WO2017217672A1 - Semiconductor light emitting device and manufacturing method therefor - Google Patents

Semiconductor light emitting device and manufacturing method therefor Download PDF

Info

Publication number
WO2017217672A1
WO2017217672A1 PCT/KR2017/005511 KR2017005511W WO2017217672A1 WO 2017217672 A1 WO2017217672 A1 WO 2017217672A1 KR 2017005511 W KR2017005511 W KR 2017005511W WO 2017217672 A1 WO2017217672 A1 WO 2017217672A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting device
semiconductor light
encapsulant
device chip
Prior art date
Application number
PCT/KR2017/005511
Other languages
French (fr)
Korean (ko)
Inventor
김경민
정겨울
조영관
한정우
Original Assignee
주식회사 세미콘라이트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160073203A external-priority patent/KR101807531B1/en
Priority claimed from KR1020160078165A external-priority patent/KR101831207B1/en
Priority claimed from KR1020160081515A external-priority patent/KR20180015306A/en
Application filed by 주식회사 세미콘라이트 filed Critical 주식회사 세미콘라이트
Publication of WO2017217672A1 publication Critical patent/WO2017217672A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Definitions

  • the present disclosure generally relates to a semiconductor light emitting device and a method of manufacturing the same, and more particularly, to a semiconductor light emitting device of a chip scale package (CSP) type and a method of manufacturing the same.
  • CSP chip scale package
  • FIG. 1 is a view showing an example of a conventional semiconductor light emitting device chip.
  • the semiconductor light emitting device chip may include a growth substrate 10 (eg, a sapphire substrate), a growth layer 10, a buffer layer 20, a first semiconductor layer 30 having a first conductivity (eg, an n-type GaN layer), and electrons.
  • the active layer 40 eg, INGaN / (In) GaN MQWs
  • the second semiconductor layer 50 eg, p-type GaN layer having a second conductivity different from the first conductivity are sequentially And a transmissive conductive film 60 for spreading current and an electrode 70 serving as a bonding pad, and serving as a bonding pad on the etched and exposed first semiconductor layer 30.
  • An electrode 80 for example, a Cr / Ni / Au laminated metal pad, is formed.
  • the semiconductor light emitting device of the form as shown in FIG. 1 is particularly called a lateral chip.
  • the growth substrate 10 side is electrically connected to the outside becomes a mounting surface.
  • FIG. 2 is a view showing another example of the semiconductor light emitting device chip disclosed in US Patent No. 7,262,436. For convenience of description, reference numerals have been changed.
  • the semiconductor light emitting device chip may include a growth substrate 10 and a growth substrate 10, a first semiconductor layer 30 having a first conductivity, an active layer 40 that generates light through recombination of electrons and holes, and a first conductivity.
  • the second semiconductor layer 50 having a second conductivity different from that of the second semiconductor layer 50 is sequentially deposited, and three electrode layers 90, 91, 92 are formed on the growth substrate 10 to reflect light.
  • the first electrode film 90 may be an Ag reflecting film
  • the second electrode film 91 may be a Ni diffusion barrier film
  • the third electrode film 92 may be an Au bonding layer.
  • An electrode 80 serving as a bonding pad is formed on the etched and exposed first semiconductor layer 30.
  • a semiconductor light emitting device chip of the same type as that of FIG. 2 is particularly referred to as a flip chip.
  • the electrode 80 formed on the first semiconductor layer 30 is at a lower level than the electrode films 90, 91, and 92 formed on the second semiconductor layer, but may be formed at the same height. You can also do that.
  • the height reference may be the height from the growth substrate 10.
  • FIG 3 is a view showing an example of a conventional semiconductor light emitting device.
  • the semiconductor light emitting device 100 includes a vertical semiconductor light emitting chip 150 in the lead frames 110 and 120, the mold 130, and the cavity 140, and the cavity 140. Is filled with the encapsulant 170 containing the wavelength converting member 160.
  • the lower surface of the vertical semiconductor light emitting device chip 150 is electrically connected directly to the lead frame 110, and the upper surface is electrically connected to the lead frame 120 by the wire 180.
  • a portion of the light emitted from the vertical semiconductor light emitting device chip 150 may excite the wavelength conversion material 160 to produce light of different colors, and two different lights may be mixed to form white light.
  • the semiconductor light emitting device chip 150 may generate blue light, and light generated by being excited by the wavelength converting material 160 may be yellow light, and blue light and yellow light may be mixed to produce white light.
  • 3 illustrates a semiconductor light emitting device using the vertical semiconductor light emitting device chip 150, but a semiconductor light emitting device having a shape similar to that of FIG. 3 may be manufactured using the semiconductor light emitting device chips illustrated in FIGS. 1 and 2. have.
  • a semiconductor light emitting device of the type described in FIG. 3 is generally called a semiconductor light emitting device of a package type, and a semiconductor light emitting device having a semiconductor light emitting device chip size is called a semiconductor light emitting device of a chip scale package (CSP) type.
  • CSP chip scale package
  • Related to the CSP type semiconductor light emitting device is disclosed in Korean Patent Laid-Open No. 2014-0127457. Recently, as the size of the semiconductor light emitting device is reduced, development of a CSP type semiconductor light emitting device has been actively performed, and the present disclosure is characterized by improving light extraction efficiency in the CSP type semiconductor light emitting device.
  • a semiconductor light emitting device chip in a semiconductor light emitting device, a semiconductor light emitting device chip; a plurality of semiconductors including an active layer that generates light by recombination of electrons and holes A semiconductor light emitting device chip having a layer and an electrode electrically connected to the plurality of semiconductor layers; A first encapsulation material positioned on the semiconductor light emitting device chip; A second encapsulant positioned on a side of the semiconductor light emitting device chip and under the first encapsulant; And a third encapsulation material positioned on a side surface of the semiconductor light emitting device chip and under the second encapsulation material.
  • a method of manufacturing a semiconductor light emitting device comprising: preparing a first encapsulant; Placing a plurality of semiconductor light emitting device chips on the first encapsulation material; placing a plurality of semiconductor light emitting device chips on the first encapsulation material such that an active layer of the semiconductor light emitting device chip is positioned between the first encapsulation material and an electrode of the semiconductor light emitting device chip.
  • Laying step Forming a second encapsulant having a convex portion downward between the semiconductor light emitting device chip and the semiconductor light emitting device chip; Forming a third encapsulant on the convex portion formed in the second encapsulant; And cutting a semiconductor light emitting device chip between the semiconductor light emitting device chip and the semiconductor light emitting device chip.
  • a semiconductor light emitting device chip in a semiconductor light emitting device, a semiconductor light emitting device chip; a plurality of semiconductors including an active layer for generating light by recombination of electrons and holes A semiconductor light emitting device chip having a layer and an electrode electrically connected to the plurality of semiconductor layers; A first encapsulating material positioned on the semiconductor light emitting device chip; a first encapsulating material including a cavity surrounded by the first encapsulating material with a top surface of the first encapsulating material convex downward; And a translucent second encapsulant formed in the cavity of the first encapsulant; a second encapsulant having an upper surface of the second encapsulant convex upward.
  • a method of manufacturing a semiconductor light emitting device comprising: providing a mask having at least one opening formed on a base; Placing a semiconductor light emitting device chip on a base exposed by each opening of the mask; Forming a first encapsulant in each opening by using the mask as a dam; the material forming the first encapsulant climbs up the inner surface of the mask forming the opening, and the upper surface of the first encapsulant is lowered. Forming a first encapsulant to be convex to form a cavity surrounded by the first encapsulant; And forming a second encapsulation material having a top surface convex in a cavity surrounded by the first encapsulation material.
  • a method of manufacturing a semiconductor light emitting device is provided.
  • a semiconductor light emitting device chip in a semiconductor light emitting device, a semiconductor light emitting device chip; a plurality of semiconductors including an active layer for generating light by recombination of electrons and holes A semiconductor light emitting device chip having a layer and an electrode electrically connected to the plurality of semiconductor layers; A first encapsulation material positioned on the semiconductor light emitting device chip; a first encapsulation material including a cavity surrounded by the first encapsulation material with a top surface of the first encapsulation material convex downward; And a second encapsulation material formed in a cavity of the first encapsulation material and reflecting light emitted from the semiconductor light emitting device chip.
  • a method of manufacturing a semiconductor light emitting device comprising: providing a mask having at least one opening formed on a base; Placing a semiconductor light emitting device chip on a base exposed by each opening of the mask; Forming a first encapsulant in each opening by using the mask as a dam; as a material forming the first encapsulant rises up the inner surface of the mask, the upper surface of the first encapsulant is convex downward, thereby forming a first encapsulant. Forming a first encapsulant to form a cavity surrounded by the encapsulant; And forming a second encapsulation material that reflects light in a cavity surrounded by the first encapsulation material.
  • FIG. 1 is a view showing an example of a conventional semiconductor light emitting device chip
  • FIG. 2 is a view showing another example of the semiconductor light emitting device chip shown in US Patent No. 7,262,436;
  • FIG. 3 is a view showing an example of a conventional semiconductor light emitting device
  • FIG. 5 is a view illustrating various embodiments of a semiconductor light emitting device according to the present disclosure.
  • FIG. 6 is a view showing the advantages of the semiconductor light emitting device according to the present disclosure.
  • FIG. 7 is a view showing an example of a method of manufacturing a semiconductor light emitting device according to the present disclosure.
  • FIG. 8 is a view showing another example of a method of manufacturing a semiconductor light emitting device according to the present disclosure.
  • FIG. 9 is a view showing another example of a method of manufacturing a semiconductor light emitting device according to the present disclosure.
  • FIGS. 10 to 14 are views for explaining an example of a method of manufacturing a semiconductor light emitting device according to the present disclosure
  • 15 is a view for explaining examples of a form in which a material forming an encapsulant is supplied to an opening and cured in a method of manufacturing a semiconductor light emitting device according to the present disclosure
  • 16 is a view for explaining another example of the method of manufacturing the semiconductor light emitting device according to the present disclosure.
  • 17 is a view for explaining another example of a method of manufacturing a semiconductor light emitting device according to the present disclosure.
  • 19 is a view illustrating an effect of the top surface of the first encapsulant being convex downward in the semiconductor light emitting device according to the present disclosure
  • FIG. 20 is a view showing an example of a method of manufacturing a semiconductor light emitting device disclosed in FIG. 18;
  • FIG. 21 is a view illustrating various embodiments of a semiconductor light emitting device disclosed in FIG. 18;
  • FIG. 22 illustrates an example of a semiconductor light emitting device according to the present disclosure
  • FIG. 23 is a view showing an application example of the semiconductor light emitting device disclosed in FIG. 22;
  • FIG. 24 is a view illustrating an example of a method of manufacturing a semiconductor light emitting device disclosed in FIG. 22;
  • FIG. 25 is a view illustrating various embodiments of a semiconductor light emitting device disclosed in FIG. 22;
  • FIG. 26 is a view illustrating an effect according to the degree of convex upper surface of a first encapsulant in a semiconductor light emitting device according to the present disclosure
  • FIG. 27 is a view showing another example of a semiconductor light emitting device according to the present disclosure.
  • FIG. 28 is a view showing a light emitting experimental example according to the planar shape of the semiconductor light emitting device according to the present disclosure.
  • FIG. 4 is a diagram illustrating an example of a semiconductor light emitting device according to the present disclosure.
  • the semiconductor light emitting device 200 includes a semiconductor light emitting device chip including a plurality of semiconductor layers including an active layer 211 that generates light by recombination of electrons and holes, and an electrode 212 electrically connected to the plurality of semiconductor layers.
  • a semiconductor light emitting device chip including a plurality of semiconductor layers including an active layer 211 that generates light by recombination of electrons and holes, and an electrode 212 electrically connected to the plurality of semiconductor layers.
  • 210 a first encapsulation member 220 disposed on the semiconductor light emitting device chip 210, a side encapsulation 213 of the semiconductor light emitting device chip 210, and a second encapsulation material disposed under the first encapsulation material 220.
  • a third encapsulation member 240 positioned under the side surface 213 and the second encapsulation member 230 of the semiconductor light emitting device chip 210.
  • the semiconductor light emitting device chip 210 is preferably a flip chip in which the electrode 212 is positioned below the semiconductor light emitting device chip 210, and the electrode 212 is exposed in the direction of the third encapsulant 250.
  • the active layer 211 is exaggerated for clarity, and the actual active layer is a few um thick and is formed near the electrode 212.
  • the first encapsulant 220 may be formed by applying a light-transmitting material including a wavelength conversion material made of at least one of YAG, Silicate, and Nitride, and details thereof will be described with reference to FIG. 7.
  • the light transmissive material may be at least one of an epoxy resin and a silicone resin.
  • the first encapsulant 220 may be formed of a sheet including a wavelength converting material.
  • the sheet containing the wavelength converting material is generally known as a phosphor sheet.
  • the second encapsulant 230 may be formed of one of a light transmissive material including a light transmissive material and a wavelength converting material.
  • the light transmissive material may be at least one of an epoxy resin and a silicone resin.
  • the second encapsulant 230 may act as an adhesive when there is no adhesive for fixing the semiconductor light emitting device chip 210 to the first encapsulant 220.
  • the third encapsulant 240 may be formed of a colored reflective material. For example, it may be formed of a white silicone resin.
  • the third encapsulant 240 reflects the light 260 emitted from the side surface 213 of the semiconductor light emitting device chip 210 to exit the light 260 upward.
  • the interface 250 between the second encapsulant 230 and the third encapsulant 240 forms a curve, in particular a convex upward curve. Advantages of the present disclosure are described in FIG. 6.
  • FIG. 5 is a view illustrating various embodiments of a semiconductor light emitting device according to the present disclosure.
  • the semiconductor light emitting device may have a semiconductor light emitting device having various structures as shown in FIGS. 5 (a) to 5 (b) as well as the structure of FIG. 4.
  • the semiconductor light emitting device 300 of FIG. 5A the shortest distance 331 between the third encapsulation member 340 and the first encapsulation member 320, the third encapsulation member 340, and the semiconductor light emitting diode are emitted.
  • semiconductor light emitting devices having various structures such as the semiconductor light emitting devices 200 and 400 of FIGS. 4 and 5 (b), may be possible.
  • the first encapsulant 220 and the third encapsulant 340 have a shortest distance between the first encapsulant 220 and the third encapsulant 240 to be zero.
  • the shortest distance between the first encapsulant 420 and the third encapsulant 440 is greater than 0 as shown in FIG.
  • the semiconductor light emitting device 400 is formed to be large, when the planar shape of the semiconductor light emitting device 400 is a quadrangle, a five-side light emitting semiconductor light emitting device 400 may be obtained in which light is extracted to the upper surface and four side surfaces of the semiconductor light emitting device 400.
  • the second encapsulation material 430 preferably includes a wavelength conversion material. However, it is preferable that there is no second encapsulant 230, 330, or 430 between the third encapsulant 240, 340, 440 and the side surfaces 213, 311, 411 of the semiconductor light emitting device chip 210, 310, 410. The reason will be described in FIG. 6.
  • FIG. 6 is a view showing the advantages of the semiconductor light emitting device according to the present disclosure.
  • the third encapsulant 240 of the semiconductor light emitting device 200 reflects the light 260 emitted from the side surface 213 of the semiconductor light emitting device chip 210 to exit the light 260 upward.
  • the light 260 emitted from the side surface 213 of the semiconductor light emitting device chip 210 is prevented from exiting toward the electrode of the semiconductor light emitting device chip 210 and the light is widened upward due to the convex interface 250. Can spread out.
  • the light extraction efficiency toward the upper direction of the semiconductor light emitting device is improved.
  • the second encapsulant 530 is positioned between the side surface 511 of the semiconductor light emitting device chip 510 and the third encapsulant 540 in the semiconductor light emitting device 500 as illustrated in FIG. 6B.
  • the second encapsulation material 630 functions only as an adhesive for fixing the semiconductor light emitting device chip 610 to the first encapsulation material 620, and the third encapsulation material.
  • the third encapsulation material When not formed between the 640 and the semiconductor light emitting device chip 610, most of the light emitted from the side surface 611 of the semiconductor light emitting device chip 610 is reflected by the third encapsulant 640 and moved upward.
  • FIG. 7 is a view illustrating an example of a method of manufacturing a semiconductor light emitting device according to the present disclosure.
  • the first encapsulant 700 is a sheet containing a wavelength converting material.
  • the first encapsulation material is formed of a light transmissive material including a wavelength conversion material composed of at least one of YAG, Silicate, and Nitride
  • the first encapsulation material is applied by curing the light transmissive material including the wavelength conversion material on a substrate. You can prepare. Thereafter, a plurality of semiconductor light emitting device chips 710 are placed on the first encapsulant 600 (S2).
  • the active layer 611 of the semiconductor light emitting device chip 710 is formed of the first encapsulation material 700 and the semiconductor light emitting device chip 710.
  • a plurality of semiconductor light emitting device chips 710 are placed on the first encapsulant 700 so as to be positioned between the electrodes 712.
  • an adhesive layer may be provided between the first encapsulant 700 and the semiconductor light emitting device chip 710 in order to fix the semiconductor light emitting device chip 710 without moving on the first encapsulation material 700.
  • a second encapsulant 720 is formed between the semiconductor light emitting device chip 710 and the semiconductor light emitting device chip 710 (S3).
  • a material for forming the second encapsulant 720 in a liquid state may be the semiconductor light emitting device chip 610.
  • the semiconductor light emitting device chip 710 The material forming the second encapsulant 720 in the liquid state is taken up the side surface 713 of the semiconductor light emitting device chip 710, but is not formed on the semiconductor light emitting device chip 710 due to the surface tension.
  • the second encapsulant 720 is in the form of a convex downward portion.
  • the third encapsulation member 730 is formed in the convex portion formed on the second encapsulation member 720 (S4).
  • the third encapsulant 730 is formed after the second encapsulant 720 is cured. Thereafter, the semiconductor light emitting device chip 710 and the semiconductor light emitting device chip 710 are cut along the cutting line 740 (S5). According to the position of the cutting line 740 and the degree to which the second encapsulant 720 rises up the side surface 713 of the semiconductor light emitting device chip 710, various types of semiconductor light emitting devices 200 shown in FIGS. 4 and 5 may be used. 300, 400) can be made. For example, when cutting the position of the cutting line 640 by moving in the left direction, the semiconductor light emitting device 750 indicated by the dotted line has the first encapsulant 320 and the third encapsulant 340 as shown in FIG. ), The semiconductor light emitting device 300 having the shortest distance 331 between the structures of FIG. 4 or 5 (b) can be obtained.
  • FIG. 8 is a view showing another example of a method of manufacturing a semiconductor light emitting device according to the present disclosure.
  • a material for forming the liquid second encapsulant 810 is coated on the first encapsulant 800 (S2-1).
  • the coating thickness of the material forming the second encapsulant 810 is preferably 20 ⁇ m or less.
  • the structure of the semiconductor light emitting device can be made various according to the coating thickness, and the characteristics according to the coating thickness will be described with reference to FIG. 9.
  • the plurality of semiconductor light emitting device chips 820 are placed on the liquid second encapsulant 810 (S3-1).
  • the active layer 821 of the semiconductor light emitting device chip 820 may be formed of the first encapsulant 800 and the semiconductor light emitting device chip 820.
  • a plurality of semiconductor light emitting device chips 820 are placed on the second encapsulant 810 so as to be positioned between the electrodes 822.
  • a portion of the second encapsulant 810 between the first encapsulating material 800 and the semiconductor light emitting device chip 820 may come out from the arrow.
  • the second encapsulant 810 moves up the side of the semiconductor light emitting device chip 820 to be convex downward. However, due to the surface tension, the second encapsulant 810 does not rise above the semiconductor light emitting device chip 820. Thereafter, the third encapsulation member 830 is formed on the convex portion formed on the second encapsulation member 810 (S4). Preferably, the third encapsulant 830 is formed after the second encapsulant 810 is cured. Thereafter, the semiconductor light emitting device chip 820 and the semiconductor light emitting device chip 820 are cut along the cutting line 840 (S5). Compared to FIG. 7, the second encapsulant 810 itself serves as an adhesive for fixing the semiconductor light emitting device chip 820 to the first encapsulant 800.
  • FIG. 9 is a view showing another example of a method of manufacturing a semiconductor light emitting device according to the present disclosure.
  • FIG. 9 is a coating thickness 811 of the second encapsulant 810 when the material for forming the liquid second encapsulant 810 is coated on the first encapsulant 800 in FIG. 8. It is shown that the thickness 824 of the element chip 820 is set to 0.8 or less (S2-2). When the thickness of the coating is thick, the shortest distance 831 between the first encapsulant 800 and the third encapsulant 830 is increased, and thus the semiconductor light emitting device 400 having the structure as shown in FIG. 5 (b) can be manufactured. have. If necessary, the third encapsulant 830 may not be formed. Except as described in FIG. 9, the manufacturing method described in FIG. 9 is substantially the same as the manufacturing method described in FIG. 8.
  • FIG. 10 to 14 are views for explaining an example of a method of manufacturing a semiconductor light emitting device according to the present disclosure.
  • the method of manufacturing a semiconductor light emitting device as shown in FIG. 10, first, one on the base 201 is illustrated. The mask 301 with the above opening 305 is provided. Then, as shown in Figure 12 (b), each opening 305 using the element transfer device 501 to recognize the shape, pattern, or boundary of the mask 301 and correct the position and angle to place the element. The semiconductor light emitting device chip 101 is placed on the exposed base 201. Next, as shown in FIG. 14, a material for forming the encapsulant 170 is supplied to each opening 305 using the mask 301 as a dam.
  • a mask 301 is first placed on the base 201.
  • the mask 301 may be recognized as a pattern for correcting a position or an angle at which the device transfer device 501 is to place the semiconductor light emitting device chip 101, and functions as a dam of the encapsulant 170.
  • a flip chip is suitable as the semiconductor light emitting device chip 101, but it does not exclude a lateral chip or a vertical chip. As the flip chip device, the semiconductor light emitting device chip 101 is shown in Figs.
  • the base 201 may be a rigid metal plate or a nonmetal plate, as shown in FIG. 11 (a), or may be a flexible film or tape, as shown in FIG. 11 (b).
  • the metal plate is not particularly limited, and for example, Al, Cu, Ag, Cu-Al alloys, Cu-Ag alloys, Cu-Au alloys, SUS (stainless steel), and the like may be used. Of course you can use it. Plastics can be used as nonmetallic plates, and various colors and light reflectances can be selected.
  • the film or tape is also not particularly limited and is preferably sticky or adhesive and has heat resistance. For example, heat resistant tape, blue tape, or the like may be used, and various colors or light reflectances may be selected.
  • the base 201 on which the semiconductor light emitting device chip 101 is arranged may not be a semiconductor substrate or another expensive substrate.
  • the mask 301 guides the arrangement of the semiconductor light emitting device chip 101, an additional pattern forming process is not required for the base 201.
  • the electrodes 80 and 70 of the semiconductor light emitting device chip 101 shown in FIG. 13 may be directly in contact with external electrodes, or the base may be used for electrical conduction, so that deposition or plating on the base 201 may be performed. Additional and additional processes, such as forming a conductive layer for electrical connection, or additionally forming an electrical contact portion connected to the electrodes 80 and 70 of the semiconductor light emitting device chip 101 after removing the base 201, may be used. There is no need for this, which is very advantageous in terms of process and cost.
  • the mask 301 may be a plastic, metal, or plated member, and one or more openings 305 are formed.
  • Examples of the material of the mask 301 may be used as examples of the material of the base, but a material that is hard to some extent is preferable to maintain the shape of the mask 301 and the opening 305, and is effective for preventing cracks and cracks. It is preferable to select as. Particularly, as will be described later, at least one of a material, a color, and a light reflectance of the mask 301 and the base 201 may be differently selected from the viewpoint of the element transfer device recognizing the pattern of the mask 301.
  • the base 201 and the mask 301 are pressed against each other by an external force.
  • the clamp 401 may be used to contact the base 201 and the mask 301.
  • the method for contacting the base 201 and the mask 301 is simple, and the clamp 401 can be removed to remove the mask 301 from the base 201.
  • an adhesive material may be variously selected from conductive pastes, insulating pastes, polymer adhesives, and the like, and is not particularly limited. In some temperature ranges, a material that loses adhesion may be easily separated in the temperature range when the base 201 and the mask 301 are separated.
  • the one or more openings 305 formed in the mask 301 are arranged in a plurality of rows and columns, for example.
  • the top surface of the base 201 is exposed through the opening 305.
  • the number and arrangement of the openings 305 can be appropriately changed as necessary.
  • the opening 305 may follow the shape of the semiconductor light emitting device chip 101, but may have a shape different from that of the semiconductor light emitting device chip 101.
  • FIG. 12 is a view for explaining an example of a process of placing the semiconductor light emitting device chip 101 on the base 201 exposed through the opening 305.
  • the device conveying device 501 may include a fixing part 13; Each semiconductor light emitting device chip 101 on the top surface is picked up and placed on the base 201 exposed through the opening 305 of the mask 301.
  • a process of providing a plurality of semiconductor light emitting device chips 101 on the tape 13 may be preceded by using an element array device (eg, a sorter). As shown in Fig.
  • the element transfer device when the pin or rod hits the semiconductor light emitting device chip 101 under the tape 13, the semiconductor light emitting device chip 101 falls from the tape 13, and at that moment, the element transfer device ( The 501 may electrically adsorb or vacuum adsorb the semiconductor light emitting device chip 101. As shown in FIG. 12B, the device transfer device 501 moves over the base 201 to place the semiconductor light emitting device chip 101 in each opening 305. The semiconductor light emitting device chip 101 is placed so that two electrodes 80 and 70 face the upper surface of the base 201, so that the two electrodes 80 and 70 are covered by the encapsulant 170 described later. It is not exposed from the lower surface of the sealing material 170.
  • any device capable of recognizing a pattern or a shape and correcting a position to be transferred or an angle of an object, similar to a die bonder may be used regardless of its name.
  • FIG. 13 illustrates a flip chip having a structure different from that shown in FIG. 2 as a flip chip.
  • the semiconductor light emitting device chip 101 includes a growth substrate 10, a plurality of semiconductor layers 30, 40, and 50, a light reflection layer R, and two electrodes 80 and 70.
  • a group III nitride semiconductor light emitting device for example, sapphire, SiC, Si, GaN and the like are mainly used as the growth substrate 10, and the growth substrate 10 may be finally removed.
  • the plurality of semiconductor layers 30, 40, and 50 may include a buffer layer (not shown) formed on the growth substrate 10, a first semiconductor layer 30 having a first conductivity (eg, Si-doped GaN), and a first conductivity.
  • the second semiconductor layer 50 having another second conductivity is interposed between the first semiconductor layer 30 and the second semiconductor layer 50 and generates light through recombination of electrons and holes.
  • An active layer 40 eg, an InGaN / (In) GaN multi-quantum well structure.
  • Each of the plurality of semiconductor layers 30, 40, and 50 may be formed in multiple layers, and the buffer layer may be omitted.
  • the positions of the first semiconductor layer 30 and the second semiconductor layer 50 may be changed, and are mainly made of GaN in the group III nitride semiconductor light emitting device.
  • the first electrode 80 is in electrical communication with the first semiconductor layer 30 to supply electrons.
  • the second electrode 70 is in electrical communication with the second semiconductor layer 50 to supply holes.
  • a light reflection layer R is interposed between the second semiconductor layer 50 and the electrodes 70 and 80, and the light reflection layer R is formed of an insulating layer such as SiO 2 , a DBR ( It may have a multilayer structure including a distributed bragg reflector or an omni-directional reflector (ODR).
  • a metal reflective film R is provided on the second semiconductor layer 50, an electrode 70 is provided on the metal reflective film R, and is exposed by mesa etching.
  • the semiconductor layer 50 may be in communication with another electrode 80.
  • the device transfer device 501 described above may recognize the shape or the pattern of the electrodes 70 and 80.
  • FIG. 14 is a view for explaining an example of a method of supplying a material for forming an encapsulant in each opening using a mask as a dam in the method of manufacturing a semiconductor light emitting device according to the present disclosure.
  • the dispenser 601 may supply a material for forming the encapsulant 170 in each opening 305.
  • a method of pushing and flattening a material forming the encapsulant 170 may be used.
  • the material forming the encapsulant 170 is one of a light transmissive material and a light transmissive material including a wavelength converting material.
  • the light transmitting material may be one of a silicone resin and an epoxy resin.
  • FIG. 15 is a view for explaining examples of a form in which a material forming an encapsulant is supplied to an opening and cured in the method of manufacturing a semiconductor light emitting device according to the present disclosure, and the encapsulant 170 is formed by a dispenser 601.
  • the upper surface of the encapsulant 170 may be slightly convex, as illustrated in FIG.
  • the encapsulant 170 may be helpful to make the distribution of light from the semiconductor light emitting device chip 101 into a desired shape.
  • it may be flattened as shown in Fig. 15B.
  • Fig. 15B On the other hand, as shown in Fig.
  • the mask 301, the encapsulant 170, the semiconductor light emitting device chip 101, and the base 201 are integrally formed to emit light of the semiconductor. It can also be used as an element.
  • the mask 301 may be removed to separate the individual semiconductor light emitting devices, or the mask 301 may be cut to separate the semiconductor light emitting devices, or the mask 301 and the base 201 may be cut together to separate the semiconductor light emitting devices. Can be separated.
  • FIG. 16 is a view for explaining another example of a method of manufacturing a semiconductor light emitting device according to the present disclosure.
  • the wavelength conversion agent is conformally coated (eg, spray coated) on the surface of the semiconductor light emitting device chip 101.
  • the wavelength converting layer 102 is much smaller in volume or thickness than the encapsulant 170, but may be uniformly coated on the semiconductor light emitting device chip 101, and may reduce the amount of the wavelength converting agent.
  • the thickness of the wavelength converter layer 102 is about 30um and the thickness of the encapsulant 170 is about 100um ⁇ 200um.
  • the mask 301 is first disposed on the base 201, the pattern recognition is performed, and the wavelength converting agent layer 102 is formed in each opening 305 of the mask 301 by the element transfer device 501 capable of position and angle correction. Is disposed on the semiconductor light emitting device chip 101. Thereafter, as shown in FIG. 16B, the material forming the encapsulant 170 in the opening 305 is supplied and cured. In this case, the material forming the encapsulant 170 may be made of a light-transmissive material so as not to contain a wavelength converting agent and merely to encapsulate the protective material. Thereafter, as shown in FIG.
  • the base 201 is separated from the mask 301, the encapsulant 170, and the semiconductor light emitting device chip 101. Separation may be achieved by releasing the clamp 401 when the base 201 is a rigid plate, or by striking the base 201 when the base 201 is a film or tape.
  • FIG. 17 is a view for explaining another example of a method of manufacturing a semiconductor light emitting device according to the present disclosure.
  • a method of manufacturing a semiconductor light emitting device supplies and hardens a material forming the encapsulant 170, and a mask. And separating each of the semiconductor light emitting devices from the mask 301 after the assembly of the 301, the encapsulant 170, and the semiconductor light emitting device chip 101 is separated from the base 201.
  • a method of separation a method of removing the semiconductor light emitting element from the mask 301 may be used.
  • a shooter or similar device may be used to withdraw from the mask 301.
  • FIG. 18 is a diagram illustrating an example of a semiconductor light emitting device according to the present disclosure.
  • the semiconductor light emitting device 800 includes a semiconductor light emitting device chip 810 including a plurality of semiconductor layers including an active layer that generates light by recombination of electrons and holes, and an electrode 811 electrically connected to the plurality of semiconductor layers.
  • the first encapsulation material 820 and the first encapsulation material 820 disposed on the semiconductor light emitting device chip 810 are positioned on the first encapsulation material 820. It includes a second encapsulant 830 to be large.
  • the semiconductor light emitting device chip 810 is preferably a flip chip.
  • the first encapsulant 820 may be formed of one of a light transmissive material and a light transmissive material including the wavelength conversion material 821.
  • the light transmitting material may be, for example, an epoxy resin or a silicone resin.
  • the first encapsulant 820 is formed to surround the side surface 812 of the semiconductor light emitting device chip 810. However, the electrode 811 of the semiconductor light emitting device chip 810 is exposed toward the lower surface 822 of the first encapsulant 820.
  • the top surface 840 of the first encapsulant 820 is convex to form a cavity 841 surrounded by the first encapsulant 820.
  • the ratio of the height 824 of the highest point 823 of the first encapsulant 820 and the width 825 of the first encapsulant 820 based on the lower surface 822 of the first encapsulant 820 is 1: 2. Is preferably.
  • the upper surface of the first encapsulant 820 according to the ratio of the height 824 of the highest point 823 and the width 825 of the first encapsulant 820 based on the lower surface 822 of the first encapsulant 820.
  • 840 can adjust the degree of convex downwards. Further, the degree that the upper surface 840 of the first encapsulant 820 is convex downward is equal to the height 824 of the highest point 823 of the first encapsulant 820 and the width 825 of the first encapsulant 820. Not only the ratio but also the amount of the material forming the first encapsulant 820 may be adjusted. Details will be described with reference to FIG. 20.
  • the first encapsulant 820 may be formed only on the semiconductor light emitting device chip 810 without surrounding the side surface 812 of the semiconductor light emitting device chip 810.
  • the second encapsulant 830 is positioned above the first encapsulant 820, and is particularly located in the cavity 841 surrounded by the first encapsulant 820.
  • the second encapsulant 830 may be formed of one of a light transmissive material and a light transmissive material including the wavelength conversion material 821.
  • the first encapsulant 820 may be formed of a light transmissive material including the wavelength converter 821
  • the second encapsulant 830 may be formed of only a light transmissive material.
  • the second encapsulant 830 may be formed of a light transmissive material including a wavelength converting material
  • both the first encapsulating material 820 and the second encapsulating material 830 may be formed of a light transmissive material including a wavelength converting material.
  • the top surface 831 of the second encapsulant 830 is convex upward in order to increase the directivity angle of the light 850 directed from the semiconductor light emitting device chip 810 and to increase the light extraction efficiency.
  • the light 850 exiting to the upper side of the semiconductor light emitting device chip 810 is enlarged by the second encapsulant 830 and exits to the upper side of the semiconductor light emitting device 800.
  • the directing angle of the light 860 exiting in the upper vertical direction is 90 degrees, and when the tilting angle is higher than the upper vertical direction, the directing angle is increased.
  • 19 is a view for explaining the effect of the lower surface of the first encapsulant in the semiconductor light emitting device according to the present disclosure.
  • an upper surface 931 of the second encapsulant 930 formed on the first encapsulant 920 is formed.
  • the viscosity of the material forming the second encapsulant 930 may be increased, but the material forming the second encapsulant 930 having a high viscosity may be increased. It is difficult to form the second encapsulant 930 by using.
  • the directivity angle of the light exiting to the upper side of the semiconductor light emitting device chip 910 may not be sufficiently increased.
  • the second encapsulant 830 formed on the first encapsulant 820 may be formed.
  • the upper surface 831 is convex well, so that the light exiting to the upper side of the semiconductor light emitting device chip 810 is sufficiently enlarged by the second encapsulant 830, so that the upper surface 831 may exit to the upper side of the semiconductor light emitting device 800.
  • the viscosity of the material forming the second encapsulant 830 is low, the upper surface 831 of the second encapsulant 830 is convexly well formed.
  • FIG. 20 is a diagram illustrating an example of a method of manufacturing the semiconductor light emitting device disclosed in FIG. 18.
  • a mask 1100 having at least one opening 1110 formed on a base 1000 is provided (S1). Thereafter, the semiconductor light emitting device chip 1200 is placed on the base 1000 exposed through each opening 1110 of the mask 1100 (S2).
  • the transfer apparatus described in FIG. 12 can be used.
  • the electrode 1210 of the semiconductor light emitting device chip 1200 faces the base 1000.
  • the width 1120 of the opening 1110 of the mask 1100 may be the semiconductor light emitting device chip 1200 so that the first encapsulant 1300 may surround the side surface of the semiconductor light emitting device chip 1200. It is preferable that the width 1220 is sufficiently larger than.
  • the light-transmitting first encapsulant 1300 is formed in each opening 1110 using the mask 1100 as a dam (S3).
  • the material forming the first encapsulation material 1300 climbs on the inner surface 1130 of the mask 1100 forming the opening 1110, and the upper surface of the first encapsulation material 1300 is convex downward so that the first encapsulation material is formed.
  • the first encapsulant 1300 is formed to form a cavity 1310 surrounded by the ash 1300.
  • the material forming the first encapsulation material 1300 is lower than the height 1320 of the mask 1100.
  • the opening 1110 of the mask 1100 should be filled.
  • the degree to which the material forming the first encapsulation material 1300 climbs on the inner surface 1130 of the mask 1100 is changed, and accordingly, the first encapsulation material is formed.
  • the degree to which the upper surface of the ash 1300 is convex downward may vary.
  • a transparent second encapsulant 1400 is formed in the cavity 1310 surrounded by the first encapsulant 1300.
  • the second encapsulant 1400 may be formed only in the cavity 1310 to have a shape as shown in FIG. 18, but may be formed out of the cavity 1310 to have a shape as shown in FIG. 21A.
  • the upper surface 1410 of the second encapsulant 1400 is formed to be convex upward. As shown in FIG. 20 (a), the upper surface 1410 of the second encapsulant 1400 may be convex upward, but the upper surface 1410 of the second encapsulant 1400 is convex upward, as shown in FIG. 21 (b). It can vary. Thereafter, the base 1000 and the mask 1100 may be removed to obtain a semiconductor light emitting device including only the first encapsulation material 1300, the second encapsulation material 1400, and the semiconductor light emitting device chip 1200. However, as described with reference to FIG.
  • a semiconductor light emitting device including one of a base and a mask or both a base and a mask may be used in addition to the first encapsulation material, the second encapsulation material, and the semiconductor light emitting device chip.
  • the planar shape of the opening 1110 of the mask 1100 is rectangular, but as shown in FIG. 20B, the planar shape of the opening 1110 of the mask 1100 is circular, polygonal, or the like.
  • the planar shape of the semiconductor light emitting device may be polygonal to circular.
  • the planar shape of the semiconductor light emitting element is circular.
  • the width 1120 of the opening 1110 of the mask 1100 may become smaller as the width goes down.
  • the semiconductor light emitting device formed in the opening 1110 may include the mask 1100. Since it can be separated only upward without falling down, instead of being separated one by one as shown in FIG. 11, the semiconductor light emitting device formed in the mask 1100 and the opening 1110 is inverted together, and then the mask 1100 is moved in the direction of the arrow 1410. As a result, the plurality of semiconductor light emitting devices 1420 formed in the opening 1110 may be separated from the mask 1100 at one time.
  • the width 1120 of the opening 1110 of the mask 1100 may be increased as the width is lowered, and the mask 1100 may be formed without inverting the mask 1100 and the semiconductor light emitting elements formed in the opening 1110 together. The same effect can be obtained that the width 1120 of the opening 1110 becomes narrower as it goes down. Except what is described in FIG. 20, the remainder is substantially the same as the manufacturing method of the semiconductor light emitting element of FIGS.
  • 21 is a view illustrating various embodiments of a semiconductor light emitting device according to the present disclosure.
  • the semiconductor light emitting device 1500 illustrated in FIG. 21A includes a semiconductor light emitting device chip 1510, a first encapsulating material 1520, and a second encapsulating material 1530.
  • the side surface 1153 of the second encapsulant 1530 is exposed to the outside.
  • the semiconductor light emitting device 1600 illustrated in FIG. 21B includes a semiconductor light emitting device chip 1610, a first encapsulating material 1620, and a second encapsulating material 1630.
  • the upper surface 1633 of the second encapsulant 1630 includes an upwardly convex portion 1631 and an downwardly convex portion 1632. Except as described in FIG. 21, the semiconductor light emitting devices 1500 and 1600 are substantially the same as the semiconductor light emitting device 800 of FIG. 18.
  • FIG. 22 illustrates an example of a semiconductor light emitting device according to the present disclosure.
  • the semiconductor light emitting device 800 includes a semiconductor light emitting device chip 810 including a plurality of semiconductor layers including an active layer that generates light by recombination of electrons and holes, and an electrode 811 electrically connected to the plurality of semiconductor layers.
  • the semiconductor light emitting device chip 810 is preferably a flip chip.
  • the first encapsulant 820 may be formed of one of a light transmissive material and a light transmissive material including the wavelength conversion material 821.
  • the first encapsulant 820 is formed to surround the side surface 812 of the semiconductor light emitting device chip 810. However, the electrode 811 of the semiconductor light emitting device chip 810 is exposed toward the lower surface 822 of the first encapsulant 820.
  • the top surface 840 of the first encapsulant 820 is convex to form a cavity 841 surrounded by the first encapsulant 820.
  • the ratio of the height 824 of the highest point 823 of the first encapsulant 820 and the width 825 of the first encapsulant 820 based on the lower surface 822 of the first encapsulant 820 is 1: 2. Is preferably.
  • the upper surface of the first encapsulant 820 according to the ratio of the height 824 of the highest point 823 and the width 825 of the first encapsulant 820 based on the lower surface 822 of the first encapsulant 820. This is because the 840 can adjust the convex downward and the extraction efficiency of the light 850 exiting the side of the semiconductor light emitting device 800 at a ratio of 1: 1.5 to 1: 3 is high. Further, the degree that the upper surface 840 of the first encapsulant 820 is convex downward is equal to the height 824 of the highest point 823 of the first encapsulant 820 and the width 825 of the first encapsulant 820.
  • the ratio of the degree that the upper surface 840 of the first encapsulant 820 is convex downward, the height 824 of the highest point 823 of the first encapsulant 820, and the width 825 of the first encapsulant 820 are
  • the directivity angle of the light 850 exiting the side of the semiconductor light emitting device 800 may be adjusted, and the directivity angle adjustment will be described with reference to FIG. 26.
  • the first encapsulant 820 may be formed only on the semiconductor light emitting device chip 810 without surrounding the side surface 812 of the semiconductor light emitting device chip 810.
  • the second encapsulant 830 is positioned above the first encapsulant 820, and is particularly located in the cavity 841 surrounded by the first encapsulant 820.
  • the second encapsulant 830 is formed of a material that reflects light, and may be, for example, a white silicone resin. Alternatively, the second encapsulant 830 may be formed of a semi-transparent material that reflects some light and transmits some light.
  • Light 850 exiting to the upper side of the semiconductor light emitting device chip 810 is reflected by the second encapsulant 830 and exits to the side surface of the semiconductor light emitting device 800.
  • FIG. 23 is a diagram illustrating an application example of the semiconductor light emitting device disclosed in FIG. 22.
  • a liquid crystal display is a device that displays an image by injecting a liquid crystal between two glass plates and applying power to the upper and lower glass plate electrodes to change the liquid crystal molecular array in each pixel.
  • a display by a liquid crystal display is not light-emitting because it is non-luminous in itself.
  • a light source assembly for uniformly irradiating light onto the information display surface is mounted for the purpose of enabling use in a dark place.
  • the light source assembly used for the liquid crystal display device is largely classified into two types.
  • the first is an edge type light source assembly that provides light at the side of the liquid crystal display
  • the second is a direct type light source assembly that provides light directly at the rear of the liquid crystal display.
  • Conventional technology related to a direct type light source assembly is disclosed in Korean Unexamined Patent Publication No. 2007-0106397, Korean Unexamined Patent Publication No. 2008-0021370, and Korean Unexamined Patent Publication No. 2006-0031518.
  • semiconductor light emitting is formed in the groove 901 on the lower surface of the light guide plate 900 as shown in FIG. An element may be used as a light source, and the semiconductor light emitting device 800 according to FIG.
  • the second encapsulant 830 when the second encapsulant 830 is formed of a semi-transparent material that reflects some light and transmits some light, some of the light 850 exiting to the upper side of the semiconductor light emitting device chip 810 as shown in FIG. The light may be reflected by the second encapsulant 830 to the side surface of the semiconductor light emitting device 800, and a part of light 851 may pass through the second encapsulant 830 to exit the semiconductor light emitting device 800. The light 852 that exits the side of the semiconductor light emitting device chip 810 that does not meet the second encapsulant 830 exits to the side of the semiconductor light emitting device 800 and emits light uniformly around the semiconductor light emitting device 800. do.
  • the light emission characteristics of the semiconductor light emitting device according to the present disclosure are shown in FIG. 28.
  • FIG. 24 is a diagram illustrating an example of a method of manufacturing the semiconductor light emitting device disclosed in FIG. 22.
  • a mask 1100 having at least one opening 1110 formed on a base 1000 is provided (S1). Thereafter, the semiconductor light emitting device chip 1200 is placed on the base 1000 exposed through each opening 1110 of the mask 1100 (S2).
  • the transfer apparatus described in FIG. 12 can be used.
  • the electrode 1210 of the semiconductor light emitting device chip 1200 faces the base 1000.
  • the width 1120 of the opening 1110 of the mask 1100 may be the semiconductor light emitting device chip 1200 so that the first encapsulant 1300 may surround the side surface of the semiconductor light emitting device chip 1200. It is preferable that the width 1220 is sufficiently larger than.
  • the mask 1100 is used as a dam to form a first encapsulant 1300 in each opening 1110 (S3).
  • the first encapsulant 1300 allows the material forming the first encapsulant 1300 to climb up the inner surface 1130 of the mask 1100 to form a downwardly convex cavity 1310 surrounded by the first encapsulant 1300. 1300.
  • the material forming the first encapsulation material 1300 is lower than the height 1320 of the mask 1100.
  • the opening 1110 of the mask 1100 should be filled.
  • a second encapsulant 1400 reflecting light is formed in the cavity 1310 surrounded by the first encapsulant 1300.
  • the second encapsulant 1400 may be formed only in the cavity 1310 to have a shape as shown in FIG. 22, but may be formed outside the cavity 1310 to have a shape as shown in FIG. 25A.
  • the base 1000 and the mask 1100 may be removed to obtain a semiconductor light emitting device including only the first encapsulation material 1300, the second encapsulation material 1400, and the semiconductor light emitting device chip 1200.
  • the base 1000 and the mask 1100 may be removed to obtain a semiconductor light emitting device including only the first encapsulation material 1300, the second encapsulation material 1400, and the semiconductor light emitting device chip 1200.
  • a semiconductor light emitting device including one of a base and a mask or both a base and a mask may be used in addition to the first encapsulation material, the second encapsulation material, and the semiconductor light emitting device chip.
  • the planar shape of the opening 1110 of the mask 1100 is rectangular, but the planar shape of the opening 1110 of the mask 1100 is circular, polygonal, or the like, as shown in FIG.
  • the planar shape of the semiconductor light emitting device may be polygonal to circular.
  • the semiconductor light emitting device As the planar shape of the semiconductor light emitting device is circular, the semiconductor light emitting device generates more uniform light around the semiconductor light emitting device, and the light emission characteristics of the semiconductor light emitting device are illustrated in FIG. 28.
  • the width 1120 of the opening 1110 of the mask 1100 may become smaller as the width goes down.
  • the semiconductor light emitting device formed in the opening 1110 may have a mask 1100. Since they can be separated only upwards without falling down, instead of being separated one by one as shown in FIG. 21, the semiconductor light emitting devices formed in the mask 1100 and the opening 1110 are inverted together, and then the mask 1100 is moved in the direction of the arrow 1410. As a result, the plurality of semiconductor light emitting devices 1420 formed in the opening 1110 may be separated from the mask 1100 at one time.
  • the width 1120 of the opening 1110 of the mask 1100 may be increased as the width is lowered, and the mask 1100 may be formed without inverting the mask 1100 and the semiconductor light emitting elements formed in the opening 1110 together. The same effect can be obtained that the width 1120 of the opening 1110 becomes smaller as it goes down. Except as described in FIG. 24, the rest is substantially the same as the method of manufacturing the semiconductor light emitting device of FIGS.
  • 25 is a view illustrating various embodiments of a semiconductor light emitting device according to the present disclosure.
  • the semiconductor light emitting device 1500 illustrated in FIG. 25A includes a semiconductor light emitting device chip 1510, a first encapsulating material 1520, and a second encapsulating material 1530 reflecting light.
  • the side surface 1153 of the second encapsulant 1530 is exposed to the outside.
  • the semiconductor light emitting device 1600 illustrated in FIG. 25B includes a semiconductor light emitting device chip 1610, a first encapsulating material 1620, and a second encapsulating material 1630 that reflects light.
  • the upper surface 1163 of the first encapsulant 1620 is largely convex downward.
  • the degree of convexity of the upper surface 1631 downwards depends on the amount of material forming the first encapsulant 1300 filled in the width 1120 of the mask 1100 and the opening 1110 of the mask 1100 in FIG. 24. I can regulate it. For example, as the amount of the material forming the first encapsulant 1300 filled in the opening 1110 of the mask 1100 increases, the degree of convexity becomes smaller and becomes flat.
  • the semiconductor light emitting device 1640 is provided with a portion 1662 and a flat portion 1601 having an upper surface of the first encapsulant 1660 convex downward.
  • the directing angle of the light exiting to the side surface of the semiconductor light emitting device 1640 may be adjusted by a ratio of the flat portion 1601 and the convex portion 1662 on the upper surface of the first encapsulant 1660.
  • the second encapsulant 1670 reflecting light is formed on the flat portion 1601 as well as the cavity 1663 formed by the convex portion 1662 of the upper surface of the first encapsulant 1660. Except as described in FIG. 25, the semiconductor light emitting devices 1500, 1600, and 1640 are substantially the same as the semiconductor light emitting device 800 of FIG. 22.
  • FIG. 26 is a view illustrating an effect of the top surface of the first encapsulant being convex downward in the semiconductor light emitting device according to the present disclosure.
  • the semiconductor light emitting device 1700 includes light 1740 emitted from the semiconductor light emitting device chip 1710 according to the degree to which the top surfaces 1731, 1732, and 1733 of the first encapsulant 1720 are convex downward. You can adjust the directing angle from the exit.
  • the upper surfaces 1731, 1732, and 1733 of the first encapsulant 1720 are also displayed on one semiconductor light emitting device 1700. Referring to FIG. 26, the light 1740 emitted upward from the semiconductor light emitting device chip 1710 is reflected from the upper surfaces 1731, 1732, and 1733 having different downwardly convex degrees of the first encapsulant 1720, thereby emitting semiconductor light.
  • the direction of the light (1743) reflected by the flat upper surface (1733) of the first encapsulant 1720 is the largest and convex downward degree It can be seen that the direction angle of the light (1741) reflected by the largest upper surface (1731) is the smallest.
  • the directing angle of the virtual light 1750 going out in the upper vertical direction is set to 90 degrees, and when the tilting angle is higher than the upper vertical direction, the directing angle is increased.
  • the light exiting to the upper side of the semiconductor light emitting device chip 1710 due to the second encapsulant 1730 increases the directing angle.
  • the semiconductor light emitting device 1700 is substantially the same as the semiconductor light emitting device 800 of FIG. 22.
  • FIG 27 illustrates another example of the semiconductor light emitting device according to the present disclosure.
  • the second encapsulant 1830 is thin on the top surface 1822 of the first encapsulant 1820 instead of filling the cavity 1721 surrounded by the first encapsulant 1820. It is characterized by being formed into a film.
  • the second encapsulant 1830 having a film form is preferably a metal film 1830.
  • the metal film 1830 has an advantage of high reflectance to light.
  • a metal film is formed on the upper surface of the first encapsulant forming the cavity.
  • the metal film may be formed by one of deposition, plating, and spray methods, and the metal is preferably silver or aluminum. Except as described in FIG. 27, the semiconductor light emitting device 1800 is substantially the same as the semiconductor light emitting device 800 of FIG. 22.
  • FIG. 28 is a view showing an example of light emission according to the planar shape of the semiconductor light emitting device according to the present disclosure.
  • FIG. 28 illustrates an example of light emission characteristics according to a planar shape of the semiconductor light emitting device 1900.
  • the planar shape of the semiconductor light emitting device 1900 is the same as the planar shape of the openings 305 and 1110 of the masks 301 and 1100 shown in FIGS. 24B and 10.
  • FIG. 28C the closer the planar shape of the semiconductor light emitting device 1900 is to the circular shape, the more light is emitted around the semiconductor light emitting device 1900. That is, the light is emitted more evenly around the semiconductor light emitting device 1900 from FIG. 28A to FIG. 28C.
  • light is not emitted to the upper side of the semiconductor light emitting device 1900, thereby showing dark.
  • the second encapsulant when the second encapsulant transmits part of light and reflects part of the light, the second encapsulant emits light toward the upper side of the semiconductor light emitting device 1900, rather than the light emitting device 1900 of FIG. 28.
  • the upper side may be brighter.
  • a semiconductor light emitting device comprising: a semiconductor light emitting device chip, comprising: a semiconductor including a plurality of semiconductor layers including an active layer for generating light by recombination of electrons and holes, and electrodes electrically connected to the plurality of semiconductor layers Light emitting device chip; A first encapsulation material positioned on the semiconductor light emitting device chip; A second encapsulant positioned on a side of the semiconductor light emitting device chip and under the first encapsulant; And a third encapsulation material positioned on a side surface of the semiconductor light emitting device chip and under the second encapsulation material.
  • the semiconductor light emitting element is characterized in that the electrode of the semiconductor light emitting chip is exposed in the lower surface direction of the third encapsulant.
  • a semiconductor light emitting element characterized in that the curve is convex upward.
  • the semiconductor light emitting device according to claim 1, wherein the first encapsulation material is formed of a sheet including a wavelength conversion material.
  • the third encapsulant is formed of a colored reflective material.
  • the second encapsulation material is a semiconductor light emitting device, characterized in that formed of at least one of a light transmitting material and a light transmitting material containing a wavelength conversion material.
  • a semiconductor light emitting element characterized in that the shortest distance between the first encapsulant and the third encapsulant is greater than zero.
  • a method of manufacturing a semiconductor light emitting device comprising the steps of: preparing a first encapsulant; Forming a second encapsulation material on the first encapsulation material; forming a second encapsulation material on which the material forming the liquid second encapsulation material is applied onto the first encapsulation material; Placing a plurality of semiconductor light emitting device chips on the second encapsulation material, such that an active layer of the semiconductor light emitting device chip is positioned between the first encapsulation material and an electrode of the semiconductor light emitting device chip, and the liquid second encapsulation material is a semiconductor light emitting device chip.
  • a method of manufacturing a semiconductor light emitting device characterized in that the thickness of applying the material forming the liquid second encapsulant on the first encapsulant is 20 ⁇ m or more and 0.8 or less of the thickness of the semiconductor light emitting device chip placed on the second encapsulant.
  • a semiconductor light emitting device comprising: a semiconductor light emitting device chip, comprising: a semiconductor comprising a plurality of semiconductor layers including an active layer for generating light by recombination of electrons and holes, and electrodes electrically connected to the plurality of semiconductor layers Light emitting device chip; A first encapsulating material positioned on the semiconductor light emitting device chip; a first encapsulating material including a cavity surrounded by the first encapsulating material with a top surface of the first encapsulating material convex downward; And a translucent second encapsulant formed in the cavity of the first encapsulant; a second encapsulant having an upper surface of the second encapsulant convex upward.
  • a semiconductor light emitting device characterized in that the first encapsulation material surrounds the side surface of the semiconductor light emitting device chip.
  • a semiconductor light emitting element wherein an electrode of the semiconductor light emitting element chip is exposed in the lower surface direction of the first encapsulant.
  • At least one of the first encapsulating material and the second encapsulating material includes a wavelength converting material.
  • a method of manufacturing a semiconductor light emitting device comprising: providing a mask having at least one opening formed on a base; Placing a semiconductor light emitting device chip on a base exposed by each opening of the mask; Forming a first encapsulant in each opening by using the mask as a dam; as a material forming the first encapsulant rises up the inner surface of the mask, the upper surface of the first encapsulant is convex downward, thereby forming a first encapsulant. Forming a first encapsulant to form a cavity surrounded by the encapsulant; And forming a second encapsulation material having a top surface convex in a cavity surrounded by the first encapsulation material.
  • the method of manufacturing a semiconductor light emitting device comprising placing a semiconductor light emitting device chip on a base exposed through each opening of a mask, so that the semiconductor light emitting device chip is placed so that an electrode of the semiconductor light emitting device chip faces the base.
  • a method of manufacturing a semiconductor light emitting device characterized in that the step of providing a mask having at least one opening formed on the base comprises a mask having an opening whose planar shape is one of a rectangle, a circle, and a polygon.
  • a method of manufacturing a semiconductor light emitting device characterized in that the step of providing a mask having at least one opening formed on the base comprises a mask having an opening whose width becomes smaller as the opening goes downward.
  • a method of manufacturing a semiconductor light emitting device characterized in that the step of providing a mask having at least one opening formed on the base comprises a mask having an opening that increases in width toward the bottom of the opening.
  • a semiconductor light emitting device comprising: a semiconductor light emitting device chip, comprising: a semiconductor comprising a plurality of semiconductor layers including an active layer for generating light by recombination of electrons and holes, and electrodes electrically connected to the plurality of semiconductor layers Light emitting device chip; A first encapsulation material positioned on the semiconductor light emitting device chip; a first encapsulation material including a cavity surrounded by the first encapsulation material with a top surface of the first encapsulation material convex downward; And a second encapsulation material formed in a cavity of the first encapsulation material and reflecting light emitted from the semiconductor light emitting device chip.
  • a semiconductor light emitting element according to claim 1, wherein the ratio of the height and width of the highest point of the first encapsulant is 1: 2.
  • a semiconductor light emitting element characterized in that the second encapsulant is semi-transmissive which transmits part of the light and reflects part of the light.
  • a semiconductor light emitting device characterized in that the second encapsulant is formed of a metal film on the upper surface of the first encapsulant.
  • a semiconductor light emitting device characterized in that the material forming the first encapsulation material is a light transmitting material containing a wavelength conversion material.
  • a method of manufacturing a semiconductor light emitting device comprising the steps of: providing a mask having at least one opening formed on a base; Placing a semiconductor light emitting device chip on a base exposed by each opening of the mask; Forming a first encapsulant in each opening by using the mask as a dam; as a material forming the first encapsulant rises up the inner surface of the mask, the upper surface of the first encapsulant is convex downward, thereby forming a first encapsulant. Forming a first encapsulant to form a cavity surrounded by the encapsulant; And forming a second encapsulation material that reflects light in the cavity surrounded by the first encapsulation material.
  • forming the second encapsulant reflecting light in the cavity surrounded by the first encapsulant comprises filling a material forming the second encapsulant in the cavity enclosed by the first encapsulant. Manufacturing method.
  • the upper surface of the first encapsulant includes a flat portion, and the second encapsulant is also formed on the flat portion of the upper surface of the first encapsulant.
  • the semiconductor light emitting device and the manufacturing method according to the present disclosure it is possible to obtain a CSP type semiconductor light emitting device having a large directing angle of light extracted upward.
  • the semiconductor light emitting device chip can be arranged at a more accurate position and angle by using a mask as a guide pattern of the semiconductor light emitting device chip arrangement. Therefore, in the post-process, for example, the separation process into individual devices (eg, sawing, etc.), the occurrence of defects due to the misalignment of the semiconductor light emitting device chips is reduced.
  • a CSP type semiconductor light emitting device having improved light extraction efficiency can be obtained.
  • the semiconductor light emitting device and the manufacturing method according to the present disclosure it is possible to obtain a CSP type semiconductor light emitting device having a high efficiency of light extracted to the side.

