WO2011135902A1 - 半導体故障解析装置及び故障解析方法 - Google Patents

半導体故障解析装置及び故障解析方法 Download PDF

Info

Publication number
WO2011135902A1
WO2011135902A1 PCT/JP2011/053728 JP2011053728W WO2011135902A1 WO 2011135902 A1 WO2011135902 A1 WO 2011135902A1 JP 2011053728 W JP2011053728 W JP 2011053728W WO 2011135902 A1 WO2011135902 A1 WO 2011135902A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
images
analysis
failure analysis
difference
Prior art date
Application number
PCT/JP2011/053728
Other languages
English (en)
French (fr)
Inventor
智親 竹嶋
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to EP11774687.5A priority Critical patent/EP2565914A4/en
Priority to KR1020127026103A priority patent/KR101668512B1/ko
Priority to US13/643,415 priority patent/US8885919B2/en
Priority to CN201180021063.XA priority patent/CN102859675B/zh
Publication of WO2011135902A1 publication Critical patent/WO2011135902A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/308Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
    • G01R31/311Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation of integrated circuits
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20021Dividing image into blocks, subimages or windows
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20076Probabilistic image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20224Image subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Definitions

  • the present invention relates to a semiconductor failure analysis apparatus that performs failure analysis using a heat generation image of a semiconductor device, and a semiconductor failure analysis method.
  • a failure analysis device that detects heat generated in the semiconductor device and identifies the failure location has been used.
  • a bias voltage is applied to an electronic circuit included in a semiconductor device.
  • a heat generation image is obtained by imaging the semiconductor device using an imaging device having sensitivity in the wavelength region of infrared light, and the heat generation image in the semiconductor device is identified by analyzing the heat generation image (for example, (See Patent Documents 1 to 3).
  • the image of the semiconductor device acquired by the infrared imaging device includes a heat generation image due to heat generated in the semiconductor device and a pattern image due to the circuit pattern in the semiconductor device.
  • a difference method can be considered as a method for extracting a heat generation image by removing a pattern image from such an image. That is, apart from an analysis image based on a heat generation image + a pattern image in a state where a bias voltage is applied to a semiconductor device, a background image based only on a pattern image in a state where no bias voltage is applied is acquired. Then, only the heat generation image can be extracted by taking the difference between the analysis image and the background image.
  • a plurality of analysis images and background images are usually acquired in time series and used for failure analysis.
  • a temperature drift occurs in which the imaging position of the imaging apparatus with respect to the semiconductor device varies due to the influence of the temperature change.
  • the parts that make up the failure analysis device expand and contract under different conditions depending on the difference in material and size, etc. Variation occurs, and the imaging position shifts accordingly.
  • the present invention has been made to solve the above-described problems, and a semiconductor failure analysis apparatus, failure analysis method, and failure analysis capable of suppressing the influence of an imaging position shift in a heat generation analysis image of a semiconductor device.
  • the purpose is to provide a program.
  • a semiconductor failure analysis apparatus is a semiconductor failure analysis apparatus that performs failure analysis using a heat generation image of a semiconductor device, and (1) for a semiconductor device to be analyzed Voltage applying means for applying a bias voltage; (2) imaging means for acquiring an image of the semiconductor device; and (3) image processing necessary for failure analysis of the semiconductor device on the image acquired by the imaging means.
  • the imaging means includes a plurality of analysis images each including a heat generation image when a bias voltage is applied to the semiconductor device, and a plurality of images when no bias voltage is applied.
  • the image processing means calculates an imaging position for calculating the imaging position of each of the plurality of analysis images and the plurality of background images.
  • An area division unit set with reference to the position frequency distribution of the imaging position is prepared for the imaging position in each of the means and the plurality of analysis images and the plurality of background images, and divided according to the area division unit.
  • Image classification means for classifying a plurality of analysis images and a plurality of background images into N image groups according to which region of the N regions (N is an integer of 2 or more) belongs to the imaging position;
  • Difference image generation means for generating a difference image between an analysis image used for failure analysis and a background image is individually provided for each image group.
  • a semiconductor failure analysis method is a semiconductor failure analysis method for performing failure analysis using a heat generation image of a semiconductor device, and (1) voltage application for applying a bias voltage to a semiconductor device to be analyzed. And (2) an imaging step for acquiring an image of the semiconductor device, and (3) an image processing step for performing image processing necessary for failure analysis of the semiconductor device on the image acquired by the imaging step, (4) The imaging step acquires a plurality of analysis images each including a heat generation image in a state where a bias voltage is applied to the semiconductor device, and a plurality of background images in a state where the bias voltage is not applied, (5) The image processing step calculates an imaging position for calculating the imaging position of each of the plurality of analysis images and the plurality of background images.
  • a region division unit set with reference to the position frequency distribution of the imaging position is prepared for the imaging position in each of the step, the plurality of analysis images, and the plurality of background images, and divided according to the region division unit.
  • An image classification step for classifying a plurality of analysis images and a plurality of background images into N image groups depending on which region of the N regions (N is an integer of 2 or more) belongs to the imaging position;
  • a difference image generation step of generating a difference image between an analysis image used for failure analysis and a background image is individually provided for each of the image groups.
  • a semiconductor failure analysis program includes (a) a voltage applying unit that applies a bias voltage to a semiconductor device to be analyzed, and an imaging unit that acquires an image of the semiconductor device, and the semiconductor device generates heat.
  • the failure analysis is performed using the image
  • the imaging unit includes a plurality of analysis images each including a heat generation image in a state where a bias voltage is applied to the semiconductor device, and a state in which the bias voltage is not applied.
  • the program is applied to a semiconductor failure analysis apparatus that acquires a plurality of background images, and (c) is a program for causing a computer to execute image processing necessary for failure analysis of a semiconductor device on an image acquired by an imaging unit.
  • a plurality of analysis images and a plurality of background images are classified into N image groups according to the amount of image displacement, and a difference image is generated for each image group after classification.
  • the region division unit by appropriately setting the region division unit, the influence of the imaging position shift is reduced, and the edge noise component due to the imaging position shift in the difference image used for the failure analysis of the semiconductor device is reduced. Generation of noise can be suppressed.
  • each of the N image groups depends on a specific method of failure analysis of the semiconductor device. It is good also as a structure which produces
  • the difference image may be generated for at least one of the N image groups.
  • an analysis image with a bias voltage applied to a semiconductor device to be analyzed, and a background image with no bias voltage applied Are obtained for each of the analysis images and the background image, and an image division position is calculated for each of the analysis image and the background image, and an area division unit is prepared for fluctuations in the image pickup position, and analysis is performed using N areas divided by the area division unit.
  • FIG. 1 is a block diagram showing a configuration of an embodiment of a semiconductor failure analysis apparatus.
  • FIG. 2 is a diagram schematically showing a failure analysis method executed in the semiconductor failure analysis apparatus shown in FIG.
  • FIG. 3 is a diagram schematically showing a failure analysis method executed in the semiconductor failure analysis apparatus shown in FIG.
  • FIG. 4 is a diagram illustrating a method for generating a difference image between an analysis image and a background image.
  • FIG. 5 is a diagram illustrating the position frequency distribution of the imaging positions and the region division unit.
  • FIG. 6 is a diagram illustrating a method for deriving a position frequency distribution based on a change in imaging position.
  • FIG. 7 is a diagram illustrating a method of setting region division units with reference to the position frequency distribution.
  • FIG. 1 is a block diagram showing a configuration of an embodiment of a semiconductor failure analysis apparatus.
  • FIG. 2 is a diagram schematically showing a failure analysis method executed in the semiconductor failure analysis apparatus shown in FIG.
  • FIG. 3 is
  • FIG. 8 is a diagram illustrating an example of an operation screen displayed on the display device.
  • FIG. 9 is a diagram showing a normal pattern image of a semiconductor device.
  • FIG. 10 is a diagram illustrating an example of a difference image between an analysis image and a background image.
  • FIG. 11 is a diagram illustrating an example of a difference image between an analysis image and a background image.
  • FIG. 12 is a diagram illustrating an example of a difference image between an analysis image and a background image.
  • FIG. 1 is a block diagram schematically showing a configuration of an embodiment of a semiconductor failure analysis apparatus according to the present invention.
  • the apparatus 1A is a failure analysis apparatus that performs failure analysis using a heat generation image of the semiconductor device S.
  • a semiconductor failure analysis apparatus 1A shown in FIG. 1 includes a sample stage 10, a voltage application unit 14, an imaging device 18, a control unit 20, and an image processing unit 30.
  • the semiconductor device S to be analyzed is placed on the sample stage 10 using an XYZ stage that can be driven in the X-axis direction, the Y-axis direction (horizontal direction), and the Z-axis direction (vertical direction).
  • the stage 10 is configured to be driven in the X, Y, and Z directions by the stage driving unit 12, and thereby, focusing of the imaging with respect to the semiconductor device S, alignment of the imaging position, and the like are performed.
  • an imaging device 18 that is an imaging means for acquiring a two-dimensional image of the semiconductor device S is installed.
  • an imaging device having sensitivity in a predetermined wavelength region for example, an infrared imaging device having sensitivity in the wavelength region of infrared light, is preferably used in order to acquire an image based on a heat generation image of the semiconductor device S. .
  • a light guide optical system 16 that guides the image of the semiconductor device 10 to the imaging device 18 is provided.
  • a voltage application unit 14 is provided for the semiconductor device S on the stage 10.
  • the voltage application unit 14 is a voltage application unit that applies a necessary bias voltage to the electronic circuit of the semiconductor device S when performing failure analysis using a heat generation image, and includes a power supply for voltage application.
  • the light guide optical system 16 is also provided with a drive mechanism such as an XYZ stage if necessary.
  • the imaging device 18 includes a plurality of analysis images in a state in which a bias voltage is applied to the semiconductor device S by the voltage application unit 14 and a background image in a state in which no bias voltage is applied. Acquire in time series.
  • the analysis image acquired in the voltage application state is an image including a heat generation image of the semiconductor device S and a pattern image by a circuit pattern in the semiconductor device S.
  • the background image acquired when no voltage is applied is an image including only the pattern image of the semiconductor device S.
  • a control unit 20 that controls the operation of the stage 10, the stage driving unit 12, the voltage application unit 14, the light guide optical system 16, and the imaging device 18 is provided. It has been.
  • the control unit 20 in the present embodiment includes an imaging control unit 21, a stage control unit 22, and a synchronization control unit 23.
  • the imaging control unit 21 controls the acquisition of the analysis image and the background image of the semiconductor device S by controlling the bias voltage application operation by the voltage application unit 14 and the image acquisition operation by the imaging device 18.
  • the stage control unit 22 controls operations of the XYZ stage 10 and the stage driving unit 12 (movement operation of the semiconductor device S on the stage 10).
  • the synchronization control unit 23 performs control for obtaining necessary synchronization between the imaging control unit 21 and the stage control unit 22 and the image processing unit 30 provided for the imaging device 18.
  • the image processing unit 30 is an image processing unit that performs image processing necessary for failure analysis of the semiconductor device S on the image acquired by the imaging device 18.
  • the image processing unit 30 includes an image storage unit 31, an imaging position calculation unit 32, an image classification unit 33, and a difference image generation unit 34.
  • the image of the semiconductor device S acquired by the imaging device 18 is input to the image processing unit 30, and stored and accumulated in the image storage unit 31 as necessary.
  • the imaging position calculation unit 32 calculates the imaging position in the horizontal plane (XY plane) for each of the plurality of analysis images and the plurality of background images of the semiconductor device S acquired by the imaging apparatus 18.
  • the imaging position with respect to the semiconductor device S varies (temperature drift) due to the influence of the temperature change. Further, the imaging position also varies due to vibration or the like in the apparatus 1A.
  • the imaging position calculation unit 32 obtains the imaging position that varies in this way for each image and evaluates the amount of positional deviation.
  • such a fluctuation level of the imaging position is usually a level smaller than the pixel size of the imaging device 18.
  • the image classification unit 33 prepares an area division unit that is set with reference to the position frequency distribution for the imaging positions of each of the plurality of analysis images and the plurality of background images. Then, the distribution of the imaging positions is divided into N areas (N is an integer of 2 or more) according to the area division unit, and the analysis image is determined depending on which of the N areas where the imaging positions belong.
  • the background image is classified into N image groups.
  • the region division unit used for image classification is set smaller than the pixel size, and image grouping is performed with a position accuracy smaller than the pixel size. Is called.
  • the difference image generation unit 34 generates a difference image between the analysis image used for failure analysis and the background image individually for the N image groups classified by the image classification unit 33.
  • the analysis image is an image including the heat generation image and the pattern image
  • the background image is an image including only the pattern image. Therefore, the difference image obtained by taking the difference between them is an image in which only a heat generation image necessary for failure analysis is extracted. Then, the failure analysis of the semiconductor device is performed by specifying the heat generation location in the difference image.
  • Such an image processing unit 30 is configured using a computer, for example.
  • An input device 36 and a display device 37 are connected to the image processing unit 30.
  • the input device 36 includes, for example, a keyboard, a mouse, and the like, and is used to input information and instructions necessary for executing an image acquisition operation and a failure analysis operation in the apparatus 1A.
  • the display device 37 is composed of, for example, a CRT display, a liquid crystal display, or the like, and is used for displaying necessary information regarding image acquisition and failure analysis in the device 1A.
  • the image processing unit 30 may be configured to be realized by a single control device (for example, a single computer) together with the control unit 20.
  • the input device 36 and the display device 37 connected to the image processing unit 30 may function not only as the image processing unit 30 but also as an input and display device for the control unit 20.
  • FIGS. 2 and 3 are diagrams schematically showing a failure analysis method executed in the semiconductor failure analysis apparatus 1A shown in FIG.
