WO2011136032A1 - Airflow distribution method of single-chamber vacuum furnace - Google Patents

Airflow distribution method of single-chamber vacuum furnace Download PDF

Info

Publication number
WO2011136032A1
WO2011136032A1 PCT/JP2011/059283 JP2011059283W WO2011136032A1 WO 2011136032 A1 WO2011136032 A1 WO 2011136032A1 JP 2011059283 W JP2011059283 W JP 2011059283W WO 2011136032 A1 WO2011136032 A1 WO 2011136032A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling gas
adjusting plate
direction adjusting
wind direction
heat treatment
Prior art date
Application number
PCT/JP2011/059283
Other languages
French (fr)
Japanese (ja)
Inventor
勝俣 和彦
Original Assignee
株式会社Ihi
株式会社Ihi機械システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi, 株式会社Ihi機械システム filed Critical 株式会社Ihi
Publication of WO2011136032A1 publication Critical patent/WO2011136032A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/767Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material with forced gas circulation; Reheating thereof
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • F27B5/16Arrangements of air or gas supply devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • F27B5/18Arrangement of controlling, monitoring, alarm or like devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/04Circulating atmospheres by mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0062Heat-treating apparatus with a cooling or quenching zone

Definitions

  • the present invention relates to a heat treatment furnace.
  • the present invention claims priority based on Japanese Patent Application No. 2010-102142 filed in Japan on April 27, 2010, the contents of which are incorporated herein by reference.
  • the quality of the object to be processed depends on how the cooling gas is allowed to flow into the heat insulating chamber in which the object to be processed is arranged with the same degree of distribution. If the distribution amount of the cooling gas to the heat insulation chamber is biased, for example, defects such as poor quenching of the workpiece and SUS sensitization are caused.
  • Patent Document 1 listed below discloses a heat treatment furnace capable of cooling an object to be processed in a short time by introducing nitrogen gas into the furnace, circulating the nitrogen gas with a fan, and cooling the nitrogen gas with a cooler. Yes.
  • This heat treatment furnace is provided with wind direction guide vanes fixed at a predetermined angle so as to guide the cooling gas with a similar distribution to the heat insulating chamber in which the object to be processed is arranged.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a heat treatment furnace capable of suppressing the uneven distribution of the cooling gas with respect to the heat insulation chamber.
  • the present invention is a heat treatment furnace provided with a wind direction adjusting plate provided at a predetermined angle so as to guide the cooling gas circulating in the furnace into a heat insulating chamber in which an object to be processed is arranged, and the flow rate of the cooling gas And a displacement drive device that drives the angle of the wind direction adjusting plate to be displaced based on at least one of the values of density.
  • the angle of the wind direction adjusting plate is driven to be displaced in accordance with the change in the flow rate or density of the cooling gas. Thereby, the deviation of the distribution amount of the cooling gas with respect to the heat insulation chamber due to the change in the flow velocity and density of the cooling gas is reduced.
  • the displacement driving device may drive the angle of the wind direction adjusting plate to be displaced based on both values of the flow velocity and density of the cooling gas. For this reason, in the present invention, the angle of the wind direction adjusting plate is driven to be displaced in accordance with changes in the flow rate and density of the cooling gas. Thereby, the deviation of the distribution amount of the cooling gas with respect to the heat insulation chamber due to the change in the flow velocity and density of the cooling gas is reduced.
  • the displacement driving device is based on the number of rotations of the fan that circulates the cooling gas when using the flow velocity value of the cooling gas.
  • the angle of the wind direction adjusting plate may be driven to be displaced. For this reason, in this invention, it becomes possible to obtain
  • the heat insulation chamber includes a cooling gas inlet opening in a vertical direction, and the wind direction adjusting plate is upstream of the cooling gas inlet.
  • the first wind direction adjusting plate provided on the side and driven to move around the axis extending in the horizontal direction perpendicular to the flow direction of the cooling gas, and driven to move around the axis extending in the vertical direction perpendicular to the horizontal direction.
  • the second wind direction adjusting plate may be provided as a pair on both sides in the horizontal direction of the first wind direction adjusting plate. For this reason, in the present invention, it is possible to adjust the flow of the cooling gas on both sides in the horizontal direction with respect to the cooling gas inlet of the heat insulating chamber.
  • the heat treatment furnace of the present invention includes a wind direction adjusting plate provided at a predetermined angle so as to guide the cooling gas circulating in the furnace into the heat insulating chamber in which the workpiece is disposed, and at least one of the flow velocity and density of the cooling gas. Based on one of the values, a displacement driving device that drives the displacement of the angle of the wind direction adjusting plate is provided. Thereby, the angle of the wind direction adjusting plate is driven to be displaced in accordance with the change in the flow rate or density of the cooling gas. Therefore, it is possible to reduce, that is, control the bias of the distribution amount of the cooling gas with respect to the heat insulating chamber due to the change in the flow velocity and density of the cooling gas.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. It is a side view which shows the 1st wind direction adjustment board in embodiment of this invention. It is a top view which shows the 2nd wind direction adjustment board in embodiment of this invention. It is a figure for demonstrating the flow of the cooling gas in the vacuum heat processing furnace in embodiment of this invention.
  • FIG. 1 is a configuration diagram showing a vacuum heat treatment furnace 1 in an embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line AA in FIG.
  • FIG. 3 is a side view showing the first air direction adjusting plate 51 in the embodiment of the present invention.
  • FIG. 4 is a plan view showing the second air direction adjusting plate 52 in the embodiment of the present invention.
  • the vacuum heat treatment furnace 1 of the present embodiment is a so-called single-chamber vacuum heat treatment furnace that performs heat treatment and cooling treatment on the workpiece W in a single chamber.
  • the vacuum heat treatment furnace 1 includes a vacuum pump (not shown) for sucking the inside of the furnace through a pipe 2 shown in FIG. 2, an inert gas supply device 3 for supplying an inert gas into the furnace shown in FIG.
  • the inert gas is supplied into the furnace in order to prevent oxidation and coloring of the workpiece W, and is also used as a cooling gas for cooling the inside of the furnace.
  • As the kind of the inert gas for example, nitrogen gas, argon gas, helium gas, or a mixed gas of these inert gases is used.
  • the inert gas supply device 3 includes a pumping unit that pumps the inert gas into the furnace and a measuring unit that measures the pressure in the furnace.
  • the vacuum heat treatment furnace 1 of the present embodiment is composed of a vacuum vessel which is set in a substantially cylindrical shape so as to withstand the pressure even when the pressure state in the furnace changes, and the cylindrical center of this vessel
  • the position of the container is set so that the axis is horizontal.
  • the horizontal direction in which the central axis of the vacuum heat treatment furnace 1 extends is the X axis direction
  • the horizontal direction orthogonal to the X axis direction is the Y axis direction
  • the vertical direction is orthogonal to the X axis direction and the Y axis direction. May be referred to as the Z-axis direction.
  • the vacuum heat treatment furnace 1 includes a heat insulating container (heat insulating chamber) 10 in which a workpiece W is disposed, a heating device 20 that heats the workpiece W, and a cooling device 30 that cools the workpiece W.
  • One end of the vacuum heat treatment furnace 1 is a clutch door 4.
  • the inner side of the clutch door 4 and the removable side wall 11 of the heat insulating container 10 are connected to each other, and the side wall 11 is detached by opening the clutch door 4, and the heat insulating container 10 is placed inside the heat insulating container 10. It is possible to carry in the workpiece W or carry out the workpiece W from the inside of the heat insulating container 10. Further, when the clutch door 4 is closed, the inside of the vacuum heat treatment furnace 1 is a sealed space. As shown in FIG. 2, in the furnace of the vacuum heat treatment furnace 1, the external space of the heat insulating container 10 is divided into two vertically by sandwiching the position where the heat insulating container 10 is provided by the partition plate 5 a and the partition plate 5 b.
  • the heat insulating container 10 is made of a wool-based heat insulating material such as graphite wool or ceramic wool.
  • the upper lid portion 12 constituting a part of the upper surface of the heat insulating container 10 can move in the vertical direction (Z-axis direction) by the cylinder mechanism 12 a and can open and close the opening 13 provided on the upper surface of the heat insulating container 10.
  • the lower lid part 14 which comprises a part of lower surface of the heat insulation container 10 moves to a perpendicular direction (Z-axis direction) by the cylinder mechanism 14a, and can open and close the opening part 15 provided in the lower surface of the heat insulation container 10. It is.
  • a placing table 16 for placing the object to be processed W is disposed inside the heat insulating container 10.
  • the ceramic bar 17. are installed.
  • the mounting table 16 has a structure that allows gas to pass in the vertical direction (for example, a parallel plate extending in the X direction).
  • the heating device 20 has a grid-like heat generating portion that is provided in the heat insulating container 10 and surrounds the workpiece W.
  • the heating device 20 heats the inside of the heat insulating container 10 to a high temperature of 1000 ° C. or more by heating the heat generating portion by energization in a state where the upper lid portion 12 and the lower lid portion 14 are closed.
  • the cooling device 30 includes a blower 31 and a heat exchanger 32.
  • the blower 31 includes a fan 31a for circulating cooling gas (inert gas) in the furnace and a fan motor 31b for driving the fan 31a.
  • the blower 31 rotates the fan 31a around the rotation axis extending in the X-axis direction, thereby sucking the cooling gas from the X-axis direction and ejecting the cooling gas in the radial direction, thereby giving a flow to the cooling gas.
  • the cooling gas ejected from the fan 31a is a swirling flow around the X axis.
  • the heat exchanger 32 is composed of a plurality of fin tubes through which a cooling medium flows, and cools the cooling gas heated by cooling the workpiece W again.
  • the heat exchanger 32 is provided so as to surround the radial direction of the fan 31a.
  • the cooling device 30 cools the workpiece W by driving the blower 31 and the heat exchanger 32 and circulating the cooling gas in the furnace in a state where the upper lid portion 12 and the lower lid portion 14 are opened.
  • the vacuum heat treatment furnace 1 of the present embodiment is provided with a circulation direction switching plate 40 for changing the circulation direction of the cooling gas. It is possible to change the circulation direction of the cooling gas inside the vacuum heat treatment furnace 1 by closing a suitable place in the internal space of the vacuum heat treatment furnace 1 with this circulation direction switching plate 40 and opening the suitable place.
