JP2014205598A - METHOD FOR PRODUCING Si POLYCRYSTALLINE INGOT, AND Si POLYCRYSTALLINE INGOT - Google Patents

METHOD FOR PRODUCING Si POLYCRYSTALLINE INGOT, AND Si POLYCRYSTALLINE INGOT Download PDF

Info

Publication number
JP2014205598A
JP2014205598A JP2013085169A JP2013085169A JP2014205598A JP 2014205598 A JP2014205598 A JP 2014205598A JP 2013085169 A JP2013085169 A JP 2013085169A JP 2013085169 A JP2013085169 A JP 2013085169A JP 2014205598 A JP2014205598 A JP 2014205598A
Authority
JP
Japan
Prior art keywords
solid
liquid interface
impurities
ingot
polycrystalline ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013085169A
Other languages
Japanese (ja)
Other versions
JP6095060B2 (en
Inventor
航三 藤原
Kozo Fujiwara
航三 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2013085169A priority Critical patent/JP6095060B2/en
Publication of JP2014205598A publication Critical patent/JP2014205598A/en
Application granted granted Critical
Publication of JP6095060B2 publication Critical patent/JP6095060B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Landscapes

  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To develop a means of suppressing the local segregation of impurities for increasing the quality of an Si polycrystalline ingot for a solar battery, and provide a method for producing an Si polycrystalline ingot of high quality free from the local segregation of impurities therein, and an Si polycrystalline ingot.SOLUTION: In the unidirectional solidification of an Si polycrystalline ingot, it is characterized in that crystal growth is performed in a state where the shape of the crystal grain boundary part in a solid-liquid boundary is retained to a flat shape.

Description

本発明は、不純物分布の少ない高品質なSi多結晶インゴットの製造方法およびSi多結晶インゴットに関するものである。   The present invention relates to a method for producing a high-quality Si polycrystalline ingot having a small impurity distribution and a Si polycrystalline ingot.

実用太陽電池の主流材料は、一方向凝固キャスト法で作製されるSi多結晶インゴットから切り出された厚さ約200μmの基板である。このSi多結晶インゴットのほとんどはB(ホウ素)またはGa(ガリウム)がドープされたp型の結晶である。また、P(リン)がドープされたn型の結晶も同様の手法で製造されている。   The mainstream material for practical solar cells is a substrate having a thickness of about 200 μm cut out from a Si polycrystalline ingot produced by a unidirectional solidification cast method. Most of this Si polycrystal ingot is a p-type crystal doped with B (boron) or Ga (gallium). An n-type crystal doped with P (phosphorus) is also manufactured in the same manner.

一般的に、Si多結晶インゴットを作製するための原料Siは、金属不純物を極力排除した高純度の原料が用いられているが、一方向凝固キャスト装置を用いてSi多結晶インゴットを作製する過程で、キャスト装置の部材や、ルツボの内壁に塗布された窒化ケイ素を主成分とする離型剤や、装置内の雰囲気から、Si多結晶インゴットの内部に金属不純物や、酸素や炭素などの不純物が混入することが知られている。   Generally, the raw material Si for producing the Si polycrystalline ingot is a high-purity raw material that eliminates metal impurities as much as possible. However, the process for producing the Si polycrystalline ingot using a unidirectional solidification casting apparatus Therefore, metal impurities, impurities such as oxygen and carbon, etc. in the Si polycrystal ingot from the cast equipment components, the release agent mainly composed of silicon nitride applied to the inner wall of the crucible, and the atmosphere inside the equipment. Is known to mix.

また、太陽電池の低コスト化のために、もともと金属不純物が多く含まれている安価な原料Siを用いてSi多結晶インゴットを作製する場合もある。このように、金属不純物が多く含まれる原料Siを用いた場合は、高純度の原料Siを用いた場合に比べて高濃度の金属不純物がSi多結晶インゴットの内部に混入することとなる。   In addition, in order to reduce the cost of solar cells, there are cases where a Si polycrystalline ingot is manufactured using inexpensive raw material Si that originally contains a large amount of metal impurities. Thus, when raw material Si containing a large amount of metal impurities is used, a higher concentration of metal impurities is mixed into the Si polycrystalline ingot than when high-purity raw material Si is used.

