WO2011136404A1 - Photonic device package module and manufacturing method thereof - Google Patents

Photonic device package module and manufacturing method thereof Download PDF

Info

Publication number
WO2011136404A1
WO2011136404A1 PCT/KR2010/002666 KR2010002666W WO2011136404A1 WO 2011136404 A1 WO2011136404 A1 WO 2011136404A1 KR 2010002666 W KR2010002666 W KR 2010002666W WO 2011136404 A1 WO2011136404 A1 WO 2011136404A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical device
metal substrate
layer
forming
oxide layer
Prior art date
Application number
PCT/KR2010/002666
Other languages
French (fr)
Korean (ko)
Inventor
김경민
신승철
김정현
조창희
박중무
Original Assignee
주식회사 웨이브닉스이에스피
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 웨이브닉스이에스피 filed Critical 주식회사 웨이브닉스이에스피
Priority to PCT/KR2010/002666 priority Critical patent/WO2011136404A1/en
Publication of WO2011136404A1 publication Critical patent/WO2011136404A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present invention relates to an optical device packaging module and a method of manufacturing the same, and more particularly, to an optical device packaging module and a method of manufacturing the same, which are capable of dissipating heat generated in an optical device very effectively and manufacturing them in various shapes.
  • optical devices including LEDs
  • efficiency is reduced, lifespan is shortened, and other wavelength changes between red (R), green (G), and blue (B) are increasing due to temperature increase.
  • optical devices such as LEDs become increasingly high power, problems due to generated heat become more serious.
  • a heat dissipation structure that emits heat generated from an optical device such as an LED is a key part of the packaging process.
  • thermal resistance and junction temperature are used as an indicator of excellent heat dissipation design in an optical device such as an LED, and the thermal resistance is a value determined by the size or physical properties of the material of the package.
  • the contact temperature is a value that indicates the actual heat generated by the optical device during operation after the final heat dissipation design is made.
  • some materials having high thermal conductivity are used, but ultimately, it is most effective to simplify the packaging to eliminate the thermal resistance, and lowering the contact temperature is the most important measure of the luminous efficiency and lifetime of the optical device. .
  • packaging is a finishing process of packaging an optical device chip according to an optical design and a heat dissipation design, which is a very important process to upgrade the performance of the optical device chip.
  • the present invention has been made in view of the above points, by removing the substrate itself on which the optical element is mounted to zero the thermal resistance generated from the substrate, and attaching the optical element chip directly to the heat sink to generate the optical element It is an object of the present invention to provide an optical device package module and a method of manufacturing the same, which can configure heat to be directly discharged through a heat sink.
  • the present invention provides an optical device package module and a method for manufacturing the same, which is capable of implementing a heat dissipation structure that can maximize the light emission efficiency of the optical device by lowering the junction temperature of the optical device by releasing the heat generated by the optical device most effectively. It is to.
  • An optical device package module includes a metal substrate having a reflector and formed with one or a plurality of mounting spaces penetrating up and down, an optical device mounted in the mounting space of the metal substrate, and the metal substrate. It is formed to fill the inside of the mounting space and comprises a molding layer for protecting and supporting the mounted optical element.
  • the optical device package module further comprises a connection wiring formed between the insulating layer on the upper surface of the metal substrate, and a bonding wire for connecting the electrode of the optical device mounted in the connection wiring and the mounting space. It is also possible to include.
  • the optical device package module according to the embodiment of the present invention may further include a heat sink installed in contact with the bottom surface of the metal substrate and the optical device.
  • the metal oxide layer may be disposed between the bottom surface of the metal substrate and the optical device and the heat sink.
  • solder layer between the metal substrate and the bottom surface of the optical device or between the metal oxide layer and the heat sink.
  • the optical device package module manufacturing method comprises the steps of preparing a plate-shaped metal substrate, oxidizing the metal substrate to a depth of 10 ⁇ 100 ⁇ m on one side to form a metal oxide layer, Removing a portion of the metal substrate from the opposite side of the metal oxide layer to the metal oxide layer to form a mounting space having a reflector, forming an insulating layer on the upper surface of the metal substrate, and forming a connection wiring; Mounting an optical device in the mounting space of the substrate and connecting the electrode and the connection wiring of the optical device; and forming a molding layer covering the mounting space and covering the optical device and the connection wiring.
  • the optical device package module manufacturing method according to the embodiment of the present invention may further include removing the metal oxide layer after forming the molding layer.
  • the method of manufacturing an optical device package module according to an embodiment of the present invention may further include forming a solder layer after forming the molding layer or removing the metal oxide layer.
  • the method of manufacturing an optical device package module according to an exemplary embodiment of the present invention may further include mounting a metal substrate on which the optical device is mounted on a heat sink.
  • the heat generated from the optical device can be most effectively discharged directly through the heat sink. Do.
  • the junction temperature (junction temperature) of the optical device is increased by the thermal resistance due to the metal substrate It is possible to fundamentally solve the problem, it is possible to minimize the thermal resistance, the contact temperature of the optical element is lowered, the light emission efficiency of the light is increased and the life of the optical element is improved.
  • optical device package module and the manufacturing method thereof according to an embodiment of the present invention, it is possible to maximize the light luminous efficiency of the optical device.
  • FIG. 1 is a partially enlarged cross-sectional view illustrating an optical device package module according to a first exemplary embodiment of the present invention.
  • FIG. 2 is a partially enlarged cross-sectional view illustrating an optical device package module according to a second exemplary embodiment of the present invention.
  • FIG 3 is a partially enlarged cross-sectional view illustrating an optical device package module according to a third exemplary embodiment of the present invention.
  • FIG. 4 is a partially enlarged cross-sectional view illustrating an optical device package module according to a fourth exemplary embodiment of the present invention.
  • FIG. 5 is a partially enlarged cross-sectional view illustrating an optical device package module according to a fifth exemplary embodiment of the present invention.
  • FIG. 6 is a partially enlarged cross-sectional view illustrating an optical device package module according to a sixth exemplary embodiment of the present invention.
  • FIG. 7 is a block diagram illustrating a method of manufacturing an optical device package module according to a seventh embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating a method of manufacturing an optical device package module according to a seventh embodiment of the present invention.
  • FIG. 9 is a block diagram illustrating a method of manufacturing an optical device package module according to an eighth embodiment of the present invention.
  • FIG. 10 is a flowchart illustrating a method of manufacturing an optical device package module according to an eighth embodiment of the present invention.
  • the optical device package module includes a metal substrate 10, an optical device 20, and a molding layer 30, as shown in FIG. 1.
  • the metal substrate 10 is formed using a material having a very high thermal conductivity compared to synthetic resins or ceramics.
  • Aluminum, titanium, or the like may be used as a material for forming the metal substrate 10.
  • mounting spaces 14 are formed one by one, and a plurality of optical elements 20 are mounted on one metal substrate 10.
  • a plurality of mounting spaces 14 are formed by arranging in a set pattern.
  • the wall surface forming the mounting space 14 may be formed as an inclined surface having a smaller cross-sectional area toward the bottom so as to effectively reflect the light emitted from the optical device 20 to be mounted to the front to greatly increase the luminous efficiency of the light. desirable.
  • the mounting space 14 may be formed using various methods such as etching or drilling.
  • the wall surface forming the mounting space 14 may be formed as a mirror surface having excellent light reflection efficiency to configure a reflecting mirror.
  • the optical device 20 is mounted in the mounting space 14 of the metal substrate 10.
  • the optical device 20 is preferably mounted at the center of the mounting space 14 of the metal substrate 10 because the light emitting efficiency of light can be maintained uniformly.
  • a light receiving device a light emitting device, or the like may be used, and an LED (LED) may be used as the light emitting device.
  • LED LED
  • the molding layer 30 fills the inside of the mounting space 14 of the metal substrate 10.
  • the molding layer 30 functions to protect and support the optical device 20 mounted in the mounting space 14 of the metal substrate 10.
  • a transparent polymer material may be used, and if necessary, a fluorescent material or a wavelength conversion material may be mixed with the polymer material and used to emit light of the optical device 20. In addition, it is possible to implement new effects.
  • the lens effect by adjusting the thickness of the molding layer 30.
  • the molding layer 30 is formed such that the central portion in which the optical device 20 of the mounting space 14 is located is thicker and thinner toward the edge, the effect of the convex lens can be obtained.
  • the molding layer 30 is formed to be thin and become thicker toward the edge, the effect of the concave lens can be obtained.
  • connection wiring 44 is formed on the upper surface of the metal substrate 10 at a position close to the edge of the mounting space 14.
  • connection wiring 44 may be formed using a method such as vapor deposition, plating, or silk screen printing.
  • connection line 44 by the deposition method, it is also possible to form a pattern at the same time as the deposition using a shadow mask (shadow mask).
  • shadow mask shadow mask
  • An insulating layer 42 is formed of an insulating material between the connection wiring 44 and the metal substrate 10 to insulate.
  • the insulating layer 42 may be formed to a thin thickness of 1 ⁇ m or less, and may be formed using a method such as vapor deposition or spray coating.
  • Silicon nitride, silicon oxide, or the like may be used as an insulating material for forming the insulating layer 42.
  • connection wiring 44 is connected to the electrode 22 of the optical device 20 mounted in the mounting space 14 through the bonding wire 46.
  • both electrodes 22 are formed on the upper surface of the metal substrate 10 through the bonding wires 46. It is connected to the connection wiring (44).
  • the optical device 20 is provided with an electrode 22 made of a conductive metal such as copper (Cu) or gold (Au).
  • a conductive metal such as copper (Cu) or gold (Au).
  • the electrode 22 of the optical device 20 may be formed only on the upper surface, and one electrode 22 may be formed on the lower surface of the other electrode 23 on the upper surface. If necessary, the electrodes 22 may be formed only on the lower surface thereof.
  • an electrode 22 is formed on the upper and lower surfaces of the optical device 20, and the electrode 22 on the upper surface is formed.
  • One of the connection wires 44 formed on the upper surface of the metal substrate 10 through the bonding wires 46, and the electrode 23 on the lower surface extends to the bottom surface of the optical device 20. Connect to the connection wiring (45).
  • connection wiring 45 is formed of a conductive metal, the reflection efficiency is excellent. Therefore, it is also possible to form the entire wall surface of the mounting space 14 to effectively implement the function of the reflector reflecting the light emitted from the optical element (20).
  • the insulating layer 42 it is preferable to form the insulating layer 42 wide enough to insulate between the other connecting wiring 45 and one connecting wiring 44 and the metal substrate 10.
  • the insulating layer 42 formed on the bottom surface of the optical device 20 may be removed to improve heat dissipation efficiency.
  • a heat sink 90 is installed so that the bottom surfaces of the metal substrate 10 and the optical device 20 are in contact with each other.
  • the metal oxide layer 50 is formed on the bottom surface of the metal substrate 10 and the optical device 20.
  • the metal oxide layer 50 may be formed by oxidizing the metal substrate 10 by anodization or the like.
  • the metal oxide layer 50 is formed by changing a part of the metal substrate 10 into an aluminum oxide layer through anodization.
  • the metal oxide layer 50 can be formed to a thickness of 10 to 100 ⁇ m as needed.
  • the mounting space 14 may be selected from metals such as gold, silver, copper, platinum, palladium, and alloys thereof. It is also possible to form the reflective layer 48 by plating, vapor deposition, coating, or the like on the inner surface of the substrate.
  • the reflective layer 48 it is preferable that the reflective layer 48 is configured to be electrically shorted with the connection wiring 44 formed on the upper surface of the metal substrate 10.
  • an insulating layer 42 is formed between the reflective layer 48 and the metal substrate 10 to insulate the metal substrate 10.
  • the solder layer 60 is formed on the bottom surface of the metal substrate 10 and the optical device 20.
  • the solder layer 60 is thinly formed by deposition or plating.
  • solder layer 60 is formed as described above, solder bonding is possible directly on the heat sink 90.
  • solder layer 60 is also formed of a metal, the thermal resistance is low.
  • the solder layer 60 is formed on the bottom surface of the metal oxide layer 50 in the fourth embodiment.
  • the above described techniques of the first to sixth embodiments may be implemented by selecting and merging the corresponding techniques or replacing them with each other as necessary.
  • Step S10 of preparing a metal substrate 10 and a metal oxide layer 50 are formed.
  • Step S20 forming the mounting space 14 (S30), forming the insulating layer 42 and the connection wiring 44 (S40), and mounting the optical device 20 ( S50 and forming the molding layer 30 (S60).
  • a plate-shaped metal substrate 10 made of a material having a very high thermal conductivity compared to that of a synthetic resin or a ceramic is prepared.
  • the material for forming the metal substrate 10 aluminum, titanium, or the like may be used.
  • the metal substrate 10 may be formed in a plate shape with a thickness of 0.1 to 5 mm.
  • the metal substrate 10 may be formed in a thin plate shape with a thickness of 0.15 to 1.0 mm.
  • the metal oxide layer 50 is formed by oxidizing to a depth of 10 to 100 ⁇ m on one side of the metal substrate 10 as necessary.
  • the metal oxide layer 50 may be formed by oxidizing the metal substrate 10 by anodization or the like.
  • the metal oxide layer 50 is formed by changing a part of the metal substrate 10 into an aluminum oxide layer through anodization.
  • a part of the metal substrate 10 is removed from the opposite side of the metal oxide layer 50 to the metal oxide layer 50 to remove the mounting space 14 having a reflector. Form.
  • the mounting space 14 is formed to penetrate the metal substrate 10 up and down.
  • the mounting space 14 is formed by arranging one or a plurality of pieces on one metal substrate 10.
  • the mounting spaces 14 are formed one by one, and the plurality of optical devices 20 are mounted on one metal substrate 10.
  • the plurality of mounting spaces 14 are formed in a predetermined pattern.
  • the wall surface forming the mounting space 14 is formed as an inclined surface having a smaller cross-sectional area toward the bottom to effectively reflect the light emitted from the optical device 20 to be mounted to the front to greatly increase the luminous efficiency of the light.
  • the mounting space 14 is formed by removing a part of the metal substrate 10 using various methods such as etching or drilling.
  • Drilling in the above can be performed using a mechanical or laser drill.
  • the wall surface forming the mounting space 14 may be formed as a mirror surface (mirror surface) having excellent light reflection efficiency to configure a reflector.
  • the mirror surface may be embodied to be naturally formed by precisely etching or drilling.
  • the insulating layer 42 is formed on the upper surface of the metal substrate 10, and then the connection wiring 44 is formed on the insulating layer 42. To form.
  • connection wiring 44 is formed at a position close to the edge of the mounting space 14 on the upper surface of the metal substrate 10.
  • connection wiring 44 may be formed using a method such as vapor deposition, plating, or silk screen printing. In the case of forming the connection line 44 by the deposition method, it is also possible to form a pattern at the same time as the deposition using a shadow mask (shadow mask).
  • shadow mask shadow mask
  • the insulating layer 42 is formed using an insulating material.
  • the insulating layer 42 may be formed to a thin thickness of 1 ⁇ m or less, and may be formed using a method such as vapor deposition or spray coating.
  • Silicon nitride, silicon oxide, or the like may be used as an insulating material for forming the insulating layer 42.
  • the wall surface of the mounting space 14 of the metal substrate 10 is formed as a reflector when the connection wiring 44 is formed, and metals such as gold, silver, copper, platinum, palladium, and the like. It is also possible to form the reflective layer 48 by plating, depositing, coating, or the like on the inner surface of the mounting space 14 by selecting from the alloys of.
  • the reflective layer 48 is formed to be electrically shorted with the connection wiring 44 formed on the upper surface of the metal substrate 10.
  • the reflective layer 48 is formed such that the edge is positioned at a predetermined distance from the edge of the connection wiring 44.
  • the optical device 20 In the mounting of the optical device 20 (S50), the optical device 20 is mounted in the mounting space 14 of the metal substrate 10 and then connected to the electrode 22 of the optical device 20.
  • the wiring 44 is electrically connected.
  • connection wire 44 and the electrode 22 of the optical device 20 mounted in the mounting space 14 are connected using a bonding wire 46.
  • both electrodes 22 are connected to the upper surface of the metal substrate 10 through the bonding wires 46. It is connected to the connection wiring 44 formed on.
  • the upper electrode 22 is connected to the metal substrate through the bonding wire 46. It is connected to one of the connection wirings 44 formed on the upper surface of the (10), the electrode 23 of the lower surface is connected to the other connection wiring 45 formed to extend to the bottom of the optical element (20).
  • the molding layer 30 is filled to cover the mounting space 14 and to protect the optical device 20, the connection wiring 44, and the bonding wire 46. Form.
  • the molding layer 30 functions to protect and support the optical device 20 mounted in the mounting space 14 of the metal substrate 10.
  • a transparent polymer material may be used, and if necessary, a fluorescent material or a wavelength conversion material may be mixed with the polymer material and used to emit light of the optical device 20. In addition, it is possible to implement new effects.
  • the metal oxide layer 50 formed on the bottom surface of the metal substrate 10 is removed so that the optical device 20 is not damaged.
  • Removal of the metal oxide layer 50 may be performed using a method such as chemical etching or mechanical polishing.
  • the insulating layer 42 located on the bottom surface of the optical device 20 may also be removed.
  • the metal oxide layer 50 may be used without being removed.
  • the metal oxide layer 50 may be formed in the form of a very thin film (removed while controlling the finely removed thickness).
  • solder layer 60 (S80) the metal oxide layer 50 is removed and then the solder layer 60 is formed.
  • the solder layer 60 is formed thin by depositing or plating a solder.
  • solder layer 60 is also formed of a metal, the thermal resistance is low.
  • the step of removing the metal oxide layer 50 (S70) is omitted, and immediately forming the solder layer 60 (S80) It is also possible to proceed.
  • the solder layer 60 is formed on the bottom surface of the metal oxide layer 50.
  • the solder layer 60 is mounted on the heat sink 90.
  • solder layer 60 is formed in the above, direct solder bonding to the heat sink 90 is possible.
  • step S90 of forming the molding layer 30 or mounting of the heat sink 90 in step S70 of removing the metal oxide layer 50 it is possible to proceed to step S90 of forming the molding layer 30 or mounting of the heat sink 90 in step S70 of removing the metal oxide layer 50.
  • step (S80) the step of forming the solder layer 60 is omitted (S80).
  • step (S90) it is also possible to proceed to step (S90) to be mounted on the heat sink 90 immediately.
  • the mounting is performed using a method such as solder bonding, bonding, or bolt for mounting on the heat sink 90.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

