WO2011136457A1 - 신규한 펩타이드를 이용하여 금 코어-절연체 쉘 나노구조를 제조하는 방법 - Google Patents

신규한 펩타이드를 이용하여 금 코어-절연체 쉘 나노구조를 제조하는 방법 Download PDF

Info

Publication number
WO2011136457A1
WO2011136457A1 PCT/KR2010/009012 KR2010009012W WO2011136457A1 WO 2011136457 A1 WO2011136457 A1 WO 2011136457A1 KR 2010009012 W KR2010009012 W KR 2010009012W WO 2011136457 A1 WO2011136457 A1 WO 2011136457A1
Authority
WO
WIPO (PCT)
Prior art keywords
gold
peptide
silica
nanostructure
core
Prior art date
Application number
PCT/KR2010/009012
Other languages
English (en)
French (fr)
Inventor
허호길
김정옥
명노상
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Priority to US13/643,233 priority Critical patent/US9051352B2/en
Publication of WO2011136457A1 publication Critical patent/WO2011136457A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0549Hollow particles, including tubes and shells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0551Flake form nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0553Complex form nanoparticles, e.g. prism, pyramid, octahedron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Definitions

  • the present invention relates to a method for producing gold core-insulator shell nanostructures using the novel tempide.
  • Bio weaving techniques for multifunctional nanomaterials using biomimetic molecules such as DNA, proteins and peptides have recently attracted attention due to environmentally friendly and diverse synthetic processes (1-2).
  • Peptides can selectively bind to metals as specific amino acid sequences, and can control the size, shape, crystal structure and function to produce a variety of nanomaterials (3-5). It is the most attention among biomolecules.
  • the peptide can synthesize silver nanoparticles, calcium molybdate phosphor microparticles, gold nanoparticles, meta titanic acid precipitates, titania nanoparticles and the like (6-11).
  • Peptides can also act as building blocks of nanomaterials such as peptide nanotubes, nanospheres and nanorings through self-assembly (12-16).
  • Synthesis of primary nanostructures such as wires, rods, tubes and ribbons, has attracted attention because of the high surface area to volume ratio and the unique electrical, optical and catalytic properties of primary nanostructures (1 19).
  • primary nanocable structures have high stability and enhanced chemical and physical properties, making them suitable for electronic device and sensor use (20-21).
  • Synthesis method of nanocable structure is template covering method, mold ambush It can be classified into three categories: the template filling method and the simultaneous synthesis method. Mold coating techniques refer to the technique of coating nanowires or nanorod cores with other materials such as metals, metal oxides and polymers using chemical, electrochemical, physical vapor processes or polymerization processes (22-24).
  • the template ambush technique is a method of filling metallic materials such as gold, silver and cobalt inside peptides or polymer nanotubes used as templates (25-27).
  • metallic materials such as gold, silver and cobalt inside peptides or polymer nanotubes used as templates
  • one-step simultaneous processes for synthesizing nano-cable structures such as silver-polypy and copper-polyvinyl alcohol are also known (28-29).
  • the present inventors earnestly researched for the development of biological production techniques of multifunctional nanomaterials, and as a result, the present invention was completed by preparing a gold core-insulator shell nanostructure using a novel peptide.
  • an object of the present invention is to provide a method for preparing a gold core-insulator shell nanostructure using a novel peptide.
  • Another object of the present invention is to provide the novel peptide.
  • Other objects and advantages of the present invention will become apparent from the following detailed description, claims and drawings.
  • the invention provides a method of making a gold core-insulator shell nanostructure comprising the following steps:
  • each independently represents a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, a vinyl group or a phenyl group, and each of 3 ⁇ 4 independently represents a linear or branched alkyl group having 1 to 6 carbon atoms, and ⁇ is 0 It is an integer of -3.
  • step (a) is a step of binding a silica-synthetic peptide having a cysteine residue at the terminal to the surface of the gold nanostructure using a cysteine residue at the terminal.
  • Cysteine is an amino acid having a thiol group which can be covalently bonded to the gold surface, and can be bonded to the gold surface using the thiol group.
  • the present inventors can effectively precipitate silica on the surface of the gold nanostructure when the silica-synthetic peptide having a cysteine residue at the terminal is bound to the surface of the gold nanostructure using the thiol group and reacted with the silica precursor. It was found that when using silica-synthetic peptides without cysteine residues, no silica layer was synthesized over the gold surface.
  • the silica-synthetic peptide having a cysteine residue at the terminal of the present invention is a peptide or a known silica- which contains one or more cysteine residues at its N-terminus or C-terminus among silica-synthetic peptides already known in the art. It means a peptide in which one or more cysteine residues are added at the N-terminus or C-terminus of the synthetic peptide.
  • the production method of the present invention is characterized by precipitating silica on the surface of the gold nanostructure by carrying out a silica synthesis reaction in the state where the silica-synthetic peptide is bound to the gold surface by using a thiol group of the terminal cysteine.
  • the silica-synthetic peptide having a cysteine residue at the terminal of the present invention is known as well as a new silica-synthetic peptide to be reported in the future, and it is attached to the gold surface using the thiol group of the terminal cysteine. As long as the silica precipitates on the surface of the gold nanostructure, it will be said to belong to the scope of the present invention.
  • Silica-synthetic peptides that may be used in the present invention are described in several publications (US Patent Publication No. 06670438; Wolf SE et al., Formation of silicones mediated by the sponge enzyme si 1 icatein-alpha, Dalton Trans, Epub ahead of print (2010) SchrH.C. Et al., Silicatein: nanobiot echno 1 ogi ca 1 and biomedical applications, Prog Mo 1 Subcel 1 Biol., 47: 251 ⁇ 73 (2009); Shimizu Shimizu K.
  • silica-synthetic peptides described in these documents.
  • a peptide which does not have a cysteine residue at its terminal it can be used in the present invention as a form in which at least one cysine residue is added at the N-terminus or C-terminus.
  • the silica-synthetic peptide having a cysteine residue at the terminal is silicate subunit alpha, silicate subunit beta, silicatein subunit gamma ga ⁇ a), poly (L-cysteine 10-bL-lysine 200), poly (L-cysteine 30-b—L-lysine 200), poly (L-cysteine 60-bL-lysine 200), poly (L- Cysteine 30-bL-lysine 400) or peptide Si # 6-C.
  • the silica-synthetic peptide having a cysteine residue at the terminus is Si # 6-C.
  • Peptide Si # 6-C is a peptide in which a cysteine is bonded to the C-terminus of the peptide Si # 6, which can prepare silica nanoparticles from a silica precursor, and its amino acid sequence is SSKKSGSYSGSKGSKC (SEQ ID NO: 1). do.
  • the step (a) of attaching the peptide to the gold nanostructures is carried out by reacting for 1 to 48 hours at room temperature and the peptides that do not bind to the surface of the gold nanostructures are known in the art It can be easily removed through a variety of methods known to.
  • the gold nanostructures used in step (a) of the present invention may be used in various forms of gold nanostructures without limitation, for example, gold nanoribbons, gold nanoplatelets, gold nanotubes, gold Nanowires, gold nanorods, gold nanoparticles, gold nanocages, gold nanocomposites, gold nanoflakes, gold nanoflowers, gold nanofoams, gold nanomeshes, gold nanofillers, gold nanoparticles
  • gold nanoribbons gold nanoplatelets
  • gold nanotubes gold Nanowires
  • gold nanorods gold nanorods
  • gold nanoparticles gold nanocages
  • gold nanocomposites gold nanoflakes, gold nanoflowers, gold nanofoams, gold nanomeshes, gold nanofillers, gold nanoparticles
  • a nanopin film, a gold nanoring, or a gold nanoshell may be used.
  • the peptide bound to the surface of the gold nanostructure is reacted with a silica precursor to form a gold core-insulator shell nanostructure, and the silica precursor is represented by the following Chemical Formula 1 do.
  • R 1 n Si (0 ⁇ ) 4 each independently represents a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, a vinyl group or a phenyl group, and each of R 2 is independently a straight or branched group having 1 to 6 carbon atoms.
  • An alkyl group is represented, n is an integer of 0-3.
  • tetrafunctional alkoxysilane represented by the formula Si (0R 2 ) 4 when n is 0 in the formula (1) include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra -i so-propoxysilane, tetra -n-butoxysilane, tetra -sec-butoxysilane, tetra -tert-butoxysilane, and the like.
  • trifunctional alkoxysilane represented by formula (0) 3 when n is 1 in formula (1) include trimethoxysilane, triethoxysilane, methyltrimethoxysilane, and methyltriethoxysilane.
  • difunctional alkoxysilane represented by the formula (3 ⁇ 4) 2Si (0R 2 ) 2 when n is 2 in formula (1) include dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, Diphenyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, methylethyldimethoxysilane, methylethyldiethoxysilane, methylphenyldimethoxysilane, methylphenyldiethoxysilane, ethylphenyldimethoxysilane and ethyl Phenyldieespecial silanes are included.
  • the alkoxysilane that is, the alkoxysilane represented by the formula R 12 Si (0R 2 ) 2
  • an alkoxysilane having a bifunctionalol When n is 3 in the formula (1), an alkoxysilane, that is, an alkoxysilane represented by the formula R 13 Si (0R 2 ), is referred to as an alkoxysilane having monofunctionality.
  • n in the general formula (1) Specific examples of the monofunctional alkoxysilane represented by the formula (3 ⁇ 4) 3 ⁇ (03 ⁇ 4) in the case of n in the general formula (1) include trimethylmethoxysilane, trimethylethoxysilane, triphenylmethoxysilane and tri Phenyl ethoxysilane Methyl diethoxysilane, dimethyl vinyl meoxysilane, dimethyl vinyl ethoxysilane, phenyl dimethyl methoxy silane, phenyl dimethyl ethoxy silane, diphenyl methyl methoxy silane, and diphenyl methyl hydroxy silane.
  • the silica precursor is tetramethoxysilane, tetraethoxysilane, trimethoxysilane, triethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxy It is characterized in that it is selected from the group consisting of silane and dimethyl diethoxysilane.
  • step (b) of the present invention may be performed by adding a peptide bound to the surface of the gold nanostructure in a solution containing the silica precursor and reacting for 10 minutes to 10 hours.