  • FIGS. 2 and 3 are diagrams schematically showing a failure analysis method executed in the semiconductor failure analysis apparatus 1A shown in FIG.
  • image processing steps when acquiring a plurality of analysis images (heat generation image + pattern image) and a plurality of background images (only the pattern image) in time series (voltage application step, imaging step), temperature drift or Considering the case where the imaging position of the semiconductor device S by the imaging device 18 fluctuates in time series at two positions P1 and P2 due to the influence of the vibration of the apparatus, image processing performed in such a case will be described (image) Processing steps).
  • the image classification unit 33 As a result of obtaining the imaging position of each image (imaging position calculation step) and the position frequency distribution obtained for the fluctuations in the imaging position, the image classification unit 33, as shown in FIG. An area division unit ⁇ P that is an allowable range of fluctuation of the imaging position in the image group is set. Then, according to the region division unit ⁇ P, the distribution region of the imaging position is divided into a plurality of regions, in this example, two regions of a first region R1 and a second region R2. At this time, in the example of FIG. 2A, the imaging position P1 belongs to the region R1, and the imaging position P2 belongs to the region R2.
  • the image at the position P1 belonging to the region R1 is classified into the image group 1
  • the image at the position P2 belonging to the region R2 is the image at the imaging position. It is classified into image group 2 (image classification step).
  • image classification step in the example shown in FIG. 2, among the analysis images A1 to A6 and the background images B1 to B6 acquired in time series, the analysis images A1, A2, A4 and the background images B1, B3, B5 are classified into the image group 1. ing.
  • the analysis images A3, A5, A6 and the background images B2, B4, B6 are classified into the image group 2.
  • the difference image generation unit 34 When the analysis image and the background image are classified into image groups, the difference image generation unit 34 generates a difference image for each image group as shown in FIG. 3 (difference image generation step).
  • an average analysis image A7 is generated by averaging the analysis images A1, A2, and A4 classified into the image group 1, and background images B1, B3,
  • An average background image B7 is generated by averaging B5.
  • the average analysis image A8 is generated by the average of the analysis images A3, A5, and A6 classified into the image group 2
  • the average background image B8 is generated by the average of the background images B2, B4, and B6.
  • the difference image C7, C8 or the difference image C7, C8 for each image group or the difference image obtained by performing processing such as addition, averaging, selection, etc. substantially includes only the heat generation image for failure analysis. This is the heat generation analysis image used.
  • the processing corresponding to the failure analysis method executed in the image processing unit 30 of the failure analysis apparatus 1A shown in FIG. 1 performs image processing necessary for failure analysis of the semiconductor device S on the image acquired by the imaging device 18.
  • This can be realized by a semiconductor failure analysis program to be executed by a computer.
  • the image processing unit 30 includes a CPU that operates software programs necessary for image processing, a ROM that stores the software programs and the like, and a RAM that temporarily stores data during program execution. be able to.
  • the above-described image processing unit 30 and the failure analysis apparatus 1A can be realized by executing a predetermined failure analysis program by the CPU.
  • the above-described program for causing the CPU to execute failure analysis image processing can be recorded on a computer-readable recording medium and distributed.
  • a recording medium for example, a magnetic medium such as a hard disk and a flexible disk, an optical medium such as a CD-ROM and a DVD-ROM, a magneto-optical medium such as a floppy disk, or a program instruction is executed or stored.
  • hardware devices such as RAM, ROM, and semiconductor non-volatile memory are included.
  • a heat generation image + pattern image in a state where a bias voltage is applied to the semiconductor device S by the voltage application unit 14 is obtained.
  • a plurality of analysis images including and a background image including only a pattern image in a state where no bias voltage is applied are acquired in time series.
  • the imaging position calculation unit 32 calculates the imaging position
  • the image classification unit 33 prepares an area division unit for the fluctuation of the imaging position. Using the divided N regions, the analysis image and the background image are classified into N image groups, and a difference image from which a heat generation image is extracted is generated.
  • the plurality of analysis images and the plurality of background images are classified into N image groups according to the positional deviation amount of the imaging positional deviation, and for each image group after classification.
  • a difference image is generated.
  • the region division unit in the image classification unit 33 by appropriately setting the region division unit in the image classification unit 33, the influence of the imaging position shift due to the temperature drift or the vibration of the apparatus is reduced, and used for failure analysis of the semiconductor device S. It is possible to suppress the generation of noise such as an edge noise component due to the imaging position shift in the difference image.
  • FIG. 4A shows a difference image generation method using a conventional failure analysis method.
  • FIG. 4B shows a difference image generation method by the failure analysis method of the above embodiment.
  • a rectangular pattern with a symbol D indicates one pixel (pixel size) in a two-dimensional image acquired by the imaging device 18, and a straight line with a symbol E is in the semiconductor device S The edge part in a circuit pattern is shown.
  • images A1 and A2 are acquired as analysis images when a bias voltage is applied, and images B1 and B2 are acquired as background images when a bias voltage is not applied.
  • an image of the pattern edge E is acquired as a shade pattern with a resolution determined by the pixel size of the pixel D.
  • the positions of the pattern edge E with respect to the pixel structure are fluctuated between the analysis images A1 and A2 and the background images B1 and B2 due to the imaging position deviation, and as a result, the grayscale patterns of the pixels obtained in each image are different. It has become a thing.
  • an analysis image A0 is obtained as an average of the images A1 and A2
  • a background image B0 is obtained as an average of the images B1 and B2
  • a difference image C0 is generated by performing subtraction processing A0-B0 on them.
  • a noise-like image due to the pattern edge E is generated due to the influence of the imaging position shift between the analysis image A0 and the background image B0, even though the analysis image A0 does not include a heat generation location.
  • such an edge noise component generates noise due to a shift in the pixel contrast pattern even when the image pickup position shift is smaller than the pixel size.
  • a difference image is generated.
  • An image C0 can be obtained. The same processing is performed on the analysis image A1 and the background image B2 in the other image groups.
  • the imaging position varies discretely at the two positions P1 and P2 as described above, but in practice, the imaging position is continuous. Fluctuates with a typical position frequency distribution. Specifically, the imaging position shift due to the vibration of the apparatus occurs in a normal distribution when a sufficient number of images are obtained. Further, the standard deviation ⁇ of the imaging position shift due to the vibration is usually a level of 1/10 or less of the pixel size of the imaging device 18, for example.
  • the imaging position shift due to the temperature drift is generally large when the voltage application unit 14 is turned on and is small when the power is turned off. Therefore, the amount of positional deviation does not match between the analysis image acquired in the voltage application state and the background image acquired in the voltage non-application state, and the center position of the position frequency distribution in the normal distribution is different between the two. .
  • FIG. 5 is a diagram showing the position frequency distribution of the imaging positions and the region division unit.
  • FIGS. 5A, 5B, and 5C show examples of classification of analysis images and background images into image groups when the region division unit is set to a larger division unit ⁇ P1.
  • Yes. 5D, 5E, and 5F show examples of classification of analysis images and background images into image groups when the region division unit is set to a smaller division unit ⁇ P2.
  • FIGS. 5A and 5D show a position frequency distribution (image number distribution) 50 of the imaging positions of the analysis images before classification and a position frequency distribution 55 of the imaging positions of the background images. ing.
  • These position frequency distributions 50 and 55 are normally distributed frequency distributions whose centers are shifted.
  • FIG. 5B shows the position frequency distribution (image number distribution for each image group) 51 of the analysis image after classification by the division unit ⁇ P1
  • FIG. A position frequency distribution 56 of the background image is shown
  • FIG. 5E shows the position frequency distribution 52 of the analysis image after classification by the division unit ⁇ P2
  • FIG. 5F shows the position frequency distribution 57 of the same background image after classification.
  • the region division unit ⁇ P it may be set appropriately in consideration of a statistical average effect according to the number of images in each image group, position reproducibility in region division, and the like. preferable.
  • the generation of the difference image between the analysis image and the background image performed for each image group depends on the specific method of failure analysis and the like.
  • a configuration may be adopted in which difference images are individually generated for each, and N difference images are acquired as a whole. Or it is good also as a structure which produces
  • the generation of the difference image finally used for the failure analysis of the semiconductor device S for example, the number of images belonging to each image group with respect to N difference images obtained for each of the N image groups.
  • a configuration for generating a difference image used for failure analysis can be used.
  • a specific weighting method in this case for example, a method of weighting and adding each difference image, a method of weighting each difference image, and taking an addition average can be used.
  • a configuration in which the difference image used for the failure analysis is selected based on the number of images belonging to each image group for the N difference images obtained for each of the N image groups. can be used.
  • a specific selection method in this case for example, a method of selecting a difference image in an image group having the largest number of images among N image groups can be used.
  • a method may be used in which difference images in two or more image groups having a large number of images are selected and a final difference image is calculated from the difference images by addition, averaging, or the like. According to the configuration in which weighting, image selection, and the like are performed on these difference images, a difference image that is finally used for failure analysis of the semiconductor device S can be suitably derived.
  • a configuration in which two or more analysis modes can be switched may be used.
  • the N difference images for each of the N image groups are weighted based on the number of images belonging to each of the image groups, whereby a difference used for failure analysis is used.
  • a first analysis mode for generating an image and a second analysis mode for selecting a difference image used for failure analysis can be switched based on the number of images belonging to each image group.
  • the analysis mode in the difference image generation unit 34 is switchable, the analysis mode is actually used for failure analysis of the semiconductor device S automatically or by the operator manually selecting the analysis mode.
  • the difference image from which the heat generation image is extracted can be suitably derived.
  • the analysis mode selection screen is displayed on the display device 37 and the operator selects the analysis mode via the input device 36 with reference to the display content.
  • the difference image generation unit 34 may be configured to automatically set or switch the analysis mode with reference to an actual image position frequency distribution or the like.
  • the imaging apparatus 18 that acquires an image of the semiconductor device S is specifically sensitive to, for example, the wavelength region of infrared light (for example, wavelength 3.7 ⁇ m to 5.2 ⁇ m).
  • An infrared InSb camera having a pixel number of 320 ⁇ 240, an imaging size of 9.6 mm ⁇ 7.2 mm, and a frame rate of 140 Hz can be used.
  • the number of acquired images of the analysis image (ON image) in the voltage application state and the background image (OFF image) in the voltage non-application state may be set as necessary.
  • the number of each image is 140 or more.
  • This number of images requires a certain number of images because the position frequency distribution approaches a normal distribution if the number of images is large. Considering this point, for example, it is considered preferable to set the image acquisition time of about 4 to 8 seconds (number of images: 560 to 1120) for each of the analysis image and the background image. On the other hand, when the number of images increases and the image acquisition time increases, there is a possibility that the imaging position shift due to temperature drift increases. Considering this point, it is considered preferable to set the image acquisition time to 10 seconds or less for each of the analysis image and the background image.
  • the above-described time is about 8 seconds, and when the heat generation is strong, the time is about 4 seconds. A setting of about 1 second is conceivable.
  • the number of repetitions (ON / OFF count) of the acquisition operation of the analysis image and the background image usually, a plurality of analysis images are acquired in a predetermined time in the voltage application state, and then the predetermined number in the voltage non-application state.
  • the image acquisition operation for acquiring a plurality of background images is performed once in time, the image acquisition operation may be repeated two or more times if necessary in consideration of the intensity of heat generation, the number of acquired images, and the like.
  • a temperature drift that causes fluctuations in the imaging position is caused by, for example, distortion due to metal expansion / contraction, an asymmetric mechanism in the apparatus, uneven centroid balance, and the like.
  • the vibration of the apparatus is generated by, for example, a cooling mechanism such as a Stirling cycle cooler of an infrared camera, resonance due to external vibration, a microscope optical system, an optical system stage, a sample stage, and the like.
  • FIG. 6 is a diagram illustrating a method for deriving a position frequency distribution due to a change in the imaging position in an image of the semiconductor device S acquired by the imaging apparatus 18.
  • the calculation of the imaging position in each of the analysis image and the background image can be performed using a normal image recognition technique. Specific calculation methods include, for example, a method using an average value recognized by an optical flow, a phase correlation method, a template matching method, and the like.
  • the feature point (corner) 66 of the first image is recognized by the Harris operator.
  • the number of feature points 66 for example, 200 feature points are extracted from an image with a resolution of 320 ⁇ 240 acquired by the imaging device 18.
  • the extracted feature points are converted into subpixels.
  • the feature point 67 is recognized by the Harris operator, and the extracted feature point is converted into a subpixel. Then, as indicated by an arrow in FIG. 6A, the distance between the feature points 66 and 67 (the amount of positional deviation between the images) is measured between the first and second images.
  • the distance between the feature points is obtained for each of the 200 feature points, but if there is a point that cannot be matched, the distance data obtained is less than 200 points.
  • the imaging position of the second image when the imaging position in the first image is set to the reference position zero is calculated.
  • an imaging position in each image and a position frequency distribution 60 based thereon are obtained.
  • corner detection algorithm as a feature point, specifically, other methods such as Moravec and SUSAN may be used in addition to Harris as described above.
  • the position frequency distribution 60 shown in FIG. 6B is a normal distribution frequency distribution with respect to the center position 61 as in FIG.
  • the image classification unit 33 obtains the position frequency distribution of the imaging position in each of the analysis image and the background image and analyzes the image. It is preferable to set the region division unit ⁇ P based on the average position ⁇ 1 and distribution width w1 in the position frequency distribution and the average position ⁇ 2 and distribution width w2 in the position frequency distribution of the background image. According to such a configuration, it is possible to appropriately set the region division unit according to the actual occurrence state of the imaging position deviation, and to appropriately classify the analysis image and the background image into N image groups.