The present invention provides a method for manufacturing a photonic device package module, which can be configured to minimize thermal resistance and to immediately emit generated heat through a heat sink. The method for manufacturing the photonic device package module of the present invention comprises the steps of: preparing a board-shaped metal substrate; oxidizing one side of the metal substrate to the depth of 10-100㎛, and forming a metal oxide layer; removing a part of the metal substrate to the metal oxide layer from the opposite side of the metal oxide layer, and forming a mounting space having a reflector; forming an insulation layer on an upper side of the metal substrate, and forming a connection wire; mounting a photonic device in the mounting space of the metal substrate, and connecting an electrode of the photonic device with the connection wire; forming a molding layer which is filled in the mounting space and is covered to protect the photonic device and the connection wire; removing the metal oxide layer; forming a solder layer; and mounting the metal substrate on the heat sink.

Description

광소자 패키지 모듈 및 그 제조방법Optical device package module and manufacturing method
본 발명은 광소자 패키징 모듈 및 그 제조방법에 관한 것으로서, 보다 상세하게는 광소자에서 발생하는 열을 매우 효과적으로 방출하고 다양한 형상으로 제조하는 것이 가능한 광소자 패키징 모듈 및 그 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical device packaging module and a method of manufacturing the same, and more particularly, to an optical device packaging module and a method of manufacturing the same, which are capable of dissipating heat generated in an optical device very effectively and manufacturing them in various shapes.
최근 엘이디(LED) 등을 비롯한 광소자는 차세대 조명원으로 점차 응용분야가 넓어지고 있다. 그러나 엘이디 등의 광소자에서 발생하는 열로 인하여 효율이 감소되고, 수명이 단축되며, 온도 증가에 따른 적색(R), 녹색(G), 청색(B) 사이의 다른 파장 변화가 문제로 대두되고 있다. 나아가 엘이디 등의 광소자가 점차 고출력(high power)화 되면서, 발생 열로 인한 문제는 더욱 심각해지고 있다.Recently, optical devices, including LEDs, are being widely used as next generation lighting sources. However, due to the heat generated by optical devices such as LEDs, efficiency is reduced, lifespan is shortened, and other wavelength changes between red (R), green (G), and blue (B) are increasing due to temperature increase. . Furthermore, as optical devices such as LEDs become increasingly high power, problems due to generated heat become more serious.
이러한 열의 문제는 엘이디 등의 광소자의 경우에는 그 크기가 작기 때문에, 광소자의 칩을 통하여 흐르는 전류에 의한 주울(Joule)열로 단위면적당 전류의 크기가 매우 커서 발생하는 필연적인 현상이다.This heat problem is inevitable because the size of the current per unit area is very large in Joule heat due to the current flowing through the chip of the optical device because the size of the optical device such as LED is small.
특히 고온에 약한 반도체의 특성상 반드시 원활한 방열설계가 이루어져야 본래의 성능을 유지하는 것이 가능하며, 고온에서 반도체가 동작하게 되면 방출파장이 변화거나 빛의 방출효율이 감소하는 문제가 있다.In particular, it is possible to maintain the original performance only if the heat radiation design must be made smoothly due to the characteristics of the semiconductor weak to high temperature, there is a problem that the emission wavelength is changed or the light emission efficiency is reduced when the semiconductor is operated at a high temperature.
그리고 열은 엘이디 제품의 수명에 바로 영향을 주어 고온에서 동작시 엘이디 모듈 제품의 수명이 단축된다고 하는 문제가 있다.And heat directly affects the life of the LED product has a problem that shorten the life of the LED module product when operating at high temperatures.
따라서 엘이디 등의 광소자에서 발생되는 열을 잘 방출시켜주는 방열구조가 패키징(packaging) 공정의 핵심적인 부분이다.Therefore, a heat dissipation structure that emits heat generated from an optical device such as an LED is a key part of the packaging process.
일반적으로 엘이디 등의 광소자에 있어서 방열설계의 우수여부를 나타내는 척도로 열저항과 접점온도(junction temperature)를 사용하는 데, 열저항은 패키지를 이루는 물질의 크기나 물성에 의해서 결정되는 값이고, 접점온도는 최종 방열설계가 이루어진 이후에 동작시 광소자에서 실제 발열되는 열을 나타내는 값이다.In general, thermal resistance and junction temperature are used as an indicator of excellent heat dissipation design in an optical device such as an LED, and the thermal resistance is a value determined by the size or physical properties of the material of the package. The contact temperature is a value that indicates the actual heat generated by the optical device during operation after the final heat dissipation design is made.
상기에서 열저항은 낮을수록 좋으며, 접점온도도 같은 파워(power)에서 동작시 낮을수록 잘 설계된 패키징 구조라 할 수 있다. 열저항을 낮추기 위해서는 열전도 특성이 높은 물질을 사용하는 것도 있지만, 궁극적으로는 패키징을 단순화하여 열저항을 없애는 것이 가장 효과적이며, 접점온도를 낮추는 것이 광소자의 발광 효율과 수명을 결정하는 가장 중요한 척도이다.The lower the thermal resistance is better, the lower the contact temperature when operating at the same power (power) can be said to be a well-designed packaging structure. In order to lower the thermal resistance, some materials having high thermal conductivity are used, but ultimately, it is most effective to simplify the packaging to eliminate the thermal resistance, and lowering the contact temperature is the most important measure of the luminous efficiency and lifetime of the optical device. .
그리고 패키징은 광학적 설계와 방열설계가 가미되어 제품에 맞게 광소자 칩을 포장하는 마무리 공정으로 광소자 칩의 성능을 한 단계 업그레이드시켜줄 수 있는 매우 중요한 과정이다.In addition, packaging is a finishing process of packaging an optical device chip according to an optical design and a heat dissipation design, which is a very important process to upgrade the performance of the optical device chip.
최근 패키징 기술의 방향은 응용제품에 따라 초박형화, 소형화, 고출력화(조명)로 진행되고 있으며, 특히 고출력 패키지의 중요성이 심화되고 있다. 고출력 패키지에서 중요하게 고려되어야 할 사항은 방열설계로서 칩에서 발생하는 열이 누적되지 않도록 패키징 재료의 선택과 배치가 적절히 이루어져야 한다. 조명용 고출력 엘이디의 수요가 증가하면서 방열설계를 최적화한 패키지 기술의 개발이 더욱 중요시되고 있다.Recently, the direction of the packaging technology is going to be ultra-thin, miniaturized, high output (lighting) according to the application, and the importance of the high output package is intensifying. An important consideration in high-power packages is the thermal design, which requires the proper selection and placement of packaging materials to avoid the accumulation of heat from the chip. As the demand for high power LEDs for lighting increases, the development of package technology that optimizes heat dissipation design becomes more important.
따라서 엘이디 등의 광소자에서 발생되는 열을 효과적으로 방출시켜 주는 기술이 엘이디 패키지의 핵심적인 부분이며, 아직까지는 어느 하나의 패키지 방식이 우수한 것으로 인정받고 있지 못한 실정이다.Therefore, a technology for effectively dissipating heat generated from optical devices such as LEDs is an essential part of the LED package, and so far, no one package method has been recognized as being excellent.
본 발명은 상기와 같은 점에 착안하여 이루어진 것으로서, 광소자가 실장되는 기판 자체를 제거하여 기판에서 발생되는 열저항을 제로(zero)화하고, 광소자 칩을 직접 방열판에 부착하여 광소자에서 발생되는 열을 바로 방열판을 통하여 방출되도록 구성하는 것이 가능한 광소자 패키지 모듈 및 그 제조방법을 제공하는데, 그 목적이 있다.The present invention has been made in view of the above points, by removing the substrate itself on which the optical element is mounted to zero the thermal resistance generated from the substrate, and attaching the optical element chip directly to the heat sink to generate the optical element It is an object of the present invention to provide an optical device package module and a method of manufacturing the same, which can configure heat to be directly discharged through a heat sink.
그리고 본 발명은 광소자의 발생 열을 가장 효과적으로 방출하여 광소자의 접점온도(junction temperature)를 낮추어 광소자의 빛 방출효율을 최대화할 수 있는 방열구조를 구현하는 것이 가능한 광소자 패키지 모듈 및 그 제조방법을 제공하기 위한 것이다.In another aspect, the present invention provides an optical device package module and a method for manufacturing the same, which is capable of implementing a heat dissipation structure that can maximize the light emission efficiency of the optical device by lowering the junction temperature of the optical device by releasing the heat generated by the optical device most effectively. It is to.
본 발명의 실시예에 따른 광소자 패키지 모듈은 반사경을 가지며 상하로 관통되는 하나 또는 복수의 실장공간이 형성되는 금속기판과, 상기 금속기판의 실장공간 내에 위치하여 실장되는 광소자와, 상기 금속기판의 실장공간 내부를 채우며 형성되고 실장된 광소자를 보호 지지하는 몰딩층을 포함하여 이루어진다.An optical device package module according to an embodiment of the present invention includes a metal substrate having a reflector and formed with one or a plurality of mounting spaces penetrating up and down, an optical device mounted in the mounting space of the metal substrate, and the metal substrate. It is formed to fill the inside of the mounting space and comprises a molding layer for protecting and supporting the mounted optical element.
또 본 발명의 실시예에 따른 광소자 패키지 모듈은 상기 금속기판의 상면에 절연층을 사이에 두고 형성되는 연결배선과, 상기 연결배선과 실장공간에 실장된 광소자의 전극을 연결하는 본딩와이어를 더 포함하는 것도 가능하다.In addition, the optical device package module according to an embodiment of the present invention further comprises a connection wiring formed between the insulating layer on the upper surface of the metal substrate, and a bonding wire for connecting the electrode of the optical device mounted in the connection wiring and the mounting space. It is also possible to include.
