WO2011134295A1 - 一种收敛二层组播网络的方法及设备 - Google Patents

一种收敛二层组播网络的方法及设备 Download PDF

Info

Publication number
WO2011134295A1
WO2011134295A1 PCT/CN2011/070680 CN2011070680W WO2011134295A1 WO 2011134295 A1 WO2011134295 A1 WO 2011134295A1 CN 2011070680 W CN2011070680 W CN 2011070680W WO 2011134295 A1 WO2011134295 A1 WO 2011134295A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
query response
query
multicast
network
Prior art date
Application number
PCT/CN2011/070680
Other languages
English (en)
French (fr)
Inventor
丁汉成
李文涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP11774286A priority Critical patent/EP2541852A4/en
Publication of WO2011134295A1 publication Critical patent/WO2011134295A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/16Multipoint routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/66Layer 2 routing, e.g. in Ethernet based MAN's

Definitions

  • a Layer 2 multicast network is an access layer network that is set up between a Layer 3 network and a user host.
  • the host is connected to a Layer 2 multicast network and communicates with the Layer 3 network through a Layer 2 multicast network.
  • the user host can request a channel on demand by on-demand.
  • the Layer 2 multicast network includes switches A, B, and (:, link blocking between switches A and B, the link between switches A and C, and between switches B and C.
  • the links are all connected, user hosts 1 and 2 are both connected to switch B, and user host 3 is attached to switch C.
  • user host 3 orders a certain channel, and user host 3 multicasts to the Layer 2 multicast network.
  • the request, the on-demand request carries the on-demand channel information; after receiving the on-demand request, the switch C stores the forwarding port port1 and the carried channel information of the on-demand request in its own layer 2 multicast forwarding table, and then from the routing port.
  • the port 3 multicast is sent to the upstream device; the switch A receives the request for the on-demand, stores the forwarding port port2 that receives the request for the on-demand, and the carried channel information in its own Layer 2 multicast forwarding table, and requests the on-demand from the routing port port3.
  • the multicast is sent to the Layer 3 network.
  • the Layer 3 network multicasts the data packet corresponding to the channel information to the Layer 2 multicast network.
  • the switch A searches for the forwarding port port2 corresponding to the channel information from the Layer 2 multicast forwarding table, and forwards it out from the port 2; when the switch C receives the data packet, the Layer 2 multicast forwarding table is obtained.
  • the forwarding port port1 corresponding to the channel information is searched and forwarded from the port1 to the user host 3.
  • the user hosts 1 and 2 respectively order the channels they need in the same manner.
  • the Layer 3 network sends query commands to the Layer 2 multicast network every other period.
  • the Layer 2 multicast network then multicasts the multicast forwarding.
  • the user host randomly selects a time to send a query response to the Layer 2 multicast network multicast in a preset time, and the query response carries the channel information of the respective on-demand;
  • each device in the Layer 2 multicast network receives the forwarding port of the query response and the frequency of the query response.
  • the track information is re-stored in the Layer 2 multicast forwarding table, thus maintaining the survival state of the user host.
  • the method for the convergence of the Layer 2 multicast network is as follows:
  • the Layer 2 multicast network generates a query command, and multicasts the query command to each user host. After receiving the query command, each user host is preset. The time interval is randomly selected to send a query response carrying the channel information to the multicast of the Layer 2 multicast network. After receiving the query response, each device in the Layer 2 multicast network carries the forwarding port and the query response of the query response. The channel information is stored in the Layer 2 multicast forwarding table. This achieves convergence of the Layer 2 multicast network.
  • each user host needs to reply to the query response to converge the entire Layer 2 multicast network.
  • Each user host randomly selects a time to send a query response within a preset time. In the worst case, it is necessary to wait for a preset time to converge the entire Layer 2 multicast network. Therefore, the convergence speed of the Layer 2 multicast network is slow.
  • the present invention provides a method and device for converging a Layer 2 multicast network.
  • the technical solution is as follows:
  • a method for converging a Layer 2 multicast network includes: if a device in a Layer 2 multicast network detects that a topology of the Layer 2 multicast network changes, the device
  • the query response is generated according to the Layer 2 multicast forwarding table of the user, and the query response carries the channel information that the user clicks on.
  • Receiving a query response sent by the downstream device storing the channel information of the user-on-demand carried in the received query response and the forwarding port receiving the received query response in the Layer 2 multicast forwarding table;
  • a device for converging a Layer 2 multicast network where the device includes:
  • a receiving module configured to receive a query command sent by the upstream device, and multicast the query command to the downstream device
  • a first generating module configured to generate a query response according to the layer 2 multicast forwarding table of the user, where the query response carries the channel information that the user clicks on
  • a storage module configured to receive a query response sent by the downstream device, and store, in the layer 2 multicast forwarding table, channel information of the user-on-demand channel carried in the received query response, and a forwarding port that receives the received query response
  • a sending module configured to send the generated query response and the received query response to the upstream device.
  • the device on the Layer 2 multicast network immediately generates and sends an inquiry response carrying the channel information to the upstream device and multicasts the packet to the downstream device.
  • the device in the Layer 2 multicast network receives the query response, it stores the channel information carried in the query response and the forwarding port that receives the query response, thereby implementing convergence of the Layer 2 multicast network.
  • the convergence of the Layer 2 multicast network is accelerated by not waiting for the user host to send a query response to the convergence of the Layer 2 multicast network.
  • FIG. 2 is a flowchart of a method for converging a Layer 2 multicast network according to Embodiment 1 of the present invention
  • FIG. 3 is a flowchart of a method for converging a layer 2 multicast network according to Embodiment 2 of the present invention
  • Embodiment 4 is a network architecture of an application of Embodiment 3 of the present invention.
  • FIG. 5 is a flowchart of a method for converging a layer 2 multicast network according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic diagram of a device for converging a Layer 2 multicast network according to Embodiment 4 of the present invention.
  • Specific Pulmonary Formula The specific implementation process of the present invention will be exemplified below by way of examples. It is apparent that the embodiments described below are a part of the embodiments of the present invention, and not all of them. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • a method for converging a Layer 2 multicast network converges on the Layer 2 multicast network. As shown in Figure 2, the method includes:
  • Step 101 The device in the Layer 2 multicast network receives the query command, and multicasts the query command to the downstream device.
  • Step 102 Generate a query response according to the Layer 2 multicast forwarding table of the user, where the query response carries the channel information requested by the user.
  • Step 103 Receive a query response sent by the downstream device, and store, in the Layer 2 multicast forwarding table, the channel information of the user-on-demand carried in the received query response and the forwarding port that receives the received query response.
  • Step 104 Send the generated query response and the received query response to the upstream device.
  • the query response that carries the channel information is generated and sent to the upstream device immediately after receiving the query command.
  • the multicast query is sent to the downstream device, and when receiving the query response from the downstream device, the channel information carried by the query response and the forwarding port receiving the query response are stored, thereby implementing convergence of the Layer 2 multicast network.
  • the convergence of the Layer 2 multicast network is accelerated, so that the convergence of the Layer 2 multicast network is accelerated.
  • the embodiment of the present invention provides a method for converging the Layer 2 multicast network to converge the Layer 2 multicast network. As shown in Figure 3, the method includes:
  • Step 201 When the device in the Layer 2 multicast network detects that the topology of the Layer 2 multicast network changes, each device in the Layer 2 multicast network sets itself from the normal state to the proxy state.
  • Each device in the Layer 2 multicast network calculates the topology of the Layer 2 multicast network in real time. Before the topology of the Layer 2 multicast network changes, each device in the Layer 2 multicast network is in the network. Normal state; In the normal state, after receiving the query response, each device in the Layer 2 multicast network sends the received query response from its stored routing port. When receiving the query command, it will receive the query. The command is multicasted and sent out from the forwarding port of its own storage.
  • first device and the second device are two devices in the Layer 2 multicast network, and one or more user hosts can be respectively connected to the first device and the second device, and the first device is directly connected to the Layer 3 network.
  • Step 202 When the first device connected to the Layer 3 network sets itself to the proxy state, the first device immediately generates a query command, and multicasts the generated query command to the downstream device. Specifically, the first device generates a query command, and reads all the forwarding ports stored by the first device, and multicasts the generated query command from each forwarding port to the downstream device.
  • the query command generated by the first device in the Layer 2 multicast network is the same as the query command sent by the Layer 3 network multicast. All the devices directly connected to the Layer 3 network in the Layer 2 multicast network are the same as the first device. After setting the normal state to the proxy state, the query command is generated and multicasted to the downstream device.