  • the distribution width w of the position frequency distribution values such as the standard deviation ⁇ and the half width can be used.
  • the setting of the region division unit ⁇ P for image classification will be specifically described.
  • (1) it is preferable that the number of images in each image group is large in order to improve the S / N ratio due to the average effect. For this purpose, it is necessary to widen the division unit ⁇ P.
  • (2) the effect of removing the edge noise component
  • the position reproducibility is high in the region division. For this purpose, it is necessary to narrow the division unit ⁇ P. Therefore, the region division unit ⁇ P is preferably set in consideration of the balance between the conditions (1) and (2).
  • the image group including the center average position 61 has the most influence on the final difference image. Considering such a point, it is considered to be first important to appropriately set the division range for the image group including the average position 61.
  • the imaging position is within a range within ⁇ 1 ⁇ of the positional deviation from the average position ⁇ (position 61 in FIG. 6B).
  • the probability of being included is 68.3%, the probability of being included within the range of ⁇ 1.5 ⁇ is 86.6%, and the probability of being included within the range of ⁇ 2 ⁇ is 95.4%.
  • the number of images to be acquired is finite, and the imaging position may be misrecognized due to noise, and the recognition accuracy may be insufficient.
  • the position range of the region division unit ⁇ P is set to be as wide as about ⁇ 2 ⁇ , the frequency at which an image is obtained decreases at a position that is ⁇ 2 ⁇ away from the average position ⁇ , which may result in a noise component. Specifically, if the frequency at the average position ⁇ is 100%, the frequency at the position ⁇ ⁇ 2 ⁇ is 13.5%.
  • the position range ⁇ ⁇ 1.5 ⁇ is adopted as the standard region division unit ⁇ P here.
  • the number of images included in the range 63 whose positional deviation from the average position ⁇ is within ⁇ 1.5 ⁇ is 86.6% of the total number of images.
  • FIG. 7 is a diagram showing a setting method in the case where the region division unit is set with reference to the position frequency distribution for each of the analysis image and the background image.
  • the position frequency distribution of the analysis image and the background image is usually a normal distribution frequency distribution whose centers are shifted from each other.
  • a region unit for the analysis image and a region unit for the background image are obtained, and a common range of these region units (a range where the region units overlap, a product of the region units).
  • a method of setting (set) as the region division unit ⁇ P can be used.
  • the region unit 71 for the analysis image indicates a range from the average position ⁇ 1 to ⁇ 1.5 ⁇ of the position frequency distribution 70.
  • the region unit 76 for the background image indicates a range of ⁇ 1.5 ⁇ from the average position ⁇ 2 of the position frequency distribution 75.
  • the area division unit ⁇ P is set by the common range 72.
  • the number of images included in the range 73 serving as the central region of the region divided by the region division unit ⁇ P is 52.4% of the total number of images.
  • the region unit 81 for the analysis image indicates a range from the average position ⁇ 1 to ⁇ 1.5 ⁇ 1 of the position frequency distribution 80.
  • the area unit 86 for the background image indicates a range of ⁇ 1.5 ⁇ 2 from the average position ⁇ 2 of the position frequency distribution 85.
  • the area division unit ⁇ P is set by the common range 82.
  • the number of images included in the range 83 serving as the central region of the region divided by the region division unit ⁇ P is 56.9% with respect to the total number of images.
  • the position range ⁇ ⁇ 1.5 ⁇ is set as the standard area division unit ⁇ P, but the division unit is set with respect to this standard deviation ⁇ (generally the distribution width w).
  • the coefficient 1.5 for determining the value may be an adjustment coefficient ⁇ that can be changed automatically or manually by an operator.
  • the image classification unit 33 sets the adjustment coefficient ⁇ for adjusting the region division unit ⁇ P, and the region unit ⁇ 1 ⁇ ⁇ ⁇ w1 for the analysis image and the region unit for the background image. It is possible to use a configuration in which ⁇ 2 ⁇ ⁇ ⁇ w2 is obtained and a common range of these region units is set as a region division unit ⁇ P. Further, the setting method of the region division unit ⁇ P is not limited to such a configuration, and various configurations may be used.
  • the distribution width w1 in the position frequency distribution of the analysis image and the distribution width w2 in the position frequency distribution of the background image are obtained by standard deviations ⁇ 1 and ⁇ 2,
  • the region division unit ⁇ P can be appropriately set for the position frequency distribution due to the fluctuation of the imaging position. In setting and changing the adjustment coefficient ⁇ , it is preferable to consider the balance between the above condition (1) for improving the S / N ratio and the condition (2) for improving the effect of removing edge noise components.
  • a configuration in which the adjustment coefficient ⁇ is automatically set in the image classification unit 33 can be used according to a specific failure analysis condition or the like. Or you may use the structure which sets the adjustment coefficient (alpha) manually based on the coefficient value input via the input device 36 by the operator.
  • the region division unit ⁇ P can be suitably set based on the operator's judgment in consideration of the actual occurrence state of the imaging position deviation and the specific analysis conditions of the semiconductor device. it can.
  • FIG. 8 is a diagram illustrating an example of an operation screen displayed on the display device 37 regarding the setting of the adjustment coefficient ⁇ .
  • the operation screen 40 is provided with an image display area 41, an ⁇ value setting area 42, and a superimposition rate setting area 43 in the upper part thereof.
  • the image display area 41 is used when displaying an image such as an analysis image, a background image, or a difference image acquired for the semiconductor device S.
  • a normal pattern image of the semiconductor device S, a layout image including design information of the semiconductor device S, or the like. May be displayed.
  • the ⁇ value setting area 42 is used for manually setting and changing the adjustment coefficient ⁇ used when setting the area division unit ⁇ P.
  • the setting area 42 is provided with a setting knob for setting the value of the adjustment coefficient ⁇ in a range of 1.0 ⁇ ⁇ ⁇ 2.0 with 1.5 as a standard value.
  • the superimposition rate setting area 43 is used to set or change the superimposition ratio used when the normal pattern image and the layout image are superimposed and displayed on the heat generation analysis image in the image display area 41.
  • the setting area 43 is provided with two setting knobs for setting the superimposition ratio of the pattern image and the layout image.
  • these setting areas 42 and 43 are configured to allow manual input of setting numerical values.
  • a bias setting area 44 is used when setting values of a bias voltage and a bias current supplied from the power supply of the voltage application unit 14 to the semiconductor device S.
  • the image acquisition number setting area 45 is used to set the number of analysis images acquired in the voltage application state (power ON) and the number of background images acquired in the voltage non-application state (power OFF). Used.
  • the ON / OFF count setting area 46 is used to set how many times the image acquisition operation is performed by acquiring a plurality of analysis images in the power-on state and acquiring a plurality of background images in the power-off state. Used.
  • FIG. 9 is a diagram showing a normal pattern image of the semiconductor device S to be analyzed.
  • a pattern image is acquired using, for example, the imaging device 18 or an imaging system provided separately from the imaging device 18.
  • a bias is applied to the semiconductor device S having such a circuit pattern by the voltage applying unit 14 at a voltage of 100 mV and a current of 20 mA, and a heat generation image is acquired.
  • FIGS. 10 to 12 are diagrams showing examples of difference images (heat generation analysis images) between the analysis image and the background image, respectively. Note that the images shown in FIGS. 10 to 12 below all show images subjected to the smoothing process.
  • FIG. 10A shows a difference image generated by a conventional method that does not classify the analysis image and the background image according to the imaging position.
  • this difference image is compared with the pattern image shown in FIG. 9, in the difference image according to the conventional method, the edge noise due to the pattern edge of the semiconductor device S is caused by the influence of the imaging position deviation between the analysis image and the background image. It can be seen that the components are generated.
  • the average position ⁇ 1 and standard deviation ⁇ 1 in the analysis image at this time and the average position ⁇ 2 and standard deviation ⁇ 2 in the background image are respectively obtained in the X-axis direction and the Y-axis direction
  • the numerical values of the average position and the standard deviation are pixel shift amounts when an image is acquired using a 4 ⁇ objective lens as the objective lens of the light guide optical system 16.
  • FIG. 10B shows a difference image generated by the method of the above embodiment in which the analysis image and the background image are classified according to the imaging position.
  • the influence of the imaging position shift is reduced, and the edge noise component generated in the difference image of the conventional method is removed.
  • a heat generation image used for failure analysis of the semiconductor device S can be clearly confirmed.
  • the effect of removing the edge noise component decreases as the value of the adjustment coefficient ⁇ is increased and the area division unit ⁇ P is increased.
  • the S / N ratio is deteriorated. Therefore, in setting the area division unit ⁇ P, it is necessary to consider the balance of these conditions.
  • the number of images included in the image group is the largest in the image group including the average position ⁇ , and the number of images decreases as the distance from the average position ⁇ increases. (See FIGS. 5 to 7).
  • the image group at a position away from the average position since the number of images is small, the position is likely to be biased, and an edge noise component is likely to be generated when the difference is taken. For this reason, depending on the number of images obtained, the S / N ratio, specific imaging conditions, and the like, it may be possible to obtain a better result by selecting and using some but not all image groups.
  • the semiconductor failure analysis apparatus, failure analysis method, and failure analysis program according to the present invention are not limited to the above-described embodiments and configuration examples, and various modifications are possible.
  • the configuration of the stage 10, the voltage application unit 14, the light guide optical system 16, the imaging device 18 and the like used for image acquisition of the semiconductor device S has various configurations in addition to the configuration described above. May be used.
  • the semiconductor failure analysis apparatus is a semiconductor failure analysis apparatus that performs a failure analysis using a heat generation image of a semiconductor device, and (1) a voltage application unit that applies a bias voltage to a semiconductor device to be analyzed. And (2) an imaging unit that acquires an image of the semiconductor device, and (3) an image processing unit that performs image processing necessary for failure analysis of the semiconductor device on the image acquired by the imaging unit, 4) The imaging unit acquires a plurality of analysis images each including a heat generation image in a state where a bias voltage is applied to the semiconductor device, and a plurality of background images in a state where the bias voltage is not applied.
  • the image processing means includes an imaging position calculating means for calculating the imaging position of each of the plurality of analysis images and the plurality of background images, and a plurality of analysis images.
  • Area division units set with reference to the position frequency distribution of the imaging positions are prepared for the imaging positions of each of the plurality of background images, and N areas (N is divided by the area division unit) are prepared.
  • Image classification means for classifying a plurality of analysis images and a plurality of background images into N image groups depending on which region of the image capture position belongs to (an integer greater than or equal to 2), and the classified N image groups individually.
  • a configuration having a difference image generation means for generating a difference image between an analysis image used for failure analysis and a background image is used.
  • the semiconductor failure analysis method is a semiconductor failure analysis method for performing failure analysis using a heat generation image of a semiconductor device, and (1) a voltage for applying a bias voltage to a semiconductor device to be analyzed.
  • the imaging step acquires a plurality of analysis images each including a heat generation image in a state where a bias voltage is applied to the semiconductor device, and a plurality of background images in a state where no bias voltage is applied.
  • the image processing step is an imaging for calculating the imaging position of each of the plurality of analysis images and the plurality of background images.
  • an area division unit set with reference to the position frequency distribution of the imaging position is prepared and divided according to the area division unit
  • an image classification step for classifying the plurality of analysis images and the plurality of background images into N image groups depending on which of the N regions (N is an integer of 2 or more).
  • the N image groups are individually configured to have a difference image generation step for generating a difference image between an analysis image used for failure analysis and a background image.
  • the position frequency distribution of the imaging positions in each of the plurality of analysis images and the plurality of background images is obtained, and the position frequency of the plurality of analysis images is determined.
  • the region division unit used for classification it is preferable to set the region division unit used for classification.
  • a plurality of analysis images and a plurality of background images are suitably set by appropriately setting the region division unit according to the actual occurrence state of the imaging position deviation in the image acquisition of the semiconductor device. Can be classified into image groups.
  • an adjustment coefficient ⁇ for adjusting the region division unit is set, and region units ⁇ 1 ⁇ ⁇ ⁇ w1 for a plurality of analysis images, It is possible to use a configuration in which the area unit ⁇ 2 ⁇ ⁇ ⁇ w2 for the background image is obtained and the common range of these area units is set as the area division unit. Further, the method for setting the region division unit is not limited to such a configuration, and various configurations may be used.
  • the adjustment coefficient ⁇ is automatically set according to specific failure analysis conditions or the like.
  • the region division unit can be suitably set based on the operator's judgment in consideration of the actual occurrence state of the imaging position deviation and the specific analysis conditions of the semiconductor device. .
  • the distribution width w1 in the position frequency distribution of the plurality of analysis images and the distribution width w2 in the position frequency distribution of the plurality of background images are respectively set to the standard deviation ⁇ 1.
  • ⁇ 2 and the adjustment coefficient ⁇ is preferably set within a range satisfying the condition 1 ⁇ ⁇ ⁇ 2.
  • a configuration for generating a difference image used for failure analysis can be used.
  • the N difference images obtained for each of the N image groups are weighted based on the number of images belonging to each image group, and used for failure analysis.
  • the first analysis mode for generating the difference image and the second analysis mode for selecting the difference image used for the failure analysis based on the number of images belonging to each image group may be configured to be switchable. . Even with such a configuration, a difference image finally used for failure analysis of a semiconductor device can be suitably derived by automatically or manually selecting an analysis mode by an operator.
  • the present invention can be used as a semiconductor failure analysis apparatus, a failure analysis method, and a failure analysis program capable of suppressing the influence of an imaging position shift in a heat generation analysis image used for failure analysis of a semiconductor device.
  • SYMBOLS 1A Semiconductor failure analysis apparatus, S ... Semiconductor device, 10 ... Sample stage, 12 ... Stage drive part, 14 ... Voltage application part, 16 ... Light guide optical system, 18 ... Imaging apparatus, 20 ... Control part, 21 ... Imaging control Unit 22, stage control unit 23, synchronization control unit 30 image processing unit 31 image storage unit 32 imaging position calculation unit 33 image classification unit 34 difference image generation unit 36 input device 37 ... Display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Multimedia (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