그리고 본 발명의 실시예에 따른 광소자 패키지 모듈은 금속기판 및 광소자의 저면이 접하여 설치되는 방열판을 더 포함하는 것도 가능하다.In addition, the optical device package module according to the embodiment of the present invention may further include a heat sink installed in contact with the bottom surface of the metal substrate and the optical device.
상기에서 금속기판 및 광소자의 저면과 방열판 사이에 금속산화물층이 위치하도록 구성하는 것도 가능하다.In the above, the metal oxide layer may be disposed between the bottom surface of the metal substrate and the optical device and the heat sink.
또 상기 금속기판 및 광소자의 저면 또는 금속산화물층과 방열판 사이에 솔더(solder)층을 더 형성하는 것도 가능하다.It is also possible to further form a solder layer between the metal substrate and the bottom surface of the optical device or between the metal oxide layer and the heat sink.
나아가 본 발명의 실시예에 따른 광소자 패키지 모듈 제조방법은 판형상의 금속기판을 준비하는 단계와, 상기 금속기판을 한쪽면에서 10∼100㎛의 깊이까지 산화하여 금속산화물층을 형성하는 단계와, 상기 금속기판의 일부를 금속산화물층의 반대쪽에서 금속산화물층까지 제거하여 반사경을 갖는 실장공간을 형성하는 단계와, 상기 금속기판의 상면에 절연층을 형성하고 연결배선을 형성하는 단계와, 상기 금속기판의 실장공간에 광소자를 실장하고 광소자의 전극과 연결배선을 연결하는 단계와, 상기 실장공간을 채우며 광소자와 연결배선을 보호하도록 덮여지는 몰딩층을 형성하는 단계를 포함하여 이루어진다.Furthermore, the optical device package module manufacturing method according to an embodiment of the present invention comprises the steps of preparing a plate-shaped metal substrate, oxidizing the metal substrate to a depth of 10 ~ 100㎛ on one side to form a metal oxide layer, Removing a portion of the metal substrate from the opposite side of the metal oxide layer to the metal oxide layer to form a mounting space having a reflector, forming an insulating layer on the upper surface of the metal substrate, and forming a connection wiring; Mounting an optical device in the mounting space of the substrate and connecting the electrode and the connection wiring of the optical device; and forming a molding layer covering the mounting space and covering the optical device and the connection wiring.
그리고 본 발명의 실시예에 따른 광소자 패키지 모듈 제조방법은 상기 몰딩층을 형성한 다음 상기 금속산화물층을 제거하는 단계를 더 포함하는 것도 가능하다.The optical device package module manufacturing method according to the embodiment of the present invention may further include removing the metal oxide layer after forming the molding layer.
또 본 발명의 실시예에 따른 광소자 패키지 모듈 제조방법은 상기 몰딩층을 형성한 다음 또는 상기 금속산화물층을 제거한 다음 솔더(solder)층을 형성하는 단계를 더 포함하는 것도 가능하다.In addition, the method of manufacturing an optical device package module according to an embodiment of the present invention may further include forming a solder layer after forming the molding layer or removing the metal oxide layer.
나아가 본 발명의 실시예에 따른 광소자 패키지 모듈 제조방법은 광소자가 실장된 금속기판을 방열판에 탑재하는 단계를 더 포함하는 것도 가능하다.Furthermore, the method of manufacturing an optical device package module according to an exemplary embodiment of the present invention may further include mounting a metal substrate on which the optical device is mounted on a heat sink.
본 발명의 실시예에 따른 광소자 패키지 모듈 및 그 제조방법에 의하면, 광소자의 저면이 바로 방열판에 접하도록 구성하는 것이 가능하므로, 가장 효과적으로 광소자에서 발생되는 열이 바로 방열판을 통하여 배출되는 것이 가능하다. According to the optical device package module and the manufacturing method thereof according to the embodiment of the present invention, since the bottom surface of the optical device can be configured to directly contact the heat sink, the heat generated from the optical device can be most effectively discharged directly through the heat sink. Do.
또 본 발명의 실시예에 따른 광소자 패키지 모듈 및 그 제조방법에 의하면, 광소자의 저면쪽에 금속기판이 남아있지 않게 되므로, 금속기판으로 인한 열저항에 의해서 광소자의 접점온도(junction temperature)가 상승하는 것을 원천적으로 해소하는 것이 가능하며, 열저항을 최소화하는 것이 가능하고, 광소자의 접점온도가 낮아져 빛의 발광효율이 증가하며 광소자의 수명이 향상된다.In addition, according to the optical device package module and the method of manufacturing the same according to the embodiment of the present invention, since the metal substrate does not remain on the bottom side of the optical device, the junction temperature (junction temperature) of the optical device is increased by the thermal resistance due to the metal substrate It is possible to fundamentally solve the problem, it is possible to minimize the thermal resistance, the contact temperature of the optical element is lowered, the light emission efficiency of the light is increased and the life of the optical element is improved.
본 발명의 실시예에 따른 광소자 패키지 모듈 및 그 제조방법에 의하면, 광소자의 빛 발광효율을 최대로 끌어올리는 것이 가능하다.According to the optical device package module and the manufacturing method thereof according to an embodiment of the present invention, it is possible to maximize the light luminous efficiency of the optical device.
도 1은 본 발명의 제1실시예에 따른 광소자 패키지 모듈을 나타내는 부분확대 단면도이다.1 is a partially enlarged cross-sectional view illustrating an optical device package module according to a first exemplary embodiment of the present invention.
도 2는 본 발명의 제2실시예에 따른 광소자 패키지 모듈을 나타내는 부분확대 단면도이다.2 is a partially enlarged cross-sectional view illustrating an optical device package module according to a second exemplary embodiment of the present invention.
도 3은 본 발명의 제3실시예에 따른 광소자 패키지 모듈을 나타내는 부분확대 단면도이다.3 is a partially enlarged cross-sectional view illustrating an optical device package module according to a third exemplary embodiment of the present invention.
도 4는 본 발명의 제4실시예에 따른 광소자 패키지 모듈을 나타내는 부분확대 단면도이다.4 is a partially enlarged cross-sectional view illustrating an optical device package module according to a fourth exemplary embodiment of the present invention.
도 5는 본 발명의 제5실시예에 따른 광소자 패키지 모듈을 나타내는 부분확대 단면도이다.5 is a partially enlarged cross-sectional view illustrating an optical device package module according to a fifth exemplary embodiment of the present invention.
도 6은 본 발명의 제6실시예에 따른 광소자 패키지 모듈을 나타내는 부분확대 단면도이다.6 is a partially enlarged cross-sectional view illustrating an optical device package module according to a sixth exemplary embodiment of the present invention.
도 7은 본 발명의 제7실시예에 따른 광소자 패키지 모듈 제조방법을 나타내는 블럭도이다.7 is a block diagram illustrating a method of manufacturing an optical device package module according to a seventh embodiment of the present invention.
도 8은 본 발명의 제7실시예에 따른 광소자 패키지 모듈 제조방법을 나타내는 공정도이다.8 is a flowchart illustrating a method of manufacturing an optical device package module according to a seventh embodiment of the present invention.
도 9는 본 발명의 제8실시예에 따른 광소자 패키지 모듈 제조방법을 나타내는 블럭도이다.9 is a block diagram illustrating a method of manufacturing an optical device package module according to an eighth embodiment of the present invention.
도 10은 본 발명의 제8실시예에 따른 광소자 패키지 모듈 제조방법을 나타내는 공정도이다.10 is a flowchart illustrating a method of manufacturing an optical device package module according to an eighth embodiment of the present invention.
다음으로 본 발명에 따른 광소자 패키지 모듈 및 그 제조방법의 바람직한 실시예를 도면을 참조하여 상세하게 설명한다. 도면에서 동일한 구성은 동일한 부호로 표시하고, 중복되는 상세한 설명은 생략한다.Next, a preferred embodiment of an optical device package module and a method of manufacturing the same according to the present invention will be described in detail with reference to the drawings. In the drawings, the same components are denoted by the same reference numerals, and detailed description thereof will be omitted.
그러나, 본 발명의 실시예들은 여러 가지 다양한 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예들로 한정되는 것으로 해석되지 않는다. 본 발명의 실시예들은 해당 기술분야에서 보통의 지식을 가진 자가 본 발명을 이해할 수 있도록 설명하기 위해서 제공되는 것이고, 도면에서 나타내는 요소의 형상 등은 보다 명확한 설명을 강조하기 위해서 예시적으로 나타내는 것이다.However, embodiments of the present invention may be modified in many different forms, the scope of the invention is not to be construed as limited to the embodiments described below. Embodiments of the present invention are provided to explain those skilled in the art to understand the present invention, the shape of the elements shown in the drawings and the like are shown by way of example in order to emphasize more clear description.
먼저 본 발명의 제1실시예에 따른 광소자 패키지 모듈은 도 1에 나타낸 바와 같이, 금속기판(10)과, 광소자(20)와, 몰딩층(30)을 포함하여 이루어진다.First, the optical device package module according to the first embodiment of the present invention includes a metal substrate 10, an optical device 20, and a molding layer 30, as shown in FIG. 1.
상기 금속기판(10)은 열전도율이 합성수지나 세라믹에 비하여 매우 우수한 재료를 이용하여 형성한다.The metal substrate 10 is formed using a material having a very high thermal conductivity compared to synthetic resins or ceramics.
상기 금속기판(10)을 형성하기 위한 재료로는 알루미늄, 타이타늄 등이 사용 가능하다.Aluminum, titanium, or the like may be used as a material for forming the metal substrate 10.
상기 금속기판(10)에는 상하로 관통되는 하나 또는 복수의 실장공간(14)이 형성된다.One or a plurality of mounting spaces 14 penetrate up and down are formed in the metal substrate 10.
상기에서 금속기판(10) 하나에 광소자(20)를 하나씩 실장하고자 하는 경우에는 실장공간(14)을 하나씩 형성하며, 하나의 금속기판(10)에 복수의 광소자(20)를 실장하고자 하는 경우에는 설정된 패턴으로 배열하여 복수의 실장공간(14)을 형성한다.In the case where the optical elements 20 are mounted one by one on the metal substrate 10, mounting spaces 14 are formed one by one, and a plurality of optical elements 20 are mounted on one metal substrate 10. In this case, a plurality of mounting spaces 14 are formed by arranging in a set pattern.