いずれの原料を用いた場合においても、Si多結晶インゴットの内部で不純物が局所的に多く存在する(不純物が局所偏析した)部分が存在すると、この部分でキャリアの再結合が起こり、太陽電池のエネルギー変換効率を低下させる原因となる。これまでの研究により、一方向凝固キャスト法で作製されたSi多結晶インゴットにおいては、結晶粒界に不純物が局所偏析していることが知られている(例えば、非特許文献1および2参照)。不純物が局所偏析した結晶粒界はキャリアの再結合サイトとなり、太陽電池特性を低下させることが知られている(例えば、非特許文献3参照)。   Regardless of which raw material is used, if there is a portion where a large amount of impurities exist locally (impurities segregated locally) inside the Si polycrystalline ingot, carrier recombination occurs in this portion, and the solar cell It becomes a cause to reduce energy conversion efficiency. According to previous studies, it is known that impurities are locally segregated at grain boundaries in Si polycrystalline ingots produced by the unidirectional solidification cast method (see, for example, Non-Patent Documents 1 and 2). . It is known that a crystal grain boundary where impurities are segregated locally serves as a carrier recombination site and deteriorates solar cell characteristics (see, for example, Non-Patent Document 3).

Si多結晶インゴットを作製する過程で結晶粒界に不純物が局所偏析する理由として、一方向凝固中に不純物が結晶粒界に取り込まれる、あるいは、一方向凝固が終了した後の冷却過程で不純物が結晶粒界に拡散する、などの理由が考えられているが、明確な原因はわかっていない。   The reason why impurities are segregated locally at the grain boundaries in the process of producing a Si polycrystal ingot is that impurities are incorporated into the grain boundaries during unidirectional solidification, or impurities are removed during the cooling process after unidirectional solidification is completed. There are thought to be reasons such as diffusion to the grain boundaries, but no clear cause is known.

次に、一般的な太陽電池用Si多結晶インゴットの製造方法について詳しく説明する。太陽電池用Si多結晶インゴットは、一方向凝固法を利用したキャスト法によって製造されている。キャスト法では、原料Siとp型またはn型ドーパントとを石英ルツボ内に充填し、この石英ルツボをキャスト成長炉内の所定の位置に配置し、炉内の温度をSiの融点以上の温度まで上昇させてルツボ内の原料Siおよびドーパントを完全に溶解した後、温度を下げることによってルツボ内のSi融液からSi多結晶インゴットを成長させる。通常、使用する石英るつぼの内壁には、窒化ケイ素を主成分とした離型剤が塗布されている。ルツボ内のSi融液からSi多結晶インゴットを成長させる方法としては、炉内の温度をSiの融点以下の温度まで下げる方法、もしくは、炉内に温度勾配を形成させ、温度の低い方にルツボを移動させることによって一方向凝固させる方法が一般的である。また、あらかじめ石英ルツボの底に種結晶を配置させておいて、種結晶の上に原料Siとドーパントとを充填し、種結晶を完全に溶解させないように温度を上昇させ、Si原料とドーパントと種結晶の一部とを溶解させた後、温度を下げることにより、融け残っている種結晶を起点として一方向凝固させる方法もある。   Next, a general method for producing a Si polycrystalline ingot for a solar cell will be described in detail. The Si polycrystalline ingot for solar cells is manufactured by a casting method using a unidirectional solidification method. In the casting method, raw material Si and p-type or n-type dopant are filled in a quartz crucible, and this quartz crucible is placed at a predetermined position in a cast growth furnace, and the temperature in the furnace reaches a temperature equal to or higher than the melting point of Si. After the raw material Si and the dopant in the crucible are completely dissolved by raising the temperature, the Si polycrystal ingot is grown from the Si melt in the crucible by lowering the temperature. Usually, a release agent mainly composed of silicon nitride is applied to the inner wall of the quartz crucible to be used. As a method of growing a Si polycrystalline ingot from the Si melt in the crucible, the temperature in the furnace is lowered to a temperature below the melting point of Si, or a temperature gradient is formed in the furnace, and the crucible is moved to a lower temperature. A general method is to solidify unidirectionally by moving the. In addition, a seed crystal is arranged in advance at the bottom of the quartz crucible, the raw material Si and the dopant are filled on the seed crystal, the temperature is increased so as not to completely dissolve the seed crystal, and the Si raw material and the dopant are There is also a method in which a part of the seed crystal is dissolved, and then the temperature is lowered to solidify in one direction starting from the unmelted seed crystal.

上記のような方法でSi多結晶インゴットを製造する際、高品質なSi多結晶インゴットを得るために、ルツボ内のSi融液の冷却速度を制御する方法が報告されている。   A method of controlling the cooling rate of the Si melt in the crucible in order to obtain a high-quality Si polycrystalline ingot when producing a Si polycrystalline ingot by the above method has been reported.