  • the circulation direction switching plate 40 causes the first cooling gas circulation direction in which the cooling gas flows from the top to the bottom in the heat insulation container 10 and the first cooling gas to flow in the heat insulation container 10 from the bottom to the top. It is possible to switch between two cooling gas circulation directions. That is, in the first cooling gas circulation direction, the opening 13 is a cooling gas inlet and the opening 15 is a cooling gas outlet. In the second cooling gas circulation direction, the opening 15 is opened at the cooling gas inlet. Part 13 is a cooling gas outlet.
  • the vacuum heat treatment furnace 1 of the present embodiment includes a wind direction adjusting plate 50 provided at a predetermined angle so as to guide the cooling gas circulating in the furnace into the heat insulating container 10 where the workpiece W is disposed, And a displacement driving device 60 for driving the angle of the airflow direction adjusting plate 50 based on at least one of the flow velocity and the density.
  • a displacement driving device 60 for driving the angle of the airflow direction adjusting plate 50 based on at least one of the flow velocity and the density.
  • an arrow output from the displacement driving device 60 indicates a path of electrical control by the displacement driving device 60. This electrical control is performed via a cable extending from the displacement driving device 60 so as to surround the vacuum heat treatment furnace 1.
  • the wind direction adjusting plate 50 includes a wind direction adjusting plate 50A provided upstream of the opening 13 of the heat insulating container 10 in the first cooling gas circulation direction, and the opening 15 of the heat insulating container 10 in the second cooling gas circulation direction.
  • a wind direction adjusting plate 50B provided on the upstream side.
  • the configuration of the wind direction adjusting plate 50A and the wind direction adjusting plate 50B is substantially the same, in the following description, the configuration of the wind direction adjusting plate 50A will be described as the wind direction adjusting plate 50, and the configuration of the wind direction adjusting plate 50B will be described. Is omitted.
  • the wind direction adjusting plate 50 ⁇ / b> A is provided at a position avoiding the movement path of the upper lid 12.
  • the wind direction adjusting plate 50A includes a first wind direction adjusting plate 51 that can be driven to be displaced around an axis extending in the Y-axis direction, and a second wind direction adjusting plate 52 that can be driven to be displaced about an axis extending in the Z-axis direction (FIG. 3). And FIG. 4).
  • the first air direction adjusting plate 51 adjusts the flow direction of the cooling gas in the Z-axis direction.
  • the second air direction adjusting plate 52 adjusts the flow direction of the cooling gas in the Y-axis direction (particularly, adjusting the swirling flow (oblique flow) of the cooling gas around the X-axis).
  • the first wind direction adjusting plate 51 has substantially the same length as one side of the opening 13 in the Y-axis direction.
  • the first wind direction adjusting plate 51 is pivotally supported by a rotating shaft 51a extending in the Y-axis direction on one side of the ⁇ X side (the side opposite to the arrow X in FIG. 1).
  • a slide block 53 b to which the tip end portion 53 a of the cylinder mechanism 53 is fitted is fixed to the center portion of the first air direction adjusting plate 51.
  • the slide block 53b is provided with a slide groove 53b1 extending along the surface of the first air direction adjusting plate 51.
  • the cylinder mechanism 53 moves the tip portion 53a in the Z-axis direction under the control of the displacement drive device 60, thereby changing the fitting position of the slide block 53b with respect to the tip portion 53a, and the angle of the first wind direction adjusting plate 51 Is displaced around the rotation axis 51a.
  • the second wind direction adjusting plate 52 (52A, 52B) is provided as a pair on both sides of the first wind direction adjusting plate 51 in the Y-axis direction, as shown in FIG. That is, the distance between the second wind direction adjusting plate 52A and the second wind direction adjusting plate 52B is wider than the length of one side of the opening 13 in the Y-axis direction.
  • the second wind direction adjusting plate 52 is pivotally supported as a rotation shaft 52a on one side extending in the Z-axis direction on the -X side.
  • the rotating shaft 52a is driven under the control of the displacement driving device 60, and the angle of the second wind direction adjusting plate 52 is displaced around the rotating shaft 52a.
  • the displacement driving device 60 drives the angle of the wind direction adjusting plate 50 ⁇ / b> A to be displaced based on at least one of the flow velocity and density of the cooling gas.
  • the displacement driving device 60 of the present embodiment has a computer system that controls the displacement driving of the first wind direction adjusting plate 51 and the second wind direction adjusting plate 52, respectively.
  • the displacement driving device 60 of the present embodiment uses the rotation speed of the fan 31a of the blower 31 as the value of the flow rate of the cooling gas, and specifically detects it by an encoder (not shown) provided in the fan motor 31b.
  • the rotational speed data is taken into an inverter (not shown) that controls the driving of the fan motor 31b, and is output from the inverter and received.
  • the displacement drive device 60 of the present embodiment uses the pressure value in the furnace as the value of the density of the cooling gas, specifically, detected by the pressure measuring means (pressure sensor) of the inert gas supply device 3. Receive pressure data.
  • the displacement driving device 60 controls the displacement of the distribution amount of the cooling gas flowing into the heat insulating container 10 by driving the angle of the airflow direction adjusting plate 50A according to the flow velocity and density values of the cooling gas.
  • the scalar value (strength) of the flow of the cooling gas changes, and the cooling gas whose flow direction is changed by the wind direction adjusting plate 50A is hindered by the cooling gas in the main flow direction. The degree changes. For this reason, the displacement drive device 60 drives the angle of the wind direction adjusting plate 50A to displace this change.
  • the displacement driving device 60 makes the angle of the first wind direction adjusting plate 51 shallow with respect to the XY plane, and the second wind direction.
  • the angle of the adjustment plate 52 is controlled to be shallow with respect to the XZ plane.
  • the angle of the first air direction adjusting plate 51 is deep with respect to the XY plane and the angle of the second air direction adjusting plate 52 is XZ. Deep control over the plane.
  • FIG. 5 is a view for explaining the flow of the cooling gas in the vacuum heat treatment furnace 1 in the embodiment of the present invention.
  • the flow of the cooling gas in the furnace is schematically shown by using arrows.
  • the workpiece W is carried into the heat insulating container 10 with the clutch door 4 of the vacuum heat treatment furnace 1 and the side wall 11 of the heat insulating container 10 opened. Thereafter, the clutch door 4 and the side wall 11 of the heat insulating container 10 are closed, and the upper lid 12 and the lower lid 14 are closed. And the to-be-processed object W is heat-processed by heating the to-be-processed object W with the heating apparatus 20.
  • FIG. In this heat treatment the workpiece W is heated to a predetermined temperature over a predetermined time.
  • the cooling gas inlet / outlet (opening 13 and opening 15) of the heat insulating container 10 is opened by opening the upper lid 12 and the lower lid 14.
  • the heat exchanger 32 cools the cooling gas, and the blower 31 applies a flow to the cooling gas, whereby the cooling gas circulates inside the vacuum heat treatment furnace 1.
  • the cooling gas circulated in this way is circulated in the direction of the arrow shown in FIG. 5, for example, after being discharged from the fan 31a, the flow direction is adjusted by the air direction adjusting plate 50A and then the opening 13 is formed. Flows into the inside of the heat insulating container 10.
  • the displacement driving device 60 drives the angle of the wind direction adjusting plate 50 ⁇ / b> A to be displaced according to the flow velocity and density values of the cooling gas, and flows into the heat insulating container 10.
  • the flow rate and density of the cooling gas are controlled so as to eliminate the uneven distribution amount.
  • the first air direction adjusting plate 51 adjusts the flow direction of the cooling gas in the Z-axis direction, and introduces the cooling gas to the heat insulating container 10 with equal distribution.
  • the second air direction adjusting plate 52 adjusts the flow direction of the cooling gas in the Y-axis direction so as to cancel the swirling flow (diagonal flow) of the cooling gas around the X-axis so as to be equally distributed to the heat insulating container 10. Introduce cooling gas. For this reason, a cooling gas is sprayed uniformly with respect to the whole workpiece W, and the workpiece W can be cooled uniformly. Further, even if the rotational speed of the fan 31a and the pressure value in the furnace are changed during the cooling process, the displacement driving device 60 drives the angle of the airflow direction adjusting plate 50A to an optimum angle accordingly, The cooling gas can be always introduced to the heat insulating container 10 with equal distribution.
  • the cooling gas flowing into the heat insulating container 10 cools the workpiece W and then flows out of the heat insulating container 10 through the opening 15. Thereafter, the cooling gas that has flowed out of the heat insulating container 10 is sucked by the fan 31a, is then heat-exchanged by the heat exchanger 32, and is circulated through the furnace again.
  • the cooling gas is discharged from the fan 31a, and then the flow direction is adjusted by the air direction adjusting plate 50B and then the heat insulating container. 10 flows into the interior. Then, after cooling the workpiece W, the cooling gas flows out of the heat insulating container 10 through the opening 13. At this time, the displacement driving device 60 drives the angle of the airflow direction adjusting plate 50B in accordance with the values of the flow velocity and density of the cooling gas so as to eliminate the uneven distribution of the cooling gas flowing into the heat insulating container 10. Control the flow rate and density of the cooling gas.
  • the airflow direction adjusting plate 50 provided in the vacuum heat treatment furnace 1 is predetermined so as to guide the cooling gas circulating in the furnace into the heat insulating container 10 in which the workpiece W is disposed. It is set to an angle. Further, the displacement driving device 60 drives the angle of the wind direction adjusting plate 50 to be displaced based on at least one of the flow velocity and density of the cooling gas. For this reason, in this embodiment, the angle of the wind direction adjusting plate 50 is driven to change according to the change in the flow rate and density of the cooling gas, and the distribution amount of the cooling gas to the heat insulating container 10 by the change in the flow rate and density of the cooling gas The bias can be reduced, that is, controlled. Therefore, it is possible to suppress quenching failure of the workpiece W, SUS sensitization, and the like, and to obtain a high-quality workpiece W.
  • the swirling flow (diagonal flow) of the cooling gas around the X axis is biased only on one side, and therefore, on both sides of the first air direction adjusting plate 51 in the above embodiment.
  • the second air direction adjusting plate 52 provided as a pair may be provided only on one side of the first air direction adjusting plate 51.
  • the displacement driving device 60 may simultaneously perform the displacement driving of the angle of the airflow direction adjusting plate 50A and the displacement driving of the angle of the airflow direction adjusting plate 50B.
  • SYMBOLS 1 Vacuum heat treatment furnace (heat treatment furnace), 10 ... Heat insulation chamber (heat insulation container), 13 ... Opening part (cooling gas inflow port), 31a ... Fan, 50 ... Wind direction adjusting plate, 51 ... 1st wind direction adjusting plate, 52 ... Second wind direction adjusting plate, 60 ... displacement driving device, W ... workpiece