 半導体デバイスSにバイアス電圧を印加する電圧印加部14と、画像を取得する撮像装置18と、画像処理を行う画像処理部30とを備えて故障解析装置1Aを構成し、撮像装置18は、電圧印加状態での発熱像をそれぞれ含む複数の解析画像と、電圧未印加状態での複数の背景画像とを取得する。画像処理部30は、解析画像及び背景画像のそれぞれでの撮像位置を算出する撮像位置算出部32と、撮像位置に対して用意された領域分割単位に基づいて解析画像及び背景画像をN個の画像グループに分類する画像分類部33と、N個の画像グループについて個別に解析画像と背景画像との差分画像を生成する差分画像生成部34とを有する。これにより、半導体デバイスの発熱解析画像における撮像位置ずれの影響を抑制することが可能な半導体故障解析装置及び方法が実現される。

Description

半導体故障解析装置及び故障解析方法
 本発明は、半導体デバイスの発熱像を用いて故障解析を行う半導体故障解析装置、及び半導体故障解析方法に関するものである。
 従来、半導体デバイスの故障解析を行う装置として、半導体デバイスで発生する熱を検出して、その故障箇所を特定する故障解析装置が用いられている。このような故障解析装置では、例えば、半導体デバイスに含まれる電子回路に対してバイアス電圧を印加する。そして、赤外光の波長領域に感度を有する撮像装置を用いて半導体デバイスを撮像することで発熱像を取得し、その発熱像を解析することによって、半導体デバイスにおける発熱箇所を特定する(例えば、特許文献1~3参照)。
特許第2758562号公報 特開平9-266238号公報 特開平11-337511号公報
 上記した半導体故障解析装置では、赤外撮像装置によって取得される半導体デバイスの画像は、半導体デバイスで発生する熱による発熱像と、半導体デバイスでの回路パターンによるパターン像とを含む。この場合、このような画像からパターン像を除去して発熱像を抽出する方法として、差分法が考えられる。すなわち、半導体デバイスにバイアス電圧が印加された状態での発熱像+パターン像による解析画像とは別に、バイアス電圧が印加されていない状態でのパターン像のみによる背景画像を取得する。そして、解析画像と背景画像との差分をとることによって、発熱像のみを抽出することができる。
 ここで、上記の方法では、解析画像及び背景画像は、通常、それぞれ時系列に複数ずつ取得されて故障解析に用いられる。一方、このような故障解析装置では、温度変化の影響によって撮像装置による半導体デバイスに対する撮像位置が変動する温度ドリフトが発生する。すなわち、解析画像及び背景画像の時系列での取得中に温度が変化すると、故障解析装置を構成している各部品が、その材質やサイズの違いなどに応じて異なる条件で伸縮することで位置変動が発生し、それによって撮像位置がずれることとなる。
 このような温度による撮像位置ずれは、装置自体が熱の発生元であり、また、サンプルの出し入れに伴う外気の入出などもあり、完全に排除することはできない。そして、撮像位置ずれが発生した状態で取得された解析画像及び背景画像について、発熱像に対応する差分画像を生成すると、半導体デバイスにおける回路パターンのエッジ部分がノイズとして差分画像に現れる(エッジノイズ成分)。このようなエッジノイズ成分は、発熱像を用いて半導体デバイスの故障解析を行う上で問題となる。
 本発明は、以上の問題点を解決するためになされたものであり、半導体デバイスの発熱解析画像における撮像位置ずれの影響を抑制することが可能な半導体故障解析装置、故障解析方法、及び故障解析プログラムを提供することを目的とする。
 このような目的を達成するために、本発明による半導体故障解析装置は、半導体デバイスの発熱像を用いて故障解析を行う半導体故障解析装置であって、(1)解析対象となる半導体デバイスに対してバイアス電圧を印加する電圧印加手段と、(2)半導体デバイスの画像を取得する撮像手段と、(3)撮像手段によって取得された画像に対して、半導体デバイスの故障解析に必要な画像処理を行う画像処理手段とを備え、(4)撮像手段は、半導体デバイスにバイアス電圧が印加された状態での発熱像をそれぞれ含む複数の解析画像と、バイアス電圧が印加されていない状態での複数の背景画像とを取得するとともに、(5)画像処理手段は、複数の解析画像及び複数の背景画像のそれぞれについて、その撮像位置を算出する撮像位置算出手段と、複数の解析画像及び複数の背景画像のそれぞれでの撮像位置に対して、撮像位置の位置頻度分布を参照して設定された領域分割単位を用意し、領域分割単位にしたがって分割されたN個の領域(Nは2以上の整数)のどの領域に撮像位置が属するかによって、複数の解析画像及び複数の背景画像をN個の画像グループに分類する画像分類手段と、分類されたN個の画像グループについて個別に、故障解析に用いられる解析画像と背景画像との差分画像を生成する差分画像生成手段とを有することを特徴とする。
 また、本発明による半導体故障解析方法は、半導体デバイスの発熱像を用いて故障解析を行う半導体故障解析方法であって、(1)解析対象となる半導体デバイスに対してバイアス電圧を印加する電圧印加ステップと、(2)半導体デバイスの画像を取得する撮像ステップと、(3)撮像ステップによって取得された画像に対して、半導体デバイスの故障解析に必要な画像処理を行う画像処理ステップとを備え、(4)撮像ステップは、半導体デバイスにバイアス電圧が印加された状態での発熱像をそれぞれ含む複数の解析画像と、バイアス電圧が印加されていない状態での複数の背景画像とを取得するとともに、(5)画像処理ステップは、複数の解析画像及び複数の背景画像のそれぞれについて、その撮像位置を算出する撮像位置算出ステップと、複数の解析画像及び複数の背景画像のそれぞれでの撮像位置に対して、撮像位置の位置頻度分布を参照して設定された領域分割単位を用意し、領域分割単位にしたがって分割されたN個の領域(Nは2以上の整数)のどの領域に撮像位置が属するかによって、複数の解析画像及び複数の背景画像をN個の画像グループに分類する画像分類ステップと、分類されたN個の画像グループについて個別に、故障解析に用いられる解析画像と背景画像との差分画像を生成する差分画像生成ステップとを有することを特徴とする。
 また、本発明による半導体故障解析プログラムは、(a)解析対象となる半導体デバイスに対してバイアス電圧を印加する電圧印加手段と、半導体デバイスの画像を取得する撮像手段とを備え、半導体デバイスの発熱像を用いて故障解析を行うとともに、(b)撮像手段は、半導体デバイスにバイアス電圧が印加された状態での発熱像をそれぞれ含む複数の解析画像と、バイアス電圧が印加されていない状態での複数の背景画像とを取得する半導体故障解析装置に適用され、(c)撮像手段によって取得された画像に対して、半導体デバイスの故障解析に必要な画像処理をコンピュータに実行させるためのプログラムであって、(d)複数の解析画像及び複数の背景画像のそれぞれについて、その撮像位置を算出する撮像位置算出処理と、(e)複数の解析画像及び複数の背景画像のそれぞれでの撮像位置に対して、撮像位置の位置頻度分布を参照して設定された領域分割単位を用意し、領域分割単位にしたがって分割されたN個の領域(Nは2以上の整数)のどの領域に撮像位置が属するかによって、複数の解析画像及び複数の背景画像をN個の画像グループに分類する画像分類処理と、(f)分類されたN個の画像グループについて個別に、故障解析に用いられる解析画像と背景画像との差分画像を生成する差分画像生成処理とをコンピュータに実行させることを特徴とする。
 上記した半導体故障解析装置、方法、及びプログラムでは、半導体デバイスに対し、バイアス電圧が印加された状態での発熱像+パターン像の解析画像と、バイアス電圧が印加されていない状態でのパターン像のみの背景画像とを、それぞれ時系列に複数ずつ取得する。そして、それらの解析画像及び背景画像のそれぞれについて撮像位置を算出するとともに、撮像位置の変動に対して領域分割単位を用意し、領域分割単位によって分割されたN個の領域を用いて解析画像及び背景画像をN個の画像グループに分類して、発熱像が抽出された差分画像の生成を行っている。
 上記構成では、撮像位置ずれの位置ずれ量に応じて、複数の解析画像及び複数の背景画像がN個の画像グループに分類され、分類後の画像グループ毎に差分画像が生成される。このような構成によれば、領域分割単位を適切に設定することにより、撮像位置ずれの影響を低減して、半導体デバイスの故障解析に用いられる差分画像における、撮像位置ずれによるエッジノイズ成分などのノイズの発生を抑制することが可能となる。
 なお、N個の画像グループについて画像グループ毎に行われる解析画像と背景画像との差分画像の生成については、半導体デバイスの故障解析の具体的な方法等に応じて、N個の画像グループのそれぞれについて差分画像を生成して、N個の差分画像を取得する構成としても良い。あるいは、N個の画像グループの少なくとも1個について差分画像を生成する構成としても良い。
 本発明の半導体故障解析装置、方法、及びプログラムによれば、解析対象の半導体デバイスに対し、バイアス電圧が印加された状態での解析画像と、バイアス電圧が印加されていない状態での背景画像とを複数ずつ取得し、解析画像及び背景画像のそれぞれについて撮像位置を算出するとともに、撮像位置の変動に対して領域分割単位を用意し、領域分割単位によって分割されたN個の領域を用いて解析画像及び背景画像をN個の画像グループに分類して、発熱像に対応する差分画像の生成を行うことにより、半導体デバイスの発熱解析画像における撮像位置ずれの影響を抑制することが可能となる。
図1は、半導体故障解析装置の一実施形態の構成を示すブロック図である。 図2は、図1に示した半導体故障解析装置において実行される故障解析方法について模式的に示す図である。 図3は、図1に示した半導体故障解析装置において実行される故障解析方法について模式的に示す図である。 図4は、解析画像と背景画像との差分画像の生成方法を示す図である。 図5は、撮像位置の位置頻度分布及び領域分割単位について示す図である。 図6は、撮像位置の変動による位置頻度分布の導出方法について示す図である。 図7は、位置頻度分布を参照した領域分割単位の設定方法について示す図である。 図8は、表示装置に表示される操作画面の一例を示す図である。 図9は、半導体デバイスの通常のパターン画像を示す図である。 図10は、解析画像と背景画像との差分画像の例を示す図である。 図11は、解析画像と背景画像との差分画像の例を示す図である。 図12は、解析画像と背景画像との差分画像の例を示す図である。
 以下、図面とともに本発明による半導体故障解析装置、故障解析方法、及び故障解析プログラムの好適な実施形態について詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明のものと必ずしも一致していない。
 図1は、本発明による半導体故障解析装置の一実施形態の構成を概略的に示すブロック図である。この装置1Aは、半導体デバイスSの発熱像を用いて故障解析を行う故障解析装置である。図1に示した半導体故障解析装置1Aは、試料ステージ10と、電圧印加部14と、撮像装置18と、制御部20と、画像処理部30とを備えて構成されている。
 解析対象となる半導体デバイスSは、X軸方向、Y軸方向(水平方向)、及びZ軸方向(垂直方向)にそれぞれ駆動可能なXYZステージを用いた試料ステージ10上に載置されている。このステージ10は、ステージ駆動部12によってX、Y、Z方向に駆動可能に構成されており、これにより、半導体デバイスSに対する撮像の焦点合わせ、撮像位置の位置合わせ等が行われる。ステージ10の上方には、半導体デバイスSの2次元の画像を取得する撮像手段である撮像装置18が設置されている。撮像装置18としては、半導体デバイスSの発熱像による画像を取得するため、所定の波長領域に感度を有する撮像装置、例えば赤外光の波長領域に感度を有する赤外撮像装置が好適に用いられる。
 ステージ10と撮像装置18との間の光軸上には、半導体デバイス10の像を撮像装置18へと導く導光光学系16が設けられている。また、ステージ10上の半導体デバイスSに対して、電圧印加部14が設けられている。電圧印加部14は、発熱像による故障解析を行う際に、半導体デバイスSの電子回路に対して必要なバイアス電圧を印加する電圧印加手段であり、電圧印加用の電源を含んで構成されている。なお、導光光学系16についても、必要があればXYZステージなどの駆動機構が設けられる。
 このような構成において、撮像装置18は、電圧印加部14によって半導体デバイスSにバイアス電圧が印加された状態での解析画像と、バイアス電圧が印加されていない状態での背景画像とを、それぞれ複数ずつ時系列に取得する。電圧印加状態で取得される解析画像は、半導体デバイスSの発熱像と、半導体デバイスSでの回路パターンによるパターン像とを含む画像である。一方、電圧未印加状態で取得される背景画像は、半導体デバイスSのパターン像のみを含む画像である。
 図1に示す故障解析装置1Aでは、これらのステージ10、ステージ駆動部12、電圧印加部14、導光光学系16、及び撮像装置18に対して、それらの動作を制御する制御部20が設けられている。本実施形態における制御部20は、撮像制御部21と、ステージ制御部22と、同期制御部23とを有して構成されている。
 撮像制御部21は、電圧印加部14によるバイアス電圧の印加動作、及び撮像装置18による画像取得動作を制御することにより、半導体デバイスSの解析画像及び背景画像の取得を制御する。また、ステージ制御部22は、XYZステージ10及びステージ駆動部12の動作(ステージ10上の半導体デバイスSの移動動作)を制御する。また、同期制御部23は、撮像制御部21及びステージ制御部22と、撮像装置18に対して設けられた画像処理部30との間で必要な同期をとるための制御を行う。
 画像処理部30は、撮像装置18によって取得された画像に対して、半導体デバイスSの故障解析に必要な画像処理を行う画像処理手段である。本実施形態における画像処理部30は、画像記憶部31と、撮像位置算出部32と、画像分類部33と、差分画像生成部34とを有して構成されている。撮像装置18で取得された半導体デバイスSの画像は、画像処理部30に入力され、必要に応じて画像記憶部31に記憶、蓄積される。
 撮像位置算出部32は、撮像装置18で取得された半導体デバイスSの複数の解析画像及び複数の背景画像のそれぞれについて、その水平面内(XY面内)での撮像位置を算出する。ここで、故障解析装置1Aにおける画像取得では、温度変化の影響によって半導体デバイスSに対する撮像位置が変動する(温度ドリフト)。また、装置1Aにおける振動等によっても撮像位置は変動する。撮像位置算出部32は、このように変動する撮像位置を画像毎に求めて、その位置ずれ量を評価する。ここで、このような撮像位置の変動レベルは、通常、撮像装置18の画素サイズよりも小さいレベルである。
 画像分類部33は、複数の解析画像及び複数の背景画像のそれぞれでの撮像位置に対して、その位置頻度分布を参照して設定された領域分割単位を用意する。そして、撮像位置の分布を領域分割単位にしたがってN個の領域(Nは2以上の整数)に分割し、撮像位置が分割されたN個の領域のうちのどの領域に属するかによって、解析画像及び背景画像をN個の画像グループに分類する。ここで、上記のように撮像位置の変動が画素サイズよりも小さい場合、画像分類に用いられる領域分割単位は画素サイズよりも小さく設定され、画像のグループ分けは画素サイズよりも小さい位置精度で行われる。
 差分画像生成部34は、画像分類部33によって分類されたN個の画像グループについて個別に、故障解析に用いられる解析画像と背景画像との差分画像を生成する。ここで、解析画像は、上記したように発熱像とパターン像とを含む画像であり、背景画像は、パターン像のみを含む画像である。したがって、それらの差分をとった差分画像は、故障解析に必要な発熱像のみが抽出された画像となる。そして、その差分画像における発熱箇所を特定することによって、半導体デバイスの故障解析が行われる。
 このような画像処理部30は、例えばコンピュータを用いて構成される。また、この画像処理部30に対して、入力装置36及び表示装置37が接続されている。入力装置36は、例えばキーボードやマウス等から構成され、本装置1Aにおける画像取得動作、故障解析動作の実行に必要な情報、指示の入力等に用いられる。また、表示装置37は、例えばCRTディスプレイや液晶ディスプレイ等から構成され、本装置1Aにおける画像取得及び故障解析に関する必要な情報の表示等に用いられる。
 なお、この画像処理部30については、制御部20とともに単一の制御装置(例えば、単一のコンピュータ)によって実現される構成としても良い。また、画像処理部30に接続される入力装置36及び表示装置37についても、同様に、画像処理部30のみでなく制御部20に対する入力、表示装置としても機能する構成としても良い。
 画像処理部30において実行される解析画像及び背景画像のN個の画像グループへの分類、及び差分画像の生成について、図2及び図3を参照して概略的に説明する。ここで、図2、図3は、図1に示した半導体故障解析装置1Aにおいて実行される故障解析方法について模式的に示す図である。ここでは、簡単のため、複数の解析画像(発熱像+パターン像)と、複数の背景画像(パターン像のみ)とを時系列に取得する際(電圧印加ステップ、撮像ステップ)に、温度ドリフトまたは装置の振動等の影響によって、撮像装置18による半導体デバイスSの撮像位置がP1、P2の2つの位置に時系列に変動する場合を考え、そのような場合に行われる画像処理について説明する(画像処理ステップ)。
 各画像の撮像位置を求めた結果(撮像位置算出ステップ)、撮像位置の変動について得られる位置頻度分布に対し、画像分類部33は、図2(a)に示すように、分類後の個々の画像グループでの撮像位置の変動の許容範囲となる領域分割単位ΔPを設定する。そして、この領域分割単位ΔPにしたがって、撮像位置の分布領域を複数の領域、この例では第1領域R1及び第2領域R2の2個の領域に分割する。このとき、図2(a)の例では撮像位置P1は領域R1に属し、撮像位置P2は領域R2に属している。
 これにより、図2(b)、(c)に示すように、領域R1に属する位置P1が撮像位置の画像が画像グループ1に分類され、また、領域R2に属する位置P2が撮像位置の画像が画像グループ2に分類される(画像分類ステップ)。図2に示す例では、時系列に取得された解析画像A1~A6、背景画像B1~B6のうち、解析画像A1、A2、A4、及び背景画像B1、B3、B5が画像グループ1に分類されている。また、解析画像A3、A5、A6、及び背景画像B2、B4、B6が画像グループ2に分類されている。