例えば、特許文献1では、ルツボ内で溶解させた原料Siの冷却速度を1℃/分以下にして、Si多結晶インゴットを製造する方法が示されている。また、特許文献2では、融液の入ったルツボ全体を0.4℃/分〜5℃/分で冷却してSi多結晶インゴットを製造する工程が示されている。   For example, Patent Document 1 discloses a method of manufacturing a Si polycrystalline ingot by setting the cooling rate of the raw material Si dissolved in the crucible to 1 ° C./min or less. Patent Document 2 discloses a process for producing a Si polycrystalline ingot by cooling the entire crucible containing a melt at 0.4 ° C./min to 5 ° C./min.

特許文献1または2で示されているように、通常は、ルツボ内の原料Si全体もしくはルツボ全体の冷却速度を制御してSi多結晶インゴットが製造されている。   As shown in Patent Document 1 or 2, the Si polycrystalline ingot is usually manufactured by controlling the entire raw material Si in the crucible or the cooling rate of the entire crucible.

しかしながら、融液から結晶が成長する過程において、結晶成長は常に融液と結晶との界面(固液界面)でのみ起こっているため、高品質なSi多結晶インゴットを成長させるためには、固液界面の冷却速度を制御することが重要である。一般的に、炉内雰囲気の熱伝導率とルツボの材質またはルツボ内のSiの熱伝導率とが異なるため、ルツボ全体の冷却速度と固液界面の冷却速度とは異なっている。また、固液界面では結晶が成長すると凝固潜熱が吐き出されるため温度が上昇するので、通常は、固液界面の冷却速度はSi原料全体もしくはルツボ全体の冷却速度に比べて遅くなる。   However, in the process of crystal growth from the melt, crystal growth always occurs only at the interface between the melt and the crystal (solid-liquid interface). Therefore, in order to grow a high-quality Si polycrystalline ingot, It is important to control the cooling rate at the liquid interface. In general, since the thermal conductivity of the furnace atmosphere and the material of the crucible or the thermal conductivity of Si in the crucible are different, the cooling rate of the entire crucible and the cooling rate of the solid-liquid interface are different. In addition, since the temperature rises because solidification latent heat is discharged when crystals grow at the solid-liquid interface, the cooling rate at the solid-liquid interface is usually slower than the cooling rate of the entire Si raw material or the entire crucible.

従来の、Si原料全体もしくはルツボ全体の冷却速度を制御した方法で製造されたSi多結晶インゴットでは、前述したように粒界に不純物が局所偏析しているが、不純物が局所偏析する理由は明確となっていないため、Si多結晶インゴット中の粒界における不純物の局所偏析を無くす方法は未だ開発されていない。   In the conventional Si polycrystal ingot manufactured by controlling the cooling rate of the entire Si raw material or the entire crucible, impurities are segregated locally at the grain boundaries as described above, but the reason why the impurities are segregated locally is clear. Therefore, a method for eliminating local segregation of impurities at the grain boundaries in the Si polycrystalline ingot has not been developed yet.

特開2004−123494号公報JP 2004-123494 A 国際公開WO2007/063637号International Publication WO 2007/063637

T. Buonassisi etal., “Chemical Natures and Distributions of Metal Impurities inMulticrystalline Silicon Materials”, PROGRES IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS, 2006, 14, p.513-531T. Buonassisi etal., “Chemical Natures and Distributions of Metal Impurities in Multicrystalline Silicon Materials”, PROGRES IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS, 2006, 14, p.513-531 J. Chen et al., “Electron-beam-induced current studyof grain boundaries in multicrystalline silicon”, JOURNAL OF APPLIED PHYSICS, 2004, 96,p.5490-5495J. Chen et al., “Electron-beam-induced current study of grain boundaries in multicrystalline silicon”, JOURNAL OF APPLIED PHYSICS, 2004, 96, p.5490-5495 J. Chen et al., “Recombinationactivity of Sigma 3 boundaries in boron-doped multicrystalline silicon:Influence of iron contamination”, JOURNAL OF APPLIED PHYSICS, 2005, 97,p.033701J. Chen et al., “Recombinationactivity of Sigma 3 boundaries in boron-doped multicrystalline silicon: Influence of iron contamination”, JOURNAL OF APPLIED PHYSICS, 2005, 97, p.033701

太陽電池用のSi多結晶インゴットの製造技術において、太陽電池の高効率化のためには、前述したように、結晶粒界および結晶粒界近傍における不純物の局所偏析を抑制する手法の開発が不可欠である。本発明は、このような課題に着目してなされたもので、Si結晶中の不純物の局所偏析が少ない高品質なSi多結晶インゴットの製造方法およびSi多結晶インゴットを提供することを目的とする。   In the manufacturing technology of Si polycrystal ingots for solar cells, in order to increase the efficiency of solar cells, as described above, it is indispensable to develop a method for suppressing local segregation of impurities at the grain boundaries and in the vicinity of the grain boundaries. It is. The present invention has been made paying attention to such problems, and an object thereof is to provide a method for producing a high-quality Si polycrystalline ingot and a Si polycrystalline ingot with less local segregation of impurities in the Si crystal. .