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Furnace Details (AREA)

Abstract

The disclosed vacuum heat-treatment furnace (1), which is provided with an airflow-direction adjustment plate (50) that is provided at a predetermined angle in a manner so as to lead coolant gas circulating within the furnace into an insulated vessel (10) in which an object (W) to be processed is disposed, has a displacement driving device (60) that drives the displacement of the angle of the airflow-direction adjustment plate (50) on the basis of at least one value from among the flow sped and the density of the abovementioned coolant gas.

Description

単室型真空炉の風量配分方法Air volume distribution method for single chamber type vacuum furnace
 本発明は、熱処理炉に関するものである。
 本発明は、2010年4月27日に、日本に出願された特願2010-102142号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a heat treatment furnace.
The present invention claims priority based on Japanese Patent Application No. 2010-102142 filed in Japan on April 27, 2010, the contents of which are incorporated herein by reference.
 熱処理炉において焼入れ処理をする際には、被処理物が配置される断熱室に対し、如何に同程度の配分で冷却ガスを流入させるかによって、被処理物の品質が左右される。断熱室に対する冷却ガスの配分量が偏ると、例えば、被処理物の焼入れ不良やSUS鋭敏化等の不具合を引き起こす。 When quenching is performed in a heat treatment furnace, the quality of the object to be processed depends on how the cooling gas is allowed to flow into the heat insulating chamber in which the object to be processed is arranged with the same degree of distribution. If the distribution amount of the cooling gas to the heat insulation chamber is biased, for example, defects such as poor quenching of the workpiece and SUS sensitization are caused.
 下記特許文献1には、炉内に窒素ガスを導入し、その窒素ガスをファンによって循環させると共にクーラによってその窒素ガスを冷却することで被処理物を短時間で冷却できる熱処理炉が開示されている。この熱処理炉は、被処理物が配置される断熱室に対し同程度の配分で冷却ガスを導くように所定角度で固定された風向ガイド羽根を備えている。 Patent Document 1 listed below discloses a heat treatment furnace capable of cooling an object to be processed in a short time by introducing nitrogen gas into the furnace, circulating the nitrogen gas with a fan, and cooling the nitrogen gas with a cooler. Yes. This heat treatment furnace is provided with wind direction guide vanes fixed at a predetermined angle so as to guide the cooling gas with a similar distribution to the heat insulating chamber in which the object to be processed is arranged.
特開平5-230528号公報JP-A-5-230528
 しかしながら、上記構成の風向ガイド羽根は固定式であるために如何に最適な角度に調節しても、冷却ガスの流速や密度を変更した場合には、断熱室に流入する冷却ガスの配分量が変わってしまうという問題がある。すなわち、冷却ガスの流速や密度が変更されると、冷却ガスの流れのスカラー値(強さ)が変わるため、風向ガイド羽根で流れ方向を変えた冷却ガスが、主流の流れ方向の冷却ガスによって妨げられる度合いが変化する。その結果、冷却ガスが断熱室内に偏った配分となって流れ込む。 However, since the airflow guide vanes with the above configuration are fixed, the distribution amount of the cooling gas flowing into the heat insulation chamber is not changed when the cooling gas flow velocity or density is changed no matter how the angle is adjusted to an optimum angle. There is a problem of changing. That is, when the flow velocity or density of the cooling gas is changed, the scalar value (strength) of the flow of the cooling gas changes, so that the cooling gas whose flow direction has been changed by the wind direction guide vane is changed by the cooling gas in the main flow direction. The degree of obstruction changes. As a result, the cooling gas flows into the heat insulation chamber in an uneven distribution.
 本発明は、上記問題点に鑑みてなされたものであり、断熱室に対する冷却ガスの配分量の偏りを抑制できる熱処理炉の提供を目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a heat treatment furnace capable of suppressing the uneven distribution of the cooling gas with respect to the heat insulation chamber.
 上記の課題を解決するために、本発明では、以下の手法を採用する。即ち、
(1)本発明は、炉内に循環する冷却ガスを被処理物が配置される断熱室内に導くように所定角度で設けられた風向調節板を備える熱処理炉であって、上記冷却ガスの流速及び密度のすくなくともいずれか一方の値に基づいて、上記風向調節板の角度を変位駆動させる変位駆動装置を有する。
 このため、本発明では、冷却ガスの流速や密度の変更に応じて、風向調節板の角度を変位駆動させる。これにより、冷却ガスの流速や密度の変更による断熱室に対する冷却ガスの配分量の偏りを軽減する。
In order to solve the above problems, the present invention employs the following technique. That is,
(1) The present invention is a heat treatment furnace provided with a wind direction adjusting plate provided at a predetermined angle so as to guide the cooling gas circulating in the furnace into a heat insulating chamber in which an object to be processed is arranged, and the flow rate of the cooling gas And a displacement drive device that drives the angle of the wind direction adjusting plate to be displaced based on at least one of the values of density.
For this reason, in the present invention, the angle of the wind direction adjusting plate is driven to be displaced in accordance with the change in the flow rate or density of the cooling gas. Thereby, the deviation of the distribution amount of the cooling gas with respect to the heat insulation chamber due to the change in the flow velocity and density of the cooling gas is reduced.
 (2)上記(1)に記載の熱処理炉においては、上記変位駆動装置は、上記冷却ガスの流速及び密度の両方の値に基づいて、上記風向調節板の角度を変位駆動させても良い。
 このため、本発明では、冷却ガスの流速及び密度の変更に応じて、風向調節板の角度を変位駆動させる。これにより、冷却ガスの流速及び密度の変更による断熱室に対する冷却ガスの配分量の偏りを軽減する。
(2) In the heat treatment furnace described in (1) above, the displacement driving device may drive the angle of the wind direction adjusting plate to be displaced based on both values of the flow velocity and density of the cooling gas.
For this reason, in the present invention, the angle of the wind direction adjusting plate is driven to be displaced in accordance with changes in the flow rate and density of the cooling gas. Thereby, the deviation of the distribution amount of the cooling gas with respect to the heat insulation chamber due to the change in the flow velocity and density of the cooling gas is reduced.
 (3)上記(1)または(2)に記載の熱処理炉においては、上記変位駆動装置は、上記冷却ガスの流速の値を用いる場合に、上記冷却ガスを循環させるファンの回転数に基づいて、上記風向調節板の角度を変位駆動させても良い。
 このため本発明では、炉内に流速計を設けずとも冷却ガスの流速の値を求めることが可能となる。
(3) In the heat treatment furnace described in (1) or (2) above, the displacement driving device is based on the number of rotations of the fan that circulates the cooling gas when using the flow velocity value of the cooling gas. The angle of the wind direction adjusting plate may be driven to be displaced.
For this reason, in this invention, it becomes possible to obtain | require the value of the flow velocity of cooling gas, without providing a flowmeter in a furnace.
 (4)上記(1)~(3)に記載の熱処理炉においては、上記断熱室は、鉛直方向に開口する冷却ガス流入口を備え、上記風向調節板は、上記冷却ガス流入口よりも上流側に設けられ、上記冷却ガスの流れ方向と直交する水平方向に延びる軸周りに上記変位駆動する第1の風向調節板及び、上記水平方向と直交する鉛直方向に延びる軸周りに上記変位駆動する第2の風向調節板を有しても良い。
 このため、本発明では、断熱室の冷却ガス流入口に対し、鉛直方向及び水平方向の冷却ガスの流れの調節が可能となる。
(4) In the heat treatment furnace described in (1) to (3) above, the heat insulation chamber includes a cooling gas inlet opening in a vertical direction, and the wind direction adjusting plate is upstream of the cooling gas inlet. The first wind direction adjusting plate provided on the side and driven to move around the axis extending in the horizontal direction perpendicular to the flow direction of the cooling gas, and driven to move around the axis extending in the vertical direction perpendicular to the horizontal direction. You may have a 2nd wind direction adjustment board.
For this reason, in this invention, the adjustment | control of the flow of the cooling gas of a perpendicular direction and a horizontal direction is attained with respect to the cooling gas inflow port of a heat insulation chamber.
 (5)上記(4)に記載の熱処理炉においては、上記第2の風向調節板は、上記第1の風向調節板の上記水平方向両側に対となって設けられていても良い。
 このため、本発明では、断熱室の冷却ガス流入口に対し、水平方向両側の冷却ガスの流れの調節が可能となる。
(5) In the heat treatment furnace described in (4) above, the second wind direction adjusting plate may be provided as a pair on both sides in the horizontal direction of the first wind direction adjusting plate.
For this reason, in the present invention, it is possible to adjust the flow of the cooling gas on both sides in the horizontal direction with respect to the cooling gas inlet of the heat insulating chamber.
 本発明の熱処理炉は、炉内に循環する冷却ガスを被処理物が配置される断熱室内に導くように所定角度で設けられた風向調節板と、上記冷却ガスの流速及び密度のすくなくともいずれか一方の値に基づいて、上記風向調節板の角度を変位駆動させる変位駆動装置を有する。これにより、冷却ガスの流速や密度の変更に応じて、風向調節板の角度を変位駆動させる。そのため、冷却ガスの流速や密度の変更による断熱室に対する冷却ガスの配分量の偏りを軽減、即ち、制御できる。 The heat treatment furnace of the present invention includes a wind direction adjusting plate provided at a predetermined angle so as to guide the cooling gas circulating in the furnace into the heat insulating chamber in which the workpiece is disposed, and at least one of the flow velocity and density of the cooling gas. Based on one of the values, a displacement driving device that drives the displacement of the angle of the wind direction adjusting plate is provided. Thereby, the angle of the wind direction adjusting plate is driven to be displaced in accordance with the change in the flow rate or density of the cooling gas. Therefore, it is possible to reduce, that is, control the bias of the distribution amount of the cooling gas with respect to the heat insulating chamber due to the change in the flow velocity and density of the cooling gas.
本発明の実施形態における真空熱処理炉を示す構成図である。It is a block diagram which shows the vacuum heat processing furnace in embodiment of this invention. 図1におけるA-A線に沿った断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG. 本発明の実施形態における第1風向調節板を示す側面図である。It is a side view which shows the 1st wind direction adjustment board in embodiment of this invention. 本発明の実施形態における第2風向調節板を示す平面図である。It is a top view which shows the 2nd wind direction adjustment board in embodiment of this invention. 本発明の実施形態における真空熱処理炉内の冷却ガスの流れを説明するための図である。It is a figure for demonstrating the flow of the cooling gas in the vacuum heat processing furnace in embodiment of this invention.
