WO2011135884A1 - Device for producing polycrystalline si ingot, polycrystalline si ingot, and polycrystalline si wafer - Google Patents

Device for producing polycrystalline si ingot, polycrystalline si ingot, and polycrystalline si wafer Download PDF

Info

Publication number
WO2011135884A1
WO2011135884A1 PCT/JP2011/052338 JP2011052338W WO2011135884A1 WO 2011135884 A1 WO2011135884 A1 WO 2011135884A1 JP 2011052338 W JP2011052338 W JP 2011052338W WO 2011135884 A1 WO2011135884 A1 WO 2011135884A1
Authority
WO
WIPO (PCT)
Prior art keywords
ingot
polycrystalline
melt
shape
crystal
Prior art date
Application number
PCT/JP2011/052338
Other languages
French (fr)
Japanese (ja)
Inventor
一雄 中嶋
健太朗 沓掛
聖 小野
Original Assignee
株式会社東北テクノアーチ
株式会社第一機電
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東北テクノアーチ, 株式会社第一機電 filed Critical 株式会社東北テクノアーチ
Publication of WO2011135884A1 publication Critical patent/WO2011135884A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/035Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process

Definitions

  • the present invention relates to a Si polycrystalline ingot manufacturing apparatus, a Si polycrystalline ingot, and a Si polycrystalline wafer.
  • the cast growth method using unidirectional growth is a method of manufacturing a Si polycrystal ingot grown in one direction from the bottom of the crucible upward using a Si melt placed in the crucible.
  • the advantage of this cast growth method is that a large-capacity Si polycrystalline ingot can be manufactured relatively easily at a low cost.
  • Dendrite-based cast growth methods and floating cast growth methods have been proposed as techniques for controlling the crystal structure of such Si polycrystal ingots (see, for example, Patent Documents 1, 2, or 3). There, the importance and method of expressing dendrite crystals at the bottom or near the surface of the Si melt are described, and the dendrite crystals are expressed at the initial stage of ingot growth to increase the grain size, Efforts are being made to align the direction.
  • Patent Documents 1 to 3 cannot control the growth direction, arrangement, arrangement, and distribution of the dendrite crystals that are expressed in the initial stage of growth, and thus produce a truly high-quality, high-homogeneous Si polycrystalline ingot. There was a problem that we could not do it. There has never been a technology that enables such ideal structure control and defect / impurity control, and an apparatus for manufacturing a Si polycrystalline ingot.
  • the present invention has been made paying attention to such problems, and can control the growth direction, arrangement, arrangement, and distribution of the dendrite crystals to be expressed at the early stage of growth, and can produce a high-quality, high-homogeneous Si polycrystal ingot.
  • An object of the present invention is to provide a Si polycrystalline ingot production apparatus, a Si polycrystalline ingot, and a Si polycrystalline wafer that can be produced.
  • the inventors of the present invention have made linear, point-like, circular, circular, near the bottom or near the surface of the Si melt placed in the crucible and having a high supercooling degree with a lower melt temperature than the surroundings.
  • a region as shown in FIG. 1 having a circumferential shape, a circular arc shape, or a shape obtained by combining a plurality of them is locally created, and a plurality of dendrite crystals are formed from a region having a high melt temperature toward a local region having a low melt temperature. It has been found that a plurality of dendrite crystals can be expressed from a low local region toward a region where the surrounding melt temperature is high.
  • the direction of the dendrite crystal at this time may be directed to the local region as shown in FIG. 2 or generated from the local region as shown in FIG. 3 depending on the degree of supercooling of the local region having a low temperature. I found that it was controllable. Then, by using the upper surface or the lower surface of the plurality of dendrite crystals thus expressed as the seed crystal surface, the Si polycrystal is grown as shown in FIG. 4 so that the crystal grain orientation is uniform, the crystal grain size is large, It has been found that it is possible to produce a Si polycrystal ingot as shown in FIG. 5 having a uniform size, a good grain boundary character, and a crystal structure such that there are few random grain boundaries. Thus, the present inventors have arrived at the present invention.
  • the Si polycrystalline ingot manufacturing apparatus has a Si ingot structure that reflects the crystal structure of the initial stage of growth in which the growth direction, arrangement, arrangement, and distribution of the dendrite crystals are controlled.
  • the melt temperature is increased by changing the degree of supercooling in the local region near the bottom or near the surface of the Si melt placed in the crucible in the initial stage of the growth of the Si polycrystalline ingot.
  • a plurality of dendrite crystals can be expressed from the region toward the local region having a low melt temperature, or a plurality of dendrite crystals can be expressed from the local region having a low melt temperature toward a region having a high melt temperature.
  • the melt temperature is low, the linear, dotted, circular, or circumferential shape has a large degree of supercooling. That the arcuate or the local region in which a plurality consisting shape combining of them is configured to be formed, characterized.
  • the Si polycrystalline ingot manufacturing apparatus promotes the occurrence of nucleation in the local region by controlling the in-plane distribution of the supercooling degree by changing the supercooling degree of the local region. Suppress and develop multiple dendrite crystals from the high melt temperature region toward the low melt temperature region, or multiple dendrite crystals from the low melt temperature region to the high melt temperature region It is preferable to be configured so that it can be expressed freely.
  • the Si polycrystal ingot manufacturing apparatus has a function of growing a Si polycrystal ingot using the upper surface or the lower surface of the plurality of dendrite crystals formed at an initial stage of growth as a seed crystal surface. Is preferred.
  • An apparatus for producing a Si polycrystalline ingot according to the present invention is a linear, dot-like, circular, circumferential, arc-like shape in which the melt temperature is lower than the surroundings and has a large degree of supercooling near the bottom of the Si melt.
  • the cooling body may have a structure capable of locally controlling the escape of heat from the bottom surface of the crucible by geometrically combining materials having different thermal conductivities.
  • the cooling body may be made of a material having a high thermal conductivity, such as a linear band shape, a circumferential band shape, an arc-shaped band shape, a circular shape, a dot shape, or the like. A plurality of these may be arranged in-plane, and another in-plane portion may have a shape in which a material having low thermal conductivity is arranged.
  • the apparatus for producing a Si polycrystalline ingot according to the present invention is a linear, dotted, circular, circumferential, arc-shaped, near the surface of the Si melt, having a melt temperature lower than that of the melt and having a large degree of supercooling.
  • a cooling gas spray mechanism that can locally control the escape of heat from the surface of the Si melt, or Si crystal, quartz, etc. You may have the structure which has arrange
  • the Si polycrystal ingot manufacturing apparatus can control the growth direction, arrangement, arrangement, and distribution of dendrite crystals that are expressed in the early stage of growth.
  • the crystal structure of the Si polycrystal can be controlled with high accuracy, and the crystal grain size, crystal grain arrangement / distribution, and crystal grain orientation can be optimized.
  • the characteristics and consistency of random grain boundaries formed by these crystal grains within a certain optimal range, only the grain boundaries having a highly consistent grain boundary character are oriented, and the grain boundaries themselves Can be electrically inactive.
  • by arranging the grain boundaries at appropriate intervals and using the grain boundaries as sites for accumulating crystal defects and impurities it is possible to help control and reduce the distribution of crystal defects and impurities.
  • the Si polycrystalline ingot manufacturing apparatus improves the crystal quality in the crystal grains, and can also precisely control the crystal grain size, crystal grain orientation, and grain boundary character, and has high quality and high quality.
  • a homogeneous Si polycrystalline ingot can be produced.
  • the Si polycrystal ingot according to the present invention is produced using the Si polycrystal ingot production apparatus according to the present invention, and has a crystal structure reflecting the structure in which the growth direction, arrangement, arrangement, and distribution of the dendrite crystal are controlled. Is a feature.
  • the Si polycrystalline ingot according to the present invention is manufactured using the Si polycrystalline ingot manufacturing apparatus according to the present invention, and has a crystal structure in which the plane orientations of adjacent crystal grains are approximated.
  • the Si polycrystal wafer according to the present invention is produced using the Si polycrystal ingot production apparatus according to the present invention, and has a crystal structure reflecting the structure in which the growth direction, arrangement, arrangement, and distribution of the dendrite crystals are controlled. Is a feature.
  • the Si polycrystalline wafer according to the present invention is produced using the Si polycrystalline ingot manufacturing apparatus according to the present invention and has a crystal structure in which the plane orientations of adjacent crystal grains are approximated.
  • the present invention it is possible to control the growth direction, arrangement, arrangement, and distribution of dendritic crystals that are expressed at the initial stage of growth, and to manufacture a high-quality, high-homogeneous Si polycrystalline ingot.
  • Devices, Si polycrystalline ingots and Si polycrystalline wafers can be provided.
  • the principle of the manufacturing apparatus of the Si polycrystalline ingot according to the present invention is shown: (a) a cross-sectional view of a state in which the Si melt is put in the crucible; (b) a local area near the bottom or near the surface of the Si melt. It is a top view which shows a low-temperature area
  • FIG. 1 It is a perspective view of the manufactured Si polycrystal ingot which shows the principle of the manufacturing apparatus of Si polycrystal ingot based on this invention.
  • a shape in which a material having high thermal conductivity is arranged in a plane in a circular shape and a material having a low thermal conductivity is arranged in the other in-plane portion. It is (a) top view which shows the cooling body of (b), and (b) longitudinal cross-sectional view.
  • the Si polycrystalline ingot manufactured using the cooling body shown in FIG. 6 has a 10 cm square horizontally on the bottom surface at a position of about 1 mm from the bottom surface (a).
  • FIG. 1 to 10 show an apparatus for producing a Si polycrystalline ingot, an Si polycrystalline ingot, and an Si polycrystalline wafer according to an embodiment of the present invention.
  • the Si polycrystal ingot manufacturing apparatus has a bottom surface of the crucible 1 in a linear shape, a dotted shape, a circular shape, a circumferential shape, an arc shape, or a plurality of them.
  • a structure in which a cooling body capable of locally controlling the heat escape from the bottom surface of the crucible 1 is arranged so that it can be locally cooled to the combined shape, or the vicinity of the Si melt surface is linear, dotted, or circular Cooling gas injection mechanism that can locally control the escape of heat from the surface of the Si melt, so that it can be locally cooled into a shape, a circumferential shape, an arc shape, or a combination of a plurality of them, or
