WO2011135110A1 - Sistema de producción de hidrógeno para la regulación de potencia en centrales eléctricas basadas en energías renovables, y procedimiento de regulación - Google Patents

Sistema de producción de hidrógeno para la regulación de potencia en centrales eléctricas basadas en energías renovables, y procedimiento de regulación Download PDF

Info

Publication number
WO2011135110A1
WO2011135110A1 PCT/ES2010/070272 ES2010070272W WO2011135110A1 WO 2011135110 A1 WO2011135110 A1 WO 2011135110A1 ES 2010070272 W ES2010070272 W ES 2010070272W WO 2011135110 A1 WO2011135110 A1 WO 2011135110A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
hydrogen production
production system
regulation
network
Prior art date
Application number
PCT/ES2010/070272
Other languages
English (en)
French (fr)
Inventor
Javier PÉREZ BARBÁCHANO
Eugenio Guelbenzu Michelena
Pablo SANCHIS GÚRPIDE
Alfredo URSÚA RUBIO
Luis Marroyo Palomo
Israel SÁNCHEZ MAYAYO
Original Assignee
Ingeteam Energy, S. A.
Acciona Energía, S. A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ingeteam Energy, S. A., Acciona Energía, S. A. filed Critical Ingeteam Energy, S. A.
Priority to ES10722723.3T priority Critical patent/ES2474440T3/es
Priority to CA2797893A priority patent/CA2797893C/en
Priority to US13/640,674 priority patent/US9222459B2/en
Priority to PCT/ES2010/070272 priority patent/WO2011135110A1/es
Priority to CN201080066416.3A priority patent/CN102959131B/zh
Priority to EP10722723.3A priority patent/EP2565296B1/en
Priority to BR112012027402-3A priority patent/BR112012027402B1/pt
Priority to DK10722723.3T priority patent/DK2565296T3/da
Priority to AU2010352432A priority patent/AU2010352432B2/en
Publication of WO2011135110A1 publication Critical patent/WO2011135110A1/es
Priority to ZA2012/07595A priority patent/ZA201207595B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/19Combinations of wind motors with apparatus storing energy storing chemical energy, e.g. using electrolysis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • F03D9/257Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor the wind motor being part of a wind farm
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • H02J15/008Systems for storing electric energy using hydrogen as energy vector
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/61Application for hydrogen and/or oxygen production
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention belongs to the field of renewable energies, and more specifically to hydrogen production systems for power regulation in power plants.
  • the main object of the present invention is a hydrogen production system connected to one or several power generation plants based on non-manageable renewable resources, such as wind farms and photovoltaic plants, to perform power regulation services avoiding losses of energy and optimizing the size of the hydrogen production system.
  • Another object of the invention is also a method of regulating the power delivered to the general power grid.
  • wind power production systems The purpose of wind power production systems is to convert the kinetic energy of the wind (wind energy) into electrical energy and, in the case of wind systems connected to a general electricity supply network, pour it into it for later transport, distribution and use
  • the regulation systems that the operators of these networks apply to the rest of the generation units are generally sufficient to counteract the fluctuations in the electrical power injected by the wind farms In the net. These fluctuations are obviously produced by the variations of the wind resource itself.
  • network operators require such systems to participate in network regulation operations, just as conventional electric power generation plants do.
  • the maintenance of the balance between active powers, generated and consumed, is carried out in current electricity networks through the maintenance of the system frequency at its nominal value (50 Hz in Europe, 60 Hz in the US).
  • the frequency of the system increases with respect to its nominal value as the mechanical axes of the synchronous alternators of the plants accelerate.
  • the frequency decreases since the axes of the synchronous alternators slow down reducing their speed.
  • conventional power plants have power regulators implemented that respond to variations in the frequency value according to various procedures for regulating the frequency of the system, such as primary, secondary and tertiary regulations.
  • the primary regulation allows to restore the balance between the active powers generated and consumed in the network.
  • the combined action of all the power generation units in an interconnected network allows the rapid offset compensation between power consumed and generated at any point in the network.
  • the legislation requires conventional power plants to establish a specific primary regulation capacity.
  • This regulation consists of the incorporation of a controller that allows to increase or decrease the power setpoint of the plant proportionally, and in the opposite direction, to the frequency variation of the network, with a characteristic called statism.
  • This characteristic is a straight line descending on a coordinate plane in which the horizontal axis is determined by the frequency variation with respect to its nominal value, in percentage terms with respect to this value, and the vertical by the power variation with which the The power plant must respond at all times to the corresponding frequency variations, also expressed such variation in power in percentage terms with respect to the nominal power of the plant.
  • the statism is determined by setting the operator the maximum value of the frequency variation to which the plants must act, as well as the maximum power variation with which they must respond, with respect to the nominal power value, in that moment.
  • the primary regulation must occur in small response times, within the environment of seconds.
  • the secondary regulation allows the power grid to be restored to its nominal value.
  • the system operator assigns new values of generated power to the power plants, within some regulatory bands that the power companies that own the plants will have previously negotiated. In this way, the power plants modify their power setpoint until the system frequency returns to its nominal value in steady state. Unlike the primary one, the secondary regulation acts with response times of the order of minutes.
  • the tertiary regulation allows the operator of the electricity grid to have in advance a greater or lesser capacity of electricity generation in order to cope with possible deviations between the predictions of consumed power and the expected electricity generation.
  • Tertiary regulation in practice implies a change in the programmed power setpoint of the plants, so that their horizon of action reaches values close to one or several hours.
  • the constant increase in wind power generation, and also from other renewable sources whose resource is not manageable, is currently representing an important challenge in an operation of the electricity grid whose action protocols have been developed throughout the years for a system based on manageable conventional energies. Even assuming the inevitable variability of electricity consumption, statistical methods are nowadays capable of forecasting with a high degree of success the demand that will occur daily and hourly in advance.
  • the operation protocols have allowed the margin of variability in demand to be effectively managed through conventional exchanges through the various regulation and operation services.
  • the massive incorporation of renewable power plants based on unmanageable resources (mainly wind farms) to the coverage of electricity demand adds additional uncertainty to the operation of the network, such as the unforeseen variability of these resources.
  • the previous example illustrates the fact that the current operating protocols, even with the new technology associated with the operation of the network (creation of renewable energy control centers, establishment of links and dispatches with the generation control centers, installation of technical requirements for connection and communication, etc.), are reaching the limit in the integration of renewable energies, which is leading to demand power regulation services also to power generation plants based on non-manageable renewable resources, including wind farms, in order to ensure the stability of the network as more plants based on renewable energy are incorporated into it.
  • current electrolysers can be formed by one or more electrolysis units. If several units are included, their operation is always carried out jointly. Therefore, current electrolysers, whether they are formed by one or more electrolysis units, have a lower limit in their operating range below which the manufacturer does not allow its operation. This limit guarantees both the safety in the operation of the electrolysis system and the maintenance of purity in the gas produced. Although the limit varies depending on the manufacturers, a representative range of current alkaline technologies could place the limit between 15 and 40% of the nominal power of the electrolysis system. This region in which the electrolysis system cannot work represents a "dead band", BM, for the system.
  • BM dead band
  • the size of the latter will be determined both by the band of the primary regulation imposed by the network operator, and by its permissible operating range, that is, the power range above the lower operating limit of the electrolysis system or deadband. This forces the size of the hydrogen system to be considerably oversized in order to be able to comply with the primary regulation service and avoid wind energy losses, with the great economic cost that this oversizing entails. All this is equally valid for any other type of regulation service that implies variations in the power injected into the network.
  • the aforementioned drawbacks are resolved by providing a hydrogen production system connected to one or more power plants based on non-manageable renewable resources, such as wind farms, whereby it is possible to perform power regulation services delivered to the general power grid, for the control of the grid frequency at its nominal value, preferably being primary regulation services, avoiding energy losses in said power plants and optimizing their performance.
  • Said hydrogen production system stands out mainly for being constituted from a hierarchical configuration of electrolysis units, operated independently, whose main characteristic is that the deadband value "BM" of the system is considerably smaller than that of currently existing hydrogen production systems.
  • This hierarchical configuration allows to optimize the operating range of the hydrogen production system, in addition to avoiding having to oversize said system in order to comply with the power regulation requirements established by law in each country.
  • the electrolysis units that configure the system have operating powers whose values are calculated according to a specific algorithm, allowing to minimize the overall size of the hydrogen production system adjusting it to the requirements of the regulation services, and achieving a significant reduction in system size compared to existing alternatives.
  • the control is independent for each of the electrolysis units that form it.
  • Both the wind farm and the hydrogen production system incorporate power electronics and control and supervision systems.
  • power electronics are mainly located in wind turbines, while control and supervision is carried out in a coordinated manner between them and the park itself.
  • control and supervision systems may have multiple embodiments, preferably an industrial programmable automaton type system with a microcontroller and a user interface, operated either manually or remotely.
  • the description of the invention then focuses on the primary regulation service, although it is equally valid for the performance of other regulation services, such as secondary and tertiary, as well as for reactive power regulation support at the point of connection to the power grid in that apparent power range not used by active power regulation.
  • the hydrogen production system independently or in coordination with the park or park aggregation, adapts its production to regulate the power injected by the renewable power generation system at the network connection point, so that allow the park to meet, among others, the primary regulation requirements of the park.
  • E ? initial electrolysis unit
  • E 2 the largest (subscript /, "large")
  • E 2s the smallest (subscript s, "small”).
  • the result is a hydrogen production system without discontinuity in the entire operating range and with a resulting dead band (BM) lower than that existing with E ? . It is, therefore, an optimal power distribution dependent on the deadband value of the technology used.
  • the lower power electrolysis unit (E ns , in general) can be separated again into 2 units with the same power distribution and ensuring that E ns is always equal to or greater than the dead band of E n i, or what is the same, that E ns is always equal to or greater than the product of the deadband, as a percentage, of the technology selected by the nominal power of E n ⁇ .