 以下、図面を参照し、本発明の実施形態について説明する。なお、以下の説明では、本実施形態の熱処理炉として、真空熱処理炉を例示して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, a vacuum heat treatment furnace will be described as an example of the heat treatment furnace of the present embodiment.
 図1は、本発明の実施形態における真空熱処理炉1を示す構成図である。図2は、図1におけるA-A線に沿った断面図である。図3は、本発明の実施形態における第1風向調節板51を示す側面図である。図4は、本発明の実施形態における第2風向調節板52を示す平面図である。
 本実施形態の真空熱処理炉1は、単室で被処理物Wに対して加熱処理及び冷却処理を行う、いわゆる単室型真空熱処理炉である。この真空熱処理炉1は、図2に示す配管2を介して炉内を吸気する真空ポンプ(図示せず)と、図1に示す炉内に不活性ガスを供給する不活性ガス供給装置3とを有する。不活性ガスは、被処理物Wの酸化・着色を防止すべく炉内に供給され、炉内を冷却する冷却ガスとしても用いられる。不活性ガスの種類としては、例えば、窒素ガス、アルゴンガス、ヘリウムガス等、あるいはこれら不活性ガスの混合ガスが用いられる。不活性ガス供給装置3は、不活性ガスを炉内に圧送する圧送手段と、炉内の圧力を計測する計測手段とを有する。
FIG. 1 is a configuration diagram showing a vacuum heat treatment furnace 1 in an embodiment of the present invention. FIG. 2 is a sectional view taken along line AA in FIG. FIG. 3 is a side view showing the first air direction adjusting plate 51 in the embodiment of the present invention. FIG. 4 is a plan view showing the second air direction adjusting plate 52 in the embodiment of the present invention.
The vacuum heat treatment furnace 1 of the present embodiment is a so-called single-chamber vacuum heat treatment furnace that performs heat treatment and cooling treatment on the workpiece W in a single chamber. The vacuum heat treatment furnace 1 includes a vacuum pump (not shown) for sucking the inside of the furnace through a pipe 2 shown in FIG. 2, an inert gas supply device 3 for supplying an inert gas into the furnace shown in FIG. Have The inert gas is supplied into the furnace in order to prevent oxidation and coloring of the workpiece W, and is also used as a cooling gas for cooling the inside of the furnace. As the kind of the inert gas, for example, nitrogen gas, argon gas, helium gas, or a mixed gas of these inert gases is used. The inert gas supply device 3 includes a pumping unit that pumps the inert gas into the furnace and a measuring unit that measures the pressure in the furnace.
 本実施形態の真空熱処理炉1は、炉内の圧力状態が変化した場合であってもその圧力に耐えられるように略円筒形状に形状設定された真空容器からなり、この容器の円筒形の中心軸が水平となるように、容器の位置が設定されている。なお、以下の説明では、真空熱処理炉1の中心軸が延びる水平方向をX軸方向と、X軸方向と直交する水平方向をY軸方向と、X軸方向及びY軸方向と直交する鉛直方向をZ軸方向と称して説明する場合がある。
 真空熱処理炉1は、炉内に、被処理物Wが配置される断熱容器(断熱室)10と、被処理物Wを加熱する加熱装置20と、被処理物Wを冷却する冷却装置30とを有する。
The vacuum heat treatment furnace 1 of the present embodiment is composed of a vacuum vessel which is set in a substantially cylindrical shape so as to withstand the pressure even when the pressure state in the furnace changes, and the cylindrical center of this vessel The position of the container is set so that the axis is horizontal. In the following description, the horizontal direction in which the central axis of the vacuum heat treatment furnace 1 extends is the X axis direction, the horizontal direction orthogonal to the X axis direction is the Y axis direction, and the vertical direction is orthogonal to the X axis direction and the Y axis direction. May be referred to as the Z-axis direction.
The vacuum heat treatment furnace 1 includes a heat insulating container (heat insulating chamber) 10 in which a workpiece W is disposed, a heating device 20 that heats the workpiece W, and a cooling device 30 that cools the workpiece W. Have
 真空熱処理炉1の片側端部はクラッチ式扉4である。なお、このクラッチ式扉4の内側と、断熱容器10の脱着自在な側壁部11とは接続されており、クラッチ式扉4を開けることによって側壁部11は脱離され、断熱容器10の内部に被処理物Wを搬入あるいは断熱容器10の内部から被処理物Wを搬出することができる。また、クラッチ式扉4が閉鎖されている場合には、真空熱処理炉1の炉内は密閉空間となる。図2に示すように、真空熱処理炉1の炉内において、断熱容器10の外部空間は、仕切板5a及び仕切板5bによって断熱容器10が設けられる位置を挟んで上下に2分されている。 One end of the vacuum heat treatment furnace 1 is a clutch door 4. Note that the inner side of the clutch door 4 and the removable side wall 11 of the heat insulating container 10 are connected to each other, and the side wall 11 is detached by opening the clutch door 4, and the heat insulating container 10 is placed inside the heat insulating container 10. It is possible to carry in the workpiece W or carry out the workpiece W from the inside of the heat insulating container 10. Further, when the clutch door 4 is closed, the inside of the vacuum heat treatment furnace 1 is a sealed space. As shown in FIG. 2, in the furnace of the vacuum heat treatment furnace 1, the external space of the heat insulating container 10 is divided into two vertically by sandwiching the position where the heat insulating container 10 is provided by the partition plate 5 a and the partition plate 5 b.
 断熱容器10の内部では、被処理物Wが加熱処理及び冷却処理される。断熱容器10は、例えばグラファイトウールやセラミックウール等のウール系の断熱材から構成される。断熱容器10の上面の一部を構成する上蓋部12は、シリンダ機構12aによって鉛直方向(Z軸方向)に移動して、断熱容器10の上面に設けられた開口部13を開閉可能である。また、断熱容器10の下面の一部を構成する下蓋部14は、シリンダ機構14aによって鉛直方向(Z軸方向)に移動して、断熱容器10の下面に設けられた開口部15を開閉可能である。断熱容器10の内部には、被処理物Wを載置するための載置台16が配置されており、この載置台16には被処理物Wとの融着を防止するため、セラミック棒材17が複数設置されている。なお、この載置台16は、上下方向に気体が通過可能な構造(例えば、X方向に延在する平行板状)とされている。 In the heat insulating container 10, the workpiece W is heated and cooled. The heat insulating container 10 is made of a wool-based heat insulating material such as graphite wool or ceramic wool. The upper lid portion 12 constituting a part of the upper surface of the heat insulating container 10 can move in the vertical direction (Z-axis direction) by the cylinder mechanism 12 a and can open and close the opening 13 provided on the upper surface of the heat insulating container 10. Moreover, the lower lid part 14 which comprises a part of lower surface of the heat insulation container 10 moves to a perpendicular direction (Z-axis direction) by the cylinder mechanism 14a, and can open and close the opening part 15 provided in the lower surface of the heat insulation container 10. It is. A placing table 16 for placing the object to be processed W is disposed inside the heat insulating container 10. In order to prevent fusion with the object to be treated W on the placing table 16, the ceramic bar 17. Are installed. The mounting table 16 has a structure that allows gas to pass in the vertical direction (for example, a parallel plate extending in the X direction).
 加熱装置20は、断熱容器10内に設けられて被処理物Wを囲む格子状の発熱部を有する。加熱装置20は、上蓋部12及び下蓋部14が閉じた状態で、発熱部を通電により発熱させ、断熱容器10内を1000℃以上の高温に加熱し、被処理物Wを加熱処理する。 The heating device 20 has a grid-like heat generating portion that is provided in the heat insulating container 10 and surrounds the workpiece W. The heating device 20 heats the inside of the heat insulating container 10 to a high temperature of 1000 ° C. or more by heating the heat generating portion by energization in a state where the upper lid portion 12 and the lower lid portion 14 are closed.
 冷却装置30は、送風機31と熱交換器32とを有する。送風機31は、炉内の冷却ガス(不活性ガス)を循環させるファン31aと、ファン31aを駆動させるファンモータ31bとを有する。送風機31は、ファン31aをX軸方向に延びる回転軸周りに回転させることで、X軸方向から冷却ガスを吸い込んでラジアル方向に噴出することによって、冷却ガスに流れを与えている。なお、ファン31aから噴出する冷却ガスは、X軸周りの旋回流となる。 The cooling device 30 includes a blower 31 and a heat exchanger 32. The blower 31 includes a fan 31a for circulating cooling gas (inert gas) in the furnace and a fan motor 31b for driving the fan 31a. The blower 31 rotates the fan 31a around the rotation axis extending in the X-axis direction, thereby sucking the cooling gas from the X-axis direction and ejecting the cooling gas in the radial direction, thereby giving a flow to the cooling gas. The cooling gas ejected from the fan 31a is a swirling flow around the X axis.
 熱交換器32は、冷却媒体が流通する複数のフィンチューブから構成されており、被処理物Wを冷却することによって加温された冷却ガスを再び冷却する。熱交換器32は、ファン31aのラジアル方向を囲むようにして設けられている。冷却装置30は、上蓋部12及び下蓋部14が開いた状態で、送風機31と熱交換器32とを駆動させ、炉内の冷却ガスを循環させて、被処理物Wを冷却処理する。 The heat exchanger 32 is composed of a plurality of fin tubes through which a cooling medium flows, and cools the cooling gas heated by cooling the workpiece W again. The heat exchanger 32 is provided so as to surround the radial direction of the fan 31a. The cooling device 30 cools the workpiece W by driving the blower 31 and the heat exchanger 32 and circulating the cooling gas in the furnace in a state where the upper lid portion 12 and the lower lid portion 14 are opened.
 また、本実施形態の真空熱処理炉1は、冷却ガスの循環方向を変化させるための循環方向切替板40が設置されている。この循環方向切替板40によって真空熱処理炉1の内部空間の適所を塞ぎ、適所を開放することによって、真空熱処理炉1の内部における冷却ガスの循環方向を変化させることが可能である。本実施形態では、循環方向切替板40によって、冷却ガスが断熱容器10内を上から下に流通する第1の冷却ガス循環方向と、冷却ガスが断熱容器10内を下から上に流通する第2の冷却ガス循環方向とに切り替えが可能である。すなわち、第1の冷却ガス循環方向では、開口部13が冷却ガス流入口で開口部15が冷却ガス流出口であり、第2の冷却ガス循環方向では、開口部15が冷却ガス流入口で開口部13が冷却ガス流出口である。 Also, the vacuum heat treatment furnace 1 of the present embodiment is provided with a circulation direction switching plate 40 for changing the circulation direction of the cooling gas. It is possible to change the circulation direction of the cooling gas inside the vacuum heat treatment furnace 1 by closing a suitable place in the internal space of the vacuum heat treatment furnace 1 with this circulation direction switching plate 40 and opening the suitable place. In the present embodiment, the circulation direction switching plate 40 causes the first cooling gas circulation direction in which the cooling gas flows from the top to the bottom in the heat insulation container 10 and the first cooling gas to flow in the heat insulation container 10 from the bottom to the top. It is possible to switch between two cooling gas circulation directions. That is, in the first cooling gas circulation direction, the opening 13 is a cooling gas inlet and the opening 15 is a cooling gas outlet. In the second cooling gas circulation direction, the opening 15 is opened at the cooling gas inlet. Part 13 is a cooling gas outlet.