  • a cooling rod or a cooling plate made of Si crystal or quartz is arranged.
  • a material obtained by geometrically combining materials having different thermal conductivities is used as the cooling body disposed on the bottom surface of the crucible 1.
  • a material having high thermal conductivity is made of a linear band shape, a circumferential band shape, an arc-shaped band shape, a circular shape, a dot shape, or those A shape in which a plurality of these materials are combined and arranged in a plane and a material having low thermal conductivity is arranged in the other in-plane portion is used.
  • the Si polycrystalline ingot manufacturing apparatus locally cools the vicinity of the bottom or the surface of the Si melt 2 placed in the crucible 1.
  • the in-plane distribution of the degree of supercooling can be freely controlled by changing the degree of supercooling of 2a.
  • the nucleation of the dendrite crystal 3 is promoted or suppressed, and a plurality of dendrite crystals 3 are formed from the region where the melt temperature is high toward the local region 2a where the melt temperature is low as shown in FIG.
  • a plurality of dendrite crystals 3 are expressed from a local region 2a having a low melt temperature toward a region having a high melt temperature.
  • the Si polycrystalline ingot manufacturing apparatus uses the upper surface or the lower surface of the plurality of dendrite crystals 3 formed at the initial stage of growth as a seed crystal surface. It has the function of growing a polycrystalline ingot.
  • the Si polycrystalline ingot manufacturing apparatus can control the growth direction, arrangement, arrangement, and distribution of the dendrite crystal 3 that is expressed at the initial stage of growth.
  • a high-quality and high-homogeneity Si polycrystal ingot having an ingot structure reflecting the crystal structure at the initial stage of growth can be produced.
  • the Si polycrystalline ingot and the Si polycrystalline wafer according to the embodiment of the present invention can be specifically manufactured as follows. .
  • a Si melt 2 is put in a crucible 1, and a cooling body, a cooling gas spray mechanism, a cooling rod, near the bottom or near the surface of the Si melt 2 put in the crucible 1,
  • a local region 2a having a linear shape, a dotted shape, a circular shape, a circumferential shape, an arc shape, or a combination of a plurality of them is formed by a cooling plate or the like, which has a lower supercooling temperature than the surroundings and a large degree of supercooling.
  • the supercooling degree of the local region 2a is adjusted in the range of 1 ° C. to 50 ° C. in consideration of the temperature of the surrounding Si melt 2 to freely control the in-plane distribution of the supercooling degree.
  • the dendrite crystal 3 that preferentially grows in the ⁇ 112> direction or the ⁇ 110> direction is expressed near the bottom surface of the Si melt 2 or near the surface of the Si melt 2, and nucleation of the dendrite crystal 3 is promoted. 2 or 2 to control whether the direction is the direction toward the local region 2a shown in FIG. 2 or the direction from the local region 2a shown in FIG. 3 toward the outside.
  • the orientation of the upper surface or the lower surface of the dendrite crystal 3 is inherited, and unidirectional growth is performed.
  • a Si polycrystal having a transition crystal orientation aligned with the ⁇ 110 ⁇ plane or the ⁇ 112 ⁇ plane is grown.
  • the crystal structure is such that the crystal grain orientation is uniform, the crystal grain size is large, the size is uniform, the grain boundary character is good, and there are few random grain boundaries.
  • the Si polycrystal ingot having can be manufactured.
  • the apparatus for manufacturing a Si polycrystalline ingot according to the embodiment of the present invention has a large degree of supercooling near the bottom or near the surface of the Si melt 2 placed in the crucible 1 and having a lower melt temperature than the surroundings. It is possible to create a local low temperature region having a linear shape, a dotted shape, a circular shape, a circumferential shape, an arc shape, or a shape obtained by combining a plurality of them. For this reason, a plurality of dendrite crystals 3 are developed from a region having a high melt temperature toward a low local region 2a, or a plurality of dendrite crystals 3 are developed from a low local region 2a toward a region having a high melt temperature. You can make it. At this time, the direction toward the dendrite crystal 3 can be freely controlled by the degree of supercooling of the local region 2a having a low temperature.
  • the Si polycrystal By growing the Si polycrystal using the upper surface or the lower surface of the plurality of dendrite crystals 3 thus developed as the seed crystal plane, the plane orientation of the adjacent crystal grains is approximated, the crystal grain size is large, and the size is In addition, it is possible to manufacture a very good Si polycrystal ingot characterized by a crystal structure such as having a good grain boundary character and having few crystal defects such as subgrain boundaries. From this Si polycrystal ingot, it is possible to obtain an extremely good Si polycrystal wafer having a crystal structure similar to that of the ingot.
  • the Si polycrystalline ingot manufacturing apparatus With the Si polycrystalline ingot manufacturing apparatus according to the embodiment of the present invention, a high-quality and highly uniform Si polycrystalline ingot and Si polycrystalline wafer with few crystal defects such as subgrain boundaries can be obtained in the unidirectional growth cast growth method. It is done. For this reason, the production of a highly efficient solar cell can be expected even in an ingot region where the solar cell characteristics usually deteriorate. According to the present invention, it is possible to produce a Si polycrystal ingot or a Si polycrystal wafer that can realize a low-cost and high-efficiency solar cell, which has been eagerly desired to be realized, and can greatly contribute to the popularization of solar cells.
  • the size of the crucible 1 is 15 cm in diameter, and the weight of the ingot is 2.5 kg.
  • a quartz crucible 1 coated with silicon nitride powder on the inner surface is filled with 2.5 kg of Si raw material and set at a predetermined position in the manufacturing apparatus, and then heated to about 1450 ° C. in an Ar gas atmosphere, Thawed completely.
  • the temperature of the crucible 1 was lowered to near the melting point temperature of Si, and a region having a temperature lower by about 5 ° C. than the surroundings was locally formed near the center of the bottom surface of the crucible 1.
  • the local region 2a has a shape in which a material 4a having a high thermal conductivity is arranged in a plane in a circular shape, and a material 4b having a low thermal conductivity is arranged in the other in-plane portion. It formed using the cooling body.
  • the dendrite crystal 3 was grown along the bottom surface of the crucible 1 so as to go from the periphery of the bottom surface of the crucible 1 to the center. Thereafter, the crucible 1 was pulled down in a temperature gradient such that the upper part was at a high temperature and the lower part was at a low temperature, and a Si crystal was grown in one direction in a direction perpendicular to the bottom surface of the crucible 1 using the upper surface of the dendrite crystal 3 as a seed crystal surface. After all of the Si melt 2 in the crucible 1 was solidified, the temperature in the production apparatus was lowered to room temperature to complete the growth.
  • FIG. 7 (a) shows the surface structure of a wafer obtained by cutting a cylindrical Si polycrystal ingot having a diameter of 15 cm thus manufactured at a position of about 1 mm from the bottom surface and horizontally 10 cm square on the bottom surface.
  • the bottom of the Si polycrystalline ingot has a crystal structure in which the growth direction, arrangement, and distribution of the dendrite crystal 3 are controlled.
  • FIG. 7 (b) shows the surface structure of the wafer cut out in a size of 10 cm square horizontally from the bottom surface of the manufactured Si polycrystal ingot at a position of about 50 mm.
  • Table 1 shows the crystal orientation of each crystal grain indicated by the circled numbers in FIG. 7B in the direction perpendicular to the wafer surface.
  • the Si polycrystalline wafer cut out from the Si polycrystalline ingot has a crystal structure reflecting the structure of the dendrite crystal 3 at the bottom of the ingot.
  • the manufactured Si polycrystal ingot has a large crystal grain size and a Si polycrystal wafer for solar cells in which the plane orientations of adjacent crystal grains are approximated.
  • a crystal structure of a high-quality and highly uniform Si polycrystalline wafer cannot be obtained by a normal cast growth method.
  • the cooling body of the shape which arrange
  • a Si polycrystal ingot was manufactured under the same conditions in which a region having a lower temperature than the surroundings was locally formed.
  • the initial crystal structure of the Si polycrystalline ingot at this time is shown in FIG. As shown in FIG. 9, in the initial crystal structure, it was confirmed that the dendrite crystals 3 were arranged almost in parallel.
  • a quartz crucible 1 coated with silicon nitride powder on the inner surface is filled with 2.5 kg of Si raw material and set at a predetermined position in the manufacturing apparatus, and then heated to about 1450 ° C. in an Ar gas atmosphere, Thawed completely.
  • the vicinity of the melt surface is brought into a supercooled state of 10 ° C. or higher where the dendrite crystal 3 is developed, and the heat from the upper part is locally removed.
  • a region having a temperature lower than the surroundings by about 5 ° C. is locally formed on a part of the melt surface, and the dendrite crystal 3 is formed along the melt surface from the local low temperature region to the surroundings.
  • the temperature in the manufacturing apparatus is lowered at a constant speed while maintaining a temperature gradient that lowers the temperature at the upper part of the melt, and the direction toward the bottom of the crucible 1 with the lower surface of the dendrite crystal 3 as the seed crystal surface.
  • a Si crystal was grown in one direction. After all of the Si melt 2 in the crucible 1 was solidified, the temperature in the production apparatus was lowered to room temperature to complete the growth.
  • FIG. 10 shows the upper surface texture of the cylindrical Si polycrystal ingot having a diameter of 15 cm thus manufactured.
  • the upper surface of the Si polycrystalline ingot has a crystal structure in which the growth direction, arrangement, and distribution of the dendrite crystal 3 are controlled.
  • the manufactured Si polycrystal ingot has an ideal crystal structure as a Si polycrystal wafer for solar cells.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

A device for producing a polycrystalline Si ingot is provided with which it is possible to control the growth direction, arrangement, configuration, and distribution of dendrite crystals that are to be generated in the beginning of growth, and with which a high-quality highly homogeneous polycrystalline Si ingot can be produced. Also provided are a polycrystalline Si ingot and a polycrystalline Si wafer. In the vicinity of the bottom or surface of a Si melt (2) placed in a crucible (1), a local area (2a) in which the melt has a low temperature and a high degree of supercooling and which has the shape of a line, point, circle, circular circumstance, or circular arc or of a combination of two or more thereof can be formed so that a plurality of dendrite crystals (3) can be generated from an area having a high melt temperature toward the local area (2a), which has a low melt temperature, or a plurality of dendrite crystals (3) can be generated from the local area (2a), which has a low melt temperature, toward an area having a high melt temperature, by changing the degree of supercooling of the local area (2a), which is present in the vicinity of the bottom or surface of the Si melt (2).