  • the present invention provides a novel peptide consisting of the amino acid sequence represented by SEQ ID NO: 1 sequence.
  • the novel peptide of the present invention is a peptide in the form of a cysteine bonded to the C-terminus of the peptide Si # 6 capable of producing silica nanoparticles from a silica precursor. It is a peptide having a dual function that may bind to the gold surface through a thiol group.
  • the novel peptide of the present invention consisting of the amino acid sequence represented by the first sequence of the sequence list is a silica-synthetic peptide having a cysteine residue at the terminal, and is attached to the surface of the gold nanostructure with the thiol group of the terminal cysteine attached to the gold surface. Since silica can be precipitated, it can be used for making gold core-insulator shell nanostructures. Since the novel peptide of the present invention is a silica-synthetic peptide having a cysteine residue at its end that can be used in the above-described method for preparing a gold core-insulator shell nanostructure, the common contents in relation to the above-described method are excessive complexity of the present specification. In order to avoid the description thereof is omitted.
  • the gold core-insulator shell nanostructure is characterized in that the gold-insulator coaxial nanocable.
  • Gold-insulator coaxial nanocables can be prepared using gold nanoribbons as gold nanostructures.
  • the new peptides of the present invention are bonded to gold nanoribbons, and the gold nanoribbons to which the peptides are bonded are combined with a silica precursor solution. It can manufacture by the method of reaction.
  • the present invention provides a method for preparing gold core-insulator shell nanostructures and novel peptides that can be used therein.
  • the production method of the present invention is a biomimic synthesis method using a silica-synthetic peptide having a high affinity for a gold surface, it is possible to produce a gold core-insulator shell nanostructure very effectively and environmentally friendly.
  • Figure 1 is a simple diagram for explaining a gold-silica nano cable manufacturing method.
  • Figure 3 shows (a) TEM images of gold-silica nanocables synthesized using 1 mg of peptide Si # 6-C and 50 mM TMOS, (b) EDX mapping of gold, oxygen, silicon and (c) gold EDX analysis of silica nanocable and silica parts.
  • FIG. 4 shows (a) AFM images of uncoated gold nanoribbons and (b) AFM images of gold-silica nanocables synthesized using 1 mg of peptide Si # 6-C and 50 mM TMOS.
  • FIG. 5 is a CLSM image of gold nano-ribbon coupled with (a) fluorescent dye-labeled peptides FAM-Si # 6-C and (b) FAM-Si # 6 in a 24-hour reaction.
  • HAuCl 4 - 33 ⁇ 40 TM0S were purchased from Aldrich (St Louis, M0.) . Nanopure water was prepared using the Milli-Q system (Millipore, Billerica, Mass.) And autoclaved to prevent microbial contamination. All peptides used were purchased from Anigen (Gwangju, Korea).
  • Gold nanoribbons were synthesized by reacting for 3 days in dark conditions at 37 ° C using peptide Midas-11 0.2 mg / m £ dissolved in deionized water at pH 5.4 containing 30 mM HAuCl 4 . Initial pH conditions were adjusted with 5 M NaOH prior to addition of the peptide solution to deionized water containing HAuCl 4 .
  • Gold nanoplatelets were synthesized by reacting for 3 days in dark conditions at 37 ° C using peptide Midas-11 0.2 mg / n ⁇ dissolved in deionized water at pH 3.0 containing 0.5 mM HAuCl 4 . All reaction volumes were 1. After the reaction, the sample was centrifuged and washed twice with deionized water. 3. Peptide adhesion to gold nanostructures
  • TM0S and 50 mM phosphate buffer (pH 7.5) were reacted in 50 mM TM0S and 50 mM phosphate buffer (pH 7.5) for 20 ° C. for 3 hours to form a silica layer.
  • TM0S stocks were dissolved fresh in 1 mM HC1 and freshly prepared at 1 M concentration. After the reaction the samples were washed twice with deionized water and resuspended in deionized water for further analysis.
  • the synthesized gold nanoribbons were reacted with peptide FAM-Si # 6 or FAM-Si # 6-C 1 mg at room temperature for 24 hours. After reaction, the samples were centrifuged and washed twice with deionized water. Light intensities indicative of the binding affinity of the designed peptides were compared using CLSM.
  • the synthesized nanocables and nanoplatelets were characterized by SEM, FE-TEM, EDX and AFM.
  • Samples for SEM analysis were prepared by placing a 5 ⁇ suspension on a silicon waiter and drying in air. Secondary SEM images were Hitachi S-4700 (Tokyo, Japan) and the acceleration voltage was fixed at 10 kV.
  • AFM analysis was also performed with the SEM samples. AFM images were obtained using NanoMan D-3100 (Veeco, Plainview, NY).
  • TEM analysis is JEM with EDX It was performed at an acceleration voltage of 300 kV using 2100F FE-TEM (JE0L, Peabody, MA). Samples were prepared by dropping a drop of gold crystal suspension onto a carbon-coated Cu support grid and drying in air.
  • the gold-synthetic peptides Midas- 11 and Midas-llC are derived from the Midas-2 peptide selected from the combinatorial phage display peptide library, wherein the tyrosine, the eleventh amino acid of the Midas-2 peptide, is substituted with glycine and cysteine, respectively.
  • Peptide Si # 6 (31) is derived from R5 (30), which is found in diatoms and is well known as a peptide for silica synthesis, and is a variant lacking the C-terminal amino acid R IL 7 ⁇ of R5, silica nanoparticles of 85 to 130 nm. Particles can be produced.
  • the novel peptide Si # 6-C of the present invention is designed to have two functions at the same time, that is, the cysteine having a thiol group covalently bonded to the gold surface as well as forming silica nanoparticles is attached to the C-terminus. It is also possible to bind to the gold surface using a thiol group.
  • FAM-Si # is a peptide whose N-terminus is labeled with NHS-fluorescein. 6-C and FAM-Si # 6 were designed and tested.
  • the peptides and their amino acid sequences designed for gold-silica nanocable preparation are summarized in Table 1 below.
  • aFAM shows the entire experimental process of synthesizing the gold-silica coaxial nanocable structure using the peptide designed as above of the fluorescent dye NHS-f luorescein in FIG. 1.
  • the first step in the synthesis of gold-silica coaxial nanocables was carried out for three days in a solution of pH 5.4 containing 30 mM HAuCl 4 in a dark at 37 ° C. as described in the previous literature (5). 11 to synthesize gold nanoribbons.
  • the smooth surface of the synthesized gold nanoribbons was observed by scanning electron microscopy (SEM) (FIG. 2A).
  • SEM scanning electron microscopy
  • the bifunctional peptide Si # 6-C of the present invention and the gold nanoribbons synthesized above were reacted at room temperature for 24 hours. After 24 hours, unbound peptide Si # 6-C was removed by centrifugation at 10,000 rpm for 5 minutes. Then, 50 mM tetramethyl orthosilicate (TM0S) precursor was reacted for 3 hours at 20 ° C., and the gold nanoribbons were coated with amorphous silica with peptide Si # 6-C attached to the gold surface.
  • T0S tetramethyl orthosilicate
  • the rough surface of the gold nanoribbon and the thin silica layer formed on the surface could be confirmed from FIG. 2C.
  • a control experiment was performed by directly reacting 50 mM TM0S precursor with gold nanoribbons at 20 ° C. for 3 hours.
  • the silicon layer clearly formed on the surface of the gold nanoribbons could not be confirmed (FIG. 2B).
  • the result is gold Si # 6-C peptide, which has a dual function capable of binding to the surface, shows that the gold nanoribbon surface is coated with silica to play a decisive role in constructing the gold-silica nanocable structure.
  • atomic force microscopy (AFM) analysis was performed on gold core-silica coated coaxial nanocable structures formed by reaction with uncoated gold nanoribbons and 50 mM TM0S.
  • Gold nanoribbons without any treatment had a flat and uniform surface about 24 nm high, while gold core-silica coated coaxial nanocable structures had thicker and rougher surfaces about 45-77 nm high. .
  • the N-terminus of the peptides was labeled with the green luminescent fluorescent dye NHS-fluorescein (FAM) (FAM-Si # 6-C and FAM-Si # 6). 1 mg of FAM_Si # 6_C and FAM-Si # 6 were reacted with gold nanoribbons for 24 hours at room temperature and dark conditions, and centrifuged at 10,000 rpm for 5 minutes to remove unbound peptide.
  • FAM green luminescent fluorescent dye
  • the intensity of light emitted from the fluorescent dye-labeled peptide specifically bound to the gold nanoribbon surface was measured by confocal laser scanning microscopy (CLSM) (FIG. 5).
  • CLSM confocal laser scanning microscopy
  • Peptides FAM-Si # 6-C and reacted gold nanoribbons gave a strong fluorescence to identify peptides specifically bound to the gold nanoribbons surface (FIG. 5A).
  • the peptide FAM-Si # 6 and the reacted gold nanoribbons emitted weak and non-uniformly dispersed fluorescent light, suggesting that the peptide was not specifically bound to the gold nanoribbon surface (FIG. 5B).
  • the one-dimensional nanocable synthesis performed in previous studies is mostly chemical or physical, and only limited research has been carried out for gold core-silica shell nanocable synthesis (34). There has been no research on the synthesis of nanocables coated with silica on gold nanoribbons using biomolecules such as the newly designed peptide.
  • the overall process for the construction of nanomaterial composites, such as core-shell nanocables can be controlled by biological weaving techniques under environmental conditions to synthesize gold nanoribbons and form silica layers of gold-silica nanocables.
  • the present invention provides a method for constructing a coaxial nanocable structure in which a gold nanoribbon synthesized using two newly designed peptides is coated with silica.
  • One of the peptides is for synthesizing the gold nanostructure.
  • the other is to bond to the gold nanostructures and form silica layers, regardless of the core template shape.
  • One thiol group contained in the Si # 6-C peptide C-terminus cysteine is required to bind tightly to the gold nanostructure, and does not interfere with the specific layering of amorphous silica nanoparticles on the gold nanostructure.
  • the silica layer on the gold nanoribbon surface can be adjusted by varying the reactant silica precursor concentration.
  • Newly designed peptides The synthesis method of the present invention, which synthesizes metal-insulator coaxial nanocable structures by coating gold nanoribbons with silica, can be varied for other suitable purposes in constructing well-designed multifunctional nanostructures. This is an example of the potential of molecules.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 금 코어-절연체 쉘 나노구조의 제조방법 및 이에 사용될 수 있는 신규한 펩타이드에 관한 것이다. 본 발명의 제조방법은 금 표면에 높은 친화력을 갖는 실리카-합성 펩타이드를 사용하는 바이오미믹 합성법이므로, 매우 효과적이면서도 환경 친화적으로 금 코어-절연체 쉘 나노구조를 제조할 수 있다.