 本実施形態の真空熱処理炉1には、炉内に循環する冷却ガスを被処理物Wが配置される断熱容器10内に導くように所定角度で設けられた風向調節板50と、冷却ガスの流速及び密度の少なくともいずれか一方の値に基づいて、風向調節板50の角度を変位駆動させる変位駆動装置60とを有する。図1および図2において、変位駆動装置60から出力している矢印は、変位駆動装置60による電気的制御の経路を示している。この電気的制御は、変位駆動装置60から真空熱処理炉1を囲むように延びるケーブルを介して行なわれる。変位駆動装置60から出力しているa1、a2、a3で示された矢印は、変位駆動装置60から真空熱処理炉1の下部へ延びるケーブルの経路を示している。尚、経路a1、a2、a3において、真空熱処理炉1を囲むように配線されている箇所を省略し、変位駆動装置60と真空熱処理炉1との連結箇所のみ示している。
風向調節板50は、第1の冷却ガス循環方向において断熱容器10の開口部13よりも上流側に設けられた風向調節板50Aと、第2の冷却ガス循環方向において断熱容器10の開口部15よりも上流側に設けられた風向調節板50Bを備える。なお、風向調節板50Aと風向調節板50Bとの構成は略同一であるので、以下の説明では、風向調節板50として風向調節板50Aの構成について説明し、風向調節板50Bの構成の説明については省略する。
The vacuum heat treatment furnace 1 of the present embodiment includes a wind direction adjusting plate 50 provided at a predetermined angle so as to guide the cooling gas circulating in the furnace into the heat insulating container 10 where the workpiece W is disposed, And a displacement driving device 60 for driving the angle of the airflow direction adjusting plate 50 based on at least one of the flow velocity and the density. In FIG. 1 and FIG. 2, an arrow output from the displacement driving device 60 indicates a path of electrical control by the displacement driving device 60. This electrical control is performed via a cable extending from the displacement driving device 60 so as to surround the vacuum heat treatment furnace 1. Arrows indicated by a <b> 1, a <b> 2, and a <b> 3 output from the displacement driving device 60 indicate cable paths extending from the displacement driving device 60 to the lower portion of the vacuum heat treatment furnace 1. In the paths a1, a2, and a3, portions that are wired so as to surround the vacuum heat treatment furnace 1 are omitted, and only a connection portion between the displacement driving device 60 and the vacuum heat treatment furnace 1 is shown.
The wind direction adjusting plate 50 includes a wind direction adjusting plate 50A provided upstream of the opening 13 of the heat insulating container 10 in the first cooling gas circulation direction, and the opening 15 of the heat insulating container 10 in the second cooling gas circulation direction. A wind direction adjusting plate 50B provided on the upstream side. Since the configuration of the wind direction adjusting plate 50A and the wind direction adjusting plate 50B is substantially the same, in the following description, the configuration of the wind direction adjusting plate 50A will be described as the wind direction adjusting plate 50, and the configuration of the wind direction adjusting plate 50B will be described. Is omitted.
 風向調節板50Aは、上蓋部12の移動経路上を避けた位置に設けられている。風向調節板50Aは、Y軸方向に延びる軸周りに変位駆動可能な第1風向調節板51と、Z軸方向に延びる軸周りに変位駆動可能な第2風向調節板52とを有する(図3及び図4参照)。第1風向調節板51は、Z軸方向における冷却ガスの流れ方向を調節する。
また、第2風向調節板52は、Y軸方向における冷却ガスの流れ方向を調節する(特にX軸周りの冷却ガスの旋回流(斜め流)を調節する)。
The wind direction adjusting plate 50 </ b> A is provided at a position avoiding the movement path of the upper lid 12. The wind direction adjusting plate 50A includes a first wind direction adjusting plate 51 that can be driven to be displaced around an axis extending in the Y-axis direction, and a second wind direction adjusting plate 52 that can be driven to be displaced about an axis extending in the Z-axis direction (FIG. 3). And FIG. 4). The first air direction adjusting plate 51 adjusts the flow direction of the cooling gas in the Z-axis direction.
The second air direction adjusting plate 52 adjusts the flow direction of the cooling gas in the Y-axis direction (particularly, adjusting the swirling flow (oblique flow) of the cooling gas around the X-axis).
 第1風向調節板51は、Y軸方向において、開口部13の一辺と略同一の長さを有する。第1風向調節板51は、-X側(図1中において矢印Xの反対側)の一辺がY軸方向に延びる回転軸51aによって軸支されている。第1風向調節板51の中央部には、シリンダ機構53の先端部53aが嵌合するスライドブロック53bが固定されている。スライドブロック53bには、第1風向調節板51の面に沿って延びるスライド溝53b1が設けられている。シリンダ機構53は、変位駆動装置60の制御の下、先端部53aをZ軸方向に移動させることによって、先端部53aに対するスライドブロック53bの嵌めあい位置を変動させ、第1風向調節板51の角度を回転軸51a周りに変位させる。 The first wind direction adjusting plate 51 has substantially the same length as one side of the opening 13 in the Y-axis direction. The first wind direction adjusting plate 51 is pivotally supported by a rotating shaft 51a extending in the Y-axis direction on one side of the −X side (the side opposite to the arrow X in FIG. 1). A slide block 53 b to which the tip end portion 53 a of the cylinder mechanism 53 is fitted is fixed to the center portion of the first air direction adjusting plate 51. The slide block 53b is provided with a slide groove 53b1 extending along the surface of the first air direction adjusting plate 51. The cylinder mechanism 53 moves the tip portion 53a in the Z-axis direction under the control of the displacement drive device 60, thereby changing the fitting position of the slide block 53b with respect to the tip portion 53a, and the angle of the first wind direction adjusting plate 51 Is displaced around the rotation axis 51a.
 第2風向調節板52(52A、52B)は、図4に示すように、Y軸方向において、第1風向調節板51の両側に一対となって設けられている。すなわち、第2風向調節板52Aと第2風向調節板52Bとの間隔は、Y軸方向において、開口部13の一辺の長さよりも広い。第2風向調節板52は、-X側のZ軸方向に延びる一辺が回転軸52aとして軸支されている。また、回転軸52aは、変位駆動装置60の制御の下に駆動され、第2風向調節板52の角度を回転軸52a周りに変位させる。 The second wind direction adjusting plate 52 (52A, 52B) is provided as a pair on both sides of the first wind direction adjusting plate 51 in the Y-axis direction, as shown in FIG. That is, the distance between the second wind direction adjusting plate 52A and the second wind direction adjusting plate 52B is wider than the length of one side of the opening 13 in the Y-axis direction. The second wind direction adjusting plate 52 is pivotally supported as a rotation shaft 52a on one side extending in the Z-axis direction on the -X side. The rotating shaft 52a is driven under the control of the displacement driving device 60, and the angle of the second wind direction adjusting plate 52 is displaced around the rotating shaft 52a.
 図1に戻り、変位駆動装置60は、冷却ガスの流速及び密度の少なくともいずれか一方の値に基づいて、風向調節板50Aの角度を変位駆動させる。本実施形態の変位駆動装置60は、第1風向調節板51及び第2風向調節板52の変位駆動をそれぞれ制御するコンピュータシステムを有する。
また、本実施形態の変位駆動装置60は、冷却ガスの流速の値として、送風機31のファン31aの回転数を用い、具体的にはファンモータ31bに設けられたエンコーダ(不図示)によって検出した回転数データを、ファンモータ31bの駆動を制御するインバータ(不図示)に取り込み、そのインバータから出力して、受ける。また、本実施形態の変位駆動装置60は、冷却ガスの密度の値として、炉内の圧力の値を用い、具体的には不活性ガス供給装置3の圧力計測手段(圧力センサ)によって検出した圧力データを受ける。
Returning to FIG. 1, the displacement driving device 60 drives the angle of the wind direction adjusting plate 50 </ b> A to be displaced based on at least one of the flow velocity and density of the cooling gas. The displacement driving device 60 of the present embodiment has a computer system that controls the displacement driving of the first wind direction adjusting plate 51 and the second wind direction adjusting plate 52, respectively.
Further, the displacement driving device 60 of the present embodiment uses the rotation speed of the fan 31a of the blower 31 as the value of the flow rate of the cooling gas, and specifically detects it by an encoder (not shown) provided in the fan motor 31b. The rotational speed data is taken into an inverter (not shown) that controls the driving of the fan motor 31b, and is output from the inverter and received. Further, the displacement drive device 60 of the present embodiment uses the pressure value in the furnace as the value of the density of the cooling gas, specifically, detected by the pressure measuring means (pressure sensor) of the inert gas supply device 3. Receive pressure data.
 変位駆動装置60は、冷却ガスの流速及び密度の値に応じて、風向調節板50Aの角度を変位駆動させ、断熱容器10に流入する冷却ガスの配分量の偏りをなくすよう制御する。冷却ガスの流速や密度が変更されると、冷却ガスの流れのスカラー値(強さ)が変わり、風向調節板50Aで流れ方向を変えた冷却ガスが、主流の流れ方向の冷却ガスによって妨げられる度合いが変化する。このため、この変化を相殺するように、変位駆動装置60は、風向調節板50Aの角度を変位駆動させる。具体的に変位駆動装置60は、冷却ガスの流れのスカラー値が高い場合(例えば流速大、密度大の場合)は、第1風向調節板51の角度をXY平面に対して浅く、第2風向調節板52の角度をXZ平面に対して浅く制御する。
一方、冷却ガスの流れのスカラー値が低い場合(例えば流速小、密度小の場合)は、第1風向調節板51の角度をXY平面に対して深く、第2風向調節板52の角度をXZ平面に対して深く制御する。
The displacement driving device 60 controls the displacement of the distribution amount of the cooling gas flowing into the heat insulating container 10 by driving the angle of the airflow direction adjusting plate 50A according to the flow velocity and density values of the cooling gas. When the flow velocity or density of the cooling gas is changed, the scalar value (strength) of the flow of the cooling gas changes, and the cooling gas whose flow direction is changed by the wind direction adjusting plate 50A is hindered by the cooling gas in the main flow direction. The degree changes. For this reason, the displacement drive device 60 drives the angle of the wind direction adjusting plate 50A to displace this change. Specifically, when the scalar value of the flow of the cooling gas is high (for example, when the flow velocity is large and the density is large), the displacement driving device 60 makes the angle of the first wind direction adjusting plate 51 shallow with respect to the XY plane, and the second wind direction. The angle of the adjustment plate 52 is controlled to be shallow with respect to the XZ plane.
On the other hand, when the scalar value of the flow of the cooling gas is low (for example, when the flow velocity is low and the density is low), the angle of the first air direction adjusting plate 51 is deep with respect to the XY plane and the angle of the second air direction adjusting plate 52 is XZ. Deep control over the plane.
 次に、このように構成された本実施形態の真空熱処理炉1の動作について図1~図5を参照して説明する。
 図5は、本発明の実施形態における真空熱処理炉1内の冷却ガスの流れを説明するための図である。なお、図5においては、炉内の冷却ガスの流れを矢印を用いて模式的に示している。
