电机具有输出轴, 所述输出轴穿过所述安装孔与所述第一联轴器连接, 所述真空腔体的侧壁对应 所述动密封组件的部位开设有通孔, 所述齿轮轴的一端与所述第一联轴器连接, 另一端穿过所述动密封组件及所述通孔伸入至真空腔体内, 所述齿轮轴分别与 所述动密封组件及通孔枢接, 其中, 所述真空动密封精确传动装置还包括有测 速组件, 所述测速组件包括光电传感器、 感应片及传感器固定座, 所述传感器 固定座固定在所述电机固定座上, 所述光电传感器固定在所述传感器固定座上, 所述光电传感器的一侧的两端水平凸伸形成两检测臂, 所述检测臂穿过所述动 密封组件固定座并深入所述空腔内, 所述感应片同轴固定在所述齿轮轴上并位 于所述光电传感器的两检测臂之间, 所述感应片上开设有通槽, 所述光电传感 器从一检测臂的一端发送光信号至另一检测臂。
较佳地, 所述真空动密封精确传动装置还包括有第二联轴器、 联动轴、 波 纹管、 第一波纹管固定座、 第二波纹管固定座及至少两支柱, 所述第二联轴器、 波纹管、 第一波纹管固定座、 第二波纹管固定座及所述支柱均设置在所述真空 腔体与动密封组件固定座之间, 所述动密封组件固定座通过所述支柱与所述真 空腔体的侧壁固定连接, 所述第一波纹管固定座固定在所述真空腔体的侧壁上, 所述第二波纹管固定座固定在所述动密封组件固定座上, 所述波纹管一端与所 述第一波纹管固定座固定连接, 另一端与所述第二波纹管固定座固定连接, 所 述第二联轴器悬设在所述波纹管内, 所述齿轮轴位于真空腔体外的一端与所述 第二联轴器固定连接, 所述联动轴的一端与所述第二联轴器固定连接, 另一端 穿过所述动密封组件并与所述第一联轴器固定连接, 所述联动轴与所述动密封 组件枢接, 所述感应片固定在所述联动轴上。 通过第二联轴器与联动轴的设置, 方便组装与检修, 通过波纹管的设置, 加强密封性能, 同时可以减少第二联轴 器占用真空室内空间, 达到平稳传动的目的。
较佳地, 所述第一波纹管固定座与真空腔体之间、 所述第二波纹管固定座 与动密封组件固定座之间均设有密封圈。 通过设置密封圈, 加强密封性能, 进 一步保证真空腔体具有较高的洁净度。
较佳地, 所述通孔与所述齿轮轴之间设有轴承。 通过设置轴承能更好地实现 齿轮轴与通孔之间的枢接, 同时保护所述齿轮轴与通孔, 避免在传动过程中受 损, 从而使传动更平稳可靠。
较佳地, 所述感应片呈圓盘结构, 所述感应片上开设有两所述通槽, 两所 述通槽位于所述感应片的同一直径方向上。 光电传感器由一检测臂一端发送光 信号给另一检测臂时, 当感应片转动到所述通槽与两所述检测臂位于同一平面 上, 所述光信号能有效被所述另一检测臂所接收, 即当电机带动齿轮轴转动时, 带动感应片转动, 检测臂通过接收到的信号信息可以记录电机启动的起始位置, 每接收到一次信号, 代表转动半圈, 通过计算, 可以同步检测电机传给真空齿 轮轴的实际转速, 便于精确控制传动的转速大小。
与现有技术相比, 本发明的真空动密封精确传动装置利用动密封传动, 在 同时保证真空腔体的洁净度的前提下, 在所述真空动密封精确传动装置中增设 测速组件, 在齿轮轴上同轴固定套设感应片并在感应片上开设通槽, 将感应片 设于所述光电传感器的两检测臂之间, 结构紧凑, 光电传感器由一检测臂一端 发送光信号给另一检测臂, 当电机带动齿轮轴转动时, 同步带动感应片做旋转 运动, 当感应片转动到所述通槽与两所述检测臂位于同一平面上时, 所述光信 号能有效被所述另一检测臂所接收, 通过检测臂接收到的信号信息可以记录电 机启动的起始位置, 定义齿轮轴旋转的起始点及旋转角度, 便于精确控制电机 输入真空腔体内的转速大小, 通过光电传感器感应并记录信号, 可以同步检测 电机传给真空齿轮轴的实际转速, 达到精确传动的目的。 附图说明
图 1是本发明真空动密封精确传动装置的结构示意图。
图 2是本发明测速组件的原理示意图。 具体实施方式
为了详细说明本发明的技术内容、 构造特征, 以下结合实施方式并配合附 图作进一步说明, 其中不同图中相同的标号代表相同的部件。 如上所述, 本发 明的真空动密封精确传动装置通过增设测速组件, 通过光电传感器与感应片的 配合可记录电机启动的起始位置, 并可同步检测电机传给齿轮轴的实际转速, 能在保证真空洁净度的同时实现精确、 平稳的传动。