 解析画像及び背景画像が画像グループに分類されると、差分画像生成部34は、図3に示すように、画像グループ毎に、差分画像を生成する(差分画像生成ステップ)。まず、図3(a)、(b)に示すように、画像グループ1に分類された解析画像A1、A2、A4の平均によって、平均解析画像A7を生成し、また、背景画像B1、B3、B5の平均によって、平均背景画像B7を生成する。同様に、画像グループ2に分類された解析画像A3、A5、A6の平均によって、平均解析画像A8を生成し、また、背景画像B2、B4、B6の平均によって、平均背景画像B8を生成する。
 そして、図3(c)に示すように、画像グループ1について、解析画像A7と背景画像B7との差分をとることで、第1差分画像C7(=A7-B7)を生成する。同様に、画像グループ2について、解析画像A8と背景画像B8との差分をとることで、第2差分画像C8(=A8-B8)を生成する。これらの画像グループ毎の差分画像C7、C8、あるいは差分画像C7、C8に対して加算、平均、選択等の処理を行って得られた差分画像が、実質的に発熱像のみを含み故障解析に用いられる発熱解析画像となる。
 図1に示した故障解析装置1Aの画像処理部30において実行される故障解析方法に対応する処理は、撮像装置18によって取得された画像に対して半導体デバイスSの故障解析に必要な画像処理をコンピュータに実行させるための半導体故障解析プログラムによって実現可能である。例えば、画像処理部30は、画像処理に必要な各ソフトウェアプログラムを動作させるCPUと、上記ソフトウェアプログラムなどが記憶されるROMと、プログラム実行中に一時的にデータが記憶されるRAMとによって構成することができる。このような構成において、CPUによって所定の故障解析プログラムを実行することにより、上記した画像処理部30、及び故障解析装置1Aを実現することができる。
 また、故障解析の画像処理をCPUによって実行させるための上記プログラムは、コンピュータ読取可能な記録媒体に記録して頒布することが可能である。このような記録媒体には、例えば、ハードディスク及びフレキシブルディスクなどの磁気媒体、CD-ROM及びDVD-ROMなどの光学媒体、フロプティカルディスクなどの磁気光学媒体、あるいはプログラム命令を実行または格納するように特別に配置された、例えばRAM、ROM、及び半導体不揮発性メモリなどのハードウェアデバイスなどが含まれる。
 本実施形態による半導体故障解析装置1A、半導体故障解析方法、及び半導体故障解析プログラムの効果について説明する。
 図1~図3に示した半導体故障解析装置1A、故障解析方法、及び故障解析プログラムでは、半導体デバイスSに対し、電圧印加部14によってバイアス電圧が印加された状態での発熱像+パターン像を含む解析画像と、バイアス電圧が印加されていない状態でのパターン像のみを含む背景画像とを、それぞれ時系列に複数ずつ取得する。そして、それらの解析画像及び背景画像のそれぞれについて、撮像位置算出部32において撮像位置を算出するとともに、画像分類部33において、撮像位置の変動に対して領域分割単位を用意し、領域分割単位によって分割されたN個の領域を用いて解析画像及び背景画像をN個の画像グループに分類して、発熱像が抽出された差分画像の生成を行っている。
 上記構成では、図2及び図3に示すように、撮像位置ずれの位置ずれ量に応じて、複数の解析画像及び複数の背景画像がN個の画像グループに分類され、分類後の画像グループ毎に差分画像が生成される。このような構成によれば、画像分類部33において領域分割単位を適切に設定することにより、温度ドリフトや装置の振動などによる撮像位置ずれの影響を低減して、半導体デバイスSの故障解析に用いられる差分画像における、撮像位置ずれによるエッジノイズ成分などのノイズの発生を抑制することが可能となる。
 解析画像と背景画像との差分画像において発生するエッジノイズ成分、及びその抑制について、図4を参照して説明する。図4(a)は、従来の故障解析方法による差分画像の生成方法を示している。また、図4(b)は、上記実施形態の故障解析方法による差分画像の生成方法を示している。また、図4において、符号Dを付した矩形パターンは、撮像装置18で取得される2次元画像での1画素(画素サイズ)を示し、また、符号Eを付した直線は、半導体デバイスSにおける回路パターンでのエッジ部分を示している。
 図4(a)に示す例では、バイアス電圧印加時の解析画像として画像A1、A2が、また、バイアス電圧未印加時の背景画像として画像B1、B2が取得されている。これらの画像では、画素Dの画素サイズによって決まる分解能での濃淡パターンとして、パターンエッジEの像が取得されている。また、解析画像A1とA2、背景画像B1とB2とで、撮像位置ずれによって画素構造に対するパターンエッジEの位置が変動しており、その結果、各画像において得られている画素の濃淡パターンが異なるものとなっている。
 このような画像データに対し、画像A1、A2の平均として解析画像A0を求め、画像B1、B2の平均として背景画像B0を求め、それらについて減算処理A0-B0を行うことで差分画像C0を生成する。このとき、解析画像A0において発熱箇所が含まれていないにもかかわらず、解析画像A0と背景画像B0との間での撮像位置ずれの影響でパターンエッジEによるノイズ的な画像が生成されている。このようなエッジノイズ成分は、図4(a)から理解されるように、撮像位置ずれが画素サイズよりも小さいものであっても、画素のコントラストパターンがずれることによってノイズが発生する。
 これに対して、図4(b)に示す例では、解析画像A1、A2、及び背景画像B1、B2について、撮像位置による画像グループへの分類を行った後に、差分画像を生成する。例えば、図4(b)において、解析画像A2と背景画像B1とは、撮像位置がほぼ同じであり、画像のグループ分けにおいて同一の画像グループに分類される。したがって、これらの画像A2、B1を、その画像グループでの解析画像A0=A2、背景画像B0=B1とし、それらについて減算処理A0-B0を行うことにより、パターンエッジEによるノイズが除去された差分画像C0を得ることができる。また、解析画像A1、背景画像B2についても、他の画像グループにおいて同様の画像処理が行われる。
 ここで、図2及び図3に示した例では、上述したように撮像位置がP1、P2の2つの位置で離散的に変動することを仮定しているが、実際には、撮像位置は連続的な位置頻度分布で変動する。具体的には、装置の振動による撮像位置ずれは、充分な枚数の画像が得られているとすると、正規分布状に発生する。また、この振動による撮像位置ずれの標準偏差σは、通常、例えば撮像装置18の画素サイズの1/10以下のレベルである。
 また、温度ドリフトによる撮像位置ずれについては、一般的には電圧印加部14の電源ONの時に大きく、電源OFFの時に小さくなる。したがって、電圧印加状態で取得される解析画像と、電圧未印加状態で取得される背景画像とでは位置ずれ量が一致せず、正規分布状の位置頻度分布の中心位置が両者で異なる状態となる。
 図5は、撮像位置の位置頻度分布及び領域分割単位について示す図である。この図5において、図5(a)、(b)、(c)は、領域分割単位を大きめの分割単位ΔP1に設定した場合の解析画像及び背景画像の画像グループへの分類の例を示している。また、図5(d)、(e)、(f)は、領域分割単位を小さめの分割単位ΔP2に設定した場合の解析画像及び背景画像の画像グループへの分類の例を示している。また、これらの図において、図5(a)、(d)は、分類前の解析画像の撮像位置の位置頻度分布(画像数分布)50、及び背景画像の撮像位置の位置頻度分布55を示している。これらの位置頻度分布50、55は、中心がずれた正規分布状の頻度分布となっている。
 これに対して、図5(b)は、分割単位ΔP1による分類後の解析画像の位置頻度分布(画像グループ毎の画像数分布)51を示し、図5(c)は、同様の分類後の背景画像の位置頻度分布56を示している。また、図5(e)は、分割単位ΔP2による分類後の解析画像の位置頻度分布52を示し、図5(f)は、同様の分類後の背景画像の位置頻度分布57を示している。領域分割単位ΔPの設定においては、後述するように、各画像グループでの画像数に応じた統計的な平均効果、及び領域分割での位置再現性等を考慮して、適切に設定することが好ましい。
 なお、分類されたN個の画像グループについて、画像グループ毎に行われる解析画像と背景画像との差分画像の生成については、故障解析の具体的な方法等に応じて、N個の画像グループのそれぞれについて個別に差分画像を生成して、全体としてN個の差分画像を取得する構成としても良い。あるいは、N個の画像グループのうちで故障解析に必要とされる少なくとも1個の画像グループについて差分画像を生成する構成としても良い。
 また、最終的に半導体デバイスSの故障解析に用いられる差分画像の生成については、例えば、N個の画像グループのそれぞれについて求められるN個の差分画像に対して、それぞれの画像グループに属する画像数に基づいた重み付けを行うことで、故障解析に用いられる差分画像を生成する構成を用いることができる。また、この場合の具体的な重み付け方法としては、例えば、各差分画像を重み付けして加算する方法、各差分画像を重み付けして加算平均をとる方法等を用いることができる。
 あるいは、差分画像の生成について、N個の画像グループのそれぞれについて求められるN個の差分画像に対して、それぞれの画像グループに属する画像数に基づいて、故障解析に用いられる差分画像を選択する構成を用いることができる。この場合の具体的な選択方法としては、例えば、N個の画像グループのうちで最も画像数が多い画像グループでの差分画像を選択する方法を用いることができる。あるいは、画像数が多い2以上の画像グループでの差分画像を選択し、それらの差分画像から加算、平均等によって最終的な差分画像を算出する方法を用いても良い。これらの差分画像に対して重み付け、画像の選択等を行う構成によれば、最終的に半導体デバイスSの故障解析に用いられる差分画像を好適に導出することができる。
 また、差分画像生成部34で行われる差分画像の生成において、2以上の解析モードを切り替え可能とする構成を用いても良い。そのような構成としては、例えば、N個の画像グループのそれぞれについてのN個の差分画像に対して、それぞれの画像グループに属する画像数に基づいた重み付けを行うことで、故障解析に用いられる差分画像を生成する第1解析モードと、それぞれの画像グループに属する画像数に基づいて、故障解析に用いられる差分画像を選択する第2解析モードとを切り替え可能とする構成が挙げられる。
 このように、差分画像生成部34での解析モードが切り替え可能な構成によっても、自動で、または操作者が手動で解析モードを選択することにより、実際に半導体デバイスSの故障解析に用いられる、発熱像が抽出された差分画像を好適に導出することができる。この場合、具体的には、表示装置37に解析モード選択画面を表示し、その表示内容を参照して操作者が入力装置36を介して解析モードを選択する構成とすることが好ましい。あるいは、差分画像生成部34が、実際の画像の位置頻度分布等を参照して、自動で解析モードを設定または切り替える構成としても良い。
 図1に示した故障解析装置1Aにおいて、半導体デバイスSの画像を取得する撮像装置18としては、具体的には例えば、赤外光の波長領域(例えば波長3.7μm~5.2μm)に感度を有する画素数320×240、撮像サイズ9.6mm×7.2mm、フレームレート140Hzの赤外InSbカメラを用いることができる。また、このような赤外カメラを用いた構成において、光学系16で0.8倍対物レンズを用いた場合、全体の視野サイズは概算でX=11923μm、Y=8931μm、1画素あたりのサイズは37μmである。また、4倍対物レンズを用いた場合、視野サイズはX=2379μm、Y=1788μm、画素サイズは7.4μmである。また、15倍対物レンズを用いた場合、視野サイズはX=629μm、Y=474μm、画素サイズは2μmである。
 また、電圧印加状態での解析画像(ON画像)、及び電圧未印加状態での背景画像(OFF画像)の取得画像数については、必要に応じて設定すれば良いが、通常は1秒以上は画像取得を行うため、例えば上記したフレームレート140Hzの撮像装置を用いた場合には、それぞれの画像数は140以上となる。
 この画像数については、画像数が多ければ位置頻度分布が正規分布に近づくため、ある程度の画像数は必要である。この点を考慮すると、例えば、解析画像及び背景画像のそれぞれについて画像取得時間4秒~8秒(画像数560~1120)程度に設定することが好適と考えられる。一方、画像数が多くなって画像取得時間が長くなると、温度ドリフトによる撮像位置ずれが大きくなる可能性がある。この点を考慮すると、解析画像及び背景画像のそれぞれについて画像取得時間10秒以下に設定することが好適と考えられる。
 この場合、画像取得時間の設定の一例として、半導体デバイスSにおける発熱が弱い場合は上記した8秒程度、発熱が強い場合は4秒程度とし、発熱が特に強くオーバーフローの可能性がある場合には1秒程度とする設定が考えられる。また、解析画像及び背景画像の取得動作の繰返し回数(ON/OFF回数)については、通常、電圧印加状態において所定の時間で複数の解析画像を取得し、続いて、電圧未印加状態において所定の時間で複数の背景画像を取得する画像取得動作を1回行うが、発熱の強さや取得画像数等を考慮して、必要があれば2回以上繰り返して画像取得動作を行う構成としても良い。
 また、このような構成の故障解析装置1Aにおいて、撮像位置の変動の原因となる温度ドリフトは、例えば、金属の膨張・収縮による歪み、装置中の非対称な機構、重心バランスの不均等などによって発生する。また、装置の振動は、例えば、赤外カメラのスターリングサイクルクーラーなどの冷却機構、外来の振動による共振、顕微鏡光学系、光学系ステージ、試料ステージなどによって発生する。
 故障解析装置1Aの画像処理部30において行われる画像処理について、さらに具体的に説明する。最初に、撮像位置算出部32による各画像での撮像位置の算出について説明する。図6は、撮像装置18で取得される半導体デバイスSの画像における、撮像位置の変動による位置頻度分布の導出方法について示す図である。解析画像、及び背景画像の各画像での撮像位置の算出は、通常の画像認識技術を利用して行うことができる。具体的な算出方法としては、例えば、オプティカルフローで認識したものの平均値を用いる方法、位相相関法、テンプレートマッチングによる方法等がある。
 オプティカルフローを用いた撮像位置の算出方法の一例を説明する。オプティカルフロー自体にも様々な方式があるが、例えばLucas-Kanadeアルゴリズムによる方式を用いることができる。まず、図6(a)の画像65において模式的に示すように、1枚目の画像について、その特徴点(コーナー)66をHarrisオペレータによって認識する。特徴点66の点数については、例えば、撮像装置18で取得される解像度320×240の画像に対して200点の特徴点を抽出する。また、抽出された特徴点をサブピクセル化する。
 次に、2枚目の画像について、同様に、その特徴点67をHarrisオペレータによって認識し、抽出された特徴点をサブピクセル化する。そして、図6(a)中に矢印で示すように、1枚目と2枚目の画像間で、特徴点66、67間の距離(画像間の位置ずれ量)を計測する。ここでは、200点の特徴点のそれぞれで特徴点間の距離が求められるが、対応がとれない点がある場合には、得られる距離データは200点よりも少なくなる。
 そして、それらの特徴点間の距離データの平均値を求めることによって、1枚目の画像での撮像位置を基準位置ゼロとしたときの2枚目の画像の撮像位置を算出する。このような処理を複数の解析画像及び背景画像のそれぞれについて行うことにより、図6(b)のグラフに示すように、各画像での撮像位置、及びそれによる位置頻度分布60が求められる。なお、特徴点となるコーナー検出のアルゴリズムについては、具体的には、上記したHarris以外にも、例えばMoravec、SUSANなど、他の方法を用いても良い。
 図6(b)に示す位置頻度分布60は、図5と同様に、中心位置61に対して正規分布状の頻度分布となっている。このような位置頻度分布に対する領域分割単位の設定、及びそれによる画像のグループ分けについては、画像分類部33において、解析画像及び背景画像のそれぞれでの撮像位置の位置頻度分布を求めるとともに、解析画像の位置頻度分布での平均位置μ1及び分布幅w1と、背景画像の位置頻度分布での平均位置μ2及び分布幅w2とに基づいて、領域分割単位ΔPを設定することが好ましい。このような構成によれば、撮像位置ずれの実際の発生状況に応じて領域分割単位を適切に設定して、解析画像及び背景画像を好適にN個の画像グループに分類することができる。なお、位置頻度分布の分布幅wについては、標準偏差σ、半値幅などの値を用いることができる。
 画像分類のための領域分割単位ΔPの設定について、具体的に説明する。領域分割単位の設定では、(1)平均効果によるS/N比の向上のため、各画像グループの画像数は多いことが好ましく、そのためには分割単位ΔPを広くする必要がある。一方、(2)エッジノイズ成分の除去効果の向上を考慮すると、領域分割での位置再現性が高いことが好ましく、そのためには分割単位ΔPを狭くする必要がある。したがって、領域分割単位ΔPについては、条件(1)、(2)のバランスを考慮して設定することが好ましい。
 また、例えば最終的に故障解析に用いる差分画像を、各画像グループでの画像数に基づいた重み付けを行って求めるような場合、図6(b)に示した正規分布状の位置頻度分布60において、中心の平均位置61を含む画像グループが最終的な差分画像に最も影響する。このような点を考慮すると、この平均位置61を含む画像グループのための分割範囲を適切に設定することが第1に重要になると考えられる。
 正規分布の特性から、位置頻度分布60の分布幅wとして標準偏差σを与えれば、平均位置μ(図6(b)中の位置61)からの位置ずれが±1σ以内の範囲に撮像位置が含まれる確率は68.3%、±1.5σ以内の範囲に含まれる確率は86.6%、±2σ以内の範囲に含まれる確率は95.4%となる。実際には、取得される画像数は有限であり、また、ノイズによる撮像位置の認識ずれ、認識精度不足等も発生する。このため、領域分割単位ΔPの位置範囲を±2σ程度に広く設定すると、平均位置μから±2σ離れた位置では画像が得られる頻度が減り、ノイズ成分となる可能性もある。具体的には、平均位置μでの頻度を100%とすると、位置μ±2σでの頻度は13.5%である。