Next, the operation of the vacuum heat treatment furnace 1 of the present embodiment configured as described above will be described with reference to FIGS.
FIG. 5 is a view for explaining the flow of the cooling gas in the vacuum heat treatment furnace 1 in the embodiment of the present invention. In FIG. 5, the flow of the cooling gas in the furnace is schematically shown by using arrows.
 まず、真空熱処理炉1のクラッチ式扉4及び断熱容器10の側壁部11とが開放された状態で、断熱容器10の内部に被処理物Wを搬入する。その後、クラッチ式扉4及び断熱容器10の側壁部11を閉鎖し、さらに上蓋部12及び下蓋部14を閉じる。
 そして、加熱装置20によって被処理物Wを加熱することによって、被処理物Wを加熱処理する。この加熱処理では、被処理物Wを所定時間かけて所定の温度まで加熱する。
First, the workpiece W is carried into the heat insulating container 10 with the clutch door 4 of the vacuum heat treatment furnace 1 and the side wall 11 of the heat insulating container 10 opened. Thereafter, the clutch door 4 and the side wall 11 of the heat insulating container 10 are closed, and the upper lid 12 and the lower lid 14 are closed.
And the to-be-processed object W is heat-processed by heating the to-be-processed object W with the heating apparatus 20. FIG. In this heat treatment, the workpiece W is heated to a predetermined temperature over a predetermined time.
 このような加熱処理が完了すると、上蓋部12及び下蓋部14を開くことによって、断熱容器10の冷却ガス出入口(開口部13及び開口部15)が開放される。
 これと同時に、熱交換器32が冷却ガスを冷却し、さらに送風機31が冷却ガスに流れを与えることによって、冷却ガスが真空熱処理炉1の内部を循環する。このように循環される冷却ガスは、例えば、図5に示す矢印方向に循環されている場合には、ファン31aから排出された後、風向調節板50Aによって流れ方向を調節された後に開口部13を介して断熱容器10の内部に流入する。
When such a heat treatment is completed, the cooling gas inlet / outlet (opening 13 and opening 15) of the heat insulating container 10 is opened by opening the upper lid 12 and the lower lid 14.
At the same time, the heat exchanger 32 cools the cooling gas, and the blower 31 applies a flow to the cooling gas, whereby the cooling gas circulates inside the vacuum heat treatment furnace 1. When the cooling gas circulated in this way is circulated in the direction of the arrow shown in FIG. 5, for example, after being discharged from the fan 31a, the flow direction is adjusted by the air direction adjusting plate 50A and then the opening 13 is formed. Flows into the inside of the heat insulating container 10.
 ここで、本実施形態の真空熱処理炉1においては、変位駆動装置60が冷却ガスの流速及び密度の値に応じて、風向調節板50Aの角度を変位駆動させ、断熱容器10に流入する冷却ガスの配分量の偏りをなくすように、冷却ガスの流速及び密度を制御する。具体的には、第1風向調節板51が、Z軸方向における冷却ガスの流れ方向を調節し、断熱容器10に対し等配分で冷却ガスを導入する。また、第2風向調節板52は、Y軸方向における冷却ガスの流れ方向を調節し、X軸周りの冷却ガスの旋回流(斜め流)を相殺するようにして、断熱容器10に対し等配分で冷却ガスを導入する。このため、被処理物Wの全体に対して、均一に冷却ガスが吹付けられ、被処理物Wを均一に冷却することができる。また、冷却処理中にファン31aの回転数及び炉内の圧力の値が変更されても、それに応じて、変位駆動装置60が風向調節板50Aの角度を最適な角度に変位駆動させることで、常に断熱容器10に対し等配分で冷却ガスを導入することができる。 Here, in the vacuum heat treatment furnace 1 of the present embodiment, the displacement driving device 60 drives the angle of the wind direction adjusting plate 50 </ b> A to be displaced according to the flow velocity and density values of the cooling gas, and flows into the heat insulating container 10. The flow rate and density of the cooling gas are controlled so as to eliminate the uneven distribution amount. Specifically, the first air direction adjusting plate 51 adjusts the flow direction of the cooling gas in the Z-axis direction, and introduces the cooling gas to the heat insulating container 10 with equal distribution. Further, the second air direction adjusting plate 52 adjusts the flow direction of the cooling gas in the Y-axis direction so as to cancel the swirling flow (diagonal flow) of the cooling gas around the X-axis so as to be equally distributed to the heat insulating container 10. Introduce cooling gas. For this reason, a cooling gas is sprayed uniformly with respect to the whole workpiece W, and the workpiece W can be cooled uniformly. Further, even if the rotational speed of the fan 31a and the pressure value in the furnace are changed during the cooling process, the displacement driving device 60 drives the angle of the airflow direction adjusting plate 50A to an optimum angle accordingly, The cooling gas can be always introduced to the heat insulating container 10 with equal distribution.
 断熱容器10の内部に流入した冷却ガスは、被処理物Wを冷却した後、開口部15を介して断熱容器10の外部に流出する。
 その後、断熱容器10の外部に流出した冷却ガスは、ファン31aによって吸気された後、熱交換器32によって熱交換され、炉内を再び循環する。
The cooling gas flowing into the heat insulating container 10 cools the workpiece W and then flows out of the heat insulating container 10 through the opening 15.
Thereafter, the cooling gas that has flowed out of the heat insulating container 10 is sucked by the fan 31a, is then heat-exchanged by the heat exchanger 32, and is circulated through the furnace again.
 なお、循環方向切替板40によって冷却ガスの循環方向を逆方向に変化させた場合には、冷却ガスは、ファン31aから排出された後、風向調節板50Bによって流れ方向を調節された後に断熱容器10の内部に流入する。そして、冷却ガスは、被処理物Wを冷却した後に開口部13を介して断熱容器10の外部に流出する。なお、このときは、変位駆動装置60が冷却ガスの流速及び密度の値に応じて、風向調節板50Bの角度を変位駆動させ、断熱容器10に流入する冷却ガスの配分量の偏りをなくすよう冷却ガスの流速及び密度を制御する。 In the case where the circulation direction of the cooling gas is changed in the reverse direction by the circulation direction switching plate 40, the cooling gas is discharged from the fan 31a, and then the flow direction is adjusted by the air direction adjusting plate 50B and then the heat insulating container. 10 flows into the interior. Then, after cooling the workpiece W, the cooling gas flows out of the heat insulating container 10 through the opening 13. At this time, the displacement driving device 60 drives the angle of the airflow direction adjusting plate 50B in accordance with the values of the flow velocity and density of the cooling gas so as to eliminate the uneven distribution of the cooling gas flowing into the heat insulating container 10. Control the flow rate and density of the cooling gas.
 このようにして被処理物Wの冷却処理が完了すると、真空熱処理炉1のクラッチ式扉4及び断熱容器10の側壁部11とが開放され、断熱容器10の内部に配置された被処理物Wが断熱容器10の外部に搬出される。 When the cooling process of the workpiece W is completed in this way, the clutch door 4 of the vacuum heat treatment furnace 1 and the side wall portion 11 of the heat insulating container 10 are opened, and the workpiece W disposed inside the heat insulating container 10 is opened. Is carried out of the heat insulating container 10.
 したがって、上述した本実施形態によれば、真空熱処理炉1に備えられた風向調節板50は、炉内に循環する冷却ガスを被処理物Wが配置される断熱容器10内に導くように所定角度に設定されている。更に、変位駆動装置60は、冷却ガスの流速及び密度のすくなくともいずれか一方の値に基づいて、風向調節板50の角度を変位駆動させる。このため、本実施形態では、冷却ガスの流速や密度の変更に応じて、風向調節板50の角度を変位駆動させ、冷却ガスの流速や密度の変更による断熱容器10に対する冷却ガスの配分量の偏りを軽減、即ち、制御できる。そのため、被処理物Wの焼入れ不良やSUS鋭敏化等を抑制でき、高品質の被処理物Wを得ることができる。 Therefore, according to this embodiment described above, the airflow direction adjusting plate 50 provided in the vacuum heat treatment furnace 1 is predetermined so as to guide the cooling gas circulating in the furnace into the heat insulating container 10 in which the workpiece W is disposed. It is set to an angle. Further, the displacement driving device 60 drives the angle of the wind direction adjusting plate 50 to be displaced based on at least one of the flow velocity and density of the cooling gas. For this reason, in this embodiment, the angle of the wind direction adjusting plate 50 is driven to change according to the change in the flow rate and density of the cooling gas, and the distribution amount of the cooling gas to the heat insulating container 10 by the change in the flow rate and density of the cooling gas The bias can be reduced, that is, controlled. Therefore, it is possible to suppress quenching failure of the workpiece W, SUS sensitization, and the like, and to obtain a high-quality workpiece W.
 なお、上述した実施の形態において示した動作手順、あるいは各構成部材の諸形状や材質、その組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 Note that the operation procedure shown in the above-described embodiment, or the shapes, materials, combinations, and the like of each component are examples, and can be variously changed based on design requirements and the like without departing from the gist of the present invention. is there.
 例えば、ファン31aの回転方向が一方のみである場合、X軸周りの冷却ガスの旋回流(斜め流)が一方側のみ偏ることとなるため、上記実施形態では第1風向調節板51の両側に一対となって設けられている第2風向調節板52を、第1風向調節板51の一方側にだけ設けてもよい。
 また、例えば、変位駆動装置60は、風向調節板50Aの角度の変位駆動と、風向調節板50Bの角度の変位駆動とを、同時に実行しても良い。変位駆動を同時に実行することで、循環方向切替板40によって冷却ガスの循環方向を逆方向に変化させた場合にも変位駆動を瞬時に対応できる。
For example, when the rotation direction of the fan 31a is only one, the swirling flow (diagonal flow) of the cooling gas around the X axis is biased only on one side, and therefore, on both sides of the first air direction adjusting plate 51 in the above embodiment. The second air direction adjusting plate 52 provided as a pair may be provided only on one side of the first air direction adjusting plate 51.
Further, for example, the displacement driving device 60 may simultaneously perform the displacement driving of the angle of the airflow direction adjusting plate 50A and the displacement driving of the angle of the airflow direction adjusting plate 50B. By simultaneously executing the displacement drive, even when the circulation direction switching plate 40 changes the circulation direction of the cooling gas in the reverse direction, the displacement drive can be handled instantaneously.
 1…真空熱処理炉(熱処理炉)、10…断熱室(断熱容器)、13…開口部(冷却ガス流入口)、31a…ファン、50…風向調節板、51…第1風向調節板、52…第2風向調節板、60…変位駆動装置、W…被処理物 DESCRIPTION OF SYMBOLS 1 ... Vacuum heat treatment furnace (heat treatment furnace), 10 ... Heat insulation chamber (heat insulation container), 13 ... Opening part (cooling gas inflow port), 31a ... Fan, 50 ... Wind direction adjusting plate, 51 ... 1st wind direction adjusting plate, 52 ... Second wind direction adjusting plate, 60 ... displacement driving device, W ... workpiece