参考图 1, 本发明实施例的真空动密封精确传动装置, 包括齿轮轴 10、 提 供真空环境的真空腔体 20及位于所述真空腔体 20外的动密封组件 30、 动密封 组件固定座 32、 第一联轴器 40、 电机 50、 电机固定座 52, 所述动密封组件固 定座 32与所述电机固定座 52固定连接, 所述动密封组件固定座 32与所述真空 腔体 20之间设有第二联轴器 42、 波纹管 70、 第一波纹管固定座 72、 第二波纹 管固定座 74及至少两支柱 80,所述动密封组件固定座 32通过所述支柱 80与所 述真空腔体 20的侧壁固定连接, 所述支柱 80的具体数量根据实际需要而设。 所述第一波纹管固定座 72 固定在所述真空腔体 20的侧壁上, 所述第二波纹管 固定座 74固定在所述动密封组件固定座 32上, 所述波纹管 70的一端与所述第 一波纹管固定座 72 固定连接, 另一端与所述第二波纹管固定座 74 固定连接, 所述支柱 80分布于所述第一波纹管固定座 72、 第二波纹管固定座 74及所述波 纹管 70的外围, 所述波纹管 70具有中空结构, 所述第二联轴器 42悬设在所述 波紋管 70内。 所述动密封组件固定座 32开设有空腔 34, 所述动密封组件 30固 定在所述动密封组件固定座 32上并容置在所述空腔 34内, 所述第一联轴器 40 容置在所述空腔 34内并位于所述动密封组件 30与所述电机固定座 52之间, 所 述电机固定座 52上开设有安装孔 56,所述电机 50固定在所述电机固定座 52上, 所述电机 50具有输出轴 54,所述输出轴 54穿过所述安装孔 56与所述第一联轴 器 40连接固定连接, 所述真空腔体 20的侧壁对应所述动密封组件 30的部位开 设有通孔 22 , 所述齿轮轴 10的一端与所述第二联轴器 42连接, 另一端穿过所 述通孔 22伸入至真空腔体 20内, 所述齿轮轴 10与通孔 22枢接, 所述齿轮轴 10位于真空腔体 20内的一端固定套设有一齿轮 12, 可以通过齿轮 12带动真空 腔体 20内动力组件动作, 所述通孔 22与所述齿轮轴 10之间设有轴承 24和挡 圈。 通过设置轴承 24能更好地实现齿轮轴 10与通孔 22之间的枢接, 同时保护 所述齿轮轴 10与通孔 22, 避免在传动过程中受损, 从而使传动更平稳可靠。 所 述真空动密封精确传动装置还包括有联动轴 14,所述联动轴 14一端与所述第二 联轴器 42固定连接, 另一端穿过所述动密封组件 30与所述第一联轴器 40固定 连接, 所述联动轴 14与所述动密封组件 30枢接。 通过第二联轴器 42与联动轴 14的设置, 方便组装与检修, 通过波纹管 70的设置, 加强密封性能, 同时可以 减少第二联轴器 42占用真空室内空间, 达到平稳传动的目的。
较佳地, 所述第一波紋管固定座 72与真空腔体 20之间、 所述第二波纹管 固定座 74与动密封组件固定座 32之间均设有密封圈 90。 通过设置密封圏 90, 加强密封性能, 进一步保证真空腔体 20内具有较高的洁净度。
配合参考图 2, 所述真空动密封精确传动装置还包括有测速组件 60, 所述 测速组件 60包括光电传感器 62、 感应片 66及传感器固定座 64, 所述传感器固 定座 64固定在所述电机固定座 52上, 所述光电传感器 62固定在所述传感器固 定座 64上, 所述传感器固定座 64上可以相应设有线座, 用于光电传感器 62实 现与外控制机构的电连接, 工作时, 光电传感器 62与电路控制机构电连接。 所 述光电传感器 62的一侧的两端水平凸伸形成两检测臂, 分别为第一检测臂 65a 和第二检测臂 65b, 两检测臂 65a、 65b分别穿过所述动密封组件固定座 32并深 入所述空腔 34内, 所述感应片 66同轴固定在所述联动轴 14上并位于所述光电 传感器 62的第一检测臂 65a与第二检测臂 65b之间, 所述第一检测臂 65a的尾 端形成信号发送端, 所述第二检测臂 65b的尾端形成信号接收端, 可以理解地, 也可以设置为信号由第二检测臂 65b发送, 由第一检测臂 65a接收, 所述感应 片 66上开设有通槽 67。 