  • the downstream device of the first device may be a user host that is connected to the first device or a device in a Layer 2 multicast network that is directly connected to the forwarding port of the first device.
  • Step 203 The second device receives the query command from the upstream device, stores the routing port that receives the query command, and multicasts the query command to the downstream device from the forwarding port.
  • the second device receives the query command from the upstream device in the Layer 2 multicast network
  • the port that receives the query command is read, the port is used as a routing port, and the routing port is stored, and the storage port is read. All forwarding ports send multicast query commands from the read forwarding port to the downstream device.
  • the downstream device of the second device may be a device directly connected to the forwarding port of the second device in the Layer 2 multicast network or a user host connected to the second device.
  • Each device in the Layer 2 multicast network that is not directly connected to the Layer 3 network is the same as the second device.
  • the device After receiving the query command, the device stores the routing port that receives the query command and the forwarding port from its own storage.
  • the downstream device multicasts the query command.
  • Step 204 After receiving the query command, the second device immediately generates a query response, and sends the generated query response to the upstream device from the routing port that is stored by the second device, where the query response carries the channel information that the user clicks on. Specifically, After receiving the query command, the second device reads all the channel information of the user's on-demand from the stored Layer 2 multicast forwarding table, generates a query response, and the query response includes all the channel information read, and reads the storage. The routing port sends the generated query response from the read routing port to the upstream device.
  • the upstream device of the second device is a device directly connected to the routing port of the second device in the Layer 2 multicast network.
  • Each device in the Layer 2 multicast network that is not directly connected to the Layer 3 network is the same as the second device. After receiving the query command, it immediately generates a query response and sends a query response from the routing port to the upstream device. In addition, in the normal state, the second device does not automatically generate a query response.
  • Each device in the Layer 2 multicast network sets its own proxy status to a normal state after generating a query response and sending the generated query response from the routing port to the upstream device.
  • Each device in the Layer 2 multicast network maintains a Layer 2 multicast forwarding table.
  • the Layer 2 multicast forwarding table is used.
  • the correspondence between the channel information of the user on demand and the forwarding port is stored.
  • Step 205 The second device receives the query response sent by the downstream device, where the query response carries the channel information that the user clicks on, and stores the carried channel information and the forwarding port that receives the query response in the layer 2 multicast forwarding table, and Sending the query response multicast to the upstream device;
  • the second device receives the query response sent by the downstream device, reads the carried channel information from the query response, and reads the port that receives the query response, and uses the port as a forwarding port to read the channel information.
  • the forwarding port is stored in the Layer 2 multicast forwarding table as a new mapping relationship, and the query response is sent from the routing port to the upstream device.
  • the host that is connected to the second device randomly selects a time to send a query response to the multicast of the Layer 2 multicast network within a preset time.
  • the query response carries the channel information that the user clicks on.
  • Each device in the Layer 2 multicast network that is not directly connected to the Layer 3 network is the same as the second device.
  • the channel information that the user clicks on is read from the query response. And storing the forwarding port that receives the query response and the read channel information, and sending the query response to the upstream device from its own routing port.
  • Each device in the Layer 2 multicast network when receiving the query response, receives the query response and the channel information carried in the query response as a correspondence.
  • the relationship is stored in the Layer 2 multicast forwarding table. If the corresponding relationship exists in the Layer 2 multicast forwarding table, the corresponding relationship in the Layer 2 multicast forwarding table is directly overwritten.
  • a device in a Layer 2 multicast network stores a mapping relationship in its Layer 2 multicast forwarding table, it sets an aging time for the corresponding relationship. When the aging time overflows, the corresponding relationship is set. Remove from the Layer 2 multicast forwarding table.
  • the aging time is reset for the corresponding relationship. Therefore, if a corresponding relationship is maintained in the Layer 2 multicast forwarding table, the corresponding relationship is aged. Re-storage the corresponding relationship before the time has overflowed.
  • Step 206 After receiving the query response sent by the downstream device, the first device stores the forwarding port that receives the query response and the channel information carried in the query response, and sends the query response to the Layer 3 network.
  • the first device after receiving the query response sent by the downstream device, the first device reads the port that receives the query response, uses the port as a forwarding port, and reads the channel information carried by the received query response, and the channel information is used.
  • a corresponding relationship between the forwarding port and the forwarding port is stored in the Layer 2 multicast forwarding table, and the routing port stored by itself is read, and the query response is sent from the read routing port to the Layer 3 network.
  • the device directly connected to the Layer 3 network is the same as the first device.
  • the device After receiving the query response, the device stores the channel information carried in the query response and the forwarding port that receives the query response. The query response is sent to the Layer 3 network.
  • the Layer 3 network When the topology of the Layer 2 multicast network changes, the Layer 3 network periodically sends a query command to the Layer 2 multicast network.
  • steps 207 and 208 are performed as the first device.
  • Step 207 The first device receives the query command from the Layer 3 network, stores the routing port that receives the query command, and multicasts the query command to the downstream device.
  • the first device after receiving the query command from the Layer 3 network, the first device reads the port that receives the query command, uses the port as a routing port, and stores the routing port, and multicasts the query command from the forwarding port stored by itself. Send to downstream devices.
  • the device in the normal state of the Layer 2 multicast network receives the query command again, it stores the routing port that receives the query command and multicasts the query command from the forwarding port.
  • Step 208 After receiving the query command, the first device immediately generates a query response, and sends the query response to the Layer 3 network from the routing port that is stored by the first device, where the query response carries the channel information that the user clicks on;
  • the first device reads the channel information of the user's on-demand from the Layer 2 multicast forwarding table, and generates a query response, where the query response carries the read channel information, reads the stored routing port, and reads the route from the read The port sends the generated query response to the Layer 3 network.
  • the first device After the first device multicasts the generated query response to the Layer 3 network, it also sets itself to the normal state by the proxy state.
  • the Layer 2 multicast network When a device in the Layer 2 multicast network generates a query response and sends a query response, the Layer 2 multicast network is converged, so that the Layer 2 multicast network receives the Layer 3 multicast transmission. After the data packet, each device in the Layer 2 multicast network can forward the data packet received by itself to the user host according to the updated Layer 2 multicast forwarding table.
  • the first device when the first device sets itself to the proxy state from the normal state, the first device may not generate the query command, but waits to receive the query command sent by the layer 3 network multicast, and the query is
  • the multicast device is configured to send the downstream device, and then the first device generates a query response carrying the channel information, and sends the query response to the Layer 3 network.
  • the second device When receiving the query command, the second device multicasts the query command to the downstream device, and then generates a query response carrying the channel information, and sends the query response to the upstream device.
  • the generated query response may also be set in each device in the Layer 2 multicast network.
  • the proxy state when each device in the Layer 2 multicast network generates a query response and multicasts it from the routing port after receiving the query command, the number of times the generated query response is incremented by one, and The value of the number of times the query response has been generated is determined to be a preset number of times. If yes, the device is set to the normal state by the agent state, so that the device stops generating the query response. Since the topology of the Layer 2 multicast network may change continuously, each device is configured to generate and send multiple query responses, so that each device is in a proxy state for a period of time, thereby improving the convergence speed of the entire Layer 2 multicast network. .
  • the first device and the second device may both be switches, and the query response may be a Report message, and the query command may be a Query message.
  • the device when each device in the Layer 2 multicast network detects that the topology of the Layer 2 multicast network changes, the device itself is set to the proxy state, and the device directly connected to the Layer 3 network is immediately generated. Querying the command and multicasting the query command to the downstream device; when the device in the Layer 2 multicast network receives the query command, it immediately generates a query response carrying the channel information and sends it out; when each layer in the Layer 2 multicast network When receiving the query response, the device stores the channel information carried in the query response and the forwarding port that receives the query response, so that each device in the Layer 2 multicast network does not need to wait for the user host to send a query response, thus speeding up The speed of converging a Layer 2 multicast network.