Description

【명세서】
【발명의 명칭】
신규한 펩타이드를 이용하여 금 코어 -절연체 쉘 나노구조를 제조하는 방법
【기술분야】
본 발명은 신규한 템타이드를 이용하여 금 코어 -절연체 쉘 나노구조를 제조하는 방법 에 관한 것이다.
【배경기술】 ,
DNA, 단백질 및 펩타이드와 같은 생체모방 분자를 이용한 다기능성 나노물질의 생물학적 직조 기법은 환경 친화적이며 다양한 합성 프로세스로 인하여 최근 주목 받고 있다 (1-2). 펩타이드는 특정 아미노산 시뭔스로서 선택적으로 금속에 결합할 수 있고, 그 크기, 모양, 결정 구조 및 기능을 조절하여 다양한 나노물질을 생산할 수 있기 때문에 (3-5), 특이성 및 다양성 측면에서 봤을 때 상기 바이오 분자 중 가장 주목받고 있다.
환원제 또는 캡핑제로서, 펩타이드는 은 나노입자, 몰리브덴산 칼슘 인광체 마이크로입자, 금 나노입자, 메타 티탄산 침전물, 티타니아 나노입자 등을 합성할 수 있다 (6-11). 또한, 펩타이드는 자가 -조립 (self-assembly)을 통해, 펩타이드 나노튜브, 나노스피어 및 나노링과 같은 나노물질의 빌딩 블록으로서도 작용가능하다 (12-16).
와이어, 로드, 튜브 및 리본과 같은 일차 나노구조의 합성법은 일차 나노구조의 부피 대비 높은 표면적과 독특한 전기적, 광학적 및 촉매적 성질로 인해 주목을 받아왔다 (1그 19). 또한, 균일하게 구성된 나노물질과 달리, 일차 나노케이블 구조는 높은 안정성 및 증진된 화학적 및 물리적 성질을 가지므로 전자 장치 및 센서 웅용에 적합하다 (20-21). 나노케이블 구조의 합성 방법은 주형 피복 기법 (template covering method) , 주형 매복 l 기법 (template filling method) 및 동시 합성법 (simultaneous synthesis method)의 세가지 카테고리로 분류될 수 있다. 주형 피복 기법은 화학적, 전자화학적, 물리적 증기 프로세스 또는 중합 프로세스를 이용해 나노와이어 또는 나노로드 코어를 금속, 금속 산화물 및 폴리머와 같은 다른 물질로 코팅하는 기법을 말한다 (22-24). 주형 매복 기법은 주형으로 사용되는 펩타이드 또는 폴리머 나노튜브 내부에 금, 은 및 코발트와 같은 금속성 물질을 채우는 방법이다 (25-27). 또한, 은-폴리피를 및 구리-폴리비닐 알코올과 같은 나노 케이블 구조 합성을 위한 일 단계 동시 프로세스도 알려져 있다 (28-29). 본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
【발명의 상세한 설명】
【기술적 과제】
본 발명자들은 다기능성 나노물질의 생물학적 제조 기법의 개발을 위하여 예의 연구 노력하였고 그 결과 신규한 펩타이드를 이용하여 금 코어-절연체 쉘 나노 구조를 제조 해냄으로써, 본 발명을 완성하게 되었다.
따라서 본 발명의 목적은 신규한 펩타이드를 이용하여 금 코어-절연체 쉘 나노구조를 제조하는 방법을 제공하는 데 있다.
본 발명의 다른 목적은 상기 신규한 펩타이드를 제공하는 데 있다. 본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다. 【기술적 해결방법】
본 발명의 일 양태에 따르면, 본 발명은 다음 단계를 포함하는 금 코어- 절연체 쉘 나노구조의 제조방법을 제공한다:
(a) 말단에 시스테인 잔기를 가지는 실리카 -합성 펩타이드를 금 나노구조의 표면에 결합시키는 단계; 및 (b) 상기 금 나노구조의 표면에 결합한 펩타이드를 하기 화학식 1 로 표시되는 실리카 전구체와 반응시켜 금 코어-절연체 쉘 나노구조를 형성하는 단계 .
화학식 1
RlnSi (( )4
상기 화학식에서 각각은 독립적으로 수소 원자, 탄소수 1 내지 6 의 직쇄 또는 분지형 알킬기, 비닐기 또는 페닐기를 나타내고, ¾ 각각은 독립적으로 탄소수 1 내지 6 의 직쇄 또는 분지형 알킬기를 나타내쪄, η 은 0 내지 3의 정수이다.
본 발명와 단계 (a)는 말단에 시스테인 잔기를 가지는 실리카 -합성 펩타이드를 말단의 시스테인 잔기를 이용하여 금 나노구조의 표면에 결합시키는 단계이다. 시스테인은 금 표면과 공유결합을 할 수 있는 티올기를 갖는 아미노산으로서, 상기 티올기를 이용하여 금 표면에 결합할 수 있다.
본 발명자들은 말단에 시스테인 잔기를 가지는 실리카 -합성 펩타이드를 상기 티올기를 이용하여 금 나노구조의 표면에 결합시키어 실리카 전구체와 반웅시키는 경우, 금 나노구조의 표면위로 실리카를 효과적으로 침전시킬 수 있지만, 말단에 시스테인 잔기가 없는 실리카 -합성 펩타이드를 사용하는 경우에는 금 표면 위로 실리카 층이 합성되지 않음올 알아내었다.
본 발명의 말단에 시스테인 잔기를 가지는 실리카 -합성 펩타이드는 당업계에 이미 알려진 실리카 -합성 펩타이드 중에서 그 N-말단 또는 C-말단에 하나 이상의 시스테인 잔기를 포함하고 있는 펩타이드 또는 공지의 실리카- 합성 펩타이드의 N-말단 또는 C-말단에 하나 이상의 시스테인 잔기가 추가된 펩타이드를 의미한다. 본 발명의 제조 방법은 말단 시스테인의 티올기를 이용하여 실리카 -합성 펩타이드를 금 표면에 결합시킨 상태에서 실리카 합성 반응을 진행하여 금 나노구조의 표면에 실리카를 침전시키는 것에 그 특징이 있다. 따라서, 본 발명의 말단에 시스테인 잔기를 가지는 실리카 -합성 펩타이드는 기존에 알려져 있는 것뿐만 아니라, 장래에 보고될 새로운 실리카- 합성 펩타이드라고 하여도, 그것이 말단 시스테인의 티올기를 이용해 금 표면에 부착한 상태에서 금 나노구조의 표면에 실리카를 침전시키는 것인 한, 본 발명의 범위에 속한다고 할 것이다.
본 발명에서 사용될 수 있는 실리카 -합성 펩타이드는 여러 문헌 (미국공개특허 제 06670438호; Wolf S.E. et al . , Formation of silicones mediated by the sponge enzyme si 1 icatein-alpha, Dalton Trans, Epub ahead of print(2010); SchrH . C . et al., Silicatein: nanobi ot echno 1 ogi ca 1 and biomedical applications, Prog Mo 1 Subcel 1 Biol., 47 :251ᅳ 73 (2009) ; Shimizu Shimizu K. et al . , Silicatein alpha: cathepsin L~l ike protein in sponge biosilica., Proc Natl Acad Sci U S A., May 26;95(11) :6234-8(1998))에 자세하게 기재되어 있으며, 상기 문헌들에 기재된 실리카 -합성 펩타이드 중 말단에 시스테인 잔기를 가지지 않는 펩타이드의 경우는 그 N-말단 또는 C- 말단에 하나 이상의 시스쩨인 잔기를 추가한 형태로서 본 발명에 사용할 수 있다.