 これらの正規分布の特性等を考慮し、ここでは、標準的な領域分割単位ΔPとして、位置範囲μ±1.5σを採用する。図6(b)において、左右の撮像位置62は、平均位置61から±1.5σ離れた位置を示している。この場合、平均位置61(=μ)での頻度を同様に100%とすると、位置62(=μ±1.5σ)での頻度は32.5%である。また、図6(b)において、平均位置μからの位置ずれが±1.5σ以内の範囲63に含まれる画像数は、全体の画像数に対して86.6%である。
 図7は、解析画像及び背景画像のそれぞれについての位置頻度分布を参照して領域分割単位を設定する場合の設定方法について示す図である。ここで、図5に関して上述したように、解析画像と背景画像とでは、通常、その位置頻度分布は、互いに中心がずれた正規分布状の頻度分布となる。この場合、領域分割単位ΔPの設定においては、それらの2つの位置頻度分布をともに考慮することが好ましい。そのような設定方法としては、具体的には、解析画像についての領域単位と、背景画像についての領域単位とを求め、それらの領域単位の共通範囲(領域単位が重複する範囲、領域単位の積集合)を領域分割単位ΔPとして設定する方法を用いることができる。
 図7(a)に示す例では、解析画像の位置頻度分布70と、背景画像の位置頻度分布75とで、その分布幅w1、w2に対応する標準偏差σ1、σ2は、同一の値σとなっている。また、その平均位置μ1、μ2は、位置ずれ量=σで異なる位置となっている。
 また、図7(a)のグラフにおいて、解析画像についての領域単位71は、位置頻度分布70の平均位置μ1から±1.5σの範囲を示している。同様に、背景画像についての領域単位76は、位置頻度分布75の平均位置μ2から±1.5σの範囲を示している。これらの領域単位71、76に対して、領域分割単位ΔPは、その共通範囲72によって設定される。また、このとき、領域分割単位ΔPによって分割される領域の中心領域となる範囲73に含まれる画像数は、全体の画像数に対して52.4%である。
 図7(b)に示す例では、解析画像の位置頻度分布80と、背景画像の位置頻度分布85とで、その分布幅w1、w2に対応する標準偏差σ1、σ2が異なり、σ2=1.2×σ1となっている。また、その平均位置μ1、μ2は、位置ずれ量=σ1で異なる位置となっている。
 また、図7(b)のグラフにおいて、解析画像についての領域単位81は、位置頻度分布80の平均位置μ1から±1.5σ1の範囲を示している。同様に、背景画像についての領域単位86は、位置頻度分布85の平均位置μ2から±1.5σ2の範囲を示している。これらの領域単位81、86に対して、領域分割単位ΔPは、その共通範囲82によって設定される。また、このとき、領域分割単位ΔPによって分割される領域の中心領域となる範囲83に含まれる画像数は、全体の画像数に対して56.9%である。
 また、上記した領域分割単位の設定例では、位置範囲μ±1.5σを標準的な領域分割単位ΔPとして設定しているが、この標準偏差σ(一般には分布幅w)に対して分割単位を決定する係数1.5については、自動または操作者により手動で変更が可能な調整係数αとしてもよい。この場合、具体的には、画像分類部33において、領域分割単位ΔPを調整するための調整係数αを設定するとともに、解析画像についての領域単位μ1±α×w1と、背景画像についての領域単位μ2±α×w2とを求め、それらの領域単位の共通範囲を領域分割単位ΔPとして設定する構成を用いることができる。また、領域分割単位ΔPの設定方法については、このような構成に限らず、様々な構成を用いて良い。
 さらに、調整係数αの具体的な数値設定については、解析画像の位置頻度分布での分布幅w1と、背景画像の位置頻度分布での分布幅w2とを、標準偏差σ1、σ2によって求めるとともに、調整係数αを、上記したα=1.5を中心値として、条件1≦α≦2を満たす範囲内で可変に設定することが好ましい。標準偏差σ1、σ2に対する調整係数αの数値範囲を上記のように設定することにより、撮像位置の変動による位置頻度分布に対して、領域分割単位ΔPを適切に設定することができる。また、調整係数αの設定、変更においては、上述したS/N比を向上する条件(1)と、エッジノイズ成分の除去効果を向上する条件(2)とのバランスを考慮することが好ましい。
 また、領域分割単位ΔPの設定において調整係数αを用いる構成では、具体的な故障解析条件等に応じて、画像分類部33において調整係数αを自動で設定する構成を用いることができる。あるいは、操作者によって入力装置36を介して入力された係数値に基づいて、調整係数αを手動で設定する構成を用いても良い。このような手動設定の構成では、撮像位置ずれの実際の発生状況、及び半導体デバイスの具体的な解析条件等を考慮した操作者の判断に基づいて、領域分割単位ΔPを好適に設定することができる。
 図8は、調整係数αの設定に関して、表示装置37に表示される操作画面の一例を示す図である。この操作画面40には、その上方部分において、画像表示領域41と、α値設定領域42と、重畳率設定領域43とが設けられている。画像表示領域41は、半導体デバイスSについて取得された解析画像、背景画像、差分画像等の画像を表示する際に用いられる。また、画像表示領域41においては、必要があれば、本装置1Aにおいて取得される発熱解析画像に加えて、半導体デバイスSの通常のパターン画像、あるいは半導体デバイスSの設計情報を含むレイアウト画像等をも表示する構成としても良い。
 α値設定領域42は、領域分割単位ΔPを設定する際に用いられる調整係数αの手動での設定、変更に用いられる。図8に示す例では、設定領域42には、1.5を標準値として1.0≦α≦2.0の範囲で調整係数αの値を設定するための設定つまみが設けられている。また、重畳率設定領域43は、画像表示領域41において、発熱解析画像に対して通常のパターン画像、及びレイアウト画像を重畳して表示する際に用いられる重畳率の設定、変更に用いられる。図8に示す例では、設定領域43には、パターン画像、レイアウト画像の重畳率を設定するための2つの設定つまみが設けられている。また、これらの設定領域42、43では、それぞれ設定数値の手動入力も可能な構成となっている。
 また、操作画面40の下方部分には、さらに、バイアス設定領域44と、画像取得数設定領域45と、ON/OFF回数設定領域46とが設けられている。バイアス設定領域44は、電圧印加部14の電源から半導体デバイスSへと供給されるバイアス電圧、バイアス電流の値を設定する際に用いられる。また、画像取得数設定領域45は、電圧印加状態(電源ON)で取得される解析画像の画像数、及び電圧未印加状態(電源OFF)で取得される背景画像の画像数を設定する際に用いられる。また、ON/OFF回数設定領域46は、電源ON状態での複数の解析画像の取得と、電源OFF状態での複数の背景画像の取得とによる画像取得動作を何回行うかを設定する際に用いられる。
 上記実施形態による半導体故障解析装置1A、及び故障解析方法を用いて取得される発熱解析画像について、その具体例とともに説明する。図9は、解析対象となる半導体デバイスSの通常のパターン画像を示す図である。このようなパターン画像は、例えば撮像装置18、または撮像装置18とは別に設けられた撮像系を用いて取得される。ここでは、このような回路パターンの半導体デバイスSに対し、電圧印加部14により電圧100mV、電流20mAでバイアスを印加して、その発熱像を取得する。
 図10~図12は、それぞれ、解析画像と背景画像との差分画像(発熱解析画像)の例を示す図である。なお、以下の図10~図12に示す画像では、いずれも、スムージング処理を行った画像を示している。
 図10(a)は、解析画像及び背景画像の撮像位置による分類を行わない従来の方法で生成された差分画像を示している。この差分画像と、図9に示したパターン画像とを比較すると、従来法による差分画像では、解析画像と背景画像との間での撮像位置ずれの影響により、半導体デバイスSのパターンエッジによるエッジノイズ成分が発生していることがわかる。
 また、このときの解析画像での平均位置μ1、標準偏差σ1、及び背景画像での平均位置μ2、標準偏差σ2をX軸方向、Y軸方向についてそれぞれ求めると、
  平均位置:μ1X=0.025、μ1Y=0.010
  標準偏差:σ1X=0.040、σ1Y=0.029
  平均位置:μ2X=0.026、μ2Y=0.021
  標準偏差:σ2X=0.025、σ2Y=0.018
であった。なお、上記の平均位置及び標準偏差の各数値は、導光光学系16の対物レンズとして4倍対物レンズを用いて画像を取得した際の画素ずれ量である。例えば、解析画像と背景画像との間でのY軸方向の画素ずれ量は、μ2Y-μ1Y=0.011画素であるが、これは位置ずれ量にすると約0.08μmに相当する。
 図10(b)は、解析画像及び背景画像を撮像位置によって分類する上記実施形態の方法で生成された差分画像を示している。この差分画像は、上述した具体的な方法において調整係数をα=1とし、1σによって領域分割単位ΔPを設定するとともに、領域分割数をN=9とした条件で求めたものである。このように、解析画像及び背景画像を画像グループに分類する方法を用いて得られた差分画像では、撮像位置ずれの影響が低減され、従来法の差分画像に発生していたエッジノイズ成分が除去されて、半導体デバイスSの故障解析に用いられる発熱像が明瞭に確認できることがわかる。
 また、このようなエッジノイズ成分の除去効果は、領域分割単位ΔPを変えることで変化する。図11(a)は、調整係数をα=1.5とするとともに、領域分割数をN=5とした条件で求めた差分画像を示している。また、図11(b)は、調整係数をα=2とするとともに、領域分割数をN=5とした条件で求めた差分画像を示している。これらの差分画像では、調整係数αの値を大きくして、領域分割単位ΔPを広くするほど、エッジノイズ成分の除去効果が減少している。ただし、上述したように、逆に領域分割単位ΔPを狭くするとS/N比が悪くなるため、領域分割単位ΔPの設定においては、それらの条件のバランスを考慮する必要がある。
 また、解析画像及び背景画像を分類した画像グループの取扱いについては、N個の画像グループの全てを差分画像生成に用いる構成、及びN個の画像グループのうちで画像数が多い一部(1または複数)の画像グループを選択して差分画像生成に用いる構成がある。一般には、平均効果によるS/N比の向上のためには、全ての画像グループを用いる方法が有利である。一方、エッジノイズ成分の除去効果の向上のためには、一部の画像グループを選択して用いる方法が有利である。したがって、これらの方法のいずれを用いるかについても、それらの条件のバランスを考慮する必要がある。
 複数の解析画像、背景画像をN個の画像グループに分類した場合、画像グループに含まれる画像数は、平均位置μが含まれる画像グループが最も多く、平均位置μから離れるにしたがって画像数は減少する(図5~図7参照)。この場合、平均位置から離れた位置の画像グループでは、画像数が少ないために位置の偏りが発生しやすく、差分をとったときにエッジノイズ成分が発生しやすい。このため、得られている画像数、S/N比、具体的な撮像条件等によっては、全てではなく一部の画像グループを選択して用いる構成の方が良い結果が得られる場合がある。
 図12(a)は、調整係数をα=1.5、領域分割数をN=5に設定するとともに、5個の画像グループの全てを用いて求めた差分画像を示している。また、図12(b)は、同じく調整係数をα=1.5、領域分割数をN=5に設定するとともに、平均位置を含む1個の画像グループのみを用いて求めた差分画像を示している。これらの差分画像では、平均位置を含む画像グループのみを用いた差分画像の方が、エッジノイズ成分の除去効果が向上している。
 本発明による半導体故障解析装置、故障解析方法、及び故障解析プログラムは、上記した実施形態及び構成例に限られるものではなく、様々な変形が可能である。例えば、半導体デバイスSの画像取得に用いられるステージ10、電圧印加部14、導光光学系16、及び撮像装置18等の構成については、上記した構成以外にも、具体的には様々な構成を用いて良い。
 上記実施形態による半導体故障解析装置では、半導体デバイスの発熱像を用いて故障解析を行う半導体故障解析装置であって、(1)解析対象となる半導体デバイスに対してバイアス電圧を印加する電圧印加手段と、(2)半導体デバイスの画像を取得する撮像手段と、(3)撮像手段によって取得された画像に対して、半導体デバイスの故障解析に必要な画像処理を行う画像処理手段とを備え、(4)撮像手段は、半導体デバイスにバイアス電圧が印加された状態での発熱像をそれぞれ含む複数の解析画像と、バイアス電圧が印加されていない状態での複数の背景画像とを取得するとともに、(5)画像処理手段は、複数の解析画像及び複数の背景画像のそれぞれについて、その撮像位置を算出する撮像位置算出手段と、複数の解析画像及び複数の背景画像のそれぞれでの撮像位置に対して、撮像位置の位置頻度分布を参照して設定された領域分割単位を用意し、領域分割単位にしたがって分割されたN個の領域(Nは2以上の整数)のどの領域に撮像位置が属するかによって、複数の解析画像及び複数の背景画像をN個の画像グループに分類する画像分類手段と、分類されたN個の画像グループについて個別に、故障解析に用いられる解析画像と背景画像との差分画像を生成する差分画像生成手段とを有する構成を用いている。
 また、上記実施形態による半導体故障解析方法では、半導体デバイスの発熱像を用いて故障解析を行う半導体故障解析方法であって、(1)解析対象となる半導体デバイスに対してバイアス電圧を印加する電圧印加ステップと、(2)半導体デバイスの画像を取得する撮像ステップと、(3)撮像ステップによって取得された画像に対して、半導体デバイスの故障解析に必要な画像処理を行う画像処理ステップとを備え、(4)撮像ステップは、半導体デバイスにバイアス電圧が印加された状態での発熱像をそれぞれ含む複数の解析画像と、バイアス電圧が印加されていない状態での複数の背景画像とを取得するとともに、(5)画像処理ステップは、複数の解析画像及び複数の背景画像のそれぞれについて、その撮像位置を算出する撮像位置算出ステップと、複数の解析画像及び複数の背景画像のそれぞれでの撮像位置に対して、撮像位置の位置頻度分布を参照して設定された領域分割単位を用意し、領域分割単位にしたがって分割されたN個の領域(Nは2以上の整数)のどの領域に撮像位置が属するかによって、複数の解析画像及び複数の背景画像をN個の画像グループに分類する画像分類ステップと、分類されたN個の画像グループについて個別に、故障解析に用いられる解析画像と背景画像との差分画像を生成する差分画像生成ステップとを有する構成を用いている。
 ここで、解析画像及び背景画像のN個の画像グループへの分類については、複数の解析画像及び複数の背景画像のそれぞれでの撮像位置の位置頻度分布を求めるとともに、複数の解析画像の位置頻度分布での平均位置μ1及び分布幅w1と、複数の背景画像の位置頻度分布での平均位置μ2及び分布幅w2とに基づいて、分類に用いられる領域分割単位を設定することが好ましい。このような構成によれば、半導体デバイスの画像取得における撮像位置ずれの実際の発生状況に応じて領域分割単位を適切に設定して、複数の解析画像及び複数の背景画像を好適にN個の画像グループに分類することができる。
 上記構成での領域分割単位の設定については、具体的には、領域分割単位を調整するための調整係数αを設定するとともに、複数の解析画像についての領域単位μ1±α×w1と、複数の背景画像についての領域単位μ2±α×w2とを求め、それらの領域単位の共通範囲を領域分割単位として設定する構成を用いることができる。また、領域分割単位の設定方法については、このような構成に限らず、様々な構成を用いて良い。
 また、上記のように領域分割単位の設定において調整係数αを用いる構成では、具体的な故障解析条件等に応じて調整係数αを自動で設定する構成を用いることができる。あるいは、操作者によって入力された係数値に基づいて、調整係数αを手動で設定する構成を用いても良い。このような手動設定の構成では、撮像位置ずれの実際の発生状況、及び半導体デバイスの具体的な解析条件等を考慮した操作者の判断に基づいて、領域分割単位を好適に設定することができる。
 さらに、上記した調整係数αの具体的な設定については、複数の解析画像の位置頻度分布での分布幅w1と、複数の背景画像の位置頻度分布での分布幅w2とを、それぞれ標準偏差σ1、σ2によって求めるとともに、調整係数αを、条件1≦α≦2を満たす範囲内で設定することが好ましい。標準偏差σ1、σ2に対する調整係数αの数値範囲を上記のように設定することにより、撮像位置の変動による位置頻度分布に対して、領域分割単位を適切に設定することができる。
 解析画像と背景画像との差分画像の生成については、N個の画像グループのそれぞれについて求められるN個の差分画像に対して、それぞれの画像グループに属する画像数に基づいた重み付けを行うことで、故障解析に用いられる差分画像を生成する構成を用いることができる。あるいは、N個の画像グループのそれぞれについて求められるN個の差分画像に対して、それぞれの画像グループに属する画像数に基づいて、故障解析に用いられる差分画像を選択する構成を用いることができる。これらの構成によれば、最終的に半導体デバイスの故障解析に用いられる差分画像を好適に導出することができる。
 また、差分画像の生成については、N個の画像グループのそれぞれについて求められるN個の差分画像に対して、それぞれの画像グループに属する画像数に基づいた重み付けを行うことで、故障解析に用いられる差分画像を生成する第1解析モードと、それぞれの画像グループに属する画像数に基づいて、故障解析に用いられる差分画像を選択する第2解析モードとを切り替え可能に構成されていることとしても良い。このような構成によっても、自動で、または操作者が手動で解析モードを選択することにより、最終的に半導体デバイスの故障解析に用いられる差分画像を好適に導出することができる。
 本発明は、半導体デバイスの故障解析に用いられる発熱解析画像における撮像位置ずれの影響を抑制することが可能な半導体故障解析装置、故障解析方法、及び故障解析プログラムとして利用可能である。
 1A…半導体故障解析装置、S…半導体デバイス、10…試料ステージ、12…ステージ駆動部、14…電圧印加部、16…導光光学系、18…撮像装置、20…制御部、21…撮像制御部、22…ステージ制御部、23…同期制御部、30…画像処理部、31…画像記憶部、32…撮像位置算出部、33…画像分類部、34…差分画像生成部、36…入力装置、37…表示装置。