  • switch B includes routing ports port3 and port4, forwarding ports port l and port 2 And the Layer 2 multicast forwarding table shown in Table 1;
  • switch C includes the routing port port3, the forwarding port port2 and the port l, and the Layer 2 multicast forwarding table as shown in Table 2;
  • the switch A includes the routing port port3 and the forwarding port.
  • the topology change of the Layer 2 multicast network is as follows:
  • the link between Switch A and C fails, and between Switch A and B.
  • the link is turned on, so that the network architecture shown in FIG. 1 becomes the network architecture as shown in FIG. 4, and the method for converging the layer 2 multicast network provided by the embodiment of the present invention is required to use the second layer multicast.
  • the network converges.
  • the method specifically includes:
  • Step 301 When switches A, B, and C in the Layer 2 multicast network detect that the topology of the Layer 2 multicast network changes, set the normal state to the proxy state.
  • Step 302 The switch A directly connected to the Layer 3 network generates a query command, obtains the forwarding port port l of the storage port, and multicasts the generated query command from the forwarding port port l to the downstream device.
  • Switch B is a downstream device of switch A. In addition, because the link between switch A and C fails, the forwarding port port2 in switch A and the routing port port3 in switch C are unavailable.
  • Step 303 After receiving the query command from the port port 4, the switch B reads the port port 4 that receives the query command, uses it as a routing port, and stores the routing port.
  • routing port port4 is already stored in switch B, the stored routing port port4 will be overwritten when the routing port port4 is re-stored in this step.
  • Step 304 The switch B reads the forwarding ports portl, port2, and port3 of the storage port, and sends the query command to the downstream device from the forwarding ports port l, port 2, and port 3.
  • the downstream device of the switching B includes the user hosts 1 and 2 and the switch C.
  • the forwarding ports port l and port 2 are respectively connected to the user host 1 and the user host 2, so the user host 1 and the user host 2 receive the query command;
  • Port 3 is connected to switch C, so switch C receives the query command.
  • the port port3 is set as the forwarding port by the routing port.
  • Step 305 The switch B acquires the channel information G1 and G2, and generates a query response carrying the channel information G1 and G2, and Sent from the routing port port 4 to the upstream device;
  • the switch B reads the channel information G1 and G2 of the user's on-demand channel from the Layer 2 multicast forwarding table, as shown in Table 1, to generate a query response, where the query response carries the channel information G1 and G2,
  • the routing port port4 is read, and the generated query response is sent from the routing port port4 to the upstream device.
  • the upstream device of switch B is switch A.
  • switch C When switch C receives the query command, it performs the same operation as switch B.
  • the query response generated by switch C includes channel information Gl, G2, and G3.
  • the user host 1 After receiving the query command, the user host 1 randomly selects a time to send a query response carrying the channel information G1 to the Layer 2 multicast network within a preset time; when the user host 2 receives the query command, at a preset time A query time response carrying the channel information G2 is randomly sent to the Layer 2 multicast network.
  • switches B and C When switches B and C generate and send query responses, they are each set to the normal state by the agent status.
  • Step 306 The switch B receives the query response of the downstream device switch C, and stores the channel information G1, G2, and G3 carried in the query response, and the forwarding port Port3 that receives the query response, and sends the query response to the upstream device.
  • the switch B receives the query response sent by the switch C from the port port 3, reads the port port 3, and uses it as a forwarding port, and stores the channel information G1, G2, and G3 carried in the query response and the forwarding port port3 in the second.
  • the query response is sent from the routing port port4 to the upstream device.
  • Step 307 The switch A receives the query response of the downstream device, stores the channel information G1 and G2 carried by the query response, and the forwarding port port 1, and sends the query response from the routing port to the Layer 3 network.
  • the switch A receives the query response from the port port1, where the query response carries the channel information G1 and G2,
  • the port port1 is used as a forwarding port, and the forwarding port port1 and the channel information G1 are used as a corresponding relationship, and the forwarding port port 1 and the channel information G2 are stored in a layer 2 multicast forwarding table as a corresponding relationship, and the routing port port 3 is used.
  • the query response is sent to the Layer 3 network.
  • the switch A After the switch A receives the query response again, the switch responds to the received query response in the same manner as described above, and the maintained Layer 2 multicast forwarding table is as shown in Table 5.
  • the Layer 3 network periodically sends a query command to the Layer 2 multicast network multicast. After Switch A receives the query command, the operations of Steps 308 and 309 are performed.
  • Step 308 Switch A receives the query command from the Layer 3 network from port port 3, uses port 3 as the routing port, stores the routing port port 3, reads the forwarding port port l stored by itself, and multicasts the query command from the forwarding port port1. Give downstream equipment;
  • Step 309 The switch A reads the channel information G1, G2, and G3 of the user's on-demand from the Layer 2 multicast forwarding table shown in Table 5, and generates a query response, where the query response includes channel information G1, G2, and G3, and It is sent from the routing port port3 to the Layer 3 network.
  • switch A When switch A sends the generated query response from the routing port port3 to the Layer 3 network, it sets itself to the normal state.
  • switches B and C After switches B and C receive the query command again, because switches B and C are in the normal state, switches B and C only store the routing port that receives the query command, and the query command group is sent from its own forwarding port. Broadcast to downstream devices.
  • each of the switches A, B, and C in the Layer 2 multicast network detects that the topology of the Layer 2 multicast network changes, it sets itself to the proxy state, directly to the Layer 3 network.
  • the connected switch A immediately generates a query command and multicasts the query command to the downstream device.
  • the switch B and C receive the query command, the query response carrying the channel information is immediately generated and sent to the switch A.
  • the switch, B When receiving the query response, the C stores the channel information carried in the query response and the forwarding port that receives the query response. Therefore, the Layer 2 multicast network does not need to wait for the user host to send a query response, thus speeding up the convergence. The speed of the layer multicast network.
  • an embodiment of the present invention provides a device for converging a Layer 2 multicast network, including: a receiving module 401, configured to receive a query command sent by an upstream device, and send the query command to a downstream device;
  • the first generation module 402 is configured to generate a query response according to the layer 2 multicast forwarding table of the user, where the query response carries the channel information that the user clicks on;
  • the storage module 403 is configured to receive a query response sent by the downstream device, and store, in the layer 2 multicast forwarding table, the channel information of the user-on-demand carried in the received query response and the forwarding port that receives the received query response.
  • the sending module 404 is configured to send the generated query response and the received query response to the upstream device, where the device is directly connected to the Layer 3 network,
  • the receiving module 401 is specifically configured to receive a query command sent by the Layer 3 network multicast, and send the query command to the downstream device.
  • Step by step the device also includes:
  • a second generating module configured to generate a query command, and send the generated query command to the downstream device; wherein, when the device is not directly connected to the Layer 3 network,
  • the receiving module 401 is configured to receive a query command sent by the upstream device in the Layer 2 network, and send the received query command to the downstream device.
  • the first generation module 402 specifically includes:
  • An obtaining unit configured to obtain channel information of a user on-demand from a layer 2 multicast forwarding table
  • a generating unit configured to generate a query response that carries the acquired channel information
  • the device further includes:
  • the cumulative module is configured to accumulate the number of times the query response is generated, and determine whether the value of the accumulated number of times reaches a preset number of times, and if yes, stop generating the query response;
  • the device can be a switch.
  • the device in the Layer 2 multicast network immediately generates and sends a query response carrying the channel information to the upstream device when the query command is received. And transmitting a query command to the downstream device.
  • the device in the Layer 2 multicast network receives the query response, the device stores the channel information carried by the query response and the forwarding port that receives the query response, thereby implementing convergence of the Layer 2 multicast network.
  • the convergence of the Layer 2 multicast network is implemented by waiting for the host host to send a query response to the multicast. Speed up the convergence of the Layer 2 multicast network.
  • the present invention can be implemented by means of software plus a necessary hardware platform, and of course, all can be implemented by hardware, but in many cases, the former is better.
  • Implementation Based on such understanding, all or part of the technical solution of the present invention contributing to the background art may be embodied in the form of a software product that can be used to perform the above-described method flow.
  • the computer software product can be stored in a storage medium, such as a ROM/RAM, a magnetic disk, an optical disk, etc., including instructions for causing a computer device (which can be a personal computer, a server, or a network device, etc.) to perform various embodiments of the present invention.