Abstract

Disclosed are a semiconductor light emitting device and a manufacturing method therefor, the semiconductor light emitting device comprising: a semiconductor light emitting device chip comprising a plurality of semiconductor layers, which includes an active layer for generating light by a recombination of electrons and holes, and an electrode electrically connected to the plurality of semiconductor layers; a first encapsulant positioned on the semiconductor light emitting device chip; a second encapsulant positioned on a side surface of the semiconductor light emitting device chip and below the first encapsulant; and a third encapsulant positioned on the side surface of the semiconductor light emitting device chip and below the second encapsulant.

Description

반도체 발광소자 및 이의 제조방법Semiconductor light emitting device and manufacturing method thereof
본 개시(Disclosure)는 전체적으로 반도체 발광소자 및 이의 제조 방법에 관한 것으로, 특히 CSP(Chip Scale Package) 타입의 반도체 발광소자 및 이의 제조 방법에 관한 것이다.The present disclosure generally relates to a semiconductor light emitting device and a method of manufacturing the same, and more particularly, to a semiconductor light emitting device of a chip scale package (CSP) type and a method of manufacturing the same.
여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art). 또한 본 명세서에서 상측/하측, 위/아래 등과 같은 방향 표시는 도면을 기준으로 한다. This section provides background information related to the present disclosure which is not necessarily prior art. In addition, in the present specification, direction indications such as up / down, up / down, etc. are based on the drawings.
도 1은 종래의 반도체 발광소자 칩의 일 예를 보여주는 도면이다.1 is a view showing an example of a conventional semiconductor light emitting device chip.
반도체 발광소자 칩은 성장기판(10; 예: 사파이어 기판), 성장기판(10) 위에, 버퍼층(20), 제1 도전성을 가지는 제1 반도체층(30; 예: n형 GaN층), 전자와 정공의 재결합을 통해 빛을 생성하는 활성층(40; 예; INGaN/(In)GaN MQWs), 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(50; 예: p형 GaN층)이 순차로 증착되어 있으며, 그 위에 전류 확산을 위한 투광성 전도막(60)과, 본딩 패드로 역할하는 전극(70)이 형성되어 있고, 식각되어 노출된 제1 반도체층(30) 위에 본딩 패드로 역할하는 전극(80: 예: Cr/Ni/Au 적층 금속 패드)이 형성되어 있다. 도 1과 같은 형태의 반도체 발광소자를 특히 레터럴 칩(Lateral Chip)이라고 한다. 여기서, 성장기판(10) 측이 외부와 전기적으로 연결될 때 장착면이 된다.The semiconductor light emitting device chip may include a growth substrate 10 (eg, a sapphire substrate), a growth layer 10, a buffer layer 20, a first semiconductor layer 30 having a first conductivity (eg, an n-type GaN layer), and electrons. The active layer 40 (eg, INGaN / (In) GaN MQWs) that generates light through recombination of holes, and the second semiconductor layer 50 (eg, p-type GaN layer) having a second conductivity different from the first conductivity are sequentially And a transmissive conductive film 60 for spreading current and an electrode 70 serving as a bonding pad, and serving as a bonding pad on the etched and exposed first semiconductor layer 30. An electrode 80, for example, a Cr / Ni / Au laminated metal pad, is formed. The semiconductor light emitting device of the form as shown in FIG. 1 is particularly called a lateral chip. Here, when the growth substrate 10 side is electrically connected to the outside becomes a mounting surface.
도 2는 미국 등록특허공보 제7,262,436호에 제시된 반도체 발광소자 칩의 다른 예를 보여주는 도면이다. 설명의 편의를 위해 도면기호를 변경하였다.2 is a view showing another example of the semiconductor light emitting device chip disclosed in US Patent No. 7,262,436. For convenience of description, reference numerals have been changed.
반도체 발광소자 칩은 성장기판(10), 성장기판(10) 위에, 제1 도전성을 가지는 제1 반도체층(30), 전자와 정공의 재결합을 통해 빛을 생성하는 활성층(40), 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(50)이 순차로 증착되어 있으며, 그 위에 성장기판(10) 측으로 빛을 반사시키기 위한 3층으로 된 전극막(90, 91, 92)이 형성되어 있다. 제1 전극막(90)은 Ag 반사막, 제2 전극막(91)은 Ni 확산 방지막, 제3 전극막(92)은 Au 본딩층일 수 있다. 식각되어 노출된 제1 반도체층(30) 위에 본딩 패드로 기능하는 전극(80)이 형성되어 있다. 여기서, 전극막(92) 측이 외부와 전기적으로 연결될 때 장착면이 된다. 도 2와 같은 형태의 반도체 발광소자 칩을 특히 플립 칩(Flip Chip)이라고 한다. 도 2에 도시된 플립 칩의 경우 제1 반도체층(30) 위에 형성된 전극(80)이 제2 반도체층 위에 형성된 전극막(90, 91, 92)보다 낮은 높이에 있지만, 동일한 높이에 형성될 수 있도록 할 수도 있다. 여기서 높이의 기준은 성장기판(10)으로부터의 높이일 수 있다. The semiconductor light emitting device chip may include a growth substrate 10 and a growth substrate 10, a first semiconductor layer 30 having a first conductivity, an active layer 40 that generates light through recombination of electrons and holes, and a first conductivity. The second semiconductor layer 50 having a second conductivity different from that of the second semiconductor layer 50 is sequentially deposited, and three electrode layers 90, 91, 92 are formed on the growth substrate 10 to reflect light. have. The first electrode film 90 may be an Ag reflecting film, the second electrode film 91 may be a Ni diffusion barrier film, and the third electrode film 92 may be an Au bonding layer. An electrode 80 serving as a bonding pad is formed on the etched and exposed first semiconductor layer 30. Here, when the electrode film 92 side is electrically connected to the outside, it becomes a mounting surface. A semiconductor light emitting device chip of the same type as that of FIG. 2 is particularly referred to as a flip chip. In the flip chip illustrated in FIG. 2, the electrode 80 formed on the first semiconductor layer 30 is at a lower level than the electrode films 90, 91, and 92 formed on the second semiconductor layer, but may be formed at the same height. You can also do that. The height reference may be the height from the growth substrate 10.
도 3은 종래의 반도체 발광소자의 일 예를 보여주는 도면이다.3 is a view showing an example of a conventional semiconductor light emitting device.
반도체 발광소자(100)는 리드 프레임(110, 120), 몰드(130), 그리고 캐비티(140) 내에 수직형 반도체 발광소자 칩(150; Vertical Type Light Emitting Chip)이 구비되어 있고, 캐비티(140)는 파장 변환재(160)를 함유하는 봉지재(170)로 채워져 있다. 수직형 반도체 발광소자 칩(150)의 하면이 리드 프레임(110)에 전기적으로 직접 연결되고, 상면이 와이어(180)에 의해 리드 프레임(120)에 전기적으로 연결되어 있다. 수직형 반도체 발광소자 칩(150)에서 나온 광의 일부가 파장 변환재(160)를 여기 시켜 다른 색의 광을 만들어 두 개의 서로 다른 광이 혼합되어 백색광을 만들 수 있다. 예를 들어 반도체 발광소자 칩(150)은 청색광을 만들고 파장 변환재(160)에 여기 되어 만들어진 광은 황색광이며, 청색광과 황색광이 혼합되어 백색광을 만들 수 있다. 도 3은 수직형 반도체 발광소자 칩(150)을 사용한 반도체 발광소자를 보여주고 있지만, 도 1 및 도 2에 도시된 반도체 발광소자 칩을 사용하여 도 3과 같은 형태의 반도체 발광소자를 제조할 수도 있다. The semiconductor light emitting device 100 includes a vertical semiconductor light emitting chip 150 in the lead frames 110 and 120, the mold 130, and the cavity 140, and the cavity 140. Is filled with the encapsulant 170 containing the wavelength converting member 160. The lower surface of the vertical semiconductor light emitting device chip 150 is electrically connected directly to the lead frame 110, and the upper surface is electrically connected to the lead frame 120 by the wire 180. A portion of the light emitted from the vertical semiconductor light emitting device chip 150 may excite the wavelength conversion material 160 to produce light of different colors, and two different lights may be mixed to form white light. For example, the semiconductor light emitting device chip 150 may generate blue light, and light generated by being excited by the wavelength converting material 160 may be yellow light, and blue light and yellow light may be mixed to produce white light. 3 illustrates a semiconductor light emitting device using the vertical semiconductor light emitting device chip 150, but a semiconductor light emitting device having a shape similar to that of FIG. 3 may be manufactured using the semiconductor light emitting device chips illustrated in FIGS. 1 and 2. have.
도 3에 기재된 타입의 반도체 발광소자를 일반적으로 패키지(Package) 타입(Type)의 반도체 발광소자라고 하며 반도체 발광소자 칩 크기의 반도체 발광소자를 CSP(Chip Scale Package) 타입의 반도체 발광소자라 한다. CSP 타입의 반도체 발광소자와 관련된 것은 한국 공개특허공보 제2014-0127457호에 기재되어 있다. 최근에는 반도체 발광소자의 크기가 소형화되는 경향에 따라 CSP 타입의 반도체 발광소자에 대한 개발이 활발히 이루어지고 있으며, 본 개시는 CSP 타입의 반도체 발광소자에서 광 추출 효율을 향상시키는 것을 특징으로 한다.A semiconductor light emitting device of the type described in FIG. 3 is generally called a semiconductor light emitting device of a package type, and a semiconductor light emitting device having a semiconductor light emitting device chip size is called a semiconductor light emitting device of a chip scale package (CSP) type. Related to the CSP type semiconductor light emitting device is disclosed in Korean Patent Laid-Open No. 2014-0127457. Recently, as the size of the semiconductor light emitting device is reduced, development of a CSP type semiconductor light emitting device has been actively performed, and the present disclosure is characterized by improving light extraction efficiency in the CSP type semiconductor light emitting device.
이에 대하여 '발명의 실시를 위한 형태'의 후단에 기술한다.This will be described later in the section on Embodiments of the Invention.
여기서는, 본 개시의 전체적인 요약(Summary)이 제공되며, 이것이 본 개시의 외연을 제한하는 것으로 이해되어서는 아니된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all, provided that this is a summary of the disclosure. of its features).
본 개시에 따른 일 태양에 의하면(According to one aspect of the present disclosure), 반도체 발광소자에 있어서, 반도체 발광소자 칩;으로서, 전자와 정공의 재결합에 의해 빛을 생성하는 활성층을 포함하는 복수의 반도체층과, 복수의 반도체층에 전기적으로 연결된 전극을 구비하는 반도체 발광소자 칩; 반도체 발광소자 칩 위에 위치하는 제1 봉지재; 반도체 발광소자 칩의 측면 및 제1 봉지재 아래에 위치하는 제2 봉지재; 그리고 반도체 발광소자 칩의 측면 및 제2 봉지재 아래에 위치하는 제3 봉지재;를 포함하는 것을 특징으로 하는 반도체 발광소자가 제공된다.According to one aspect of the present disclosure, in a semiconductor light emitting device, a semiconductor light emitting device chip; a plurality of semiconductors including an active layer that generates light by recombination of electrons and holes A semiconductor light emitting device chip having a layer and an electrode electrically connected to the plurality of semiconductor layers; A first encapsulation material positioned on the semiconductor light emitting device chip; A second encapsulant positioned on a side of the semiconductor light emitting device chip and under the first encapsulant; And a third encapsulation material positioned on a side surface of the semiconductor light emitting device chip and under the second encapsulation material.
본 개시에 따른 다른 태양에 의하면(According to another aspect of the present disclosure), 반도체 발광소자의 제조 방법에 있어서, 제1 봉지재를 준비하는 단계; 제1 봉지재 위에 복수의 반도체 발광소자 칩을 놓는 단계;로서 반도체 발광소자 칩의 활성층이 제1 봉지재와 반도체 발광소자 칩의 전극 사이에 위치하도록 제1 봉지재 위에 복수의 반도체 발광소자 칩을 놓는 단계; 반도체 발광소자 칩과 반도체 발광소자 칩 사이에 아래로 볼록한 부분이 있는 제2 봉지재를 형성하는 단계; 제2 봉지재에 형성된 아래로 볼록한 부분에 제3 봉지재를 형성하는 단계; 그리고 반도체 발광소자 칩과 반도체 발광소자 칩 사이를 절단하는 단계;를 포함하는 것을 특징으로 하는 반도체 발광소자의 제조 방법이 제공된다.According to another aspect of the present disclosure (According to another aspect of the present disclosure), a method of manufacturing a semiconductor light emitting device, the method comprising: preparing a first encapsulant; Placing a plurality of semiconductor light emitting device chips on the first encapsulation material; placing a plurality of semiconductor light emitting device chips on the first encapsulation material such that an active layer of the semiconductor light emitting device chip is positioned between the first encapsulation material and an electrode of the semiconductor light emitting device chip. Laying step; Forming a second encapsulant having a convex portion downward between the semiconductor light emitting device chip and the semiconductor light emitting device chip; Forming a third encapsulant on the convex portion formed in the second encapsulant; And cutting a semiconductor light emitting device chip between the semiconductor light emitting device chip and the semiconductor light emitting device chip.
본 개시에 따른 다른 태양에 의하면(According to another aspect of the present disclosure), 반도체 발광소자에 있어서, 반도체 발광소자 칩;으로서, 전자와 정공의 재결합에 의해 빛을 생성하는 활성층을 포함하는 복수의 반도체층과, 복수의 반도체층에 전기적으로 연결된 전극을 구비하는 반도체 발광소자 칩; 반도체 발광소자 칩 위에 위치하는 투광성의 제1 봉지재;로서 제1 봉지재의 상면이 아래로 볼록하여 제1 봉지재에 의해 둘러싸인 캐비티(cavity)를 포함하는 제1 봉지재; 그리고 제1 봉지재의 캐비티 내에 형성되는 투광성의 제2 봉지재;로서 제2 봉지재의 상면이 위로 볼록한 제2 봉지재;를 포함하는 것을 특징으로 하는 반도체 발광소자가 제공된다.According to an aspect according to the present disclosure, in a semiconductor light emitting device, a semiconductor light emitting device chip; a plurality of semiconductors including an active layer for generating light by recombination of electrons and holes A semiconductor light emitting device chip having a layer and an electrode electrically connected to the plurality of semiconductor layers; A first encapsulating material positioned on the semiconductor light emitting device chip; a first encapsulating material including a cavity surrounded by the first encapsulating material with a top surface of the first encapsulating material convex downward; And a translucent second encapsulant formed in the cavity of the first encapsulant; a second encapsulant having an upper surface of the second encapsulant convex upward.
본 개시에 따른 다른 태양에 의하면(According to another aspect of the present disclosure), 반도체 발광소자의 제조 방법에 있어서, 베이스 위에 적어도 하나 이상의 개구가 형성된 마스크를 구비하는 단계; 마스크의 각 개구로 노출된 베이스 위에 반도체 발광소자 칩을 놓는 단계; 마스크를 댐(dam)으로 하여, 각 개구에 제1 봉지재를 형성하는 단계;로서 제1 봉지재를 형성하는 물질이 개구를 형성하는 마스크의 내측면을 타고 올라가 제1 봉지재의 상면이 아래로 볼록하여 제1 봉지재로 둘러싸인 캐비티(Cavity)를 형성하도록 제1 봉지재를 형성하는 단계; 그리고 제1 봉지재로 둘러싸인 캐비티에 상면이 위로 볼록한 제2 봉지재를 형성하는 단계;를 포함하는 것을 특징으로 하는 반도체 발광소자의 제조 방법이 제공된다.According to another aspect of the present disclosure, there is provided a method of manufacturing a semiconductor light emitting device, comprising: providing a mask having at least one opening formed on a base; Placing a semiconductor light emitting device chip on a base exposed by each opening of the mask; Forming a first encapsulant in each opening by using the mask as a dam; the material forming the first encapsulant climbs up the inner surface of the mask forming the opening, and the upper surface of the first encapsulant is lowered. Forming a first encapsulant to be convex to form a cavity surrounded by the first encapsulant; And forming a second encapsulation material having a top surface convex in a cavity surrounded by the first encapsulation material. A method of manufacturing a semiconductor light emitting device is provided.
본 개시에 따른 다른 태양에 의하면(According to another aspect of the present disclosure), 반도체 발광소자에 있어서, 반도체 발광소자 칩;으로서, 전자와 정공의 재결합에 의해 빛을 생성하는 활성층을 포함하는 복수의 반도체층과, 복수의 반도체층에 전기적으로 연결된 전극을 구비하는 반도체 발광소자 칩; 반도체 발광소자 칩 위에 위치하는 제1 봉지재;로서 제1 봉지재의 상면이 아래로 볼록하여 제1 봉지재에 의해 둘러싸인 캐비티(cavity)를 포함하는 제1 봉지재; 그리고 제1 봉지재의 캐비티 내에 형성되어, 반도체 발광소자 칩에서 나온 빛을 반사하는 제2 봉지재;를 포함하는 것을 특징으로 하는 반도체 발광소자가 제공된다.According to an aspect according to the present disclosure, in a semiconductor light emitting device, a semiconductor light emitting device chip; a plurality of semiconductors including an active layer for generating light by recombination of electrons and holes A semiconductor light emitting device chip having a layer and an electrode electrically connected to the plurality of semiconductor layers; A first encapsulation material positioned on the semiconductor light emitting device chip; a first encapsulation material including a cavity surrounded by the first encapsulation material with a top surface of the first encapsulation material convex downward; And a second encapsulation material formed in a cavity of the first encapsulation material and reflecting light emitted from the semiconductor light emitting device chip.
본 개시에 따른 다른 태양에 의하면(According to another aspect of the present disclosure), 반도체 발광소자의 제조 방법에 있어서, 베이스 위에 적어도 하나 이상의 개구가 형성된 마스크를 구비하는 단계; 마스크의 각 개구로 노출된 베이스 위에 반도체 발광소자 칩을 놓는 단계; 마스크를 댐(dam)으로 하여, 각 개구에 제1 봉지재를 형성하는 단계;로서 제1 봉지재를 형성하는 물질이 마스크의 내측면을 타고 올라가 제1 봉지재의 상면이 아래로 볼록하여 제1 봉지재로 둘러싸인 캐비티(Cavity)를 형성하도록 제1 봉지재를 형성하는 단계; 그리고 제1 봉지재로 둘러싸인 캐비티에 빛을 반사하는 제2 봉지재를 형성하는 단계;를 포함하는 것을 특징으로 하는 반도체 발광소자의 제조 방법이 제공된다.According to another aspect of the present disclosure, there is provided a method of manufacturing a semiconductor light emitting device, comprising: providing a mask having at least one opening formed on a base; Placing a semiconductor light emitting device chip on a base exposed by each opening of the mask; Forming a first encapsulant in each opening by using the mask as a dam; as a material forming the first encapsulant rises up the inner surface of the mask, the upper surface of the first encapsulant is convex downward, thereby forming a first encapsulant. Forming a first encapsulant to form a cavity surrounded by the encapsulant; And forming a second encapsulation material that reflects light in a cavity surrounded by the first encapsulation material.
이에 대하여 '발명의 실시를 위한 형태'의 후단에 기술한다.This will be described later in the section on Embodiments of the Invention.
도 1은 종래의 반도체 발광소자 칩의 일 예를 보여주는 도면,1 is a view showing an example of a conventional semiconductor light emitting device chip;
도 2는 미국 등록특허공보 제7,262,436호에 제시된 반도체 발광소자 칩의 다른 예를 보여주는 도면,2 is a view showing another example of the semiconductor light emitting device chip shown in US Patent No. 7,262,436;
도 3은 종래의 반도체 발광소자의 일 예를 보여주는 도면,3 is a view showing an example of a conventional semiconductor light emitting device;
도 4는 본 개시에 따른 반도체 발광소자의 일 예를 보여주는 도면,4 illustrates an example of a semiconductor light emitting device according to the present disclosure;
도 5는 본 개시에 따른 반도체 발광소자의 다양한 실시 예를 보여주는 도면,5 is a view illustrating various embodiments of a semiconductor light emitting device according to the present disclosure;
도 6은 본 개시에 따른 반도체 발광소자의 장점을 보여주는 도면,6 is a view showing the advantages of the semiconductor light emitting device according to the present disclosure;
도 7은 본 개시에 따른 반도체 발광소자 제조 방법의 일 예를 보여주는 도면,7 is a view showing an example of a method of manufacturing a semiconductor light emitting device according to the present disclosure;
도 8은 본 개시에 따른 반도체 발광소자 제조방법의 다른 일 예를 보여주는 도면,8 is a view showing another example of a method of manufacturing a semiconductor light emitting device according to the present disclosure;
도 9는 본 개시에 따른 반도체 발광소자 제조방법의 또 다른 일 예를 보여주는 도면,9 is a view showing another example of a method of manufacturing a semiconductor light emitting device according to the present disclosure;
도 10 내지 도 14는 본 개시에 따른 반도체 발광소자의 제조 방법의 일 예를 설명하기 위한 도면,10 to 14 are views for explaining an example of a method of manufacturing a semiconductor light emitting device according to the present disclosure;
도 15는 본 개시에 따른 반도체 발광소자의 제조 방법에서 봉지재를 형성하는 물질이 개구에 공급되고 경화된 형태의 예들을 설명하기 위한 도면,15 is a view for explaining examples of a form in which a material forming an encapsulant is supplied to an opening and cured in a method of manufacturing a semiconductor light emitting device according to the present disclosure;
도 16은 본 개시에 따른 반도체 발광소자의 제조 방법의 다른 예를 설명하기 위한 도면,16 is a view for explaining another example of the method of manufacturing the semiconductor light emitting device according to the present disclosure;
도 17은 본 개시에 따른 반도체 발광소자의 제조 방법의 또 다른 예를 설명하기 위한 도면,17 is a view for explaining another example of a method of manufacturing a semiconductor light emitting device according to the present disclosure;
도 18은 본 개시에 따른 반도체 발광소자의 일 예를 보여주는 도면,18 illustrates an example of a semiconductor light emitting device according to the present disclosure;
도 19는 본 개시에 따른 반도체 발광소자에서 제1 봉지재의 상면이 아래로 볼록한 것에 따른 효과를 설명하는 도면,19 is a view illustrating an effect of the top surface of the first encapsulant being convex downward in the semiconductor light emitting device according to the present disclosure;
도 20은 도 18에 개시된 반도체 발광소자의 제조 방법의 일 예를 보여주는 도면,20 is a view showing an example of a method of manufacturing a semiconductor light emitting device disclosed in FIG. 18;
도 21은 도 18에 개시된 반도체 발광소자의 다양한 실시 예를 보여주는 도면,21 is a view illustrating various embodiments of a semiconductor light emitting device disclosed in FIG. 18;
도 22는 본 개시에 따른 반도체 발광소자의 일 예를 보여주는 도면,22 illustrates an example of a semiconductor light emitting device according to the present disclosure;
도 23은 도 22에 개시된 반도체 발광소자의 적용 예를 보여주는 도면,23 is a view showing an application example of the semiconductor light emitting device disclosed in FIG. 22;
도 24는 도 22에 개시된 반도체 발광소자의 제조 방법의 일 예를 보여주는 도면,24 is a view illustrating an example of a method of manufacturing a semiconductor light emitting device disclosed in FIG. 22;
도 25는 도 22에 개시된 반도체 발광소자의 다양한 실시 예를 보여주는 도면,25 is a view illustrating various embodiments of a semiconductor light emitting device disclosed in FIG. 22;
도 26은 본 개시에 따른 반도체 발광소자에서 제1 봉지재의 상면이 아래로 볼록한 정도에 따른 효과를 설명하는 도면,FIG. 26 is a view illustrating an effect according to the degree of convex upper surface of a first encapsulant in a semiconductor light emitting device according to the present disclosure; FIG.
도 27은 본 개시에 따른 반도체 발광소자의 다른 예를 보여주는 도면,27 is a view showing another example of a semiconductor light emitting device according to the present disclosure;
도 28은 본 개시에 따른 반도체 발광소자의 평면형상에 따른 발광 실험예를 보여주는 도면.28 is a view showing a light emitting experimental example according to the planar shape of the semiconductor light emitting device according to the present disclosure.
이하, 본 개시를 첨부된 도면을 참고로 하여 자세하게 설명한다(The present disclosure will now be described in detail with reference to the accompanying drawing(s)). The present disclosure will now be described in detail with reference to the accompanying drawing (s).
도 4는 본 개시에 따른 반도체 발광소자의 일 예를 보여주는 도면이다.4 is a diagram illustrating an example of a semiconductor light emitting device according to the present disclosure.
반도체 발광소자(200)는 전자와 정공의 재결합에 의해 빛을 생성하는 활성층(211)을 포함하는 복수의 반도체층과, 복수의 반도체층에 전기적으로 연결된 전극(212)을 구비하는 반도체 발광소자 칩(210), 반도체 발광소자 칩(210) 위에 위치하는 제1 봉지재(220), 반도체 발광소자 칩(210)의 측면(213) 및 제1 봉지재(220) 아래에 위치하는 제2 봉지재(230) 및 반도체 발광소자 칩(210)의 측면(213) 및 제2 봉지재(230) 아래에 위치하는 제3 봉지재(240)를 포함한다. 반도체 발광소자 칩(210)은 반도체 발광소자 칩(210) 하부에 전극(212)이 위치하는 플립 칩이 바람직하며, 전극(212)은 제3 봉지재(250) 방향으로 노출되어 있다. 활성층(211)은 명확히 표시하기 위하여 과장되게 표현하였으며, 실제 활성층은 두께가 수 um로 얇으며 전극(212) 근처에 형성되어 있다. 제1 봉지재(220)는 YAG, Silicate, Nitride 중 적어도 하나로 이루어진 파장 변환재를 포함하고 있는 투광성 물질을 도포하여 형성될 수 있으며 자세한 것은 도 7에서 설명한다. 투광성 물질은 에폭시 수지 및 실리콘 수지 중 적어도 하나일 수 있다. 또는 제1 봉지재(220)는 파장 변환재를 포함하고 있는 시트(Sheet)로 형성될 수도 있다. 파장 변환재를 포함하고 있는 시트는 일반적으로 형광체 시트로 알려져 있다. 제2 봉지재(230)는 투광성 물질 및 파장 변환재를 포함하는 투광성 물질 중 하나로 형성될 수 있다. 투광성 물질은 에폭시 수지 및 실리콘 수지 중 적어도 하나일 수 있다. 제2 봉지재(230)는 제1 봉지재(220)에 반도체 발광소자 칩(210)을 고정하는 접착제가 없는 경우 접착제 역할을 할 수 있다. 제3 봉지재(240)는 유색의 반사 물질로 형성될 수 있다. 예를 들어 화이트 실리콘 수지로 형성될 수 있다. 제3 봉지재(240)는 반도체 발광소자 칩(210)의 측면(213)으로부터 나오는 빛(260)을 반사하여 빛(260)을 상측으로 나가도록 한다. 제2 봉지재(230)와 제3 봉지재(240) 사이의 경계면(250)은 곡선을 형성하며, 특히 위로 볼록한 곡선을 형성한다. 본 개시에 대한 장점은 도 6에서 설명한다.The semiconductor light emitting device 200 includes a semiconductor light emitting device chip including a plurality of semiconductor layers including an active layer 211 that generates light by recombination of electrons and holes, and an electrode 212 electrically connected to the plurality of semiconductor layers. 210, a first encapsulation member 220 disposed on the semiconductor light emitting device chip 210, a side encapsulation 213 of the semiconductor light emitting device chip 210, and a second encapsulation material disposed under the first encapsulation material 220. And a third encapsulation member 240 positioned under the side surface 213 and the second encapsulation member 230 of the semiconductor light emitting device chip 210. The semiconductor light emitting device chip 210 is preferably a flip chip in which the electrode 212 is positioned below the semiconductor light emitting device chip 210, and the electrode 212 is exposed in the direction of the third encapsulant 250. The active layer 211 is exaggerated for clarity, and the actual active layer is a few um thick and is formed near the electrode 212. The first encapsulant 220 may be formed by applying a light-transmitting material including a wavelength conversion material made of at least one of YAG, Silicate, and Nitride, and details thereof will be described with reference to FIG. 7. The light transmissive material may be at least one of an epoxy resin and a silicone resin. Alternatively, the first encapsulant 220 may be formed of a sheet including a wavelength converting material. The sheet containing the wavelength converting material is generally known as a phosphor sheet. The second encapsulant 230 may be formed of one of a light transmissive material including a light transmissive material and a wavelength converting material. The light transmissive material may be at least one of an epoxy resin and a silicone resin. The second encapsulant 230 may act as an adhesive when there is no adhesive for fixing the semiconductor light emitting device chip 210 to the first encapsulant 220. The third encapsulant 240 may be formed of a colored reflective material. For example, it may be formed of a white silicone resin. The third encapsulant 240 reflects the light 260 emitted from the side surface 213 of the semiconductor light emitting device chip 210 to exit the light 260 upward. The interface 250 between the second encapsulant 230 and the third encapsulant 240 forms a curve, in particular a convex upward curve. Advantages of the present disclosure are described in FIG. 6.