Claims (5)

  1.  炉内に循環する冷却ガスを被処理物が配置される断熱室内に導くように所定角度で設けられた風向調節板を備える熱処理炉であって、
     前記冷却ガスの流速及び密度のすくなくともいずれか一方の値に基づいて、前記風向調節板の角度を変位駆動させる変位駆動装置を有する熱処理炉。
    A heat treatment furnace provided with a wind direction adjusting plate provided at a predetermined angle so as to guide a cooling gas circulating in the furnace into a heat insulating chamber in which an object to be processed is arranged,
    A heat treatment furnace having a displacement driving device for driving the angle of the wind direction adjusting plate to be displaced based on at least one of the flow velocity and density of the cooling gas.
  2.  前記変位駆動装置は、前記冷却ガスの流速及び密度の両方の値に基づいて、前記風向調節板の角度を変位駆動させる請求項1に記載の熱処理炉。 The heat treatment furnace according to claim 1, wherein the displacement driving device drives the angle of the wind direction adjusting plate to be displaced based on both values of a flow rate and a density of the cooling gas.
  3.  前記変位駆動装置は、前記冷却ガスの流速の値を用いる場合に、前記冷却ガスを循環させるファンの回転数に基づいて、前記風向調節板の角度を変位駆動させる請求項1または2に記載の熱処理炉。 3. The displacement driving device according to claim 1, wherein, when the value of the flow rate of the cooling gas is used, the displacement driving device drives the angle of the wind direction adjusting plate to be displaced based on the number of rotations of a fan that circulates the cooling gas. Heat treatment furnace.
  4.  前記断熱室は、鉛直方向に開口する冷却ガス流入口を備え、
     前記風向調節板は、前記冷却ガス流入口よりも上流側に設けられ、前記冷却ガスの流れ方向と直交する水平方向に延びる軸周りに前記変位駆動する第1の風向調節板及び、前記水平方向と直交する鉛直方向に延びる軸周りに前記変位駆動する第2の風向調節板を有する請求項1~3のいずれか一項に記載の熱処理炉。
    The heat insulation chamber includes a cooling gas inlet opening in a vertical direction,
    The wind direction adjusting plate is provided on the upstream side of the cooling gas inflow port, and the first wind direction adjusting plate is driven to move around an axis extending in a horizontal direction orthogonal to the flow direction of the cooling gas, and the horizontal direction The heat treatment furnace according to any one of claims 1 to 3, further comprising a second wind direction adjusting plate that is driven to move around an axis extending in a vertical direction perpendicular to the vertical direction.
  5.  前記第2の風向調節板は、前記第1の風向調節板の前記水平方向両側に対となって設けられている請求項4に記載の熱処理炉。 The heat treatment furnace according to claim 4, wherein the second wind direction adjusting plate is provided as a pair on both sides in the horizontal direction of the first wind direction adjusting plate.
PCT/JP2011/059283 2010-04-27 2011-04-14 Airflow distribution method of single-chamber vacuum furnace WO2011136032A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010102142A JP2011231969A (en) 2010-04-27 2010-04-27 Heat treatment furnace
JP2010-102142 2010-04-27