상기 실장공간(14)을 형성하는 벽면은 실장되는 광소자(20)에서 방출된 빛을 효과적으로 전면으로 반사시켜 빛의 발광효율을 크게 증대시킬 수 있도록 바닥으로 갈수록 단면적이 작아지는 경사면으로 형성하는 것이 바람직하다.The wall surface forming the mounting space 14 may be formed as an inclined surface having a smaller cross-sectional area toward the bottom so as to effectively reflect the light emitted from the optical device 20 to be mounted to the front to greatly increase the luminous efficiency of the light. desirable.
상기 실장공간(14)은 식각(etching)이나 드릴링(drilling) 등의 다양한 방법을 사용하여 형성하는 것이 가능하다.The mounting space 14 may be formed using various methods such as etching or drilling.
그리고 상기 실장공간(14)을 형성하는 벽면은 빛의 반사효율이 우수한 경면으로 형성하여 반사경을 구성하는 것이 바람직하다.In addition, the wall surface forming the mounting space 14 may be formed as a mirror surface having excellent light reflection efficiency to configure a reflecting mirror.
상기 광소자(20)는 상기 금속기판(10)의 실장공간(14) 내에 위치하도록 실장된다.The optical device 20 is mounted in the mounting space 14 of the metal substrate 10.
상기 광소자(20)는 상기 금속기판(10)의 실장공간(14) 중앙부에 위치하도록 실장하는 것이 빛의 발광효율을 균일하게 유지할 수 있으므로 바람직하다.The optical device 20 is preferably mounted at the center of the mounting space 14 of the metal substrate 10 because the light emitting efficiency of light can be maintained uniformly.
상기 광소자(20)로는 수광소자나 발광소자 등이 사용 가능하고, 발광소자로는 엘이디(LED) 등이 사용 가능하다.As the optical device 20, a light receiving device, a light emitting device, or the like may be used, and an LED (LED) may be used as the light emitting device.
상기 몰딩층(30)은 상기 금속기판(10)의 실장공간(14) 내부를 채우며 형성된다.The molding layer 30 fills the inside of the mounting space 14 of the metal substrate 10.
상기 몰딩층(30)은 상기 금속기판(10)의 실장공간(14) 내에 실장된 광소자(20)를 보호 지지하는 기능을 수행한다.The molding layer 30 functions to protect and support the optical device 20 mounted in the mounting space 14 of the metal substrate 10.
상기에서 몰딩층(30)을 형성하는 몰딩(molding)재료로는 투명한 고분자물질이 사용 가능하며, 필요에 따라 고분자물질에 형광물질이나 파장변환물질을 혼합하여 사용하며 광소자(20)의 발광에 더하여 새로운 효과를 구현하는 것도 가능하다.As the molding material forming the molding layer 30, a transparent polymer material may be used, and if necessary, a fluorescent material or a wavelength conversion material may be mixed with the polymer material and used to emit light of the optical device 20. In addition, it is possible to implement new effects.
그리고 도면에 나타내지 않았지만, 상기 몰딩층(30)의 두께를 조정하는 것에 의하여 렌즈효과를 발휘하게 하는 것도 가능하다. 예를 들면, 상기 실장공간(14)의 광소자(20)가 위치하는 중앙부분은 두껍고 모서리쪽으로 갈수록 두께가 얇아지도록 몰딩층(30)를 형성하게 되면 볼록렌즈의 효과를 얻을 수 있으며, 중앙부분은 얇고 모서리쪽으로 갈수록 두께가 두꺼워지도록 몰딩층(30)을 형성하게 되면 오목렌즈의 효과를 얻을 수 있다.Although not shown in the figure, it is also possible to achieve the lens effect by adjusting the thickness of the molding layer 30. For example, when the molding layer 30 is formed such that the central portion in which the optical device 20 of the mounting space 14 is located is thicker and thinner toward the edge, the effect of the convex lens can be obtained. When the molding layer 30 is formed to be thin and become thicker toward the edge, the effect of the concave lens can be obtained.
상기 금속기판(10)의 상면에는 실장공간(14)의 모서리에 근접하는 위치에 연결배선(44)을 형성한다.The connection wiring 44 is formed on the upper surface of the metal substrate 10 at a position close to the edge of the mounting space 14.
상기 연결배선(44)은 증착이나 도금, 실크스크린(silk screen) 인쇄 등의 방법을 사용하여 형성하는 것이 가능하다.The connection wiring 44 may be formed using a method such as vapor deposition, plating, or silk screen printing.
상기에서 연결배선(44)을 증착 방식으로 형성하는 경우에는 새도우 마스크(shadow mask)를 사용하여 증착과 동시에 패턴을 형성하는 것도 가능하다.In the case of forming the connection line 44 by the deposition method, it is also possible to form a pattern at the same time as the deposition using a shadow mask (shadow mask).
상기 연결배선(44)과 금속기판(10) 사이에는 절연을 위하여 절연재료로 절연층(42)을 형성한다.An insulating layer 42 is formed of an insulating material between the connection wiring 44 and the metal substrate 10 to insulate.
상기 절연층(42)은 1㎛ 이하의 얇은 두께로 형성하는 것도 가능하고, 증착이나 스프레이 도포 등의 방식을 이용하여 형성한다.The insulating layer 42 may be formed to a thin thickness of 1 μm or less, and may be formed using a method such as vapor deposition or spray coating.
상기 절연층(42)을 형성하기 위한 절연재료로는 질화규소(silicon nitride)나 산화규소(silicon oxide) 등이 사용 가능하다.Silicon nitride, silicon oxide, or the like may be used as an insulating material for forming the insulating layer 42.
상기 연결배선(44)은 본딩와이어(46)를 통하여 상기 실장공간(14)에 실장된 광소자(20)의 전극(22)과 연결된다.The connection wiring 44 is connected to the electrode 22 of the optical device 20 mounted in the mounting space 14 through the bonding wire 46.
상기에서 광소자(20)의 상면에만 전극(22)이 형성되는 경우에는 도 1에 나타낸 바와 같이, 양 전극(22)을 모두 본딩와이어(46)를 통하여 금속기판(10)의 상면에 형성되는 연결배선(44)과 연결한다.In the case where the electrode 22 is formed only on the upper surface of the optical device 20, as shown in FIG. 1, both electrodes 22 are formed on the upper surface of the metal substrate 10 through the bonding wires 46. It is connected to the connection wiring (44).
상기 광소자(20)에는 구리(Cu) 또는 금(Au) 등의 도전성 금속으로 이루어진 전극(22)이 설치된다.The optical device 20 is provided with an electrode 22 made of a conductive metal such as copper (Cu) or gold (Au).
상기 광소자(20)의 전극(22)은 상면에만 형성하는 것도 가능하고, 하나의 전극(22)은 상면에 다른 하나의 전극(23)의 하면에 형성하는 것도 가능하다. 그리고 필요에 따라서는 전극(22)을 모두 하면에만 형성하는 것도 가능하다.The electrode 22 of the optical device 20 may be formed only on the upper surface, and one electrode 22 may be formed on the lower surface of the other electrode 23 on the upper surface. If necessary, the electrodes 22 may be formed only on the lower surface thereof.
그리고 본 발명의 제2실시예에 따른 광소자 패키지 모듈은 도 2에 나타낸 바와 같이, 상기 광소자(20)의 상면과 하면에 분리하여 전극(22)을 형성하고, 상면의 전극(22)은 본딩와이어(46)를 통하여 금속기판(10)의 상면에 형성되는 연결배선(44) 중의 하나와 연결하고, 하면의 전극(23)은 광소자(20)의 저면까지 연장하여 형성되는 다른 하나의 연결배선(45)에 연결한다.In the optical device package module according to the second embodiment of the present invention, as shown in FIG. 2, an electrode 22 is formed on the upper and lower surfaces of the optical device 20, and the electrode 22 on the upper surface is formed. One of the connection wires 44 formed on the upper surface of the metal substrate 10 through the bonding wires 46, and the electrode 23 on the lower surface extends to the bottom surface of the optical device 20. Connect to the connection wiring (45).
상기에서 다른 하나의 연결배선(45)은 도전성 금속으로 형성하므로 반사효율이 우수하다. 따라서 광소자(20)에서 방출된 빛을 반사하는 반사경의 기능을 효과적으로 구현하도록 실장공간(14)의 전체 벽면에 대하여 형성하는 것도 가능하다.Since the other connection wiring 45 is formed of a conductive metal, the reflection efficiency is excellent. Therefore, it is also possible to form the entire wall surface of the mounting space 14 to effectively implement the function of the reflector reflecting the light emitted from the optical element (20).
상기 다른 하나의 연결배선(45) 및 하나의 연결배선(44)과 금속기판(10) 사이의 절연을 위하여 절연층(42)을 충분히 넓게 형성하는 것이 바람직하다. 상기에서 광소자(20)의 저면에 형성되는 절연층(42)은 방열효율을 향상시키기 위하여 제거하는 것도 가능하다.It is preferable to form the insulating layer 42 wide enough to insulate between the other connecting wiring 45 and one connecting wiring 44 and the metal substrate 10. In the above, the insulating layer 42 formed on the bottom surface of the optical device 20 may be removed to improve heat dissipation efficiency.
그리고 본 발명의 제3실시예에 따른 광소자 패키지 모듈은 도 3에 나타낸 바와 같이, 상기 금속기판(10) 및 광소자(20)의 저면이 접하도록 방열판(90)을 설치한다.In the optical device package module according to the third exemplary embodiment of the present invention, as shown in FIG. 3, a heat sink 90 is installed so that the bottom surfaces of the metal substrate 10 and the optical device 20 are in contact with each other.
상기와 같이 방열판(90)을 설치하면, 광소자(20)에서 발생하는 열이 바로 방열판(90)을 통하여 방출되므로, 열의 방출효율을 극대화하는 것이 가능하다.When the heat sink 90 is installed as described above, since heat generated in the optical device 20 is directly discharged through the heat sink 90, it is possible to maximize heat dissipation efficiency.
또 광소자(30)와 방열판(90) 사이의 접점이 하나만 존재하므로, 접점온도를 최소화하는 것이 가능하다.In addition, since there is only one contact between the optical device 30 and the heat sink 90, it is possible to minimize the contact temperature.
그리고 본 발명의 제4실시예에 따른 광소자 패키지 모듈은 도 4에 나타낸 바와 같이, 상기 금속기판(10) 및 광소자(20)의 저면에 금속산화물층(50)을 형성한다.In the optical device package module according to the fourth embodiment of the present invention, as shown in FIG. 4, the metal oxide layer 50 is formed on the bottom surface of the metal substrate 10 and the optical device 20.
상기 금속산화물층(50)은 금속기판(10)을 양극산화 등의 방식으로 산화하여형성하는 것이 가능하다.The metal oxide layer 50 may be formed by oxidizing the metal substrate 10 by anodization or the like.
예를 들면, 상기 금속기판(10)으로 알루미늄을 사용하면, 상기 금속산화물층(50)은 양극산화를 통하여 금속기판(10)의 일부가 알루미늄산화물층으로 변화되어 형성된다.For example, when aluminum is used as the metal substrate 10, the metal oxide layer 50 is formed by changing a part of the metal substrate 10 into an aluminum oxide layer through anodization.
상기 금속산화물층(50)은 필요에 따라 10∼100㎛의 두께로 형성하는 것이 가능하다.The metal oxide layer 50 can be formed to a thickness of 10 to 100㎛ as needed.