较佳地, 所述感应片 66呈圓盘结构, 所述感应片 66上 开设有两所述通槽 67, 两所述通槽 67位于所述感应片 66的同一直径方向上。 光电传感器 62由第一检测臂 65a的一端发送光信号给第二检测臂 65b时, 当感 应片 66转动到所述通槽 67与两所述检测臂 65a、 65b位于同一平面上, 所述光 信号能有效被所述第二检测臂 65b所接收, 即当联动轴 14通过电机 50带动转 动时, 同时带动感应片 66转动, 第二检测臂 65b通过接收到的信号信息可以记 录电机 50启动的起始位置, 每接收到一次信号, 代表转动半圈, 通过计算, 可 以同步检测电机 50传给联动轴 14的实际转速, 便于精确控制传动的转速大小。
需要说明的是, 本发明的真空动密封精确传动装置的动密封组件固定座 32 也可以直接固定在真空腔体 20的侧壁上, 所述齿轮轴 10穿过所述通孔 22伸出 真空腔体 20外的一端穿过所述动密封组件 30与所述第一联轴器 40固定连接, 所述齿轮轴 10与所述动密封组件 30枢接, 所述感应片 66同轴固定在所述齿轮 轴 10上, 所述动密封组件固定座 32的另一端与所述电机固定座 52固定连接。
继续参考图 1及图 2,本发明实施例的真空动密封精确传动装置的工作原理 为: 开始工作时, 光电传感器 62可与一计算机相连, 电机 50转动, 通过输出 轴 54与所述第一联轴器 40带动所述联动轴 14转动, 联动轴 14通过所述第二 联轴器 42带动齿轮轴 10如图中箭头所示做旋转运动, 进一步带动真空腔体 20 内的齿轮 12同步转动, 由于感应片 66同轴固定在联动轴 14上, 感应片 66随 联动轴 14同步做旋转运动, 光电传感器 62由第一检测臂 65a发射出光线, 由 于感应片 66位于两检测臂 65a、 65b之间, 阻挡光线的传输, 使第二检测臂 65b 未能接收到光线信号,只有当感应片 66转动到所述通槽 67与两所述检测臂 65a、 65b位于同一平面上时, 第二检测臂 65b才能接收到光线, 记录第一次接收到的 光线的信息, 定义齿轮轴 10旋转的起始点及旋转角度, 便于精确控制电机 50 输入真空腔体 20内的转速大小, 同时, 通过接收到信号的时间间隔可以实时检 测得出电机 50传给真空齿轮轴 10的实际转速, 实现精确传动。
与现有技术相比, 本发明的真空动密封精确传动装置利用动密封传动, 在 同时保证真空腔体 20的洁净度的前提下, 在所述真空动密封精确传动装置中增 设测速组件 60,在齿轮轴 10上同轴固定套设感应片 66并在感应片 66上开设通 槽 67, 将感应片 66设于所述光电传感器 62的两检测臂 65a、 65b之间, 结构紧 凑, 光电传感器 62由第一检测臂 65a的一端发送光信号给第二检测臂 65b, 当 电机 50带动齿轮轴 10转动时, 同步带动感应片 66 故旋转运动, 当感应片 66 转动到所述通槽 67与两所述检测臂 65a、 65b位于同一平面上时, 所述光信号 能有效被所述第二检测臂 65b所接收, 通过第二检测臂 65b接收到的信号信息 可以记录电机 50启动的起始位置, 定义齿轮轴 10旋转的起始点及旋转角度, 便于精确控制电机 50输入真空腔体 20内的转速大小, 通过光电传感器 62感应 并记录信号, 可以同步检测电机 50传给真空齿轮轴 10的实际转速, 达到精确 传动的目的。
本发明实施例的真空动密封精确传动装置中的第一波纹管固定座 72、 第二 波紋管固定座 74、 动密封组件固定座 32、 电机固定座 52及支柱 80之间的固定 连接大多通过螺钉连接来实现, 所涉及的动密封组件 30的结构及该动密封组件 30的密封原理为本领域技术人员所知, 因此不另描述。
以上结合最佳实施例对本发明进行了描述, 但本发明并不局限于以上揭示 的实施例, 而应当涵盖各种根据本发明的本质进行的修改、 等效组合。

