WO2011135644A1 - Input/output circuit, semiconductor control system, and control method for input/output circuit - Google Patents

Input/output circuit, semiconductor control system, and control method for input/output circuit Download PDF

Info

Publication number
WO2011135644A1
WO2011135644A1 PCT/JP2010/007177 JP2010007177W WO2011135644A1 WO 2011135644 A1 WO2011135644 A1 WO 2011135644A1 JP 2010007177 W JP2010007177 W JP 2010007177W WO 2011135644 A1 WO2011135644 A1 WO 2011135644A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
input
signal
circuit
node
Prior art date
Application number
PCT/JP2010/007177
Other languages
French (fr)
Japanese (ja)
Inventor
平田貴士
大塚英文
橋本剛
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011135644A1 publication Critical patent/WO2011135644A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines

Definitions

  • the present invention relates to an input / output circuit for transmitting and receiving digital signals at high speed, which is mounted on video equipment, communication equipment, and the like.
  • Recent video equipment such as PCs (Personal Computers), digital televisions, Blu-ray recorders, etc. have a processor that performs image processing and numerical computation processing, and a DRAM (Dynamic Random Access Memory) that buffers image data and computation data. It is used.
  • DRAM Dynamic Random Access Memory
  • the amount of data transmitted to and from the DRAM has been increasing year by year, and the speed of data transmission and the increase in the number of bits are progressing.
  • a DDR (Double Data Rate) standard defined by JEDEC (Joint Electron Device Engineering Engineering Council) is used for a DRAM interface for transmitting and receiving data between a processor and a DRAM.
  • a push-pull off-chip driver (OCD) is used on the transmitting side as an IO circuit, and a Thevenin-type on-die termination (to suppress signal reflection on the receiving side) ODT) is used.
  • FIG. 7 shows an example of the configuration of a conventional input / output circuit, where 101 is an OCD circuit, 102 is an ODT circuit, and 103 is a control circuit for the OCD circuit 101.
  • a resistance value is defined for both transmission and reception.
  • the resistance value of OCD is determined to be 30 to 68 ⁇
  • the resistance value of ODT is determined to be 80 to 240 ⁇ . For this reason, when signals are transmitted and received, currents IH and IL of around 10 mA always flow to the transmission side and the reception side.
  • a configuration in which a transistor and a resistance element are connected in series is generally used as an OCD circuit or an ODT circuit.
  • a transistor TP01, resistance elements Rp1 and Rn1, and a transistor TN01 are connected in series between the power supply and the ground.
  • the transistor TP02, the resistance elements Rp2 and Rn2, and the transistor TN02 are connected in series between the power supply and the ground.
  • the amount of current that can flow per unit wiring width is reduced from the viewpoint of EM (Electro Migration) due to the progress of thinning of the wiring layer accompanying the miniaturization of the process. This is also a big problem in reducing the area of the drive circuit and the termination circuit.
  • An object of the present invention is to realize an input / output circuit for transmitting and receiving a digital signal at a high speed with a small circuit area while maintaining EM resistance.
  • the input / output circuit includes a first output buffer, a second output buffer, and an input / output terminal to which the first and second output buffers are connected in common.
  • the first output buffer includes a first transistor connected between a power source and a first node, a second transistor connected between the first node and the ground, and the first transistor.
  • a first resistance element connected between a node and the input / output terminal, and the second output buffer includes a third transistor connected between a power supply and a second node; A fourth transistor connected between the second node and the ground, and a second resistance element connected between the second node and the input / output terminal.
  • a signal output mode for outputting a signal via the first and second output buffers and a signal input mode for setting the first and second output buffers as termination circuits are switched. Further, in the signal input mode, the first state where the first and fourth transistors are turned on and the second and third transistors are turned off, or the second and third transistors are turned on. And controlling to set the first and fourth transistors to the second state to turn them off.
  • the first resistance element is shared between the power supply side and the ground side.
  • the second resistance element is connected to the power supply side and the ground side. And shared with.
  • a resistive element can be reduced.
  • the termination circuit is configured by combining the first and second output buffers. At this time, a current path passing through the first and second resistance elements is formed from the power supply to the ground. . Therefore, an input / output circuit that functions as both a driver circuit and a termination circuit can be realized with a small circuit area while maintaining EM resistance.
  • the signal input mode it is preferable to switch between the first state and the second state at a predetermined timing.
  • the direction of the current flowing through the first and second resistance elements is switched in the signal input mode, it is possible to improve the EM resistance of the resistance element and the wiring and via connected thereto.
  • the transistors to be activated are also switched, the average amount of current flowing through each transistor and its wiring is reduced, thereby suppressing EM deterioration of the transistor wiring. Therefore, the width of the resistance element, the width of the transistor wiring, and the like can be reduced, and the circuit area can be reduced.
  • an input / output circuit that functions as both a driver circuit and a termination circuit can be realized with a small circuit area and low power consumption while maintaining EM resistance.
  • EM resistance As a result, it is possible to achieve both reliability and cost reduction of LSI mounted on video equipment, communication equipment, and the like.
  • FIG. 1 is an example of a semiconductor control system in which an input / output circuit according to an embodiment is mounted. It is a figure which shows the structure of the input / output circuit which concerns on embodiment, and the operation
  • FIG. 1 is an example of a semiconductor control system in which the input / output circuit according to the embodiment is mounted.
  • 1 is a processor that performs image processing, arithmetic processing, and the like
  • 2 is a DRAM (Dynamic Random Access Memory)
  • 3 is a PROM (Programmable Read Only Memory) that stores an OS (Operating System) and a control program.
  • the processor 1 has a CPU 11 and performs image processing, arithmetic processing, and the like in accordance with instructions of the OS and control program stored in the PROM 3.
  • the DRAM 2 is used as a buffer for exchanging control programs, calculation data, image data, and the like with the processor 1 at high speed.
  • the processor 1 has a DRAM interface 12 for transmitting and receiving a large amount of data between the CPU 11 and the DRAM 2 at high speed.
  • the input / output circuit according to the present embodiment is provided, for example, in the DRAM interface 12 of FIG.
  • the processor 1 and the DRAM 2 are connected by 100 or more signal lines, and data transfer is performed at a speed of several hundred Mbps or more.
  • the DRAM interface 12 is equipped with 100 or more input / output circuits for each signal line.
  • the input / output circuit according to the present embodiment is also used in, for example, an LSI that performs image processing and numerical calculation, and a device that communicates digital signals at high speed.
  • 2 to 4 are diagrams showing the configuration and operation of the input / output circuit according to this embodiment.
  • 20 is a buffer unit
  • 30 is an input / output control circuit.
  • Reference numeral 40 denotes an input / output counterpart circuit unit.
  • the buffer unit 20 includes a first output buffer 21, a second output buffer 22, an input / output terminal 23 to which the first and second output buffers 21 and 22 are connected in common, and an input buffer 24.
  • the first output buffer 21 includes a transistor TP1 as a first transistor connected between the power supply and the first node n1, and a second transistor connected between the first node n1 and the ground.
  • a transistor TN1 and a resistance element R1 as a first resistance element connected between the first node n1 and the input / output terminal 23 are provided.
  • the second output buffer 22 includes a transistor TP2 as a third transistor connected between the power supply and the second node n2, and a fourth transistor connected between the second node n2 and the ground.
  • a transistor TN2 and a resistance element R2 as a second resistance element connected between the second node n2 and the input / output terminal 23 are provided.
  • the input / output control circuit 30 includes a signal generator 31, a changeover switch 32, and an inverter 33.
  • the gates of the transistors TP1 and TN1 of the first output buffer 21 and the transistors TP2 and TN2 of the second output buffer 22 are provided. To output a signal. Then, a signal output mode for outputting a signal via the first and second output buffers 21 and 22 and a signal input mode for setting the first and second output buffers 21 and 22 as termination circuits are switched.