본 발명의 일 구현예에서, 상기 말단에 시스테인 잔기를 가지는 실리카- 합성 펩타이드는 실리카테인 서브유닛 알파 (silicatein subunit alpha), 실리카테인 서브유닛 베타 (silicatein subunit beta), 실리카테인 서브유닛 감마 (silicatein subunit ga隱 a), 폴리 (L-시스테인 10-b-L-라이신 200), 폴리 (L-시스테인 30-b— L-라이신 200), 폴리 (L-시스테인 60-b-L-라이신 200), 폴리 (L-시스테인 30-b-L-라이신 400) 또는 펩타이드 Si#6-C 인 것을 특징으로 한다. 본 발명의 바람직한 일 구현예에서, 상기 말단에 시스테인 잔기를 가지는 실리카 -합성 펩타이드는 Si#6-C이다. 펩타이드 Si#6-C는 실리카 전구체로부터 실리카 나노입자를 제조 할 수 있는 펩타이드 Si#6 의 C-말단에 시스테인이 결합되어 있는 펩타이드로서 그 아미노산 서열은 SSKKSGSYSGSKGSKC (서열목톡 제 1서열)인 것을 특징으로 한다.
본 발명의 일 구현예에서, 상기 펩타이드를 금 나노구조에 부착시키는 단계 (a)는 상온에서 1 시간 내지 48 시간 동안 반웅시켜 수행되며 금 나노구조의 표면에 결합하지 않은 펩타이드는 원심분리 등 당업계에 공지된 다양한 방법을 통하여 용이하게 제거할 수 있다.
본 발명의 단계 (a)에서 사용되는 상기 금 나노구조는 그 모양에 제한 없이 다양한 형태의 금 나노구조를 사용할 수 있으며, 예컨대, 금 나노리본, 금 나노플레일렛 (nanoplatelet), 금 나노튜브, 금 나노와이어, 금 나노로드 (nanorod), 금 나노입자, 금 나노케이지, 금 나노복합체 (nanocomposite), 금 나노플레이크, 금 나노플라워, 금 나노폼 (nanofoam), 금 나노메쉬, 금 나노필러, 금 나노핀 필름 (nanopin film), 금 나노링 (nanoring) 또는 금 나노쉘 등을 사용할 수 있다.
본 발명의 단계 (b)에서는 상기 금 나노구조의 표면에 결합한 펩타이드를 실리카 전구체와 반웅시켜 금 코어-절연체 쉘 나노구조를 형성하는 단계이며, 상기 실리카 전구체는 하기의 화학식 1로 표시되는 것을 특징으로 한다.
화학식 1
RlnSi (0Ι )4 상기 화학식에서 각각은 독립적으로 수소 원자, 탄소수 1 내지 6 의 직쇄 또는 분지형 알킬기, 비닐기 또는 페닐기를 나타내고, R2 각각은 독립적으로 탄소수 1 내지 6 의 직쇄 또는 분지형 알킬기를 나타내며, n 은 0 내지 3 의 정수이다. 화학식 (1)에서 n 이 0 인 경우로서 식 Si(0R2)4 로 나타내어지는 4 관능성알콕시실란을 구체적으로 예시하면 테트라메특시실란, 테트라에록시실란, 테트라 -n-프로폭시실란, 테트라 -i so-프로폭시실란, 테트라 -n-부록시실란, 테트라 -sec-부톡시실란 및 테트라 -tert-부특시실란 등이 포함된다.
화학식 (1)에서 n 이 1 인 경우로서 식 (0 )3 로 나타내어지는 3 관능성 알콕시실란을 구체적으로 예시하면 트리메톡시실란, 트리에록시실란, 메틸트리메특시실란,메틸트리에록시실란, 에틸트리메톡시실란, 에틸트리에특시실란, 프로필트리메특시실란, 프로필트리에톡시실란, 이소부틸트리에록시실란, 시클로핵실트리메록시실란, 페닐트리메톡시실란, 페닐트리에록시실란, 비닐트리메록시실란, 비닐트리에톡시실란, 알릴트리메록시실란, 알릴트리에록시실란, 메틸트리 -n-프로폭시실란, 메틸트리-이소프로폭시실란, 메틸트리 -n-부톡시실란, 메틸트리 -sec-부특시실란, 메틸트리 -tert-부록시실란, 에틸트리 -n-프로폭시실란, 에틸트리이소프로폭시실란, 에틸트리 -n-부특시실란, 에틸트리 -sec-부록시실란, 에틸트리 -tert-부톡시실란, n-프로필트리 -n-프로폭시실란, n- 프로필트리이소프로폭시실란, n-프로필트리 -n-부특시실란, n-프로필트리 -sec- 부특시실란, n-프로필트리 -tert-부특시실란, is으프로필트리메록시실란, is으 프로필트리에록시실란, i so-프로필트리 -n-프로폭시실란, iso- 프로필트리이소프로폭시실란, iso-프로필트리 -n-부특시실란, i so-프로필트리- sec-부특시실란, iso-프로필트리 -tert-부특시실란, n-부틸트리메특시실란, n- 부틸트리에록시실란, n-부틸트리 -n-프로폭시실란, n-부틸트리이소프로폭시실란, n-부틸트리 -n-부록시실란, n-부틸트리 -sec-부톡시실란, n-부틸트리 -tert- 부톡시실란, n-부틸트리페녹시실란, sec-부틸트리메록시실란, sec-부틸-트리- n-프로폭시실란, sec-부틸-트리-이소-프로폭시실란, sec-부틸 -트리 -sec- 부특시실란, sec-부틸트리 -tert-부록시실란, tertᅳ부틸트리메톡시실란, tert- 부틸트리에록시실란, tert-부틸트리 -nᅳ프로폭시실란, tert- 부틸트리이소프로폭시실란, tert-부틸트리 -n—부특시실란, tert-부틸트리 -sec- 부특시실란, tert-부틸트리 -tert—부특시실란, 페닐트리 -n-프로폭시실란, 페닐트리이소프로폭시실란, 페닐트리 -n-부록시실란, 페닐트리 -sec-부록시실란 및 페닐트리 -tert-부특시실란이 포함된다.
화학식 (1)에서 n 이 2 인 경우로서 식 (¾)2Si(0R2)2 로 나타내어지는 2 관능성 알콕시실란을 구체적으로 예시하면 디메틸디메록시실란,디메틸디에톡시실란, 디페닐디메톡시실란, 디페닐디에톡시실란, 디에틸디메록시실란, 디에틸디에특시실란, 메틸에틸디메특시실란, 메틸에틸디에톡시실란, 메틸페닐디메톡시실란, 메틸페닐디에특시실란, 에틸페닐디메톡시실란 및 에틸페닐디에특시실란이 포함된다.
화학식 (1) 에서 n 이 2 인 경우 알콕시실란, 즉 식 R12Si(0R2)2 로 나타내어지는 알콕시실란은 2 관능성올 갖는 알콕시실란으로서 언급된다. 화학식 (1) 에서 n 이 3 인 경우 알콕시실란, 즉 식 R13Si(0R2) 로 나타내어지는 알콕시실란은 1 관능성을 갖는 알콕시실란으로서 언급된다.
화학식 (1)에서 n 이 3 인 경우로서 식 (¾)3^(0¾) 로 나타내어지는 1 관능성 알콕시실란을 구체적으로 예시하면 트리메틸메톡시실란, 트리메틸에록시실란, 트리페닐메록시실란, 트리페닐에록시실란 메틸디에록시실란, 디메틸비닐메특시실란, 디메틸비닐에톡시실란, 페닐디메틸메록시실란, 페닐디메틸에록시실란, 디페닐메틸메록시실란 및 디페닐메틸에록시실란이 포함된다.
본 발명의 바람직한 구현예에서 상기 실리카 전구체는, 테트라메록시실란, 테트라에록시실란, 트리메톡시실란, 트리에특시실란, 메틸트리메록시실란, 메틸트리에특시실란, 디메틸디메특시실란 및 디메틸디에특시실란으로 이루어진 군으로부터 선택되는 것을 특징으로 한다.
일 구현예에서 본 발명의 단계 (b)는 상기 금 나노구조의 표면에 결합한 펩타이드를 상기 실리카 전구체를 포함하는 용액 내에 첨가하여 10 분 내지 10시간 동안 반웅시키는 방법에 의하여 수행될 수 있다. 본 발명의 다른 양태에 따르면, 본 발명은 서열목록 제 1서열로 표시되는 아미노산 서열로 이루어진 신규한 펩타이드를 제공한다.
상기 본 발명의 신규한 펩타이드는 실리카 전구체로부터 실리카 나노입자를 제조할 수 있는 펩타이드 Si#6 의 C-말단에 시스테인이 결합되어 있는 형태의 펩타이드로서, 실리카 나노 입자를 형성시키는 기능뿐만 아니라 말단 시스테인의 티올기를 통해 금 표면에 결합할 수도 있는 이중 기능을 갖는 펩타이드이다.
서열목록 제 1 서열로 표시되는 아미노산 서열로 이루어진 본 발명의 신규한 펩타이드는 말단에 시스테인 잔기를 가지는 실리카 -합성 펩타이드로서, 말단 시스테인의 티올기를 이용해 금 표면에 부착한 상태에서 금 나노구조의 표면에 실리카를 침전시킬 수 있기 때문에 금 코어-절연체 쉘 나노구조를 제조하는 용도로 사용될 수 있다. 본 발명의 신규한 펩타이드는 상술한 금 코어-절연체 쉘 나노구조 제조방법에 사용될 수 있는 말단에 시스테인 잔기를 가지는 실리카 -합성 펩타이드이기 때문에, 상기 제조방법과의 관계에서 공통된 내용은 본 명세서의 과도한복잡성을 피하기 위하여 그 기재를 생략한다.