상기 금속기판(10)의 실장공간(14) 벽면을 반사경으로 구현하기 위하여 도 4에 나타낸 바와 같이, 금, 은, 구리, 백금, 팔라듐 등의 금속과 이들의 합금 중에서 선택하여 실장공간(14)의 내면에 도금, 증착, 도포(coating) 등을 행하여 반사층(48)을 형성하는 것도 가능하다.As shown in FIG. 4 to implement the wall surface of the mounting space 14 of the metal substrate 10 as a reflector, the mounting space 14 may be selected from metals such as gold, silver, copper, platinum, palladium, and alloys thereof. It is also possible to form the reflective layer 48 by plating, vapor deposition, coating, or the like on the inner surface of the substrate.
상기에서 반사층(48)의 경우에는 금속기판(10)의 상면에 형성되는 연결배선(44)과 전기적으로 단락되도록 구성하는 것이 바람직하다.In the case of the reflective layer 48, it is preferable that the reflective layer 48 is configured to be electrically shorted with the connection wiring 44 formed on the upper surface of the metal substrate 10.
상기 반사층(48)을 형성하는 경우에는 금속기판(10)과의 절연을 위하여 반사층(48)과 금속기판(10) 사이에 절연층(42)을 형성한다.When the reflective layer 48 is formed, an insulating layer 42 is formed between the reflective layer 48 and the metal substrate 10 to insulate the metal substrate 10.
상기에서 광소자(20)의 저면쪽에 위치하는 절연층(42)은 제거하는 것이 절연저항 및 접점온도의 측면에서 유리하다.In the above, it is advantageous to remove the insulating layer 42 located on the bottom side of the optical device 20 in terms of insulation resistance and contact temperature.
그리고 본 발명의 제5실시예에 따른 광소자 패키지 모듈은 도 5에 나타낸 바와 같이, 상기 금속기판(10) 및 광소자(20)의 저면에 솔더층(60)을 형성한다.In the optical device package module according to the fifth embodiment of the present invention, as shown in FIG. 5, the solder layer 60 is formed on the bottom surface of the metal substrate 10 and the optical device 20.
상기 솔더층(60)은 증착이나 도금 등의 방식으로 얇게 형성한다.The solder layer 60 is thinly formed by deposition or plating.
상기와 같이 솔더층(60)을 형성하게 되면, 방열판(90)에 직접 솔더 본딩(solder bonding)이 가능하다.When the solder layer 60 is formed as described above, solder bonding is possible directly on the heat sink 90.
상기 솔더층(60)의 경우에도 금속으로 형성되므로 열저항이 낮다.Since the solder layer 60 is also formed of a metal, the thermal resistance is low.
그리고 본 발명의 제6실시예에 따른 광소자 패키지 모듈은 도 6에 나타낸 바와 같이, 상기한 제4실시예에 있어서 상기 금속산화물층(50)의 저면에 솔더층(60)을 형성한다.In the optical device package module according to the sixth embodiment of the present invention, as shown in FIG. 6, the solder layer 60 is formed on the bottom surface of the metal oxide layer 50 in the fourth embodiment.
상기한 제1실시예 내지 제6실시예의 기술은 필요에 따라 해당되는 기술을 선택하여 병합하거나 서로 대체하여 실시하는 것이 가능하다.The above described techniques of the first to sixth embodiments may be implemented by selecting and merging the corresponding techniques or replacing them with each other as necessary.
다음으로 상기와 같이 구성되는 본 발명의 제1실시예 내지 제6실시예에 따른 광소자 패키지 모듈을 제조하기 위한 제조방법을 설명한다.Next, a manufacturing method for manufacturing the optical device package module according to the first to sixth embodiments of the present invention configured as described above will be described.
먼저 본 발명의 제7실시예에 따른 광소자 패키지 모듈 제조방법은 도 8 및 도 9에 나타낸 바와 같이, 금속기판(10)을 준비하는 단계(S10)와, 금속산화물층(50)을 형성하는 단계(S20)와, 실장공간(14)을 형성하는 단계(S30)와, 절연층(42)과 연결배선(44)을 형성하는 단계(S40)와, 광소자(20)를 실장하는 단계(S50)와, 몰딩층(30)을 형성하는 단계(S60)를 포함하여 이루어진다.First, in the method of manufacturing an optical device package module according to the seventh embodiment of the present invention, as shown in FIGS. 8 and 9, a step (S10) of preparing a metal substrate 10 and a metal oxide layer 50 are formed. Step S20, forming the mounting space 14 (S30), forming the insulating layer 42 and the connection wiring 44 (S40), and mounting the optical device 20 ( S50 and forming the molding layer 30 (S60).
상기 금속기판(10)을 준비하는 단계(S10)에서는 열전도율이 합성수지나 세라믹에 비하여 매우 우수한 재료로 이루어지는 판형상의 금속기판(10)을 준비한다.In the preparing of the metal substrate 10 (S10), a plate-shaped metal substrate 10 made of a material having a very high thermal conductivity compared to that of a synthetic resin or a ceramic is prepared.
상기에서 금속기판(10)을 형성하기 위한 재료로는 알루미늄, 타이타늄 등이 사용 가능하다.As the material for forming the metal substrate 10, aluminum, titanium, or the like may be used.
그리고 상기 금속기판(10)은 0.1∼5mm 두께의 판형상으로 형성하는 것도 가능하며, 바람직하게는 0.15∼1.0mm의 얇은 두께의 판형상으로 형성하면 박막화가 가능하므로 좋다.The metal substrate 10 may be formed in a plate shape with a thickness of 0.1 to 5 mm. Preferably, the metal substrate 10 may be formed in a thin plate shape with a thickness of 0.15 to 1.0 mm.
상기 금속산화물층(50)을 형성하는 단계(S20)에서는 상기 금속기판(10) 한쪽면에서 필요에 따라 10∼100㎛의 깊이까지 산화하여 금속산화물층(50)을 형성한다.In the forming of the metal oxide layer 50 (S20), the metal oxide layer 50 is formed by oxidizing to a depth of 10 to 100 μm on one side of the metal substrate 10 as necessary.
상기 금속산화물층(50)은 금속기판(10)을 양극산화 등의 방식으로 산화하여형성하는 것이 가능하다.The metal oxide layer 50 may be formed by oxidizing the metal substrate 10 by anodization or the like.
예를 들면, 상기 금속기판(10)으로 알루미늄을 사용하면, 상기 금속산화물층(50)은 양극산화를 통하여 금속기판(10)의 일부가 알루미늄산화물층으로 변화되어 형성된다.For example, when aluminum is used as the metal substrate 10, the metal oxide layer 50 is formed by changing a part of the metal substrate 10 into an aluminum oxide layer through anodization.
상기 실장공간(14)을 형성하는 단계(S30)에서는 상기 금속기판(10)의 일부를 금속산화물층(50)의 반대쪽에서 금속산화물층(50)까지 제거하여 반사경을 갖는 실장공간(14)을 형성한다.In the forming of the mounting space 14 (S30), a part of the metal substrate 10 is removed from the opposite side of the metal oxide layer 50 to the metal oxide layer 50 to remove the mounting space 14 having a reflector. Form.
상기 실장공간(14)은 상기 금속기판(10)을 상하로 관통하도록 형성한다.The mounting space 14 is formed to penetrate the metal substrate 10 up and down.
상기 실장공간(14)은 하나의 금속기판(10)에 하나 또는 복수개를 배열하여 형성한다.The mounting space 14 is formed by arranging one or a plurality of pieces on one metal substrate 10.
예를 들면, 상기에서 금속기판(10) 하나에 광소자(20)를 하나씩 실장하고자 하는 경우에는 실장공간(14)을 하나씩 형성하며, 하나의 금속기판(10)에 복수의 광소자(20)를 실장하고자 하는 경우에는 설정된 패턴으로 배열하여 복수의 실장공간(14)을 형성한다.For example, when the optical devices 20 are mounted one by one on the metal substrate 10, the mounting spaces 14 are formed one by one, and the plurality of optical devices 20 are mounted on one metal substrate 10. In the case of mounting the plurality of mounting spaces 14, the plurality of mounting spaces 14 are formed in a predetermined pattern.
상기 실장공간(14)을 형성하는 벽면은 실장되는 광소자(20)에서 방출된 빛을 효과적으로 전면으로 반사시켜 빛의 발광효율을 크게 증대시킬 수 있도록 바닥으로 갈수록 단면적이 작아지는 경사면으로 형성한다.The wall surface forming the mounting space 14 is formed as an inclined surface having a smaller cross-sectional area toward the bottom to effectively reflect the light emitted from the optical device 20 to be mounted to the front to greatly increase the luminous efficiency of the light.
상기 실장공간(14)은 식각(etching)이나 드릴링(drilling) 등의 다양한 방법을 사용하여 금속기판(10)의 일부를 제거하여 형성한다.The mounting space 14 is formed by removing a part of the metal substrate 10 using various methods such as etching or drilling.
상기에서 드릴링은 기계적 또는 레이저 드릴을 이용하여 행하는 것이 가능하다.Drilling in the above can be performed using a mechanical or laser drill.
그리고 상기 실장공간(14)을 형성하는 벽면은 빛의 반사효율이 우수한 경면(거울면)으로 형성하여 반사경을 구성하는 것이 바람직하다.In addition, the wall surface forming the mounting space 14 may be formed as a mirror surface (mirror surface) having excellent light reflection efficiency to configure a reflector.
상기에서 경면은 식각이나 드릴링을 정밀하게 행함에 따라 자연스럽게 형성되도록 구현하는 것도 가능하다.In the above, the mirror surface may be embodied to be naturally formed by precisely etching or drilling.
상기 절연층(42)과 연결배선(44)을 형성하는 단계(S40)에서는 상기 금속기판(10)의 상면에 절연층(42)을 형성한 다음, 절연층(42) 위에 연결배선(44)을 형성한다.In the forming of the insulating layer 42 and the connection wiring 44 (S40), the insulating layer 42 is formed on the upper surface of the metal substrate 10, and then the connection wiring 44 is formed on the insulating layer 42. To form.
상기 연결배선(44)은 금속기판(10) 상면의 실장공간(14)의 모서리에 근접하는 위치에 형성한다.The connection wiring 44 is formed at a position close to the edge of the mounting space 14 on the upper surface of the metal substrate 10.
상기 연결배선(44)은 증착이나 도금, 실크스크린(silk screen) 인쇄 등의 방법을 사용하여 형성하는 것이 가능하다. 상기에서 연결배선(44)을 증착 방식으로 형성하는 경우에는 새도우 마스크(shadow mask)를 사용하여 증착과 동시에 패턴을 형성하는 것도 가능하다.The connection wiring 44 may be formed using a method such as vapor deposition, plating, or silk screen printing. In the case of forming the connection line 44 by the deposition method, it is also possible to form a pattern at the same time as the deposition using a shadow mask (shadow mask).
상기 절연층(42)은 절연재료를 이용하여 형성한다.The insulating layer 42 is formed using an insulating material.
상기 절연층(42)은 1㎛ 이하의 얇은 두께로 형성하는 것도 가능하고, 증착이나 스프레이 도포 등의 방식을 이용하여 형성한다.The insulating layer 42 may be formed to a thin thickness of 1 μm or less, and may be formed using a method such as vapor deposition or spray coating.
상기 절연층(42)을 형성하기 위한 절연재료로는 질화규소(silicon nitride)나 산화규소(silicon oxide) 등이 사용 가능하다.Silicon nitride, silicon oxide, or the like may be used as an insulating material for forming the insulating layer 42.