도 5는 본 개시에 따른 반도체 발광소자의 다양한 실시 예를 보여주는 도면이다.5 is a view illustrating various embodiments of a semiconductor light emitting device according to the present disclosure.
반도체 발광소자는 도 4와 같은 구조뿐 아니라 도 5(a) 내지 도 5(b)와 같이 다양한 구조의 반도체 발광소자가 가능하다. 예를 들어 도 5(a)의 반도체 발광소자(300)와 같이 제3 봉지재(340)와 제1 봉지재(320) 사이의 최단 거리(331)와 제3 봉지재(340)와 반도체 발광소자 칩(310)의 측면(311)이 접하는 부분의 거리(341)를 다르게하여 도 4 및 도 5(b)의 반도체 발광소자(200, 400)와 같이 다양한 구조의 반도체 발광소자가 가능하다. 예를 들어 도 4의 반도체 반도체 발광소자(200)는 제1 봉지재(220)와 제3 봉지재(240) 사이의 최단 거리가 0으로 제1 봉지재(220)와 제3 봉지재(340)가 접한 부분이 있어 반도체 발광소자(200)의 측면으로 나가는 빛이 발생하지 않지만 도 5(b)와 같이 제1 봉지재(420)와 제3 봉지재(440) 사이의 최단 거리를 0 보다 크게 형성하는 경우에는 반도체 발광소자(400)의 평면 형상이 사각형이라 했을 때 반도체 발광소자(400)의 상면과 4 개의 측면으로 빛이 추출되는 5면 발광 반도체 발광소자(400)를 얻을 수 있다. 제1 봉지재(420)와 제3 봉지재(440) 사이의 최단 거리를 크게 하면 할수록 반도체 발광소자(400)의 측면으로 추출되는 빛이 많아질 수 있다. 5 면 발광 반도체 발광소자(400)의 경우 제2 봉지재(430)는 파장 변환재를 포함하고 있는 것이 바람직하다. 다만 제3 봉지재(240, 340, 440)와 반도체 발광소자 칩(210, 310, 410)의 측면(213, 311, 411) 사이에 제2 봉지재(230, 330, 430)가 없는 것이 바람직하며, 이유는 도 6에서 설명한다.The semiconductor light emitting device may have a semiconductor light emitting device having various structures as shown in FIGS. 5 (a) to 5 (b) as well as the structure of FIG. 4. For example, as shown in the semiconductor light emitting device 300 of FIG. 5A, the shortest distance 331 between the third encapsulation member 340 and the first encapsulation member 320, the third encapsulation member 340, and the semiconductor light emitting diode are emitted. By varying the distance 341 of the portion where the side surface 311 of the device chip 310 is in contact with each other, semiconductor light emitting devices having various structures, such as the semiconductor light emitting devices 200 and 400 of FIGS. 4 and 5 (b), may be possible. For example, in the semiconductor semiconductor light emitting device 200 of FIG. 4, the first encapsulant 220 and the third encapsulant 340 have a shortest distance between the first encapsulant 220 and the third encapsulant 240 to be zero. ) Does not generate light exiting to the side surface of the semiconductor light emitting device 200, but the shortest distance between the first encapsulant 420 and the third encapsulant 440 is greater than 0 as shown in FIG. In the case where the semiconductor light emitting device 400 is formed to be large, when the planar shape of the semiconductor light emitting device 400 is a quadrangle, a five-side light emitting semiconductor light emitting device 400 may be obtained in which light is extracted to the upper surface and four side surfaces of the semiconductor light emitting device 400. As the shortest distance between the first encapsulation material 420 and the third encapsulation material 440 is increased, light extracted to the side surface of the semiconductor light emitting device 400 may increase. In the case of the five-side light emitting semiconductor light emitting device 400, the second encapsulation material 430 preferably includes a wavelength conversion material. However, it is preferable that there is no second encapsulant 230, 330, or 430 between the third encapsulant 240, 340, 440 and the side surfaces 213, 311, 411 of the semiconductor light emitting device chip 210, 310, 410. The reason will be described in FIG. 6.
도 6은 본 개시에 따른 반도체 발광소자의 장점을 보여주는 도면이다.6 is a view showing the advantages of the semiconductor light emitting device according to the present disclosure.
반도체 발광소자(200)의 제3 봉지재(240)는 반도체 발광소자 칩(210)의 측면(213)에서 나오는 빛(260)을 반사하여 빛(260)을 상측으로 나가게 한다. 특히 반도체 발광소자 칩(210)의 측면(213)에서 나오는 빛(260)이 반도체 발광소자 칩(210)의 전극 방향으로 나가는 것을 방지하고 경계면(250)이 위로 볼록한 구조로 인하여 빛이 상측으로 넓게 퍼져 나갈 수 있다. 반도체 발광소자의 상측 방향으로 나가는 빛 추출 효율을 향상시킨다. 예를 들어 도 6(b)와 같은 반도체 발광소자(500)에서 반도체 발광소자 칩(510)의 측면(511)과 제3 봉지재(540) 사이에 제2 봉지재(530)가 위치하는 경우 반도체 발광소자 칩(510)의 측면(511)에서 나오는 빛 중 일부(550)는 반도체 발광소자 칩(510)의 전극(512) 방향으로 나가 상측 방향으로 추출되는 빛의 효율이 떨어질 수 있다. 더 나아가 도 6(c)와 같은 반도체 발광소자(600)에서 제2 봉지재(630)가 제1 봉지재(620)에 반도체 발광소자 칩(610)을 고정하는 접착제로만 기능하며 제3 봉지재(640)와 반도체 발광소자 칩(610) 사이에 형성되지 않는 경우에는 반도체 발광소자 칩(610)의 측면(611)에서 나오는 빛의 대부분은 제3 봉지재(640)에 의해 반사가 되어 상측으로 추출되기는 하지만 제3 봉지재(640)에 의한 손실이 많이 발생하는 문제가 있었다. 반도체 발광소자의 장점은 도 4에 기재된 반도체 발광소자(200)를 갖고 설명하였지만 다른 다양한 실시 예(300, 400)도 동일한 장점이 있다.The third encapsulant 240 of the semiconductor light emitting device 200 reflects the light 260 emitted from the side surface 213 of the semiconductor light emitting device chip 210 to exit the light 260 upward. In particular, the light 260 emitted from the side surface 213 of the semiconductor light emitting device chip 210 is prevented from exiting toward the electrode of the semiconductor light emitting device chip 210 and the light is widened upward due to the convex interface 250. Can spread out. The light extraction efficiency toward the upper direction of the semiconductor light emitting device is improved. For example, when the second encapsulant 530 is positioned between the side surface 511 of the semiconductor light emitting device chip 510 and the third encapsulant 540 in the semiconductor light emitting device 500 as illustrated in FIG. 6B. Some of the light emitted from the side surface 511 of the semiconductor light emitting device chip 510 550 may be inefficient toward the light emitted outward toward the electrode 512 of the semiconductor light emitting device chip 510. Furthermore, in the semiconductor light emitting device 600 as shown in FIG. 6C, the second encapsulation material 630 functions only as an adhesive for fixing the semiconductor light emitting device chip 610 to the first encapsulation material 620, and the third encapsulation material. When not formed between the 640 and the semiconductor light emitting device chip 610, most of the light emitted from the side surface 611 of the semiconductor light emitting device chip 610 is reflected by the third encapsulant 640 and moved upward. Although extracted, there was a problem that a lot of losses caused by the third encapsulant 640 occur. Advantages of the semiconductor light emitting device have been described with the semiconductor light emitting device 200 shown in FIG. 4, but other various embodiments 300 and 400 have the same advantages.
도 7은 본 개시에 따른 반도체 발광소자 제조방법의 일 예를 보여주는 도면이다.7 is a view illustrating an example of a method of manufacturing a semiconductor light emitting device according to the present disclosure.
먼저 제1 봉지재(700)를 준비한다(S1). 제1 봉지재(700)는 파장 변환재를 포함하고 있는 시트이다. 도시하지 않았지만 제1 봉지재가 YAG, Silicate, Nitride 중 적어도 하나로 이루어진 파장 변환재를 포함하고 있는 투광성 물질로 형성되는 경우에는 기판 위에 파장 변환재를 포함하고 있는 투광성 물질을 도포 후 경화하여 제1 봉지재를 준비할 수 있다. 이후 제1 봉지재(600) 위에 복수의 반도체 발광소자 칩(710)을 놓는다(S2). 제1 봉지재(700) 위에 복수의 반도체 발광소자 칩(710)을 놓는 방법은 반도체 발광소자 칩(710)의 활성층(611)이 제1 봉지재(700)와 반도체 발광소자 칩(710)의 전극(712) 사이에 위치하도록 제1 봉지재(700) 위에 복수의 반도체 발광소자 칩(710)을 놓는다. 도시하지는 않았지만 반도체 발광소자 칩(710)이 제1 봉지재(700) 위에서 움직이지 않고 고정되도록 하기 위해 제1 봉지재(700)와 반도체 발광소자 칩(710) 사이에는 접착층이 있을 수 있다. 이후 반도체 발광소자 칩(710)과 반도체 발광소자 칩(710) 사이에 제2 봉지재(720)를 형성한다(S3). 반도체 발광소자 칩(710)과 반도체 발광소자 칩(710) 사이에 제2 봉지재(720)를 형성하는 경우, 액상으로 된 제2 봉지재(720)를 형성하는 물질을 반도체 발광소자 칩(610)과 반도체 발광소자 칩(710) 사이에 적어도 일부 채운다. 액상으로 된 제2 봉지재(720)를 형성하는 물질은 반도체 발광소자 칩(710)의 측면(713)을 타고 올라가지만 표면 장력 때문에 반도체 발광소자 칩(710) 위로 형성되지는 않는다. 제2 봉지재(720)는 가운데 부분이 아래로 볼록한 형태가 된다. 이후 제2 봉지재(720)에 형성된 아래로 볼록한 부분에 제3 봉지재(730)를 형성한다(S4). 바람직하게는 제3 봉지재(730)는 제2 봉지재(720)가 경화된 이후에 형성한다. 이후 반도체 발광소자 칩(710)과 반도체 발광소자 칩(710) 사이를 절단선(740)에 따라 절단한다(S5). 절단선(740)의 위치와 제2 봉지재(720)가 반도체 발광소자 칩(710)의 측면(713)을 타고 올라가는 정도에 따라 도 4 및 도 5에 기재된 다양한 형태의 반도체 발광소자(200, 300, 400)가 만들어질 수 있다. 예를 들어 절단선(640)의 위치를 왼쪽 방향으로 이동하여 절단하는 경우 점선으로 표시된 반도체 발광소자(750)는 도 5(a)와 같이 제1 봉지재(320)와 제3 봉지재(340) 사이의 최단 거리(331)가 도 4나 도 5(b) 보다는 큰 구조의 반도체 발광소자(300)를 얻을 수 있다.First, prepare a first encapsulant 700 (S1). The first encapsulant 700 is a sheet containing a wavelength converting material. Although not shown, when the first encapsulation material is formed of a light transmissive material including a wavelength conversion material composed of at least one of YAG, Silicate, and Nitride, the first encapsulation material is applied by curing the light transmissive material including the wavelength conversion material on a substrate. You can prepare. Thereafter, a plurality of semiconductor light emitting device chips 710 are placed on the first encapsulant 600 (S2). In the method of placing the plurality of semiconductor light emitting device chips 710 on the first encapsulation material 700, the active layer 611 of the semiconductor light emitting device chip 710 is formed of the first encapsulation material 700 and the semiconductor light emitting device chip 710. A plurality of semiconductor light emitting device chips 710 are placed on the first encapsulant 700 so as to be positioned between the electrodes 712. Although not shown, an adhesive layer may be provided between the first encapsulant 700 and the semiconductor light emitting device chip 710 in order to fix the semiconductor light emitting device chip 710 without moving on the first encapsulation material 700. Thereafter, a second encapsulant 720 is formed between the semiconductor light emitting device chip 710 and the semiconductor light emitting device chip 710 (S3). When the second encapsulant 720 is formed between the semiconductor light emitting device chip 710 and the semiconductor light emitting device chip 710, a material for forming the second encapsulant 720 in a liquid state may be the semiconductor light emitting device chip 610. ) And the semiconductor light emitting device chip 710. The material forming the second encapsulant 720 in the liquid state is taken up the side surface 713 of the semiconductor light emitting device chip 710, but is not formed on the semiconductor light emitting device chip 710 due to the surface tension. The second encapsulant 720 is in the form of a convex downward portion. Thereafter, the third encapsulation member 730 is formed in the convex portion formed on the second encapsulation member 720 (S4). Preferably, the third encapsulant 730 is formed after the second encapsulant 720 is cured. Thereafter, the semiconductor light emitting device chip 710 and the semiconductor light emitting device chip 710 are cut along the cutting line 740 (S5). According to the position of the cutting line 740 and the degree to which the second encapsulant 720 rises up the side surface 713 of the semiconductor light emitting device chip 710, various types of semiconductor light emitting devices 200 shown in FIGS. 4 and 5 may be used. 300, 400) can be made. For example, when cutting the position of the cutting line 640 by moving in the left direction, the semiconductor light emitting device 750 indicated by the dotted line has the first encapsulant 320 and the third encapsulant 340 as shown in FIG. ), The semiconductor light emitting device 300 having the shortest distance 331 between the structures of FIG. 4 or 5 (b) can be obtained.
도 8은 본 개시에 따른 반도체 발광소자 제조방법의 다른 일 예를 보여주는 도면이다.8 is a view showing another example of a method of manufacturing a semiconductor light emitting device according to the present disclosure.
먼저 제1 봉지재(800)를 준비한다(S1). 이후 제1 봉지재(800) 위에 액상의 제2 봉지재(810)를 형성하는 물질을 도포한다(S2-1). 제2 봉지재(810)를 형성하는 물질의 도포 두께는 20um 이하가 바람직하다. 도포 두께에 따라 반도체 발광소자의 구조를 다양하게 만들 수 있으며 도포 두께에 따른 특징은 도 9에서 설명한다. 이후 액상인 제2 봉지재(810) 위에 복수의 반도체 발광소자 칩(820)을 놓는다(S3-1). 제2 봉지재(810) 위에 복수의 반도체 발광소자 칩(820)을 놓는 방법은 반도체 발광소자 칩(820)의 활성층(821)이 제1 봉지재(800)와 반도체 발광소자 칩(820)의 전극(822) 사이에 위치하도록 제2 봉지재(810) 위에 복수의 반도체 발광소자 칩(820)을 놓는다. 특히 반도체 발광소자 칩(820)을 제1 봉지재(800) 방향으로 눌려줌으로써 제1 봉지재(800)와 반도체 발광소자 칩(820) 사이에 있는 제2 봉지재(810)의 일부가 나와 화살표(823)와 같이 반도체 발광소자 칩(820)의 측면을 타고 올라가 제2 봉지재(810)는 아래로 볼록한 형태가 된다. 다만 표면 장력으로 인하여 제2 봉지재(810)는 반도체 발광소자 칩(820) 위로는 올라가지 않는다. 이후 제2 봉지재(810)에 형성된 아래로 볼록한 부분에 제3 봉지재(830)를 형성한다(S4). 바람직하게는 제3 봉지재(830)는 제2 봉지재(810)가 경화된 이후에 형성한다. 이후 반도체 발광소자 칩(820)과 반도체 발광소자 칩(820) 사이를 절단선(840)에 따라 절단한다(S5). 도 7과 비교했을 때 제2 봉지재(810) 자체가 제1 봉지재(800)에 반도체 발광소자 칩(820)을 고정하는 접착제 역할을 수행하는 점이 다르다.First, prepare a first encapsulant 800 (S1). Subsequently, a material for forming the liquid second encapsulant 810 is coated on the first encapsulant 800 (S2-1). The coating thickness of the material forming the second encapsulant 810 is preferably 20 μm or less. The structure of the semiconductor light emitting device can be made various according to the coating thickness, and the characteristics according to the coating thickness will be described with reference to FIG. 9. Thereafter, the plurality of semiconductor light emitting device chips 820 are placed on the liquid second encapsulant 810 (S3-1). In the method of placing the plurality of semiconductor light emitting device chips 820 on the second encapsulation material 810, the active layer 821 of the semiconductor light emitting device chip 820 may be formed of the first encapsulant 800 and the semiconductor light emitting device chip 820. A plurality of semiconductor light emitting device chips 820 are placed on the second encapsulant 810 so as to be positioned between the electrodes 822. In particular, by pressing the semiconductor light emitting device chip 820 in the direction of the first encapsulant 800, a portion of the second encapsulant 810 between the first encapsulating material 800 and the semiconductor light emitting device chip 820 may come out from the arrow. As shown in 823, the second encapsulant 810 moves up the side of the semiconductor light emitting device chip 820 to be convex downward. However, due to the surface tension, the second encapsulant 810 does not rise above the semiconductor light emitting device chip 820. Thereafter, the third encapsulation member 830 is formed on the convex portion formed on the second encapsulation member 810 (S4). Preferably, the third encapsulant 830 is formed after the second encapsulant 810 is cured. Thereafter, the semiconductor light emitting device chip 820 and the semiconductor light emitting device chip 820 are cut along the cutting line 840 (S5). Compared to FIG. 7, the second encapsulant 810 itself serves as an adhesive for fixing the semiconductor light emitting device chip 820 to the first encapsulant 800.
도 9는 본 개시에 따른 반도체 발광소자 제조방법의 또 다른 일 예를 보여주는 도면이다.9 is a view showing another example of a method of manufacturing a semiconductor light emitting device according to the present disclosure.
도 9는 도 8에서 제1 봉지재(800) 위에 액상의 제2 봉지재(810)를 형성하는 물질을 도포할 때, 제2 봉지재(810)의 도포 두께(811)는 20um 이상 반도체 발광소자 칩(820) 의 두께(824)의 0.8 이하로 하는 것을 보여준다(S2-2). 도포의 두께가 두꺼운 경우 제1 봉지재(800)와 제3 봉지재(830) 사이의 최단 거리(831)가 커지며, 도 5(b)와 같은 구조의 반도체 발광소자(400)를 제조할 수 있다. 필요에 따라 제3 봉지재(830)는 형성하지 않을 수도 있다. 도 9에 설명된 것을 제외하고 도 9에 기재된 제조 방법은 실질적으로 도 8에 기재된 제조 방법과 동일하다.FIG. 9 is a coating thickness 811 of the second encapsulant 810 when the material for forming the liquid second encapsulant 810 is coated on the first encapsulant 800 in FIG. 8. It is shown that the thickness 824 of the element chip 820 is set to 0.8 or less (S2-2). When the thickness of the coating is thick, the shortest distance 831 between the first encapsulant 800 and the third encapsulant 830 is increased, and thus the semiconductor light emitting device 400 having the structure as shown in FIG. 5 (b) can be manufactured. have. If necessary, the third encapsulant 830 may not be formed. Except as described in FIG. 9, the manufacturing method described in FIG. 9 is substantially the same as the manufacturing method described in FIG. 8.
도 10 내지 도 14는 본 개시에 따른 반도체 발광소자의 제조 방법의 일 예를 설명하기 위한 도면으로서, 반도체 발광소자의 제조 방법에 있어서, 도 10에 제시된 바와 같이, 먼저, 베이스(201) 위에 하나 이상의 개구(305)가 형성된 마스크(301)를 구비한다. 이후, 도 12(b)에 제시된 바와 같이, 마스크(301)의 형상, 패턴, 또는 경계 등을 인식하여 소자가 놓일 위치 및 각도를 보정하는 소자 이송 장치(501)를 사용하여, 각 개구(305)로 노출된 베이스(201) 위에 반도체 발광소자 칩(101)을 놓는다. 다음으로, 도 14에 제시된 바와 같이, 마스크(301)를 댐(dam)으로 하여, 각 개구(305)에 봉지재(170)를 형성하는 물질을 공급한다.10 to 14 are views for explaining an example of a method of manufacturing a semiconductor light emitting device according to the present disclosure. In the method of manufacturing a semiconductor light emitting device, as shown in FIG. 10, first, one on the base 201 is illustrated. The mask 301 with the above opening 305 is provided. Then, as shown in Figure 12 (b), each opening 305 using the element transfer device 501 to recognize the shape, pattern, or boundary of the mask 301 and correct the position and angle to place the element. The semiconductor light emitting device chip 101 is placed on the exposed base 201. Next, as shown in FIG. 14, a material for forming the encapsulant 170 is supplied to each opening 305 using the mask 301 as a dam.
본 예에서, 베이스(201) 위에 반도체 발광소자 칩(101)을 놓기 전에, 먼저 베이스(201)에 마스크(301)를 놓는다. 마스크(301)는 소자 이송 장치(501)가 반도체 발광소자 칩(101)을 놓을 위치나 각도를 보정하기 위한 패턴으로 인식될 수 있으며, 이와 함께 봉지재(170)의 댐으로 기능한다. 본 예에서, 반도체 발광소자 칩(101)으로는 플립 칩(flip chip)이 적합하지만, 레터럴 칩(lateral chip)이나 수직형 칩(vertical chip)을 배제하는 것은 아니다. 플립 칩 소자로서, 반도체 발광소자 칩(101)은 도 2 및 도 13에 도시되어 있다.In this example, before placing the semiconductor light emitting device chip 101 on the base 201, a mask 301 is first placed on the base 201. The mask 301 may be recognized as a pattern for correcting a position or an angle at which the device transfer device 501 is to place the semiconductor light emitting device chip 101, and functions as a dam of the encapsulant 170. In this example, a flip chip is suitable as the semiconductor light emitting device chip 101, but it does not exclude a lateral chip or a vertical chip. As the flip chip device, the semiconductor light emitting device chip 101 is shown in Figs.
이하, 각 과정을 상세히 설명한다.Hereinafter, each process will be described in detail.
도 11에 도시된 바와 같이, 베이스(201) 위에 마스크(301)가 구비된다. 베이스(201)는 도 11(a)에 제시된 바와 같이, 리지드(rigid)한 금속 판 또는 비금속 판이거나, 도 11(b)에 제시된 바와 같이, 플렉시블한 필름 또는 테이프일 수 있다. 금속 판으로는 특별한 한정이 있는 것은 아니며, 예를 들어, Al, Cu, Ag, Cu-Al 합금, Cu-Ag 합금, Cu-Au 합금, SUS(스테인리스스틸) 등이 사용될 수 있으며, 도금된 판도 물론 사용 가능하다. 비금속 판으로는 플라스틱이 사용될 수 있으며, 다양한 색상이나 광반사율을 선택할 수 있다. 필름 또는 테이프도 특별한 제한은 없으며, 점착성 또는 접착성을 가지며 내열성을 가지는 것이 바람직하다. 예를 들어, 내열성 테이프, 블루테이프 등이 사용될 수 있으며, 다양한 색상이나 광반사율을 선택할 수 있다.As shown in FIG. 11, a mask 301 is provided on the base 201. The base 201 may be a rigid metal plate or a nonmetal plate, as shown in FIG. 11 (a), or may be a flexible film or tape, as shown in FIG. 11 (b). The metal plate is not particularly limited, and for example, Al, Cu, Ag, Cu-Al alloys, Cu-Ag alloys, Cu-Au alloys, SUS (stainless steel), and the like may be used. Of course you can use it. Plastics can be used as nonmetallic plates, and various colors and light reflectances can be selected. The film or tape is also not particularly limited and is preferably sticky or adhesive and has heat resistance. For example, heat resistant tape, blue tape, or the like may be used, and various colors or light reflectances may be selected.
이와 같이, 본 예에 의하면, 반도체 발광소자 칩(101)이 배열되는 베이스(201)가 반도체 기판이나 다른 고가의 기판이 아니라도 무방한 장점이 있다. 또한, 마스크(301)가 반도체 발광소자 칩(101) 배열의 가이드가 되므로 베이스(201)에 추가적인 패턴 형성 공정이 필요 없다. 또한, 도 13에 도시된 반도체 발광소자 칩(101)의 전극(80,70)이 직접 외부 전극과 접하는 전극이 되거나, 베이스가 전기적 도통에 사용될 수도 있어서, 베이스(201) 위에 증착 또는 도금 등의 방법으로 전기적 연결을 위한 도전층을 형성하거나, 베이스(201) 제거 후에 반도체 발광소자 칩(101)의 전극(80,70)과 연결되는 전기적 콘택부를 추가로 형성하는 등의 추가적 및 부가적 공정이 필요 없어서 공정 및 비용 면에서 매우 유리한 장점이 있다.Thus, according to this example, there is an advantage that the base 201 on which the semiconductor light emitting device chip 101 is arranged may not be a semiconductor substrate or another expensive substrate. In addition, since the mask 301 guides the arrangement of the semiconductor light emitting device chip 101, an additional pattern forming process is not required for the base 201. In addition, the electrodes 80 and 70 of the semiconductor light emitting device chip 101 shown in FIG. 13 may be directly in contact with external electrodes, or the base may be used for electrical conduction, so that deposition or plating on the base 201 may be performed. Additional and additional processes, such as forming a conductive layer for electrical connection, or additionally forming an electrical contact portion connected to the electrodes 80 and 70 of the semiconductor light emitting device chip 101 after removing the base 201, may be used. There is no need for this, which is very advantageous in terms of process and cost.
마스크(301)는 플라스틱, 금속, 또는, 표면이 도금된 부재일 수 있으며, 하나 이상의 개구(305)가 형성되어 있다. 마스크(301)의 재질은 상기 베이스의 재질로 예시된 예들이 사용될 수 있지만, 마스크(301) 및 개구(305)의 형태 유지에 좋도록 어느 정도 딱딱한 재질이 바람직하고, 크랙이나 갈라짐 방지에 효과적인 재질로 선택하는 것이 바람직하다. 특히, 후술되는 바와 같이, 소자 이송 장치가 마스크(301)의 패턴을 인식하는 측면에서는 마스크(301)와 베이스(201)는 재질, 색상 및 광반사율 중 적어도 하나가 다르게 선택되는 것이 바람직하다.The mask 301 may be a plastic, metal, or plated member, and one or more openings 305 are formed. Examples of the material of the mask 301 may be used as examples of the material of the base, but a material that is hard to some extent is preferable to maintain the shape of the mask 301 and the opening 305, and is effective for preventing cracks and cracks. It is preferable to select as. Particularly, as will be described later, at least one of a material, a color, and a light reflectance of the mask 301 and the base 201 may be differently selected from the viewpoint of the element transfer device recognizing the pattern of the mask 301.
본 예에서, 베이스(201)와 마스크(301)는 외력에 의해 가압되어 서로 접하게 된다. 예를 들어, 도 11(a)에 제시된 바와 같이, 클램프(401)를 사용하여 베이스(201)와 마스크(301)를 접촉시킬 수 있다. 이와 같이, 본 예에 의하면, 베이스(201)와 마스크(301)를 접촉시키 위한 방법이 간편하고, 클램프(401)를 풀어서 베이스(201)로부터 마스크(301)를 제거할 수 있으므로 편리한 장점이 있다. 베이스(201)와 마스크(301) 사이에 접착 물질을 개재시키는 실시예도 물론 가능하다. 예를 들어, 접착 물질은 도전성 패이스트, 절연성 패이스트, 폴리머 접착제 등 다양하게 선택가능하며, 특별히 제한되지는 않는다. 어느 온도 범위에서는 접착력을 상실하는 물질을 사용하면, 베이스(201)와 마스크(301)의 분리시에 상기 온도 범위에서 분리가 쉽게 될 수 있다. In this example, the base 201 and the mask 301 are pressed against each other by an external force. For example, as shown in FIG. 11A, the clamp 401 may be used to contact the base 201 and the mask 301. As described above, according to this example, the method for contacting the base 201 and the mask 301 is simple, and the clamp 401 can be removed to remove the mask 301 from the base 201. . Of course, embodiments in which an adhesive material is interposed between the base 201 and the mask 301 are also possible. For example, the adhesive material may be variously selected from conductive pastes, insulating pastes, polymer adhesives, and the like, and is not particularly limited. In some temperature ranges, a material that loses adhesion may be easily separated in the temperature range when the base 201 and the mask 301 are separated.
마스크(301)에 형성된 하나 이상의 개구(305)는 일 예로, 복수의 행과 열로 배열되어 있다. 개구(305)로 베이스(201)의 상면이 노출된다. 개구(305)의 개수 및 배열 방식은 필요에 따라 적절하게 변경할 수 있음은 물론이다. 개구(305)는 반도체 발광소자 칩(101)의 형상을 따를 수도 있지만, 반도체 발광소자 칩(101)과 다른 형상을 가질 수도 있다. The one or more openings 305 formed in the mask 301 are arranged in a plurality of rows and columns, for example. The top surface of the base 201 is exposed through the opening 305. The number and arrangement of the openings 305 can be appropriately changed as necessary. The opening 305 may follow the shape of the semiconductor light emitting device chip 101, but may have a shape different from that of the semiconductor light emitting device chip 101.