Description

Si多結晶インゴットの製造装置、Si多結晶インゴットおよびSi多結晶ウェハーSi polycrystalline ingot manufacturing apparatus, Si polycrystalline ingot, and Si polycrystalline wafer
 本発明は、Si多結晶インゴットの製造装置、Si多結晶インゴットおよびSi多結晶ウェハーに関する。 The present invention relates to a Si polycrystalline ingot manufacturing apparatus, a Si polycrystalline ingot, and a Si polycrystalline wafer.
 現在の太陽電池の大半には、コストが下がり、大量生産が可能で、資源が豊富で安全なSi多結晶インゴットが用いられている。その主要な製造技術として、一方向成長を利用したキャスト成長法が一般的に使用されている。一方向成長を利用したキャスト成長法とは、ルツボ内に入れたSi融液を用いて、ルツボ底面から上方向に向かって一方向にSi多結晶インゴットを成長させて製造する方法である。このキャスト成長法の利点は、低コストで大容量のSi多結晶インゴットが比較的容易に製造できることにある。 Most of the current solar cells use Si polycrystalline ingots that are low in cost, can be mass-produced, are rich in resources, and are safe. As the main manufacturing technique, a cast growth method using unidirectional growth is generally used. The cast growth method using unidirectional growth is a method of manufacturing a Si polycrystal ingot grown in one direction from the bottom of the crucible upward using a Si melt placed in the crucible. The advantage of this cast growth method is that a large-capacity Si polycrystalline ingot can be manufactured relatively easily at a low cost.
 しかし、このキャスト成長法で製造されるインゴットは、結晶成長の初期段階で形成されるインゴット底部の多結晶組織を制御していないため、サイズの小さな多くの結晶粒が存在し、しかもそれらの結晶粒の方位がランダムに分布している。従って、亜粒界発生の原因となるランダム粒界が多数、インゴット下部に存在し、そのため結晶成長中に亜粒界や転位を発生させることになる。このため、従来のキャスト成長法で作製したSi多結晶インゴットの上部においては、亜粒界などの結晶欠陥が多数存在し、太陽電池の変換効率を低下させていた。また、インゴット底部に形成されたランダムな結晶方位分布がインゴット内に引き続き存在するため、このインゴットから切り出したウェハーを用いて太陽電池を作製した場合、高効率化プロセスの一つである表面テクスチャー構造を最適化することができない。その結果として、太陽電池のエネルギー変換効率を上げられないことになる。このことから、高効率な太陽電池を作製するためには、インゴット全体に渡って結晶方位が揃ったSi多結晶インゴットを製造する技術が必要である。 However, since the ingot produced by this cast growth method does not control the polycrystalline structure at the bottom of the ingot formed in the initial stage of crystal growth, there are many crystal grains with small sizes, and those crystals Grain orientation is randomly distributed. Therefore, many random grain boundaries that cause subgrain boundaries are present in the lower part of the ingot. Therefore, subgrain boundaries and dislocations are generated during crystal growth. For this reason, in the upper part of the Si polycrystal ingot produced by the conventional cast growth method, many crystal defects, such as a subgrain boundary, existed, and the conversion efficiency of the solar cell was reduced. In addition, since a random crystal orientation distribution formed at the bottom of the ingot continues to exist in the ingot, when a solar cell is produced using a wafer cut out from the ingot, a surface texture structure is one of the high efficiency processes. Can not be optimized. As a result, the energy conversion efficiency of the solar cell cannot be increased. For this reason, in order to produce a highly efficient solar cell, a technique for manufacturing a Si polycrystalline ingot having a uniform crystal orientation over the entire ingot is required.
 このようなSi多結晶インゴットの結晶組織を制御して製造する技術として、デンドライト利用キャスト成長法や浮遊キャスト成長法が提案されている(例えば、特許文献1、2または3参照)。そこでは、Si融液の底部または表面近傍でデンドライト結晶を発現させる重要性やその方法が述べられており、インゴットの成長初期にデンドライト結晶を発現させて、結晶粒サイズを大きくしたり、結晶粒方位をそろえたりする努力がなされている。 Dendrite-based cast growth methods and floating cast growth methods have been proposed as techniques for controlling the crystal structure of such Si polycrystal ingots (see, for example, Patent Documents 1, 2, or 3). There, the importance and method of expressing dendrite crystals at the bottom or near the surface of the Si melt are described, and the dendrite crystals are expressed at the initial stage of ingot growth to increase the grain size, Efforts are being made to align the direction.
国際公開2007/063637号International Publication No. 2007/063637 特開2009-084145号公報JP 2009-084145 A 特開2009-051720号公報JP 2009-051720 A
 しかしながら、特許文献1乃至3に記載の技術では、成長初期に発現させるデンドライト結晶の成長方向、配列、配置、分布を制御できていないため、真に高品質・高均質なSi多結晶インゴットを製造することはできないという課題があった。そのような理想的な組織制御と欠陥・不純物制御とを可能にする技術やSi多結晶インゴットを製造する装置は、これまでに存在していない。 However, the techniques described in Patent Documents 1 to 3 cannot control the growth direction, arrangement, arrangement, and distribution of the dendrite crystals that are expressed in the initial stage of growth, and thus produce a truly high-quality, high-homogeneous Si polycrystalline ingot. There was a problem that we could not do it. There has never been a technology that enables such ideal structure control and defect / impurity control, and an apparatus for manufacturing a Si polycrystalline ingot.
 本発明は、このような課題に着目してなされたもので、成長初期に発現させるデンドライト結晶の成長方向、配列、配置、分布を制御可能であり、高品質・高均質なSi多結晶インゴットを製造することができるSi多結晶インゴットの製造装置、Si多結晶インゴットおよびSi多結晶ウェハーを提供することを目的としている。 The present invention has been made paying attention to such problems, and can control the growth direction, arrangement, arrangement, and distribution of the dendrite crystals to be expressed at the early stage of growth, and can produce a high-quality, high-homogeneous Si polycrystal ingot. An object of the present invention is to provide a Si polycrystalline ingot production apparatus, a Si polycrystalline ingot, and a Si polycrystalline wafer that can be produced.
 本発明者らは、長年の研究により、ルツボ内に入れたSi融液の底部付近または表面付近で、周囲より融液温度が低く大きな過冷却度を有する線状、点状、円状、円周状、円弧状またはそれらのうちの複数を組み合わせた形状よりなる、図1に示すような領域を局所的に作り、周囲の融液温度が高い領域から低い局所領域に向けてデンドライト結晶を複数発現させたり、周囲の融液温度が高い領域に向けて低い局所領域からデンドライト結晶を複数発現させたりすることができることを見出した。しかも、この時にデンドライト結晶の向かう方向は、温度の低い局所領域の過冷却度によって、図2に示すように局所領域に向かうことも、図3に示すように局所領域から発生させることも、自在に制御可能であることを発見した。そして、こうして発現させた複数のデンドライト結晶の上面または下面を種結晶面として用いて、図4に示すようにSi多結晶を成長させることにより、結晶粒方位が揃い、結晶粒サイズが大きく、そのサイズも揃い、良質な結晶粒界性格を有し、ランダム粒界も少ないといった結晶組織を有する、図5に示すようなSi多結晶インゴットの製造が可能になることを見出した。このようにして、本発明者らは、本願発明に至った。 As a result of many years of research, the inventors of the present invention have made linear, point-like, circular, circular, near the bottom or near the surface of the Si melt placed in the crucible and having a high supercooling degree with a lower melt temperature than the surroundings. A region as shown in FIG. 1 having a circumferential shape, a circular arc shape, or a shape obtained by combining a plurality of them is locally created, and a plurality of dendrite crystals are formed from a region having a high melt temperature toward a local region having a low melt temperature. It has been found that a plurality of dendrite crystals can be expressed from a low local region toward a region where the surrounding melt temperature is high. In addition, the direction of the dendrite crystal at this time may be directed to the local region as shown in FIG. 2 or generated from the local region as shown in FIG. 3 depending on the degree of supercooling of the local region having a low temperature. I found that it was controllable. Then, by using the upper surface or the lower surface of the plurality of dendrite crystals thus expressed as the seed crystal surface, the Si polycrystal is grown as shown in FIG. 4 so that the crystal grain orientation is uniform, the crystal grain size is large, It has been found that it is possible to produce a Si polycrystal ingot as shown in FIG. 5 having a uniform size, a good grain boundary character, and a crystal structure such that there are few random grain boundaries. Thus, the present inventors have arrived at the present invention.