본 발명의 일 구현예에서, 상기 금 코어-절연체 쉘 나노구조는 금—절연체 동축 나노케이블인 것을 특징으로 한다. 금—절연체 동축 나노케이블은 금 나노구조로서 금 나노리본을 사용하여 제조할 수 있으며, 구체적으로 금 나노리본에 본 발명의 신규한 펩타이드를 결합시키고, 상기 펩타이드가 결합한 금 나노리본을 실리카 전구체 용액과 반웅시키는 방법에 의해 제조할 수 있다.
【유리한 효과】
본 발명의 특징 및 이점을 요약하면 다음과 같다:
( i ) 본 발명은 금 코어-절연체 쉘 나노구조의 제조방법 및 이에 사용될 수 있는 신규한 펩타이드를 제공한다. (ii) 본 발명의 제조방법은 금 표면에 높은 친화력을 갖는 실리카 -합성 펩타이드를 사용하는 바이오미믹 합성법이므로, 매우 효과적이면서도 환경 친화적으로 금 코어-절연체 쉘 나노구조를 제조할 수 있다.
【도면의 간단한 설명】
도 1은 금-실리카 나노케이블 제조방법을 설명하기 위한 간단한 도식이다.
(a) 펩타이드 Midas-11 를 사용한 금 나노리본 합성, (b-1) 신규하게 디자인된 펩타이드 Si#6-C 의 티올기를 이용한 금 표면 부착, (b-2) 형광 염료 표지 펩타이드 FAM-Si#6-C 의 금 표면에 대한 결합 친화도, (c) 금 표면을 TM0S에서 유래한 실리카로 코팅하여 나노케이블을 합성 .
도 2는 펩타이드로 합성한 나노구조의 SEM 이미지이다.
(a) 펩타이드 Midas-11 를 사용하여 합성한 코팅 전 금 나노리본, (b) 펩타이드 Si#6ᅳ C 없이 TM0S 전구체와 반웅한 코팅되지 않는 금 나노리본, (c) 1 mg 의 펩타이드 Si#6-C 및 50 mM TMOS 를 사용하여 합성한 금-실리카 나노케이블, (d) 1 mg 의 펩타이드 Si#6-C 및 50 mM TMOS 를 사용하여 합성한 육각형 및 (e) 삼각형의 금-실리카 나노플레일렛.
도 3 은 (a) 1 mg 의 펩타이드 Si#6-C 및 50 mM TMOS를 사용하여 합성한 금-실리카 나노케이블의 TEM 이미지, (b) 금, 산소, 실리콘 각각의 EDX mapping 및 (c) 금-실리카 나노케이블 및 실리카 부분의 EDX 분석결과를 나타낸다.
도 4 는 (a) 코팅되지 않은 금 나노리본의 AFM 이미지 및 (b) 1 mg 의 펩타이드 Si#6-C 및 50 mM TMOS 를 사용하여 합성한 금-실리카 나노케이블의 AFM 이미지를 나타낸다.
도 5 는 (a) 24 시간 반웅으로 형광 염료 -표지 펩타이드 FAM-Si#6-C 및 (b) FAM-Si#6와 결합한 금 나논리본의 CLSM 이미지이다. 【발명의 실시를 위한 형태】
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명 하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 요지 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. 실시예
실험재료 및 방법
1. 시료 및 펩타이드
HAuCl4 - 3¾0 및 TM0S 는 Aldrich(St. Louis, M0)로부터 구입하였다. 나노퓨어워터는 Milli-Q 시스템 (Millipore, Billerica, MA)를 사용하여 준비하고 미생물 오염을 방지하기 위해 오토클레이브하였다. 사용한 모든 펩타이드는 애니젠 (Gwangju, Korea)으로부터 구입하였다.
2. 금 나노리본 및 나노플레일렛의 합성
금 나노리본 및 나노플레일렛을 합성하기 위한 모든 절차는 종전 문헌에 기재된 바에 따랐다 (5). 30 mM HAuCl4를 포함하는 pH 5.4의 탈이온수에 용해한 펩타이드 Midas-11 0.2 mg/m£을 사용하여 37°C의 암실조건에서 3 일 동안 반웅을 수행하여 금 나노리본을 합성하였다. 초기 pH 조건은 HAuCl4 를 포함하는 탈이온수에 펩타이드 용액을 첨가하기에 앞서 5 M NaOH로 조절하였다. 금 나노플레일렛은 0.5 mM의 HAuCl4를 포함하는 pH 3.0 의 탈이온수에 용해한 펩타이드 Midas-11 0.2 mg/n^을 사용하여 37°C의 암실조건에서 3 일 동안 반웅을 수행하여 합성하였다. 모든 반응부피는 1 였다. 반응 후 샘플을 원심분리하여 탈이온수로 2회 세척하였다. 3. 금 나노구조에 핍타이드 부착
용액으로부터 합성된 금 나노리본 (50 mi) 및 금 나노플레일렛 (10 mi) 주형 각각을 Si#6-C 펩타이드 1 mg 과 상온에서 24 시간 동안 반웅시켰다. 24 시간 후 10,000 rpm 에서 5 분간 원심분리 (Centrifuge 5415D, Eppendorf , Fisher Scientific, Pittsburgh, PA)를 수행하여, 미결합 Si#6-C 펩타이드가 포함된 상층액을 제거하였다.
4. 금 나노구조를 실리카로 코팅
Si#6-C 펩타이드와 결합한 금 나노리본 및 플레일렛을 50 mM 의 TM0S 와 50 mM 포스페이트 완충액 (pH 7.5) 내에서 20°C 3 시간 동안 반웅시켜 실리카 층을 형성하였다. TM0S 저장액은 1 mM HC1에 용해시켜 1 M농도로 신선하게 준비하였다. 반응 후 샘플을 탈이온수로 2 회 세척하고 추가 분석을 위해 탈이온수에 재현탁시켰다.
5. 형광 염색 -표지 Si#6ᅳ C펩타이드의 결합 친화도 시험
합성된 금 나노리본을 펩타이드 FAM-Si#6 또는 FAM-Si#6-C 1 mg 과 상온에서 24 시간 동안 반웅시켰다. 반웅 후 샘플을 원심분리하고 탈이온수로 2 회 세척하였다. 상기 디자인된 펩타이드의 결합 친화도를 나타내는 빛 강도를 CLSM를 사용하여 비교 분석하였다.
6. 물질의 특성화
SEM, FE-TEM, EDX 및 AFM으로 상기 합성된 나노케이블 및 나노플레일렛의 특성을 분석하였다. SEM 분석을 위한 샘플은 5 ^의 현탁액을 실리콘 웨이터 위에 놓고 공기 중에서 건조시켜 준비하였다. 2차 SEM 이미지는 Hitachi S- 4700 (Tokyo, Japan)를 사용하였고, 가속 전압은 10 kV로 고정시켰다. 상기 SEM 샘플로 AFM 분석 또한 수행하였다. AFM 이미지는 NanoMan D-3100(Veeco, Plainview, NY)를 사용하여 획득하였다. TEM 분석은 EDX 를 구비한 JEM 2100F FE-TEM(JE0L, Peabody, MA)을 사용하여 300 kV 의 가속 전압에서 수행하였다. 샘플은 금 결정 현탁액 한 방울을 탄소 -코팅 Cu 지지 그리드 위에 떨어뜨리고 공기 중에 건조시켜 준비하였다. 실험결과