Claims (16)

  1.  半導体デバイスの発熱像を用いて故障解析を行う半導体故障解析装置であって、
     解析対象となる半導体デバイスに対してバイアス電圧を印加する電圧印加手段と、
     前記半導体デバイスの画像を取得する撮像手段と、
     前記撮像手段によって取得された画像に対して、前記半導体デバイスの故障解析に必要な画像処理を行う画像処理手段とを備え、
     前記撮像手段は、前記半導体デバイスに前記バイアス電圧が印加された状態での発熱像をそれぞれ含む複数の解析画像と、前記バイアス電圧が印加されていない状態での複数の背景画像とを取得するとともに、
     前記画像処理手段は、
     前記複数の解析画像及び前記複数の背景画像のそれぞれについて、その撮像位置を算出する撮像位置算出手段と、
     前記複数の解析画像及び前記複数の背景画像のそれぞれでの前記撮像位置に対して、前記撮像位置の位置頻度分布を参照して設定された領域分割単位を用意し、前記領域分割単位にしたがって分割されたN個の領域(Nは2以上の整数)のどの領域に前記撮像位置が属するかによって、前記複数の解析画像及び前記複数の背景画像をN個の画像グループに分類する画像分類手段と、
     分類された前記N個の画像グループについて個別に、故障解析に用いられる前記解析画像と前記背景画像との差分画像を生成する差分画像生成手段と
    を有することを特徴とする半導体故障解析装置。
  2.  前記画像分類手段は、前記複数の解析画像及び前記複数の背景画像のそれぞれでの前記撮像位置の前記位置頻度分布を求めるとともに、前記複数の解析画像の前記位置頻度分布での平均位置μ1及び分布幅w1と、前記複数の背景画像の前記位置頻度分布での平均位置μ2及び分布幅w2とに基づいて、前記領域分割単位を設定することを特徴とする請求項1記載の半導体故障解析装置。
  3.  前記画像分類手段は、前記領域分割単位を調整するための調整係数αを設定するとともに、前記複数の解析画像についての領域単位μ1±α×w1と、前記複数の背景画像についての領域単位μ2±α×w2とを求め、それらの領域単位の共通範囲を前記領域分割単位として設定することを特徴とする請求項2記載の半導体故障解析装置。
  4.  前記画像分類手段は、操作者によって入力された係数値に基づいて、前記調整係数αを設定することを特徴とする請求項3記載の半導体故障解析装置。
  5.  前記画像分類手段は、前記複数の解析画像の前記位置頻度分布での前記分布幅w1と、前記複数の背景画像の前記位置頻度分布での前記分布幅w2とを、それぞれ標準偏差σによって求めるとともに、前記調整係数αを、条件1≦α≦2を満たす範囲内で設定することを特徴とする請求項3または4記載の半導体故障解析装置。
  6.  前記差分画像生成手段は、前記N個の画像グループのそれぞれについて求められるN個の前記差分画像に対して、それぞれの画像グループに属する画像数に基づいた重み付けを行うことで、故障解析に用いられる差分画像を生成することを特徴とする請求項1~5のいずれか一項記載の半導体故障解析装置。
  7.  前記差分画像生成手段は、前記N個の画像グループのそれぞれについて求められるN個の前記差分画像に対して、それぞれの画像グループに属する画像数に基づいて、故障解析に用いられる差分画像を選択することを特徴とする請求項1~6のいずれか一項記載の半導体故障解析装置。
  8.  前記差分画像生成手段は、前記N個の画像グループのそれぞれについて求められるN個の前記差分画像に対して、それぞれの画像グループに属する画像数に基づいた重み付けを行うことで、故障解析に用いられる差分画像を生成する第1解析モードと、それぞれの画像グループに属する画像数に基づいて、故障解析に用いられる差分画像を選択する第2解析モードとを切り替え可能に構成されていることを特徴とする請求項1~5のいずれか一項記載の半導体故障解析装置。
  9.  半導体デバイスの発熱像を用いて故障解析を行う半導体故障解析方法であって、
     解析対象となる半導体デバイスに対してバイアス電圧を印加する電圧印加ステップと、
     前記半導体デバイスの画像を取得する撮像ステップと、
     前記撮像ステップによって取得された画像に対して、前記半導体デバイスの故障解析に必要な画像処理を行う画像処理ステップとを備え、
     前記撮像ステップは、前記半導体デバイスに前記バイアス電圧が印加された状態での発熱像をそれぞれ含む複数の解析画像と、前記バイアス電圧が印加されていない状態での複数の背景画像とを取得するとともに、
     前記画像処理ステップは、
     前記複数の解析画像及び前記複数の背景画像のそれぞれについて、その撮像位置を算出する撮像位置算出ステップと、
     前記複数の解析画像及び前記複数の背景画像のそれぞれでの前記撮像位置に対して、前記撮像位置の位置頻度分布を参照して設定された領域分割単位を用意し、前記領域分割単位にしたがって分割されたN個の領域(Nは2以上の整数)のどの領域に前記撮像位置が属するかによって、前記複数の解析画像及び前記複数の背景画像をN個の画像グループに分類する画像分類ステップと、
     分類された前記N個の画像グループについて個別に、故障解析に用いられる前記解析画像と前記背景画像との差分画像を生成する差分画像生成ステップと
    を有することを特徴とする半導体故障解析方法。
  10.  前記画像分類ステップは、前記複数の解析画像及び前記複数の背景画像のそれぞれでの前記撮像位置の前記位置頻度分布を求めるとともに、前記複数の解析画像の前記位置頻度分布での平均位置μ1及び分布幅w1と、前記複数の背景画像の前記位置頻度分布での平均位置μ2及び分布幅w2とに基づいて、前記領域分割単位を設定することを特徴とする請求項9記載の半導体故障解析方法。
  11.  前記画像分類ステップは、前記領域分割単位を調整するための調整係数αを設定するとともに、前記複数の解析画像についての領域単位μ1±α×w1と、前記複数の背景画像についての領域単位μ2±α×w2とを求め、それらの領域単位の共通範囲を前記領域分割単位として設定することを特徴とする請求項10記載の半導体故障解析方法。
  12.  前記画像分類ステップは、操作者によって入力された係数値に基づいて、前記調整係数αを設定することを特徴とする請求項11記載の半導体故障解析方法。
  13.  前記画像分類ステップは、前記複数の解析画像の前記位置頻度分布での前記分布幅w1と、前記複数の背景画像の前記位置頻度分布での前記分布幅w2とを、それぞれ標準偏差σによって求めるとともに、前記調整係数αを、条件1≦α≦2を満たす範囲内で設定することを特徴とする請求項11または12記載の半導体故障解析方法。
  14.  前記差分画像生成ステップは、前記N個の画像グループのそれぞれについて求められるN個の前記差分画像に対して、それぞれの画像グループに属する画像数に基づいた重み付けを行うことで、故障解析に用いられる差分画像を生成することを特徴とする請求項9~13のいずれか一項記載の半導体故障解析方法。
  15.  前記差分画像生成ステップは、前記N個の画像グループのそれぞれについて求められるN個の前記差分画像に対して、それぞれの画像グループに属する画像数に基づいて、故障解析に用いられる差分画像を選択することを特徴とする請求項9~14のいずれか一項記載の半導体故障解析方法。
  16.  前記差分画像生成ステップは、前記N個の画像グループのそれぞれについて求められるN個の前記差分画像に対して、それぞれの画像グループに属する画像数に基づいた重み付けを行うことで、故障解析に用いられる差分画像を生成する第1解析モードと、それぞれの画像グループに属する画像数に基づいて、故障解析に用いられる差分画像を選択する第2解析モードとを切り替え可能に構成されていることを特徴とする請求項9~13のいずれか一項記載の半導体故障解析方法。
PCT/JP2011/053728 2010-04-28 2011-02-21 半導体故障解析装置及び故障解析方法 WO2011135902A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11774687.5A EP2565914A4 (en) 2010-04-28 2011-02-21 Semiconductor fault analysis device and fault analysis method
KR1020127026103A KR101668512B1 (ko) 2010-04-28 2011-02-21 반도체 고장 해석 장치 및 고장 해석 방법
US13/643,415 US8885919B2 (en) 2010-04-28 2011-02-21 Semiconductor fault analysis device and fault analysis method
CN201180021063.XA CN102859675B (zh) 2010-04-28 2011-02-21 半导体故障解析装置及故障解析方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-103876 2010-04-28
JP2010103876A JP5296739B2 (ja) 2010-04-28 2010-04-28 半導体故障解析装置及び故障解析方法