 すなわち、上記目的を達成するために、本発明に係るSi多結晶インゴットの製造装置は、デンドライト結晶の成長方向、配列、配置、分布を制御した成長初期の結晶組織を反映したインゴット組織を有するSi多結晶インゴットの製造に際して、前記Si多結晶インゴットの成長の初期段階において、ルツボ内に入れたSi融液の底部付近または表面付近の局所領域の過冷却度を変えることにより、融液温度が高い領域から融液温度の低い前記局所領域に向けてデンドライト結晶を複数発現させたり、融液温度の低い前記局所領域から融液温度が高い領域に向けてデンドライト結晶を複数発現させたりすることができるよう、前記Si融液の底部付近または表面付近に、融液温度が低く大きな過冷却度を有する線状、点状、円状、円周状、円弧状またはそれらのうちの複数を組み合わせた形状よりなる前記局所領域を形成可能に構成されていることを、特徴とする。 That is, in order to achieve the above-described object, the Si polycrystalline ingot manufacturing apparatus according to the present invention has a Si ingot structure that reflects the crystal structure of the initial stage of growth in which the growth direction, arrangement, arrangement, and distribution of the dendrite crystals are controlled. When producing a polycrystalline ingot, the melt temperature is increased by changing the degree of supercooling in the local region near the bottom or near the surface of the Si melt placed in the crucible in the initial stage of the growth of the Si polycrystalline ingot. A plurality of dendrite crystals can be expressed from the region toward the local region having a low melt temperature, or a plurality of dendrite crystals can be expressed from the local region having a low melt temperature toward a region having a high melt temperature. In the vicinity of the bottom or near the surface of the Si melt, the melt temperature is low, the linear, dotted, circular, or circumferential shape has a large degree of supercooling. That the arcuate or the local region in which a plurality consisting shape combining of them is configured to be formed, characterized.
 また、本発明に係るSi多結晶インゴットの製造装置は、前記局所領域の過冷却度を変化させて過冷却度の面内分布を制御することにより、前記局所領域における核形成の発生を促進または抑制し、融液温度が高い領域から融液温度の低い前記局所領域に向けてデンドライト結晶を複数発現させたり、融液温度の低い前記局所領域から融液温度が高い領域向けてデンドライト結晶を複数発現させたりすることが自在にできるよう構成されていることが好ましい。 The Si polycrystalline ingot manufacturing apparatus according to the present invention promotes the occurrence of nucleation in the local region by controlling the in-plane distribution of the supercooling degree by changing the supercooling degree of the local region. Suppress and develop multiple dendrite crystals from the high melt temperature region toward the low melt temperature region, or multiple dendrite crystals from the low melt temperature region to the high melt temperature region It is preferable to be configured so that it can be expressed freely.
 さらに、本発明に係るSi多結晶インゴットの製造装置は、成長の初期段階で形成された前記複数のデンドライト結晶の上面または下面を種結晶面として用いてSi多結晶インゴットを成長させる機能を有することが好ましい。 Furthermore, the Si polycrystal ingot manufacturing apparatus according to the present invention has a function of growing a Si polycrystal ingot using the upper surface or the lower surface of the plurality of dendrite crystals formed at an initial stage of growth as a seed crystal surface. Is preferred.
 本発明に係るSi多結晶インゴットの製造装置は、前記Si融液の底部付近で、周囲より融液温度が低く大きな過冷却度を有する線状、点状、円状、円周状、円弧状またはそれらのうちの複数を組み合わせた形状よりなる前記局所領域を作るために、前記ルツボ底面からの熱の逃げを局所的に制御できる冷却体を配置した構造を有していてもよい。前記冷却体は、熱伝導度の異なる材料を幾何学的に組み合わせることにより、前記ルツボ底面からの熱の逃げを局所的に制御可能な構造を有していてもよい。また、前記冷却体は、熱伝導度の高い材料を線状の帯の形、円周状の帯の形、円弧状の帯の形、円状の形、点状の形、またはそれらのうちの複数を組み合わせた形に面内配置し、他の面内部分には熱伝導度の低い材料を配置した形状を成していてもよい。 An apparatus for producing a Si polycrystalline ingot according to the present invention is a linear, dot-like, circular, circumferential, arc-like shape in which the melt temperature is lower than the surroundings and has a large degree of supercooling near the bottom of the Si melt. Or in order to make the said local area | region which consists of the shape which combined multiple of them, you may have the structure which has arrange | positioned the cooling body which can control the heat | fever escape from the said crucible bottom face locally. The cooling body may have a structure capable of locally controlling the escape of heat from the bottom surface of the crucible by geometrically combining materials having different thermal conductivities. The cooling body may be made of a material having a high thermal conductivity, such as a linear band shape, a circumferential band shape, an arc-shaped band shape, a circular shape, a dot shape, or the like. A plurality of these may be arranged in-plane, and another in-plane portion may have a shape in which a material having low thermal conductivity is arranged.
 本発明に係るSi多結晶インゴットの製造装置は、前記Si融液の表面付近で、周囲より融液温度が低く大きな過冷却度を有する線状、点状、円状、円周状、円弧状またはそれらのうちの複数を組み合わせた形状よりなる前記局所領域を作るために、前記Si融液表面からの熱の逃げを局所的に制御できる冷却ガスの噴きつけ機構、または、Si結晶や石英などから構成される冷却棒もしくは冷却板などを配置した構造を有していてもよい。 The apparatus for producing a Si polycrystalline ingot according to the present invention is a linear, dotted, circular, circumferential, arc-shaped, near the surface of the Si melt, having a melt temperature lower than that of the melt and having a large degree of supercooling. Or, in order to make the local region composed of a combination of a plurality of them, a cooling gas spray mechanism that can locally control the escape of heat from the surface of the Si melt, or Si crystal, quartz, etc. You may have the structure which has arrange | positioned the cooling rod or cooling plate comprised from these.
 本発明に係るSi多結晶インゴットの製造装置は、成長初期に発現させるデンドライト結晶の成長方向、配列、配置、分布を制御することができる。これにより、Si多結晶の結晶組織を高精度に制御することができ、結晶粒サイズ、結晶粒の配列・分布、結晶粒方位を最適状態にすることができる。さらに、これらの結晶粒で形成するランダム粒界の性格と整合性とをある最適な範囲に入れることにより、整合性の高い粒界性格を有する結晶粒界のみを配向させて、結晶粒界そのものを電気的に不活性にできる。同時に、結晶粒界を適度な間隔に配列させて、結晶粒界を結晶欠陥や不純物を集積するためのサイトとして活用することにより、結晶欠陥や不純物の分布の制御や低減に役立てることが可能になる。このように、本発明に係るSi多結晶インゴットの製造装置は、結晶粒内の結晶品質を高め、合わせて結晶粒サイズ、結晶粒方位、結晶粒界性格の精密制御ができ、高品質・高均質なSi多結晶インゴットを製造することができる。 The Si polycrystal ingot manufacturing apparatus according to the present invention can control the growth direction, arrangement, arrangement, and distribution of dendrite crystals that are expressed in the early stage of growth. As a result, the crystal structure of the Si polycrystal can be controlled with high accuracy, and the crystal grain size, crystal grain arrangement / distribution, and crystal grain orientation can be optimized. Furthermore, by putting the characteristics and consistency of random grain boundaries formed by these crystal grains within a certain optimal range, only the grain boundaries having a highly consistent grain boundary character are oriented, and the grain boundaries themselves Can be electrically inactive. At the same time, by arranging the grain boundaries at appropriate intervals and using the grain boundaries as sites for accumulating crystal defects and impurities, it is possible to help control and reduce the distribution of crystal defects and impurities. Become. As described above, the Si polycrystalline ingot manufacturing apparatus according to the present invention improves the crystal quality in the crystal grains, and can also precisely control the crystal grain size, crystal grain orientation, and grain boundary character, and has high quality and high quality. A homogeneous Si polycrystalline ingot can be produced.
 本発明に係るSi多結晶インゴットは、本発明に係るSi多結晶インゴットの製造装置を用いて作製され、デンドライト結晶の成長方向、配列、配置、分布を制御した組織を反映した結晶組織を有することを、特徴とする。また、本発明に係るSi多結晶インゴットは、本発明に係るSi多結晶インゴットの製造装置を用いて作製され、隣接する結晶粒の面方位が近似した結晶組織を有することを、特徴とする。 The Si polycrystal ingot according to the present invention is produced using the Si polycrystal ingot production apparatus according to the present invention, and has a crystal structure reflecting the structure in which the growth direction, arrangement, arrangement, and distribution of the dendrite crystal are controlled. Is a feature. The Si polycrystalline ingot according to the present invention is manufactured using the Si polycrystalline ingot manufacturing apparatus according to the present invention, and has a crystal structure in which the plane orientations of adjacent crystal grains are approximated.
 本発明に係るSi多結晶ウェハーは、本発明に係るSi多結晶インゴットの製造装置を用いて作製され、デンドライト結晶の成長方向、配列、配置、分布を制御した組織を反映した結晶組織を有することを、特徴とする。また、本発明に係るSi多結晶ウェハーは、本発明に係るSi多結晶インゴットの製造装置を用いて作製され、隣接する結晶粒の面方位が近似した結晶組織を有することを、特徴とする。 The Si polycrystal wafer according to the present invention is produced using the Si polycrystal ingot production apparatus according to the present invention, and has a crystal structure reflecting the structure in which the growth direction, arrangement, arrangement, and distribution of the dendrite crystals are controlled. Is a feature. The Si polycrystalline wafer according to the present invention is produced using the Si polycrystalline ingot manufacturing apparatus according to the present invention and has a crystal structure in which the plane orientations of adjacent crystal grains are approximated.