Claims

权 利 要 求
1.一种真空动密封精确传动装置, 包括齿轮轴、提供真空环境的真空腔体及 位于所述真空腔体外的动密封组件、 动密封组件固定座、 第一联轴器、 电机、 电机固定座, 所述动密封组件固定座的一端固定在所述真空腔体的侧壁上, 所 述动密封组件固定座的另一端与所述电机固定座固定连接, 所述动密封组件固 定座开设有空腔, 所述动密封组件固定在所述动密封组件固定座上并容置在所 述空腔内, 所述第一联轴器容置在所述空腔内并位于所述动密封组件与所述电 机固定座之间, 所述电机固定座上开设有安装孔, 所述电机固定在所述电机固 定座上, 所述电机具有输出轴, 所述输出轴穿过所述安装孔与所述第一联轴器 连接, 所述真空腔体的侧壁对应所述动密封组件的部位开设有通孔, 所述齿轮 轴的一端与所述第一联轴器连接, 另一端穿过所述动密封组件及所述通孔伸入 至真空腔体内, 所述齿轮轴分别与所述动密封组件及通孔枢接, 其特征在于, 还包括有测速组件, 所述测速组件包括光电传感器、 感应片及传感器固定座, 所述传感器固定座固定在所述电机固定座上, 所述光电传感器固定在所述传感 器固定座上, 所述光电传感器的一侧的两端水平凸伸形成两检测臂, 所述检测 臂穿过所述动密封组件固定座并深入所述空腔内, 所述感应片同轴固定在所述 齿轮轴上并位于所述光电传感器的两检测臂之间 , 所述感应片上开设有通槽, 所述光电传感器从一检测臂的一端发送光信号至另一检测臂。
2.如权利要求 1所述的真空动密封精确传动装置, 其特征在于, 还包括有第 二联轴器、 联动轴、 波纹管、 第一波纹管固定座、 第二波纹管固定座及至少两 支柱, 所述第二联轴器、 波纹管、 第一波纹管固定座、 第二波纹管固定座及所 述支柱均设置在所述真空腔体与动密封组件固定座之间, 所述动密封组件固定 座通过所述支柱与所述真空腔体的侧壁固定连接, 所述第一波纹管固定座固定 在所述真空腔体的侧壁上, 所述第二波纹管固定座固定在所述动密封组件固定 座上, 所述波纹管一端与所述第一波纹管固定座固定连接, 另一端与所述第二 波纹管固定座固定连接, 所述第二联轴器悬设在所述波纹管内, 所述齿轮轴位 于真空腔体外的一端与所述第二联轴器固定连接, 所述联动轴的一端与所述第 二联轴器固定连接, 另一端穿过所述动密封组件并与所述第一联轴器固定连接, 所述联动轴与所述动密封组件枢接, 所述感应片固定在所述联动轴上。
3.如权利要求 2所述的真空动密封精确传动装置, 其特征在于, 所述第一波 纹管固定座与真空腔体之间、 所述第二波纹管固定座与动密封组件固定座之间 均设有密封圈。
4.如权利要求 1所述的真空动密封精确传动装置, 其特征在于, 所述通孔与 所述齿轮轴之间设有轴承。
5.如权利要求 1所述的真空动密封精确传动装置, 其特征在于, 所述感应片 呈圓盘结构, 所述感应片上开设有两所述通槽, 两所述通槽位于所述感应片的 同一直径方向上。
PCT/CN2011/071857 2010-05-06 2011-03-16 真空动密封精确传动装置 WO2011137689A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010101711322A CN101958634B (zh) 2010-05-06 2010-05-06 真空动密封精确传动装置
CN201010171132.2 2010-05-06