Publications (1)

Publication Number Publication Date
WO2011136032A1 true WO2011136032A1 (en) 2011-11-03

Family

ID=44861342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059283 WO2011136032A1 (en) 2010-04-27 2011-04-14 Airflow distribution method of single-chamber vacuum furnace

Country Status (2)

Country Link
JP (1) JP2011231969A (en)
WO (1) WO2011136032A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099627A1 (en) * 2011-12-28 2013-07-04 株式会社Ihi Vacuum heat treatment device
CN107142363A (en) * 2017-05-12 2017-09-08 洛阳西格马炉业股份有限公司 A kind of Two-way Cycle vacuum heat treatment furnace
CN107326156A (en) * 2016-04-29 2017-11-07 沈阳中北通磁科技股份有限公司 A kind of Nd-Fe-B permanent magnetic vacuum-sintering heat treatment method and vacuum heat treatment equipment
CN107326155A (en) * 2016-04-29 2017-11-07 沈阳中北通磁科技股份有限公司 A kind of rare earth permanent magnet vacuum-sintering heat treatment method and vacuum heat treatment equipment
CN108026599A (en) * 2015-09-09 2018-05-11 易普森国际有限公司 For the equipment with cooling gas processing metal works

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126722A (en) * 1984-07-18 1986-02-06 Ishikawajima Harima Heavy Ind Co Ltd Impact air-cooled vacuum heat-treating furnace
JPH0573500U (en) * 1992-02-29 1993-10-08 トリニティ工業株式会社 Hot air circulation furnace
JP2001012870A (en) * 1999-06-28 2001-01-19 Koyo Thermo System Kk Batch type oven
JP2005016861A (en) * 2003-06-27 2005-01-20 Ishikawajima Harima Heavy Ind Co Ltd Cooled gas duct changing device for vacuum heat treatment furnace

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126722A (en) * 1984-07-18 1986-02-06 Ishikawajima Harima Heavy Ind Co Ltd Impact air-cooled vacuum heat-treating furnace
JPH0573500U (en) * 1992-02-29 1993-10-08 トリニティ工業株式会社 Hot air circulation furnace
JP2001012870A (en) * 1999-06-28 2001-01-19 Koyo Thermo System Kk Batch type oven
JP2005016861A (en) * 2003-06-27 2005-01-20 Ishikawajima Harima Heavy Ind Co Ltd Cooled gas duct changing device for vacuum heat treatment furnace

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099627A1 (en) * 2011-12-28 2013-07-04 株式会社Ihi Vacuum heat treatment device
CN103998884A (en) * 2011-12-28 2014-08-20 株式会社Ihi Vacuum heat treatment device
CN103998884B (en) * 2011-12-28 2016-02-24 株式会社Ihi Vacuum heat treatment device
US9605330B2 (en) 2011-12-28 2017-03-28 Ihi Corporation Vacuum heat treatment device
CN108026599A (en) * 2015-09-09 2018-05-11 易普森国际有限公司 For the equipment with cooling gas processing metal works
CN107326156A (en) * 2016-04-29 2017-11-07 沈阳中北通磁科技股份有限公司 A kind of Nd-Fe-B permanent magnetic vacuum-sintering heat treatment method and vacuum heat treatment equipment
CN107326155A (en) * 2016-04-29 2017-11-07 沈阳中北通磁科技股份有限公司 A kind of rare earth permanent magnet vacuum-sintering heat treatment method and vacuum heat treatment equipment
CN107326156B (en) * 2016-04-29 2019-08-09 沈阳中北通磁科技股份有限公司 A kind of Nd-Fe-B permanent magnetic vacuum-sintering heat treatment method and vacuum heat treatment equipment
CN107326155B (en) * 2016-04-29 2019-08-13 沈阳中北通磁科技股份有限公司 A kind of rare earth permanent magnet vacuum-sintering heat treatment method and vacuum heat treatment equipment
CN107142363A (en) * 2017-05-12 2017-09-08 洛阳西格马炉业股份有限公司 A kind of Two-way Cycle vacuum heat treatment furnace
CN107142363B (en) * 2017-05-12 2018-09-07 洛阳西格马炉业股份有限公司 A kind of Two-way Cycle vacuum heat treatment furnace

Also Published As

Publication number Publication date
JP2011231969A (en) 2011-11-17

Similar Documents

Publication Publication Date Title
CN105960701B (en) The manufacturing method of substrate processing device, ceiling portion and semiconductor devices
WO2011136032A1 (en) Airflow distribution method of single-chamber vacuum furnace
KR102244818B1 (en) Substrate processing apparatus, method of manufacturing semiconductor device and program
JP6347560B2 (en) Substrate processing equipment
US9679791B2 (en) Heater elements with enhanced cooling
JP6164776B2 (en) Substrate processing apparatus and substrate processing method
JP5779087B2 (en) Vacuum heat treatment equipment
WO2004008052A2 (en) System and method for cooling a thermal processing apparatus
CN107342244B (en) Heat treatment device
EP3190295B1 (en) Vacuum-processing device and control method therefor, and vacuum soldering device and control method therefor
EP3300226A1 (en) Cooling system for an electric machine
JP2006088049A (en) Method and apparatus for circulating hot wind in autoclave
JP6735686B2 (en) Substrate processing apparatus and substrate cooling method
JP2007023335A (en) Heat-treatment furnace
JP2010016285A (en) Heat treatment apparatus
US20220119951A1 (en) Substrate processing apparatus, method of processing substrate, method of manufacturing semiconductor device and recording medium
JP6778729B2 (en) Substrate processing equipment, semiconductor equipment manufacturing methods and programs
JP2007023336A (en) Heat-treatment furnace
JP2007313553A (en) Hot-isotropic pressure pressing apparatus
KR20200073121A (en) Heat treatment apparatus
JP4141139B2 (en) Horizontal diffusion furnace
JP2009264691A (en) Heat treatment device, in line type heat treatment device and manufacturing method of treated object
KR20060127297A (en) Pparatus for circulating refrigerant at semiconductor etching equipment
KR20070049452A (en) Degas apparatus with rotation function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11774816

Country of ref document: EP

Kind code of ref document: A1