本発明は、一方向凝固キャスト法によりSi多結晶インゴットを作製する工程において、Si多結晶とSi融液との界面(以下、固液界面)の結晶粒界部分における溝の形成を抑制すること、すなわち固液界面の粒界部分の形状を平坦な形状に維持したままSi多結晶インゴットを作製することを特徴としている。これにより、結晶粒界への不純物の局所偏析を抑制して高品質なSi多結晶インゴットを得ることができる。   The present invention suppresses the formation of grooves at the grain boundary portion of the interface between the Si polycrystal and the Si melt (hereinafter, solid-liquid interface) in the process of producing the Si polycrystal ingot by the unidirectional solidification casting method. That is, it is characterized in that a Si polycrystal ingot is produced while maintaining the shape of the grain boundary portion of the solid-liquid interface in a flat shape. Thereby, the local segregation of the impurity to a crystal grain boundary can be suppressed, and a high quality Si polycrystal ingot can be obtained.

前記固液界面の結晶粒界部分における溝の形成を抑制するためには、一方向凝固過程における固液界面の冷却速度を0.5℃/分以下にしなければならない。この条件下では、固液界面の結晶粒界部分に溝が形成されることはなく、平坦な形状に維持されるため、不純物が結晶粒界に局所偏析されることはない。一方、固液界面の冷却速度がこれ以上になると固液界面の結晶粒界部分に溝が形成され、結晶粒界および結晶粒界近傍に不純物が局所偏析されてしまい、高品質のSi多結晶インゴットが得られない。   In order to suppress the formation of grooves in the crystal grain boundary portion of the solid-liquid interface, the cooling rate of the solid-liquid interface in the unidirectional solidification process must be 0.5 ° C./min or less. Under these conditions, no groove is formed in the crystal grain boundary portion of the solid-liquid interface, and the flat shape is maintained, so that impurities are not segregated locally at the crystal grain boundary. On the other hand, when the cooling rate of the solid-liquid interface becomes higher than this, grooves are formed in the crystal grain boundary part of the solid-liquid interface, and impurities are segregated locally in the crystal grain boundary and in the vicinity of the crystal grain boundary. I can't get an ingot.

また、固液界面の冷却速度が0.01℃/分以下になると、固液界面の結晶粒界部分における溝の形成は抑制できるものの、結晶成長速度が非常に遅くなってしまうため、Si多結晶インゴットの生産には適さない。   Further, when the cooling rate of the solid-liquid interface is 0.01 ° C./min or less, the formation of grooves in the crystal grain boundary portion of the solid-liquid interface can be suppressed, but the crystal growth rate becomes very slow. Not suitable for the production of crystalline ingots.

したがって、本発明において、固液界面の結晶粒界部分における溝の形成を抑制する条件として、固液界面の冷却速度を0.01℃/分〜0.5℃/分の範囲で制御して、Si多結晶インゴットを作製することが望ましい。   Therefore, in the present invention, as a condition for suppressing the formation of grooves in the crystal grain boundary portion of the solid-liquid interface, the cooling rate of the solid-liquid interface is controlled in the range of 0.01 ° C./min to 0.5 ° C./min. It is desirable to produce a Si polycrystalline ingot.

また、本発明に係るSi多結晶インゴットは、本発明に係るSi多結晶インゴットの製造方法により製造されるSi多結晶インゴットであって、ドーパントとしてBもしくはGaもしくはPを含有することを特徴とする。   The Si polycrystalline ingot according to the present invention is an Si polycrystalline ingot produced by the method for producing an Si polycrystalline ingot according to the present invention, and contains B, Ga, or P as a dopant. .

本発明により、Si多結晶インゴットの一方向凝固過程において、固液界面の結晶粒界部分における溝の形成を抑制し、平坦な形状に維持することにより、結晶粒界における不純物の局所偏析が少ない高品質なSi多結晶インゴットが得られる。   According to the present invention, in the unidirectional solidification process of a Si polycrystal ingot, the formation of grooves in the grain boundary portion of the solid-liquid interface is suppressed, and the flat shape is maintained, thereby reducing local segregation of impurities at the crystal grain boundary. A high-quality Si polycrystalline ingot can be obtained.