  • FIG. 2 shows the operation in the signal output mode
  • FIGS. 3 and 4 show the operation in the signal input mode.
  • the changeover switch 32 is set to the upper side, and the input / output control circuit 30 supplies the same signal to the first and second output buffers 21 and 22, that is, from the signal generator 31. Output the output signal.
  • the signal generator 31 outputs the signal “L (Low)”
  • the transistors TP1 and TP2 are turned on and the transistors TN1 and TN2 are turned off. Therefore, the signal “H (High)” is output from the first and second output buffers 21 and 22 to the input / output terminal 23.
  • the signal generator 31 when the signal generator 31 outputs the signal “H”, the transistors TP1 and TP2 are turned off and the transistors TN1 and TN2 are turned on. Therefore, the signal “L” is output from the first and second output buffers 21 and 22 to the input / output terminal 23.
  • the resistance elements R1 and R2 are shared between the power supply side and the ground side.
  • the transistor TP1 and the resistor element R1 form an output resistor
  • Constitutes the output resistance in FIG. 2, the direction of the current is indicated by a white arrow).
  • the first and second output buffers 21 and 22 are set as termination circuits.
  • a circuit configuration similar to that of the Thevenin type termination circuit 102 can be realized by simultaneously turning on the transistors TP1 and TN1 of the output buffer 101. That is, the output buffer 101 can also be used as a termination circuit at the time of signal input.
  • the input / output circuit according to the present embodiment for example, when the transistors TP1 and TN1 of the first output buffer 21 are simultaneously turned on, the resistance component between the power supply and the ground becomes only the ON resistance of the transistors TP1 and TN1. End up.
  • the first output buffer 21 can be set as a termination circuit, there arises a problem that the operating current is significantly increased as compared with the conventional one.
  • the termination circuit is realized by combining the first output buffer 21 and the second output buffer 22. That is, as shown in FIGS. 3 and 4, in the signal input mode, the changeover switch 32 is set to the lower side, and the input / output control circuit 30 has the polarities of the first and second output buffers 21 and 22 opposite to each other.
  • the signal is output. That is, the output signal of the signal generator 31 is supplied to the first output buffer 21 as it is, and the inverted signal of the output signal of the signal generator 31 is supplied to the second output buffer 22.
  • the signal generator 31 outputs a signal “L”, and the signal “L” is given to the first output buffer 21, while the signal “H” is given to the second output buffer 22. It is done.
  • the transistor TP1 is turned on and the transistor TN1 is turned off.
  • the transistor TP2 is turned off and the transistor TN2 is turned on.
  • a current path is formed from the power supply to the ground through the transistor TP1, the resistor element R1, the resistor element R2, and the transistor TN2. That is, the termination circuit is configured by the transistors TP1 and TN2 and the resistance elements R1 and R2.
  • the input resistance value is a parallel resistance value of the ON resistance of the transistor TP1 and the series resistance of the resistance element R1, and the ON resistance of the transistor TN2 and the series resistance of the resistance element R2. Therefore, it is possible to operate as a termination circuit with an operating current comparable to that of the prior art.
  • the signal generator 31 outputs a signal “H”, the signal “H” is given to the first output buffer 21, while the signal “L” is given to the second output buffer 22.
  • the transistor TP1 is turned off and the transistor TN1 is turned on.
  • the transistor TP2 is turned on and the transistor TN2 is turned off.
  • a current path is formed from the power supply to the ground through the transistor TP2, the resistor element R2, the resistor element R1, and the transistor TN1. That is, a termination circuit is configured by the transistors TP2 and TN1 and the resistance elements R1 and R2.
  • the input resistance value is a parallel resistance value of the ON resistance of the transistor TP2 and the series resistance of the resistance element R2, and the ON resistance of the transistor TN1 and the series resistance of the resistance element R1. Therefore, it is possible to operate as a termination circuit with an operating current comparable to that of the prior art.
  • the state shown in FIG. 3 or the state shown in FIG. 4 may be used. Or you may make it switch the state of FIG. 3 and the state of FIG. 4 at a predetermined
  • the directions of the currents flowing through the resistance elements R1 and R2 are reversed. Therefore, by switching between the state of FIG. 3 and the state of FIG. 4, the direction of the current flowing through the resistance elements R1 and R2 can be changed, thereby suppressing deterioration of the resistance elements R1 and R2 due to EM. Is possible. 3 and FIG. 4, the transistor to be activated is also switched. Therefore, by switching between the state of FIG. 3 and the state of FIG. 4, the average amount of current flowing through each transistor and its wiring can be reduced. Thereby, EM deterioration with respect to transistor wiring can be suppressed. Therefore, it is possible to reduce the width of the resistance element, the width of the transistor wiring, and the like necessary for satisfying the specified value of the EM resistance, and the layout area can be reduced.
  • the specified value of the output resistance at the time of signal output is less than or equal to the specified value of the input resistance at the time of signal input, so even if one termination circuit is configured by two output buffers, there is a particular problem. Does not occur.
  • FIG. 5 is a simplified diagram of an equivalent circuit of the input / output circuit according to the present embodiment, where (a) is an equivalent circuit at the time of signal output, and (b) is an equivalent circuit at the time of signal input.
  • Rout (RTP1 + R1) // (RTP2 + R2) It becomes.
  • Rin (RTP1 + R1) // (RTN2 + R2) It becomes.
  • the output buffer is divided into a plurality of units (10 units 601 to 610 in FIG. 6) and used as shown in FIG. What is necessary is just to select the number of units suitably.
  • the output resistance at the time of signal output can be set in 10 steps from R, R / 2, R / 3,.
  • the input resistance at the time of signal input can be set in five stages of R / 2, R / 4, R / 6, R / 8, and R / 10.
  • the average current flowing through the transistor wiring can be reduced in the same manner as described above, so that EM degradation can be suppressed.
  • the input / output control circuit 30 has been described by taking a simple configuration as an example.
  • the present invention is not limited to this.
  • the CPU 11 instructs the input / output circuit included in the DRAM interface 12 to switch between the signal input mode and the signal output mode in accordance with the program stored in the PROM 3. And Furthermore, the CPU 11 may also switch the transistors that are in the ON state in the signal input mode. For example, the state shown in FIG. 3 and the state shown in FIG. 4 may be switched by software. When the output buffer is divided into a plurality of units, the number of units to be used may be appropriately selected by software. Thereby, in the signal input mode, the switching timing of the transistors in the ON state and the number of units used can be optimized. Of course, switching of transistors in the ON state and selection of the number of units may be performed by an internal circuit.
  • the termination circuit realization method using two output buffers shown in this embodiment can be applied to a conventional output buffer configuration as shown in FIG. 7 or an output buffer not using a resistance device. Is possible.
  • an input / output circuit that functions as both a driver circuit and a termination circuit is realized with a small circuit area and low power consumption while maintaining EM resistance. This is useful for ensuring the reliability and cost reduction of the interface LSI to be transmitted.
  • first output buffer 22 second output buffer 23 input / output terminal 30 input / output control circuit TP1 first transistor TN1 second transistor TP2 third transistor TN2 fourth transistor R1 first resistor element R2 second Resistive element n1 first node n2 second node

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Logic Circuits (AREA)
  • Dram (AREA)
  • Dc Digital Transmission (AREA)

Abstract

An output buffer (21) is equipped with transistors (TP1, TN1) that are connected between a power supply and ground and a resistive element (R1) that is connected between a node (n1) and an input/output terminal (23), and an output buffer (22) is equipped with transistors (TP2, TN2) that are connected between the power supply and the ground and a resistive element (R2) that is connected between a node (n2) and the input/output terminal (23). In signal input mode, the output buffers (21, 22) form a single termination circuit. For example, the transistors (TP1, TN2) are turned on, the transistors (TN1, TP2) are turned off, and a current path passing through the resistive elements (R1, R2) is formed.

Description

入出力回路、半導体制御システム、および入出力回路の制御方法Input / output circuit, semiconductor control system, and input / output circuit control method
 本発明は、映像機器や通信機器等に搭載される、デジタル信号を高速で送受信するための入出力回路に関する。 The present invention relates to an input / output circuit for transmitting and receiving digital signals at high speed, which is mounted on video equipment, communication equipment, and the like.
 PC(Personal Computer)、デジタルテレビ、ブルーレイレコーダ等の最近の映像機器では、画像処理や数値演算処理を行うプロセッサと、画像データや演算データをバッファリングするためのDRAM(Dynamic Random Access Memory)とが用いられている。プロセッサの性能向上に伴い、DRAMとの間のデータ伝送量が年々増加しており、データ伝送の高速化や多ビット化が進んでいる。 Recent video equipment such as PCs (Personal Computers), digital televisions, Blu-ray recorders, etc. have a processor that performs image processing and numerical computation processing, and a DRAM (Dynamic Random Access Memory) that buffers image data and computation data. It is used. Along with the improvement in processor performance, the amount of data transmitted to and from the DRAM has been increasing year by year, and the speed of data transmission and the increase in the number of bits are progressing.
 プロセッサとDRAMとの間のデータ送受信を行うためのDRAMインタフェースには、一般に、JEDEC(Joint Electron Device Engineering Council)で規定されたDDR(Double Data Rate)規格が用いられる。このDDR規格では、IO回路として、送信側では、プッシュプル型のオフ・チップ・ドライバ(OCD)が用いられ、受信側では、信号の反射を抑えるために、テブナン型のオン・ダイ・ターミネーション(ODT)が用いられる。 In general, a DDR (Double Data Rate) standard defined by JEDEC (Joint Electron Device Engineering Engineering Council) is used for a DRAM interface for transmitting and receiving data between a processor and a DRAM. In this DDR standard, a push-pull off-chip driver (OCD) is used on the transmitting side as an IO circuit, and a Thevenin-type on-die termination (to suppress signal reflection on the receiving side) ODT) is used.
 図7は従来の入出力回路の構成の一例であり、101はOCD回路、102はODT回路、103はOCD回路101の制御回路である。DDR規格では、送信・受信のいずれについても抵抗値が規定されている。例えばDDR3規格では、OCDの抵抗値は30~68Ω、ODTの抵抗値は80~240Ωと決められている。このため、信号の送受信を行う際に、10mA前後の電流IH,ILが、送信側、受信側に常時流れることになる。さらに、OCD,ODTの抵抗値に関しては、I-V特性も細かく規定されており、このため、OCD回路やODT回路として、トランジスタと抵抗素子を直列に接続した構成が、一般に用いられている。図7の構成では、OCD回路101では、電源とグランドとの間に、トランジスタTP01、抵抗素子Rp1,Rn1、トランジスタTN01が直列に接続されている。また、ODT回路102では、電源とグランドとの間に、トランジスタTP02、抵抗素子Rp2,Rn2、トランジスタTN02が直列に接続されている。 FIG. 7 shows an example of the configuration of a conventional input / output circuit, where 101 is an OCD circuit, 102 is an ODT circuit, and 103 is a control circuit for the OCD circuit 101. In the DDR standard, a resistance value is defined for both transmission and reception. For example, in the DDR3 standard, the resistance value of OCD is determined to be 30 to 68Ω, and the resistance value of ODT is determined to be 80 to 240Ω. For this reason, when signals are transmitted and received, currents IH and IL of around 10 mA always flow to the transmission side and the reception side. Further, regarding the resistance values of OCD and ODT, IV characteristics are also specified in detail, and therefore, a configuration in which a transistor and a resistance element are connected in series is generally used as an OCD circuit or an ODT circuit. In the configuration of FIG. 7, in the OCD circuit 101, a transistor TP01, resistance elements Rp1 and Rn1, and a transistor TN01 are connected in series between the power supply and the ground. In the ODT circuit 102, the transistor TP02, the resistance elements Rp2 and Rn2, and the transistor TN02 are connected in series between the power supply and the ground.
特開2003-133943号公報JP 2003-133944 A
 昨今のLSI製造プロセスの微細化に伴い、例えばLSIの内部ロジック回路については、小面積化がかなりの程度実現されている。ところが、OCD回路のようなドライブ回路やODT回路のような終端回路については、上述したように例えば10mA前後の電流を常時流す必要があるため、トランジスタや抵抗素子のサイズが自ずと決まってしまい、このため小面積化が進んでいない。このことは、LSIのコスト削減の妨げになっている。 With the recent miniaturization of LSI manufacturing processes, for example, the internal logic circuit of LSI has been considerably reduced in area. However, in the case of a drive circuit such as an OCD circuit and a termination circuit such as an ODT circuit, as described above, it is necessary to constantly pass a current of, for example, about 10 mA. Therefore, the area has not been reduced. This hinders cost reduction of LSI.
 さらに、プロセスの微細化に伴う配線層の薄膜化の進行により、EM(Electro Migration)の観点から、単位配線幅当たりに流すことが可能な電流量が低下している。このことも、ドライブ回路や終端回路の小面積化における大きな問題となっている。 Furthermore, the amount of current that can flow per unit wiring width is reduced from the viewpoint of EM (Electro Migration) due to the progress of thinning of the wiring layer accompanying the miniaturization of the process. This is also a big problem in reducing the area of the drive circuit and the termination circuit.
 本発明は、デジタル信号を高速で送受信するための入出力回路を、EM耐性を保ちつつ、小さな回路面積で、実現することを目的としている。 An object of the present invention is to realize an input / output circuit for transmitting and receiving a digital signal at a high speed with a small circuit area while maintaining EM resistance.
 本発明の一態様では、入出力回路は、第1の出力バッファと、第2の出力バッファと、前記第1および第2の出力バッファが共通に接続される入出力端子とを備えている。そして、前記第1の出力バッファは、電源と第1ノードとの間に接続された第1のトランジスタと、前記第1ノードとグランドとの間に接続された第2のトランジスタと、前記第1ノードと前記入出力端子との間に接続された第1の抵抗素子とを備え、前記第2の出力バッファは、電源と第2ノードとの間に接続された第3のトランジスタと、前記第2のノードとグランドとの間に接続された第4のトランジスタと、前記第2のノードと前記入出力端子との間に接続された第2の抵抗素子とを備えている。 In one aspect of the present invention, the input / output circuit includes a first output buffer, a second output buffer, and an input / output terminal to which the first and second output buffers are connected in common. The first output buffer includes a first transistor connected between a power source and a first node, a second transistor connected between the first node and the ground, and the first transistor. A first resistance element connected between a node and the input / output terminal, and the second output buffer includes a third transistor connected between a power supply and a second node; A fourth transistor connected between the second node and the ground, and a second resistance element connected between the second node and the input / output terminal.
 そして、前記第1および第2の出力バッファを介して信号出力を行う信号出力モードと、前記第1および第2の出力バッファを終端回路として設定する信号入力モードとを切り替える。さらに、前記信号入力モードにおいて、前記第1および第4のトランジスタをON状態にし、前記第2および第3のトランジスタをOFF状態にする第1状態、または、前記第2および第3のトランジスタをON状態にし、前記第1および第4のトランジスタをOFF状態にする第2状態に設定する制御を行う。 Then, a signal output mode for outputting a signal via the first and second output buffers and a signal input mode for setting the first and second output buffers as termination circuits are switched. Further, in the signal input mode, the first state where the first and fourth transistors are turned on and the second and third transistors are turned off, or the second and third transistors are turned on. And controlling to set the first and fourth transistors to the second state to turn them off.
 この態様によると、第1の出力バッファにおいて、第1の抵抗素子が電源側とグランド側とで共用されており、同様に第2の出力バッファにおいて、第2の抵抗素子が電源側とグランド側とで共用されている。これにより、抵抗素子を削減することができる。また、信号出力モードにおいて、第1および第2の抵抗素子には、信号“H”出力時と信号“L”出力時とで、逆向きに電流が流れる。このため、抵抗素子のEM劣化が抑制されるので、抵抗素子の幅を小さく抑えることが可能になる。さらに、信号入力モードにおいて、第1および第2の出力バッファを組み合わせて終端回路が構成され、このとき、電源からグランドに向けて、第1および第2の抵抗素子を通る電流パスが形成される。したがって、ドライバ回路と終端回路の両方の機能を果たす入出力回路を、EM耐性を保ちつつ、小さな回路面積で、実現することができる。 According to this aspect, in the first output buffer, the first resistance element is shared between the power supply side and the ground side. Similarly, in the second output buffer, the second resistance element is connected to the power supply side and the ground side. And shared with. Thereby, a resistive element can be reduced. In the signal output mode, a current flows through the first and second resistance elements in opposite directions when the signal “H” is output and when the signal “L” is output. For this reason, since EM degradation of a resistance element is suppressed, it becomes possible to suppress the width | variety of a resistance element small. Further, in the signal input mode, the termination circuit is configured by combining the first and second output buffers. At this time, a current path passing through the first and second resistance elements is formed from the power supply to the ground. . Therefore, an input / output circuit that functions as both a driver circuit and a termination circuit can be realized with a small circuit area while maintaining EM resistance.
 そして、前記信号入力モードにおいて、前記第1状態と前記第2状態とを、所定のタイミングで、切り替えるのが好ましい。 In the signal input mode, it is preferable to switch between the first state and the second state at a predetermined timing.
 これによると、信号入力モードにおいて、第1および第2の抵抗素子に流れる電流の向きが切り替わるので、抵抗素子とそれに繋がる配線やビアのEM耐性を向上させることができる。また、活性化するトランジスタも切り替わるので、各トランジスタとその配線に流れる平均電流量も減少し、これにより、トランジスタ配線のEM劣化を抑制することができる。したがって、抵抗素子の幅やトランジスタ配線の幅等を縮小することが可能となり、回路面積削減を図ることができる。 According to this, since the direction of the current flowing through the first and second resistance elements is switched in the signal input mode, it is possible to improve the EM resistance of the resistance element and the wiring and via connected thereto. In addition, since the transistors to be activated are also switched, the average amount of current flowing through each transistor and its wiring is reduced, thereby suppressing EM deterioration of the transistor wiring. Therefore, the width of the resistance element, the width of the transistor wiring, and the like can be reduced, and the circuit area can be reduced.
 本発明によると、ドライバ回路と終端回路の両方の機能を果たす入出力回路を、EM耐性を保ちつつ、小さな回路面積で、かつ、低消費電力で、実現することができる。これにより、映像機器や通信機器等に搭載されるLSIの、信頼性確保とコスト削減を両立することが可能となる。 According to the present invention, an input / output circuit that functions as both a driver circuit and a termination circuit can be realized with a small circuit area and low power consumption while maintaining EM resistance. As a result, it is possible to achieve both reliability and cost reduction of LSI mounted on video equipment, communication equipment, and the like.
実施形態に係る入出力回路が搭載される半導体制御システムの一例である。1 is an example of a semiconductor control system in which an input / output circuit according to an embodiment is mounted. 実施形態に係る入出力回路の構成と信号出力モードにおける動作を示す図である。It is a figure which shows the structure of the input / output circuit which concerns on embodiment, and the operation | movement in signal output mode. 実施形態に係る入出力回路の構成と信号入力モードにおける動作を示す図である。It is a figure which shows the structure of the input / output circuit which concerns on embodiment, and the operation | movement in signal input mode. 実施形態に係る入出力回路の構成と信号入力モードにおける動作を示す図である。It is a figure which shows the structure of the input / output circuit which concerns on embodiment, and the operation | movement in signal input mode. 実施形態に係る入出力回路の等価回路図であり、(a)が信号出力時、(b)が信号入力時である。It is an equivalent circuit diagram of the input / output circuit which concerns on embodiment, (a) is at the time of signal output, (b) is at the time of signal input. 出力バッファを複数ユニットに分割配置した構成の一例である。It is an example of a configuration in which an output buffer is divided and arranged in a plurality of units. 従来の入出力回路の構成図である。It is a block diagram of the conventional input / output circuit.
 以下、本発明の実施形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は実施形態に係る入出力回路が搭載される半導体制御システムの一例である。図1において、1は画像処理や演算処理等を行うプロセッサ、2はDRAM(Dynamic Random Access Memory)、3はOS(Operating System)や制御プログラムを格納するPROM(Programmable Read Only Memory)である。プロセッサ1はCPU11を有しており、PROM3に格納されたOSや制御プログラムの命令に従って画像処理や演算処理等を行う。DRAM2は制御プログラムや演算データ、画像データ等をプロセッサ1と高速にやりとりするためのバッファとして使用される。プロセッサ1はCPU11とDRAM2との間で大容量のデータを高速に送受信するためのDRAMインタフェース12を有している。 FIG. 1 is an example of a semiconductor control system in which the input / output circuit according to the embodiment is mounted. In FIG. 1, 1 is a processor that performs image processing, arithmetic processing, and the like, 2 is a DRAM (Dynamic Random Access Memory), and 3 is a PROM (Programmable Read Only Memory) that stores an OS (Operating System) and a control program. The processor 1 has a CPU 11 and performs image processing, arithmetic processing, and the like in accordance with instructions of the OS and control program stored in the PROM 3. The DRAM 2 is used as a buffer for exchanging control programs, calculation data, image data, and the like with the processor 1 at high speed. The processor 1 has a DRAM interface 12 for transmitting and receiving a large amount of data between the CPU 11 and the DRAM 2 at high speed.
 本実施形態に係る入出力回路は、例えば、図1のDRAMインタフェース12に設けられている。例えば、最近の標準的なPC(Personal Computer)では、プロセッサ1とDRAM2との間は100本以上の信号線で結ばれており、数百Mbps以上の速度でデータ転送を行う。このために、DRAMインタフェース12には、各信号線毎に、100個以上の入出力回路が搭載される。 The input / output circuit according to the present embodiment is provided, for example, in the DRAM interface 12 of FIG. For example, in a recent standard PC (Personal Computer), the processor 1 and the DRAM 2 are connected by 100 or more signal lines, and data transfer is performed at a speed of several hundred Mbps or more. For this purpose, the DRAM interface 12 is equipped with 100 or more input / output circuits for each signal line.
 なお、本実施形態に係る入出力回路は、例えば、画像処理や数値演算を行うLSIや、高速にデジタル信号を通信する機器等にも使用される。 Note that the input / output circuit according to the present embodiment is also used in, for example, an LSI that performs image processing and numerical calculation, and a device that communicates digital signals at high speed.
 図2~図4は本実施形態に係る入出力回路の構成と動作を示す図である。図2~図4において、20はバッファ部、30は入出力制御回路である。40は入出力の相手側の回路部である。 2 to 4 are diagrams showing the configuration and operation of the input / output circuit according to this embodiment. 2 to 4, 20 is a buffer unit, and 30 is an input / output control circuit. Reference numeral 40 denotes an input / output counterpart circuit unit.
 バッファ部20は、第1の出力バッファ21、第2の出力バッファ22、第1および第2の出力バッファ21,22が共通に接続される入出力端子23、および入力バッファ24を備えている。第1の出力バッファ21は、電源と第1ノードn1との間に接続された第1のトランジスタとしてのトランジスタTP1と、第1ノードn1とグランドとの間に接続された第2のトランジスタとしてのトランジスタTN1と、第1ノードn1と入出力端子23との間に接続された第1の抵抗素子としての抵抗素子R1とを備えている。第2の出力バッファ22は、電源と第2ノードn2との間に接続された第3のトランジスタとしてのトランジスタTP2と、第2ノードn2とグランドとの間に接続された第4のトランジスタとしてのトランジスタTN2と、第2ノードn2と入出力端子23との間に接続された第2の抵抗素子としての抵抗素子R2とを備えている。 The buffer unit 20 includes a first output buffer 21, a second output buffer 22, an input / output terminal 23 to which the first and second output buffers 21 and 22 are connected in common, and an input buffer 24. The first output buffer 21 includes a transistor TP1 as a first transistor connected between the power supply and the first node n1, and a second transistor connected between the first node n1 and the ground. A transistor TN1 and a resistance element R1 as a first resistance element connected between the first node n1 and the input / output terminal 23 are provided. The second output buffer 22 includes a transistor TP2 as a third transistor connected between the power supply and the second node n2, and a fourth transistor connected between the second node n2 and the ground. A transistor TN2 and a resistance element R2 as a second resistance element connected between the second node n2 and the input / output terminal 23 are provided.
 入出力制御回路30は、信号発生器31、切替スイッチ32およびインバータ33を備えており、第1の出力バッファ21のトランジスタTP1,TN1、および、第2の出力バッファ22のトランジスタTP2,TN2のゲートに信号を出力する。そして、第1および第2の出力バッファ21,22を介して信号出力を行う信号出力モードと、第1および第2の出力バッファ21,22を終端回路として設定する信号入力モードとを切り替える。図2は信号出力モードにおける動作を示し、図3および図4は信号入力モードにおける動作を示す。 The input / output control circuit 30 includes a signal generator 31, a changeover switch 32, and an inverter 33. The gates of the transistors TP1 and TN1 of the first output buffer 21 and the transistors TP2 and TN2 of the second output buffer 22 are provided. To output a signal. Then, a signal output mode for outputting a signal via the first and second output buffers 21 and 22 and a signal input mode for setting the first and second output buffers 21 and 22 as termination circuits are switched. FIG. 2 shows the operation in the signal output mode, and FIGS. 3 and 4 show the operation in the signal input mode.
 図2を参照して信号出力モードにおける動作について説明する。図2に示すように、信号出力モードにおいて、切替スイッチ32は上側に設定され、入出力制御回路30は、第1および第2の出力バッファ21,22に同一の信号、すなわち信号発生器31から出力された信号を出力する。信号発生器31が信号“L(Low)”を出力したときは、トランジスタTP1,TP2がON状態になり、トランジスタTN1,TN2がOFF状態になる。このため、第1および第2の出力バッファ21,22から信号“H(High)”が入出力端子23に出力される。一方、信号発生器31が信号“H”を出力したときは、トランジスタTP1,TP2がOFF状態になり、トランジスタTN1,TN2がON状態になる。このため、第1および第2の出力バッファ21,22から信号“L”が入出力端子23に出力される。 The operation in the signal output mode will be described with reference to FIG. As shown in FIG. 2, in the signal output mode, the changeover switch 32 is set to the upper side, and the input / output control circuit 30 supplies the same signal to the first and second output buffers 21 and 22, that is, from the signal generator 31. Output the output signal. When the signal generator 31 outputs the signal “L (Low)”, the transistors TP1 and TP2 are turned on and the transistors TN1 and TN2 are turned off. Therefore, the signal “H (High)” is output from the first and second output buffers 21 and 22 to the input / output terminal 23. On the other hand, when the signal generator 31 outputs the signal “H”, the transistors TP1 and TP2 are turned off and the transistors TN1 and TN2 are turned on. Therefore, the signal “L” is output from the first and second output buffers 21 and 22 to the input / output terminal 23.
 ここで、本実施形態に係る入出力回路では、出力バッファ21,22において、電源側とグランド側とで、抵抗素子R1,R2が共用されている。例えば第1の出力バッファ21において、信号“H”を出力するときは、トランジスタTP1と抵抗素子R1とで出力抵抗を構成し、信号“L”を出力するときは、トランジスタTN1と抵抗素子R1とで出力抵抗を構成する(図2では電流の向きを白抜き矢印で示している。)。このように抵抗素子R1,R2を共用することによって、例えば図7のような従来の、電源側とグランド側の両方に抵抗素子を設けた構成に比べて、抵抗素子を削減することができる。これにより、レイアウト面積を従来よりも小さくすることができる。 Here, in the input / output circuit according to this embodiment, in the output buffers 21 and 22, the resistance elements R1 and R2 are shared between the power supply side and the ground side. For example, in the first output buffer 21, when the signal “H” is output, the transistor TP1 and the resistor element R1 form an output resistor, and when the signal “L” is output, the transistor TN1 and the resistor element R1. Constitutes the output resistance (in FIG. 2, the direction of the current is indicated by a white arrow). By sharing the resistance elements R1 and R2 in this way, the resistance elements can be reduced compared to the conventional configuration in which the resistance elements are provided on both the power supply side and the ground side as shown in FIG. Thereby, a layout area can be made smaller than before.
 さらに、図7のような従来の構成では、抵抗素子には、常に一定方向に電流が流れる。このため、EM耐性を確保するために、抵抗素子の幅を十分大きく確保することが必要となり、さらにレイアウト面積の増加を招くという問題があった。これに対して本実施形態の入出力回路では、抵抗素子R1,R2には、信号“H”出力時と信号“L”出力時とで、逆向きに電流が流れる。このため、抵抗素子のEM劣化が従来よりも抑制されることになり、したがって、抵抗素子の幅を小さく抑えることが可能になる。 Furthermore, in the conventional configuration as shown in FIG. 7, a current always flows through the resistance element in a certain direction. For this reason, in order to ensure the EM resistance, it is necessary to secure a sufficiently large width of the resistance element, and there is a problem that the layout area is further increased. On the other hand, in the input / output circuit of this embodiment, current flows through the resistance elements R1 and R2 in opposite directions when the signal “H” is output and when the signal “L” is output. For this reason, the EM deterioration of the resistance element is suppressed as compared with the conventional case, and therefore the width of the resistance element can be suppressed to be small.
 図3および図4を参照して信号入力モードにおける動作について説明する。信号入力モードでは、第1および第2の出力バッファ21,22を終端回路として設定する。 The operation in the signal input mode will be described with reference to FIG. 3 and FIG. In the signal input mode, the first and second output buffers 21 and 22 are set as termination circuits.
 ここで、例えば図7のような従来の構成において、出力バッファ101のトランジスタTP1,TN1を同時にON状態にすることによって、テブナン型の終端回路102と同様の回路構成を実現することができる。すなわち、出力バッファ101を信号入力時の終端回路として兼用可能である。ところが、本実施形態に係る入出力回路において、例えば第1の出力バッファ21のトランジスタTP1,TN1を同時にON状態にすると、電源-グランド間の抵抗成分がトランジスタTP1,TN1のON抵抗のみとなってしまう。このため、第1の出力バッファ21を終端回路として設定できるものの、動作電流が従来と比べて格段に大きくなってしまう、という問題が生じる。 Here, for example, in the conventional configuration as shown in FIG. 7, a circuit configuration similar to that of the Thevenin type termination circuit 102 can be realized by simultaneously turning on the transistors TP1 and TN1 of the output buffer 101. That is, the output buffer 101 can also be used as a termination circuit at the time of signal input. However, in the input / output circuit according to the present embodiment, for example, when the transistors TP1 and TN1 of the first output buffer 21 are simultaneously turned on, the resistance component between the power supply and the ground becomes only the ON resistance of the transistors TP1 and TN1. End up. For this reason, although the first output buffer 21 can be set as a termination circuit, there arises a problem that the operating current is significantly increased as compared with the conventional one.
 そこで本実施形態では、この問題を解決するために、第1の出力バッファ21と第2の出力バッファ22とを組み合わせて、終端回路を実現する。すなわち、図3および図4に示すように、信号入力モードにおいて、切替スイッチ32は下側に設定され、入出力制御回路30は、第1および第2の出力バッファ21,22に極性が互いに逆の信号を出力する。すなわち、第1の出力バッファ21には信号発生器31の出力信号がそのまま与えられ、第2の出力バッファ22には信号発生器31の出力信号の反転信号が与えられる。 Therefore, in this embodiment, in order to solve this problem, the termination circuit is realized by combining the first output buffer 21 and the second output buffer 22. That is, as shown in FIGS. 3 and 4, in the signal input mode, the changeover switch 32 is set to the lower side, and the input / output control circuit 30 has the polarities of the first and second output buffers 21 and 22 opposite to each other. The signal is output. That is, the output signal of the signal generator 31 is supplied to the first output buffer 21 as it is, and the inverted signal of the output signal of the signal generator 31 is supplied to the second output buffer 22.
 図3では、信号発生器31は信号“L”を出力しており、第1の出力バッファ21には信号“L”が与えられる一方、第2の出力バッファ22には信号“H”が与えられる。このとき、第1の出力バッファ21ではトランジスタTP1がON状態、トランジスタTN1がOFF状態になり、第2の出力バッファ22ではトランジスタTP2がOFF状態、トランジスタTN2がON状態になる。この結果、電源からトランジスタTP1、抵抗素子R1、抵抗素子R2、トランジスタTN2を介してグランドに抜ける電流パスが形成される。すなわち、トランジスタTP1,TN2および抵抗素子R1,R2によって終端回路が構成される。この場合の入力抵抗値は、トランジスタTP1のON抵抗と抵抗素子R1の直列抵抗と、トランジスタTN2のON抵抗と抵抗素子R2の直列抵抗との並列抵抗の値となる。したがって、従来と同程度の動作電流によって、終端回路として動作させることが可能となる。 In FIG. 3, the signal generator 31 outputs a signal “L”, and the signal “L” is given to the first output buffer 21, while the signal “H” is given to the second output buffer 22. It is done. At this time, in the first output buffer 21, the transistor TP1 is turned on and the transistor TN1 is turned off. In the second output buffer 22, the transistor TP2 is turned off and the transistor TN2 is turned on. As a result, a current path is formed from the power supply to the ground through the transistor TP1, the resistor element R1, the resistor element R2, and the transistor TN2. That is, the termination circuit is configured by the transistors TP1 and TN2 and the resistance elements R1 and R2. In this case, the input resistance value is a parallel resistance value of the ON resistance of the transistor TP1 and the series resistance of the resistance element R1, and the ON resistance of the transistor TN2 and the series resistance of the resistance element R2. Therefore, it is possible to operate as a termination circuit with an operating current comparable to that of the prior art.
 また図4では、信号発生器31は信号“H”を出力しており、第1の出力バッファ21には信号“H”が与えられる一方、第2の出力バッファ22には信号“L”が与えられる。このとき、第1の出力バッファ21ではトランジスタTP1がOFF状態、トランジスタTN1がON状態になり、第2の出力バッファ22ではトランジスタTP2がON状態、トランジスタTN2がOFF状態になる。この結果、電源からトランジスタTP2、抵抗素子R2、抵抗素子R1、トランジスタTN1を介してグランドに抜ける電流パスが形成される。すなわち、トランジスタTP2,TN1および抵抗素子R1,R2によって終端回路が構成される。この場合の入力抵抗値は、トランジスタTP2のON抵抗と抵抗素子R2の直列抵抗と、トランジスタTN1のON抵抗と抵抗素子R1の直列抵抗との並列抵抗の値となる。したがって、従来と同程度の動作電流によって、終端回路として動作させることが可能となる。 In FIG. 4, the signal generator 31 outputs a signal “H”, the signal “H” is given to the first output buffer 21, while the signal “L” is given to the second output buffer 22. Given. At this time, in the first output buffer 21, the transistor TP1 is turned off and the transistor TN1 is turned on. In the second output buffer 22, the transistor TP2 is turned on and the transistor TN2 is turned off. As a result, a current path is formed from the power supply to the ground through the transistor TP2, the resistor element R2, the resistor element R1, and the transistor TN1. That is, a termination circuit is configured by the transistors TP2 and TN1 and the resistance elements R1 and R2. In this case, the input resistance value is a parallel resistance value of the ON resistance of the transistor TP2 and the series resistance of the resistance element R2, and the ON resistance of the transistor TN1 and the series resistance of the resistance element R1. Therefore, it is possible to operate as a termination circuit with an operating current comparable to that of the prior art.
 信号入力モードにおいては、図3の状態にしてもよいし、図4の状態にしてもよい。あるいは、図3の状態と図4の状態を、適宜、所定のタイミングで、切り替えるようにしてもよい。例えば、所定の時間周期で図3の状態と図4の状態とを切り替えてもよいし、信号入力モードになる度に、図3の状態と図4の状態とを切り替えるようにしてもよい。 In the signal input mode, the state shown in FIG. 3 or the state shown in FIG. 4 may be used. Or you may make it switch the state of FIG. 3 and the state of FIG. 4 at a predetermined | prescribed timing suitably. For example, the state of FIG. 3 and the state of FIG. 4 may be switched at a predetermined time period, or the state of FIG. 3 and the state of FIG. 4 may be switched each time the signal input mode is entered.
 図3と図4とでは、抵抗素子R1,R2に流れる電流の向きが逆になっている。このため、図3の状態と図4の状態とを切り替えることによって、抵抗素子R1,R2に流れる電流の向きを変えることができ、これにより、抵抗素子R1,R2のEMによる劣化を抑制することが可能となる。また、図3と図4とでは、活性化するトランジスタも切り替わるため、図3の状態と図4の状態とを切り替えることによって、各トランジスタとその配線に流れる平均電流量も削減することができる。これにより、トランジスタ配線に対するEM劣化を抑制することができる。したがって、EM耐性の規定値を満たすために必要となる、抵抗素子の幅やトランジスタ配線の幅等を小さくでき、レイアウト面積を削減することが可能になる。 3 and FIG. 4, the directions of the currents flowing through the resistance elements R1 and R2 are reversed. Therefore, by switching between the state of FIG. 3 and the state of FIG. 4, the direction of the current flowing through the resistance elements R1 and R2 can be changed, thereby suppressing deterioration of the resistance elements R1 and R2 due to EM. Is possible. 3 and FIG. 4, the transistor to be activated is also switched. Therefore, by switching between the state of FIG. 3 and the state of FIG. 4, the average amount of current flowing through each transistor and its wiring can be reduced. Thereby, EM deterioration with respect to transistor wiring can be suppressed. Therefore, it is possible to reduce the width of the resistance element, the width of the transistor wiring, and the like necessary for satisfying the specified value of the EM resistance, and the layout area can be reduced.
 なお、通常は、信号出力時における出力抵抗の規定値は、信号入力時における入力抵抗の規定値以下であるため、2個の出力バッファによって1個の終端回路を構成しても、特に問題は生じない。 Normally, the specified value of the output resistance at the time of signal output is less than or equal to the specified value of the input resistance at the time of signal input, so even if one termination circuit is configured by two output buffers, there is a particular problem. Does not occur.
 図5は本実施形態に係る入出力回路の等価回路の簡略図であり、(a)は信号出力時における等価回路、(b)は信号入力時における等価回路である。図5(a)に示すように、信号出力時において2個の出力バッファ21,22を並列で用いた場合、出力抵抗Routは、
 Rout=(RTP1+R1)//(RTP2+R2)
となる。一方、信号入力時は、図5(b)に示すように、2個の出力バッファ21,22を用いて終端回路を構成した場合、入力抵抗Rinは、
 Rin =(RTP1+R1)//(RTN2+R2)
となる。ただし、RTP1,RTP2,RTN2はそれぞれ、トランジスタTP1,TP2,TN2のON抵抗値である。各トランジスタのON抵抗値が互いに等しいとすると、出力抵抗Routと入力抵抗Rinとは等しくなる。例えば、出力抵抗Rout=50Ω、入力抵抗Rin=50Ωを実現する場合には、出力バッファ21,22それぞれの出力抵抗を100Ωとすると、出力抵抗Rout=50Ωを実現できる。また信号入力時は図5(b)のようにすることによって、外部端子から見た入力抵抗Rinは、100Ωと100Ωの並列抵抗すなわち50Ωとなる。
FIG. 5 is a simplified diagram of an equivalent circuit of the input / output circuit according to the present embodiment, where (a) is an equivalent circuit at the time of signal output, and (b) is an equivalent circuit at the time of signal input. As shown in FIG. 5A, when two output buffers 21 and 22 are used in parallel at the time of signal output, the output resistance Rout is:
Rout = (RTP1 + R1) // (RTP2 + R2)
It becomes. On the other hand, when a signal is input, as shown in FIG. 5B, when the termination circuit is configured using two output buffers 21 and 22, the input resistance Rin is
Rin = (RTP1 + R1) // (RTN2 + R2)
It becomes. However, RTP1, RTP2, and RTN2 are ON resistance values of the transistors TP1, TP2, and TN2, respectively. If the ON resistance values of the transistors are equal to each other, the output resistance Rout and the input resistance Rin are equal. For example, when the output resistance Rout = 50Ω and the input resistance Rin = 50Ω are realized, the output resistance Rout = 50Ω can be realized when the output resistance of each of the output buffers 21 and 22 is 100Ω. Further, when the signal is input, the input resistance Rin viewed from the external terminal becomes a parallel resistance of 100Ω and 100Ω, that is, 50Ω, as shown in FIG. 5B.
 もし、出力抵抗と入力抵抗の値を個別に細かく設定したい場合は、図6に示すように、出力バッファを複数ユニット(図6では10個のユニット601~610)に分割して配置し、使うユニット数を適宜選択するようにすればよい。例えば、図6の構成では、1ユニットの抵抗値をRとすると、信号出力時における出力抵抗は、R,R/2,R/3,…,R/10まで10段階に設定することができる。また、信号入力時における入力抵抗は、R/2,R/4,R/6,R/8,R/10の5段階に設定することができる。 If it is desired to set the output resistance and input resistance values individually, the output buffer is divided into a plurality of units (10 units 601 to 610 in FIG. 6) and used as shown in FIG. What is necessary is just to select the number of units suitably. For example, in the configuration of FIG. 6, when the resistance value of one unit is R, the output resistance at the time of signal output can be set in 10 steps from R, R / 2, R / 3,. . Further, the input resistance at the time of signal input can be set in five stages of R / 2, R / 4, R / 6, R / 8, and R / 10.
 さらに、複数ユニットを用いて、活性化するユニットを切り替えて使用することによって、上述したのと同様にトランジスタ配線に流れる平均電流を削減することができるので、EM劣化の抑制が可能となる。 Further, by using a plurality of units and switching the unit to be activated, the average current flowing through the transistor wiring can be reduced in the same manner as described above, so that EM degradation can be suppressed.
 なお、上述の実施形態では、入出力制御回路30について、簡易な構成を例にとって説明したが、これに限られるものではない。 In the above-described embodiment, the input / output control circuit 30 has been described by taking a simple configuration as an example. However, the present invention is not limited to this.
 また、図1に示す半導体制御システムでは、CPU11が、PROM3に格納されたプログラムに従って、DRAMインタフェース12に含まれた入出力回路に対して、信号入力モードと信号出力モードとの切替を指示するものとする。さらには、CPU11は、信号入力モードにおいて、ON状態にあるトランジスタの切替も行ってもよい。例えば、図3に示す状態と図4に示す状態とを、ソフトウェアによって切り替えるようにしてもよい。また、出力バッファが複数ユニットに分割して配置されている場合に、ソフトウェアによって、使うユニット数を適宜選択するようにしてもよい。これにより、信号入力モードにおいて、ON状態にあるトランジスタの切替タイミングや、使用ユニット数を最適化することができる。もちろん、ON状態にあるトランジスタの切替やユニット数の選択を、内部回路によって行ってもよい。 In the semiconductor control system shown in FIG. 1, the CPU 11 instructs the input / output circuit included in the DRAM interface 12 to switch between the signal input mode and the signal output mode in accordance with the program stored in the PROM 3. And Furthermore, the CPU 11 may also switch the transistors that are in the ON state in the signal input mode. For example, the state shown in FIG. 3 and the state shown in FIG. 4 may be switched by software. When the output buffer is divided into a plurality of units, the number of units to be used may be appropriately selected by software. Thereby, in the signal input mode, the switching timing of the transistors in the ON state and the number of units used can be optimized. Of course, switching of transistors in the ON state and selection of the number of units may be performed by an internal circuit.
 また、本実施形態で示した、2個の出力バッファを用いた終端回路の実現手法は、図7に示すような従来の出力バッファ構成や、抵抗デバイスを用いない出力バッファに対しても、適用可能である。 Also, the termination circuit realization method using two output buffers shown in this embodiment can be applied to a conventional output buffer configuration as shown in FIG. 7 or an output buffer not using a resistance device. Is possible.
 本発明では、ドライバ回路と終端回路の両方の機能を果たす入出力回路が、EM耐性を保ちつつ、小さな回路面積で、かつ、低消費電力で、実現されるので、例えば、高速にデジタル信号を伝送するインタフェースLSIの信頼性確保やコスト削減に有用である。 In the present invention, an input / output circuit that functions as both a driver circuit and a termination circuit is realized with a small circuit area and low power consumption while maintaining EM resistance. This is useful for ensuring the reliability and cost reduction of the interface LSI to be transmitted.
21 第1の出力バッファ
22 第2の出力バッファ
23 入出力端子
30 入出力制御回路
TP1 第1のトランジスタ
TN1 第2のトランジスタ
TP2 第3のトランジスタ
TN2 第4のトランジスタ
R1 第1の抵抗素子
R2 第2の抵抗素子
n1 第1ノード
n2 第2ノード
21 first output buffer 22 second output buffer 23 input / output terminal 30 input / output control circuit TP1 first transistor TN1 second transistor TP2 third transistor TN2 fourth transistor R1 first resistor element R2 second Resistive element n1 first node n2 second node

Claims (5)

  1.  第1の出力バッファと、
     第2の出力バッファと、
     前記第1および第2の出力バッファが共通に接続される入出力端子と、
     前記第1および第2の出力バッファを介して信号出力を行う信号出力モードと、前記第1および第2の出力バッファを終端回路として設定する信号入力モードとを切り替える入出力制御回路とを備え、
     前記第1の出力バッファは、
     電源と第1ノードとの間に接続された第1のトランジスタと、
     前記第1ノードとグランドとの間に接続された第2のトランジスタと、
     前記第1ノードと前記入出力端子との間に接続された第1の抵抗素子とを備え、
     前記第2の出力バッファは、
     電源と第2ノードとの間に接続された第3のトランジスタと、
     前記第2のノードとグランドとの間に接続された第4のトランジスタと、
     前記第2のノードと前記入出力端子との間に接続された第2の抵抗素子とを備え、
     前記入出力制御回路は、前記信号入力モードにおいて、前記第1および第4のトランジスタをON状態にし、前記第2および第3のトランジスタをOFF状態にする第1状態、または、前記第2および第3のトランジスタをON状態にし、前記第1および第4のトランジスタをOFF状態にする第2状態に設定する制御を行う
    ことを特徴とする入出力回路。
    A first output buffer;
    A second output buffer;
    An input / output terminal to which the first and second output buffers are connected in common;
    An input / output control circuit that switches between a signal output mode for performing signal output via the first and second output buffers and a signal input mode for setting the first and second output buffers as termination circuits;
    The first output buffer comprises:
    A first transistor connected between the power supply and the first node;
    A second transistor connected between the first node and ground;
    A first resistance element connected between the first node and the input / output terminal;
    The second output buffer comprises:
    A third transistor connected between the power supply and the second node;
    A fourth transistor connected between the second node and ground;
    A second resistance element connected between the second node and the input / output terminal;
    In the signal input mode, the input / output control circuit turns on the first and fourth transistors and turns off the second and third transistors, or turns off the second and third transistors. 3. An input / output circuit that performs control to turn on the third transistor and set the second transistor in the second state to turn off the first and fourth transistors.
  2.  請求項1記載の入出力回路において、
     前記入出力制御回路は、前記信号入力モードにおいて、前記第1状態と前記第2状態とを、所定のタイミングで、切り替える
    ことを特徴とする入出力回路。
    The input / output circuit according to claim 1.
    The input / output control circuit switches the first state and the second state at a predetermined timing in the signal input mode.
  3.  請求項1記載の入出力回路と、
     前記入出力回路に対して、前記信号入力モードと前記信号出力モードとの切替を指示する手段とを備えた
    ことを特徴とする半導体制御システム。
    An input / output circuit according to claim 1;
    A semiconductor control system comprising: means for instructing the input / output circuit to switch between the signal input mode and the signal output mode.
  4.  第1の出力バッファと、第2の出力バッファと、前記第1および第2の出力バッファが共通に接続される入出力端子とを備えた入出力回路の制御方法であって、
     前記第1の出力バッファは、
     電源と第1ノードとの間に接続された第1のトランジスタと、
     前記第1ノードとグランドとの間に接続された第2のトランジスタと、
     前記第1ノードと前記入出力端子との間に接続された第1の抵抗素子とを備え、
     前記第2の出力バッファは、
     電源と第2ノードとの間に接続された第3のトランジスタと、
     前記第2のノードとグランドとの間に接続された第4のトランジスタと、
     前記第2のノードと前記入出力端子との間に接続された第2の抵抗素子とを備え、
     信号出力モードにおいて、前記第1および第2の出力バッファを介して信号出力を行うよう制御する一方、信号入力モードにおいて、前記第1および第2の出力バッファを終端回路として設定するよう制御するものであり、
     前記信号入力モードにおいて、前記第1および第4のトランジスタをON状態にし、前記第2および第3のトランジスタをOFF状態にする第1状態、または、前記第2および第3のトランジスタをON状態にし、前記第1および第4のトランジスタをOFF状態にする第2状態に設定する制御を行う
    ことを特徴とする入出力回路の制御方法。
    An input / output circuit control method comprising: a first output buffer; a second output buffer; and an input / output terminal to which the first and second output buffers are connected in common.
    The first output buffer comprises:
    A first transistor connected between the power supply and the first node;
    A second transistor connected between the first node and ground;
    A first resistance element connected between the first node and the input / output terminal;
    The second output buffer comprises:
    A third transistor connected between the power supply and the second node;
    A fourth transistor connected between the second node and ground;
    A second resistance element connected between the second node and the input / output terminal;
    In the signal output mode, control is performed to output signals through the first and second output buffers, while in the signal input mode, control is performed to set the first and second output buffers as termination circuits. And
    In the signal input mode, the first and fourth transistors are turned on, the second and third transistors are turned off, or the second and third transistors are turned on. A control method for an input / output circuit, wherein control is performed to set the first and fourth transistors to a second state for turning them off.
  5.  請求項4記載の入出力回路の制御方法において、
     前記信号入力モードにおいて、前記第1状態と前記第2状態とを、所定のタイミングで、切り替える
    ことを特徴とする入出力回路の制御方法。
    In the input / output circuit control method according to claim 4,
    A control method for an input / output circuit, wherein the first state and the second state are switched at a predetermined timing in the signal input mode.
PCT/JP2010/007177 2010-04-27 2010-12-09 Input/output circuit, semiconductor control system, and control method for input/output circuit WO2011135644A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010102046A JP2011234085A (en) 2010-04-27 2010-04-27 Input/output circuit, semiconductor controlling system, and method of controlling input/output circuit
JP2010-102046 2010-04-27

Publications (1)

Publication Number Publication Date
WO2011135644A1 true WO2011135644A1 (en) 2011-11-03

Family

ID=44860991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007177 WO2011135644A1 (en) 2010-04-27 2010-12-09 Input/output circuit, semiconductor control system, and control method for input/output circuit

Country Status (2)

Country Link
JP (1) JP2011234085A (en)
WO (1) WO2011135644A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112453A1 (en) * 2013-01-16 2014-07-24 ピーエスフォー ルクスコ エスエイアールエル Semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133943A (en) * 2001-10-29 2003-05-09 Elpida Memory Inc Input/output circuit, reference voltage generating circuit and semiconductor integrated circuit
JP2003347923A (en) * 2002-04-19 2003-12-05 Samsung Electronics Co Ltd Semiconductor integrated circuit, on-chip termination apparatus, and method for controlling same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133943A (en) * 2001-10-29 2003-05-09 Elpida Memory Inc Input/output circuit, reference voltage generating circuit and semiconductor integrated circuit
JP2003347923A (en) * 2002-04-19 2003-12-05 Samsung Electronics Co Ltd Semiconductor integrated circuit, on-chip termination apparatus, and method for controlling same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112453A1 (en) * 2013-01-16 2014-07-24 ピーエスフォー ルクスコ エスエイアールエル Semiconductor device

Also Published As

Publication number Publication date
JP2011234085A (en) 2011-11-17

Similar Documents

Publication Publication Date Title
JP5792690B2 (en) Differential output circuit and semiconductor integrated circuit
US7161378B2 (en) Semiconductor memory device with on die termination circuit
KR100810611B1 (en) Level shifting circuit of semiconductor device
CN110660431B (en) Input/output driver of fourth generation double data rate memory
US20080031166A1 (en) Bidirectional transmission circuit and sending/receiving element
KR102185284B1 (en) Buffer circuit compensating mismatch of on die termination resistors, semiconductor device and operating method thereof
US20080112233A1 (en) On-die termination circuit for semiconductor memory devices
JP2006174488A (en) Low-voltage differential signal driver
JP2005285125A (en) Memory module system for effectively controlling odt
JP2009111794A (en) Interface circuit that can switch between single-ended transmission and differential transmission
JP2006319968A (en) Impedance control circuit and impedance control method in semiconductor device
JP2003218958A (en) Transceiver and high speed interface system employing the same
US9318420B2 (en) Chip stack packages, system in packages including the same, and methods of operating the same
JP6396627B1 (en) Memory interface with adjustable voltage and termination and method of use
US9941868B1 (en) Buffer circuit, receiver and system using the same
US20070197265A1 (en) Level shifters and level shifting methods for suppressing current flow and generating fixed output values
US9859892B2 (en) Semiconductor apparatus reducing a parasitic capacitance
WO2011135644A1 (en) Input/output circuit, semiconductor control system, and control method for input/output circuit
JP2008147940A (en) Semiconductor integrated circuit
KR20050073982A (en) Output driver for use in semiconductor device
JPH10242835A (en) Output circuit, semiconductor integrated circuit and electronic circuit device
US10409759B2 (en) Interface circuit for high speed communication, and system including the same
JP2008085876A (en) Interface circuit and circuit system using the same
US20080068914A1 (en) Output driving circuit and semiconductor memory device having the same
KR100565760B1 (en) Multiplexer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10850663

Country of ref document: EP

Kind code of ref document: A1