Publications (1)

Publication Number Publication Date
WO2011137689A1 true WO2011137689A1 (zh) 2011-11-10

Family

ID=43485795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/071857 WO2011137689A1 (zh) 2010-05-06 2011-03-16 真空动密封精确传动装置

Country Status (2)

Country Link
CN (1) CN101958634B (zh)
WO (1) WO2011137689A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101958634B (zh) * 2010-05-06 2012-07-25 东莞宏威数码机械有限公司 真空动密封精确传动装置
CN102678934A (zh) * 2012-05-17 2012-09-19 东莞宏威数码机械有限公司 密封传动装置
CN108449859B (zh) * 2018-03-08 2019-12-06 西北核技术研究所 用于真空中的轮轴式粒子加速器降能装置及其降能方法
CN114810842B (zh) * 2022-06-28 2022-09-23 天津德沃尔智能科技有限公司 交叉轴承装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3371650A (en) * 1965-12-31 1968-03-05 Bendix Corp Means to position and drive work support
DE4106846C1 (en) * 1991-03-04 1992-01-30 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De High vacuum tight drive for MBE appts. - comprising mounting head for substrate carrier pivotable between deposition position and charging position
CN2552944Y (zh) * 2002-07-04 2003-05-28 昆明贵金属研究所 真空镀膜轴向运动控制装置
CN1582069A (zh) * 2003-08-13 2005-02-16 胜华科技股份有限公司 有机电激发光元件的成膜设备
CN201674380U (zh) * 2010-05-06 2010-12-15 东莞宏威数码机械有限公司 真空动密封精确传动机构
CN101958634A (zh) * 2010-05-06 2011-01-26 东莞宏威数码机械有限公司 真空动密封精确传动装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3371650A (en) * 1965-12-31 1968-03-05 Bendix Corp Means to position and drive work support
DE4106846C1 (en) * 1991-03-04 1992-01-30 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De High vacuum tight drive for MBE appts. - comprising mounting head for substrate carrier pivotable between deposition position and charging position
CN2552944Y (zh) * 2002-07-04 2003-05-28 昆明贵金属研究所 真空镀膜轴向运动控制装置
CN1582069A (zh) * 2003-08-13 2005-02-16 胜华科技股份有限公司 有机电激发光元件的成膜设备
CN201674380U (zh) * 2010-05-06 2010-12-15 东莞宏威数码机械有限公司 真空动密封精确传动机构
CN101958634A (zh) * 2010-05-06 2011-01-26 东莞宏威数码机械有限公司 真空动密封精确传动装置

Also Published As

Publication number Publication date
CN101958634A (zh) 2011-01-26
CN101958634B (zh) 2012-07-25

Similar Documents

Publication Publication Date Title
WO2011137689A1 (zh) 真空动密封精确传动装置
CN100487298C (zh) 一种电控云台
JP2007191728A (ja) 真空処理装置
CN108760631B (zh) 一种具有温度自适应功能的光学窗口
CN201674380U (zh) 真空动密封精确传动机构
CN208762573U (zh) 一种真空低温磁控溅射镀膜机
CN109817539B (zh) 晶圆测厚装置及晶圆测厚系统
CN201512310U (zh) 非接触式滚轮装置驱动机构
TWI523965B (zh) 濺鍍設備及濺鍍方法
CN211570764U (zh) 膜厚自动控制镀膜机
JP2002348657A (ja) 真空成膜装置
JP2001237294A (ja) 特定環境用ロボット
CN205556763U (zh) 采用扫描式蒸发源的镀膜装置
WO2011038560A1 (zh) 翻转装置
CN101704452B (zh) 滚轮装置驱动机构
CN101826452A (zh) 基片上载装置
JP2019131885A (ja) 成膜装置
WO2018117688A1 (ko) 부착 장치
JP5189833B2 (ja) 真空搬送装置
CN201638801U (zh) 密封式基片上载装置
KR20210034812A (ko) 증착 물질 감지장치
CN104746002A (zh) 一种遮挡盘传输装置、反应腔室及等离子体加工设备
CN210394510U (zh) 一种内置于真空腔体的磁钢摆动式端头组件
CN108277468B (zh) 一种带真空机械臂的磁控溅射光学镀膜设备及镀膜方法
CN107521973B (zh) 多面检测仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11777110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11777110

Country of ref document: EP

Kind code of ref document: A1