상기 연결배선(44)을 형성할 때에 상기 금속기판(10)의 실장공간(14) 벽면을 반사경으로 구현하기 위하여 도 4에 나타낸 바와 같이, 금, 은, 구리, 백금, 팔라듐 등의 금속과 이들의 합금 중에서 선택하여 실장공간(14)의 내면에 도금, 증착, 도포(coating) 등을 행하여 반사층(48)을 형성하는 것도 가능하다.As shown in FIG. 4, the wall surface of the mounting space 14 of the metal substrate 10 is formed as a reflector when the connection wiring 44 is formed, and metals such as gold, silver, copper, platinum, palladium, and the like. It is also possible to form the reflective layer 48 by plating, depositing, coating, or the like on the inner surface of the mounting space 14 by selecting from the alloys of.
상기에서 반사층(48)의 경우에는 금속기판(10)의 상면에 형성되는 연결배선(44)과 전기적으로 단락되도록 형성한다. 예를 들면 상기 반사층(48)은 연결배선(44)의 모서리와 일정 간격을 두고 모서리가 위치하도록 형성한다.In the case of the reflective layer 48 is formed to be electrically shorted with the connection wiring 44 formed on the upper surface of the metal substrate 10. For example, the reflective layer 48 is formed such that the edge is positioned at a predetermined distance from the edge of the connection wiring 44.
상기 광소자(20)를 실장하는 단계(S50)에서는 상기 금속기판(10)의 실장공간(14)에 광소자(20)를 실장한 다음, 상기 광소자(20)의 전극(22)과 연결배선(44)을 전기적으로 연결한다.In the mounting of the optical device 20 (S50), the optical device 20 is mounted in the mounting space 14 of the metal substrate 10 and then connected to the electrode 22 of the optical device 20. The wiring 44 is electrically connected.
상기 연결배선(44)과 상기 실장공간(14)에 실장된 광소자(20)의 전극(22)은 본딩와이어(46)를 이용하여 연결한다.The connection wire 44 and the electrode 22 of the optical device 20 mounted in the mounting space 14 are connected using a bonding wire 46.
상기에서 광소자(20)의 상면에만 전극(22)이 형성되는 경우에는 도 1 및 도 4에 나타낸 바와 같이, 양 전극(22)을 모두 본딩와이어(46)를 통하여 금속기판(10)의 상면에 형성되는 연결배선(44)과 연결한다.In the case where the electrode 22 is formed only on the upper surface of the optical device 20, as shown in FIGS. 1 and 4, both electrodes 22 are connected to the upper surface of the metal substrate 10 through the bonding wires 46. It is connected to the connection wiring 44 formed on.
그리고 도 2 및 도 5에 나타낸 바와 같이, 상기 광소자(20)의 상면과 하면에 분리하여 전극(22)을 형성하는 경우에는, 상면의 전극(22)은 본딩와이어(46)를 통하여 금속기판(10)의 상면에 형성되는 연결배선(44) 중의 하나와 연결하고, 하면의 전극(23)은 광소자(20)의 저면까지 연장하여 형성되는 다른 하나의 연결배선(45)에 연결한다.2 and 5, in the case where the electrode 22 is formed by separating the upper and lower surfaces of the optical device 20, the upper electrode 22 is connected to the metal substrate through the bonding wire 46. It is connected to one of the connection wirings 44 formed on the upper surface of the (10), the electrode 23 of the lower surface is connected to the other connection wiring 45 formed to extend to the bottom of the optical element (20).
상기 몰딩층(30)을 형성하는 단계(S60)에서는 상기 실장공간(14)을 채우며 광소자(20)와 연결배선(44), 본딩와이어(46)를 보호하도록 덮여지게 몰딩층(30)을 형성한다.In the forming of the molding layer 30 (S60), the molding layer 30 is filled to cover the mounting space 14 and to protect the optical device 20, the connection wiring 44, and the bonding wire 46. Form.
상기 몰딩층(30)은 상기 금속기판(10)의 실장공간(14) 내에 실장된 광소자(20)를 보호 지지하는 기능을 수행한다.The molding layer 30 functions to protect and support the optical device 20 mounted in the mounting space 14 of the metal substrate 10.
상기에서 몰딩층(30)을 형성하는 몰딩(molding)재료로는 투명한 고분자물질이 사용 가능하며, 필요에 따라 고분자물질에 형광물질이나 파장변환물질을 혼합하여 사용하며 광소자(20)의 발광에 더하여 새로운 효과를 구현하는 것도 가능하다.As the molding material forming the molding layer 30, a transparent polymer material may be used, and if necessary, a fluorescent material or a wavelength conversion material may be mixed with the polymer material and used to emit light of the optical device 20. In addition, it is possible to implement new effects.
그리고 본 발명의 제8실시예에 따른 광소자 패키지 모듈 제조방법은 도 9 및 도 10에 나타낸 바와 같이, 상기한 제7실시예에 있어서 금속산화물층(50)을 제거하는 단계(S70)와, 솔더층(60)을 형성하는 단계(S80)와, 방열판(90)에 탑재하는 단계(S90)를 더 포함하여 이루어진다.In the method of manufacturing the optical device package module according to the eighth embodiment of the present invention, as illustrated in FIGS. 9 and 10, the step of removing the metal oxide layer 50 in the seventh embodiment (S70), It further comprises the step (S80) of forming the solder layer 60, and the step (S90) for mounting on the heat sink (90).
상기 금속산화물층(50)을 제거하는 단계(S70)에서는 광소자(20)가 손상되지 않도록 금속기판(10)의 저면에 형성된 금속산화물층(50)을 제거한다.In the removing of the metal oxide layer 50 (S70), the metal oxide layer 50 formed on the bottom surface of the metal substrate 10 is removed so that the optical device 20 is not damaged.
상기 금속산화물층(50)의 제거는 화학적 식각 또는 기계적 연마 등의 방법을 사용하는 것이 가능하다.Removal of the metal oxide layer 50 may be performed using a method such as chemical etching or mechanical polishing.
상기에서 금속산화물층(50)을 제거할 때에 광소자(20)의 저면쪽에 위치하는 절연층(42)도 함께 제거하는 것도 가능하다.When the metal oxide layer 50 is removed, the insulating layer 42 located on the bottom surface of the optical device 20 may also be removed.
상기 금속산화물층(50)은 제거하지 않은 상태로 사용하는 것도 가능하다.The metal oxide layer 50 may be used without being removed.
그리고 상기 금속산화물층(50)은 매우 얇은 박막의 형태로 형성(미세하게 제거되는 두께를 제어하면서 제거)하여 사용하는 것도 가능하다.In addition, the metal oxide layer 50 may be formed in the form of a very thin film (removed while controlling the finely removed thickness).
상기 솔더층(60)을 형성하는 단계(S80)에서는 상기 금속산화물층(50)을 제거한 다음 솔더층(60)을 형성한다.In the forming of the solder layer 60 (S80), the metal oxide layer 50 is removed and then the solder layer 60 is formed.
상기 솔더층(60)은 솔더(solder)를 증착하거나 도금하여 얇게 형성한다.The solder layer 60 is formed thin by depositing or plating a solder.
상기 솔더층(60)의 경우에도 금속으로 형성되므로 열저항이 낮다.Since the solder layer 60 is also formed of a metal, the thermal resistance is low.
상기에서 몰딩층(30)을 형성하는 단계(S60)를 진행한 다음, 상기 금속산화물층(50)을 제거하는 단계(S70)를 생략하고, 곧바로 상기 솔더층(60)을 형성하는 단계(S80)를 진행하는 것도 가능하다.After the forming of the molding layer 30 proceeds (S60), the step of removing the metal oxide layer 50 (S70) is omitted, and immediately forming the solder layer 60 (S80) It is also possible to proceed.
상기와 같이 진행하게 되면, 도 5에 나타낸 바와 같이, 상기 금속산화물층(50)의 저면에 솔더층(60)이 형성된다.When proceeding as described above, as shown in Figure 5, the solder layer 60 is formed on the bottom surface of the metal oxide layer 50.
상기 방열판(90)에 탑재하는 단계(S90)에서는 솔더층(60)이 형성된 상태로 방열판(90)에 탑재한다.In the step S90 of mounting on the heat sink 90, the solder layer 60 is mounted on the heat sink 90.
상기에서 솔더층(60)을 형성하게 되면, 방열판(90)에 직접 솔더 본딩(solder bonding)이 가능하다.When the solder layer 60 is formed in the above, direct solder bonding to the heat sink 90 is possible.
그리고 상기 몰딩층(30)을 형성하는 단계(S60) 또는 금속산화물층(50)을 제거하는 단계(S70)에서 방열판(90)에 탑재하는 단계(S90)로 진행하는 것도 가능하다.In addition, it is possible to proceed to step S90 of forming the molding layer 30 or mounting of the heat sink 90 in step S70 of removing the metal oxide layer 50.
예를 들면, 상기 몰딩층(30)을 형성하는 단계(S60)를 진행한 다음, 상기 금속산화물층(50)을 제거하는 단계(S70)와 상기 솔더층(60)을 형성하는 단계(S80)를 생략하고, 곧바로 방열판(90)에 탑재하는 단계(S90)를 진행하는 것도 가능하다.For example, after the forming of the molding layer 30 is performed (S60), the removing of the metal oxide layer 50 (S70) and the forming of the solder layer 60 (S80). Omitting, it is also possible to proceed directly to the step (S90) to be mounted on the heat sink (90).
또 상기 몰딩층(30)을 형성하는 단계(S60)와 상기 금속산화물층(50)을 제거하는 단계(S70)를 진행한 다음, 상기 솔더층(60)을 형성하는 단계(S80)를 생략하고, 곧바로 방열판(90)에 탑재하는 단계(S90)를 진행하는 것도 가능하다.In addition, after forming the molding layer 30 (S60) and removing the metal oxide layer 50 (S70), the step of forming the solder layer 60 is omitted (S80). In addition, it is also possible to proceed to step (S90) to be mounted on the heat sink 90 immediately.
상기에서 솔더층(60)을 형성하는 단계(S80)를 생략하는 경우에는 방열판(90)에 탑재하기 위한 솔더본딩이나 접착, 볼트 등의 방법을 사용하여 탑재를 행한다.In the case where the step (S80) of forming the solder layer 60 is omitted, the mounting is performed using a method such as solder bonding, bonding, or bolt for mounting on the heat sink 90.
상기와 같이 방열판(90)을 설치하면, 광소자(20)에서 발생하는 열이 바로 방열판(90)을 통하여 방출되므로, 열의 방출효율을 극대화하는 것이 가능하다.When the heat sink 90 is installed as described above, since heat generated in the optical device 20 is directly discharged through the heat sink 90, it is possible to maximize heat dissipation efficiency.
또 광소자(30)와 방열판(90) 사이의 접점이 하나만 존재하므로, 접점온도를 최소화하는 것이 가능하다.In addition, since there is only one contact between the optical device 30 and the heat sink 90, it is possible to minimize the contact temperature.
상기에서는 본 발명에 따른 광소자 패키지 모듈 및 그 제조방법의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러가지로 변형하여 실시하는 것이 가능하고, 이 또한 본 발명의 범위에 속한다.In the above, a preferred embodiment of an optical device package module and a method of manufacturing the same according to the present invention have been described. However, the present invention is not limited thereto and is variously modified within the scope of the claims and the detailed description of the invention and the accompanying drawings. It is possible to do this and this also belongs to the scope of the present invention.