도 12는 반도체 발광소자 칩(101)을 개구(305)로 노출된 베이스(201)에 놓는 과정의 일 예를 설명하기 위한 도면으로서, 소자 이송 장치(501)는 고정부(13; 예: 테이프) 위의 각 반도체 발광소자 칩(101)을 픽업(pick-up)하여 마스크(301)의 개구(305)로 노출된 베이스(201) 위에 놓는다. 이 과정보다 먼저, 소자 배열 장치(예: 쏘터; sorter)를 사용하여, 복수의 반도체 발광소자 칩(101)을 테이프(13) 위에 제공하는 과정이 선행될 수 있다. 도 12(a)에 제시된 바와 같이, 테이프(13)의 아래에서 핀 또는 봉이 반도체 발광소자 칩(101)을 치면 테이프(13)로부터 반도체 발광소자 칩(101)이 떨어지며, 그 순간 소자 이송 장치(501)가 반도체 발광소자 칩(101)을 전기적 흡착 또는 진공 흡착할 수 있다. 도 12(b)에 제시된 바와 같이, 소자 이송 장치(501)는 베이스(201) 위로 이동하여 각 개구(305)에 반도체 발광소자 칩(101)을 놓는다. 반도체 발광소자 칩(101)은 2개의 전극(80,70)이 베이스(201)의 상면과 마주하도록 놓이며, 이에 따라 후술되는 봉지재(170)에 의해 2개의 전극(80,70)이 덮이지 않고 봉지재(170)의 하면으로부터 노출된다. 소자 이송 장치(501)의 일 예로, 다이본더와 유사하게, 패턴 또는 형상을 인식하며, 이송할 위치나 대상물의 각도를 보정할 수 있는 장치라면 그 명칭에 무관하게 사용 가능할 것이다.FIG. 12 is a view for explaining an example of a process of placing the semiconductor light emitting device chip 101 on the base 201 exposed through the opening 305. The device conveying device 501 may include a fixing part 13; Each semiconductor light emitting device chip 101 on the top surface is picked up and placed on the base 201 exposed through the opening 305 of the mask 301. Prior to this process, a process of providing a plurality of semiconductor light emitting device chips 101 on the tape 13 may be preceded by using an element array device (eg, a sorter). As shown in Fig. 12 (a), when the pin or rod hits the semiconductor light emitting device chip 101 under the tape 13, the semiconductor light emitting device chip 101 falls from the tape 13, and at that moment, the element transfer device ( The 501 may electrically adsorb or vacuum adsorb the semiconductor light emitting device chip 101. As shown in FIG. 12B, the device transfer device 501 moves over the base 201 to place the semiconductor light emitting device chip 101 in each opening 305. The semiconductor light emitting device chip 101 is placed so that two electrodes 80 and 70 face the upper surface of the base 201, so that the two electrodes 80 and 70 are covered by the encapsulant 170 described later. It is not exposed from the lower surface of the sealing material 170. As an example of the element transfer device 501, any device capable of recognizing a pattern or a shape and correcting a position to be transferred or an angle of an object, similar to a die bonder, may be used regardless of its name.
도 13은 플립 칩으로서 도 2에 도시된 것과 다른 구조의 플립 칩을 설명하고 있다. 반도체 발광소자 칩(101)은 성장 기판(10), 복수의 반도체층(30,40,50), 광반사층(R), 및 2개의 전극(80,70)을 포함한다. 3족 질화물 반도체 발광소자를 예로 들면, 성장 기판(10)으로 주로 사파이어, SiC, Si, GaN 등이 이용되며, 성장 기판(10)은 최종적으로 제거될 수도 있다. 복수의 반도체층(30,40,50)은 성장 기판(10) 위에 형성된 버퍼층(도시되지 않음), 제1 도전성을 가지는 제1 반도체층(30; 예: Si 도핑된 GaN), 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(50; 예: Mg 도핑된 GaN) 및 제1 반도체층(30)과 제2 반도체층(50) 사이에 개재되며 전자와 정공의 재결합을 통해 빛을 생성하는 활성층(40; 예: InGaN/(In)GaN 다중양자우물구조)을 포함한다. 복수의 반도체층(30,40,50) 각각은 다층으로 이루어질 수 있고, 버퍼층은 생략될 수 있다. 제1 반도체층(30)과 제2 반도체층(50)은 그 위치가 바뀔 수 있으며, 3족 질화물 반도체 발광소자에 있어서 주로 GaN으로 이루어진다. 제1 전극(80)은 제1 반도체층(30)과 전기적으로 연통되어 전자를 공급한다. 제2 전극(70)은 제2 반도체층(50)과 전기적으로 연통되어 정공을 공급한다.FIG. 13 illustrates a flip chip having a structure different from that shown in FIG. 2 as a flip chip. The semiconductor light emitting device chip 101 includes a growth substrate 10, a plurality of semiconductor layers 30, 40, and 50, a light reflection layer R, and two electrodes 80 and 70. As a group III nitride semiconductor light emitting device, for example, sapphire, SiC, Si, GaN and the like are mainly used as the growth substrate 10, and the growth substrate 10 may be finally removed. The plurality of semiconductor layers 30, 40, and 50 may include a buffer layer (not shown) formed on the growth substrate 10, a first semiconductor layer 30 having a first conductivity (eg, Si-doped GaN), and a first conductivity. The second semiconductor layer 50 having another second conductivity (for example, Mg-doped GaN) is interposed between the first semiconductor layer 30 and the second semiconductor layer 50 and generates light through recombination of electrons and holes. An active layer 40 (eg, an InGaN / (In) GaN multi-quantum well structure). Each of the plurality of semiconductor layers 30, 40, and 50 may be formed in multiple layers, and the buffer layer may be omitted. The positions of the first semiconductor layer 30 and the second semiconductor layer 50 may be changed, and are mainly made of GaN in the group III nitride semiconductor light emitting device. The first electrode 80 is in electrical communication with the first semiconductor layer 30 to supply electrons. The second electrode 70 is in electrical communication with the second semiconductor layer 50 to supply holes.
도 13(a)에 제시된 바와 같이, 제2 반도체층(50)과 전극(70,80) 사이에는 광반사층(R)이 개재되며, 광반사층(R)은 SiO2와 같은 절연층, DBR(Distributed Bragg Reflector) 또는 ODR(Omni-Directional Reflector)을 포함하는 다층 구조를 가질 수 있다. 또는, 도 13(b)에 제시된 바와 같이, 제2 반도체층(50) 위에 금속 반사막(R)이 구비되고, 전극(70)이 금속 반사막(R) 위에 구비되며, 메사식각으로 노출된 제1 반도체층(50)과 다른 전극(80)이 연통될 수 있다. 전술된 소자 이송 장치(501)는 이와 같은 전극(70,80)의 형상 또는 패턴을 인식할 수 있다. As shown in FIG. 13A, a light reflection layer R is interposed between the second semiconductor layer 50 and the electrodes 70 and 80, and the light reflection layer R is formed of an insulating layer such as SiO 2 , a DBR ( It may have a multilayer structure including a distributed bragg reflector or an omni-directional reflector (ODR). Alternatively, as shown in FIG. 13B, a metal reflective film R is provided on the second semiconductor layer 50, an electrode 70 is provided on the metal reflective film R, and is exposed by mesa etching. The semiconductor layer 50 may be in communication with another electrode 80. The device transfer device 501 described above may recognize the shape or the pattern of the electrodes 70 and 80.
도 14는 본 개시에 따른 반도체 발광소자의 제조 방법에서 마스크를 댐으로 하여 각 개구에 봉지재를 형성하는 물질을 공급하는 방법의 일 예를 설명하기 위한 도면으로서, 도 14(a)와 같이, 디스펜서(601)로 각 개구(305)마다 봉지재(170)를 형성하는 물질을 공급할 수 있다. 이와 다르게, 도 14(b)와 같이, 봉지재(170)를 형성하는 물질을 밀어서 평탄화하는 방법이 사용될 수 있다. 봉지재(170)을 형성하는 물질은 파장 변환재를 포함하는 투광성 물질 및 투광성 물질 중 하나이다. 투광성 물질은 실리콘 수지 및 에폭시 수지 중 하나일 수 있다.FIG. 14 is a view for explaining an example of a method of supplying a material for forming an encapsulant in each opening using a mask as a dam in the method of manufacturing a semiconductor light emitting device according to the present disclosure. As shown in FIG. The dispenser 601 may supply a material for forming the encapsulant 170 in each opening 305. Alternatively, as shown in FIG. 14B, a method of pushing and flattening a material forming the encapsulant 170 may be used. The material forming the encapsulant 170 is one of a light transmissive material and a light transmissive material including a wavelength converting material. The light transmitting material may be one of a silicone resin and an epoxy resin.
도 15는 본 개시에 따른 반도체 발광소자의 제조 방법에서 봉지재를 형성하는 물질이 개구에 공급되고 경화된 형태의 예들을 설명하기 위한 도면으로서, 디스펜서(601)로 봉지재(170)를 형성하는 물질을 공급하는 속도, 양 등을 제어하여 도 15(a)와 같이 봉지재(170)의 상면이 약간 볼록하게 할 수 있다. 이와 같은 형태로 봉지재(170)가 형성되면, 반도체 발광소자 칩(101)으로부터 나온 빛의 분포를 원하는 형태로 하는 데에 도움이 될 수 있다. 또한, 도 15(b)와 같이 평탄하게 할 수도 있다. 한편, 도 15(c)와 같이, 마스크(301) 외곽에 마스크(301)보다 높은 벽(303)을 구비하고 마스크(301)보다 봉지재(170)가 더 높게 형성되도록 하는 것도 가능하다. 마스크(301)의 높이보다 낮게 봉지재(170)를 형성하는 물질을 공급하는 것도 가능하며 이에 대해서는 도 20에서 설명한다. 이후, 도 15(d)에 제시된 바와 같이, 클램프(401; 도 11 참조)를 풀면, 마스크(301), 봉지재(170), 및 반도체 발광소자 칩(101)이 일체로 베이스(201)로부터 분리된다. 여기서, 마스크(301), 봉지재(170), 및 반도체 발광소자 칩(101)의 결합체를 그대로 소자로 사용하는 것도 물론 고려할 수 있다. 한편, 베이스(201)와 마스크(301)를 접착제나 다른 방법으로 접합하는 경우에는 마스크(301), 봉지재(170), 반도체 발광소자 칩(101), 및 베이스(201)가 일체로서 반도체 발광소자로 사용될 수도 있다. 이와 다르게, 마스크(301)를 제거하여 개별 반도체 발광소자별로 분리하거나, 마스크(301)를 절단하여 개별 반도체 발광소자로 분리하거나, 마스크(301) 및 베이스(201)를 함께 절단하여 개별 반도체 발광소자로 분리할 수 있다. FIG. 15 is a view for explaining examples of a form in which a material forming an encapsulant is supplied to an opening and cured in the method of manufacturing a semiconductor light emitting device according to the present disclosure, and the encapsulant 170 is formed by a dispenser 601. The upper surface of the encapsulant 170 may be slightly convex, as illustrated in FIG. When the encapsulant 170 is formed in such a shape, it may be helpful to make the distribution of light from the semiconductor light emitting device chip 101 into a desired shape. In addition, it may be flattened as shown in Fig. 15B. On the other hand, as shown in Fig. 15 (c), it is also possible to have a wall 303 higher than the mask 301 outside the mask 301 and to form a higher sealing material 170 than the mask 301. It is also possible to supply a material forming the encapsulant 170 below the height of the mask 301, which will be described in FIG. 20. Thereafter, as shown in FIG. 15D, when the clamp 401 (see FIG. 11) is released, the mask 301, the encapsulant 170, and the semiconductor light emitting device chip 101 are integrally formed from the base 201. Are separated. Here, the combination of the mask 301, the encapsulant 170, and the semiconductor light emitting device chip 101 may be used as an element. On the other hand, when the base 201 and the mask 301 are bonded by an adhesive or other method, the mask 301, the encapsulant 170, the semiconductor light emitting device chip 101, and the base 201 are integrally formed to emit light of the semiconductor. It can also be used as an element. Alternatively, the mask 301 may be removed to separate the individual semiconductor light emitting devices, or the mask 301 may be cut to separate the semiconductor light emitting devices, or the mask 301 and the base 201 may be cut together to separate the semiconductor light emitting devices. Can be separated.
도 16은 본 개시에 따른 반도체 발광소자의 제조 방법의 다른 예를 설명하기 위한 도면으로서, 본 예에서는 반도체 발광소자 칩(101)을 베이스(201)에 놓기 전에 도 16(a)에 제시된 바와 같이, 반도체 발광소자 칩(101)의 표면에 파장변환제가 컨포멀하게 코팅(예: 스프레이 코팅)된다. 파장변환제층(102)은 봉지재(170)에 비해 부피나 두께가 훨씬 작지만 반도체 발광소자 칩(101)에 균일하게 코팅될 수 있고, 파장변환제의 양을 절감할 수 있다. 일 예로 파장변환제층(102)의 두께는 대략 30um 정도이고 봉지재(170)의 두께는 100um~200um 정도이다.FIG. 16 is a view for explaining another example of a method of manufacturing a semiconductor light emitting device according to the present disclosure. In this example, as shown in FIG. 16A before placing the semiconductor light emitting device chip 101 on the base 201. In addition, the wavelength conversion agent is conformally coated (eg, spray coated) on the surface of the semiconductor light emitting device chip 101. The wavelength converting layer 102 is much smaller in volume or thickness than the encapsulant 170, but may be uniformly coated on the semiconductor light emitting device chip 101, and may reduce the amount of the wavelength converting agent. For example, the thickness of the wavelength converter layer 102 is about 30um and the thickness of the encapsulant 170 is about 100um ~ 200um.
이후, 베이스(201) 위에 마스크(301)를 먼저 배치하고, 패턴을 인식하고, 위치 및 각도 보정이 가능한 소자 이송 장치(501)로 마스크(301)의 각 개구(305)에 파장변환제층(102)이 형성된 반도체 발광소자 칩(101)을 배치한다. 이후, 도 16(b)에 제시된 바와 같이, 개구(305)에 봉지재(170)를 형성하는 물질은 공급하고 경화한다. 여기서 봉지재(170)를 형성하는 물질은 파장변환제를 함유하지 않고 단순히 보호를 위한 봉지만을 하도록 투광성 물질로 이루어질 수 있다. 이후, 도 16(c)에 제시된 바와 같이, 베이스(201)를 마스크(301), 봉지재(170), 및 반도체 발광소자 칩(101)으로부터 분리한다. 분리는 베이스(201)가 딱딱한 판인 경우, 클램프(401)를 해제하여 이루어지거나, 베이스(201)가 필름 또는 테이프인 경우, 베이스(201)를 때어낼 수 있다.After that, the mask 301 is first disposed on the base 201, the pattern recognition is performed, and the wavelength converting agent layer 102 is formed in each opening 305 of the mask 301 by the element transfer device 501 capable of position and angle correction. Is disposed on the semiconductor light emitting device chip 101. Thereafter, as shown in FIG. 16B, the material forming the encapsulant 170 in the opening 305 is supplied and cured. In this case, the material forming the encapsulant 170 may be made of a light-transmissive material so as not to contain a wavelength converting agent and merely to encapsulate the protective material. Thereafter, as shown in FIG. 16C, the base 201 is separated from the mask 301, the encapsulant 170, and the semiconductor light emitting device chip 101. Separation may be achieved by releasing the clamp 401 when the base 201 is a rigid plate, or by striking the base 201 when the base 201 is a film or tape.
도 17은 본 개시에 따른 반도체 발광소자의 제조 방법의 또 다른 예를 설명하기 위한 도면으로서, 본 예에서 반도체 발광소자의 제조 방법은 봉지재(170)를 형성하는 물질을 공급하고 경화하고, 마스크(301), 봉지재(170), 및 반도체 발광소자 칩(101)으로 된 결합체를 베이스(201)와 분리한 이후, 각 반도체 발광소자를 마스크(301)로부터 분리하는 과정을 포함한다. 분리의 방법으로서 반도체 발광소자를 마스크(301)부터 빼내는 방법이 사용될 수 있다. FIG. 17 is a view for explaining another example of a method of manufacturing a semiconductor light emitting device according to the present disclosure. In the present example, a method of manufacturing a semiconductor light emitting device supplies and hardens a material forming the encapsulant 170, and a mask. And separating each of the semiconductor light emitting devices from the mask 301 after the assembly of the 301, the encapsulant 170, and the semiconductor light emitting device chip 101 is separated from the base 201. As a method of separation, a method of removing the semiconductor light emitting element from the mask 301 may be used.
예를 들어, 마스크(301)로부터 빼내기 위해 쏘터나 또는, 이와 유사한 장치를 사용할 수 있다. 핀(702) 또는 봉으로 아래에서 반도체 발광소자를 때려서 마스크(301)로부터 반도체 발광소자(101,102,170)를 밀어내면, 위에서 진공 흡착, 또는, 전기적 고정 수단(701)을 사용하여 반도체 발광소자를 잡아서 이송할 수 있다. 마스크(301)와 봉지재(170) 간의 접합력이 있기 때문에 너무 강한 힘으로 빼면 반도체 발광소자가 손상될 수 있으므로, 마스크(301)로부터 잘 빠지도록 마스크(301)와 봉지재(170) 간의 접합력을 콘트롤 할 수 있는 구성을 추가하는 것을 고려할 수 있다.For example, a shooter or similar device may be used to withdraw from the mask 301. Pushing the semiconductor light emitting devices 101, 102 and 170 out of the mask 301 by hitting the semiconductor light emitting device from below with a pin 702 or a rod, the vacuum light adsorption from above, or the semiconductor fixing device 701 is used to hold and transport the semiconductor light emitting device. can do. Since there is a bonding force between the mask 301 and the encapsulant 170, the semiconductor light emitting device may be damaged if it is pulled out with too strong force, so that the bonding force between the mask 301 and the encapsulant 170 may be removed from the mask 301. You may want to consider adding a controllable configuration.
도 18은 본 개시에 따른 반도체 발광소자의 일 예를 보여주는 도면이다.18 is a diagram illustrating an example of a semiconductor light emitting device according to the present disclosure.
반도체 발광소자(800)는 전자와 정공의 재결합에 의해 빛을 생성하는 활성층을 포함하는 복수의 반도체층과, 복수의 반도체층에 전기적으로 연결된 전극(811)을 구비하는 반도체 발광소자 칩(810), 반도체 발광소자 칩(810) 위에 위치하는 제1 봉지재(820) 및 제1 봉지재(820) 위에 위치하며, 반도체 발광소자 칩(810)에서 나온 상측으로 향하는 빛(850)의 지향각이 커지도록 하는 제2 봉지재(830)를 포함한다. 반도체 발광소자 칩(810)은 플립 칩이 바람직하다. 제1 봉지재(820)는 파장 변환재(821)를 포함하는 투광성 물질 및 투광성 물질 중 하나로 형성될 수 있다. 투광성 물질은 예를 들어 에폭시 수지 또는 실리콘 수지일 수 있다. 또한 제1 봉지재(820)는 반도체 발광소자 칩(810)의 측면(812)을 감싸며 형성된다. 다만 반도체 발광소자 칩(810)의 전극(811)은 제1 봉지재(820)의 하면(822) 방향으로 노출되어 있다. 또한 제1 봉지재(820)의 상면(840)은 아래로 볼록하여 제1 봉지재(820)에 의해 둘러싸인 캐비티(841, cavity)를 형성한다. 제1 봉지재(820)의 하면(822)을 기준으로 제1 봉지재(820) 최고점(823)의 높이(824)와 제1 봉지재(820)의 폭(825)의 비는 1:2인 것이 바람직하다. 제1 봉지재(820)의 하면(822)을 기준으로 최고점(823)의 높이(824)와 제1 봉지재(820)의 폭(825)의 비에 따라 제1 봉지재(820)의 상면(840)이 아래로 볼록한 정도를 조절할 수 있다. 더 나아가 제1 봉지재(820)의 상면(840)이 아래로 볼록한 정도는 제1 봉지재(820) 최고점(823)의 높이(824)와 제1 봉지재(820)의 폭(825)의 비뿐 아니라 제1 봉지재(820)를 형성하는 물질의 양에 따라서도 조정될 수 있으며 자세한 것은 도 20에서 설명한다. 도시하지는 않았지만 제1 봉지재(820)가 반도체 발광소자 칩(810)의 측면(812)을 감싸지 않고 반도체 발광소자 칩(810) 위에만 형성될 수도 있다. 제2 봉지재(830)는 제1 봉지재(820) 위에 위치하며, 특히 제1 봉지재(820)에 의해 둘러싸인 캐비티(841) 내에 위치한다. 제2 봉지재(830)는 파장 변환재(821)를 포함하는 투광성 물질 및 투광성 물질 중 하나로 형성될 수 있다. 예를 들어 도 18와 같이 제1 봉지재(820)가 파장 변환재(821)를 포함하는 투광성 물질로 형성되고 제2 봉지재(830)는 투광성 물질로만 형성될 수 있다. 그러나 반대로 제2 봉지재(830)만 파장 변환재를 포함하는 투광성 물질로 형성될 수 있으며, 제1 봉지재(820) 및 제2 봉지재(830)가 모두 파장 변환재를 포함하는 투광성 물질로 형성될 수 있다. 또한 반도체 발광소자 칩(810)에서 나온 상측으로 향하는 빛(850)의 지향각이 커지고 광추출 효율을 높이기 위해 제2 봉지재(830)의 상면(831)은 위로 볼록하다. 반도체 발광소자 칩(810)의 상측으로 나가는 빛(850)이 제2 봉지재(830)에 의해 지향각이 커져서 반도체 발광소자(800)의 상측으로 나간다. 상측 수직 방향으로 나가는 빛(860)의 지향각을 90도로 하며 상측 수직 방향보다 기울어지는 경우 지향각이 커진다 라고 한다.The semiconductor light emitting device 800 includes a semiconductor light emitting device chip 810 including a plurality of semiconductor layers including an active layer that generates light by recombination of electrons and holes, and an electrode 811 electrically connected to the plurality of semiconductor layers. The first encapsulation material 820 and the first encapsulation material 820 disposed on the semiconductor light emitting device chip 810 are positioned on the first encapsulation material 820. It includes a second encapsulant 830 to be large. The semiconductor light emitting device chip 810 is preferably a flip chip. The first encapsulant 820 may be formed of one of a light transmissive material and a light transmissive material including the wavelength conversion material 821. The light transmitting material may be, for example, an epoxy resin or a silicone resin. In addition, the first encapsulant 820 is formed to surround the side surface 812 of the semiconductor light emitting device chip 810. However, the electrode 811 of the semiconductor light emitting device chip 810 is exposed toward the lower surface 822 of the first encapsulant 820. In addition, the top surface 840 of the first encapsulant 820 is convex to form a cavity 841 surrounded by the first encapsulant 820. The ratio of the height 824 of the highest point 823 of the first encapsulant 820 and the width 825 of the first encapsulant 820 based on the lower surface 822 of the first encapsulant 820 is 1: 2. Is preferably. The upper surface of the first encapsulant 820 according to the ratio of the height 824 of the highest point 823 and the width 825 of the first encapsulant 820 based on the lower surface 822 of the first encapsulant 820. 840 can adjust the degree of convex downwards. Further, the degree that the upper surface 840 of the first encapsulant 820 is convex downward is equal to the height 824 of the highest point 823 of the first encapsulant 820 and the width 825 of the first encapsulant 820. Not only the ratio but also the amount of the material forming the first encapsulant 820 may be adjusted. Details will be described with reference to FIG. 20. Although not illustrated, the first encapsulant 820 may be formed only on the semiconductor light emitting device chip 810 without surrounding the side surface 812 of the semiconductor light emitting device chip 810. The second encapsulant 830 is positioned above the first encapsulant 820, and is particularly located in the cavity 841 surrounded by the first encapsulant 820. The second encapsulant 830 may be formed of one of a light transmissive material and a light transmissive material including the wavelength conversion material 821. For example, as illustrated in FIG. 18, the first encapsulant 820 may be formed of a light transmissive material including the wavelength converter 821, and the second encapsulant 830 may be formed of only a light transmissive material. However, only the second encapsulant 830 may be formed of a light transmissive material including a wavelength converting material, and both the first encapsulating material 820 and the second encapsulating material 830 may be formed of a light transmissive material including a wavelength converting material. Can be formed. In addition, the top surface 831 of the second encapsulant 830 is convex upward in order to increase the directivity angle of the light 850 directed from the semiconductor light emitting device chip 810 and to increase the light extraction efficiency. The light 850 exiting to the upper side of the semiconductor light emitting device chip 810 is enlarged by the second encapsulant 830 and exits to the upper side of the semiconductor light emitting device 800. The directing angle of the light 860 exiting in the upper vertical direction is 90 degrees, and when the tilting angle is higher than the upper vertical direction, the directing angle is increased.
도 19는 본 개시에 따른 반도체 발광소자에서 제1 봉지재의 상면이 아래로 볼록한 것에 따른 효과를 설명하는 도면이다.19 is a view for explaining the effect of the lower surface of the first encapsulant in the semiconductor light emitting device according to the present disclosure.
도 19(a)를 보면 반도체 발광소자(900)에서 제1 봉지재(920)의 상면(940)이 편평한 경우 제1 봉지재(920) 위에 형성되는 제2 봉지재(930)의 상면(931)이 위로 볼록하게 잘 이루어지지 않고 비교적 편평하게 된다. 물론 제2 봉지재(930)의 상면(931)이 위로 볼록하게 하기 위해서는 제2 봉지재(930)를 형성하는 물질의 점도를 높이면 되지만 점도가 높은 제2 봉지재(930)를 형성하는 물질을 사용하여 제2 봉지재(930)를 형성하는 데에는 어려움이 있다. 제2 봉지재(930)의 상면(931)이 위로 충분히 볼록하지 않은 경우 반도체 발광소자 칩(910)의 상측으로 나가는 빛의 지향각을 충분히 크게 할 수 없다. 그러나 도 19(b)를 보면 반도체 발광소자(800)에서 제1 봉지재(820)의 상면(840)이 아래로 볼록한 경우 제1 봉지재(820) 위에 형성되는 제2 봉지재(830)의 상면(831)이 위로 볼록하게 잘 이루어져 반도체 발광소자 칩(810)의 상측으로 나가는 빛이 제2 봉지재(830)에 의해 지향각이 충분히 커져서 반도체 발광소자(800)의 상측으로 나갈 수 있다. 특히 제2 봉지재(830)를 형성하는 물질의 점도가 낮은 경우에도 제2 봉지재(830)의 상면(831)이 위로 볼록하게 잘 형성된다.Referring to FIG. 19A, when the upper surface 940 of the first encapsulant 920 is flat in the semiconductor light emitting device 900, an upper surface 931 of the second encapsulant 930 formed on the first encapsulant 920 is formed. ) Is not convex well and is relatively flat. Of course, in order for the upper surface 931 of the second encapsulant 930 to be convex upward, the viscosity of the material forming the second encapsulant 930 may be increased, but the material forming the second encapsulant 930 having a high viscosity may be increased. It is difficult to form the second encapsulant 930 by using. When the upper surface 931 of the second encapsulant 930 is not sufficiently convex upward, the directivity angle of the light exiting to the upper side of the semiconductor light emitting device chip 910 may not be sufficiently increased. However, referring to FIG. 19B, when the upper surface 840 of the first encapsulant 820 is convex downward in the semiconductor light emitting device 800, the second encapsulant 830 formed on the first encapsulant 820 may be formed. The upper surface 831 is convex well, so that the light exiting to the upper side of the semiconductor light emitting device chip 810 is sufficiently enlarged by the second encapsulant 830, so that the upper surface 831 may exit to the upper side of the semiconductor light emitting device 800. In particular, even when the viscosity of the material forming the second encapsulant 830 is low, the upper surface 831 of the second encapsulant 830 is convexly well formed.
도 20은 도 18에 개시된 반도체 발광소자의 제조 방법의 일 예를 보여주는 도면이다. 20 is a diagram illustrating an example of a method of manufacturing the semiconductor light emitting device disclosed in FIG. 18.