 本発明によれば、成長初期に発現させるデンドライト結晶の成長方向、配列、配置、分布を制御可能であり、高品質・高均質なSi多結晶インゴットを製造することができるSi多結晶インゴットの製造装置、Si多結晶インゴットおよびSi多結晶ウェハーを提供することができる。 According to the present invention, it is possible to control the growth direction, arrangement, arrangement, and distribution of dendritic crystals that are expressed at the initial stage of growth, and to manufacture a high-quality, high-homogeneous Si polycrystalline ingot. Devices, Si polycrystalline ingots and Si polycrystalline wafers can be provided.
本発明に係るSi多結晶インゴットの製造装置の原理を示す、(a)ルツボ内にSi融液を入れた状態の横断面図、(b)Si融液の底部付近または表面付近の局所的な低温領域を示す平面図である。The principle of the manufacturing apparatus of the Si polycrystalline ingot according to the present invention is shown: (a) a cross-sectional view of a state in which the Si melt is put in the crucible; (b) a local area near the bottom or near the surface of the Si melt. It is a top view which shows a low-temperature area | region. 本発明に係るSi多結晶インゴットの製造装置の原理を示す、線状の局所的な低温領域に向かうデンドライト結晶の平面図である。It is a top view of the dendrite crystal which goes to the linear local low-temperature area | region which shows the principle of the manufacturing apparatus of Si polycrystal ingot based on this invention. 本発明に係るSi多結晶インゴットの製造装置の原理を示す、線状の局所的な低温領域から出発して外に向かうデンドライト結晶の平面図である。It is a top view of the dendrite crystal which starts from the linear local low-temperature area | region which shows the principle of the manufacturing apparatus of Si polycrystal ingot based on this invention, and goes outside. 本発明に係るSi多結晶インゴットの製造装置の原理を示す、(a)Si融液の底部付近で発現させたデンドライト結晶の上面を種結晶面として用いて一方向成長を行ったときのSi多結晶の成長を示す横断面図、(b)Si融液の表面付近で発現させたデンドライト結晶の下面を種結晶面として用いて一方向成長を行ったときのSi多結晶の成長を示す横断面図である。The principle of the manufacturing apparatus of the Si polycrystal ingot according to the present invention is shown. (A) When the unidirectional growth is performed using the upper surface of the dendritic crystal expressed near the bottom of the Si melt as the seed crystal plane, Cross-sectional view showing crystal growth, (b) Cross-section showing growth of Si polycrystal when unidirectional growth is performed using the lower surface of the dendrite crystal expressed near the surface of the Si melt as a seed crystal plane FIG. 本発明に係るSi多結晶インゴットの製造装置の原理を示す、製造されたSi多結晶インゴットの斜視図である。It is a perspective view of the manufactured Si polycrystal ingot which shows the principle of the manufacturing apparatus of Si polycrystal ingot based on this invention. 本発明の実施の形態のSi多結晶インゴットの製造装置の、熱伝導度の高い材料を円状の形に面内配置し、他の面内部分には熱伝導度の低い材料を配置した形状の冷却体を示す(a)平面図、(b)縦断面図である。In the Si polycrystalline ingot manufacturing apparatus according to the embodiment of the present invention, a shape in which a material having high thermal conductivity is arranged in a plane in a circular shape and a material having a low thermal conductivity is arranged in the other in-plane portion. It is (a) top view which shows the cooling body of (b), and (b) longitudinal cross-sectional view. 本発明の実施の形態のSi多結晶インゴットの製造装置で、図6に示す冷却体を用いて製造されたSi多結晶インゴットの(a)底面から約1mmの位置で底面に水平に10cm角のサイズで切り出したウェハーの表面組織を示す平面図、(b)底面から約50mmの位置で底面に水平に10cm角のサイズで切り出したウェハーの表面組織を示す平面図である。In the Si polycrystalline ingot manufacturing apparatus according to the embodiment of the present invention, the Si polycrystalline ingot manufactured using the cooling body shown in FIG. 6 has a 10 cm square horizontally on the bottom surface at a position of about 1 mm from the bottom surface (a). It is a top view which shows the surface structure of the wafer cut out by size, (b) The top view which shows the surface structure of the wafer cut out by the size of 10 cm square horizontally on the bottom face at the position of about 50 mm from the bottom face. 本発明の実施の形態のSi多結晶インゴットの製造装置の、熱伝導度の高い材料を線状の帯の形に面内配置し、他の面内部分には熱伝導度の低い材料を配置した形状の冷却体を示す(a)平面図、(b)縦断面図である。In the Si polycrystal ingot manufacturing apparatus according to the embodiment of the present invention, a material having high thermal conductivity is arranged in a plane in the form of a linear band, and a material having low thermal conductivity is arranged in the other in-plane portion. It is (a) top view and (b) longitudinal cross-sectional view which show the cooling body of the shape which carried out. 本発明の実施の形態のSi多結晶インゴットの製造装置で、図8に示す冷却体を用いて製造されたSi多結晶インゴットの初期結晶組織を示す平面図である。It is a top view which shows the initial crystal structure of the Si polycrystal ingot manufactured using the cooling body shown in FIG. 8 with the manufacturing apparatus of Si polycrystal ingot of embodiment of this invention. 本発明の実施の形態のSi多結晶インゴットの製造装置で、異なる成長条件を用いて製造されたSi多結晶インゴットを示す平面図である。It is a top view which shows Si polycrystal ingot manufactured using different growth conditions with the manufacturing apparatus of Si polycrystal ingot of embodiment of this invention.
 以下、図面に基づき、本発明の実施の形態について説明する。
 図1乃至図10は、本発明の実施の形態のSi多結晶インゴットの製造装置、Si多結晶インゴットおよびSi多結晶ウェハーを示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 10 show an apparatus for producing a Si polycrystalline ingot, an Si polycrystalline ingot, and an Si polycrystalline wafer according to an embodiment of the present invention.
 図1に示すように、本発明の実施の形態のSi多結晶インゴットの製造装置は、ルツボ1の底面を線状、点状、円状、円周状、円弧状またはそれらのうちの複数を組み合わせた形状に局所的に冷却できるように、ルツボ1の底面からの熱の逃げを局所的に制御できる冷却体などを配置した構造、または、Si融液表面近傍を線状、点状、円状、円周状、円弧状またはそれらのうちの複数を組み合わせた形状に局所的に冷却できるように、Si融液表面からの熱の逃げを局所的に制御できる冷却ガスの噴きつけ機構、もしくは、Si結晶や石英などから構成される冷却棒もしくは冷却板などを配置した構造を有している。 As shown in FIG. 1, the Si polycrystal ingot manufacturing apparatus according to the embodiment of the present invention has a bottom surface of the crucible 1 in a linear shape, a dotted shape, a circular shape, a circumferential shape, an arc shape, or a plurality of them. A structure in which a cooling body capable of locally controlling the heat escape from the bottom surface of the crucible 1 is arranged so that it can be locally cooled to the combined shape, or the vicinity of the Si melt surface is linear, dotted, or circular Cooling gas injection mechanism that can locally control the escape of heat from the surface of the Si melt, so that it can be locally cooled into a shape, a circumferential shape, an arc shape, or a combination of a plurality of them, or In addition, a cooling rod or a cooling plate made of Si crystal or quartz is arranged.
 ルツボ1の底面に配置する冷却体としては、熱伝導度の異なる材料を幾何学的に組み合わせた材料を用いる。また、冷却体の形状として、熱伝導度の高い材料を線状の帯の形、円周状の帯の形、円弧状の帯の形、円状の形、点状の形、またはそれらのうちの複数を組み合わせた形に面内配置し、他の面内部分には熱伝導度の低い材料を配置した形状を用いる。 As the cooling body disposed on the bottom surface of the crucible 1, a material obtained by geometrically combining materials having different thermal conductivities is used. In addition, as a shape of the cooling body, a material having high thermal conductivity is made of a linear band shape, a circumferential band shape, an arc-shaped band shape, a circular shape, a dot shape, or those A shape in which a plurality of these materials are combined and arranged in a plane and a material having low thermal conductivity is arranged in the other in-plane portion is used.