Description

一种收敛二层组播网络的 ¾r¾及设备
本申请要求于 2010年 4月 29日提交中国专利局、 申请号为 201010161816. 4、发明 名称为 "一种收敛二层组播网络的方法及设备"的中国专利申请的优先权, 其全部内容 通过引用结合在本申请中。 技术领域 本发明涉及通信领域, 特别涉及一种收敛二层组播网络的方法及设备。 背景技术 二层组播网络为在三层网络与用户主机之间设置的接入层网络,用户主机挂在二层 组播网络下, 通过二层组播网络与三层网络通信。 用户主机可以通过点播请求点播某个 频道。
例如图 1所示的网络架构, 二层组播网络包括交换机 A、 B和 (:, 交换机 A和 B之间 的链路阻塞, 交换机 A和 C之间的链路以及交换机 B和 C之间的链路都导通, 用户主机 1和 2都挂在交换机 B上,用户主机 3挂在交换机 C上。假设用户主机 3点播某个频道, 用户主机 3向二层组播网络组播发送点播请求, 该点播请求中携带点播的频道信息; 交 换机 C接收该点播请求后,将接收该点播请求的转发端口 portl和携带的频道信息存储 在自身的二层组播转发表中, 再从路由端口 port3组播发送给上游设备; 交换机 A接收 该点播请求,将接收该点播请求的转发端口 port2和携带的频道信息存储在自身的二层 组播转发表中, 并从路由端口 port3将该点播请求组播发送到三层网络; 三层网络接收 该点播请求后, 向二层组播网络组播发送该频道信息对应的数据报文, 当交换机 A接收 该数据报文后, 从二层组播转发表中查找该频道信息对应的转发端口 port2, 从 port2 转发出去; 当交换机 C接收到该数据报文, 从二层组播转发表中查找该频道信息对应的 转发端口 portl, 从 portl转发给用户主机 3。 其中, 用户主机 1和 2分别按相同的方 法点播各自需要的频道。
在交换机的二层组播转发表中, 每条对应关系只能存活一段时间, 所以三层网络每 隔一个周期向二层组播网络组播发送查询命令, 二层组播网络再组播发送给所有用户主 机, 当用户主机接收该查询命令后, 分别在预设的时间内随机选择一个时间向二层组播 网络组播发送查询响应, 且该查询响应中携带各自点播的频道信息; 当二层组播网络中 的每个设备接收到查询响应后, 分别将接收查询响应的转发端口和该查询响应携带的频 道信息重新存储在二层组播转发表中, 如此实现维护用户主机的存活状态。
如果二层组播网络的拓扑结构发生变化, 例如某条链路发故障, 则需要对二层组播 网络进行收敛, 才能使二层组播网络正常转发数据报文。 目前采用的收敛二层组播网络 的方法具体为:二层组播网络生成查询命令,并将该查询命令组播发送给每个用户主机, 每个用户主机接收到查询命令后,在预设的时间内随机选择一个时间向二层组播网络组 播发送携带频道信息的查询响应, 二层组播网络中的每个设备接收到查询响应后, 将接 收查询响应的转发端口和查询响应携带的频道信息存储在二层组播转发表中。如此实现 收敛二层组播网络。
在实现本发明的过程中, 发明人发现现有技术至少存在以下问题:
当二层组播网络的拓扑结构发生变化时, 需要每个用户主机回复查询响应后才能收 敛整个二层组播网络, 而每个用户主机在预设的时间内随机选择一个时间发送查询响 应, 在最坏的情况下, 还需要等待预设的时间才能收敛整个二层组播网络, 如此二层组 播网络的收敛速度较慢。 发明内容
为了能够加快收敛二层组播网络的速度,本发明提供了一种收敛二层组播网络的方 法及设备。 所述技术方案如下:
一种收敛二层组播网络的方法, 所述方法包括: 如果二层组播网络中的设备检测出 所述二层组播网络的拓扑结构发生变化时, 则所述设备
接收上游设备发送的查询命令, 将所述查询命令组播发送给下游设备;
根据自身的二层组播转发表生成查询响应,所述查询响应中携带用户点播的频道信 自 .
接收下游设备发送的查询响应,在所述二层组播转发表中存储所述接收的查询响应 中携带的用户点播的频道信息和接收所述接收的查询响应的转发端口;
将所述生成的查询响应和所述接收的查询响应发送给所述上游设备。
一种收敛二层组播网络的设备, 其特征在于, 所述设备包括:
接收模块, 用于接收上游设备发送的查询命令, 将所述查询命令组播发送给下游设 备;
第一生成模块, 用于根据自身的二层组播转发表生成查询响应, 所述查询响应中携 带用户点播的频道信息; 存储模块, 用于接收下游设备发送的查询响应, 在所述二层组播转发表中存储所述 接收的查询响应中携带的用户点播的频道信息和接收所述接收的查询响应的转发端口; 发送模块, 用于将所述生成的查询响应和所述接收的查询响应发送给所述上游设 备。
如果检测出二层组播网络的拓扑结构发生变化, 则当接收到查询命令时, 二层组播 网络的设备立即生成并向上游设备发送携带频道信息的查询响应, 以及向下游设备组播 发送查询命令; 当二层组播网络中的设备接收到查询响应时, 存储查询响应携带的频道 信息和接收查询响应的转发端口, 从而实现收敛二层组播网络。 其中, 由于不需要等待 用户主机组播发送查询响应来实现收敛二层组播网络, 从而加快收敛二层组播网络的速 度。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施例或现有 技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1是现有技术提供的一种网络架构;
图 2是本发明实施例 1提供的一种收敛二层组播网络的方法流程图;
图 3是本发明实施例 2提供的一种收敛二层组播网络的方法流程图;
图 4是本发明实施例 3应用的一种网络架构;
图 5是本发明实施例 3提供的一种收敛二层组播网络的方法流程图;
图 6是本发明实施例 4提供的一种收敛二层组播网络的设备示意图。 具体实肺式 下面通过实施例对本发明的具体实现过程进行举例说明。 显然, 下面所描述的实施 例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通 技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的 范围。
实施例 1
如果二层组播网络中的设备检测出二层组播网络的拓扑结构发生变化时, 则利用本 发明实施例 1提供的一种收敛二层组播网络的方法对该二层组播网络进行收敛。如图 2所 示, 该方法包括:
步骤 101 : 二层组播网络中的设备接收查询命令, 将该查询命令组播发送给下游设 备;
步骤 102 : 根据自身的二层组播转发表生成查询响应, 其中, 该查询响应中携带用 户点播的频道信息;
步骤 103 : 接收下游设备发送的查询响应, 在二层组播转发表中存储接收的查询响 应中携带的用户点播的频道信息和接收该接收的查询响应的转发端口;
步骤 104: 将生成的查询响应和接收的查询响应发送给上游设备。
在本发明实施例中, 如果二层组播网络中的设备检测出二层组播网络的拓扑结构发 生变化,则在接收到查询命令时,立即生成并向上游设备发送携带频道信息的查询响应, 将收到的查询命令组播发送给下游设备, 并在接收到下游设备的查询响应时, 存储查询 响应携带的频道信息和接收查询响应的转发端口, 从而实现收敛二层组播网络。 其中, 由于不需要等待用户主机组播发送查询响应来实现收敛二层组播网络, 从而加快收敛二 层组播网络的速度。 实施例 2
当二层组播网络的拓扑结构发生变化时,利用本发明实施例提供了一种收敛二层组 播网络的方法对该二层组播网络进行收敛。 如图 3所示, 该方法包括:
步骤 201 : 当二层组播网络中的设备检测出二层组播网络的拓扑结构发生变化时, 二层组播网络中的每个设备将自身由普通状态设置成代理状态;
其中, 二层组播网络中的每个设备都在实时计算二层组播网络的拓扑结构, 在二层 组播网络的拓扑结构发生变化之前, 二层组播网络中的每个设备均处于普通状态; 在普 通状态下, 二层组播网络中的每个设备接收到查询响应后, 将接收的查询响应从自身存 储的路由端口处发送出去, 当接收到查询命令时, 将接收的查询命令从自身存储的转发 端口处组播发送出去。
假设第一设备与第二设备是二层组播网络中的两个设备,在第一设备和第二设备上 可以分别挂一个或多个用户主机, 且第一设备直接与三层网络相连。
步骤 202 : 当连接三层网络的第一设备将自身设置成代理状态时, 第一设备立即生 成查询命令, 并向下游设备组播发送生成的查询命令; 具体地, 第一设备生成查询命令, 并读取自身存储的所有转发端口, 从每个转发端 口处将生成的查询命令组播发送给下游设备。
其中, 二层组播网络中的第一设备生成的查询命令与三层网络组播发送的查询命令 相同。 且在二层组播网络中所有直接与三层网络相连的设备都和第一设备一样, 在将自 身由普通状态设置成代理状态后, 生成查询命令并将其组播发送给下游设备。 另外, 第 一设备的下游设备可以为挂在第一设备上的用户主机或直接与第一设备的转发端口相 连的二层组播网络中的设备。