Claims (18)

  1. 반사경을 가지며 상하로 관통되는 하나 또는 복수의 실장공간이 형성되는 금속기판과,A metal substrate having a reflector and having one or more mounting spaces penetrating up and down;
    상기 금속기판의 실장공간 내에 위치하여 실장되는 광소자와,An optical element mounted in the mounting space of the metal substrate;
    상기 금속기판의 실장공간 내부를 채우며 형성되고 실장된 광소자를 보호 지지하는 몰딩층을 포함하는 광소자 패키지 모듈.And a molding layer filling the inside of the mounting space of the metal substrate and protecting the mounted optical device.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 금속기판의 상면에 절연층을 사이에 두고 형성되는 연결배선과, 상기 연결배선과 실장공간에 실장된 광소자의 전극을 연결하는 본딩와이어를 더 포함하는 광소자 패키지 모듈.And a bonding wire formed on an upper surface of the metal substrate with an insulating layer interposed therebetween, and a bonding wire connecting the connection wire and an electrode of an optical device mounted in a mounting space.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 광소자의 상면에만 전극을 형성하고, 양 전극을 모두 본딩와이어를 통하여 금속기판의 상면에 형성되는 연결배선과 연결하는 광소자 패키지 모듈.And an electrode formed only on an upper surface of the optical device, and connecting both electrodes to a connection wiring formed on the upper surface of the metal substrate through bonding wires.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 금속기판의 실장공간 벽면에 금속을 이용하여 반사층을 형성하고, 상기 반사층과 금속기판 사이에는 절연층을 형성하는 광소자 패키지 모듈.And a reflective layer is formed on the wall of the mounting space of the metal substrate using a metal, and an insulating layer is formed between the reflective layer and the metal substrate.
  5. 청구항 2에 있어서,The method according to claim 2,
    상기 광소자의 상면과 하면에 분리하여 전극을 형성하고, 상면의 전극은 본딩와이어를 통하여 금속기판의 상면에 형성되는 연결배선 중의 하나와 연결하고, 하면의 전극은 광소자의 저면까지 연장하여 형성되는 다른 하나의 연결배선에 연결하는 광소자 패키지 모듈.An electrode is formed on the upper and lower surfaces of the optical device, and the electrode on the upper surface is connected to one of the connection wires formed on the upper surface of the metal substrate through a bonding wire, and the electrode on the lower surface extends to the bottom of the optical device. Optical device package module connected to one connection wiring.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 금속기판 및 광소자의 저면에 위치하는 금속산화물층을 더 포함하는 광소자 패키지 모듈.And a metal oxide layer disposed on the bottom surface of the metal substrate and the optical device.
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 금속산화물층은 10∼100㎛의 두께로 형성하는 광소자 패키지 모듈.And the metal oxide layer is formed to a thickness of 10 ~ 100㎛.
  8. 청구항 6에 있어서,The method according to claim 6,
    상기 금속산화물층의 저면에 위치하는 솔더층을 더 포함하는 광소자 패키지 모듈.An optical device package module further comprises a solder layer located on the bottom surface of the metal oxide layer.
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 금속기판 및 광소자의 저면에 위치하는 솔더층을 더 포함하는 광소자 패키지 모듈.And a solder layer disposed on the bottom surface of the metal substrate and the optical device.
  10. 청구항 1 내지 청구항 9 중 어느 한항에 있어서,The method according to any one of claims 1 to 9,
    상기 몰딩층의 반대쪽인 금속기판 및 광소자의 저면쪽에 설치되는 방열판을 더 포함하는 광소자 패키지 모듈.And a heat dissipation plate disposed on a metal substrate opposite to the molding layer and a bottom surface of the optical device.
  11. 판형상의 금속기판을 준비하는 단계와,Preparing a plate-shaped metal substrate;
    상기 금속기판을 한쪽면에서 10∼100㎛의 깊이까지 산화하여 금속산화물층을 형성하는 단계와,Oxidizing the metal substrate to a depth of 10 to 100 μm on one side to form a metal oxide layer;
    상기 금속기판의 일부를 금속산화물층의 반대쪽에서 금속산화물층까지 제거하여 반사경을 갖는 실장공간을 형성하는 단계와,Removing a portion of the metal substrate from the opposite side of the metal oxide layer to the metal oxide layer to form a mounting space having a reflector;
    상기 금속기판의 상면에 절연층을 형성하고 연결배선을 형성하는 단계와,Forming an insulating layer on the upper surface of the metal substrate and forming a connection wiring;
    상기 금속기판의 실장공간에 광소자를 실장하고 광소자의 전극과 연결배선을 연결하는 단계와,Mounting an optical device in a mounting space of the metal substrate and connecting an electrode and a connection wiring of the optical device;
    상기 실장공간을 채우며 광소자와 연결배선을 보호하도록 덮여지는 몰딩층을 형성하는 단계를 포함하는 광소자 패키지 모듈 제조방법.And forming a molding layer filling the mounting space and covering the optical device and the connection wiring.
  12. 청구항 11에 있어서,The method according to claim 11,
    상기 광소자의 상면에만 전극이 형성되면 양 전극을 모두 본딩와이어를 통하여 금속기판의 상면에 형성되는 연결배선과 연결하는 광소자 패키지 모듈 제조방법.If the electrode is formed only on the upper surface of the optical device, both electrodes are connected to the connection wiring formed on the upper surface of the metal substrate through a bonding wire.
  13. 청구항 12에 있어서,The method according to claim 12,
    상기 연결배선을 형성할 때에 상기 금속기판의 실장공간 벽면에 금속을 이용하여 반사층을 형성하는 광소자 패키지 모듈 제조방법.And forming a reflective layer on a wall of the mounting space of the metal substrate when the connection wiring is formed.
  14. 청구항 11에 있어서,The method according to claim 11,
    상기 광소자의 상면과 하면에 분리하여 전극을 형성하면 상면의 전극은 본딩와이어를 통하여 금속기판의 상면에 형성되는 연결배선 중의 하나와 연결하고, 하면의 전극은 광소자의 저면까지 연장하여 형성되는 다른 하나의 연결배선에 연결하는 광소자 패키지 모듈 제조방법.When the electrode is formed separately from the upper and lower surfaces of the optical device, the upper electrode is connected to one of the connection wires formed on the upper surface of the metal substrate through a bonding wire, and the lower electrode is extended to the bottom of the optical device. Optical device package module manufacturing method for connecting to the connection wiring.
  15. 청구항 11에 있어서,The method according to claim 11,
    상기 몰딩층을 형성한 다음 상기 금속산화물층을 제거하는 단계를 더 포함하는 광소자 패키지 모듈 제조방법.And forming the molding layer and then removing the metal oxide layer.
  16. 청구항 15에 있어서,The method according to claim 15,
    상기 금속산화물층을 제거한 다음 상기 금속기판 및 광소자의 저면에 솔더층을 형성하는 단계를 더 포함하는 광소자 패키지 모듈 제조방법.Removing the metal oxide layer and forming a solder layer on the bottom surface of the metal substrate and the optical device.
  17. 청구항 11에 있어서,The method according to claim 11,
    상기 몰딩층을 형성한 다음 상기 금속산화물층의 저면에 솔더층을 형성하는 단계를 더 포함하는 광소자 패키지 모듈 제조방법.And forming a solder layer on a bottom surface of the metal oxide layer after forming the molding layer.
  18. 청구항 11 내지 청구항 17 중 어느 한항에 있어서,The method according to any one of claims 11 to 17,
    상기 광소자가 실장된 금속기판을 방열판에 탑재하는 단계를 더 포함하는 광소자 패키지 모듈 제조방법.And mounting the metal substrate on which the optical device is mounted on a heat sink.
PCT/KR2010/002666 2010-04-28 2010-04-28 Photonic device package module and manufacturing method thereof WO2011136404A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2010/002666 WO2011136404A1 (en) 2010-04-28 2010-04-28 Photonic device package module and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2010/002666 WO2011136404A1 (en) 2010-04-28 2010-04-28 Photonic device package module and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2011136404A1 true WO2011136404A1 (en) 2011-11-03