 図1乃至図3に示すように、本発明の実施の形態のSi多結晶インゴットの製造装置は、ルツボ1内に入れたSi融液2の底部付近または表面付近の局所的に冷却する局所領域2aの過冷却度を変化させて、過冷却度の面内分布を自在に制御可能になっている。また、これにより、デンドライト結晶3の核形成を促進したり抑制したりして、図2に示すように融液温度が高い領域から融液温度の低い局所領域2aに向けてデンドライト結晶3を複数発現させたり、図3に示すように融液温度の低い局所領域2aから融液温度が高い領域向けてデンドライト結晶3を複数発現させたりするよう構成されている。 As shown in FIG. 1 to FIG. 3, the Si polycrystalline ingot manufacturing apparatus according to the embodiment of the present invention locally cools the vicinity of the bottom or the surface of the Si melt 2 placed in the crucible 1. The in-plane distribution of the degree of supercooling can be freely controlled by changing the degree of supercooling of 2a. In addition, as a result, the nucleation of the dendrite crystal 3 is promoted or suppressed, and a plurality of dendrite crystals 3 are formed from the region where the melt temperature is high toward the local region 2a where the melt temperature is low as shown in FIG. As shown in FIG. 3, a plurality of dendrite crystals 3 are expressed from a local region 2a having a low melt temperature toward a region having a high melt temperature.
 さらに、図4に示すように、本発明の実施の形態のSi多結晶インゴットの製造装置は、成長の初期段階で形成した複数のデンドライト結晶3の上面または下面を種結晶面として用いて、Si多結晶インゴットを成長させる機能を有している。これらの構成および機能により、本発明の実施の形態のSi多結晶インゴットの製造装置は、成長の初期に発現させるデンドライト結晶3の成長方向、配列、配置、分布を制御することができる。また、その成長初期の結晶組織を反映したインゴット組織を有する、高品質・高均質なSi多結晶インゴットを製造することができる。 Further, as shown in FIG. 4, the Si polycrystalline ingot manufacturing apparatus according to the embodiment of the present invention uses the upper surface or the lower surface of the plurality of dendrite crystals 3 formed at the initial stage of growth as a seed crystal surface. It has the function of growing a polycrystalline ingot. With these configurations and functions, the Si polycrystalline ingot manufacturing apparatus according to the embodiment of the present invention can control the growth direction, arrangement, arrangement, and distribution of the dendrite crystal 3 that is expressed at the initial stage of growth. In addition, a high-quality and high-homogeneity Si polycrystal ingot having an ingot structure reflecting the crystal structure at the initial stage of growth can be produced.
 本発明の実施の形態のSi多結晶インゴットの製造装置を使用して、具体的に以下のようにして、本発明の実施の形態のSi多結晶インゴットおよびSi多結晶ウェハーを製造することができる。まず、図1に示すように、Si融液2をルツボ1に入れ、ルツボ1内に入れたSi融液2の底部付近または表面付近に、冷却体や冷却ガスの噴きつけ機構、冷却棒、冷却板などにより、周囲より融液温度が低く大きな過冷却度を有する線状、点状、円状、円周状、円弧状またはそれらのうちの複数を組み合わせた形状よりなる局所領域2aを作る。 Using the Si polycrystalline ingot manufacturing apparatus according to the embodiment of the present invention, the Si polycrystalline ingot and the Si polycrystalline wafer according to the embodiment of the present invention can be specifically manufactured as follows. . First, as shown in FIG. 1, a Si melt 2 is put in a crucible 1, and a cooling body, a cooling gas spray mechanism, a cooling rod, near the bottom or near the surface of the Si melt 2 put in the crucible 1, A local region 2a having a linear shape, a dotted shape, a circular shape, a circumferential shape, an arc shape, or a combination of a plurality of them is formed by a cooling plate or the like, which has a lower supercooling temperature than the surroundings and a large degree of supercooling. .
 この局所領域2aの過冷却度の大きさを、周囲のSi融液2の温度を勘案して1℃から50℃の範囲で調整し、過冷却度の面内分布を自在に制御する。これにより、Si融液2の底面付近またはSi融液2の表面付近において、<112>方向または<110>方向に優先成長するデンドライト結晶3を発現させ、そのデンドライト結晶3の核形成を促進したり抑制したりして、その向かう方向を、図2に示す局所領域2aに向かう方向か、図3に示す局所領域2aから出発して外に向かう方向かを制御する。 The supercooling degree of the local region 2a is adjusted in the range of 1 ° C. to 50 ° C. in consideration of the temperature of the surrounding Si melt 2 to freely control the in-plane distribution of the supercooling degree. As a result, the dendrite crystal 3 that preferentially grows in the <112> direction or the <110> direction is expressed near the bottom surface of the Si melt 2 or near the surface of the Si melt 2, and nucleation of the dendrite crystal 3 is promoted. 2 or 2 to control whether the direction is the direction toward the local region 2a shown in FIG. 2 or the direction from the local region 2a shown in FIG. 3 toward the outside.
 こうして発現させた複数のデンドライト結晶3の上面または下面を種結晶面として用いて、図4に示すように、デンドライト結晶3の上面または下面の方位を引き継がせて一方向成長を行い、インゴット全体に渡り結晶方位が{110}面または{112}面に揃ったSi多結晶を成長させる。 Using the upper surface or lower surface of the plurality of dendrite crystals 3 thus developed as a seed crystal surface, as shown in FIG. 4, the orientation of the upper surface or the lower surface of the dendrite crystal 3 is inherited, and unidirectional growth is performed. A Si polycrystal having a transition crystal orientation aligned with the {110} plane or the {112} plane is grown.
 これらの一連の操作により、図5に示すように、結晶粒方位が揃い、結晶粒サイズが大きく、そのサイズも揃い、良質な結晶粒界性格を有し、ランダム粒界も少ないといった結晶組織を有するSi多結晶インゴットを製造することができる。 As a result of these series of operations, as shown in FIG. 5, the crystal structure is such that the crystal grain orientation is uniform, the crystal grain size is large, the size is uniform, the grain boundary character is good, and there are few random grain boundaries. The Si polycrystal ingot having can be manufactured.
 このように、本発明の実施の形態のSi多結晶インゴットの製造装置は、ルツボ1内に入れたSi融液2の底部付近または表面付近において、周囲より融液温度が低く大きな過冷却度を有する線状、点状、円状、円周状、円弧状またはそれらのうちの複数を組み合わせた形状の局所低温領域を作ることができる。このため、周囲の融液温度が高い領域から低い局所領域2aに向けてデンドライト結晶3を複数発現させたり、周囲の融液温度が高い領域に向けて低い局所領域2aからデンドライト結晶3を複数発現させたりすることができる。このとき、デンドライト結晶3の向かう方向は、温度の低い局所領域2aの過冷却度によって自在に制御することができる。 As described above, the apparatus for manufacturing a Si polycrystalline ingot according to the embodiment of the present invention has a large degree of supercooling near the bottom or near the surface of the Si melt 2 placed in the crucible 1 and having a lower melt temperature than the surroundings. It is possible to create a local low temperature region having a linear shape, a dotted shape, a circular shape, a circumferential shape, an arc shape, or a shape obtained by combining a plurality of them. For this reason, a plurality of dendrite crystals 3 are developed from a region having a high melt temperature toward a low local region 2a, or a plurality of dendrite crystals 3 are developed from a low local region 2a toward a region having a high melt temperature. You can make it. At this time, the direction toward the dendrite crystal 3 can be freely controlled by the degree of supercooling of the local region 2a having a low temperature.
 こうして発現させた複数のデンドライト結晶3の上面または下面を種結晶面として用いて、Si多結晶を成長させることにより、隣接する結晶粒の面方位が近似し、結晶粒サイズが大きく、そのサイズが揃い、良質な結晶粒界性格を有するといった結晶組織を特徴とする、亜粒界などの結晶欠陥が少ない極めて良質なSi多結晶インゴットを製造することができる。このSi多結晶インゴットからは、インゴットと同様な結晶組織を有する極めて良質なSi多結晶ウェハーを得ることができる。 By growing the Si polycrystal using the upper surface or the lower surface of the plurality of dendrite crystals 3 thus developed as the seed crystal plane, the plane orientation of the adjacent crystal grains is approximated, the crystal grain size is large, and the size is In addition, it is possible to manufacture a very good Si polycrystal ingot characterized by a crystal structure such as having a good grain boundary character and having few crystal defects such as subgrain boundaries. From this Si polycrystal ingot, it is possible to obtain an extremely good Si polycrystal wafer having a crystal structure similar to that of the ingot.
 本発明の実施の形態のSi多結晶インゴットの製造装置により、一方向成長キャスト成長法において、亜粒界などの結晶欠陥が少ない高品質かつ高均質なSi多結晶インゴットおよびSi多結晶ウェハーが得られる。このため、通常は太陽電池特性が低下するインゴットの部位おいても、高効率の太陽電池の作製が期待できる。本発明により、従来から実現が渇望されていた、低コストかつ高効率な太陽電池を実現できるSi多結晶インゴットやSi多結晶ウェハーを作製でき、太陽電池の普及に大きく貢献することができる。 With the Si polycrystalline ingot manufacturing apparatus according to the embodiment of the present invention, a high-quality and highly uniform Si polycrystalline ingot and Si polycrystalline wafer with few crystal defects such as subgrain boundaries can be obtained in the unidirectional growth cast growth method. It is done. For this reason, the production of a highly efficient solar cell can be expected even in an ingot region where the solar cell characteristics usually deteriorate. According to the present invention, it is possible to produce a Si polycrystal ingot or a Si polycrystal wafer that can realize a low-cost and high-efficiency solar cell, which has been eagerly desired to be realized, and can greatly contribute to the popularization of solar cells.