本発明の実施の形態のSi多結晶インゴットの製造方法の、固液界面の冷却速度を0.02℃/分、0.1℃/分、0.5℃/分および0.6℃/分としてSi多結晶を一方向凝固させた時の固液界面形状を示す顕微鏡写真である。In the method for producing a Si polycrystalline ingot according to the embodiment of the present invention, the cooling rate at the solid-liquid interface is 0.02 ° C./min, 0.1 ° C./min, 0.5 ° C./min, and 0.6 ° C./min. Is a micrograph showing a solid-liquid interface shape when Si polycrystal is solidified in one direction. 本発明の実施の形態のSi多結晶インゴットの製造方法の、固液界面の冷却速度を0.6℃/分および0.5℃/分として一方向凝固させて作製したSi多結晶のキャリア拡散長測定結果をマッピングした図面である。Carrier diffusion of Si polycrystal produced by unidirectionally solidifying the solid-liquid interface cooling rate of 0.6 ° C./min and 0.5 ° C./min in the method for producing a Si polycrystal ingot according to an embodiment of the present invention It is drawing which mapped the long measurement result. 本発明の実施の形態のSi多結晶インゴットの製造方法の、固液界面の粒界部分に溝が形成されない場合と、粒界部分に溝が形成される場合における不純物の偏析挙動の説明図である。In the manufacturing method of the Si polycrystal ingot of embodiment of this invention, it is explanatory drawing of the segregation behavior of the impurity when a groove | channel is not formed in the grain boundary part of a solid-liquid interface, and a groove | channel is formed in a grain boundary part. is there.

本発明による、固液界面の冷却速度を制御することにより、固液界面の結晶粒界部分における溝の形成が抑制され、結晶粒界における不純物の局所偏析が抑制されることを実証するために、Si多結晶の一方向凝固過程の固液界面形状の直接観察実験を行った。   In order to demonstrate that by controlling the cooling rate of the solid-liquid interface according to the present invention, the formation of grooves at the grain boundary portion of the solid-liquid interface is suppressed, and the local segregation of impurities at the crystal grain boundary is suppressed. A direct observation experiment of the solid-liquid interface shape during the unidirectional solidification process of Si polycrystals was conducted.

本実験で用いた結晶成長炉は、2つのヒーター(2ゾーンヒーター)の温度を独立に制御することによって、炉内の温度分布およびルツボ全体の温度を制御することが可能な装置である。成長炉には固液界面を観察できるように15mmφの観察窓を設けており、Si融液からSi多結晶が一方向凝固する過程の固液界面形状を直接観察することができる。結晶成長方向の炉内の温度分布は、熱電対を用いて予め測定した。また、結晶成長中の固液界面の温度は、ルツボの下に常時設置している熱電対により測定した。本実験では、2ゾーンヒーターの片方の温度を1380℃に設定し、もう片方のヒーターの温度を1460℃に設定して、ルツボ内の原料Siを完全に溶解した。この時、炉内に設置したルツボ内の温度分布は、結晶成長方向に対して5℃/mmであった。その後、2ゾーンヒーターの両方の温度を同じ冷却速度で下げることにより、炉内の温度勾配を5℃/mmに維持したままSi多結晶を一方向凝固させ、固液界面の形状および温度をモニタリングした。2ゾーンヒーターの冷却速度を、0.5℃/分、10℃/分、18℃/分、および20℃/分としてSi多結晶を一方向凝固させた時の固液界面形状を観察した。これらの条件でSi多結晶インゴットが一方向凝固している過程における固液界面の冷却速度は、ルツボの下に設置している熱電対で測定することができる。ルツボ内で一方向凝固しているSi多結晶の固液界面がこの熱電対の位置まで移動すると、凝固潜熱による温度上昇とその後の温度低下とを測定できる。本実験においては、ヒーターの冷却速度が0.5℃/分の時、固液界面の冷却速度が0.02℃/分、ヒーターの冷却速度が10℃/分の時に、固液界面の冷却速度が0.1℃/分、ヒーターの冷却速度が18℃/分の時に、固液界面の冷却底度が0.5℃/分、ヒーターの冷却速度が20℃/分の時に、固液界面の冷却速度が0.6℃/分であった。   The crystal growth furnace used in this experiment is an apparatus capable of controlling the temperature distribution in the furnace and the temperature of the entire crucible by independently controlling the temperatures of two heaters (two-zone heaters). The growth furnace is provided with a 15 mmφ observation window so that the solid-liquid interface can be observed, and the shape of the solid-liquid interface in the process where the Si polycrystal solidifies in one direction from the Si melt can be directly observed. The temperature distribution in the furnace in the crystal growth direction was measured in advance using a thermocouple. The temperature of the solid-liquid interface during crystal growth was measured with a thermocouple always installed under the crucible. In this experiment, the temperature of one of the two-zone heaters was set to 1380 ° C., and the temperature of the other heater was set to 1460 ° C. to completely dissolve the raw material Si in the crucible. At this time, the temperature distribution in the crucible installed in the furnace was 5 ° C./mm with respect to the crystal growth direction. Then, by lowering the temperature of both zone heaters at the same cooling rate, the Si polycrystal is unidirectionally solidified while maintaining the temperature gradient in the furnace at 5 ° C / mm, and the shape and temperature of the solid-liquid interface are monitored. did. The solid-liquid interface shape was observed when the Si polycrystal was unidirectionally solidified with the cooling rate of the two-zone heater being 0.5 ° C./min, 10 ° C./min, 18 ° C./min, and 20 ° C./min. Under these conditions, the cooling rate of the solid-liquid interface in the process in which the Si polycrystalline ingot is unidirectionally solidified can be measured by a thermocouple installed under the crucible. When the solid-liquid interface of the Si polycrystal solidified in one direction in the crucible moves to the position of this thermocouple, it is possible to measure the temperature rise due to the solidification latent heat and the subsequent temperature drop. In this experiment, when the cooling rate of the heater is 0.5 ° C./min, the cooling rate of the solid-liquid interface is 0.02 ° C./min, and the cooling rate of the heater is 10 ° C./min, When the rate is 0.1 ° C / min, the cooling rate of the heater is 18 ° C / min, the cooling bottom of the solid-liquid interface is 0.5 ° C / min, and the cooling rate of the heater is 20 ° C / min, the solid-liquid The interface cooling rate was 0.6 ° C./min.