  • the final system will consist of n electrolysis units, namely the largest units of the successive divisions (from E 2 i to E n i) and the smallest unit in the last division (E ns ).
  • Said electrolysis units may be different electrolysers, of the same or different technology, and also "stacks" or stacks of the same electrolyser.
  • the electrolysis units independently controlled, are configured hierarchically so that the operating range of the subsystem is maximized reaching the smallest possible size and with it the cost.
  • the renewable electricity production system may be constituted by an aggregation of wind farms, connected at the same or at different points of the electricity grid but managed in a coordinated manner with the hydrogen production system object of the present invention, which also , may be connected to the power grid at a connection point other than the wind farm or aggregation of parks.
  • the hydrogen production system object of the invention may be supported by battery banks, or any other storage system, which are responsible for the regulation of power in specific bands of the network frequency ranges. It can also be supported by fuel cell systems, hydrogen combustion engines connected to rotary electric generators, or any other equivalent system. In addition, the possibility of incorporating a hydrogen storage system is contemplated, so that the hydrogen produced by the hydrogen production system is subsequently consumed in any of these systems. Also, the hydrogen production system of the present invention may comprise an energy storage system based on flywheels or capacitor banks, or a combination thereof with the battery system.
  • the system described herein is applicable in all types of wind farms connected to the grid, and also for aggregations of parks with coordinated management, photovoltaic parks or grouping thereof, and in general, for any renewable electricity generation systems connected at the same or at a different point of connection to the network and managed in a coordinated manner.
  • the hierarchical configuration of electrolysis units described herein can be applied to any hydrogen production system, whether or not interconnected to an electrical generation system.
  • Figure 1. Shows a schematic view of the hydrogen production system for power regulation of a wind farm connected to the general electricity supply network.
  • Figure 2. Shows a schematic view showing the primary regulation service performed only by the hydrogen production system.
  • Figure 3. Shows a diagram of the division of a hydrogen production system into 3 electrolysis units.
  • Figure 4.- Shows a division in 3 electrolysis units of a hydrogen production system of 6.5 MW of total nominal power.
  • Figure 5. Shows a graph of operation in primary regulation of a hydrogen production system without division into several units.
  • Figure 6. Shows a graph of operation in primary regulation of a hydrogen production system with division into several electrolysis units.
  • Figure 7. Shows a schematic view showing the primary regulation service jointly carried out by a hydrogen production system and a wind farm.
  • Figure 8.- It shows a graph of the operation of a hydrogen production system for primary regulation carried out jointly by a wind farm and said hydrogen production system, the latter being hierarchically configured in several electrolysis units operated independently.
  • FIG. 9 Shows a schematic view of another possible general installation that additionally incorporates a battery system.
  • the hydrogen production system (4) is linked to a wind farm (2) connected to the electricity grid (3), said said being wind farm (2) formed by a series of wind turbines (1), while the hydrogen production system (4) is structured in a hierarchical way in three electrolysis units (5), so that its nominal powers maximize the range of operation required to be able to jointly perform primary regulation services.
  • Said primary regulation service can be carried out by means of the hydrogen production system (4), or jointly between the wind farm (2) and said hydrogen production system (4).
  • Both the wind farm (2) and the hydrogen production system (4) incorporate power electronics and control and supervision systems.
  • the power electronics and their associated control are located in the wind turbines (1).
  • electrolysis units (5) they also have their own power and control electronics in order to be managed independently.
  • a global monitoring system allows to constantly calculate the operating point of both the wind turbines (1) and the electrolysis units (5).
  • any wind turbine (1) there is a maximum power value (Pwmax) that said wind turbine (1) can extract from the wind resource and convert it into electrical energy at its output.
  • the primary regulation is carried out only by the hydrogen production system (4), with regulation bands, for example, between 49.8 Hz and 50 , 2 Hz, around a nominal frequency of 50 Hz.
  • the wind turbines (1) of the wind farm (2) remain running at the maximum power available at all times (Pwmax), governed by the park's control systems, situation illustrated in Figure 2 with the indication "100% Pwmax" for the wind farm (2).
  • the hydrogen production system (4) its operating range is equal to the sum of the primary regulation bands to be raised and lowered, established by the operator of the electrical network (3) and known in advance. While the primary regulation service is not required, the hydrogen production system (4) is operated at 50% of its operating range, that is, from the lower operating limit, determined by its dead band, to its nominal power (maximum possible for the system). In that situation, the power injected into the network (3) turns out to be the difference between the maximum electric power generated by the wind turbines (1) (Pwmax) and the power consumed by the hydrogen production system (4), which, as It has been indicated, it is 50% of its available power range.
  • Pwmax maximum electric power generated by the wind turbines (1)
  • the primary regulation service is carried out jointly between the wind farm (2) and the hydrogen production system (4).
  • the wind turbines (1) of the wind farm (2) are operated, as long as the primary regulation service is not required, at a power equal to the maximum available wind (Pwmax), calculated by the park supervision system.
  • the hydrogen production system (4) is maintained at its nominal power ( ⁇ 2 ⁇ ) - At that time, the total power injected into the electrical network (3) is the subtraction of both powers Pwmax and PiH2n-
  • the hydrogen production system (4) modifies its operating point by decreasing the power consumed below the nominal, thus releasing power from the wind farm (2) that is injected into the network (3).
  • the wind farm (2) remains, in this situation, at its maximum power (Pwmax) -
  • Pwmax maximum power
  • the hydrogen production system (4) configured in a hierarchical manner in accordance with what is described in the present invention and therefore with a negligible deadband, would require a total nominal power of 0.75 MW (1.5% of 50 MW), acting in the manner indicated in Figure 8 for the regulation band between 49.8 and 50 Hz.
  • the advantage of the proposed invention is appreciated over a conventional system of electrolysis formed by a single electrolysis unit or several operated jointly, which would require a nominal power of 0.9375 MW for a technology with a dead band of 20%.
  • FIG. 9 there is additionally a battery system (6) that allows supporting the primary regulation service by regulating part of the frequency bands.
  • the battery system (6) is connected to the same connection point as the remaining elements (wind farm (2), hydrogen production system (4) and grid (3) electrical) and its consumption or power generation is controlled by the global monitoring system.
  • the battery system (6) can provide support both if the primary regulation is carried out only by the hydrogen production system (4), as if it is carried out jointly between the wind farm (2) and the hydrogen production system (4) .
  • the consumption, or charging of the batteries (6) is carried out when regulation is required to lower, that is, when it should be reduced the power injected into the network (3) as a result of an increase in the frequency of the same, and the electric generation, or discharge of the batteries (6), is carried out when regulation has to be made to rise, that is, when it must be injected network power (3) before a frequency drop.
  • the battery system (6) can be used to regulate the extreme frequencies of the primary regulation range.
  • the frequency of the network (3) oscillates around its nominal value in a range considerably lower than that set by the limits of the primary regulation. Since electrolysis systems are expensive, the battery system (6) can be used to cover the extreme frequencies and perform primary regulation at frequencies close to the nominal with the hydrogen production system (4) thus reducing its size .
  • the battery system (6) can be used to regulate the frequency range around the nominal frequency, leaving the regulation of frequencies external to said range for the hydrogen production system (4).
  • This realization it is advantageous when the speed of response of the electrolysis technology used is not sufficient, or is not adequate, to meet the primary regulation response requirements indicated by the applicable regulations or the network operator (3).
  • the speed of response lies primarily in said system, while the performance of the hydrogen production system (4) can be programmed in advance as it is observed that the frequency of the network (3) moves away from the nominal value and approaches the ends of the regulation bands.
  • a fuel cell system may be included that performs the primary regulation in the band to be raised, that is, when the frequency of the network (3) falls below the nominal one and more power must be injected into the network (3).
  • the fuel cell system is activated by generating electrical energy that is injected into the network (3).
  • the hydrogen production system (4) carries out the regulation to be lowered, that is, consuming power when the power injected into the network (3) must be reduced in the event of frequency increases.
  • the hydrogen produced by the hydrogen production system (4) can be stored and subsequently used by the fuel cell system.
  • the latter can also be replaced by a system formed by hydrogen combustion engine and electric generator, and also by a combination of both or by any other equivalent system.
  • the assembly formed by the wind farm (2) (or grouping of parks, or in general renewable electricity generation systems) and the hydrogen production system (4) can be operated so that it is partially manageable, performing part of power regulation service.
  • the wind farm (2) is operated to generate at all times the maximum available wind power (Pwmax), while the hydrogen production system (4) remains off while no power regulation service is required.
  • the hydrogen production system (4) formed by the configuration nested electrolysis units (5) described above, is operated so that it passes to consume the power necessary for the output power of the set
  • the present invention not only allows the primary regulation of a wind farm (2) connected to the grid (3) through a hierarchical system of electrolysis units (5), but also applies to those regulation services, such as secondary or tertiary, that require the modification of the power injected by the wind farm (2) in the network (3) based on profiles of power dependent on the regulation of active power in the electrical network (3).
  • the power electronics present in both renewable power generation plants, and in the hydrogen production system (4) is used to support the regulation of reactive power exchanged with the network (3) at the point of connection to it, in that apparent power range not used by the active power generated by the power plants or consumed by the hydrogen production system (4).
  • power electronics equipment is designed and sized to support certain electrical current and voltage values. These determine the maximum apparent power of the equipment, which can be called nominal apparent power.
  • the apparent power is the result of the vector sum of the active and reactive powers in an electrical system.
  • the power electronics are operated so that, in addition to giving the active power required depending on the realization and the operating requirements of the network, it performs the reactive power regulation that it demands partially or totally in function of whether the maximum apparent power, and with it the maximum values of voltage and current supported by the semiconductors, are reached or not, respectively.
  • the present invention improves the power regulation capacity in wind farms (2) through the use of a hydrogen production system (4) formed by a hierarchical configuration of electrolysis units (5) that allows reducing up to negligible levels of the dead band of said hydrogen production system (4).
  • a hydrogen production system (4) formed by a hierarchical configuration of electrolysis units (5) that allows reducing up to negligible levels of the dead band of said hydrogen production system (4).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Inorganic Chemistry (AREA)
  • Control Of Eletrric Generators (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Wind Motors (AREA)

Abstract

Destaca fundamentalmente por estar constituido a partir de una configuración jerarquizada de unidades de electrolisis (5), operadas de forma independiente, y cuyas potencias son descendientes de tal manera que, para una unidad cualquiera del sistema, la suma de las potencias de las unidades de electrolisis (5) menores es siempre mayor o igual que la "banda muerta" (BM) de dicha unidad, permitiendo reducir hasta niveles despreciables la banda muerta de dicho sistema producción de hidrógeno (4), y evitando la pérdida o vertido de energía producida en dichas centrales de energías renovables, preferentemente uno o varios parques eólicos (2) formados por una serie de aerogeneradores (1), conectadas a la red (3) eléctrica como consecuencia de la implementación de un servicio de regulación primaria en las mismas, o en general de cualquier otro servicio de regulación de potencia activa, optimizando de este modo la energía total obtenida.

Description

SISTEMA DE PRODUCCIÓN DE HIDRÓGENO PARA LA REGULACIÓN DE POTENCIA EN CENTRALES ELÉCTRICAS BASADAS EN ENERGÍAS RENOVABLES, Y PROCEDIMIENTO DE REGULACIÓN D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN La presente invención pertenece al campo de las energías renovables, y más concretamente a sistemas de producción de hidrógeno para la regulación de potencia en centrales eléctricas.
El objeto principal de la presente invención es un sistema de producción de hidrógeno conectado a una o varias centrales de generación eléctrica basadas en recursos renovables no gestionables, como son los parques eólicos y las plantas fotovoltaicas, para realizar servicios de regulación de potencia evitando pérdidas de energía y optimizando el tamaño del sistema de producción de hidrógeno. Asimismo otro objeto de la invención es un procedimiento de regulación de la potencia entregada a la red eléctrica general.
ANTECEDENTES DE LA INVENCIÓN
Los sistemas eólicos de producción de energía eléctrica tienen por objeto convertir la energía cinética del viento (energía eólica) en energía eléctrica y, en el caso de sistemas eólicos conectados a una red eléctrica general de suministro, verterla a la misma para su posterior transporte, distribución y utilización. En redes eléctricas con baja penetración de sistemas eólicos, los sistemas de regulación que los operadores de dichas redes aplican al resto de unidades de generación (centrales eléctricas convencionales) son en general suficientes para contrarrestar las fluctuaciones existentes en la potencia eléctrica inyectada por los parques eólicos en la red. Estas fluctuaciones son producidas, obviamente, por las variaciones propias del recurso eólico. Sin embargo, conforme aumenta la penetración de los sistemas eólicos en la red, los operadores de la red requieren de dichos sistemas la participación en las operaciones de regulación de la red, tal y como lo hacen las centrales convencionales de generación de energía eléctrica.
Lo anteriormente expuesto es válido igualmente para cualquier sistema de generación renovable que dependa de un recurso no gestionable, como es el caso de los sistemas fotovoltaicos y el recurso solar. Aunque en el texto de la invención se alude prioritariamente a los sistemas eólicos, debe entenderse en todo momento que es extensible a sistemas de generación renovable con recurso energético no gestionable.
El mantenimiento del equilibrio entre potencias activas, generada y consumida, se lleva a cabo en las actuales redes eléctricas a través del mantenimiento de la frecuencia del sistema en su valor nominal (50 Hz en Europa, 60 Hz en EEUU). Cuando la potencia generada en el sistema crece por encima de la consumida, la frecuencia del sistema aumenta respecto de su valor nominal al acelerarse los ejes mecánicos de los alternadores síncronos de las centrales. Por el contrario, cuando la potencia generada es menor que la consumida, la frecuencia disminuye ya que los ejes de los alternadores síncronos se frenan reduciendo su velocidad. Con objeto de compensar estos desvíos de frecuencia, y con ellos los correspondientes a la potencia activa, las centrales convencionales llevan implementados reguladores de potencia que responden a variaciones en el valor de la frecuencia de acuerdo con diversos procedimientos de regulación de la frecuencia del sistema, como son las regulaciones primaria, secundaria y terciaria.
La regulación primaria permite restablecer el equilibrio entre las potencias activas generada y consumida en la red. La actuación combinada de todas las unidades de generación eléctrica en una red interconectada permite la compensación rápida de desfases entre potencias consumidas y generadas en cualquier punto de la red. En la mayoría de las redes eléctricas, la legislación obliga a las centrales convencionales a establecer una determinada capacidad de regulación primaria. Esta regulación consiste en la incorporación de un controlador que permite aumentar o disminuir la consigna de potencia de la central de forma proporcional, y en sentido opuesto, a la variación de frecuencia de la red, con una característica denominada estatismo. Esta característica es una línea recta descendiente sobre un plano de coordenadas en el que el eje horizontal está determinado por la variación de frecuencia respecto de su valor nominal, en términos porcentuales respecto de este valor, y el vertical por la variación de potencia con que la central eléctrica debe responder en cada momento ante las correspondientes variaciones de frecuencia, también expresada dicha variación de potencia en términos porcentuales respecto de la potencia nominal de la central. De este modo, el estatismo queda determinado al fijar el operador el valor máximo de la variación de frecuencia ante la que las centrales deben actuar, así como la máxima variación de potencia con la que deben responder, respecto del valor nominal de potencia, en ese momento. La regulación primaria debe darse en tiempos de respuesta pequeños, en el entorno de segundos. La regulación secundaria permite el restablecimiento de la frecuencia de la red eléctrica a su valor nominal. Mediante dicha regulación, que habitualmente es opcional y retribuida, el operador del sistema asigna nuevos valores de potencia generada a las centrales eléctricas, dentro de unas bandas de regulación que las compañías eléctricas propietarias de las centrales habrán negociado previamente. De este modo, las centrales eléctricas modifican su consigna de potencia hasta que la frecuencia del sistema vuelve a su valor nominal en régimen estacionario. A diferencia de la primaria, la regulación secundaria actúa con tiempos de respuesta del orden de minutos.
Finalmente, la regulación terciaria, también retribuida, permite al operador de la red eléctrica disponer con antelación de una mayor o menor capacidad de generación eléctrica con objeto de hacer frente a posibles desvíos entre las predicciones de potencia consumida y la generación eléctrica prevista. La regulación terciaria supone en la práctica un cambio en la consigna de potencia programada de las centrales, de modo que su horizonte de actuación alcanza valores cercanos a una o varias horas. El constante aumento de la generación eléctrica de origen eólico, y asimismo de otras fuentes renovables cuyo recurso no es gestionable, está representando en la actualidad un importante desafío en una operación de la red eléctrica cuyos protocolos de actuación se han desarrollado a lo largo de los años para un sistema basado en energías convencionales gestionables. Aún asumiendo la inevitable variabilidad del consumo eléctrico, los métodos estadísticos son capaces hoy en día de prever con un alto grado de acierto la demanda que va a producirse con antelación diaria y horaria. De este modo, los protocolos de operación han permitido que el margen de variabilidad de la demanda sea gestionado eficazmente mediante centrales convencionales a través de los distintos servicios de regulación y operación. En la actualidad, la incorporación masiva de las centrales de generación renovables basadas en recursos no gestionables (principalmente parques eólicos) a la cobertura de la demanda eléctrica añade una incertidumbre adicional a la operación de la red como es la variabilidad imprevista de dichos recursos.
A modo de ejemplo, cabe citar el dato de que en España y según información de la empresa encargada de la operación de la red eléctrica española, Red Eléctrica de España, en la madrugada del 30 de diciembre de 2009, la generación de los parques eólicos supuso el 54,1 % de la generación total, es decir, más de la mitad de la demanda eléctrica fue cubierta con un recurso renovable no gestionable. Este grado de cobertura supuso un hito en la penetración de la energía eólica y fue soportado con éxito por la operación de la red gracias a la participación en la misma de las centrales de bombeo y a la reducción al mínimo técnico de la producción de las centrales térmicas. A pesar de ello, la baja demanda en ese momento obligó al operador a emitir una orden de recorte de la producción eólica de 600 MW durante varias horas. En situaciones similares producidas los meses anteriores, las órdenes de recorte fueron mayores, especialmente en aquellos casos en que no se dispuso de suficiente capacidad de bombeo hidráulico.
El ejemplo anterior ilustra el hecho de que los protocolos de operación actuales, incluso con la nueva tecnología asociada a la operación de la red (creación de centros de control de las energías renovables, establecimiento de enlaces y despachos con los centros de control de generación, instalación de requerimientos técnicos para conexión y comunicación, etc.), están llegando al límite en la integración de energías renovables, lo cual está llevando a exigir servicios de regulación de potencia también a las centrales de generación eléctrica basadas en recursos renovables no gestionables, entre ellas los parques eólicos, con objeto de poder asegurar la estabilidad de la red conforme se vayan incorporando a la misma más centrales basadas en energías renovables.
En lo que respecta al servicio de regulación primaria, y tomando como ejemplo representativo de central de energía renovable un parque eólico, se han propuesto diversas técnicas para realizar este servicio utilizando únicamente los aerogeneradores del parque. Para que los aerogeneradores de un parque eólico puedan prestar el servicio de regulación primaria, deben funcionar como máximo a un valor de potencia igual a la diferencia entre la potencia máxima que en cada momento podrían obtener del viento y la máxima variación de potencia fijada por la legislación para la regulación primaria (1 ,5% de la potencia nominal en España). Esto garantiza que, en caso de que la frecuencia de la red disminuya hasta el valor mínimo indicado en la legislación y/o protocolos de operación del operador, el aerogenerador dispone de la capacidad de potencia para aumentar ésta hasta la máxima variación de potencia mencionada. El problema técnico que esto conlleva es que este procedimiento supone una pérdida constante (denominada "vertido") de energía eólica, ya que el aerogenerador trabaja en régimen permanente prácticamente siempre por debajo de la potencia máxima extraíble con objeto de mantener el margen de variación de potencia para el cumplimiento de regulación primaria.
Existen documentos de patentes en los cuales se describen sistemas de producción de hidrógeno alimentados con energía eólica, tal es el caso de las patentes: WO2006097494, EP1596052, US20070216165, US20060125241 , DE10055973.
Respecto a la producción de hidrógeno, existen fundamentalmente dos tipos de tecnologías de electrolizadores de agua: los de tipo alcalino y los de membrana polimérica (tipo PEM). Los primeros están más desarrollados tecnológicamente y alcanzan potencias muy superiores. Un electrolizador descompone, mediante el aporte de energía eléctrica, la molécula de agua para generar hidrógeno y oxígeno. El análisis termodinámico del sistema refleja que existe un mínimo aporte de energía para que esta reacción electroquímica se produzca de forma sostenida en el tiempo. A su vez, la generación de hidrógeno y oxígeno en las unidades de electrólisis debe ser separada y canalizada hacia el exterior, evitando la mezcla, potencialmente explosiva, de ambos gases. En valores bajos de producción, la generación de gases se ralentiza, aumentando con ello el riesgo de aparición de mezclas explosivas. Por otra parte, la pureza de los gases producidos depende, entre otros factores, del punto de operación del sistema de electrólisis, empeorando cuando dicho punto de operación es bajo.
A su vez, los electrolizadores actuales pueden estar formados por una o varias unidades de electrólisis. En caso de incluir varias unidades, la operación de las mismas se lleva a cabo siempre de forma conjunta. Por todo ello, los electrolizadores actuales, tanto si están formados por una o varias unidades de electrólisis, tienen un límite inferior en su rango de funcionamiento por debajo del cual el fabricante no permite su operación. Este límite garantiza tanto la seguridad en el funcionamiento del sistema de electrólisis como el mantenimiento de pureza en el gas producido. Aunque el límite varía en función de los fabricantes, un rango representativo de las tecnologías actuales alcalinas podría situar el límite entre el 15 y el 40% de la potencia nominal del sistema de electrólisis. Esta región en la que el sistema de electrólisis no puede funcionar representa una "banda muerta", BM, para el sistema. Para que el servicio de regulación primaria de un parque eólico se lleve a cabo conjuntamente por los aerogeneradores y un sistema de electrólisis, el tamaño de éste último estará determinado tanto por la banda de la regulación primaria impuesta por el operador de la red, como por su rango admisible de funcionamiento, esto es, el rango de potencias por encima del límite inferior de operación del sistema de electrólisis o banda muerta. Esto obliga a sobredimensionar de manera considerable el tamaño del sistema de hidrógeno con objeto de poder cumplir el servicio de regulación primaria y evitar pérdidas de energía eólica, con el gran coste económico que dicho sobredimensionamiento conlleva. Todo ello es igualmente válido para cualquier otro tipo de servicio de regulación que implique variaciones en la potencia inyectada en la red.
DESCRIPCIÓN DE LA INVENCIÓN
Mediante la presente invención se resuelven los inconvenientes anteriormente citados proporcionando un sistema de producción de hidrógeno conectado a una o varias centrales eléctricas basadas en recursos renovables no gestionables, como son los parques eólicos, mediante el cual es posible realizar servicios de regulación de la potencia entregada a la red eléctrica general, para el control de la frecuencia de red en su valor nominal, siendo preferentemente servicios de regulación primaria, evitando pérdidas de energía en dichas centrales eléctricas y optimizando su rendimiento.
Dicho sistema de producción de hidrógeno destaca fundamentalmente por estar constituido a partir de una configuración jerarquizada de unidades de electrólisis, operadas de forma independiente, cuya principal característica es que el valor de la banda muerta "BM" del sistema es considerablemente menor que la de los sistemas de producción de hidrógeno existentes actualmente.
Esta configuración jerarquizada permite optimizar el rango de funcionamiento del sistema de producción de hidrógeno, además de evitar el tener que sobredimensionar dicho sistema para poder cumplir con los requisitos de regulación de potencia establecidos por la ley en cada país. Para ello, las unidades de electrólisis que configuran el sistema presentan unas potencias de funcionamiento cuyos valores son calculados de acuerdo a un algoritmo específico, permitiendo minimizar el tamaño global del sistema de producción de hidrógeno ajustándolo a los requisitos de los servicios de regulación, y consiguiendo una importante reducción del tamaño del sistema frente a las alternativas existentes. En el sistema de producción de hidrógeno propuesto, el control es independiente para cada una de las unidades de electrólisis que lo forman. Mediante el ajuste controlado e independiente del punto de funcionamiento de cada unidad, es posible operar de tal manera que la banda muerta resultante para el sistema de producción sea igual a la banda muerta de la unidad de electrólisis de menor tamaño, prácticamente despreciable al aplicar el algoritmo mencionado, y de forma continua en todo el rango de funcionamiento del sistema, esto es, desde la potencia nominal del sistema hasta el límite inferior, cercano a cero, correspondiente a la mencionada banda muerta.
Tanto el parque eólico como el sistema de producción de hidrógeno incorporan electrónica de potencia y sistemas de control y supervisión. En el caso del parque eólico, la electrónica de potencia se sitúa principalmente en los aerogeneradores, mientras que el control y supervisión se realiza de forma coordinada entre éstos y el propio parque. En el caso de las unidades de electrólisis, éstas también llevan electrónica de potencia y control propios. Dichos sistemas de control y supervisión pueden tener realizaciones múltiples, siendo preferiblemente un sistema industrial de tipo autómata programable con un microcontrolador y un interfaz de usuario, accionado bien de forma manual o de forma remota.
Además, un sistema de supervisión global permite calcular constantemente el punto de operación tanto de los aerogeneradores como de las unidades de electrólisis.
La descripción de la invención se centra a continuación en el servicio de regulación primaria, aunque es igualmente válida para la realización de otros servicios de regulación, como secundaria y terciaria, así como para apoyo de regulación de potencia reactiva en el punto de conexión a la red eléctrica en aquel margen de potencia aparente no utilizado por la regulación de potencia activa.
El sistema de producción de hidrógeno, de forma independiente o de forma coordinada con el parque o agregación de parques, adapta su producción para regular la potencia inyectada por el sistema de generación eléctrica renovable en el punto de conexión de la red, de tal manera que permita al parque cumplir, entre otros, los requisitos de regulación primaria de la misma. A continuación se incide en el concepto de configuración jerarquizada para clarificar este término. Supóngase que inicialmente el sistema de producción de hidrógeno se compone de una única unidad de electrólisis, denominada E? (unidad de electrólisis inicial). Ahora, E? se divide en 2 unidades de diferente tamaño denominadas E2¡ la mayor (subíndice /, "large") y E2s la menor (subíndice s, "small"). Si la menor se elige con una potencia igual a la banda muerta de la mayor, el resultado es un sistema de producción de hidrógeno sin discontinuidad en todo el rango de operación y con una banda muerta (BM) resultante inferior a la existente con E?. Se trata, por ello, de un reparto de potencia óptimo dependiente del valor de banda muerta de la tecnología utilizada.
A partir de aquí, la unidad de electrólisis de menor potencia (Ens, en general) se puede volver a separar en 2 unidades con el mismo reparto de potencia y asegurando que Ens sea siempre igual o superior a la banda muerta de Eni, o lo que es lo mismo, que Ens sea siempre igual o superior al producto de la banda muerta, en tanto por ciento, de la tecnología seleccionada por la potencia nominal de En¡. El sistema final estará formado por n unidades de electrólisis, a saber, las unidades de mayor tamaño de las sucesivas divisiones (desde E2i hasta Eni) y la unidad menor en la última división (Ens).
Las ecuaciones de potencia que deben cumplir las unidades de electrólisis determinadas en las sucesivas divisiones en función de la banda muerta {BM, en este caso expresada en tanto por uno) de la tecnología seleccionada son:
Figure imgf000012_0001
El resultado de todo este proceso es la reducción de la banda muerta del sistema {BMn) a través de la minimización del tamaño de las unidades de electrólisis. Con esta estrategia de reparto de potencias, el tamaño de la banda muerta del sistema {BMn) en función del número de divisiones n y del límite impuesto por la tecnología de electrólisis elegida (BM) se calcula de la siguiente manera:
Figure imgf000013_0001