금-합성용 펩타이드인 Midas— 11 및 Midas-llC 는 조합형 파지 디스플레이 펩티드 라이브러리로부터 선별된 Midas-2 펩타이드로부터 유래된 것인데, Midas— 2 펩타이드의 11 번째 아미노산인 타이로신이 각각 글리신 및 시스테인으로 치환되어 있다 (5). 펩타이드 Si#6(31)는 규조에서 발견되며 실리카 합성용 펩타이드로 잘 알려진 R5(30)로부터 유래한 것인데, R5 의 C- 말단 아미노산 R IL 7} 결여된 변이체이며, 85 내지 130 nm 의 실리카 나노입자를 생산할 수 있다. 본 발명의 신규한 펩타이드 Si#6-C 는 두가지 기능을 동시에 가지도록 디자인 되었는데, 즉 실리카 나노입자를 형성할 뿐만 아니라 금 표면과 공유결합을 하는 티올기를 갖는 시스테인이 C-말단에 부착되어 있으므로 상기 티올기를 이용하여 금 표면에 결합할 수도 있다. 본 발명의 펩타이드 Si#6-C 의 금 나노리본 표면에 대한 결합 친화력을 기존의 펩타이드 Si#6 와 비교 평가하기 위하여, N-말단이 NHS-플루오레세인으로 표지되어 있는 펩타이드인 FAM-Si#6-C 및 FAM-Si#6 를 디자인하고 이를 시험하였다. 금-실리카 나노케이블 제조를 위해 디자인된 상기 펩타이드들 및 그 아미노산서열을 하기 표 1에 정리하였다.
【표 1】
Figure imgf000013_0001
FAM-Si#6-C FAM-SSKKSGSYSGS GS C 본 명세서
금 나노구조 형성용 ¾타이드
Midas— 2 TGTSVLIATPJV 5
Midas-11 TGTSVLIATP6V 5
Midas-llc TGTSVLIATPiV 5
aFAM은 fluorescent dye NHS-f luorescein의 상기와 같이 디자인된 펩타이드를 사용하여 금-실리카 동축 나노케이블 구조를 합성하는 전체 실험 프로세스를 도 1에 나타내었다. 금-실리카 동축 나노케이블 합성의 첫 번째 단계는 종전 문헌 (5)에 기술된 바에 따라 37 °C의 암실에서 30 mM HAuCl4를 포함하는 pH 5.4의 용액 내 3일간 반응을 수행하여, 펩타이드 Midas-11 로 금 나노리본을 합성하는 것이다. 합성된 금 나노리본의 매끄러운 표면을 주사전자현미경 (SEM)으로 관찰하였다 (도 2a). 금 나노리본의 길이는 수십 마이크로미터에 달하였는데 (도 2a 의 삽입도면), 이는 금-실리카 동축 나노케이블 구조를 생성할 때 실리카가 침전되는 코어로서 작용한다. 두 번째 단계로서, 본 발명의 이중 기능성 펩타이드 Si#6-C 와 상기 합성한 금 나노리본을 상온에서 24 시간 동안 반웅시켰다. 24 시간 후, 10,000 rpm 에서 5 분 동안 원심분리하여 결합하지 않는 펩타이드 Si#6-C를 제거하였다. 그 다음, 50 mM의 테트라메틸오쏘실리케이트 (TM0S) 전구체와 20 °C에서 3시간 동안 반웅시키어 , 금 표면에 부착된 펩타이드 Si#6- C 로써 금 나노리본을 무정형 실리카로 코팅하였다. 코팅 전 금 나노리본의 매끈한 표면과는 달리 금 나노리본의 거친 표면과 표면위에 형성된 실리카 박층을 도 2c 로부터 확인 할 수 있었다. Si#6-C 펩타이드 없이도 금 표면위에 실리카 층이 합성되는지 여부를 확인하기 위해, 50 mM 의 TM0S 전구체를 직접 금 나노리본과 20 °C에서 3 시간 동안 반웅시키는 방법으로 대조군 실험을 수행하였다. 대조군 실험결과, 금 나노리본 표면 위에 뚜렷하게 형성된 실리콘 층을 확인 할 수 없었다 (도 2b). 상기 결과는 금 표면에 결합할 수 있는 이중 기능을 가진 Si#6-C 펩타이드가 금 나노리본 표면을 실리카로 코팅하여 금-실리카 나노케이블 구조를 축조함에 있어 결정적인 역할을 한다는 사실을 나타낸다.
상기 실험한 금 나노리본 뿐만 아니라, 37 °C의 암실조건에서 ρΗ 3.0 의 30 mM HAuCl4 와 3 일간 반웅을 수행하여 펩타이드 Midas-11 에 의해 합성한 6 각형 및 3 각형의 금 나노플레일렛 (nanoplatelet)에 대해서도 실험을 수행하여, 나노구조를 코팅하는 본 발명의 시스템이 다른 차원의 금 구조에 대해서도 작동하는 지 여부를 확인하였다 (도 2e 및 f). 그 결과 본 발명의 Si#6-C 펩타이드는 육각형 및 삼각형의 금 나노플레일렛 표면 상에도 실리카를 축적시킬 수 있었다.
상기 디자인된 펩타이드를 사용하여 금 코어를 코팅한 실리카 층에 대하여 수행한 전계방사형 주사전자 현미경 (TEM) 이미지는 무정형의 실리카 층을 보여주었다 (도 3a 및 삽입도면). 또한, 에너지 분산 X—선 분광 (EDX) 원소 맵핑 및 점 분석결과도 코팅된 실리카와 금으로 구성된 주형 코어와 금 표면을 완전히 뒤덮은 얇은 실리카 층을 확인시켜 주었다 (도 3b 및 c).
또한, 코팅되지 않은 금 나노리본 및 50 mM TM0S과의 반웅으로 형성된 금 코어-실리카 코팅 동축 나노케이블 구조에 대하여 원자간력 현미경 (AFM) 분석법을 수행하였다. 그 어떤 처리도 하지 않은 금 나노리본의 경우 약 24 nm 높이의 평평하고 균일한 표면을 가진 반면, 금 코어-실리카 코팅 동축 나노케이블 구조는 약 45-77 nm 높이의 더 두껍고 거친 표면을 가진 것으로 나타났다.
시스테인을 포함하거나 또는 포함하지 않도록 각각 디자인된 펩타이드 Si#6-C 및 Si#6 의 금 나노리본 표면에 대한 결합 친화도를 비교하였다. 녹색 빛을 발하는 형광 염료 NHS-플루오레신 (FAM)으로 상기 펩타이드들의 N- 말단을 표지하였다 (FAM-Si#6-C 및 FAM-Si#6). 1 mg 의 FAM_Si#6_C 및 FAM- Si#6 를 상온 및 암실 조건에서 금 나노리본과 24 시간 동안 반웅시키고, 10,000 rpm에서 5분간 원심분리하여 결합하지 않은 펩타이드를 제거하였다. 금 나노리본 표면에 특이적으로 결합한 형광 염료 -표지 펩타이드에서 발산된 빛의 강도를 공초점 레이저 주사 현미경 (CLSM)으로 측정하였다 (도 5). 펩타이드 FAM-Si#6-C 와 반웅한 금 나노리본은 강한 형광 빛을 발산하여 금 나노리본 표면에 특이적으로 결합한 펩타이드를 확인시켜 주었다 (도 5a). 그러나, 펩타이드 FAM-Si#6와 반웅한 금 나노리본은 약하고 불균일하게 분산된 형광 빛을 발산하여, 상기 펩타이드가 금 나노리본 표면에 특이적으로 결합되지 않았음을 시사하였다 (도 5b). 상기 결과를 종합해 볼 때, 실리카 형성 펩타이드의 C-말단에 하나의 시스테인을 부착하는 것은 금 나노구조에 공유 결합을 형성하기 위해 필요하고 또한 이로써 충분하몌 금 나노 구조 위 실리카 박막 형성을 방해하지 않음을 알 수 있다.
종전 연구에서 수행된 일차원 나노케이블 합성법은 대부분 화학적 또는 물리적 방법이며, 또한 금 코어-실리카 쉘 나노케이블 합성을 위해서는 오직 제한된 연구만이 수행되어왔다 (34). 새롭게 디자인된 펩타이드와 같은 바이오분자를 사용하여 생체모방적으로 금 나노리본을 실라카로 코팅한 나노케이블 합성방법에 대한 연구는 지금까지 수행된 바가 없다. 또한, 코어- 쉘 나노케이블과 같은 나노물질 복합체의 축조를 위한 전체 프로세스는 금 나노리본을 합성하고 금-실리카 나노케이블의 실리카 층을 형성시키는 환경조건에서 생물학적인 직조 기법에 따라 제어될 수 있다.
결론적으로 본 발명은 신규하게 디자인된 두 개의 펩타이드를 이용하여 합성된 금 나노리본을 실리카로 코팅하는 동축 나노케이블 구조의 축조 방법을 제공하는데, 상기 펩타이드 중 하나는 금 나노구조를 합성하기 위한 것이고, 다른 하나는 코어 주형 모양에 관계 없이 금 나노구조에 결합하고 실리카 층올 형성시키기 위한 것이다. Si#6-C 펩타이드 C-말단의 시스테인에 포함되어 있는 하나의 티올기는 금 나노 구조에 단단히 결합하기 위해 필요층분하고, 금 나노구조에 무정형 실리카 나노입자가 특이적으로 층을 이루는 것을 방해하지 않는다. 또한, 금 나노리본 표면의 실리카 층은 반응하는 실리카 전구체 농도를 변화시킴으로서 조절될 수 있다. 신규하게 디자인된 펩타이드를 사용하여 금 나노리본을 실리카로 코팅하여 금속-절연체 동축 나노케이블 구조를 합성하는 본 발명의 합성법은, 잘 디자인된 다 기능성 나노구조를 축조함에 있어, 다른 적절한 목적을 위해 다양하게 변화될 수 있는 생분자의 웅용 가능성을 보여주는 하나의 예라 할 것이다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.