本実験による2ゾーンヒーターの冷却速度は、通常のキャスト法におけるSi原料の冷却速度やルツボ全体の冷却速度に相当しており、固液界面の冷却速度とは異なることがわかる。また、ヒーターの冷却速度と固液界面の冷却速度との差は、結晶成長炉の構造やルツボの材質やルツボに充填するSi原料の量に依存することは自明である。   The cooling rate of the two-zone heater according to this experiment corresponds to the cooling rate of the Si raw material in the ordinary casting method and the cooling rate of the entire crucible, and is found to be different from the cooling rate of the solid-liquid interface. Further, it is obvious that the difference between the cooling rate of the heater and the cooling rate of the solid-liquid interface depends on the structure of the crystal growth furnace, the material of the crucible, and the amount of Si raw material filled in the crucible.

図1は、固液界面の冷却速度が0.02℃/分、0.1℃/分、0.5℃/分および0.6℃/分の時の、Si多結晶の一方向凝固過程の固液界面形状の観察結果である。固液界面の冷却速度が0.02℃/分、0.1℃/分、0.5℃/分の場合は、固液界面の粒界部分に溝は形成されず、平坦な固液界面を維持したまま成長するが、固液界面の冷却速度が0.6℃/分の時は、固液界面の粒界部分に溝が形成されることがわかる。   FIG. 1 shows the unidirectional solidification process of Si polycrystal when the cooling rate of the solid-liquid interface is 0.02 ° C./min, 0.1 ° C./min, 0.5 ° C./min, and 0.6 ° C./min. This is an observation result of the solid-liquid interface shape. When the cooling rate of the solid-liquid interface is 0.02 ° C./min, 0.1 ° C./min, 0.5 ° C./min, no groove is formed in the grain boundary portion of the solid-liquid interface, and the flat solid-liquid interface However, when the cooling rate at the solid-liquid interface is 0.6 ° C./min, it is understood that grooves are formed in the grain boundary portion of the solid-liquid interface.

図2は、固液界面の冷却速度を0.6℃/分および0.5℃/分として一方向凝固させたSi多結晶に対して、少数キャリア拡散長を測定してマッピングした結果である。それぞれの試料において、固液界面形状を観察した領域の、図中の四角で囲った領域に対して、拡散長を測定し測定値のマッピングを行った。固液界面の冷却速度が0.6℃/分の試料では、結晶粒界近傍において局所的に拡散長が低下しており、結晶粒界に不純物が偏析されたことがわかる。一方、固液界面の冷却速度が0.5℃/分の試料では、結晶粒界部分においても拡散長が低下している箇所はなく、不純物の局所偏析が抑制されたことがわかる。   FIG. 2 shows the result of mapping by measuring the minority carrier diffusion length for Si polycrystals unidirectionally solidified at a cooling rate of the solid-liquid interface of 0.6 ° C./min and 0.5 ° C./min. . In each sample, the diffusion length was measured and the measured values were mapped to the region surrounded by the square in the figure in the region where the solid-liquid interface shape was observed. In the sample having a cooling rate of 0.6 ° C./min at the solid-liquid interface, the diffusion length locally decreases in the vicinity of the crystal grain boundary, and it can be seen that impurities are segregated at the crystal grain boundary. On the other hand, in the sample having a cooling rate of 0.5 ° C./min at the solid-liquid interface, there is no portion where the diffusion length is reduced even at the crystal grain boundary portion, indicating that local segregation of impurities is suppressed.