 本発明の実施の形態のSi多結晶インゴットの製造装置を使用した、具体的なSi多結晶インゴットの成長条件の実施例を、以下に示す。以下の例では、ルツボ1の大きさを15cm径とし、インゴットの重量を2.5kgとする。 Examples of specific growth conditions for Si polycrystal ingots using the apparatus for producing Si polycrystal ingots according to the embodiment of the present invention are shown below. In the following example, the size of the crucible 1 is 15 cm in diameter, and the weight of the ingot is 2.5 kg.
 内面に窒化珪素粉末を塗布した石英ルツボ1に、Si原料2.5kgを充填し、製造装置内の所定の位置にセットした後、Arガス雰囲気中で約1450℃に昇温し、Si原料を完全に融解させた。次に、ルツボ1の温度をSiの融点温度近傍まで下げ、さらにルツボ1の底面の中央付近に周囲より約5℃だけ温度の低い領域を局所的に形成した。この局所領域2aは、図6に示すように、熱伝導度の高い材料4aを円状の形に面内配置し、他の面内部分には熱伝導度の低い材料4bを配置した形状の冷却体を用いて形成した。 A quartz crucible 1 coated with silicon nitride powder on the inner surface is filled with 2.5 kg of Si raw material and set at a predetermined position in the manufacturing apparatus, and then heated to about 1450 ° C. in an Ar gas atmosphere, Thawed completely. Next, the temperature of the crucible 1 was lowered to near the melting point temperature of Si, and a region having a temperature lower by about 5 ° C. than the surroundings was locally formed near the center of the bottom surface of the crucible 1. As shown in FIG. 6, the local region 2a has a shape in which a material 4a having a high thermal conductivity is arranged in a plane in a circular shape, and a material 4b having a low thermal conductivity is arranged in the other in-plane portion. It formed using the cooling body.
 これにより、ルツボ1の底面の周囲から中央に向かうように、ルツボ1の底面に沿ってデンドライト結晶3を成長させた。その後、上部が高温、下部が低温となるような温度勾配中でルツボ1を引き下げ、デンドライト結晶3の上面を種結晶面としてルツボ1の底面に垂直な方向にSi結晶を一方向成長させた。ルツボ1中のSi融液2すべてが凝固した後、製造装置内の温度を室温まで下げ、成長を終了させた。 Thereby, the dendrite crystal 3 was grown along the bottom surface of the crucible 1 so as to go from the periphery of the bottom surface of the crucible 1 to the center. Thereafter, the crucible 1 was pulled down in a temperature gradient such that the upper part was at a high temperature and the lower part was at a low temperature, and a Si crystal was grown in one direction in a direction perpendicular to the bottom surface of the crucible 1 using the upper surface of the dendrite crystal 3 as a seed crystal surface. After all of the Si melt 2 in the crucible 1 was solidified, the temperature in the production apparatus was lowered to room temperature to complete the growth.
 こうして製造された直径15cmの円柱状のSi多結晶インゴットの、底面から約1mmの位置で、底面に水平に10cm角のサイズで切り出したウェハーの表面組織を、図7(a)に示す。図7(a)に示すように、Si多結晶インゴットの底部は、デンドライト結晶3の成長方向と配置と分布とを制御した結晶組織を有している。 FIG. 7 (a) shows the surface structure of a wafer obtained by cutting a cylindrical Si polycrystal ingot having a diameter of 15 cm thus manufactured at a position of about 1 mm from the bottom surface and horizontally 10 cm square on the bottom surface. As shown in FIG. 7A, the bottom of the Si polycrystalline ingot has a crystal structure in which the growth direction, arrangement, and distribution of the dendrite crystal 3 are controlled.
 製造されたSi多結晶インゴットの底面から約50mmの位置で、底面に水平に10cm角のサイズで切り出したウェハーの表面組織を図7(b)に示す。また、図7(b)中の丸数字で示した各結晶粒の、ウェハー表面に垂直な方向の結晶方位を、表1に示す。図7(b)および表1に示すように、このSi多結晶インゴットから切り出したSi多結晶ウェハーは、インゴット底部のデンドライト結晶3の組織を反映した結晶組織を有している。 FIG. 7 (b) shows the surface structure of the wafer cut out in a size of 10 cm square horizontally from the bottom surface of the manufactured Si polycrystal ingot at a position of about 50 mm. Table 1 shows the crystal orientation of each crystal grain indicated by the circled numbers in FIG. 7B in the direction perpendicular to the wafer surface. As shown in FIG. 7B and Table 1, the Si polycrystalline wafer cut out from the Si polycrystalline ingot has a crystal structure reflecting the structure of the dendrite crystal 3 at the bottom of the ingot.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 このように、製造されたSi多結晶インゴットは、図7(b)および表1に示すように、隣接する結晶粒の面方位が近似した、結晶粒サイズの大きな、太陽電池用Si多結晶ウェハーとして理想的な結晶組織を有している。このような高品質・高均質なSi多結晶ウェハーの結晶組織は、通常のキャスト成長法では得られない。 Thus, as shown in FIG. 7B and Table 1, the manufactured Si polycrystal ingot has a large crystal grain size and a Si polycrystal wafer for solar cells in which the plane orientations of adjacent crystal grains are approximated. As an ideal crystal structure. Such a crystal structure of a high-quality and highly uniform Si polycrystalline wafer cannot be obtained by a normal cast growth method.
 なお、図8に示すように、熱伝導度の高い材料4aを線状の帯の形に面内配置し、他の面内部分には熱伝導度の低い材料4bを配置した形状の冷却体を用いて、周囲より温度の低い領域を局所的に形成し、他は同じ条件で、Si多結晶インゴットを製造した。このときのSi多結晶インゴットの初期結晶組織を図9に示す。図9に示すように、初期結晶組織では、デンドライト結晶3がほぼ平行に並んでいることが確認された。 In addition, as shown in FIG. 8, the cooling body of the shape which arrange | positioned the material 4a with high thermal conductivity in the surface in the shape of a linear strip, and has arrange | positioned the material 4b with low thermal conductivity in the other in-plane part. A Si polycrystal ingot was manufactured under the same conditions in which a region having a lower temperature than the surroundings was locally formed. The initial crystal structure of the Si polycrystalline ingot at this time is shown in FIG. As shown in FIG. 9, in the initial crystal structure, it was confirmed that the dendrite crystals 3 were arranged almost in parallel.
 内面に窒化珪素粉末を塗布した石英ルツボ1に、Si原料2.5kgを充填し、製造装置内の所定の位置にセットした後、Arガス雰囲気中で約1450℃に昇温し、Si原料を完全に融解させた。次に、融液上部で温度が低くなるように温度勾配を設定した後、融液表面近傍をデンドライト結晶3が発現する10℃以上の過冷却状態とするとともに、上部からの抜熱を局所的に行うことにより、融液表面の一部に周囲より約5℃だけ温度の低い領域を局所的に形成し、この局所的な低温領域から周囲に向かうように融液表面に沿ってデンドライト結晶3を成長させた。 A quartz crucible 1 coated with silicon nitride powder on the inner surface is filled with 2.5 kg of Si raw material and set at a predetermined position in the manufacturing apparatus, and then heated to about 1450 ° C. in an Ar gas atmosphere, Thawed completely. Next, after setting the temperature gradient so that the temperature becomes lower at the upper part of the melt, the vicinity of the melt surface is brought into a supercooled state of 10 ° C. or higher where the dendrite crystal 3 is developed, and the heat from the upper part is locally removed. In this manner, a region having a temperature lower than the surroundings by about 5 ° C. is locally formed on a part of the melt surface, and the dendrite crystal 3 is formed along the melt surface from the local low temperature region to the surroundings. Grew.
 その後、融液上部で温度が低くなるような温度勾配を保った状態で、製造装置内の温度を一定速度で降下させ、デンドライト結晶3の下面を種結晶面として、ルツボ1の底面に向かう方向にSi結晶を一方向成長させた。ルツボ1中のSi融液2すべてが凝固した後、製造装置内の温度を室温まで下げ、成長を終了させた。 Thereafter, the temperature in the manufacturing apparatus is lowered at a constant speed while maintaining a temperature gradient that lowers the temperature at the upper part of the melt, and the direction toward the bottom of the crucible 1 with the lower surface of the dendrite crystal 3 as the seed crystal surface. A Si crystal was grown in one direction. After all of the Si melt 2 in the crucible 1 was solidified, the temperature in the production apparatus was lowered to room temperature to complete the growth.
 こうして製造された直径15cmの円柱状のSi多結晶インゴットの、上部の表面組織を、図10に示す。図10に示すように、Si多結晶インゴットの上部表面は、デンドライト結晶3の成長方向と配置と分布とを制御した結晶組織を有している。このように、製造されたSi多結晶インゴットは、太陽電池用Si多結晶ウェハーとして理想的な結晶組織を有している。 FIG. 10 shows the upper surface texture of the cylindrical Si polycrystal ingot having a diameter of 15 cm thus manufactured. As shown in FIG. 10, the upper surface of the Si polycrystalline ingot has a crystal structure in which the growth direction, arrangement, and distribution of the dendrite crystal 3 are controlled. Thus, the manufactured Si polycrystal ingot has an ideal crystal structure as a Si polycrystal wafer for solar cells.
  1 ルツボ
  2 Si融液
   2a 局所領域
  3 デンドライト結晶
  4a 熱伝導度の高い材料
  4b 熱伝導度の低い材料
 