참조문헌
I.Ehud, G. FEBS J. 2007, 274, (2), 317-322.
2.Sotiropoulou, S.; Sierra—Sastre, Y.; Mark, S. S.; Batt , C. A. Chew. Mat . 2008, 20, (3), 821-834.
3. Dickerson, M. B.; Sandhage, K. H.; Naik, R. R. Chew. Rev. 2008, 108, (11), 4935-4978.
4. Tamer ler , C.; Sar ikaya, M. Philos. Trans. R. Soc. Aᅳ Math. ' Phys. Eng. Sci. 2009, 367, (1894), 1705-1726.
5. Kim, J. Rheem, Y. Yoo, B. Chong, Y. Bozhilov, K. N. Kim, D. Sadowsky, M. J. Hur, H. -G. Myung, N. V. Acta Biomater. 2010, in press.
6. Naik, R. R.; Stringer , S. J.; Agarwal , G.; Jones , S. E.; Stone, M. 0. Nat. Mater. 2002, 1, 169-172.
7. Sar ikaya, M. ; Tamer 1 er , C.; Jen, A. K.-Y.; Schul ten, K.; Baneyx , F. Nat . Mater. 2003, 2, 577-585.
8. Ahmad, G.; Dicker son, M. B.; Church, B. C.; Cai , Y.; Jones , S. E.; Naik, R. R.; King, J. S.; Summers, C. J.; Kroger , N.; Sandhage , K. H. Adv. Mater. 2006, 18, (13), 1759-1763. 9. Tomczak, M. M.; Slocik, J. M.; Stone, M. 0.; Naik, R. R. Biochem. Soc. Trans. 2007, 35, 512-515.
10. Ahmad, G.; Dicker son, M. B.; Cai , Y.; Jones , S. E.; Ernst , E. M. ; Vernon , J. P.; Haluska, M. S.; Fang, Y.; Wang, J.; Subramanyam, G.; Naik, R. R.; Sandhage, K. H. J. Am. Chem. Soc. 2007, 130, (1), 4-5.
11. Dicker son, M. B.; Jones, S. E.; Cai, Y.; Ahmad, G.; Naik, R. R.; Kroger , N.; Sandhage, K. H. Chem. Mater. 2008, 20, (4), 1578-1584.
12. Matsui, H.; Gologan, B. J. Phys. Chem. B 2000, 104, (15), 3383-3386.
13. Djalali , R.; Samson, J.; Matsui , H. J. Am. Chem. Soc. 2004, 126, (25), 7935-7939.
14. Reches, M.; Gazit, E. Nano Lett. 2004, 4, (4), 581-585.
15. Reches, M.; Gazit, E. Curr. Nanosci . 2006, 2, (2), 105-111.
16. Scan Ion, S.; Aggeli, A. Nano Today 2008, 3, (3-4), 22-30.
17 ui, Y.; Wei, Q.; Park, H.; Lieber, C. M. Science 2001, 293, (5533), 1289-1292.
18. Law, M.; Greene, L. E.; Johnson, J. C.; Saykal ly, R.; Yang, P. Nat. Mater. 2005, 4, (6), 455-459.
19. Murphy, C. J.; Gole, A. M.; Hunyadi , S. E.; Orendorf f , C. J. Inorg. Chem. 2006, 45, (19), 7544-7554.
20丄 auhon, L. J.; Gudiksen, M. S.; Wang, D.; Lieber, C. M. Nature 2002, 420, (6911), 57-61.
21. He, J. H.; Zhang, Y. Y.; Liu, J.; Moore, D.; Bao, G.; Wang, Z. L. J. Phys. Chem. C 2007, 111, (33), 12152-12156.
22. Yin, Y.; Lu, Y.; Sun, Y.; Xia, Y. Nano Lett. 2002, 2, (4), 427-430.
23. Dai, L.; Chen, X. L.; Zhang, X.; Zhou, T.; Hu, B. Appl . Phys. A-Mater. Sci. Process. 2004, 78, (4), 557-559. 24. Kun , H.; Yuan j i an , Z.; Yunze, L.; Junhua , Y.; Dongxue, H.; Zhi juan, W.; Li, N.; Zhaojia, C. Chem. -Eur. J. 2006,12, (20), 5314-5319.
25. Cao, H. Q.; Xu, Z.; Sang, H.; Sheng, D.; Tie, C. Y. Adv. Mater. 2001, 13, (2), 121-123.
26. Reches, M.; Gazit, E. Science 2003, 300, (5619), 625-627.
27. Carny, 0.; Shalev, D. E.; Gazit, E. Nano Lett. 2006, 6, (8), 1594-1597.
28. Chen, A.; Wang, H.; Li, X. Chem. Comm. 2005, (14), 1863-1864.
29. Gong, J.; Luo, L.; Yu, S.-H.; Qian, H.; Fei, L. J. Mater. Chem. 2006, 16, (1), 101-105.
30. Kroger, N.; Deutzmann, R. ; Sumper , M. Science 1999, 286, (5442), 1129- 1132.
31. Knecht, M. R.; Wright, D. W. Chem. Comm. 2003, (24), 3038-3039.
32. Gole, A.; Dash, C.; Ramakr i shnan , V.; Sainkar , S. R.; Mandale, A. B.; Rao, M.; Sastry, M. Lang uir 2001, 17, (5), 1674-1679.
33. Felice, R. D.; Selloni, A.; Molinari, E. J. Phys. Chem. B 2003, 107, 1151-1156.
34.0bare, S. 0.; J ana, N. R.; Murphy, C. J. Nano Lett. 2001, 1, (11), 601-603.

Claims

【청구의 범위】
【청구항 1】
다음 단계를 포함하는 금 코어-절연체 쉘 나노구조의 제조방법 :
(a) 말단에 시스테인 잔기를 가지는 실리카 -합성 펩타이드를 금 나노구조의 표면에 결합시키는 단계 ; 및
(b) 상기 금 나노구조의 표면에 결합한 펩타이드를 하기 화학식 1 로 표시되는 실리카 전구체와 반웅시켜 금 코어-절연체 쉘 나노구조를 형성하는 단계.
화학식 1
RlnSi (0Ι½)4-η
상기 화학식에서 각각은 독립적으로 수소 원자, 탄소수 1 내지 6 의 직쇄 또는 분지형 알킬기, 비닐기 또는 페닐기를 나타내고, R2 각각은 독립적으로 탄소수 1 내지 6 의 직쇄 또는 분지형 알킬기를 나타내며, η 은 0 내지 3 의 정수이다.
【청구항 2】
제 1 항에 있어서, 상기 실리카 -합성 펩타이드는 하기의 아미노산 서열」 이루어진 것을 특징으로 하는 금 코어-절연체 쉘 나노구조의 제조방법:
SS KSGSYSGSKGSKC.
【청구항 3]
제 1 항에 있어서, 상기 금 나노구조는 금 나노리본, 나노플레일렛 (nanoplatelet), 금 나노류브, 금 나노와이어, 나노로드 (nanorod), 금 나노입자, 금 나노케이지, 나노복합체 (nanocomposite), 금 나노플레이크, ^ 나노플라워, 나노품 (nanofoam), 금 나노메쉬, 금 나노필러, 금 나노핀 필름 (nanopin film) 금 나노링 (nanoring) 및 금 나노쉘로 이루어진 군으로부터 선택되는 것을 특징으로 하는 금 코어-절연체 쉘 나노구조의 제조방법 .
【청구항 4]
제 1 항에 있어서, 상기 단계 (b)는 상기 실리카 전구체를 포함하는 용액 내에서 수행되는 것을 특징으로 하는 금 코어-절연체 쉘 구조의 제조방법 .
【청구항 5】
하기의 아미노산서열을 포함하는 펩타이드:
SSKKSGSYSGSKGSKC.
【청구항 6]
제 5 항에 있어서, 상기 C-말단의 시스테인은 금 표면과 공유결합을 형성하는 것을 특징으로 하는 펩타이드ᅳ
【청구항 7】
제 5 항에 있어서, 상기 펩타이드는 금 코어-절연체 쉘 나노구조 제조용인 것을 특징으로 하는 템타이드.
【청구항 8]
제 7 항에 있어서, 상기 절연체 쉘은 실리카 층으로 이루어진 것을 특징으로 하는 템타이드.
【청구항 9】
제 7 항에 있어서, 상기 금 코어는 금 나노구조를 갖는 것을 특징으로 하는 펩타이드. 【청구항 10】
제 9 항에 있어서, 상기 금 나노구조는 금 나노리본, 금 나노플레일렛 (nanoplatelet), 금 나노튜브, 금 나노와이어, 금 나노로드 (nanorod), 금 나노입자, 금 나노케이지, 금 나노복합체 (nanocomposite), 금 나노플레이크, 금 나노플라워, 금 나노품 (nanofoam), 금 나노메쉬, 금 나노필러, 금 나노핀 필름 (nanopin film), 금 나노링 (nanoring) 및 금 나노쉘로 이루어진 군으로부터 선택되는 것을 특징으로 하는 펩타이드.
【청구항 111
제 7 항에 있어서, 상기 금 코어-절연체 쉘 나노구조는 금-절연체 동축 나노케이블인 것을 특징으로 하는 펩타이드.
PCT/KR2010/009012 2010-04-28 2010-12-16 신규한 펩타이드를 이용하여 금 코어-절연체 쉘 나노구조를 제조하는 방법 WO2011136457A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/643,233 US9051352B2 (en) 2010-04-28 2010-12-16 Method for manufacturing a gold core/insulator shell nanostructure using a novel peptide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100039521A KR101223659B1 (ko) 2010-04-28 2010-04-28 신규한 펩타이드를 이용하여 금 코어-절연체 쉘 나노구조를 제조하는 방법
KR10-2010-0039521 2010-04-28

Publications (1)

Publication Number Publication Date
WO2011136457A1 true WO2011136457A1 (ko) 2011-11-03

Family

ID=44861722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/009012 WO2011136457A1 (ko) 2010-04-28 2010-12-16 신규한 펩타이드를 이용하여 금 코어-절연체 쉘 나노구조를 제조하는 방법

Country Status (3)

Country Link
US (1) US9051352B2 (ko)
KR (1) KR101223659B1 (ko)
WO (1) WO2011136457A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2762488B1 (en) * 2011-09-30 2018-11-21 Korea University Research and Business Foundation, Sejong Campus Peptide for synthesizing silica, and use thereof
KR101975754B1 (ko) * 2012-08-28 2019-05-09 고려대학교 세종산학협력단 실리카 합성 펩타이드 및 이의 용도
KR101991964B1 (ko) * 2012-11-07 2019-06-21 삼성에스디아이 주식회사 코어-쉘 구조를 갖는 나노와이어의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007616A (ja) * 2007-06-27 2009-01-15 Jgc Catalysts & Chemicals Ltd シリカ被覆金コロイド粒子の製造方法およびシリカ被覆金コロイド粒子
JP2009126745A (ja) * 2007-11-26 2009-06-11 Kwansei Gakuin バイオシリカ製造法、およびバイオシリカ固定基板の製造法
JP2010001555A (ja) * 2008-06-23 2010-01-07 Hoya Corp シリカ被覆ナノ粒子、ナノ粒子堆積基板、およびそれらの製造方法
JP2010053385A (ja) * 2008-08-27 2010-03-11 Ricoh Co Ltd シリカ被覆金ナノロッド及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2713000A (en) * 1998-12-18 2000-07-03 Regents Of The University Of California, The Methods, compositions, and biomimetic catalysts for in vitro synthesis of silica, polysilsequioxane, polysiloxane, and polymetallo-oxanes
US7335717B2 (en) * 1998-12-18 2008-02-26 The Regents Of The University Of California Methods, compositions, and biomimetic catalysts for the synthesis of silica, polysilsequioxanes, polysiloxanes, non-silicon metalloid-oxygen networks, polymetallo-oxanes, and their organic or hydrido conjugates and derivatives
US8088740B2 (en) * 2009-05-04 2012-01-03 Gwangju Institute Of Science And Technology Gold binding peptides and shape-and size-tunable synthesis of gold nanostructures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007616A (ja) * 2007-06-27 2009-01-15 Jgc Catalysts & Chemicals Ltd シリカ被覆金コロイド粒子の製造方法およびシリカ被覆金コロイド粒子
JP2009126745A (ja) * 2007-11-26 2009-06-11 Kwansei Gakuin バイオシリカ製造法、およびバイオシリカ固定基板の製造法
JP2010001555A (ja) * 2008-06-23 2010-01-07 Hoya Corp シリカ被覆ナノ粒子、ナノ粒子堆積基板、およびそれらの製造方法
JP2010053385A (ja) * 2008-08-27 2010-03-11 Ricoh Co Ltd シリカ被覆金ナノロッド及びその製造方法

Also Published As

Publication number Publication date
KR20110120032A (ko) 2011-11-03
KR101223659B1 (ko) 2013-01-17
US9051352B2 (en) 2015-06-09
US20130243959A1 (en) 2013-09-19

Similar Documents

Publication Publication Date Title
KR101304325B1 (ko) 금 나노막대의 표면 실리카 코팅 방법 및 이를 이용한 나노하이브리드 제조방법 그리고 그에 따라 제조된 나노하이브리드
Xuan et al. Hierarchical core/shell Fe 3 O 4@ SiO 2@ γ-AlOOH@ Au micro/nanoflowers for protein immobilization
TWI433741B (zh) 粉末及其製造方法
WO2009029053A1 (en) Method of coating a particle
Markova et al. Synthesis and properties of core–shell fluorescent hybrids with distinct morphologies based on carbon dots
Roosz et al. A straightforward procedure for the synthesis of silica@ polyaniline core-shell nanoparticles
KR101223659B1 (ko) 신규한 펩타이드를 이용하여 금 코어-절연체 쉘 나노구조를 제조하는 방법
TW201439337A (zh) 芯-殼型奈米粒子及其製造方法
JP2010535938A (ja) 被覆されたコロイド物質
Abbas et al. Multifunctional Fe 3 O 4/Au core/satellite nanocubes: an efficient chemical synthesis, characterization and functionalization of streptavidin protein
CN111328320B (zh) 氢化非晶含硅胶体或氢化非晶含硅复合胶体及其制备方法,氢化非晶含硅复合胶体的用途及用其包封的物质
Teng et al. Amine-Functionalized Fe2O3–SiO2 Core–Shell Nanoparticles with Tunable Sizes
Naeimi et al. In situ synthesis and electrophoretic deposition of CNT–ZnS: Mn luminescent nanocomposites
Qi et al. Micro-patterns of Au@ SiO2 core-shell nanoparticles formed by electrostatic interactions
Griffete et al. Dense covalent attachment of magnetic iron oxide nanoparticles onto silica particles using a diazonium salt chemistry approach
Zhang et al. High-conductivity graphene nanocomposite via facile, covalent linkage of gold nanoparticles to graphene oxide
KR101345601B1 (ko) 금 나노막대와 자성나노입자가 결합된 나노하이브리드 및 그 제조방법
KR100899806B1 (ko) 탄소나노튜브-무기산화물 나노입자 복합체의 제조방법
KR101726077B1 (ko) 무기 입자-카테콜 복합체 및 그 제조방법
KR101458437B1 (ko) 자성 세라믹 형광체의 제조방법
Yuan et al. Fabrication and charaterization of silica nanocoatings on ZnS phosphor particles
Kim et al. Peptide directed synthesis of silica coated gold nanocables
KR100581391B1 (ko) 작용기를 지닌 실리콘 산화물 나노튜브의 제조방법 및디바이스에의 응용
KR101335465B1 (ko) 금 나노막대의 표면 실리카 코팅 방법 및 이를 이용한 나노하이브리드 제조방법 그리고 그에 따라 제조된 나노하이브리드
TWI404677B (zh) 胺基改質矽石奈米微粒的製備方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850823

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13643233

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10850823

Country of ref document: EP

Kind code of ref document: A1