図3は、固液界面の粒界部分が平坦な場合と溝が形成された場合の、固液界面における不純物の偏析挙動を物理的に説明した図である。一般的に、固液界面において融液中に含まれている不純物は、偏析係数にしたがって融液と結晶とに分配される。不純物の平衡偏析係数をkとすると、固液界面で融液中に吐き出される不純物の濃度C は、C =C /kとなる。ここで、C は、結晶に取り込まれる不純物濃度である。固液界面に溝が無く、平坦な場合は、固液界面前方の融液中に含まれる不純物濃度は場所に依らず均一な濃度(C )となる。一方、粒界部分に溝が形成されると、溝の部分では結晶粒界の両側の結晶粒から不純物が排出されるため、溝部分には高濃度の不純物が局所偏析されることとなる。このように、不純物が局所偏析した融液が結晶化することにより、粒界部分に不純物が局所偏析することとなる。 FIG. 3 is a diagram physically explaining the segregation behavior of impurities at the solid-liquid interface when the grain boundary portion at the solid-liquid interface is flat and when the groove is formed. In general, impurities contained in the melt at the solid-liquid interface are distributed to the melt and the crystal according to the segregation coefficient. If the equilibrium segregation coefficient of impurities is k 0 , the concentration C L * of impurities discharged into the melt at the solid-liquid interface is C L * = C S * / k 0 . Here, C S * is the concentration of impurities taken into the crystal. When the solid-liquid interface has no groove and is flat, the concentration of impurities contained in the melt in front of the solid-liquid interface becomes a uniform concentration (C L * ) regardless of the location. On the other hand, when a groove is formed in the grain boundary portion, impurities are discharged from the crystal grains on both sides of the crystal grain boundary in the groove portion, so that high-concentration impurities are locally segregated in the groove portion. Thus, when the melt in which impurities are segregated locally is crystallized, the impurities are segregated locally at the grain boundary portion.

したがって、Si多結晶インゴットを一方向凝固する際、固液界面の粒界部分の形状を平坦な形状に維持する方法でSi多結晶インゴットを作製しなければならない。   Therefore, when the Si polycrystal ingot is solidified in one direction, the Si polycrystal ingot must be produced by a method of maintaining the shape of the grain boundary portion of the solid-liquid interface in a flat shape.

本発明により、不純物の局所偏析がない高品質なSi多結晶インゴットが得られるため、本Si多結晶インゴットは太陽電池用基板として有用であることは自明である。
According to the present invention, a high-quality Si polycrystal ingot free from local segregation of impurities is obtained, and therefore it is obvious that the Si polycrystal ingot is useful as a substrate for solar cells.

Claims (3)

Si多結晶インゴットの一方向凝固過程において、固液界面の粒界部分の形状を平坦な形状に維持したままSi多結晶インゴットを作製することを特徴とするSi多結晶インゴットの製造方法。   A method for producing a Si polycrystal ingot, characterized in that, in the unidirectional solidification process of a Si polycrystal ingot, the Si polycrystal ingot is produced while maintaining the shape of the grain boundary portion of the solid-liquid interface in a flat shape. 前記固液界面の冷却速度を0.01℃/分〜0.5℃/分の範囲とすることを特徴とする請求項1記載のSi多結晶インゴットの製造方法。   The method for producing a Si polycrystalline ingot according to claim 1, wherein a cooling rate of the solid-liquid interface is in a range of 0.01 ° C / min to 0.5 ° C / min. 請求項1または2記載のSi多結晶インゴットの製造方法により製造されるSi多結晶インゴットであって、ドーパントとしてBもしくはGaもしくはPを含有することを特徴とするSi多結晶インゴット。
A Si polycrystal ingot produced by the method for producing a Si polycrystal ingot according to claim 1, wherein the polycrystal ingot contains B, Ga, or P as a dopant.
JP2013085169A 2013-04-15 2013-04-15 Method for producing Si polycrystalline ingot Active JP6095060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013085169A JP6095060B2 (en) 2013-04-15 2013-04-15 Method for producing Si polycrystalline ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013085169A JP6095060B2 (en) 2013-04-15 2013-04-15 Method for producing Si polycrystalline ingot

Publications (2)

Publication Number Publication Date
JP2014205598A true JP2014205598A (en) 2014-10-30
JP6095060B2 JP6095060B2 (en) 2017-03-15