1 crucible 2 Si melt 2a local region 3 dendrite crystal 4a material with high thermal conductivity 4b material with low thermal conductivity

Claims (11)

  1.  デンドライト結晶の成長方向、配列、配置、分布を制御した成長初期の結晶組織を反映したインゴット組織を有するSi多結晶インゴットの製造に際して、前記Si多結晶インゴットの成長の初期段階において、ルツボ内に入れたSi融液の底部付近または表面付近の局所領域の過冷却度を変えることにより、融液温度が高い領域から融液温度の低い前記局所領域に向けてデンドライト結晶を複数発現させたり、融液温度の低い前記局所領域から融液温度が高い領域に向けてデンドライト結晶を複数発現させたりすることができるよう、前記Si融液の底部付近または表面付近に、融液温度が低く大きな過冷却度を有する線状、点状、円状、円周状、円弧状またはそれらのうちの複数を組み合わせた形状よりなる前記局所領域を形成可能に構成されていることを、特徴とするSi多結晶インゴットの製造装置。 When manufacturing a Si polycrystal ingot having an ingot structure reflecting the crystal structure of the initial stage of growth in which the growth direction, arrangement, arrangement, and distribution of the dendrite crystal are controlled, it is placed in a crucible at the initial stage of the growth of the Si polycrystal ingot. By changing the degree of supercooling in the local region near the bottom or near the surface of the Si melt, a plurality of dendrite crystals can be developed from a region where the melt temperature is high toward the local region where the melt temperature is low. A large degree of supercooling with a low melt temperature near the bottom or near the surface of the Si melt so that a plurality of dendrite crystals can be developed from the local region having a low temperature toward a region having a high melt temperature. It is possible to form the local region having a linear shape, a dotted shape, a circular shape, a circumferential shape, an arc shape, or a shape obtained by combining a plurality of them. That have been made, apparatus for producing a Si polycrystalline ingot characterized.
  2.  前記局所領域の過冷却度を変化させて過冷却度の面内分布を制御することにより、前記局所領域における核形成の発生を促進または抑制し、融液温度が高い領域から融液温度の低い前記局所領域に向けてデンドライト結晶を複数発現させたり、融液温度の低い前記局所領域から融液温度が高い領域向けてデンドライト結晶を複数発現させたりすることが自在にできるよう構成されていることを、特徴とする請求項1記載のSi多結晶インゴットの製造装置。 By controlling the in-plane distribution of the degree of supercooling by changing the degree of supercooling of the local region, the occurrence of nucleation in the local region is promoted or suppressed, and the melt temperature is lowered from the region where the melt temperature is high. It is configured such that a plurality of dendrite crystals can be expressed toward the local region, or a plurality of dendrite crystals can be expressed from the local region having a low melt temperature toward a region having a high melt temperature. The apparatus for producing a Si polycrystalline ingot according to claim 1.
  3.  成長の初期段階で形成された前記複数のデンドライト結晶の上面または下面を種結晶面として用いてSi多結晶インゴットを成長させる機能を有することを、特徴とする請求項1または2記載のSi多結晶インゴットの製造装置。 3. The Si polycrystal according to claim 1, wherein the Si polycrystal has a function of growing a Si polycrystal ingot by using an upper surface or a lower surface of the plurality of dendrite crystals formed in an initial stage of growth as a seed crystal surface. Ingot manufacturing equipment.
  4.  前記Si融液の底部付近で、周囲より融液温度が低く大きな過冷却度を有する線状、点状、円状、円周状、円弧状またはそれらのうちの複数を組み合わせた形状よりなる前記局所領域を作るために、前記ルツボ底面からの熱の逃げを局所的に制御できる冷却体を配置した構造を有することを、特徴とする請求項1、2または3記載のSi多結晶インゴットの製造装置。 Near the bottom of the Si melt, the melt temperature is lower than the surroundings and has a large degree of supercooling, which is a linear, dotted, circular, circumferential, arc shape, or a combination of the above. 4. The Si polycrystalline ingot according to claim 1, wherein a cooling body capable of locally controlling heat escape from the bottom surface of the crucible is disposed to form a local region. apparatus.
  5.  前記冷却体は、熱伝導度の異なる材料を幾何学的に組み合わせることにより、前記ルツボ底面からの熱の逃げを局所的に制御可能な構造を有することを、特徴とする請求項4記載のSi多結晶インゴットの製造装置。 5. The Si according to claim 4, wherein the cooling body has a structure capable of locally controlling heat escape from the bottom of the crucible by geometrically combining materials having different thermal conductivities. Equipment for producing polycrystalline ingots.
  6.  前記冷却体は、熱伝導度の高い材料を線状の帯の形、円周状の帯の形、円弧状の帯の形、円状の形、点状の形、またはそれらのうちの複数を組み合わせた形に面内配置し、他の面内部分には熱伝導度の低い材料を配置した形状を成していることを、特徴とする請求項5記載のSi多結晶インゴットの製造装置。 The cooling body is made of a material having a high thermal conductivity, such as a linear band shape, a circumferential band shape, an arc-shaped band shape, a circular shape, a dot shape, or a plurality of them. 6. The apparatus for producing a Si polycrystal ingot according to claim 5, wherein the in-plane arrangement is formed in a shape in which a material having a low thermal conductivity is arranged in the other in-plane portion. .
  7.  前記Si融液の表面付近で、周囲より融液温度が低く大きな過冷却度を有する線状、点状、円状、円周状、円弧状またはそれらのうちの複数を組み合わせた形状よりなる前記局所領域を作るために、前記Si融液表面からの熱の逃げを局所的に制御できる冷却ガスの噴きつけ機構、または、Si結晶や石英などから構成される冷却棒もしくは冷却板などを配置した構造を有することを、特徴とする請求項1、2または3記載のSi多結晶インゴットの製造装置。 Near the surface of the Si melt, the temperature of the melt is lower than that of the surroundings, and has a large degree of supercooling. In order to create a local region, a cooling gas injection mechanism that can locally control the escape of heat from the surface of the Si melt, or a cooling rod or a cooling plate made of Si crystal, quartz, or the like is arranged. 4. The apparatus for producing a Si polycrystalline ingot according to claim 1, 2, or 3, characterized by having a structure.
  8.  請求項1、2、3、4、5、6または7記載のSi多結晶インゴットの製造装置を用いて作製され、デンドライト結晶の成長方向、配列、配置、分布を制御した組織を反映した結晶組織を有することを、特徴とするSi多結晶インゴット。 A crystal structure reflecting a structure in which the growth direction, arrangement, arrangement, and distribution of dendrite crystals are controlled by using the Si polycrystalline ingot manufacturing apparatus according to claim 1, 2, 3, 4, 6, or 7. Si polycrystalline ingot characterized by having
  9.  請求項1、2、3、4、5、6または7記載のSi多結晶インゴットの製造装置を用いて作製され、隣接する結晶粒の面方位が近似した結晶組織を有することを、特徴とするSi多結晶インゴット。 It is produced using the apparatus for producing a Si polycrystalline ingot according to claim 1, 2, 3, 4, 5, 6 or 7, and has a crystal structure in which the plane orientation of adjacent crystal grains approximates. Si polycrystalline ingot.
  10.  請求項1、2、3、4、5、6または7記載のSi多結晶インゴットの製造装置を用いて作製され、デンドライト結晶の成長方向、配列、配置、分布を制御した組織を反映した結晶組織を有することを、特徴とするSi多結晶ウェハー。 A crystal structure reflecting a structure in which the growth direction, arrangement, arrangement, and distribution of dendrite crystals are controlled by using the Si polycrystalline ingot manufacturing apparatus according to claim 1, 2, 3, 4, 6, or 7. Si polycrystalline wafer characterized by having
  11.  請求項1、2、3、4、5、6または7記載のSi多結晶インゴットの製造装置を用いて作製され、隣接する結晶粒の面方位が近似した結晶組織を有することを、特徴とするSi多結晶ウェハー。
     
    It is produced using the apparatus for producing a Si polycrystalline ingot according to claim 1, and has a crystal structure in which the plane orientations of adjacent crystal grains are approximated. Si polycrystalline wafer.
PCT/JP2011/052338 2010-04-27 2011-02-04 Device for producing polycrystalline si ingot, polycrystalline si ingot, and polycrystalline si wafer WO2011135884A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010101691A JP5721207B2 (en) 2010-04-27 2010-04-27 Si polycrystalline ingot manufacturing apparatus, Si polycrystalline ingot, and Si polycrystalline wafer
JP2010-101691 2010-04-27

Publications (1)

Publication Number Publication Date
WO2011135884A1 true WO2011135884A1 (en) 2011-11-03

Family

ID=44861205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052338 WO2011135884A1 (en) 2010-04-27 2011-02-04 Device for producing polycrystalline si ingot, polycrystalline si ingot, and polycrystalline si wafer

Country Status (3)

Country Link
JP (1) JP5721207B2 (en)
TW (1) TW201139767A (en)
WO (1) WO2011135884A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014205598A (en) * 2013-04-15 2014-10-30 国立大学法人東北大学 METHOD FOR PRODUCING Si POLYCRYSTALLINE INGOT, AND Si POLYCRYSTALLINE INGOT

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009051720A (en) * 2007-08-02 2009-03-12 Tohoku Univ PROCESS FOR PRODUCING Si BULK POLYCRYSTAL INGOT
JP2009084145A (en) * 2007-09-10 2009-04-23 Tohoku Univ Si POLYCRYSTALLINE INGOT, METHOD OF PRODUCING Si POLYCRYSTALLINE INGOT, AND Si POLYCRYSTALLINE WAFER
JP2009173518A (en) * 2007-12-27 2009-08-06 Tohoku Univ Method for producing si crystal ingot

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009051720A (en) * 2007-08-02 2009-03-12 Tohoku Univ PROCESS FOR PRODUCING Si BULK POLYCRYSTAL INGOT
JP2009084145A (en) * 2007-09-10 2009-04-23 Tohoku Univ Si POLYCRYSTALLINE INGOT, METHOD OF PRODUCING Si POLYCRYSTALLINE INGOT, AND Si POLYCRYSTALLINE WAFER
JP2009173518A (en) * 2007-12-27 2009-08-06 Tohoku Univ Method for producing si crystal ingot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014205598A (en) * 2013-04-15 2014-10-30 国立大学法人東北大学 METHOD FOR PRODUCING Si POLYCRYSTALLINE INGOT, AND Si POLYCRYSTALLINE INGOT

Also Published As

Publication number Publication date
TW201139767A (en) 2011-11-16
JP2011230951A (en) 2011-11-17
JP5721207B2 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
JP4203603B2 (en) Method for producing semiconductor bulk polycrystal
KR101815620B1 (en) Poly-crystalline silicon ingot, silicon wafer therefrom and method of fabricating poly-crystalline silicon ingot
US9493357B2 (en) Method of fabricating crystalline silicon ingot including nucleation promotion layer
TW201012986A (en) Systems and methods for growing monocrystalline silicon ingots by directional solidification
CN102877129B (en) A kind of crystalline silicon and preparation method thereof
JP2009051720A (en) PROCESS FOR PRODUCING Si BULK POLYCRYSTAL INGOT
JP2006335582A (en) Crystalline silicon manufacturing unit and its manufacturing method
CN103397379A (en) High-efficiency polycrystalline silicon ingot casting furnace
CN202202019U (en) Heat exchange platform for growing silicon crystals in casting process
JP6286514B2 (en) Method for producing polycrystalline silicon ingot
TW201317408A (en) Apparatus for manufacturing semiconductor or metal oxide ingot
JP7394332B2 (en) Growing method and processing method for single crystal ingot of iron gallium alloy, single crystal ingot of iron gallium alloy
JP6719718B2 (en) Si ingot crystal manufacturing method and manufacturing apparatus thereof
JP5721207B2 (en) Si polycrystalline ingot manufacturing apparatus, Si polycrystalline ingot, and Si polycrystalline wafer
CN203382848U (en) High-efficient polycrystalline silicon ingot casting furnace with heat insulation protective plate
CN102653881A (en) Method for casting large-grained silicon ingot
JP4923253B2 (en) Method for producing Si bulk polycrystal
US10087080B2 (en) Methods of fabricating a poly-crystalline silcon ingot from a nucleation promotion layer comprised of chips and chunks of silicon-containing particles
TWI452184B (en) Method of manufacturing crystalline silicon ingot
TWI516645B (en) Crystalline silicon ingot, manufacture thereof and silicon wafer therefrom
JP5846437B2 (en) Method for producing silicon ingot
US10065863B2 (en) Poly-crystalline silicon ingot having a nucleation promotion layer comprising a plurality of chips and chunks of poly-crystalline silicon on the bottom
JP2007184496A (en) Crystal semiconductor particle manufacturing method and photoelectric conversion device
CN117385468A (en) B-doped AlN single crystal and preparation method thereof
RU2425183C2 (en) Procedures and equipment for production of mono-crystal cast silicon and items of mono-crystal cast silicon for photo cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11774669

Country of ref document: EP

Kind code of ref document: A1