Dichas unidades de electrólisis pueden ser distintos electrolizadores, de la misma o diferente tecnología, y asimismo "stacks" o apilamientos de un mismo electrolizador. Las unidades de electrólisis, controladas de forma independiente, se configuran jerárquicamente de modo que el rango de funcionamiento del subsistema se maximiza alcanzando el menor tamaño posible y con él el coste. Asimismo, el sistema de producción eléctrica renovable puede estar constituido por una agregación de parques eólicos, conectados en el mismo o en distinto punto de la red eléctrica pero gestionados de forma coordinada con el sistema de producción de hidrógeno objeto de la presente invención, que igualmente, puede estar conectado a la red eléctrica en un punto de conexión distinto del parque eólico o agregación de parques. Se ha previsto que el sistema de producción de hidrógeno objeto de invención pueda estar apoyado por bancos de baterías, o cualquier otro sistema de almacenamiento, que se encarguen de la regulación de potencia en bandas concretas de los rangos de frecuencia de la red. También puede estar apoyado por sistemas de pilas de combustible, motores de combustión de hidrógeno conectados a generadores eléctricos rotativos, o cualquier otro sistema equivalente. Además se contempla la posibilidad de incorporar un sistema de almacenamiento de hidrógeno, de modo que el hidrógeno producido por el sistema de producción de hidrógeno es posteriormente consumido en cualquiera de estos sistemas. Asimismo, el sistema de producción de hidrógeno de la presente invención puede comprender un sistema de almacenamiento energético basado en volantes de inercia o bancos de condensadores, o una combinación de éstos con el sistema de baterías.
El sistema descrito en la presente memoria es de aplicación en todo tipo de parques eólicos conectados a la red, y asimismo para agregaciones de parques con gestión coordinada, parques fotovoltaicos o agrupación de los mismos, y en general, para cualesquiera sistemas de generación eléctrica renovable conectados en el mismo o en distinto punto de conexión a la red y gestionados de forma coordinada. Del mismo modo, la configuración jerarquizada de unidades de electrólisis descrita en esta memoria puede ser aplicada a cualquier sistema de producción de hidrógeno, esté o no interconectado a un sistema de generación eléctrica.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
Figura 1.- Muestra una vista esquemática del sistema de producción de hidrógeno para regulación de potencia de un parque eólico conectado a la red eléctrica general de suministro. Figura 2.- Muestra una vista esquemática donde se representa el servicio de regulación primaria realizado únicamente por el sistema de producción de hidrógeno.
Figura 3.- Muestra un esquema de la división de un sistema de producción de hidrógeno en 3 unidades de electrólisis.
Figura 4.- Muestra una división en 3 unidades de electrólisis de un sistema de producción de hidrógeno de 6,5 MW de potencia nominal total.
Figura 5.- Muestra una gráfica de operación en regulación primaria de un sistema de producción de hidrógeno sin división en varias unidades. Figura 6.- Muestra una gráfica de operación en regulación primaria de un sistema de producción de hidrógeno con división en varias unidades de electrólisis.
Figura 7.- Muestra una vista esquemática donde se representa el servicio de regulación primaria realizado conjuntamente por un sistema de producción de hidrógeno y un parque eólico.
Figura 8.- Muestra una gráfica de operación de un sistema de producción de hidrógeno para regulación primaria realizada conjuntamente por un parque eólico y dicho sistema de producción de hidrógeno, estando éste último configurado jerárquicamente en varias unidades de electrólisis operadas de forma independiente.
Figura 9.- Muestra una vista esquemática de otra posible instalación general que incorpora adicionalmente un sistema de baterías. REALIZACIÓN PREFERENTE DE LA INVENCIÓN De acuerdo con una realización preferente de la invención mostrada en la figura 1 , el sistema de producción de hidrógeno (4) se encuentra vinculado a un parque eólico (2) conectado a la red (3) eléctrica, estando dicho parque eólico (2) formado por una serie de aerogeneradores (1 ), mientras que el sistema de producción de hidrógeno (4) está estructurado de forma jerarquizada en tres unidades de electrólisis (5), de forma que sus potencias nominales permitan maximizar el rango de operación requerido para poder realizar conjuntamente los servicios de regulación primaria. Dicho servicio de regulación primaria puede realizarse mediante el sistema de producción de hidrógeno (4), o de forma conjunta entre el parque eólico (2) y dicho sistema de producción de hidrógeno (4).
Tanto el parque eólico (2) como el sistema de producción de hidrógeno (4) incorporan electrónica de potencia y sistemas de control y supervisión. En el caso del parque eólico (2), la electrónica de potencia y su control asociado se sitúan en los aerogeneradores (1 ). En el caso de las unidades de electrólisis (5), éstas también llevan electrónica de potencia y control propios con objeto de ser gestionadas de forma independiente. Además, un sistema de supervisión global permite calcular constantemente el punto de operación tanto de los aerogeneradores (1 ) como de las unidades de electrólisis (5).
En todo aerogenerador (1 ) eólico, existe un valor máximo de potencia (Pwmax) que dicho aerogenerador (1 ) puede extraer del recurso eólico y convertirlo en energía eléctrica a su salida. La electrónica de potencia, el sistema de supervisión y control, y los sistemas electromecánicos que incorporan los aerogeneradores (1 ), permiten situar el punto de funcionamiento en ese valor. De acuerdo con una primera realización preferente, mostrada en la figura 2, la regulación primaria la lleva a cabo únicamente el sistema de producción de hidrógeno (4), con bandas de regulación, a modo de ejemplo, de entre 49,8 Hz y 50,2 Hz, alrededor de una frecuencia nominal de 50 Hz. Los aerogeneradores (1 ) del parque eólico (2) permanecen funcionando a la máxima potencia disponible en cada momento (Pwmax), gobernados por los sistemas de control del parque, situación ilustrada en la figura 2 con la indicación de "100% Pwmax" para el parque eólico (2).
En cuanto al sistema de producción de hidrógeno (4), su rango de funcionamiento es igual a la suma de las bandas de regulación primaria a subir y a bajar, establecidas por el operador de la red (3) eléctrica y conocidas de antemano. Mientras el servicio de regulación primaria no sea requerido, el sistema de producción de hidrógeno (4) se opera al 50% de su rango de operación, esto es, desde el límite inferior de operación, determinado por su banda muerta, hasta su potencia nominal (máxima posible para el sistema). En esa situación, la potencia inyectada a la red (3) resulta ser la diferencia entre la máxima potencia eléctrica generada por los aerogeneradores (1 ) (Pwmax) y la potencia consumida por el sistema de producción de hidrógeno (4), que, como se ha indicado, es el 50% de su rango de potencia disponible.
Cuando se requiere regulación primaria a subir, esto es, debe ser inyectada potencia eléctrica en la red (3), lo cual ocurre cuando la frecuencia disminuye por debajo de su valor de consigna, el sistema de producción de hidrógeno (4) disminuye su potencia, situación representada en la figura 2 por la flecha descendente. Por el contrario, cuando se requiere regulación primaria a bajar, esto es, cuando debe reducirse la potencia entregada a la red (3), el sistema de producción de hidrógeno (4) aumenta su potencia, situación representada en la figura 2 por la flecha ascendente.
En la figura 3 se representa la división de una unidad de electrólisis (Ei ) en 3 unidades (Ε2ι, E3i y E3s). Más concretamente en la figura 4 se representa un ejemplo con valores reales basados en un sistema de producción de hidrógeno (4) de 6,5 MW de potencia nominal total (ΡΗ2Π) y una tecnología de electrólisis con una banda muerta del 20% respecto a su potencia nominal. Aplicando la invención propuesta con n=3, la potencia nominal ΡΗ2Π del sistema de electrólisis se dividiría en este caso en tres unidades E2\, E3i y E3s, de potencias nominales 5,4 MW, 913 KW y 187 KW.
E
Figure imgf000018_0001
E = 0,83 6,5 MW = 5,4 MW E2s = 0,17 - 6,5 MW = 1,1 MW
De esta manera con una división en sólo tres unidades (n=3) se reduce la BM del 20 al 0,58% de ΡΗ2Π- Este cálculo se muestra en la siguiente ecuación, en la que BMn indica la BM final del sistema de producción de hidrógeno habiendo realizado n divisiones (en el ejemplo n=3)
BM BM . Em = 38 kW
E1 6500 kW
Por tanto, mediante el sistema jerarquizado de unidades de electrólisis (5), la potencia nominal de electrólisis total se reduce considerablemente y se optimiza el sistema. Tal y como se puede observar en la figura 5, suponiendo unas bandas de regulación del 1 ,5% de la potencia nominal del parque eólico (2) (Pwn), tanto a subir como a bajar, y un valor para esta potencia nominal Pwn de 50 MW, un sistema de producción de hidrógeno (4) que sólo estuviera formado por una unidad de electrólisis, o en su caso por varias unidades pero operadas de forma conjunta de tal modo que en la práctica se comporten como una sola, y que perteneciera a una tecnología con una banda muerta (BM) característica del 20%, requeriría una potencia nominal total de electrólisis de 1 ,875 MW, siendo el rango de operación, en función de las necesidades de regulación primaria, el mostrado en dicha figura 5 para una regulación entre 49,8 Hz y 50,2 Hz.
Por el contrario, y tal y como se muestra en la figura 6, mediante la aplicación de la presente invención al sistema de producción de hidrógeno (4) con una división en tres unidades de electrólisis (5) de la misma tecnología, tal y como se ha expuesto en el ejemplo anterior, la potencia nominal total requerida disminuiría hasta aproximadamente 1 ,5 MW (en este caso se supone despreciable la banda muerta del 0,58% obtenida para esta configuración), lo que supone una reducción del 25% en el tamaño.
De acuerdo con otra realización preferente mostrada en la figura 7, el servicio de regulación primaria se realiza de forma conjunta entre el parque eólico (2) y el sistema de producción de hidrógeno (4). En este caso, los aerogeneradores (1 ) del parque eólico (2) se operan, mientras no se requiera el servicio de regulación primaria, a una potencia igual a la máxima eólica disponible (Pwmax), calculada por el sistema de supervisión del parque. A su vez, el sistema de producción de hidrógeno (4) se mantiene a su potencia nominal (ΡΗ2Π)- En ese momento, la potencia total inyectada en la red (3) eléctrica es la resta de ambas potencias Pwmax y PiH2n- Cuando se requiere regulación primaria a subir, esto es, debe inyectarse potencia ante una disminución de la frecuencia de la red (3), el sistema de producción de hidrógeno (4) modifica su punto de funcionamiento disminuyendo la potencia consumida por debajo de la nominal, liberando así potencia del parque eólico (2) que es inyectada en la red (3). El parque eólico (2) permanece, en esta situación, en su potencia máxima (Pwmax)- Por el contrario, cuando se requiere regulación primaria a bajar y por tanto debe reducirse la potencia inyectada en la red (3), es el parque eólico (2) el que disminuye su potencia, permaneciendo el sistema de producción de hidrógeno (4) en su potencia nominal.
Manteniendo las bandas de regulación que, a modo de ejemplo, se han supuesto anteriormente, consistentes en el 1 ,5% de la potencia nominal del parque eólico (2) (Pwn), tanto a subir como a bajar, y asimismo el valor utilizado para esta potencia nominal PWn (50 MW), el sistema de producción de hidrógeno (4), configurado de forma jerarquizada de acuerdo a lo descrito en la presente invención y por tanto con banda muerta despreciable, requeriría una potencia nominal total de 0,75 MW (1 ,5% de 50 MW), actuando de la forma indicada en la figura 8 para la banda de regulación entre 49,8 y 50 Hz. De nuevo, se aprecia la ventaja de la invención propuesta frente a un sistema convencional de electrólisis formado por una sola unidad de electrólisis o por varias operadas de forma conjunta, que requeriría una potencia nominal de 0,9375 MW para una tecnología con una banda muerta del 20%. Finalmente, en otra realización preferente de la presente invención, representada en la figura 9, se dispone adicionalmente de un sistema de baterías (6) que permite apoyar el servicio de regulación primaria realizando la regulación de parte de las bandas de frecuencia. El sistema de baterías (6) queda conectado al mismo punto de conexión que los restantes elementos (parque eólico (2), sistema de producción de hidrógeno (4) y red (3) eléctrica) y su consumo o generación de energía se controla mediante el sistema de supervisón global. El sistema de baterías (6) puede dar apoyo tanto si la regulación primaria la realiza únicamente el sistema de producción de hidrógeno (4), como si se realiza conjuntamente entre el parque eólico (2) y el sistema de producción de hidrógeno (4).
Suponiendo el primer caso (regulación primaria en la que no interviene el parque eólico (2)), el consumo, o carga de las baterías (6), se lleva a cabo cuando se requiere regulación a bajar, esto es, cuando se debe reducir la potencia inyectada en red (3) como consecuencia de un aumento de la frecuencia de la misma, y la generación eléctrica, o descarga de las baterías (6), se realiza cuando debe hacerse regulación a subir, es decir, cuando se debe inyectar potencia en red (3) ante una caída de la frecuencia. En función del rango de frecuencias, dentro de las bandas de regulación, en que actúa el sistema de baterías (6), pueden darse distintas realizaciones. En primer lugar, el sistema de baterías (6) puede utilizarse para regular las frecuencias extremas del rango de regulación primaria. En los sistemas eléctricos actuales, la frecuencia de la red (3) oscila alrededor de su valor nominal en un rango considerablemente inferior al fijado por los límites de la regulación primaria. Dado que los sistemas de electrólisis son costosos, puede utilizarse el sistema de baterías (6) para cubrir las frecuencias extremas y realizar la regulación primaria en frecuencias cercanas a la nominal con el sistema de producción de hidrógeno (4) reduciendo así el tamaño del mismo.
En otra realización preferente, el sistema de baterías (6) puede utilizarse para regular el rango de frecuencias alrededor de la frecuencia nominal, dejando para el sistema de producción de hidrógeno (4) la regulación de las frecuencias externas a dicho rango. Esta realización resulta ventajosa cuando la rapidez de respuesta de la tecnología de electrólisis utilizada no sea suficiente, o no sea la adecuada, para cumplir los requisitos de respuesta de regulación primaria que indique la normativa aplicable o el operador de la red (3). Al cubrir el sistema de baterías (6) el rango central de frecuencias, la rapidez de respuesta recae fundamentalmente en dicho sistema, mientras que la actuación del sistema de producción de hidrógeno (4) puede programarse con antelación conforme se observa que la frecuencia de la red (3) se aleja del valor nominal y se acerca a los extremos de las bandas de regulación.
En otra realización preferente, puede incluirse un sistema de pilas de combustible que realice la regulación primaria en la banda a subir, esto es, cuando la frecuencia de la red (3) cae por debajo de la nominal y se deba inyectar más potencia en la red (3). En ese momento, el sistema de pilas de combustibles se activa generando energía eléctrica que es inyectada en la red (3). En esta realización, el sistema de producción de hidrógeno (4) realiza la regulación a bajar, esto es, consumiendo potencia cuando la potencia inyectada en red (3) debe disminuirse ante aumentos de la frecuencia. Eventualmente, el hidrógeno producido mediante el sistema de producción de hidrógeno (4) puede ser almacenado y utilizado posteriormente por el sistema de pilas de combustible. Este último también puede ser reemplazado por un sistema formado por motor de combustión de hidrógeno y generador eléctrico, e igualmente por una combinación de ambos o por cualquier otro sistema equivalente.
En otra realización preferente, el conjunto formado por el parque eólico (2) (o agrupación de parques, o en general sistemas de generación eléctrica renovable) y el sistema de producción de hidrógeno (4), puede operarse de modo que sea parcialmente gestionable, realizando parte del servicio de regulación de potencia. En este caso, el parque eólico (2) es operado para que genere en todo momento la máxima potencia eólica disponible (Pwmax), mientras que el sistema de producción de hidrógeno (4) permanece apagado mientras no sea requerido ningún servicio de regulación de potencia. En el momento en que es requerido el servicio de regulación de potencia a bajar, esto es, debe reducirse la potencia inyectada en red (3) ante un aumento en su frecuencia, el sistema de producción de hidrógeno (4), formado por la configuración jerarquizada de unidades de electrólisis (5) descrita anteriormente, es operado de modo que pasa a consumir la potencia necesaria para que la potencia de salida del conjunto
(parque eólico (2) y sistema de producción de hidrógeno (4)) se reduzca hasta el valor requerido por el servicio de regulación.
Igualmente es posible otra realización, en la línea marcada por la anterior, en la que el parque eólico (2) permanece generando la máxima potencia eólica disponible en cada momento (Pwmax) y el sistema de producción de hidrógeno (4) se opera, en condiciones normales, de forma que consuma la potencia nominal (ΡΗ2Π)- En el momento en que es requerido el servicio de regulación de potencia a subir, esto es, debe aumentarse la potencia inyectada en la red (3) por el conjunto ante una disminución de la frecuencia, el sistema de producción de hidrógeno (4) reduce la producción de hidrógeno, y con ella la potencia consumida, de modo que el conjunto pasa a aumentar la potencia inyectada en la red (3) hasta llegar al valor requerido por el servicio de regulación. De nuevo, al igual que la realización anterior, el conjunto formado por el parque eólico (2) y el sistema de producción de hidrógeno (4) resulta ser parcialmente gestionable.
Como ya se ha indicado anteriormente en varias ocasiones, la presente invención no solo permite realizar la regulación primaria de un parque eólico (2) conectado a red (3) mediante un sistema jerarquizado de unidades de electrólisis (5), sino que también es de aplicación a aquellos servicios de regulación, como la secundaria o terciaria, que requieran la modificación de la potencia inyectada por el parque eólico (2) en la red (3) en base a perfiles de potencia dependientes de la regulación de potencia activa en la red (3) eléctrica.
En otra realización preferente, la electrónica de potencia presente tanto en las centrales de generación eléctrica renovables, como en el sistema de producción de hidrógeno (4), es utilizada para apoyar la regulación de potencia reactiva intercambiada con la red (3) en el punto de conexión a la misma, en aquel rango de potencia aparente no utilizado por la potencia activa generada por las centrales o consumida por el sistema de producción de hidrógeno (4).
Como es conocido, los equipos de electrónica de potencia se diseñan y dimensionan para que soporten unos determinados valores de corriente y tensión eléctricas. Éstos determinan la máxima potencia aparente del equipo, que puede denominarse potencia aparente nominal. La potencia aparente es el resultado de la suma vectorial de las potencias activa y reactiva en un sistema eléctrico. De este modo, cuando la potencia activa que fluye a través de la electrónica de potencia no es máxima, como ocurre en múltiples ocasiones en las realizaciones preferentes descritas en la invención, existe la capacidad de dar potencia reactiva hasta el límite marcado por la potencia aparente. En esos momentos, la electrónica de potencia se opera para que, además de dar la potencia activa requerida en función de la realización y de los requisitos de operación de la red, realiza la regulación de potencia reactiva que ésta demande de forma parcial o total en función de si la potencia aparente máxima, y con ella los valores máximos de tensión y corriente soportados por los semiconductores, son alcanzados o no, respectivamente. En conclusión, la presente invención mejora la capacidad de regulación de potencia en parques eólicos (2) a través de la utilización de un sistema de producción de hidrógeno (4) formado por una configuración jerarquizada de unidades de electrólisis (5) que permite reducir hasta niveles despreciables la banda muerta de dicho sistema de producción de hidrógeno (4). Mediante las distintas realizaciones de la presente invención, es posible convertir las centrales de generación eléctrica basadas en recursos renovables no gestionables, en centrales eléctricas con gestión de los servicios de regulación de potencia.