Family

ID=52119509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013085169A Active JP6095060B2 (en) 2013-04-15 2013-04-15 Method for producing Si polycrystalline ingot

Country Status (1)

Country Link
JP (1) JP6095060B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004284892A (en) * 2003-03-24 2004-10-14 Jfe Steel Kk Method of producing polycrystal silicon
JP2009051720A (en) * 2007-08-02 2009-03-12 Tohoku Univ PROCESS FOR PRODUCING Si BULK POLYCRYSTAL INGOT
JP2009084145A (en) * 2007-09-10 2009-04-23 Tohoku Univ Si POLYCRYSTALLINE INGOT, METHOD OF PRODUCING Si POLYCRYSTALLINE INGOT, AND Si POLYCRYSTALLINE WAFER
JP2010508237A (en) * 2006-11-02 2010-03-18 コミサリア、ア、レネルジ、アトミク−セーエーアー Method for refining metallic silicon by directional solidification
WO2011135884A1 (en) * 2010-04-27 2011-11-03 株式会社東北テクノアーチ Device for producing polycrystalline si ingot, polycrystalline si ingot, and polycrystalline si wafer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004284892A (en) * 2003-03-24 2004-10-14 Jfe Steel Kk Method of producing polycrystal silicon
JP2010508237A (en) * 2006-11-02 2010-03-18 コミサリア、ア、レネルジ、アトミク−セーエーアー Method for refining metallic silicon by directional solidification
JP2009051720A (en) * 2007-08-02 2009-03-12 Tohoku Univ PROCESS FOR PRODUCING Si BULK POLYCRYSTAL INGOT
JP2009084145A (en) * 2007-09-10 2009-04-23 Tohoku Univ Si POLYCRYSTALLINE INGOT, METHOD OF PRODUCING Si POLYCRYSTALLINE INGOT, AND Si POLYCRYSTALLINE WAFER
WO2011135884A1 (en) * 2010-04-27 2011-11-03 株式会社東北テクノアーチ Device for producing polycrystalline si ingot, polycrystalline si ingot, and polycrystalline si wafer

Also Published As

Publication number Publication date
JP6095060B2 (en) 2017-03-15

Similar Documents

Publication Publication Date Title
KR102312204B1 (en) Method for controlling resistivity and n-type silicon single crystal
KR101070412B1 (en) Method of manufacturing silicon carbide single crystal
JP2014144909A (en) Ingot and silicon wafer
CN101694008A (en) Gallium-doped metallic silicon and directional solidification casting method thereof
JP2007019209A (en) Polycrystalline silicone for solar cell and its manufacturing method
CN107849728B (en) System and method for low oxygen crystal growth using a two-layer continuous Czochralsk method
CN101597787B (en) Method for casting nitrogen-doped monocrystalline silicon with controllable nitrogen concentration under nitrogen
CN104846437A (en) Gallium-doped crystalline silicon with uniformly distributed resistivity and preparation method thereof
CN101591807A (en) Directionally solidified casting monocrystalline silicon of nitrating and preparation method thereof
CN109963967A (en) The manufacturing method of compound semiconductor and compound semiconductor single crystal
CN105951173A (en) N type monocrystalline silicon crystal ingot and manufacturing method thereof
CN101864593B (en) N-doped crystalline silicon and preparation method thereof
CN105019022A (en) Quasi mono-crystalline silicon co-doped with gallium, germanium and boron and preparing method thereof
CN105951172A (en) Manufacturing method of N type/P type monocrystalline silicon crystal ingot
JP5861770B2 (en) Polycrystalline silicon and casting method thereof
JP2013087008A (en) N-type silicon single crystal and method of manufacturing the same
TW201623703A (en) Method of fabrication of an ingot of n-type single-crystal silicon with a controlled concentration of oxygen-based thermal donors
JP6095060B2 (en) Method for producing Si polycrystalline ingot
JP4534022B2 (en) Ga-doped crystalline silicon, method for producing the same, device for producing Ga-doped crystalline silicon used in the method for producing the same, solar cell using Ga-doped crystalline silicon substrate, and method for producing the same
JP4723082B2 (en) Method for producing Ga-doped silicon single crystal
JP4599067B2 (en) Ga compound doped polycrystalline silicon and manufacturing method thereof
CN104499046B (en) Preparation method of polycrystalline silicon ingots
CN114561701B (en) Method for growing gallium oxide single crystal by casting method and semiconductor device containing gallium oxide single crystal
JP5846437B2 (en) Method for producing silicon ingot
JP2006273669A (en) Method for manufacturing semiconductor ingot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170208

R150 Certificate of patent or registration of utility model

Ref document number: 6095060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250