Family

ID=44861680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/002666 WO2011136404A1 (en) 2010-04-28 2010-04-28 Photonic device package module and manufacturing method thereof

Country Status (1)

Country Link
WO (1) WO2011136404A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106338011A (en) * 2016-08-31 2017-01-18 长兴友畅电子有限公司 LED with heat and electricity separation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150408A (en) * 2003-11-17 2005-06-09 Sumitomo Electric Ind Ltd Light source apparatus and package for mounting light emitting element
JP2005167026A (en) * 2003-12-03 2005-06-23 Sharp Corp Semiconductor light emitting device
KR100723247B1 (en) * 2006-01-10 2007-05-29 삼성전기주식회사 Chip coating type light emitting diode package and fabrication method thereof
JP2007165507A (en) * 2005-12-13 2007-06-28 Fujikura Ltd Substrate for mounting light emitting element and its manufacturing method, and light emitting element module, display device, lighting device, and traffic signal
JP2007180525A (en) * 2005-12-01 2007-07-12 Matsushita Electric Ind Co Ltd Light-emitting module and manufacturing method thereof, and backlight apparatus using the light-emitting module
KR20090102662A (en) * 2008-03-25 2009-09-30 닛토덴코 가부시키가이샤 Resin sheet for encapsulating optical semiconductor element and optical semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150408A (en) * 2003-11-17 2005-06-09 Sumitomo Electric Ind Ltd Light source apparatus and package for mounting light emitting element
JP2005167026A (en) * 2003-12-03 2005-06-23 Sharp Corp Semiconductor light emitting device
JP2007180525A (en) * 2005-12-01 2007-07-12 Matsushita Electric Ind Co Ltd Light-emitting module and manufacturing method thereof, and backlight apparatus using the light-emitting module
JP2007165507A (en) * 2005-12-13 2007-06-28 Fujikura Ltd Substrate for mounting light emitting element and its manufacturing method, and light emitting element module, display device, lighting device, and traffic signal
KR100723247B1 (en) * 2006-01-10 2007-05-29 삼성전기주식회사 Chip coating type light emitting diode package and fabrication method thereof
KR20090102662A (en) * 2008-03-25 2009-09-30 닛토덴코 가부시키가이샤 Resin sheet for encapsulating optical semiconductor element and optical semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106338011A (en) * 2016-08-31 2017-01-18 长兴友畅电子有限公司 LED with heat and electricity separation

Similar Documents

Publication Publication Date Title
WO2012077884A1 (en) Method of fabricating semiconductor device using gang bonding and semiconductor device fabricated by the same
WO2011122846A2 (en) Optical device and method for manufacturing same
WO2009142391A2 (en) Light-emitting device package and method of manufacturing the same
WO2016032167A1 (en) Light-emitting element package
WO2012108636A2 (en) Light emitting device having wavelength converting layer
WO2014157905A1 (en) Light-emitting element package
WO2017078399A1 (en) Light-emitting element and lighting device having same
WO2013129820A1 (en) Light emitting device package
WO2011118934A2 (en) Light emitting diode device and lighting device using the same
WO2016064216A1 (en) Supporting substrate for semiconductor device, semiconductor apparatus comprising same, and method for manufacturing same
WO2020080779A1 (en) Light emitting diode and manufacturing method of light emitting diode
WO2019144854A1 (en) Package body and light emitting device using same
WO2013024916A1 (en) Wavelength conversion chip for a light emitting diode, and method for manufacturing same
WO2013036061A1 (en) Lighting device
WO2012002710A2 (en) Optical element device
WO2014084693A1 (en) Light-emitting diode, and method for manufacturing same
WO2011136404A1 (en) Photonic device package module and manufacturing method thereof
WO2019112250A1 (en) Light-emitting element package and light source device
WO2011115395A2 (en) Optical element device and manufacturing method thereof
WO2011122847A2 (en) Optical device module and method for fabricating same
WO2011129615A2 (en) Light-emitting module and method for manufacturing the light-emitting module
WO2013133473A1 (en) Led lamp module having heatsink board structure and method of manufacturing same
WO2015156522A1 (en) Printed circuit board and light-emitting device including same
WO2013151391A1 (en) Method for manufacturing semiconductor device structure, and semiconductor device structure using same
WO2017217672A1 (en) Semiconductor light emitting device and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10850772

Country of ref document: EP

Kind code of ref document: A1