도 20(a)를 보면 먼저 베이스(1000) 위에 적어도 하나 이상의 개구(1110)가 형성된 마스크(1100)를 구비한다(S1). 이후 마스크(1100)의 각 개구(1110)로 노출된 베이스(1000) 위에 반도체 발광소자 칩(1200)을 놓는다(S2). 도 12에서 설명한 이송 장치를 사용할 수 있다. 반도체 발광소자 칩(1200)의 전극(1210)이 베이스(1000)를 향하도록 놓는다. 또한 이후 공정(S3)에서 제1 봉지재(1300)가 반도체 발광소자 칩(1200)의 측면을 둘러싸기 위해 마스크(1100)의 개구(1110)의 폭(1120)은 반도체 발광소자 칩(1200)의 폭(1220)보다 충분히 큰 것이 바람직하다. 이후 마스크(1100)를 댐(dam)으로 하여, 각 개구(1110)에 투광성의 제1 봉지재(1300)를 형성한다(S3). 특히 제1 봉지재(1300)를 형성하는 물질이 개구(1110)를 형성하는 마스크(1100)의 내측면(1130)을 타고 올라가 제1 봉지재(1300)의 상면이 아래로 볼록하여 제1 봉지재(1300)로 둘러싸인 캐비티(1310)를 형성하도록 제1 봉지재(1300)를 형성한다. 제1 봉지재(1300)를 형성하는 물질이 마스크(1100)의 내측면(1130)을 타고 올라가기 위해서는 제1 봉지재(1300)를 형성하는 물질은 마스크(1100)의 높이(1320)보다 낮게 마스크(1100)의 개구(1110)를 채워야 한다. 또한 제1 봉지재(1300)을 형성하는 물질의 양에 따라 제1 봉지재(1300)를 형성하는 물질이 마스크(1100)의 내측면(1130)을 타고 올라가는 정도가 달라지며 이에 따라 제1 봉지재(1300)의 상면이 아래로 볼록한 정도가 달라질 수 있다. 이후 제1 봉지재(1300)로 둘러싸인 캐비티(1310)에 투광성의 제2 봉지재(1400)를 형성한다. 제2 봉지재(1400)는 캐비티(1310) 내에만 형성되어 도 18과 같은 형태가 될 수도 있지만 캐비티(1310)를 벗어나서 형성되어 도 21(a)와 같은 형태가 될 수도 있다. 또한 제2 봉지재(1400)의 상면(1410)은 위로 볼록하도록 형성한다. 도 20(a)와 같이 제2 봉지재(1400)의 상면(1410)은 위로 볼록할 수도 있지만, 제2 봉지재(1400)의 상면(1410)이 위로 볼록한 형태는 도 21(b)와 같이 다양할 수 있다. 이후 필요에 따라 베이스(1000) 및 마스크(1100)를 제거하여 제1 봉지재(1300), 제2 봉지재(1400) 및 반도체 발광소자 칩(1200)으로만 이루어진 반도체 발광소자를 얻을 수 있다. 다만 도 15에서 설명하고 있는 것처럼 제1 봉지재, 제2 봉지재 및 반도체 발광소자 칩 이외에 베이스 및 마스크 중 하나를 포함하고 있거나 베이스 및 마스크 모두를 포함하고 있는 반도체 발광소자도 가능하다. 또한 도 10에 기재된 마스크(1100)의 평면도를 보면 마스크(1100) 개구(1110)의 평면형상이 사각형이지만 도 20(b)와 같이 마스크(1100) 개구(1110)의 평면형상은 원형 및 다각형 등 다양하게 될 수 있으며 개구(1110)의 평면형상에 따라 반도체 발광소자의 평면형상이 다각형부터 원형까지 가능하다. 바람직하게는 반도체 발광소자의 평면형상은 원형이 좋다. 또한 도 20(c)와 같이 마스크(1100)의 개구(1110)의 폭(1120)이 아래로 내려갈수록 점점 작아지는 것도 가능하며, 이 경우 개구(1110) 내에 형성된 반도체 발광소자는 마스크(1100)의 아래로는 빠지지 않고 위로만 분리될 수 있기 때문에 도 11과 같이 하나씩 분리하는 것이 아니라 마스크(1100)와 개구(1110) 내에 형성된 반도체 발광소자를 함께 뒤집은 후 마스크(1100)를 화살표(1410) 방향으로 들어올림으로써 개구(1110) 내에 형성된 복수의 반도체 발광소자(1420)를 한 번에 마스크(1100)로부터 분리할 수 있다. 또한 도시하지는 않았지만 마스크(1100)의 개구(1110)의 폭(1120)이 아래로 내려갈수록 점점 커지는 것도 가능하며 마스크(1100)와 개구(1110) 내에 형성된 반도체 발광소자를 함께 뒤집지 않아도 마스크(1100)의 개구(1110)의 폭(1120)이 아래로 내려갈수록 점점 좁아지는 것과 동일한 효과를 얻을 수 있다. 도 20에서 설명하고 있는 것을 제외하고 나머지는 도 10 내지 도 14에 기재된 반도체 발광소자의 제조 방법과 실질적으로 동일하다.Referring to FIG. 20A, a mask 1100 having at least one opening 1110 formed on a base 1000 is provided (S1). Thereafter, the semiconductor light emitting device chip 1200 is placed on the base 1000 exposed through each opening 1110 of the mask 1100 (S2). The transfer apparatus described in FIG. 12 can be used. The electrode 1210 of the semiconductor light emitting device chip 1200 faces the base 1000. In addition, in step S3, the width 1120 of the opening 1110 of the mask 1100 may be the semiconductor light emitting device chip 1200 so that the first encapsulant 1300 may surround the side surface of the semiconductor light emitting device chip 1200. It is preferable that the width 1220 is sufficiently larger than. Subsequently, the light-transmitting first encapsulant 1300 is formed in each opening 1110 using the mask 1100 as a dam (S3). In particular, the material forming the first encapsulation material 1300 climbs on the inner surface 1130 of the mask 1100 forming the opening 1110, and the upper surface of the first encapsulation material 1300 is convex downward so that the first encapsulation material is formed. The first encapsulant 1300 is formed to form a cavity 1310 surrounded by the ash 1300. In order for the material forming the first encapsulation material 1300 to climb up the inner surface 1130 of the mask 1100, the material forming the first encapsulation material 1300 is lower than the height 1320 of the mask 1100. The opening 1110 of the mask 1100 should be filled. In addition, according to the amount of the material forming the first encapsulation material 1300, the degree to which the material forming the first encapsulation material 1300 climbs on the inner surface 1130 of the mask 1100 is changed, and accordingly, the first encapsulation material is formed. The degree to which the upper surface of the ash 1300 is convex downward may vary. Thereafter, a transparent second encapsulant 1400 is formed in the cavity 1310 surrounded by the first encapsulant 1300. The second encapsulant 1400 may be formed only in the cavity 1310 to have a shape as shown in FIG. 18, but may be formed out of the cavity 1310 to have a shape as shown in FIG. 21A. In addition, the upper surface 1410 of the second encapsulant 1400 is formed to be convex upward. As shown in FIG. 20 (a), the upper surface 1410 of the second encapsulant 1400 may be convex upward, but the upper surface 1410 of the second encapsulant 1400 is convex upward, as shown in FIG. 21 (b). It can vary. Thereafter, the base 1000 and the mask 1100 may be removed to obtain a semiconductor light emitting device including only the first encapsulation material 1300, the second encapsulation material 1400, and the semiconductor light emitting device chip 1200. However, as described with reference to FIG. 15, a semiconductor light emitting device including one of a base and a mask or both a base and a mask may be used in addition to the first encapsulation material, the second encapsulation material, and the semiconductor light emitting device chip. In addition, in the plan view of the mask 1100 illustrated in FIG. 10, the planar shape of the opening 1110 of the mask 1100 is rectangular, but as shown in FIG. 20B, the planar shape of the opening 1110 of the mask 1100 is circular, polygonal, or the like. According to the planar shape of the opening 1110, the planar shape of the semiconductor light emitting device may be polygonal to circular. Preferably, the planar shape of the semiconductor light emitting element is circular. In addition, as shown in FIG. 20C, the width 1120 of the opening 1110 of the mask 1100 may become smaller as the width goes down. In this case, the semiconductor light emitting device formed in the opening 1110 may include the mask 1100. Since it can be separated only upward without falling down, instead of being separated one by one as shown in FIG. 11, the semiconductor light emitting device formed in the mask 1100 and the opening 1110 is inverted together, and then the mask 1100 is moved in the direction of the arrow 1410. As a result, the plurality of semiconductor light emitting devices 1420 formed in the opening 1110 may be separated from the mask 1100 at one time. Although not shown, the width 1120 of the opening 1110 of the mask 1100 may be increased as the width is lowered, and the mask 1100 may be formed without inverting the mask 1100 and the semiconductor light emitting elements formed in the opening 1110 together. The same effect can be obtained that the width 1120 of the opening 1110 becomes narrower as it goes down. Except what is described in FIG. 20, the remainder is substantially the same as the manufacturing method of the semiconductor light emitting element of FIGS.
도 21은 본 개시에 따른 반도체 발광소자의 다양한 실시 예를 보여주는 도면이다.21 is a view illustrating various embodiments of a semiconductor light emitting device according to the present disclosure.
도 21(a)에 도시된 반도체 발광소자(1500)는 반도체 발광소자 칩(1510), 제1 봉지재(1520) 및 제2 봉지재(1530)를 포함한다. 제2 봉지재(1530)의 측면(1531)이 외부로 노출되어 있다. 도 21(b)에 도시된 반도체 발광소자(1600)는 반도체 발광소자 칩(1610), 제1 봉지재(1620) 및 제2 봉지재(1630)를 포함한다. 제2 봉지재(1630)의 상면(1633)은 위로 볼록한 부분(1631)과 아래로 볼록한 부분(1632)을 포함하고 있다. 도 21에 설명한 것을 제외하고 반도체 발광소자(1500, 1600)는 도 18에 기재된 반도체 발광소자(800)와 실질적으로 동일하다.The semiconductor light emitting device 1500 illustrated in FIG. 21A includes a semiconductor light emitting device chip 1510, a first encapsulating material 1520, and a second encapsulating material 1530. The side surface 1153 of the second encapsulant 1530 is exposed to the outside. The semiconductor light emitting device 1600 illustrated in FIG. 21B includes a semiconductor light emitting device chip 1610, a first encapsulating material 1620, and a second encapsulating material 1630. The upper surface 1633 of the second encapsulant 1630 includes an upwardly convex portion 1631 and an downwardly convex portion 1632. Except as described in FIG. 21, the semiconductor light emitting devices 1500 and 1600 are substantially the same as the semiconductor light emitting device 800 of FIG. 18.
도 22는 본 개시에 따른 반도체 발광소자의 일 예를 보여주는 도면이다.22 illustrates an example of a semiconductor light emitting device according to the present disclosure.
반도체 발광소자(800)는 전자와 정공의 재결합에 의해 빛을 생성하는 활성층을 포함하는 복수의 반도체층과, 복수의 반도체층에 전기적으로 연결된 전극(811)을 구비하는 반도체 발광소자 칩(810), 반도체 발광소자 칩(810) 위에 위치하는 제1 봉지재(820) 및 제1 봉지재(820) 위에 위치하며, 반도체 발광소자 칩(810)에서 나온 빛(850)을 반사하는 제2 봉지재(830)를 포함한다. 반도체 발광소자 칩(810)은 플립 칩이 바람직하다. 제1 봉지재(820)는 파장 변환재(821)를 포함하는 투광성 물질 및 투광성 물질 중 하나로 형성될 수 있다. 또한 제1 봉지재(820)는 반도체 발광소자 칩(810)의 측면(812)을 감싸며 형성된다. 다만 반도체 발광소자 칩(810)의 전극(811)은 제1 봉지재(820)의 하면(822) 방향으로 노출되어 있다. 또한 제1 봉지재(820)의 상면(840)은 아래로 볼록하여 제1 봉지재(820)에 의해 둘러싸인 캐비티(841, cavity)를 형성한다. 제1 봉지재(820)의 하면(822)을 기준으로 제1 봉지재(820) 최고점(823)의 높이(824)와 제1 봉지재(820)의 폭(825)의 비는 1:2인 것이 바람직하다. 제1 봉지재(820)의 하면(822)을 기준으로 최고점(823)의 높이(824)와 제1 봉지재(820)의 폭(825)의 비에 따라 제1 봉지재(820)의 상면(840)이 아래로 볼록한 정도를 조절할 수 있으며 1:1.5 내지 1:3의 비에서 반도체 발광소자(800)의 측면으로 나가는 빛(850)의 추출 효율이 높기 때문이다. 더 나아가 제1 봉지재(820)의 상면(840)이 아래로 볼록한 정도는 제1 봉지재(820) 최고점(823)의 높이(824)와 제1 봉지재(820)의 폭(825)의 비뿐 아니라 제1 봉지재(820)를 형성하는 물질의 양에 따라서도 조정될 수 있으며 자세한 것은 도 25에서 설명한다. 제1 봉지재(820)의 상면(840)이 아래로 볼록한 정도와 제1 봉지재(820) 최고점(823)의 높이(824) 및 제1 봉지재(820)의 폭(825)의 비는 반도체 발광소자(800)의 측면으로 나가는 빛(850)의 지향각을 조절할 수 있으며 지향각 조절에 대해서는 도 26에서 설명한다. 도시하지는 않았지만 제1 봉지재(820)가 반도체 발광소자 칩(810)의 측면(812)을 감싸지 않고 반도체 발광소자 칩(810) 위에만 형성될 수도 있다. 제2 봉지재(830)는 제1 봉지재(820) 위에 위치하며, 특히 제1 봉지재(820)에 의해 둘러싸인 캐비티(841) 내에 위치한다. 제2 봉지재(830)는 빛을 반사하는 물질로 형성되며, 예를 들어 백색 실리콘 수지일 수 있다. 또는 제2 봉지재(830)는 일부의 빛은 반사하고 일부의 빛은 투과하는 반투광성 물질로 형성될 수 있다. 반도체 발광소자 칩(810)의 상측으로 나가는 빛(850)이 제2 봉지재(830)에 의해 반사되어 반도체 발광소자(800)의 측면으로 나간다.The semiconductor light emitting device 800 includes a semiconductor light emitting device chip 810 including a plurality of semiconductor layers including an active layer that generates light by recombination of electrons and holes, and an electrode 811 electrically connected to the plurality of semiconductor layers. The second encapsulant 820 disposed on the semiconductor light emitting device chip 810 and the second encapsulation material disposed on the first encapsulant 820 and reflect light 850 from the semiconductor light emitting device chip 810. 830. The semiconductor light emitting device chip 810 is preferably a flip chip. The first encapsulant 820 may be formed of one of a light transmissive material and a light transmissive material including the wavelength conversion material 821. In addition, the first encapsulant 820 is formed to surround the side surface 812 of the semiconductor light emitting device chip 810. However, the electrode 811 of the semiconductor light emitting device chip 810 is exposed toward the lower surface 822 of the first encapsulant 820. In addition, the top surface 840 of the first encapsulant 820 is convex to form a cavity 841 surrounded by the first encapsulant 820. The ratio of the height 824 of the highest point 823 of the first encapsulant 820 and the width 825 of the first encapsulant 820 based on the lower surface 822 of the first encapsulant 820 is 1: 2. Is preferably. The upper surface of the first encapsulant 820 according to the ratio of the height 824 of the highest point 823 and the width 825 of the first encapsulant 820 based on the lower surface 822 of the first encapsulant 820. This is because the 840 can adjust the convex downward and the extraction efficiency of the light 850 exiting the side of the semiconductor light emitting device 800 at a ratio of 1: 1.5 to 1: 3 is high. Further, the degree that the upper surface 840 of the first encapsulant 820 is convex downward is equal to the height 824 of the highest point 823 of the first encapsulant 820 and the width 825 of the first encapsulant 820. Not only the ratio but also the amount of the material forming the first encapsulant 820 may be adjusted, and details thereof will be described with reference to FIG. 25. The ratio of the degree that the upper surface 840 of the first encapsulant 820 is convex downward, the height 824 of the highest point 823 of the first encapsulant 820, and the width 825 of the first encapsulant 820 are The directivity angle of the light 850 exiting the side of the semiconductor light emitting device 800 may be adjusted, and the directivity angle adjustment will be described with reference to FIG. 26. Although not illustrated, the first encapsulant 820 may be formed only on the semiconductor light emitting device chip 810 without surrounding the side surface 812 of the semiconductor light emitting device chip 810. The second encapsulant 830 is positioned above the first encapsulant 820, and is particularly located in the cavity 841 surrounded by the first encapsulant 820. The second encapsulant 830 is formed of a material that reflects light, and may be, for example, a white silicone resin. Alternatively, the second encapsulant 830 may be formed of a semi-transparent material that reflects some light and transmits some light. Light 850 exiting to the upper side of the semiconductor light emitting device chip 810 is reflected by the second encapsulant 830 and exits to the side surface of the semiconductor light emitting device 800.
도 23은 도 22에 개시된 반도체 발광소자의 적용 예를 보여주는 도면이다.FIG. 23 is a diagram illustrating an application example of the semiconductor light emitting device disclosed in FIG. 22.
액정 표시 장치(Liquid Crystal Display; LCD)는 두개의 유리판 사이에 액정을 주입해 상하 유리판 전극에 전원을 인가하여 각 화소에 액정 분자배열이 변화함으로써 영상을 표시하는 장치이다. 음극선관 표시 장치(Cathode Ray Tube; CRT), 플라즈마 표시 장치(Plasma Display Panel; PDP) 등과는 달리 액정 표시 장치에 의한 표시는 그 자체가 비발광성이기 때문에 빛이 없는 곳에서는 사용이 불가능하다. 이러한 단점을 보완하여 어두운 곳에서의 사용이 가능하게 할 목적으로 정보 표시면에 균일하게 빛을 조사하는 광원 어셈블리를 장착한다. 액정 표시 장치에 사용되는 광원 어셈블리는 크게 2 종류로 구분된다. 첫째는 액정 표시 장치의 측면에서 빛을 제공하는 에지형 광원 어셈블리고 둘째는 액정 표시 장치의 후면에서 빛을 직접 제공하는 직하형 광원 어셈블리다. 직하형 광원 어셈블리와 관련된 종래 기술로는 한국 공개특허공보 제2007-0106397호, 한국 공개특허공보 제2008-0021370호, 한국 공개특허공보 제2006-0031518호 등 다수에 기재되어 있다. 직하형 광원 어셈블리에 있어서, 사용되는 광원의 수를 줄이고, 균일한 면광원을 만들기 위해서 도 23과 같이 도광판(900)의 하면에 홈(901)을 만들고 홈(901) 안에 측면으로 발광하는 반도체 발광소자를 광원으로 사용하는 경우가 있으며 도 22에 개시된 따른 반도체 발광소자(800)가 측면으로 발광하는 광원으로 사용될 수 있다. 특히 제2 봉지재(830)가 일부의 빛은 반사하고 일부의 빛은 투과하는 반투광성 물질로 형성된 경우에는 도 23과 같이 반도체 발광소자 칩(810)의 상측으로 나가는 일부의 빛(850)은 제2 봉지재(830)에 반사되어 반도체 발광소자(800)의 측면으로 나가고 일부의 빛(851)은 제2 봉지재(830)를 투과하여 반도체 발광소자(800)의 상측으로 나갈 수 있다. 제2 봉지재(830)와 만나지 않는 반도체 발광소자 칩(810)의 측면으로 나가는 빛(852)은 반도체 발광소자(800)의 측면으로 그대로 나가서 반도체 발광소자(800) 주위로 균일하게 빛을 발광한다. 본 개시에 따른 반도체 발광소자의 발광 특성은 도 28에서 보여준다.A liquid crystal display (LCD) is a device that displays an image by injecting a liquid crystal between two glass plates and applying power to the upper and lower glass plate electrodes to change the liquid crystal molecular array in each pixel. Unlike a cathode ray tube (CRT), a plasma display panel (PDP), and the like, a display by a liquid crystal display is not light-emitting because it is non-luminous in itself. To compensate for these disadvantages, a light source assembly for uniformly irradiating light onto the information display surface is mounted for the purpose of enabling use in a dark place. The light source assembly used for the liquid crystal display device is largely classified into two types. The first is an edge type light source assembly that provides light at the side of the liquid crystal display, and the second is a direct type light source assembly that provides light directly at the rear of the liquid crystal display. Conventional technology related to a direct type light source assembly is disclosed in Korean Unexamined Patent Publication No. 2007-0106397, Korean Unexamined Patent Publication No. 2008-0021370, and Korean Unexamined Patent Publication No. 2006-0031518. In the direct type light source assembly, in order to reduce the number of light sources used and to make a uniform surface light source, semiconductor light emitting is formed in the groove 901 on the lower surface of the light guide plate 900 as shown in FIG. An element may be used as a light source, and the semiconductor light emitting device 800 according to FIG. 22 may be used as a light source emitting sideways. In particular, when the second encapsulant 830 is formed of a semi-transparent material that reflects some light and transmits some light, some of the light 850 exiting to the upper side of the semiconductor light emitting device chip 810 as shown in FIG. The light may be reflected by the second encapsulant 830 to the side surface of the semiconductor light emitting device 800, and a part of light 851 may pass through the second encapsulant 830 to exit the semiconductor light emitting device 800. The light 852 that exits the side of the semiconductor light emitting device chip 810 that does not meet the second encapsulant 830 exits to the side of the semiconductor light emitting device 800 and emits light uniformly around the semiconductor light emitting device 800. do. The light emission characteristics of the semiconductor light emitting device according to the present disclosure are shown in FIG. 28.
도 24는 도 22에 개시된 반도체 발광소자의 제조 방법의 일 예를 보여주는 도면이다. 24 is a diagram illustrating an example of a method of manufacturing the semiconductor light emitting device disclosed in FIG. 22.
도 22(a)를 보면 먼저 베이스(1000) 위에 적어도 하나 이상의 개구(1110)가 형성된 마스크(1100)를 구비한다(S1). 이후 마스크(1100)의 각 개구(1110)로 노출된 베이스(1000) 위에 반도체 발광소자 칩(1200)을 놓는다(S2). 도 12에서 설명한 이송 장치를 사용할 수 있다. 반도체 발광소자 칩(1200)의 전극(1210)이 베이스(1000)를 향하도록 놓는다. 또한 이후 공정(S3)에서 제1 봉지재(1300)가 반도체 발광소자 칩(1200)의 측면을 둘러싸기 위해 마스크(1100)의 개구(1110)의 폭(1120)은 반도체 발광소자 칩(1200)의 폭(1220)보다 충분히 큰 것이 바람직하다. 이후 마스크(1100)를 댐(dam)으로 하여, 각 개구(1110)에 제1 봉지재(1300)를 형성한다(S3). 특히 제1 봉지재(1300)를 형성하는 물질이 마스크(1100)의 내측면(1130)을 타고 올라가 제1 봉지재(1300)로 둘러싸인 아래로 볼록한 캐비티(1310)를 형성하도록 제1 봉지재(1300)를 형성한다. 제1 봉지재(1300)를 형성하는 물질이 마스크(1100)의 내측면(1130)을 타고 올라가기 위해서는 제1 봉지재(1300)를 형성하는 물질은 마스크(1100)의 높이(1320)보다 낮게 마스크(1100)의 개구(1110)를 채워야 한다. 이후 제1 봉지재(1300)로 둘러싸인 캐비티(1310)에 빛을 반사하는 제2 봉지재(1400)를 형성한다. 제2 봉지재(1400)는 캐비티(1310) 내에만 형성되어 도 22와 같은 형태가 될 수도 있지만 캐비티(1310)를 벗어나서 형성되어 도 25(a)와 같은 형태가 될 수도 있다. 이후 필요에 따라 베이스(1000) 및 마스크(1100)를 제거하여 제1 봉지재(1300), 제2 봉지재(1400) 및 반도체 발광소자 칩(1200)으로만 이루어진 반도체 발광소자를 얻을 수 있다. 다만 도 15에서 설명하고 있는 것처럼 제1 봉지재, 제2 봉지재 및 반도체 발광소자 칩 이외에 베이스 및 마스크 중 하나를 포함하고 있거나 베이스 및 마스크 모두를 포함하고 있는 반도체 발광소자도 가능하다. 또한 도 10에 기재된 마스크(1100)의 평면도를 보면 마스크(1100) 개구(1110)의 평면형상이 사각형이지만 도 24(b)와 같이 마스크(1100) 개구(1110)의 평면형상은 원형 및 다각형 등 다양하게 될 수 있으며 개구(1110)의 평면형상에 따라 반도체 발광소자의 평면형상이 다각형부터 원형까지 가능하다. 반도체 발광소자의 평면형상이 원형일수록 반도체 발광소자는 반도체 발광소자 주위로 더 균일한 빛을 발생하며 이러한 반도체 발광소자의 발광 특성은 도 28에 도시하였다. 또한 도 24(c)와 같이 마스크(1100)의 개구(1110)의 폭(1120)이 아래로 내려갈수록 점점 작아지는 것도 가능하며, 이 경우 개구(1110) 내에 형성된 반도체 발광소자는 마스크(1100)의 아래로는 빠지지 않고 위로만 분리될 수 있기 때문에 도 21과 같이 하나씩 분리하는 것이 아니라 마스크(1100)와 개구(1110) 내에 형성된 반도체 발광소자를 함께 뒤집은 후 마스크(1100)를 화살표(1410) 방향으로 들어올림으로써 개구(1110) 내에 형성된 복수의 반도체 발광소자(1420)를 한 번에 마스크(1100)로부터 분리할 수 있다. 또한 도시하지는 않았지만 마스크(1100)의 개구(1110)의 폭(1120)이 아래로 내려갈수록 점점 커지는 것도 가능하며 마스크(1100)와 개구(1110) 내에 형성된 반도체 발광소자를 함께 뒤집지 않아도 마스크(1100)의 개구(1110)의 폭(1120)이 아래로 내려갈수록 점점 작아지는 것과 동일한 효과를 얻을 수 있다. 도 24에서 설명하고 있는 것을 제외하고 나머지는 도 10 내지 도 14에 기재된 반도체 발광소자의 제조 방법과 실질적으로 동일하다.Referring to FIG. 22A, first, a mask 1100 having at least one opening 1110 formed on a base 1000 is provided (S1). Thereafter, the semiconductor light emitting device chip 1200 is placed on the base 1000 exposed through each opening 1110 of the mask 1100 (S2). The transfer apparatus described in FIG. 12 can be used. The electrode 1210 of the semiconductor light emitting device chip 1200 faces the base 1000. In addition, in step S3, the width 1120 of the opening 1110 of the mask 1100 may be the semiconductor light emitting device chip 1200 so that the first encapsulant 1300 may surround the side surface of the semiconductor light emitting device chip 1200. It is preferable that the width 1220 is sufficiently larger than. After that, the mask 1100 is used as a dam to form a first encapsulant 1300 in each opening 1110 (S3). In particular, the first encapsulant 1300 allows the material forming the first encapsulant 1300 to climb up the inner surface 1130 of the mask 1100 to form a downwardly convex cavity 1310 surrounded by the first encapsulant 1300. 1300. In order for the material forming the first encapsulation material 1300 to climb up the inner surface 1130 of the mask 1100, the material forming the first encapsulation material 1300 is lower than the height 1320 of the mask 1100. The opening 1110 of the mask 1100 should be filled. Thereafter, a second encapsulant 1400 reflecting light is formed in the cavity 1310 surrounded by the first encapsulant 1300. The second encapsulant 1400 may be formed only in the cavity 1310 to have a shape as shown in FIG. 22, but may be formed outside the cavity 1310 to have a shape as shown in FIG. 25A. Thereafter, the base 1000 and the mask 1100 may be removed to obtain a semiconductor light emitting device including only the first encapsulation material 1300, the second encapsulation material 1400, and the semiconductor light emitting device chip 1200. However, as described with reference to FIG. 15, a semiconductor light emitting device including one of a base and a mask or both a base and a mask may be used in addition to the first encapsulation material, the second encapsulation material, and the semiconductor light emitting device chip. 10, the planar shape of the opening 1110 of the mask 1100 is rectangular, but the planar shape of the opening 1110 of the mask 1100 is circular, polygonal, or the like, as shown in FIG. According to the planar shape of the opening 1110, the planar shape of the semiconductor light emitting device may be polygonal to circular. As the planar shape of the semiconductor light emitting device is circular, the semiconductor light emitting device generates more uniform light around the semiconductor light emitting device, and the light emission characteristics of the semiconductor light emitting device are illustrated in FIG. 28. In addition, as shown in FIG. 24C, the width 1120 of the opening 1110 of the mask 1100 may become smaller as the width goes down. In this case, the semiconductor light emitting device formed in the opening 1110 may have a mask 1100. Since they can be separated only upwards without falling down, instead of being separated one by one as shown in FIG. 21, the semiconductor light emitting devices formed in the mask 1100 and the opening 1110 are inverted together, and then the mask 1100 is moved in the direction of the arrow 1410. As a result, the plurality of semiconductor light emitting devices 1420 formed in the opening 1110 may be separated from the mask 1100 at one time. Although not shown, the width 1120 of the opening 1110 of the mask 1100 may be increased as the width is lowered, and the mask 1100 may be formed without inverting the mask 1100 and the semiconductor light emitting elements formed in the opening 1110 together. The same effect can be obtained that the width 1120 of the opening 1110 becomes smaller as it goes down. Except as described in FIG. 24, the rest is substantially the same as the method of manufacturing the semiconductor light emitting device of FIGS.
도 25는 본 개시에 따른 반도체 발광소자의 다양한 실시 예를 보여주는 도면이다.25 is a view illustrating various embodiments of a semiconductor light emitting device according to the present disclosure.
도 25(a)에 도시된 반도체 발광소자(1500)는 반도체 발광소자 칩(1510), 제1 봉지재(1520) 및 빛을 반사하는 제2 봉지재(1530)를 포함한다. 제2 봉지재(1530)의 측면(1531)이 외부로 노출되어 있다. 도 25(b)에 도시된 반도체 발광소자(1600)는 반도체 발광소자 칩(1610), 제1 봉지재(1620) 및 빛을 반사하는 제2 봉지재(1630)를 포함한다. 제1 봉지재(1620)의 상면(1631)이 아래로 크게 볼록한 형태이다. 상면(1631)이 아래로 볼록한 정도는 도 24에서 마스크(1100)의 폭(1120)과 마스크(1100)의 개구(1110)에 채워지는 제1 봉지재(1300)를 형성하는 물질의 양에 따라 조절할 수 있다. 예를 들어 마스크(1100)의 개구(1110)에 채워지는 제1 봉지재(1300)를 형성하는 물질의 양이 많을수록 아래로 볼록한 정도가 작아지며 편평하게 된다. 또한 도 25(c)와 같이 반도체 발광소자(1640)은 제1 봉지재(1660)의 상면이 아래로 볼록한 부분(1662)과 편평한 부분(1661)이 동시에 형성되어 있다. 편평한 부분(1661)과 볼록한 부분(1662)이 제1 봉지재(1660)의 상면에서 차지하는 비율을 통해 반도체 발광소자(1640)의 측면으로 나가는 빛의 지향각을 조절할 수 있다. 빛을 반사하는 제2 봉지재(1670)는 제1 봉지재(1660)의 상면의 볼록한 부분(1662)에 의해 형성되는 캐비티(1663)뿐 아니라 편평한 부분(1661) 위에도 형성된다. 도 25에 설명한 것을 제외하고 반도체 발광소자(1500, 1600, 1640)는 도 22에 기재된 반도체 발광소자(800)와 실질적으로 동일하다.The semiconductor light emitting device 1500 illustrated in FIG. 25A includes a semiconductor light emitting device chip 1510, a first encapsulating material 1520, and a second encapsulating material 1530 reflecting light. The side surface 1153 of the second encapsulant 1530 is exposed to the outside. The semiconductor light emitting device 1600 illustrated in FIG. 25B includes a semiconductor light emitting device chip 1610, a first encapsulating material 1620, and a second encapsulating material 1630 that reflects light. The upper surface 1163 of the first encapsulant 1620 is largely convex downward. The degree of convexity of the upper surface 1631 downwards depends on the amount of material forming the first encapsulant 1300 filled in the width 1120 of the mask 1100 and the opening 1110 of the mask 1100 in FIG. 24. I can regulate it. For example, as the amount of the material forming the first encapsulant 1300 filled in the opening 1110 of the mask 1100 increases, the degree of convexity becomes smaller and becomes flat. In addition, as illustrated in FIG. 25C, the semiconductor light emitting device 1640 is provided with a portion 1662 and a flat portion 1601 having an upper surface of the first encapsulant 1660 convex downward. The directing angle of the light exiting to the side surface of the semiconductor light emitting device 1640 may be adjusted by a ratio of the flat portion 1601 and the convex portion 1662 on the upper surface of the first encapsulant 1660. The second encapsulant 1670 reflecting light is formed on the flat portion 1601 as well as the cavity 1663 formed by the convex portion 1662 of the upper surface of the first encapsulant 1660. Except as described in FIG. 25, the semiconductor light emitting devices 1500, 1600, and 1640 are substantially the same as the semiconductor light emitting device 800 of FIG. 22.