步骤 203 : 第二设备接收来自上游设备的查询命令, 存储接收查询命令的路由端口, 从转发端口处将该查询命令组播发送给下游设备;
具体地, 当第二设备接收来自二层组播网络中的上游设备的查询命令时, 读取接收 该查询命令的端口, 将该端口作为路由端口, 并存储该路由端口, 读取自身存储的所有 转发端口, 将接收的查询命令从读取的转发端口处组播发送给下游设备。
其中,第二设备的下游设备可以为二层组播网络中的直接与第二设备的转发端口相 连的设备或挂在第二设备上的用户主机。
其中, 二层组播网络中的每个非直接与三层网络相连的设备都与第二设备一样, 在 接收到查询命令后,存储接收查询命令的路由端口和从自身存储的转发端口处向下游设 备组播发送查询命令。
步骤 204 : 第二设备接收该查询命令后, 立即生成查询响应, 将从自身存储的路由 端口处向上游设备发送生成的查询响应,其中,该查询响应中携带用户点播的频道信息; 具体地, 第二设备接收该查询命令后, 从自身存储的二层组播转发表中读取用户点 播的所有频道信息, 生成查询响应, 且该查询响应中包含读取的所有频道信息, 读取自 身存储的路由端口, 将生成的查询响应从读取的路由端口发送给上游设备。
其中,第二设备的上游设备为二层组播网络中直接与第二设备的路由端口相连的设 备。
其中, 二层组播网络中的每个非直接与三层网络相连的设备都与第二设备一样, 在 接收到查询命令后,立即生成查询响应,并从路由端口发送查询响应给上游设备。另外, 在普通状态下, 第二设备不会自动生成查询响应。
其中, 二层组播网络中的每个设备在生成查询响应并从路由端口将生成的查询响应 发送给上游设备后, 分别将自身由代理状态设置成普通状态。
其中, 二层组播网络中的每个设备都维护一个二层组播转发表, 该二层组播转发表 存储用户点播的频道信息与转发端口的对应关系。
步骤 205 : 第二设备接收下游设备发送的查询响应, 其中, 该查询响应中携带用户 点播的频道信息,将携带的频道信息与接收查询响应的转发端口存储在二层组播转发表 中, 并将该查询响应组播发送给上游设备;
具体地, 第二设备接收来自下游设备发送的查询响应, 从该查询响应中读取携带的 频道信息, 以及读取接收该查询响应的端口, 将该端口作为转发端口, 将读取的频道信 息与读取的转发端口作为一条新对应关系存储在二层组播转发表中, 并从自身的路由端 口将查询响应发送给上游设备。
其中, 在接收到第二设备组播发送的查询命令时, 挂在第二设备上的每个用户主机 都在预设的时间内随机选择一个时间向二层组播网络组播发送查询响应,且该查询响应 携带用户点播的频道信息。
其中, 二层组播网络中的每个非直接与三层网络相连的设备都与第二设备一样, 当 接收到下游设备发送的查询响应时, 从该查询响应中读取用户点播的频道信息, 存储接 收该查询响应的转发端口和读取的频道信息, 并从自身的路由端口处将该查询响应发送 给上游设备。
其中, 无论在普通状态下, 还是在代理状态下, 二层组播网络中的每个设备在接收 到查询响应时, 都将接收查询响应的转发端口和查询响应中携带的频道信息作为一条对 应关系存储在二层组播转发表中, 如果二层组播转发表中已存在该条对应关系, 则直接 覆盖二层组播转发表中已存在的该条对应关系。二层组播网络中的每个设备在将一条对 应关系存储在自身的二层组播转发表中时, 为该条对应关系设置一个老化时间, 当老化 时间溢出时, 则将该条对应关系从二层组播转发表中删除。 由于每次向二层组播转发表 存储一条对应关系时, 都会为该条对应关系重新设置老化时间, 所以如果在二层组播转 发表中维护某条对应关系, 在该条对应关系的老化时间未溢出之前, 重新存储该条对应 关系。
步骤 206 : 第一设备接收来自下游设备发送的查询响应后, 存储接收该查询响应的 转发端口和该查询响应中携带的频道信息, 并将该查询响应发送给三层网络中;
具体地, 第一设备接收来自下游设备发送的查询响应后, 读取接收该查询响应的端 口, 将该端口作为转发端口, 从接收的查询响应中读取其携带的频道信息, 将该频道信 息和该转发端口的作为一条对应关系并存储在二层组播转发表中,读取自身存储的路由 端口, 从读取的路由端口处发送该查询响应给三层网络。 其中, 在二层组播网络中, 直接与三层网络相连的设备都与第一设备一样, 当接收 到查询响应后, 存储查询响应中携带的频道信息以及接收查询响应的转发端口, 并将查 询响应发送到三层网络中。
其中, 当二层组播网络的拓扑结构发生变化时, 三层网络还是周期性的组播发送查 询命令给二层组播网络。 在二层组播网络中, 对于直接与三层网络相连的设备, 当这些 设备接收到来自三层网络的查询命令, 都同第一设备一样执行步骤 207和 208。
步骤 207 : 第一设备接收来自三层网络的查询命令, 存储接收查询命令的路由端口, 并将该查询命令组播发送给下游设备;
具体地, 第一设备接收来自三层网络的查询命令后, 读取接收该查询命令的端口, 将该端口作为路由端口, 并存储该路由端口, 从自身存储的转发端口中将查询命令组播 发送给下游设备。
其中, 二层组播网络中处于普通状态下的设备如果再次接收到查询命令, 则存储接 收查询命令的路由端口并从转发端口组播发送查询命令。
步骤 208 : 第一设备接收该查询命令后, 立即生成查询响应, 从自身存储的路由端 口将查询响应发送给三层网络, 其中, 该查询响应携带用户点播的频道信息;
具体地, 第一设备从二层组播转发表中读取用户点播的频道信息, 生成查询响应, 该查询响应中携带读取的频道信息, 读取自身存储的路由端口, 从读取的路由端口发送 生成的查询响应给三层网络。
其中, 当第一设备组播发送生成的查询响应给三层网络后, 还将自身由代理状态设 置成普通状态。
其中, 当二层组播网络中的每个设备都生成查询响应, 并将查询响应发送出去时, 就实现了收敛二层组播网络, 如此当二层组播网络接收三层网络组播发送的数据报文 后, 二层组播网络中的每个设备就可以按自身更新后的二层组播转发表将自身接收的数 据报文转发给用户主机。
其中, 在本实施例中, 当第一设备将自身由普通状态设置成代理状态时, 第一设备 可以不生成查询命令, 而是等待接收三层网络组播发送的查询命令, 并将该查询命令组 播发送下游设备, 然后第一设备再生成携带频道信息的查询响应, 并发送给三层网络。 第二设备当接收到查询命令时, 将该查询命令组播发送给下游设备, 然后再生成携带频 道信息的查询响应, 并发送给上游设备。
其中, 在本实施例中, 还可以在二层组播网络中的每个设备中设置已生成查询响应 的次数, 其中, 当每个设备检测出二层组播网络的拓扑结构发生变化时, 分别将各自的 已生成查询响应的次数的初值设为 0。 在代理状态下, 当二层组播网络中的每个设备在 每次接收到查询命令后, 生成查询响应并从路由端口组播发送出去时, 同时将已生成查 询响应的次数加 1, 并判断已生成查询响应的次数的值是否达到预设的次数, 如果是, 则将该设备由代理状态设置成普通状态, 使该设备停止继续生成查询响应。 由于二层组 播网络的拓扑结构可能持续变化, 所以设置每个设备生成并发送多次查询响应, 使得每 个设备在一段时间内处于代理状态, 从而能够提高整个二层组播网络的收敛速度。
其中, 在本实例中, 第一设备和第二设备可以都为交换机, 查询响应可以为 Report 报文, 查询命令可以为 Query报文。
在本发明实施例中, 当二层组播网络中的每个设备检测出二层组播网络的拓扑结构 发生变化时, 分别将自身设置成代理状态, 直接与三层网络相连的设备立即生成查询命 令并向下游设备组播发送该查询命令; 当二层组播网络中的设备接收到该查询命令时, 立即生成携带频道信息的查询响应并发送出去; 当二层组播网络中的每个设备接收到查 询响应时, 存储查询响应中携带的频道信息和接收该查询响应的转发端口, 如此, 使得 二层组播网络中的每个设备不需要等待用户主机发送查询响应, 如此, 加快了收敛二层 组播网络的速度。 实施例 3
在如图 1所示的网络架构中,在二层组播网络中,用户主机 1、 2和 3分别点播频道 Gl、 G2和 G3; 交换机 B包括路由端口 port3和 port4、 转发端口 port l和 port2以及如表 1所示的 二层组播转发表; 交换机 C包括路由端口 port3、 转发端口 port2和 port l以及如表 2所示 的二层组播转发表; 交换机 A包括路由端口 port3、 转发端口 port l和 port2以及如表 3所 示的二层组播转发表。 表 1
Figure imgf000010_0001
G2 port2
G3 portl
表 3
频道 转发端口
Gl port2
G2 port2
G3 port2
如果上述二层组播网络的拓扑结构发生变化, 假设, 上述二层组播网络的拓扑结构 发生的变化具体为: 交换机 A与 C之间的链路发生故障, 而交换机 A与 B之间的链路导通, 使得如图 1所示的网络架构变成如图 4所示的网络架构, 则需要利用本发明实施例提供的 一种收敛二层组播网络的方法对上述二层组播网络进行收敛。 如图 5所示, 该方法具体 包括:
步骤 301 : 当二层组播网络中的交换机 A、 B和 C检测出二层组播网络的拓扑结构发生 变化, 则分别将自身由普通状态设置成代理状态;
步骤 302: 直接与三层网络相连的交换机 A生成查询命令, 获取自身存储的转发端口 port l , 并从转发端口 port l处向下游设备组播发送生成的查询命令;
其中, 交换机 B为交换机 A的一个下游设备。 另外, 由于交换机 A与 C之间的链路发生 故障, 所以交换机 A中的转发端口 port2和交换机 C中的路由端口 port3不可用。
步骤 303 : 交换机 B从端口 port4处接收该查询命令后, 读取接收该查询命令的端口 port4, 将其作为路由端口, 并存储该路由端口;
其中, 由于交换机 B中已存储路由端口 port4, 则在本步骤重新存储路由端口 port4 时, 会覆盖已存储的路由端口 port4。
步骤 304: 交换机 B读取自身存储的转发端口 portl、 port2和 port3, 将该查询命令 从转发端口 port l、 port2和 port3组播发送给下游设备;
其中, 交换 B的下游设备包括用户主机 1和 2以及交换机 C; 转发端口 port l和 port2分 别与用户主机 1和用户主机 2相连, 因此用户主机 1和用户主机 2会接收到查询命令; 转发 端口 port3与交换机 C相连, 因此交换机 C会接收查询命令。
其中, 交换机 B当检测出交换机 A和 C之间的链路发生故障, 且发现交换机 C由上游设 备变为下游设备时, 将端口 port3由路由端口设置成转发端口。
步骤 305: 交换机 B获取频道信息 G1和 G2, 生成携带频道信息 Gl和 G2的查询响应, 并 从路由端口 port 4处发送给上游设备;
具体地, 交换机 B从自身存储的如表 1所示的二层组播转发表中读取用户点播的频道 信息 G1和 G2, 生成查询响应, 其中, 该查询响应中携带频道信息 G1和 G2, 读取路由端口 port4, 并从该路由端口 port4处向上游设备发送生成的查询响应。
其中, 交换机 B的上游设备为交换机 A。
其中, 当交换机 C接收到查询命令后, 与交换机 B执行相同的操作。 而交换机 C生成 的查询响应中包含频道信息 Gl、 G2和 G3。 当用户主机 1接收到查询命令后, 在预设的时 间内随机选择一个时间向二层组播网络发送携带频道信息 G1的查询响应; 当用户主机 2 接收到查询命令后,在预设的时间内随机选择一个时间向二层组播网络发送携带频道信 息 G2的查询响应。
其中, 当交换机 B和 C生成并发送查询响应后, 分别将各自由代理状态设置成普通状 态。
步骤 306: 交换机 B接收下游设备交换机 C的查询响应, 并存储该查询响应中携带的 频道信息 Gl、 G2和 G3以及接收该查询响应的转发端口 Port3, 将该查询响应发送给上游 设备;
具体地, 交换机 B从端口 port3接收来自交换机 C发送的查询响应, 读取端口 port3, 并将其作为转发端口, 将该查询响应中携带的频道信息 Gl、 G2和 G3以及转发端口 port3 存储在二层组播转发表中, 从路由端口 port4将该查询响应发送给上游设备。
其中, 当交换机 B接收到用户主机 1和用户主机 2的查询响应时, 分别执行相同的操 作。 此时, 在交换机 B中存储的二层组播转发表如表 4所示。 表 4
Figure imgf000012_0001
步骤 307: 交换机 A接收下游设备的查询响应, 存储该查询响应携带的频道信息 G1和 G2以及转发端口 port 1, 将该查询响应从路由端口发送给三层网络;
具体地, 交换机 A从端口 portl接收查询响应, 该查询响应中携带频道信息 G1和 G2, 将端口 portl作为转发端口,将转发端口 portl和频道信息 G1作为一条对应关系以及将转 发端口 port l和频道信息 G2作为一条对应关系存储在二层组播转发表中, 并从路由端口 port3将该查询响应发送到三层网络。
其中, 当交换机 A再次接收到查询响应后, 分别按上述相同的方法对接收的查询响 应进行操作, 并且维护的二层组播转发表如表 5所示。
Figure imgf000013_0001
Figure imgf000013_0002
其中, 由于三层网络周期性的向二层组播网络组播发送查询命令, 当交换机 A接收 查询命令后执行步骤 308和 309的操作。
步骤 308: 交换机 A从端口 port3接收来自三层网络的查询命令, 将 port3作为路由端 口, 存储路由端口 port3, 读取自身存储的转发端口 port l , 从转发端口 portl处将该查 询命令组播发送给下游设备;
步骤 309: 交换机 A从如表 5所示的二层组播转发表中读取用户点播的频道信息 Gl、 G2和 G3, 生成查询响应, 该查询响应中包括频道信息 Gl、 G2和 G3, 并从路由端口 port3 发送给三层网络。
其中, 当交换机 A从路由端口 port3处将生成的查询响应发送到三层网络后, 将自身 由代理状态设置成普通状态。
其中, 交换机 B和 C再接收到查询命令后, 由于交换机 B和 C已处于普通状态, 所以交 换机 B和 C只存储接收该查询命令的路由端口, 并从自身的转发端口处将该查询命令组播 发送给下游设备。
在本发明实施例中, 当二层组播网络中的每个交换机 A、 B、 C检测出二层组播网络 的拓扑结构发生变化时, 分别将自身设置成代理状态, 直接与三层网络相连的交换机 A 立即生成查询命令并组播发送该查询命令给下游设备; 当交换机 B和 C接收到该查询命令 时, 立即生成携带频道信息的查询响应并发送给交换机 A; 当交换机 、 B、 C接收到查询 响应时, 存储查询响应中携带的频道信息和接收该查询响应的转发端口, 如此, 使得二 层组播网络不需要再等待用户主机组播发送查询响应, 如此, 加快了收敛二层组播网络 的速度。 实施例 4
如图 6所示, 本发明实施例提供了一种收敛二层组播网络的设备, 包括: 接收模块 401, 用于接收上游设备发送的查询命令, 将该查询命令组播发送给下游 设备;
第一生成模块 402, 用于根据自身的二层组播转发表生成查询响应, 其中, 该查询 响应中携带用户点播的频道信息;
存储模块 403, 用于接收下游设备发送的查询响应, 在二层组播转发表中存储接收 的查询响应中携带的用户点播的频道信息和接收该接收的查询响应的转发端口;
发送模块 404, 用于将生成的查询响应和接收的查询响应发送给上游设备 其中, 当该设备直接与三层网络相连时,
接收模块 401, 具体用于接收三层网络组播发送的查询命令, 将该查询命令组播发 送给下游设备;
地一步地, 该设备还包括:
第二生成模块, 用于生成查询命令, 将生成的查询命令组播发送给下游设备; 其中, 当该设备非直接与三层网络相连时,
接收模块 401, 具体用于接收二层网络中的上游设备组播发送的查询命令, 将接收 的查询命令组播发送给下游设备;
其中, 第一生成模块 402具体包括:
获取单元, 用于从二层组播转发表中获取用户点播的频道信息;
生成单元, 用于生成携带获取的频道信息的查询响应;
进一步地, 该设备还包括:
累计模块, 用于累计生成查询响应的次数, 并判断累计的次数的值是否达到预设的 次数, 如果是, 则停止继续生成查询响应;
其中, 该设备可以是交换机。
在本发明实施例中, 如果检测出二层组播网络的拓扑结构发生变化, 则当接收到查 询命令时, 二层组播网络中的设备立即生成并向上游设备发送携带频道信息的查询响 应, 以及向下游设备组播发送查询命令; 当二层组播网络中的设备接收到查询响应时, 存储查询响应携带的频道信息和接收查询响应的转发端口, 从而实现收敛二层组播网 络。 其中, 由于不需要等待用户主机组播发送查询响应来实现收敛二层组播网络, 从而 加快了收敛二层组播网络的速度。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到本发明可借助软 件加必需的硬件平台的方式来实现, 当然也可以全部通过硬件来实施, 但很多情况下前 者是更佳的实施方式。 基于这样的理解, 本发明的技术方案对背景技术做出贡献的全部 或者部分可以以软件产品的形式体现出来,所述的软件产品在可以用于执行上述的方法 流程。 该计算机软件产品可以存储在存储介质中, 如 R0M/RAM、 磁碟、 光盘等, 包括若 干指令用以使得一台计算机设备 (可以是个人计算机, 服务器, 或者网络设备等)执行 本发明各个实施例或者实施例的某些部分所述的方法。
以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到的变化或替 换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应该以权利要求的保 护范围为准。