Publications (1)

Publication Number Publication Date
WO2011135902A1 true WO2011135902A1 (ja) 2011-11-03

Family

ID=44861223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053728 WO2011135902A1 (ja) 2010-04-28 2011-02-21 半導体故障解析装置及び故障解析方法

Country Status (7)

Country Link
US (1) US8885919B2 (ja)
EP (1) EP2565914A4 (ja)
JP (1) JP5296739B2 (ja)
KR (1) KR101668512B1 (ja)
CN (1) CN102859675B (ja)
TW (1) TWI486582B (ja)
WO (1) WO2011135902A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016162930A1 (ja) * 2015-04-06 2016-10-13 三菱電機株式会社 非破壊検査システム及び特異点検出システム
US10895592B2 (en) 2017-03-24 2021-01-19 Rosemount Aerospace Inc. Probe heater remaining useful life determination
US10197517B2 (en) * 2017-03-24 2019-02-05 Rosemount Aerospace, Inc. Probe heater remaining useful life determination
US10914777B2 (en) 2017-03-24 2021-02-09 Rosemount Aerospace Inc. Probe heater remaining useful life determination
US10564203B2 (en) 2017-03-24 2020-02-18 Rosemount Aerospace Inc. Probe heater remaining useful life determination
US11060992B2 (en) 2017-03-24 2021-07-13 Rosemount Aerospace Inc. Probe heater remaining useful life determination
JP6871070B2 (ja) * 2017-06-06 2021-05-12 浜松ホトニクス株式会社 半導体デバイス検査方法
JP7025280B2 (ja) 2018-05-08 2022-02-24 浜松ホトニクス株式会社 メタレンズユニット、半導体故障解析装置、及び半導体故障解析方法
US11061080B2 (en) 2018-12-14 2021-07-13 Rosemount Aerospace Inc. Real time operational leakage current measurement for probe heater PHM and prediction of remaining useful life
US10962580B2 (en) 2018-12-14 2021-03-30 Rosemount Aerospace Inc. Electric arc detection for probe heater PHM and prediction of remaining useful life
US11639954B2 (en) 2019-05-29 2023-05-02 Rosemount Aerospace Inc. Differential leakage current measurement for heater health monitoring
US11472562B2 (en) 2019-06-14 2022-10-18 Rosemount Aerospace Inc. Health monitoring of an electrical heater of an air data probe
US11930563B2 (en) 2019-09-16 2024-03-12 Rosemount Aerospace Inc. Monitoring and extending heater life through power supply polarity switching
US11293995B2 (en) 2020-03-23 2022-04-05 Rosemount Aerospace Inc. Differential leakage current measurement for heater health monitoring
US11630140B2 (en) 2020-04-22 2023-04-18 Rosemount Aerospace Inc. Prognostic health monitoring for heater
US11151710B1 (en) * 2020-05-04 2021-10-19 Applied Materials Israel Ltd. Automatic selection of algorithmic modules for examination of a specimen
CN112468743A (zh) * 2020-11-09 2021-03-09 泓准达科技(上海)有限公司 一种热点变化过程的显示方法、装置、介质及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281700A (ja) * 1993-03-26 1994-10-07 Nippon Telegr & Teleph Corp <Ntt> 半導体装置の故障解析方法及びその故障解析装置
JPH07311168A (ja) * 1994-05-17 1995-11-28 Hamamatsu Photonics Kk 内部発熱解析装置
JPH09266238A (ja) 1996-03-29 1997-10-07 Sony Corp 電子回路の欠陥検査装置
JPH11337511A (ja) 1998-05-25 1999-12-10 Advantest Corp 回路検査装置および方法
JP2003303746A (ja) * 2002-04-08 2003-10-24 Hitachi Ltd 半導体の不良解析方法及びそのシステム並びに半導体の不良解析プログラム
JP2007024669A (ja) * 2005-07-15 2007-02-01 Dainippon Printing Co Ltd 検査装置、検査方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002792A (en) * 1993-11-16 1999-12-14 Hamamatsu Photonics Kk Semiconductor device inspection system
US20050252545A1 (en) * 2004-05-12 2005-11-17 Spire Corporation Infrared detection of solar cell defects under forward bias
US7474115B1 (en) * 2004-12-28 2009-01-06 Dupont Displays, Inc. Organic electronic device display defect detection
JP5087236B2 (ja) * 2006-06-14 2012-12-05 ルネサスエレクトロニクス株式会社 半導体不良解析装置、不良解析方法、及び不良解析プログラム
JP4931483B2 (ja) * 2006-06-14 2012-05-16 ルネサスエレクトロニクス株式会社 半導体不良解析装置、不良解析方法、及び不良解析プログラム
JP4941253B2 (ja) * 2007-11-28 2012-05-30 横河電機株式会社 Icテスタ
TW200940977A (en) * 2008-03-19 2009-10-01 Viswell Technology Co Ltd Optical imaging apparatus and method for inspection of solar cells
KR20090114940A (ko) * 2008-04-30 2009-11-04 주식회사 하이닉스반도체 반도체 메모리 소자와 그의 구동 방법 및 압축 테스트 방법
JP2009288090A (ja) * 2008-05-29 2009-12-10 Sanyo Electric Co Ltd 半導体素子の発熱解析方法
JP6078870B2 (ja) * 2012-06-28 2017-02-15 株式会社Screenホールディングス 検査装置および検査方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281700A (ja) * 1993-03-26 1994-10-07 Nippon Telegr & Teleph Corp <Ntt> 半導体装置の故障解析方法及びその故障解析装置
JPH07311168A (ja) * 1994-05-17 1995-11-28 Hamamatsu Photonics Kk 内部発熱解析装置
JP2758562B2 (ja) 1994-05-17 1998-05-28 浜松ホトニクス株式会社 内部発熱解析装置
JPH09266238A (ja) 1996-03-29 1997-10-07 Sony Corp 電子回路の欠陥検査装置
JPH11337511A (ja) 1998-05-25 1999-12-10 Advantest Corp 回路検査装置および方法
JP2003303746A (ja) * 2002-04-08 2003-10-24 Hitachi Ltd 半導体の不良解析方法及びそのシステム並びに半導体の不良解析プログラム
JP2007024669A (ja) * 2005-07-15 2007-02-01 Dainippon Printing Co Ltd 検査装置、検査方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2565914A4

Also Published As

Publication number Publication date
JP5296739B2 (ja) 2013-09-25
US8885919B2 (en) 2014-11-11
KR20130058666A (ko) 2013-06-04
US20130039565A1 (en) 2013-02-14
EP2565914A1 (en) 2013-03-06
JP2011233768A (ja) 2011-11-17
TWI486582B (zh) 2015-06-01
KR101668512B1 (ko) 2016-10-21
CN102859675B (zh) 2015-06-24
CN102859675A (zh) 2013-01-02
TW201137345A (en) 2011-11-01
EP2565914A4 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
JP5296739B2 (ja) 半導体故障解析装置及び故障解析方法
JP5004659B2 (ja) 荷電粒子線装置
US7783103B2 (en) Defect detecting device, image sensor device, image sensor module, image processing device, digital image quality tester, and defect detecting method
US8274026B2 (en) Focus assist system and method
JP2001156135A (ja) 欠陥画像の分類方法及びその装置並びにそれを用いた半導体デバイスの製造方法
US8251515B2 (en) Projector, projection system, image display method, and image display program
JP2013236032A (ja) 欠陥解析支援装置、欠陥解析支援装置で実行されるプログラム、および欠陥解析システム
TWI758609B (zh) 影像生成裝置及影像生成方法
JP2009180583A (ja) ディスプレイの輝度ムラ評価方法および装置
JP2007172397A (ja) エッジ勾配検出方法、シミ欠陥検出方法、エッジ勾配検出装置、シミ欠陥検出装置
US20060018533A1 (en) Segmentation technique of an image
WO2020110712A1 (ja) 検査システム、検査方法およびプログラム
JP4709762B2 (ja) 画像処理装置及び方法
JP2005172559A (ja) パネルの線欠陥検出方法及び装置
JP2014022662A (ja) ウエハ外観検査装置及びウエハ外観検査装置における感度しきい値設定方法
JP5873099B2 (ja) フィルムを自動的に修復する方法および装置
JP2011002401A (ja) 輝度測定装置における補正係数算出方法および輝度測定装置
CN110062151B (zh) 平滑图像生成装置、异常判定装置、平滑图像生成方法
JP2006145228A (ja) ムラ欠陥検出方法及び装置
US20220292662A1 (en) Information processing apparatus,information processing method,and non-transitory computer-readable storage medium
Chen A Hierarchical Path-based and SSIM-motivated Method for Cartoon Image Interpolation
JP2021071808A (ja) 画像処理装置、画像処理方法及びプログラム
CN109905695B (zh) 异常判定装置、异常判定方法及记录介质
JP2007285753A (ja) 欠陥検出方法および欠陥検出装置
KR20240043069A (ko) 마크 검출 방법 및 컴퓨터 프로그램

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180021063.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774687

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127026103

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13643415

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011774687

Country of ref document: EP