도 26은 본 개시에 따른 반도체 발광소자에서 제1 봉지재의 상면이 아래로 볼록한 정도에 따른 효과를 설명하는 도면이다.FIG. 26 is a view illustrating an effect of the top surface of the first encapsulant being convex downward in the semiconductor light emitting device according to the present disclosure.
반도체 발광소자(1700)는 제1 봉지재(1720)의 상면(1731, 1732, 1733)이 아래로 볼록한 정도에 따라 반도체 발광소자 칩(1710)로부터 나오는 빛(1740)이 반도체 발광소자(1700)로부터 나가는 지향각을 조절할 수 있다. 설명을 위해 제1 봉지재(1720)의 상면(1731, 1732, 1733)을 1개의 반도체 발광소자(1700)에 함께 표시하였다. 도 26을 보면 반도체 발광소자 칩(1710)으로부터 나오는 상측으로 나가는 빛(1740)은 제1 봉지재(1720)의 서로 다른 아래로 볼록한 정도를 갖는 상면(1731, 1732, 1733)에서 반사되어 반도체 발광소자(1700)의 측면으로 나가는 빛(1741, 1742, 1743)이 되며 특히 제1 봉지재(1720)의 편평한 상면(1733)에 반사되어 나가는 빛(1743)의 지향각이 가장 크며 아래로 볼록한 정도가 가장 큰 상면(1731)에 반사되어 나가는 빛(1741)의 지향각이 가장 작은 것을 알 수 있다. 상측 수직 방향으로 나가는 가상의 빛(1750)의 지향각을 90도로 하며 상측 수직 방향보다 기울어지는 경우 지향각이 커진다라고 한다. 제2 봉지재(1730)로 인하여 반도체 발광소자 칩(1710)의 상측으로 나가는 빛은 지향각이 커지며 특히 제1 봉지재(1730)의 상면(1731, 1732, 1733)이 편평해질수록 지향각은 180도에 가까워진다. 또한 도시하지는 않았지만 반도체 발광소자(1700)의 제1 봉지재(1730)의 폭(1750)과 최고점(1751) 높이의 비도 지향각에 영향을 미칠 수 있다. 도 26에 설명한 것을 제외하고 반도체 발광소자(1700)는 도 22에 기재된 반도체 발광소자(800)와 실질적으로 동일하다.The semiconductor light emitting device 1700 includes light 1740 emitted from the semiconductor light emitting device chip 1710 according to the degree to which the top surfaces 1731, 1732, and 1733 of the first encapsulant 1720 are convex downward. You can adjust the directing angle from the exit. For the purpose of explanation, the upper surfaces 1731, 1732, and 1733 of the first encapsulant 1720 are also displayed on one semiconductor light emitting device 1700. Referring to FIG. 26, the light 1740 emitted upward from the semiconductor light emitting device chip 1710 is reflected from the upper surfaces 1731, 1732, and 1733 having different downwardly convex degrees of the first encapsulant 1720, thereby emitting semiconductor light. Light (1741, 1742, 1743) to the side of the device 1700, in particular, the direction of the light (1743) reflected by the flat upper surface (1733) of the first encapsulant 1720 is the largest and convex downward degree It can be seen that the direction angle of the light (1741) reflected by the largest upper surface (1731) is the smallest. The directing angle of the virtual light 1750 going out in the upper vertical direction is set to 90 degrees, and when the tilting angle is higher than the upper vertical direction, the directing angle is increased. The light exiting to the upper side of the semiconductor light emitting device chip 1710 due to the second encapsulant 1730 increases the directing angle. In particular, as the upper surfaces 1731, 1732, and 1733 of the first encapsulant 1730 are flattened, Closer to 180 degrees. Although not shown, the ratio of the width 1750 of the first encapsulant 1730 of the semiconductor light emitting device 1700 and the height of the highest point 1775 may also affect the orientation angle. Except as described in FIG. 26, the semiconductor light emitting device 1700 is substantially the same as the semiconductor light emitting device 800 of FIG. 22.
도 27은 본 개시에 따른 반도체 발광소자의 다른 예를 보여주는 도면이다.27 illustrates another example of the semiconductor light emitting device according to the present disclosure.
반도체 발광소자(1800)는 제1 봉지재(1820)로 둘러싸인 캐비티(1821)를 제2 봉지재가 채우는 대신에 제1 봉지재(1820)의 상면(1822)에 제2 봉지재(1830)가 얇은 막으로 형성되는 것을 특징으로 한다. 특히 막 형태의 제2 봉지재(1830)는 금속막(1830)이 바람직하다. 금속막(1830)은 빛에 대한 반사율이 높은 장점이 있다. 제조 방법은 도 24에서 S4 단계에서 제2 봉지재를 형성하는 물질이 제1 봉지재로 둘러싸인 캐비티를 채워서 제2 봉지재를 형성하는 대신에 캐비티를 형성하는 제1 봉지재의 상면에 금속막을 형성하는 것으로, 금속막은 증착, 도금 및 Spray 방식 중 하나로 형성될 수 있으며 금속은 은이나 알루미늄이 바람직하다. 도 27에 설명한 것을 제외하고 반도체 발광소자(1800)는 도 22에 기재된 반도체 발광소자(800)와 실질적으로 동일하다.In the semiconductor light emitting device 1800, the second encapsulant 1830 is thin on the top surface 1822 of the first encapsulant 1820 instead of filling the cavity 1721 surrounded by the first encapsulant 1820. It is characterized by being formed into a film. In particular, the second encapsulant 1830 having a film form is preferably a metal film 1830. The metal film 1830 has an advantage of high reflectance to light. In the manufacturing method of FIG. 24, instead of forming the second encapsulant by filling the cavity surrounded by the first encapsulant with the material forming the second encapsulant in step S4, a metal film is formed on the upper surface of the first encapsulant forming the cavity. The metal film may be formed by one of deposition, plating, and spray methods, and the metal is preferably silver or aluminum. Except as described in FIG. 27, the semiconductor light emitting device 1800 is substantially the same as the semiconductor light emitting device 800 of FIG. 22.
도 28은 본 개시에 따른 반도체 발광소자의 평면형상에 따른 발광 실험예를 보여주는 도면이다.28 is a view showing an example of light emission according to the planar shape of the semiconductor light emitting device according to the present disclosure.
도 28을 보면 반도체 발광소자(1900)의 평면형상에 따른 발광 특성을 보여주는 실험예이다. 반도체 발광소자(1900)의 평면형상은 도 24(b) 및 도 10에 도시된 마스크(301, 1100)의 개구(305, 1110)의 평면형상과 동일하다. 도 28(c)와 같이 반도체 발광소자(1900)의 평면형상이 원형에 가까울수록 반도체 발광소자(1900) 주변에 빛이 더 고르게 발광하는 것을 보여준다. 즉 도 28(a)에서 도 28(c)로 갈수록 반도체 발광소자(1900) 주변에 빛이 더 고르게 발광한다. 또한 반도체 발광소자(1900)의 상측으로는 빛이 나오지 않아 어두운 것을 보여준다. 다만 실험예에 도시하지는 않았지만 제2 봉지재가 일부의 빛은 투과하고 일부의 빛은 반사하는 경우에는 반도체 발광소자(1900)의 상측으로 빛이 나와 도 28에 기재된 것보다는 반도체 발광소자(1900)의 상측이 더 밝아질 수 있다. 28 illustrates an example of light emission characteristics according to a planar shape of the semiconductor light emitting device 1900. The planar shape of the semiconductor light emitting device 1900 is the same as the planar shape of the openings 305 and 1110 of the masks 301 and 1100 shown in FIGS. 24B and 10. As shown in FIG. 28C, the closer the planar shape of the semiconductor light emitting device 1900 is to the circular shape, the more light is emitted around the semiconductor light emitting device 1900. That is, the light is emitted more evenly around the semiconductor light emitting device 1900 from FIG. 28A to FIG. 28C. In addition, light is not emitted to the upper side of the semiconductor light emitting device 1900, thereby showing dark. Although not shown in the experimental example, when the second encapsulant transmits part of light and reflects part of the light, the second encapsulant emits light toward the upper side of the semiconductor light emitting device 1900, rather than the light emitting device 1900 of FIG. 28. The upper side may be brighter.
이하 본 개시의 다양한 실시 형태에 대하여 설명한다.Hereinafter, various embodiments of the present disclosure will be described.
(1) 반도체 발광소자에 있어서, 반도체 발광소자 칩;으로서, 전자와 정공의 재결합에 의해 빛을 생성하는 활성층을 포함하는 복수의 반도체층과, 복수의 반도체층에 전기적으로 연결된 전극을 구비하는 반도체 발광소자 칩; 반도체 발광소자 칩 위에 위치하는 제1 봉지재; 반도체 발광소자 칩의 측면 및 제1 봉지재 아래에 위치하는 제2 봉지재; 그리고 반도체 발광소자 칩의 측면 및 제2 봉지재 아래에 위치하는 제3 봉지재;를 포함하는 것을 특징으로 하는 반도체 발광소자.(1) A semiconductor light emitting device comprising: a semiconductor light emitting device chip, comprising: a semiconductor including a plurality of semiconductor layers including an active layer for generating light by recombination of electrons and holes, and electrodes electrically connected to the plurality of semiconductor layers Light emitting device chip; A first encapsulation material positioned on the semiconductor light emitting device chip; A second encapsulant positioned on a side of the semiconductor light emitting device chip and under the first encapsulant; And a third encapsulation material positioned on a side surface of the semiconductor light emitting device chip and under the second encapsulation material.
(2) 반도체 발광소자 칩의 전극은 제3 봉지재의 하면 방향으로 노출되어 있는 것을 특징으로 하는 반도체 발광소자.(2) The semiconductor light emitting element is characterized in that the electrode of the semiconductor light emitting chip is exposed in the lower surface direction of the third encapsulant.
(3) 제2 봉지재와 제3 봉지재 사이의 경계면은 곡선인 것을 특징으로 하는 반도체 발광소자.(3) The interface between the second encapsulation member and the third encapsulant is curved.
(4) 곡선은 위로 볼록 형상인 것을 특징으로 하는 반도체 발광소자.(4) A semiconductor light emitting element, characterized in that the curve is convex upward.
(5) 제1 봉지재는 파장변환재를 포함한 시트로 형성된 것을 특징으로 하는 반도체 발광소자.(5) The semiconductor light emitting device according to claim 1, wherein the first encapsulation material is formed of a sheet including a wavelength conversion material.
(6) 제3 봉지재는 유색의 반사물질로 형성된 것을 특징으로 하는 반도체 발광소자.(6) The third encapsulant is formed of a colored reflective material.
(7) 제2 봉지재는 투광성 물질 및 파장변환재가 포함된 투광성 물질 중 적어도 하나로 형성된 것을 특징으로 하는 반도체 발광소자.(7) The second encapsulation material is a semiconductor light emitting device, characterized in that formed of at least one of a light transmitting material and a light transmitting material containing a wavelength conversion material.
(8) 제1 봉지재와 제3 봉지재 사이의 최단 거리가 0보다 큰 것을 특징으로 하는 반도체 발광소자.(8) A semiconductor light emitting element, characterized in that the shortest distance between the first encapsulant and the third encapsulant is greater than zero.
(9) 반도체 발광소자의 제조 방법에 있어서, 제1 봉지재를 준비하는 단계; 제1 봉지재 위에 제2 봉지재를 형성하는 단계;로서, 액상의 제2 봉지재를 형성하는 물질을 제1 봉지재 위에 도포하는 제2 봉지재를 형성하는 단계; 제2 봉지재 위에 복수의 반도체 발광소자 칩을 놓는 단계;로서 반도체 발광소자 칩의 활성층이 제1 봉지재와 반도체 발광소자 칩의 전극 사이에 위치하도록 하고, 액상의 제2 봉지재가 반도체 발광소자 칩의 측면을 타고 올라가 아래로 볼록한 제2 봉지재가 되도록 위에 복수의 반도체 발광소자 칩을 놓는 단계; 제2 봉지재에 형성된 아래로 볼록한 부분에 제3 봉지재를 형성하는 단계; 그리고, 반도체 발광소자 칩과 반도체 발광소자 칩 사이를 절단하는 단계;를 포함하는 것을 특징으로 하는 반도체 발광소자의 제조 방법.(9) A method of manufacturing a semiconductor light emitting device, comprising the steps of: preparing a first encapsulant; Forming a second encapsulation material on the first encapsulation material; forming a second encapsulation material on which the material forming the liquid second encapsulation material is applied onto the first encapsulation material; Placing a plurality of semiconductor light emitting device chips on the second encapsulation material, such that an active layer of the semiconductor light emitting device chip is positioned between the first encapsulation material and an electrode of the semiconductor light emitting device chip, and the liquid second encapsulation material is a semiconductor light emitting device chip. Laying up a plurality of semiconductor light emitting device chips on the side of the second encapsulant to be raised upward; Forming a third encapsulant on the convex portion formed in the second encapsulant; And cutting the semiconductor light emitting device chip between the semiconductor light emitting device chip and the semiconductor light emitting device chip.
(10) 액상의 제2 봉지재를 형성하는 물질을 제1 봉지재 위에 도포하는 두께는 20um 미만인 것을 특징으로 하는 반도체 발광소자의 제조 방법.(10) A method of manufacturing a semiconductor light emitting element, wherein the thickness of applying the substance forming the liquid second encapsulant on the first encapsulant is less than 20 μm.
(11) 액상의 제2 봉지재를 형성하는 물질을 제1 봉지재 위에 도포하는 두께는 20um 이상이고 제2 봉지재 위에 놓이는 반도체 발광소자 칩 두께의 0.8 이하인 것을 특징으로 하는 반도체 발광소자의 제조 방법.(11) A method of manufacturing a semiconductor light emitting device, characterized in that the thickness of applying the material forming the liquid second encapsulant on the first encapsulant is 20 μm or more and 0.8 or less of the thickness of the semiconductor light emitting device chip placed on the second encapsulant. .
(12) 반도체 발광소자에 있어서, 반도체 발광소자 칩;으로서, 전자와 정공의 재결합에 의해 빛을 생성하는 활성층을 포함하는 복수의 반도체층과, 복수의 반도체층에 전기적으로 연결된 전극을 구비하는 반도체 발광소자 칩; 반도체 발광소자 칩 위에 위치하는 투광성의 제1 봉지재;로서 제1 봉지재의 상면이 아래로 볼록하여 제1 봉지재에 의해 둘러싸인 캐비티(cavity)를 포함하는 제1 봉지재; 그리고 제1 봉지재의 캐비티 내에 형성되는 투광성의 제2 봉지재;로서 제2 봉지재의 상면이 위로 볼록한 제2 봉지재;를 포함하는 것을 특징으로 하는 반도체 발광소자.(12) A semiconductor light emitting device comprising: a semiconductor light emitting device chip, comprising: a semiconductor comprising a plurality of semiconductor layers including an active layer for generating light by recombination of electrons and holes, and electrodes electrically connected to the plurality of semiconductor layers Light emitting device chip; A first encapsulating material positioned on the semiconductor light emitting device chip; a first encapsulating material including a cavity surrounded by the first encapsulating material with a top surface of the first encapsulating material convex downward; And a translucent second encapsulant formed in the cavity of the first encapsulant; a second encapsulant having an upper surface of the second encapsulant convex upward.
(13) 제1 봉지재는 반도체 발광소자 칩의 측면을 감싸는 것을 특징으로 하는 반도체 발광소자.(13) A semiconductor light emitting device, characterized in that the first encapsulation material surrounds the side surface of the semiconductor light emitting device chip.
(14) 반도체 발광소자 칩의 전극이 제1 봉지재의 하면 방향으로 노출되어 있는 것을 특징으로 하는 반도체 발광소자.(14) A semiconductor light emitting element, wherein an electrode of the semiconductor light emitting element chip is exposed in the lower surface direction of the first encapsulant.
(15) 제1 봉지재 및 제2 봉지재 중 적어도 하나는 파장 변환재를 포함하고 있는 것을 특징으로 하는 반도체 발광소자.(15) At least one of the first encapsulating material and the second encapsulating material includes a wavelength converting material.
(16) 제2 봉지재의 상면은 위로 볼록한 부분과 아래로 볼록한 부분을 동시에 포함하는 것을 특징으로 하는 반도체 발광소자.(16) The semiconductor light emitting device according to claim 2, wherein the upper surface of the second encapsulant includes a convex portion upward and a convex portion downward.
(17) 반도체 발광소자의 제조 방법에 있어서, 베이스 위에 적어도 하나 이상의 개구가 형성된 마스크를 구비하는 단계; 마스크의 각 개구로 노출된 베이스 위에 반도체 발광소자 칩을 놓는 단계; 마스크를 댐(dam)으로 하여, 각 개구에 제1 봉지재를 형성하는 단계;로서 제1 봉지재를 형성하는 물질이 마스크의 내측면을 타고 올라가 제1 봉지재의 상면이 아래로 볼록하여 제1 봉지재로 둘러싸인 캐비티(Cavity)를 형성하도록 제1 봉지재를 형성하는 단계; 그리고, 제1 봉지재로 둘러싸인 캐비티에 상면이 위로 볼록한 제2 봉지재를 형성하는 단계;를 포함하는 것을 특징으로 하는 반도체 발광소자의 제조 방법.(17) A method of manufacturing a semiconductor light emitting device, comprising: providing a mask having at least one opening formed on a base; Placing a semiconductor light emitting device chip on a base exposed by each opening of the mask; Forming a first encapsulant in each opening by using the mask as a dam; as a material forming the first encapsulant rises up the inner surface of the mask, the upper surface of the first encapsulant is convex downward, thereby forming a first encapsulant. Forming a first encapsulant to form a cavity surrounded by the encapsulant; And forming a second encapsulation material having a top surface convex in a cavity surrounded by the first encapsulation material.
(18) 제1 봉지재로 둘러싸인 캐비티에 상면이 위로 볼록한 제2 봉지재를 형성하는 단계 이후에 베이스 및 마스크를 제거하는 단계;를 추가하는 것을 특징으로 하는 반도체 발광소자의 제조 방법.And (18) removing the base and the mask after the step of forming the second encapsulation material having the top surface convex upward in the cavity surrounded by the first encapsulation material.
(19) 마스크의 각 개구로 노출된 베이스 위에 반도체 발광소자 칩을 놓는 단계는 반도체 발광소자 칩의 전극이 베이스를 향하도록 반도체 발광소자 칩을 놓는 것을 특징으로 하는 반도체 발광소자의 제조 방법.(19) The method of manufacturing a semiconductor light emitting device comprising placing a semiconductor light emitting device chip on a base exposed through each opening of a mask, so that the semiconductor light emitting device chip is placed so that an electrode of the semiconductor light emitting device chip faces the base.
(20) 마스크를 댐(dam)으로 하여, 각 개구에 제1 봉지재를 형성하는 단계는 제1 봉지재를 형성하는 물질이 마스크의 높이보다 낮게 마스크의 개구를 채우는 것을 특징으로 하는 반도체 발광소자의 제조 방법.(20) The step of forming the first encapsulant in each opening using the mask as a dam, wherein the material forming the first encapsulant fills the opening of the mask below the height of the mask. Method of preparation.
(21) 베이스 위에 적어도 하나 이상의 개구가 형성된 마스크를 구비하는 단계는 개구의 평면형상이 사각형, 원형 및 다각형 중 하나인 개구가 형성된 마스크를 구비하는 것을 특징으로 하는 반도체 발광소자의 제조 방법.(21) A method of manufacturing a semiconductor light emitting device, characterized in that the step of providing a mask having at least one opening formed on the base comprises a mask having an opening whose planar shape is one of a rectangle, a circle, and a polygon.
(22) 베이스 위에 적어도 하나 이상의 개구가 형성된 마스크를 구비하는 단계는 개구의 폭이 아래로 갈수록 점점 작아지는 개구가 형성된 마스크를 구비하는 것을 특징으로 하는 반도체 발광소자의 제조 방법.(22) A method of manufacturing a semiconductor light emitting device, characterized in that the step of providing a mask having at least one opening formed on the base comprises a mask having an opening whose width becomes smaller as the opening goes downward.
(23) 베이스 위에 적어도 하나 이상의 개구가 형성된 마스크를 구비하는 단계는 개구의 폭이 아래로 갈수록 점점 커지는 개구가 형성된 마스크를 구비하는 것을 특징으로 하는 반도체 발광소자의 제조 방법.(23) A method of manufacturing a semiconductor light emitting device, characterized in that the step of providing a mask having at least one opening formed on the base comprises a mask having an opening that increases in width toward the bottom of the opening.
(24) 반도체 발광소자에 있어서, 반도체 발광소자 칩;으로서, 전자와 정공의 재결합에 의해 빛을 생성하는 활성층을 포함하는 복수의 반도체층과, 복수의 반도체층에 전기적으로 연결된 전극을 구비하는 반도체 발광소자 칩; 반도체 발광소자 칩 위에 위치하는 제1 봉지재;로서 제1 봉지재의 상면이 아래로 볼록하여 제1 봉지재에 의해 둘러싸인 캐비티(cavity)를 포함하는 제1 봉지재; 그리고 제1 봉지재의 캐비티 내에 형성되어, 반도체 발광소자 칩에서 나온 빛을 반사하는 제2 봉지재;를 포함하는 것을 특징으로 하는 반도체 발광소자.(24) A semiconductor light emitting device comprising: a semiconductor light emitting device chip, comprising: a semiconductor comprising a plurality of semiconductor layers including an active layer for generating light by recombination of electrons and holes, and electrodes electrically connected to the plurality of semiconductor layers Light emitting device chip; A first encapsulation material positioned on the semiconductor light emitting device chip; a first encapsulation material including a cavity surrounded by the first encapsulation material with a top surface of the first encapsulation material convex downward; And a second encapsulation material formed in a cavity of the first encapsulation material and reflecting light emitted from the semiconductor light emitting device chip.
(25) 제1 봉지재의 최고점 높이와 폭의 비가 1:2인 것을 특징으로 하는 반도체 발광소자.(25) A semiconductor light emitting element according to claim 1, wherein the ratio of the height and width of the highest point of the first encapsulant is 1: 2.
(26) 제2 봉지재는 일부의 빛은 투과하고 일부의 빛은 반사하는 반투광성인 것을 특징으로 하는 반도체 발광소자.(26) A semiconductor light emitting element, characterized in that the second encapsulant is semi-transmissive which transmits part of the light and reflects part of the light.
(27) 제2 봉지재는 제1 봉지재에 의해 둘러싸인 캐비티를 채우고 있는 것을 특징으로 하는 반도체 발광소자.(27) A semiconductor light emitting element, wherein the second encapsulation material fills a cavity surrounded by the first encapsulation material.
(28) 제2 봉지재는 제1 봉지재의 상면에 금속막으로 형성된 것을 특징으로 하는 반도체 발광소자.(28) A semiconductor light emitting device, characterized in that the second encapsulant is formed of a metal film on the upper surface of the first encapsulant.
(29) 제1 봉지재를 형성하는 물질은 파장 변환재를 포함하고 있는 투광성 물질인 것을 특징으로 하는 반도체 발광소자.(29) A semiconductor light emitting device, characterized in that the material forming the first encapsulation material is a light transmitting material containing a wavelength conversion material.
(30) 반도체 발광소자의 제조 방법에 있어서, 베이스 위에 적어도 하나 이상의 개구가 형성된 마스크를 구비하는 단계; 마스크의 각 개구로 노출된 베이스 위에 반도체 발광소자 칩을 놓는 단계; 마스크를 댐(dam)으로 하여, 각 개구에 제1 봉지재를 형성하는 단계;로서 제1 봉지재를 형성하는 물질이 마스크의 내측면을 타고 올라가 제1 봉지재의 상면이 아래로 볼록하여 제1 봉지재로 둘러싸인 캐비티(Cavity)를 형성하도록 제1 봉지재를 형성하는 단계; 그리고 제1 봉지재로 둘러싸인 캐비티에 빛을 반사하는 제2 봉지재를 형성하는 단계;를 포함하는 것을 특징으로 하는 반도체 발광소자의 제조 방법.30. A method of manufacturing a semiconductor light emitting device, comprising the steps of: providing a mask having at least one opening formed on a base; Placing a semiconductor light emitting device chip on a base exposed by each opening of the mask; Forming a first encapsulant in each opening by using the mask as a dam; as a material forming the first encapsulant rises up the inner surface of the mask, the upper surface of the first encapsulant is convex downward, thereby forming a first encapsulant. Forming a first encapsulant to form a cavity surrounded by the encapsulant; And forming a second encapsulation material that reflects light in the cavity surrounded by the first encapsulation material.
(31) 제1 봉지재로 둘러싸인 캐비티에 빛을 반사하는 제2 봉지재를 형성하는 단계 이후에 베이스 및 마스크를 제거하는 단계;를 추가하는 것을 특징으로 하는 반도체 발광소자의 제조 방법.And (31) removing the base and the mask after forming the second encapsulant reflecting light in the cavity surrounded by the first encapsulant.
(32) 제1 봉지재로 둘러싸인 캐비티에 빛을 반사하는 제2 봉지재를 형성하는 단계는 제1 봉지재로 둘러싸인 캐비티에 제2 봉지재를 형성하는 물질을 채우는 것을 특징으로 하는 반도체 발광소자의 제조 방법.(32) forming the second encapsulant reflecting light in the cavity surrounded by the first encapsulant comprises filling a material forming the second encapsulant in the cavity enclosed by the first encapsulant. Manufacturing method.
(33) 제1 봉지재로 둘러싸인 캐비티에 빛을 반사하는 제2 봉지재를 형성하는 단계는 제1 봉지재의 상면에 금속막을 형성하는 것을 특징으로 하는 반도체 발광소자의 제조 방법.(33) The method of manufacturing a semiconductor light emitting device according to claim 1, wherein the forming of the second encapsulant reflecting light in the cavity surrounded by the first encapsulant comprises forming a metal film on the upper surface of the first encapsulant.
(34) 제1 봉지재 상면은 편평한 부분을 포함하며, 제2 봉지재는 제1 봉지재 상면의 편평한 부분 위에도 형성되는 것을 특징으로 하는 반도체 발광소자.(34) The upper surface of the first encapsulant includes a flat portion, and the second encapsulant is also formed on the flat portion of the upper surface of the first encapsulant.
본 개시에 따른 반도체 발광소자 및 제조 방법에 의하며, 상측으로 추출되는 빛의 지향각을 크게한 CSP 타입의 반도체 발광소자를 얻을 수 있다.According to the semiconductor light emitting device and the manufacturing method according to the present disclosure, it is possible to obtain a CSP type semiconductor light emitting device having a large directing angle of light extracted upward.
또한 본 개시에 따른 반도체 발광소자의 제조 방법에 의하면, 마스크를 반도체 발광소자 칩 배열의 가이드 패턴으로 사용하여 더욱 정확한 위치와 각도로 반도체 발광소자 칩을 배열할 수 있다. 따라서, 후공정, 예를 들어, 개별 소자로의 분리 공정(예: 쏘잉 등)에서 반도체 발광소자 칩들의 정렬의 오차로 인해 불량이 발생하는 것이 감소한다.In addition, according to the method of manufacturing a semiconductor light emitting device according to the present disclosure, the semiconductor light emitting device chip can be arranged at a more accurate position and angle by using a mask as a guide pattern of the semiconductor light emitting device chip arrangement. Therefore, in the post-process, for example, the separation process into individual devices (eg, sawing, etc.), the occurrence of defects due to the misalignment of the semiconductor light emitting device chips is reduced.
또한, 테이프에 빈 곳을 채우거나 틀어진 반도체 발광소자 칩의 각도를 보정하는 추가 공정을 한 후에 마스크를 반도체 발광소자 칩들이 배열된 테이프 위에 배치하고 봉지재를 공급하는 방식과 비교하면, 본 개시에 따른 방법은 상기 추가 공정이 필요 없어서 효율적이다.In addition, compared to a method in which a mask is placed on a tape on which semiconductor light emitting chip chips are arranged and an encapsulant is supplied after an additional process of filling a space in a tape or correcting an angle of a distorted semiconductor light emitting chip, The method according to this method is efficient since no further processing is required.
본 개시에 따르면 광 추출 효율이 향상된 CSP 타입의 반도체 발광소자를 얻을 수 있다.According to the present disclosure, a CSP type semiconductor light emitting device having improved light extraction efficiency can be obtained.
본 개시에 따른 반도체 발광소자 및 제조 방법에 의하며, 측면으로 추출되는 빛의 효율이 높은 CSP 타입의 반도체 발광소자를 얻을 수 있다.According to the semiconductor light emitting device and the manufacturing method according to the present disclosure, it is possible to obtain a CSP type semiconductor light emitting device having a high efficiency of light extracted to the side.