Claims

R E I V I N D I C A C I O N E S
1. - Sistema de producción de hidrógeno (4) para la regulación de potencia en centrales eléctricas basadas en energías renovables caracterizado porque está constituido por al menos dos unidades de electrólisis (5) de potencias descendientes de tal manera que, para una unidad cualquiera del sistema, la suma de las potencias de las unidades de electrólisis (5) menores es siempre mayor o igual que la banda muerta de dicha unidad, permitiendo reducir hasta niveles despreciables la banda muerta de dicho sistema de producción de hidrógeno (4), y evitando la pérdida o vertido de energía producida en dichas centrales de energías renovables conectadas a la red (3) eléctrica.
2. - Sistema de producción de hidrógeno (4) para la regulación de potencia en centrales eléctricas basadas en energías renovables de acuerdo con reivindicación 1 caracterizado porque la central eléctrica basada en energías renovables está comprendida por uno o varios parques eólicos (2) coordinados entre sí, y formados a su vez por una serie de aerogeneradores (1 ).
3. - Sistema de producción de hidrógeno (4) para la regulación de potencia en centrales eléctricas basadas en energías renovables de acuerdo con reivindicación 1 caracterizado porque la central eléctrica basada en energías renovables está comprendida por uno o varios parques fotovoltaicos.
4. - Sistema de producción de hidrógeno (4) para la regulación de potencia en centrales eléctricas basadas en energías renovables de acuerdo con reivindicación 1 caracterizado porque comprende adicionalmente un sistema de baterías (6) para dar apoyo al sistema de producción de hidrógeno (4) en la regulación de potencia.
5. - Sistema de producción de hidrógeno (4) para la regulación de potencia en centrales eléctricas basadas en energías renovables de acuerdo con reivindicación 1 caracterizado porque comprende adicionalmente un sistema de pilas de combustible encargado de generar energía eléctrica e inyectarla en la red en el rango de frecuencias de red inferiores a la nominal, mientras que el sistema de producción de hidrógeno (4) se encarga de consumir energía eléctrica en el rango de frecuencias de red superiores a la nominal.
6. - Sistema de producción de hidrógeno (4) para la regulación de potencia en centrales eléctricas basadas en energías renovables de acuerdo con reivindicación 5 caracterizado porque comprende adicionalmente un sistema de almacenamiento de hidrógeno, de modo que el hidrógeno producido por el sistema de producción de hidrógeno (4) es posteriormente consumido por el sistema de pilas de combustible.
7. - Sistema de producción de hidrógeno (4) para la regulación de potencia en centrales eléctricas basadas en energías renovables de acuerdo con reivindicación 1 caracterizado porque comprende adicionalmente un sistema formado por motor de combustión de hidrógeno con generador eléctrico acoplado, o por una combinación de ambos sistemas.
8. - Sistema de producción de hidrógeno (4) para la regulación de potencia en centrales eléctricas basadas en energías renovables de acuerdo con reivindicación 4 caracterizado porque comprende adicionalmente un sistema de almacenamiento energético basado en volantes de inercia o bancos de condensadores, o una combinación de éstos con el sistema de baterías (6).
9.- Sistema de producción de hidrógeno (4) para la regulación de potencia en centrales eléctricas basadas en energías renovables de acuerdo con reivindicación 1 , caracterizado porque tanto el sistema de producción de hidrógeno (4) como dichas centrales eléctricas incorporan electrónica de potencia que regula la potencia reactiva generada o consumida en el punto de conexión a la red.
10.- Sistema de producción de hidrógeno (4) para la regulación de potencia en centrales eléctricas basadas en energías renovables de acuerdo con reivindicación 1 caracterizado porque está constituido por al menos dos unidades de electrólisis (5) que son operadas de forma independiente.
11.- Procedimiento de regulación de potencia entregada a la red (3) para el control de la frecuencia de red (3) en su valor nominal, mediante el sistema de producción de hidrógeno (4) descrito en una cualquiera de las reivindicaciones 1 a 10, caracterizado porque el control de la frecuencia de red (3) se realiza únicamente mediante el sistema de producción de hidrógeno (4).
12- Procedimiento de regulación de potencia de acuerdo con reivindicación 11 caracterizado porque los aerogeneradores (1 ) del parque eólico (2) permanecen funcionando a la máxima potencia disponible en cada momento, y las unidades de electrólisis (5) operan al 50% de su rango de operación, mientras el servicio de regulación primaria no sea requerido.
13- Procedimiento de regulación de potencia de acuerdo con reivindicación 1 1 caracterizado porque cuando se requiere regulación primaria a subir, esto es, debe ser inyectada potencia eléctrica en la red (3), lo cual ocurre cuando la frecuencia disminuye por debajo de su valor de consigna, el sistema de producción de hidrógeno (4) disminuye su potencia.
14. - Procedimiento de regulación de potencia de acuerdo con reivindicación 1 1 caracterizado porque cuando se requiere regulación primaria a bajar, esto es, cuando debe reducirse la potencia entregada a la red (3), lo cual ocurre cuando la frecuencia aumenta por encima de su valor de consigna, el sistema de producción de hidrógeno (4) aumenta su potencia.
15. - Procedimiento de regulación de potencia entregada a la red (3) para el control de la frecuencia de red (3) en su valor nominal, mediante el sistema de producción de hidrógeno (4) descrito en una cualquiera de las reivindicaciones 2 ó 9, caracterizado porque el control de la frecuencia de red (3) se realiza de forma conjunta entre el parque eólico (2) y el sistema de producción de hidrógeno (4).
16. - Procedimiento de regulación de potencia de acuerdo con reivindicación 15 caracterizado porque los aerogeneradores (1 ) del parque eólico (2) permanecen funcionando a la máxima potencia disponible en cada momento, y las unidades de electrólisis (5) operan al 100% de su rango de operación, mientras el servicio de regulación primaria no sea requerido.
17. - Procedimiento de regulación de potencia de acuerdo con reivindicación 15 caracterizado porque cuando se requiere regulación primaria a subir, el sistema de producción de hidrógeno (4) modifica su punto de funcionamiento disminuyendo la potencia consumida por debajo de la nominal, liberando así potencia del parque eólico (2) que es inyectada en la red (3), permaneciendo el parque eólico (2) en su potencia máxima.
18. - Procedimiento de regulación de potencia de acuerdo con reivindicación 15 caracterizado porque cuando se requiere regulación primaria a bajar, es el parque eólico (2) el que disminuye su potencia, permaneciendo el sistema de producción de hidrógeno (4) en su potencia nominal.
19. - Procedimiento de regulación de potencia de acuerdo con reivindicaciones 1 1 ó 15, caracterizado porque el sistema de baterías (6) actúa en un rango de frecuencias situado alrededor de la frecuencia nominal del sistema, y el sistema de producción de hidrógeno (4), con una dinámica más lenta, actúa en los valores de frecuencia externos al rango de actuación del sistema de baterías (6), para el rango global de regulación de frecuencia marcado por la normativa de regulación primaria.
20. - Procedimiento de regulación de potencia de acuerdo con reivindicación 1 1 ó 15, caracterizado porque el sistema de producción de hidrógeno (4) actúa en un rango de frecuencias situado alrededor de la frecuencia nominal del sistema, y el sistema de baterías (6) actúa en los valores de frecuencia externos al rango de actuación del sistema de producción de hidrógeno (4), para el rango global de regulación de frecuencia marcado por la normativa de regulación primaria.
21. - Procedimiento de regulación de potencia de acuerdo con reivindicaciones 11 ó 15, caracterizado porque es posible realizar adicionalmente servicios de regulación secundaria y/o terciaria.
22. - Procedimiento de regulación de potencia reactiva intercambiada con la red (3) para centrales eléctricas basadas en energías renovables, caracterizado porque se realiza regulación de potencia reactiva mediante electrónica de potencia tanto de dichas centrales como del sistema de producción de hidrógeno (4) descrito en una cualquiera de las reivindicaciones 1 a 10.
PCT/ES2010/070272 2010-04-28 2010-04-28 Sistema de producción de hidrógeno para la regulación de potencia en centrales eléctricas basadas en energías renovables, y procedimiento de regulación WO2011135110A1 (es)

Priority Applications (10)

Application Number Priority Date Filing Date Title
ES10722723.3T ES2474440T3 (es) 2010-04-28 2010-04-28 Sistema de producción de hidrógeno para la regulaci�n de potencia en centrales eléctricas basadas en energías renovables, y un procedimiento de regulaci�n
CA2797893A CA2797893C (en) 2010-04-28 2010-04-28 Hydrogen production system for controlling the power output of power stations based on renewable energy sources and control process
US13/640,674 US9222459B2 (en) 2010-04-28 2010-04-28 Hydrogen production system for controlling the power output of power stations based on renewable energy sources and control process
PCT/ES2010/070272 WO2011135110A1 (es) 2010-04-28 2010-04-28 Sistema de producción de hidrógeno para la regulación de potencia en centrales eléctricas basadas en energías renovables, y procedimiento de regulación
CN201080066416.3A CN102959131B (zh) 2010-04-28 2010-04-28 用于控制基于可再生能源的发电站的功率输出的制氢系统及其控制方法
EP10722723.3A EP2565296B1 (en) 2010-04-28 2010-04-28 Hydrogen production system for regulating the power at renewable energy electric plants, and a regulation method
BR112012027402-3A BR112012027402B1 (pt) 2010-04-28 2010-04-28 Sistema de produção de hidrogênio para controlar a potência de saída em centrais elétricas baseadas em fontes de energia renováveis; processo para controlar a potência fornecida à rede e a frequência da rede no seu valor nominal utilizando o referido sistema; processo de controle da potência de saída e processo para controlar a permuta de potência reativa com a rede para as centrais elétricas baseadas em fontes de energia renováveis
DK10722723.3T DK2565296T3 (da) 2010-04-28 2010-04-28 Hydrogenfremstillingssystem til effektregulering af elektriske anlæg baserede på vedvarende energi samt reguleringsfremgangsmåde
AU2010352432A AU2010352432B2 (en) 2010-04-28 2010-04-28 Hydrogen production system for regulating the power at renewable energy electric plants, and a regulation method
ZA2012/07595A ZA201207595B (en) 2010-04-28 2012-10-10 Hydrogen production system for regulating the power at renewable energy elecrtic plants,and a regulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2010/070272 WO2011135110A1 (es) 2010-04-28 2010-04-28 Sistema de producción de hidrógeno para la regulación de potencia en centrales eléctricas basadas en energías renovables, y procedimiento de regulación

Publications (1)

Publication Number Publication Date
WO2011135110A1 true WO2011135110A1 (es) 2011-11-03

Family

ID=42332379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070272 WO2011135110A1 (es) 2010-04-28 2010-04-28 Sistema de producción de hidrógeno para la regulación de potencia en centrales eléctricas basadas en energías renovables, y procedimiento de regulación

Country Status (10)

Country Link
US (1) US9222459B2 (es)
EP (1) EP2565296B1 (es)
CN (1) CN102959131B (es)
AU (1) AU2010352432B2 (es)
BR (1) BR112012027402B1 (es)
CA (1) CA2797893C (es)
DK (1) DK2565296T3 (es)
ES (1) ES2474440T3 (es)
WO (1) WO2011135110A1 (es)
ZA (1) ZA201207595B (es)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012203334A1 (de) * 2012-03-02 2013-09-05 Wobben Properties Gmbh Verfahren zum Betreiben eines Kombikraftwerks bzw. Kombikraftwerk
DE102012204220A1 (de) * 2012-03-16 2013-09-19 Wobben Properties Gmbh Verfahren zum Steuern einer Anordnung zum Einspeisen elektrischen Stroms in ein Versorgungsnetz
US10214821B2 (en) * 2012-05-28 2019-02-26 Hydrogenics Corporation Electrolyser and energy system
DE102014010359A1 (de) * 2014-07-10 2016-02-04 Etogas Gmbh Anlage zur Erzeugung von Wasserstoff und Verfahren zum Betreiben einer solchen Anlage
CN104113084B (zh) * 2014-07-31 2016-01-06 东北电力大学 风电-制氢并网发电系统的控制方法
US10211667B2 (en) 2014-10-03 2019-02-19 Piller Usa, Inc. Uninterrupted power supply systems and methods
FR3027034B1 (fr) * 2014-10-13 2016-12-23 Commissariat Energie Atomique Procede de pilotage d'un systeme d'electrolyse prenant en compte la temperature des modules electrolyseurs dudit systeme d'electrolyse
CN106786764B (zh) * 2017-01-13 2019-02-01 东北电力大学 一种利用制氢系统消纳风电弃风的制氢容量优化配置方法
CN108023358A (zh) * 2017-12-25 2018-05-11 赫普科技发展(北京)有限公司 一种基于电解制氢的电网调频系统和方法
CN108517533B (zh) * 2018-03-26 2020-07-28 全球能源互联网研究院有限公司 一种电解制氢控制方法及装置
CN111245105B (zh) * 2018-11-28 2023-07-11 国网新疆电力有限公司经济技术研究院 一种预装式储能电站容量配置方法
WO2020121441A1 (ja) * 2018-12-12 2020-06-18 東芝エネルギーシステムズ株式会社 水素エネルギー制御システムおよび水素エネルギー制御システムの制御方法
WO2021043912A1 (en) * 2019-09-03 2021-03-11 Fmc Kongsberg Subsea As System and method for balancing power in an offshore renewable power system
JP7434828B2 (ja) 2019-11-21 2024-02-21 中国電力株式会社 水素含有水生成装置、及び電極交換時期の予測方法
CN110943463A (zh) * 2019-12-02 2020-03-31 国网浙江省电力有限公司湖州供电公司 一种基于深度学习储能电池参与的电网快速调频控制方法
PL3889323T3 (pl) * 2020-03-30 2023-05-08 Siemens Gamesa Renewable Energy A/S Układ do elektrolizy
JP7438491B2 (ja) 2020-04-24 2024-02-27 ニチコン株式会社 水電解システムおよび電力変換装置
CN111585297A (zh) 2020-06-12 2020-08-25 阳光电源股份有限公司 一种直流耦合制氢系统及其控制方法
CN112103994B (zh) * 2020-08-25 2022-04-01 同济大学 一种基于mpc的风氢耦合系统分层协调控制方法及装置
CN112734093B (zh) * 2020-12-30 2022-06-21 国网甘肃省电力公司电力科学研究院 基于计算机的制氢装置容量优化配置方法
JP7485465B2 (ja) * 2021-01-12 2024-05-16 東芝エネルギーシステムズ株式会社 電力制御装置、及び電力制御方法
EP4124674A1 (en) * 2021-07-30 2023-02-01 Abb Schweiz Ag Electrolyzer plant comprising a plurality of electrolyzer modules and a system for controlling operation of the electrolyzer plant
CN113818045B (zh) * 2021-08-10 2023-05-09 中国华能集团清洁能源技术研究院有限公司 波动性电解制氢系统、配置方法及运行控制方法
CN113839403B (zh) * 2021-10-13 2024-04-16 河北建投新能源有限公司 储能制氢控制方法、装置、存储介质及电子设备
TW202336279A (zh) * 2022-01-31 2023-09-16 美商博隆能源股份有限公司 電網支援式電解器
EP4235999A1 (en) * 2022-02-23 2023-08-30 Siemens Gamesa Renewable Energy A/S Control system and method for a renewable power plant
EP4283810A1 (en) * 2022-05-23 2023-11-29 Siemens Gamesa Renewable Energy A/S Method for controlling a power output of a renewable hydrogen power plant, computer program product, control system and renewable hydrogen system
WO2024037695A1 (en) * 2022-08-15 2024-02-22 Vestas Wind Systems A/S Overvoltage protection of an electrolyzer in a wind power plant
WO2024095217A1 (en) * 2022-11-02 2024-05-10 Michele Giudilli Method and system to produce renewable energy in a programmable manner and produce green hydrogen
WO2024109998A1 (en) * 2022-11-24 2024-05-30 Everfuel Europe A/S Hydrogen production and distribution system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5592028A (en) * 1992-01-31 1997-01-07 Pritchard; Declan N. Wind farm generation scheme utilizing electrolysis to create gaseous fuel for a constant output generator
DE10055973A1 (de) 2000-11-11 2002-05-23 Abb Research Ltd Verfahren und Vorrichtung zur bedarfsabhängigen Regelung der Ausgangsleistung eines küstennahen Hochsee-Kraftwerks
EP1596052A1 (de) 2004-05-13 2005-11-16 Siemens Aktiengesellschaft Kraftwerksystem mit einer Windenergieanlage, einem Wasserstofferzeuger, einem Wasserstoffspeicher und einer Gasturbine
US20060125241A1 (en) 2004-12-10 2006-06-15 Duhamel Robert A Apparatus and method for generating hydrogen gas through the use of wind power
WO2006097494A1 (de) 2005-03-18 2006-09-21 Siemens Aktiengesellschaft Verfahren und vorrichtung zur zwischenspeicherung von aus windkraft erzeugter elektrischer windenergie
US20070216165A1 (en) 2006-03-14 2007-09-20 Shinya Oohara Hydrogen production system using wind turbine generator
EP1975279A1 (en) * 2007-03-27 2008-10-01 GM Global Technology Operations, Inc. Apparatus to reduce the cost of renewable hydrogen fuel generation by electrolysis using combined solar and grid power
WO2010018240A1 (es) * 2008-08-12 2010-02-18 Ingeteam Energy, S.A. Sistema y método para la gestión de potencia en una instalación fotovoltaica

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080127646A1 (en) * 2005-10-11 2008-06-05 Doland George J System and Method for Energy and Hydrogen Production
WO2009051788A2 (en) * 2007-10-15 2009-04-23 Transphorm, Inc. Compact electric appliance providing hydrogen injection for improved performance of internal combustion engines
ES2299407B1 (es) * 2007-10-18 2009-08-25 Acciona Energia, S.A. Sistema de produccion de energia electrica e hidrogeno.
CA2741129C (en) * 2008-10-30 2018-07-17 Next Hydrogen Corporation Power dispatch system for electrolytic production of hydrogen from wind power

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5592028A (en) * 1992-01-31 1997-01-07 Pritchard; Declan N. Wind farm generation scheme utilizing electrolysis to create gaseous fuel for a constant output generator
DE10055973A1 (de) 2000-11-11 2002-05-23 Abb Research Ltd Verfahren und Vorrichtung zur bedarfsabhängigen Regelung der Ausgangsleistung eines küstennahen Hochsee-Kraftwerks
EP1596052A1 (de) 2004-05-13 2005-11-16 Siemens Aktiengesellschaft Kraftwerksystem mit einer Windenergieanlage, einem Wasserstofferzeuger, einem Wasserstoffspeicher und einer Gasturbine
US20060125241A1 (en) 2004-12-10 2006-06-15 Duhamel Robert A Apparatus and method for generating hydrogen gas through the use of wind power
WO2006097494A1 (de) 2005-03-18 2006-09-21 Siemens Aktiengesellschaft Verfahren und vorrichtung zur zwischenspeicherung von aus windkraft erzeugter elektrischer windenergie
US20070216165A1 (en) 2006-03-14 2007-09-20 Shinya Oohara Hydrogen production system using wind turbine generator
EP1975279A1 (en) * 2007-03-27 2008-10-01 GM Global Technology Operations, Inc. Apparatus to reduce the cost of renewable hydrogen fuel generation by electrolysis using combined solar and grid power
WO2010018240A1 (es) * 2008-08-12 2010-02-18 Ingeteam Energy, S.A. Sistema y método para la gestión de potencia en una instalación fotovoltaica

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MANTZ R J ET AL: "Hydrogen production from idle generation capacity of wind turbines", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, ELSEVIER SCIENCE PUBLISHERS B.V., BARKING, GB, vol. 33, no. 16, 1 August 2008 (2008-08-01), pages 4291 - 4300, XP024528809, ISSN: 0360-3199, [retrieved on 20080812], DOI: DOI:10.1016/J.IJHYDENE.2008.05.088 *
VALENCIAGA F ET AL: "Control design for an autonomous wind based hydrogen production system", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, ELSEVIER SCIENCE PUBLISHERS B.V., BARKING, GB, vol. 35, no. 11, 24 March 2010 (2010-03-24), pages 5799 - 5807, XP027060190, ISSN: 0360-3199, [retrieved on 20100521] *

Also Published As

Publication number Publication date
CN102959131B (zh) 2015-08-26
ZA201207595B (en) 2013-06-26
EP2565296A1 (en) 2013-03-06
CN102959131A (zh) 2013-03-06
CA2797893A1 (en) 2011-11-03
BR112012027402A2 (pt) 2017-11-21
AU2010352432B2 (en) 2015-11-12
AU2010352432A1 (en) 2012-11-15
ES2474440T3 (es) 2014-07-09
BR112012027402B1 (pt) 2020-03-31
US9222459B2 (en) 2015-12-29
DK2565296T3 (da) 2014-06-23
CA2797893C (en) 2017-01-10
EP2565296B1 (en) 2014-04-23
US20130093194A1 (en) 2013-04-18

Similar Documents

Publication Publication Date Title
ES2474440T3 (es) Sistema de producción de hidrógeno para la regulaci�n de potencia en centrales eléctricas basadas en energías renovables, y un procedimiento de regulaci�n
Awan et al. Performance analysis of various hybrid renewable energy systems using battery, hydrogen, and pumped hydro‐based storage units
Guezgouz et al. Optimal hybrid pumped hydro-battery storage scheme for off-grid renewable energy systems
Caralis et al. Analysis of energy storage systems to exploit wind energy curtailment in Crete
Carton et al. Wind/hydrogen hybrid systems: Opportunity for Ireland’s wind resource to provide consistent sustainable energy supply
Lagorse et al. Energy cost analysis of a solar-hydrogen hybrid energy system for stand-alone applications
Scamman et al. Hybrid hydrogen-battery systems for renewable off-grid telecom power
Sultan et al. Design and evaluation of PV-wind hybrid system with hydroelectric pumped storage on the National Power System of Egypt
Østergaard Geographic aggregation and wind power output variance in Denmark
Alkarrami et al. Optimal sizing of a stand-alone hybrid energy system for water pumping in Sirte, Libya
Ahmadi et al. Performance of a standalone wind-hydrogen power system for regions with seasonal wind profile: A case study in Khaf region
Ataei et al. Techno-economic viability of a hybrid wind and solar power system for electrification of a commercial building in Shiraz, Iran
Saury et al. Hybrid microgrids: The time is now
Mhlanga et al. Standalone hybrid energy system model and control for economic load dispatch
Short et al. Matching Western US electricity consumption with wind and solar resources
Bendib et al. Wind-solar power system associated with flywheel and pumped-hydro energy storage
Diawuo et al. Need for pumped hydro energy storage systems
JP2015216757A (ja) ハイブリッド化再生可能エネルギーシステム
CN211183436U (zh) 一种基于能量预测的光储微电网系统
Corona et al. Analysis of Sardinia-Italy Energy Flows with Future Transmission Investments for Increasing the Integration of RES
Ye et al. Research on dispatch scheduling model of micro-grid with distributed energy
ES2728412T3 (es) Central eléctrica, conjunto de centrales eléctricas con una central eléctrica, así como procedimiento operativo
Li et al. Day-head Peak-shaving Model for Coordinated Wind-photovoltaic-pumped-storage-hydropower Generation Systems
Modu et al. Operational Strategy of a Hybrid Renewable Energy System With Hydrogen-Battery Storage for Optimal Performance Using Levy Flight Algorithm
Corsiuc et al. Analysis of using stand-alone solar-wind power system in rural areas

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080066416.3

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10722723

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 8992/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2797893

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010722723

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2010352432

Country of ref document: AU

Date of ref document: 20100428

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012027402

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 13640674

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112012027402

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012027402

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121025