Claims

权利要求
1、 一种收敛二层组播网络的方法, 其特征在于, 所述方法包括: 如果二层组播网 络中的设备检测出所述二层组播网络的拓扑结构发生变化时, 则所述设备
接收上游设备发送的查询命令, 将所述查询命令组播发送给下游设备;
根据自身的二层组播转发表生成查询响应,所述查询响应中携带用户点播的频道信 自 .
接收下游设备发送的查询响应,在所述二层组播转发表中存储所述接收的查询响应 中携带的用户点播的频道信息和接收所述接收的查询响应的转发端口;
将所述生成的查询响应和所述接收的查询响应发送给所述上游设备。
2、 如权利要求 1所述的方法, 其特征在于, 当所述设备直接与三层网络相连时, 所 述接收上游设备发送的查询命令, 将所述查询命令组播发送给下游设备, 具体包括: 接收三层网络组播发送的查询命令, 将所述查询命令组播发送给所述下游设备。
3、 如权利要求 2所述的方法, 其特征在于, 所述方法还包括:
生成查询命令, 将所述生成的查询命令组播发送给所述下游设备。
4、 如权利要求 1-3任意一项所述的方法, 其特征在于, 所述根据自身的二层组播转 发表生成查询响应, 具体包括:
从所述二层组播转发表中获取用户点播的频道信息;
生成携带所述获取的频道信息的查询响应。
5、 如权利要求 1-4任意一项权利要求所述的方法, 其特征在于, 所述根据已存储的 二层组播转发表生成查询响应之后, 还包括:
累计生成查询响应的次数, 并判断所述次数的值是否达到预设的次数, 如果是, 则 停止继续生成查询响应。
6、 一种收敛二层组播网络的设备, 其特征在于, 所述设备包括:
接收模块, 用于接收上游设备发送的查询命令, 将所述查询命令组播发送给下游设 备; 第一生成模块, 用于根据自身的二层组播转发表生成查询响应, 所述查询响应中携 带用户点播的频道信息;
存储模块, 用于接收下游设备发送的查询响应, 在所述二层组播转发表中存储所述 接收的查询响应中携带的用户点播的频道信息和接收所述接收的查询响应的转发端口; 发送模块, 用于将所述生成的查询响应和所述接收的查询响应发送给所述上游设 备。
7、 如权利要求 6所述的设备, 其特征在于, 当所述设备直接与三层网络相连时, 所述接收模块, 具体用于接收三层网络发送的查询命令, 将所述查询命令组播发送 给所述下游设备。
8、 如权利要求 7所述的设备, 其特征在于, 所述设备还包括:
第二生成模块, 用于生成查询命令, 将所述生成的查询命令组播发送给所述下游设 备。
9、如权利要求 6-8任意一项所述的设备,其特征在于,所述第一生成模块具体包括: 获取单元, 用于从所述二层组播转发表中获取用户点播的频道信息;
生成单元, 用于生成携带所述获取的频道信息的查询响应。
10、 如权利要求 6-9任意一项权利要求所述的设备, 其特征在于, 所述设备还包括: 累计模块, 用于累计生成查询响应的次数, 并判断所述次数的值是否达到预设的次 数, 如果是, 则停止继续生成查询响应。
PCT/CN2011/070680 2010-04-29 2011-01-27 一种收敛二层组播网络的方法及设备 WO2011134295A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11774286A EP2541852A4 (en) 2010-04-29 2011-01-27 METHOD AND DEVICE FOR CONVERGENCE OF LAYER MULTICAST NETWORK 2