Claims (11)

  1. 반도체 발광소자에 있어서,In a semiconductor light emitting device,
    반도체 발광소자 칩;으로서, 전자와 정공의 재결합에 의해 빛을 생성하는 활성층을 포함하는 복수의 반도체층과, 복수의 반도체층에 전기적으로 연결된 전극을 구비하는 반도체 발광소자 칩;A semiconductor light emitting device chip comprising: a semiconductor light emitting device chip having a plurality of semiconductor layers including an active layer for generating light by recombination of electrons and holes, and electrodes electrically connected to the plurality of semiconductor layers;
    반도체 발광소자 칩 위에 위치하는 제1 봉지재;A first encapsulation material positioned on the semiconductor light emitting device chip;
    반도체 발광소자 칩의 측면 및 제1 봉지재 아래에 위치하는 제2 봉지재; 그리고A second encapsulant positioned on a side of the semiconductor light emitting device chip and under the first encapsulant; And
    반도체 발광소자 칩의 측면 및 제2 봉지재 아래에 위치하는 제3 봉지재;를 포함하는 것을 특징으로 하는 반도체 발광소자.And a third encapsulation material positioned on a side of the semiconductor light emitting device chip and under the second encapsulation material.
  2. 청구항 1에 있어서,The method according to claim 1,
    반도체 발광소자 칩의 전극은 제3 봉지재의 하면 방향으로 노출되어 있는 것을 특징으로 하는 반도체 발광소자.The electrode of the semiconductor light emitting device chip is exposed in the lower surface direction of the third encapsulant.
  3. 청구항 1에 있어서,The method according to claim 1,
    제2 봉지재와 제3 봉지재 사이의 경계면은 곡선인 것을 특징으로 하는 반도체 발광소자.The interface between the second encapsulant and the third encapsulant is curved.
  4. 청구항 3에 있어서,The method according to claim 3,
    곡선은 위로 볼록 형상인 것을 특징으로 하는 반도체 발광소자.The curved line is a semiconductor light emitting device, characterized in that the convex shape.
  5. 청구항 1에 있어서,The method according to claim 1,
    제1 봉지재는 파장변환재를 포함한 시트로 형성된 것을 특징으로 하는 반도체 발광소자.The first encapsulation material is a semiconductor light emitting device, characterized in that formed of a sheet containing a wavelength conversion material.
  6. 청구항 1에 있어서,The method according to claim 1,
    제3 봉지재는 유색의 반사물질로 형성된 것을 특징으로 하는 반도체 발광소자.The third encapsulation material is a semiconductor light emitting device, characterized in that formed of colored reflective material.
  7. 청구항 1에 있어서,The method according to claim 1,
    제2 봉지재는 투광성 물질 및 파장변환재가 포함된 투광성 물질 중 적어도 하나로 형성된 것을 특징으로 하는 반도체 발광소자.The second encapsulation material is a semiconductor light emitting device, characterized in that formed with at least one of a light transmitting material and a light transmitting material containing a wavelength conversion material.
  8. 청구항 1에 있어서,The method according to claim 1,
    제1 봉지재와 제3 봉지재 사이의 최단 거리가 0보다 큰 것을 특징으로 하는 반도체 발광소자.The shortest distance between a 1st sealing material and a 3rd sealing material is larger than 0, The semiconductor light emitting element characterized by the above-mentioned.
  9. 반도체 발광소자의 제조 방법에 있어서,In the method of manufacturing a semiconductor light emitting device,
    제1 봉지재를 준비하는 단계;Preparing a first encapsulant;
    제1 봉지재 위에 제2 봉지재를 형성하는 단계;로서, 액상의 제2 봉지재를 형성하는 물질을 제1 봉지재 위에 도포하는 제2 봉지재를 형성하는 단계;Forming a second encapsulation material on the first encapsulation material; forming a second encapsulation material on which the material forming the liquid second encapsulation material is applied onto the first encapsulation material;
    제2 봉지재 위에 복수의 반도체 발광소자 칩을 놓는 단계;로서 반도체 발광소자 칩의 활성층이 제1 봉지재와 반도체 발광소자 칩의 전극 사이에 위치하도록 하고, 액상의 제2 봉지재가 반도체 발광소자 칩의 측면을 타고 올라가 아래로 볼록한 제2 봉지재가 되도록 위에 복수의 반도체 발광소자 칩을 놓는 단계;Placing a plurality of semiconductor light emitting device chips on the second encapsulation material, such that an active layer of the semiconductor light emitting device chip is positioned between the first encapsulation material and an electrode of the semiconductor light emitting device chip, and the liquid second encapsulation material is a semiconductor light emitting device chip. Laying up a plurality of semiconductor light emitting device chips on the side of the second encapsulant to be raised upward;
    제2 봉지재에 형성된 아래로 볼록한 부분에 제3 봉지재를 형성하는 단계; 그리고,Forming a third encapsulant on the convex portion formed in the second encapsulant; And,
    반도체 발광소자 칩과 반도체 발광소자 칩 사이를 절단하는 단계;를 포함하는 것을 특징으로 하는 반도체 발광소자의 제조 방법.And cutting a semiconductor light emitting device chip between the semiconductor light emitting device chip and the semiconductor light emitting device chip.
  10. 청구항 9에 있어서,The method according to claim 9,
    액상의 제2 봉지재를 형성하는 물질을 제1 봉지재 위에 도포하는 두께는 20um 미만인 것을 특징으로 하는 반도체 발광소자의 제조 방법.The thickness of applying the material forming the liquid second encapsulation material on the first encapsulation material is less than 20um.
  11. 청구항 9에 있어서,The method according to claim 9,
    액상의 제2 봉지재를 형성하는 물질을 제1 봉지재 위에 도포하는 두께는 20um 이상이고 제2 봉지재 위에 놓이는 반도체 발광소자 칩 두께의 0.8 이하인 것을 특징으로 하는 반도체 발광소자의 제조 방법.The thickness of applying the material forming the liquid second encapsulant on the first encapsulant is 20um or more and 0.8 or less of the thickness of the semiconductor light emitting element chip placed on the second encapsulant.
PCT/KR2017/005511 2016-06-13 2017-05-26 Semiconductor light emitting device and manufacturing method therefor WO2017217672A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2016-0073203 2016-06-13
KR1020160073203A KR101807531B1 (en) 2016-06-13 2016-06-13 Semicondutor light emitting device and method of manufacturing the same
KR10-2016-0078165 2016-06-22
KR1020160078165A KR101831207B1 (en) 2016-06-22 2016-06-22 Semiconductor light emitting device and method of manufacturing the same
KR1020160081515A KR20180015306A (en) 2016-06-29 2016-06-29 Semiconductor light emitting device and method of manufacturing the same
KR10-2016-0081515 2016-06-29

Publications (1)

Publication Number Publication Date
WO2017217672A1 true WO2017217672A1 (en) 2017-12-21

Family

ID=60664057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005511 WO2017217672A1 (en) 2016-06-13 2017-05-26 Semiconductor light emitting device and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2017217672A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110364515A (en) * 2018-03-26 2019-10-22 日亚化学工业株式会社 The manufacturing method and light emitting module of light emitting module
TWI700786B (en) * 2018-03-28 2020-08-01 南茂科技股份有限公司 Chip-on-film package structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070089194A (en) * 2004-12-24 2007-08-30 쿄세라 코포레이션 Light-emitting device and illuminating device
JP2009503888A (en) * 2005-08-04 2009-01-29 クリー インコーポレイテッド Package for semiconductor light emitting device using compounded sealant and method for packaging the same
KR20110069340A (en) * 2009-12-17 2011-06-23 (주) 아모엘이디 Method of manufacturing led package and led package therefrom
KR101276360B1 (en) * 2006-04-24 2013-06-18 라미나 라이팅, 인크. Light emitting diodes with improved light collimation
KR20150033931A (en) * 2013-09-25 2015-04-02 앰코 테크놀로지 코리아 주식회사 Leadframe for manufacturing LED package and LED package using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070089194A (en) * 2004-12-24 2007-08-30 쿄세라 코포레이션 Light-emitting device and illuminating device
JP2009503888A (en) * 2005-08-04 2009-01-29 クリー インコーポレイテッド Package for semiconductor light emitting device using compounded sealant and method for packaging the same
KR101276360B1 (en) * 2006-04-24 2013-06-18 라미나 라이팅, 인크. Light emitting diodes with improved light collimation
KR20110069340A (en) * 2009-12-17 2011-06-23 (주) 아모엘이디 Method of manufacturing led package and led package therefrom
KR20150033931A (en) * 2013-09-25 2015-04-02 앰코 테크놀로지 코리아 주식회사 Leadframe for manufacturing LED package and LED package using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110364515A (en) * 2018-03-26 2019-10-22 日亚化学工业株式会社 The manufacturing method and light emitting module of light emitting module
TWI700786B (en) * 2018-03-28 2020-08-01 南茂科技股份有限公司 Chip-on-film package structure

Similar Documents

Publication Publication Date Title
WO2016108636A1 (en) Semiconductor light emitting device and method for manufacturing same
WO2013151387A1 (en) Method for manufacturing semiconductor device structure
WO2020190045A1 (en) Light-emitting device package and application thereof
WO2016204482A1 (en) Light-emitting element comprising a plurality of wavelength conversion units, and production method therefor
WO2021086026A1 (en) Led display device
WO2016032167A1 (en) Light-emitting element package
WO2019168233A1 (en) Light emitting device package and method for manufacturing light emitting device package
WO2020190046A1 (en) Light-emitting device package and application thereof
WO2016148424A1 (en) Light emitting element including metal bulk
WO2021256787A1 (en) Light-emitting module having plurality of unit pixels, method for manufacturing same, and display device having same
WO2017217672A1 (en) Semiconductor light emitting device and manufacturing method therefor
WO2013024916A1 (en) Wavelength conversion chip for a light emitting diode, and method for manufacturing same
KR101291092B1 (en) Method of manufacutruing semiconductor device structure
WO2017150804A1 (en) Light emitting diode, method for manufacturing light emitting diode, light emitting diode display device, and method for manufacturing light emitting diode display device
WO2020096325A1 (en) Micro-led positioning error correcting carrier and micro-led transfer system
WO2018008901A1 (en) Semiconductor light emitting element and manufacturing method therefor
KR101694374B1 (en) Semiconductor light emitting device, method of manufacturing the same, and light source module having the same
WO2019112250A1 (en) Light-emitting element package and light source device
WO2013151391A1 (en) Method for manufacturing semiconductor device structure, and semiconductor device structure using same
WO2021125524A1 (en) Semiconductor light-emitting device and method for manufacturing same
KR20160039599A (en) Method of manufacturing semiconductor light emitting device
KR101831207B1 (en) Semiconductor light emitting device and method of manufacturing the same
KR101928314B1 (en) Semiconductor light emitting device chip and semiconductor light emitting device by using the same
KR101835631B1 (en) Semiconductor light emitting device and method of manufacturing the same
KR101300463B1 (en) Method of manufacutruing semiconductor device structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17813497

Country of ref document: EP

Kind code of ref document: A1