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010161816.4 2010-04-29
CN201010161816.4A CN101827032A (zh) 2010-04-29 2010-04-29 一种收敛二层组播网络的方法及设备

Publications (1)

Publication Number Publication Date
WO2011134295A1 true WO2011134295A1 (zh) 2011-11-03

Family

ID=42690748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070680 WO2011134295A1 (zh) 2010-04-29 2011-01-27 一种收敛二层组播网络的方法及设备

Country Status (3)

Country Link
EP (1) EP2541852A4 (zh)
CN (1) CN101827032A (zh)
WO (1) WO2011134295A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014004880A1 (en) * 2012-06-29 2014-01-03 Brocade Communications Systems, Inc. Efficient layer-2 multicast topology construction
US8988987B2 (en) 2012-10-25 2015-03-24 International Business Machines Corporation Technology for network communication by a computer system using at least two communication protocols

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101827032A (zh) * 2010-04-29 2010-09-08 华为技术有限公司 一种收敛二层组播网络的方法及设备
CN102647312B (zh) * 2012-05-09 2015-08-05 浙江宇视科技有限公司 一种整网组播拓扑的探测方法及装置
EP2984800B1 (en) 2013-04-19 2017-05-03 Entuity Limited Identifying an egress port of a device
GB2513188B (en) 2013-04-19 2015-11-25 Entuity Ltd Identification of the paths taken through a network of interconnected devices
EP2984797B1 (en) 2013-04-19 2017-03-01 Entuity Limited Querying a traffic forwarding table
ES2617196T3 (es) 2013-04-19 2017-06-15 Entuity Limited Identificación de rutas en una red de dispositivos de enrutamiento/conmutación mezclados
GB2527273B (en) 2014-04-11 2016-08-03 Entuity Ltd Executing a loop computer program to identify a path in a network
CN111600800B (zh) * 2020-04-01 2022-06-28 武汉迈威通信股份有限公司 一种跨网段拓扑发现的方法及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009628A (zh) * 2007-01-09 2007-08-01 杭州华为三康技术有限公司 一种交换网络拓扑变化时组播表项更新的方法及装置
CN101141383A (zh) * 2006-09-07 2008-03-12 华为技术有限公司 一种实现二层组播转发路径快速收敛的方法、系统及二层设备
US7512146B1 (en) * 2006-01-31 2009-03-31 Garrettcom, Inc. Method and apparatus for layer 2 multicast traffic management
CN101521927A (zh) * 2009-04-03 2009-09-02 中兴通讯股份有限公司 一种组播转发路径收敛的方法和系统
WO2009150107A1 (en) * 2008-06-09 2009-12-17 Thomson Licensing Methods for obtaining terminal multicast status
CN101827032A (zh) * 2010-04-29 2010-09-08 华为技术有限公司 一种收敛二层组播网络的方法及设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100433665C (zh) * 2006-11-07 2008-11-12 华为技术有限公司 一种因特网组管理协议监听方法及交换机
CN101150524B (zh) * 2007-11-12 2010-06-09 杭州华三通信技术有限公司 组播流量恢复方法及接入设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7512146B1 (en) * 2006-01-31 2009-03-31 Garrettcom, Inc. Method and apparatus for layer 2 multicast traffic management
CN101141383A (zh) * 2006-09-07 2008-03-12 华为技术有限公司 一种实现二层组播转发路径快速收敛的方法、系统及二层设备
CN101009628A (zh) * 2007-01-09 2007-08-01 杭州华为三康技术有限公司 一种交换网络拓扑变化时组播表项更新的方法及装置
WO2009150107A1 (en) * 2008-06-09 2009-12-17 Thomson Licensing Methods for obtaining terminal multicast status
CN101521927A (zh) * 2009-04-03 2009-09-02 中兴通讯股份有限公司 一种组播转发路径收敛的方法和系统
CN101827032A (zh) * 2010-04-29 2010-09-08 华为技术有限公司 一种收敛二层组播网络的方法及设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014004880A1 (en) * 2012-06-29 2014-01-03 Brocade Communications Systems, Inc. Efficient layer-2 multicast topology construction
US8988987B2 (en) 2012-10-25 2015-03-24 International Business Machines Corporation Technology for network communication by a computer system using at least two communication protocols
US9137041B2 (en) 2012-10-25 2015-09-15 International Business Machines Corporation Method for network communication by a computer system using at least two communication protocols

Also Published As

Publication number Publication date
EP2541852A4 (en) 2013-02-27
CN101827032A (zh) 2010-09-08
EP2541852A1 (en) 2013-01-02

Similar Documents

Publication Publication Date Title
WO2011134295A1 (zh) 一种收敛二层组播网络的方法及设备
JP5828954B2 (ja) サーバ故障中のパケット処理方法及びルータ
JP6007976B2 (ja) 通信システム、コントローラ、通信方法およびプログラム
WO2009089784A1 (fr) Procédé, système et équipement permettant l'accès d'un dispositif réseau à un réseau d'échange de paquets
EP2560321B1 (en) Ethernet multicast method and device
WO2011162215A1 (ja) 通信システム、制御装置、ノードの制御方法およびプログラム
EP2878105A1 (en) System and method using rsvp hello suppression for graceful restart capable neighbors
CN103888369A (zh) 以太网通信方法、系统和sdn交换机
WO2011120459A2 (zh) 报文转发方法、装置及网络设备
US20140233563A1 (en) Multicast processing method and device
WO2009082905A1 (fr) Procédé système et dispositif commutateur permettant l'établissement dynamique de réseau local virtuel de multidiffusion
RU2556464C2 (ru) Способ и соответствующее устройство совместного использования трафика при групповой передаче
WO2022253087A1 (zh) 一种数据传输方法、节点、网络管理器及系统
WO2010111956A1 (zh) 一种组播转发路径收敛的方法和系统
EP1892881A1 (en) A method for processing the abnormal multicast service and a network equipment thereof
CN107566292B (zh) 报文转发方法及装置
WO2012062102A1 (zh) 一种检测组播转发树上两点间连通性的方法、系统和装置
WO2009033388A1 (fr) Procédé d'utilisation d'un système de sécurité étendue, système et appareil de sécurité étendue
JP2008103864A (ja) Ipマルチキャストサービスシステム、スイッチ装置及びそれらに用いるグループ選択送信方法
WO2014000226A1 (zh) 网络路径控制方法、设备及系统
EP2892196A1 (en) Method, network node and system for implementing point-to-miltipoint multicast
JP6299745B2 (ja) 通信システム、制御装置、通信方法及びプログラム
WO2014048128A1 (zh) 环网中点到多点业务的保护方法及环网中的上环节点
WO2008138248A1 (fr) Procédé, carte d'interface et routeur destinés à transmettre un message
JP2014506765A (ja) 分散システムアーキテクチャにおける効率的なマルチキャスト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774286

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011774286

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE