WO2011132805A1 - Method for coating an led - Google Patents

Method for coating an led Download PDF

Info

Publication number
WO2011132805A1
WO2011132805A1 PCT/KR2010/002548 KR2010002548W WO2011132805A1 WO 2011132805 A1 WO2011132805 A1 WO 2011132805A1 KR 2010002548 W KR2010002548 W KR 2010002548W WO 2011132805 A1 WO2011132805 A1 WO 2011132805A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
coating
emitting diode
light
coating material
Prior art date
Application number
PCT/KR2010/002548
Other languages
French (fr)
Korean (ko)
Inventor
방동수
Original Assignee
우리엘에스티 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 우리엘에스티 주식회사 filed Critical 우리엘에스티 주식회사
Priority to PCT/KR2010/002548 priority Critical patent/WO2011132805A1/en
Publication of WO2011132805A1 publication Critical patent/WO2011132805A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations

Definitions

  • the present disclosure relates to a method of coating a light emitting diode as a whole, and more particularly, to a method of coating a light emitting diode that can be applied to a process of molding a surface of a light emitting diode.
  • FIG. 1 is a view for explaining an example of a conventional method of coating a light emitting diode, the light emitting diode 110 is coated in a fixed state bonded to the mount 120.
  • the mount 120 includes a lead frame 130 into which power is introduced, and the light emitting diode 110 is electrically connected to the lead frame 130.
  • the thin metal wire 140 is connected, which is referred to as a 'wire bonding process'.
  • the coating is performed by dropping the coating material 150 in the form of droplets onto the light emitting diodes 110 in which the wire bonding process is completed.
  • the coating material 150 in the form of droplets is cured in a state in which it flows and surrounds the light emitting diodes 110.
  • the light emitting diodes 110 are fixed to the mount 120 and the coating is performed after the wire bonding process is completed, if a defect occurs in the coating process, the light emitting diode 110 is disposed together with the mount 120, thereby causing a large loss. .
  • the thickness of the light emitting diode 110 is coated is determined by the flow of the coating material in the droplet state, there is a problem that it is almost impossible to form a constant coating thickness.
  • a method of coating a light emitting diode including a multilayer semiconductor layer and a bonding pad provided therein comprising: providing a coating material on the light emitting diode; Selectively irradiating light that does not pass through the bonding pad to the coating material in a direction from the multilayer semiconductor layer to the bonding pad to form a cured coating layer on the light emitting diode; And removing the uncured coating material.
  • a coating method of a light emitting diode is provided.
  • 1 is a view for explaining an example of a coating method of a conventional light emitting diode
  • FIGS. 2 to 5 are views for explaining step by step an example of a coating method of a light emitting diode according to the present disclosure
  • FIG. 6 is a view for explaining another example of the coating method of the light emitting diode according to the present disclosure.
  • FIGS. 2 to 5 are diagrams for explaining an example of a method of coating a light emitting diode according to the present disclosure step by step, the step of placing a plurality of light emitting diodes 10 at a predetermined interval (see Fig. 2), Providing a coating material 20 on the light emitting diodes 10 (see FIG. 3), selectively curing the coating material 20 (see FIG. 4) and uncured coating materials 20c, 20d. Removing (see FIG. 5).
  • the light emitting diode 10 includes an n-type semiconductor layer 11c that provides electrons, a p-type semiconductor layer 11a that provides holes, an n-type semiconductor layer 11c, and a p-type semiconductor layer. Interposed between (11a) and provided in a multi-layer structure including an active layer (11b) is generated by the recombination of the provided electrons and holes.
  • Examples of the material constituting the multilayer semiconductor layer 11 include a group III nitride semiconductor, a group 2 oxide semiconductor, and a GaAs-based semiconductor used for red light emission.
  • the semiconductor layer 11 of the multi-layer structure is grown on the substrate 13 mainly by MOCVD (organic metal vapor growth method).
  • the substrate 13 may be a GaN-based substrate used as a homogeneous substrate when a group III nitride semiconductor is grown, and a sapphire substrate, a SiC substrate, or a Si substrate may be used as a heterogeneous substrate.
  • bonding pads 15a and 15c are provided on the n-type semiconductor layer 11c and the p-type semiconductor layer 11a, respectively.
  • the bonding pads 15a and 15c may be formed of an electrically conductive material and may be formed of a material containing chromium (Cr), and may include a material including titanium (Ti) instead of chromium (Cr). It may be provided. In addition, gold (Au), aluminum (Al) may be provided as a material further containing.
  • chromium is most commonly used as the metal material of the photomask, because of good adhesion to quartz or glass, high pattern accuracy, and strong chemical resistance during cleaning. This is because the overall life is long.
  • the substrate 13 on which the semiconductor layer 11 of the multilayer structure is grown is referred to as a so-called epi-wafer, and the light emitting diode 10 is formed by a process of cutting an epi wafer.
  • the process of cutting the epi wafer is performed using a laser or diamond cutting machine.
  • the plurality of light emitting diodes 10 separated by the process of cutting the epi wafer is attached to the fixing member 30 to prevent movement of the light emitting diodes.
  • the fixing member 30 is made of a light-transmissive substrate coated with an adhesive or a stretchable material (eg, transparent tape).
  • the interval between the plurality of light emitting diodes 10 attached to the fixing member 30 may be widened by stretching the fixing member 30.
  • a process of arranging the separated plurality of light emitting diodes 10 according to the performance through a performance test may be added, and in this process, the light emitting diodes 10 may be arranged to form a gap between the light emitting diodes 10.
  • the coating material 20 is applied to the light emitting diodes 10 disposed on the fixing member 30 by a predetermined interval.
  • the coating material 20 is applied to a thickness covering the light emitting diodes 10.
  • the coating material 20 is provided with a photocurable material that is cured by light.
  • Examples of the photocurable material include UV epoxy and UV-patternable polymer, and may be provided with a resin that may be cured or patterned by light.
  • the coating material 20 is preferably provided with a photocurable material that is cured by light in the ultraviolet region.
  • the curable material is divided into a photocurable resin and a thermosetting resin.
  • Thermosetting resins are resins cured by heat (or infrared rays) and have stable characteristics and reliability.
  • the curing time is longer than that of the photocurable resin, and there is a disadvantage that it cannot be used when patterning is required or to be locally cured.
  • the photocurable resin is generally a resin cured by ultraviolet rays, so that curing is performed in a short time, so that the process time may be shortened and local curing may be required or patterning may be used.
  • the coating material 20 may be mixed with a phosphor 23 for changing the wavelength of the light emitted from the active layer (11b).
  • a photo mask 40 is provided under the fixing member 30 for the selective curing of the applied coating material 20.
  • the photo mask 40 may have a window A partitioned into a number corresponding to the plurality of light emitting diodes 10, that is, light aligned with an interval between the light transmitting region and the plurality of light emitting diodes 10. It does not have the mask pattern of the area B.
  • the plurality of windows A are provided to be aligned with the plurality of light emitting diodes 10, and the light emitting diodes 10 are positioned inside the outline of each window A.
  • a predetermined horizontal gap W is formed between the outline of each window A and the side surface of the light emitting diode 10 corresponding thereto.
  • Light is preferably provided with light in the ultraviolet region.
  • the coating material 20a on each side of the light emitting diode 10 is cured by a part of the light passing through the window A, and the coating material 20b on the top surface of the light emitting diode 10 is formed by the window A.
  • FIG. And light transmitted through the light emitting diode 10.
  • the coating material 20c at intervals between the respective light emitting diodes 10 is kept uncured by the region B through which light cannot pass.
  • the coating material 20d on the bonding pads 15a and 15c among the coating materials on the upper surface of the light emitting diode 10 is kept uncured because light is blocked by the bonding pads 15a and 15c.
  • the bonding pads 15a and 15c function as a kind of photo mask.
  • the difficulty of forming the mask pattern corresponding to the bonding pads 15a and 15c having a very small size can be eliminated, and the labor cost is reduced because the mask pattern corresponding to the bonding pads 15a and 15c is not required.
  • the yield of the coating process can be greatly improved.
  • the thickness of the coating material 20a is coated on the side of the light emitting diode 10 according to the horizontal distance (W) between the outline of each window (A) and the side of the light emitting diode 10 corresponding thereto. Is determined.
  • the thickness of the coating material 20a on the side surface of the light emitting diode 10 may be optimized by adjusting the horizontal spacing W between the outline of the window A and the side surface of the light emitting diode 10.
  • the light is preferably irradiated in a direction perpendicular to the bonding pads 15a and 15c from the bottom of the multilayer semiconductor layer 11 so that the side coating thickness of the light emitting diode 10 is constant.
  • the wire bonding process may be performed after the coating process is completed.
  • FIG. 6 is a view for explaining another example of the coating method of the light emitting diode according to the present disclosure, in order to control the thickness of the coating material 20 applied to the light emitting diode 10, the coating material 20 is fixed member ( There is a difference from the above-described example in that the flow preventing film 35 which is prevented from continuously flowing in the direction parallel to the 30 is provided around the fixing member 30.
  • the flow preventing film 35 is formed to be higher than the thickness of the light emitting diode 10, in which case the thickness of the coating material 20 may be controlled by the amount of the coating material 20 supplied for the application of the light emitting diode 10.
  • the thickness of the coating material 20 may be controlled by the amount of the coating material 20 supplied for the application of the light emitting diode 10.
  • the coating method of the light emitting diode characterized in that the coating material provided on the bonding pad is not cured. This is made possible by irradiating light curing the coating material on the bottom surface of the light emitting diode.
  • the bonding pad serves as a kind of mask.
  • the step of forming a cured coating layer is a method of coating a light emitting diode, characterized in that for selectively irradiating light to the coating material using a photo mask provided under the multi-layer semiconductor layer.
  • the photomask has at least one window partitioned so as to correspond to one light emitting diode and has light transmitted therethrough, and the thickness of the cured coating layer formed on the side of the light emitting diode is equal to the horizontal gap of the window and the multilayer semiconductor layer.
  • a coating method of a light emitting diode characterized in that provided with a plurality of light emitting diodes, arranged apart by a predetermined interval.
  • the plurality of light emitting diodes are fixed integrally by the light transmitting member, and the step of forming the cured coating layer is a photo mask provided under the light transmitting member, which is partitioned so as to correspond to the plurality of light emitting diodes one-to-one and transmits light.
  • a method of coating a light emitting diode comprising irradiating light selectively to a coating material using a photomask having two windows.
  • the coating material includes a phosphor, and the bonding pad is coated with a light emitting diode, characterized in that provided with an electrically conductive material containing chromium (Cr).
  • the plurality of light emitting diodes are fixed integrally by the light transmissive member, and the step of forming the cured coating layer is a pattern formed on the lower surface of the light transmissive member.
  • Method of coating a light emitting diode characterized in that for selectively irradiating light to the coating material using a pattern comprising a.
  • the bonding pad provided in the light emitting diode is used as a kind of photo mask, the cost and labor required to manufacture a separate photo mask for removing the coating material on the upper portion of the bonding pad is reduced. Removal can greatly improve yield.

Abstract

The present disclosure relates to a method for coating an LED comprising a multilayered semiconductor layer and a bonding pad included therein, wherein the coating method comprises steps of: preparing a coating material on the LED; forming a hardened coating layer in the LED by selectively irradiating a coating material with light which cannot pass through the bonding pad, in the direction from the multilayered semiconductor layer toward the bonding pad; and removing unhardened coating material.

Description

발광다이오드의 코팅 방법Coating method of light emitting diode
본 개시(Disclosure)는 전체적으로 발광다이오드의 코팅 방법에 관한 것으로, 특히 발광다이오드의 표면을 몰딩하는 공정에 적용될 수 있는 발광다이오드의 코팅 방법에 관한 것이다.The present disclosure relates to a method of coating a light emitting diode as a whole, and more particularly, to a method of coating a light emitting diode that can be applied to a process of molding a surface of a light emitting diode.
여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art).This section provides background information related to the present disclosure which is not necessarily prior art.
도 1은 종래의 발광다이오드의 코팅 방법의 일 예를 설명하는 도면으로서, 발광다이오드(110)는 마운트(120)에 접착되어 고정된 상태에서 코팅된다.1 is a view for explaining an example of a conventional method of coating a light emitting diode, the light emitting diode 110 is coated in a fixed state bonded to the mount 120.
마운트(120)는 전원이 도입되는 리드프레임(130)을 포함하며, 발광다이오드(110)는 리드프레임(130)과 전기적으로 연결된다. 일반적으로 가는 금속선(140)을 이용하여 연결되는데, 이를 '와이어 본딩 공정'이라 한다.The mount 120 includes a lead frame 130 into which power is introduced, and the light emitting diode 110 is electrically connected to the lead frame 130. In general, the thin metal wire 140 is connected, which is referred to as a 'wire bonding process'.
코팅은 와이어 본딩 공정이 완료된 발광다이오드(110)에 액적(droplet) 형태의 코팅물질(150)을 떨어뜨리는 방법으로 진행된다.The coating is performed by dropping the coating material 150 in the form of droplets onto the light emitting diodes 110 in which the wire bonding process is completed.
액적 형태의 코팅물질(150)은 유동되어 발광다이오드(110)를 감싸는 상태로 경화된다.The coating material 150 in the form of droplets is cured in a state in which it flows and surrounds the light emitting diodes 110.
이에 의해 발광다이오드(110)의 코팅이 완료된다.As a result, the coating of the light emitting diodes 110 is completed.
이 경우, 발광다이오드(110)가 마운트(120)에 고정되고 와이어 본딩 공정이 완료된 후에 코팅이 이루어지므로, 코팅 공정에서 불량이 발생되면 마운트(120)와 함께 폐기되므로 큰 손실이 발생되는 문제가 있었다.In this case, since the light emitting diodes 110 are fixed to the mount 120 and the coating is performed after the wire bonding process is completed, if a defect occurs in the coating process, the light emitting diode 110 is disposed together with the mount 120, thereby causing a large loss. .
또한, 마운트(120)마다 액적 상태의 코팅 물질을 공급하여야 하므로, 코팅 공정에 많은 공수가 들어가 수율이 떨어지는 문제가 있었다.In addition, since the coating material in the state of droplets must be supplied to each mount 120, a lot of man-hours enter into the coating process, resulting in a drop in yield.
또한, 발광다이오드(110)가 코팅되는 두께는 액적 상태인 코팅 물질의 유동에 의해 결정되므로 일정한 코팅 두께를 형성하는 것이 거의 불가능한 문제가 있었다.In addition, since the thickness of the light emitting diode 110 is coated is determined by the flow of the coating material in the droplet state, there is a problem that it is almost impossible to form a constant coating thickness.
이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.This is described later in the section titled 'Details of the Invention.'
여기서는, 본 개시의 전체적인 요약(Summary)이 제공되며, 이것이 본 개시의 외연을 제한하는 것으로 이해되어서는 아니된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all, provided that this is a summary of the disclosure. of its features).
본 개시에 따른 일 태양에 의하면(According to one aspect of the present disclosure), 다층구조 반도체층 및 그에 구비된 본딩 패드를 포함하는 발광다이오드의 코팅 방법에 있어서, 발광다이오드 위에 코팅물질을 구비하는 단계; 본딩 패드를 투과하지 못하는 광을 다층구조 반도체층에서 본딩 패드를 향하는 방향으로 코팅물질에 선택적으로 조사하여 발광다이오드에 경화된 코팅층을 형성하는 단계; 및 경화되지 않은 코팅물질을 제거하는 단계;를 포함하는 발광다이오드의 코팅 방법이 제공된다.According to one aspect of the present disclosure, there is provided a method of coating a light emitting diode including a multilayer semiconductor layer and a bonding pad provided therein, the method comprising: providing a coating material on the light emitting diode; Selectively irradiating light that does not pass through the bonding pad to the coating material in a direction from the multilayer semiconductor layer to the bonding pad to form a cured coating layer on the light emitting diode; And removing the uncured coating material. A coating method of a light emitting diode is provided.
이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.This is described later in the section titled 'Details of the Invention.'
도 1은 종래의 발광다이오드의 코팅 방법의 일 예를 설명하는 도면,1 is a view for explaining an example of a coating method of a conventional light emitting diode,
도 2 내지 도 5는 본 개시에 따른 발광다이오드의 코팅 방법의 일 예를 단계별로 설명하는 도면,2 to 5 are views for explaining step by step an example of a coating method of a light emitting diode according to the present disclosure;
도 6은 본 개시에 따른 발광다이오드의 코팅 방법의 다른 예를 설명하는 도면.6 is a view for explaining another example of the coating method of the light emitting diode according to the present disclosure.
이하, 본 개시를 첨부된 도면을 참고로 하여 자세하게 설명한다(The present disclosure will now be described in detail with reference to the accompanying drawing(s)). The present disclosure will now be described in detail with reference to the accompanying drawing (s).
도 2 내지 도 5는 본 개시에 따른 발광다이오드의 코팅 방법의 일 예를 단계별로 설명하는 도면으로서, 복수의 발광다이오드(10)를 소정의 간격만큼 떨어뜨려 위치시키는 단계(도 2 참조.), 발광다이오드(10) 위에 코팅물질(20)을 구비하는 단계(도 3 참조.), 코팅물질(20)을 선택적으로 경화시키는 단계(도 4 참조.) 및 경화되지 않은 코팅물질(20c,20d)을 제거하는 단계(도 5 참조.)를 포함한다.2 to 5 are diagrams for explaining an example of a method of coating a light emitting diode according to the present disclosure step by step, the step of placing a plurality of light emitting diodes 10 at a predetermined interval (see Fig. 2), Providing a coating material 20 on the light emitting diodes 10 (see FIG. 3), selectively curing the coating material 20 (see FIG. 4) and uncured coating materials 20c, 20d. Removing (see FIG. 5).
도 2를 참조하면, 발광다이오드(10)는 전자를 제공하는 n형 반도체층(11c)과, 정공을 제공하는 p형 반도체층(11a)과, n형 반도체층(11c) 및 p형 반도체층(11a) 사이에 개재되며 제공된 전자와 정공의 재결합에 의해 빛이 발생되는 활성층(11b)을 포함하는 다층구조로 구비된다.Referring to FIG. 2, the light emitting diode 10 includes an n-type semiconductor layer 11c that provides electrons, a p-type semiconductor layer 11a that provides holes, an n-type semiconductor layer 11c, and a p-type semiconductor layer. Interposed between (11a) and provided in a multi-layer structure including an active layer (11b) is generated by the recombination of the provided electrons and holes.
다층구조의 반도체층(11)을 구성하는 물질은 3족 질화물 반도체, 2족 산화물 반도체, 적색 발광에 사용되는 GaAs계 반도체를 예로 들 수 있다.Examples of the material constituting the multilayer semiconductor layer 11 include a group III nitride semiconductor, a group 2 oxide semiconductor, and a GaAs-based semiconductor used for red light emission.
다층구조의 반도체층(11)은 기판(13) 위에 주로 MOCVD(유기금속기상성장법)에 의해 성장된다.The semiconductor layer 11 of the multi-layer structure is grown on the substrate 13 mainly by MOCVD (organic metal vapor growth method).
기판(13)은 3족 질화물 반도체가 성장되는 경우 동종기판으로 GaN계 기판이 이용되며, 이종기판으로 사파이어 기판, SiC 기판 또는 Si 기판 등이 이용될 수 있다.The substrate 13 may be a GaN-based substrate used as a homogeneous substrate when a group III nitride semiconductor is grown, and a sapphire substrate, a SiC substrate, or a Si substrate may be used as a heterogeneous substrate.
한편, n형 반도체층(11c) 위와, p형 반도체층(11a) 위에는 각각 본딩 패드(15a,15c)가 구비된다. On the other hand, bonding pads 15a and 15c are provided on the n-type semiconductor layer 11c and the p-type semiconductor layer 11a, respectively.
본딩 패드(15a,15c)는 와이어 본딩을 위한 구성으로 전기 전도성 물질로 구비되며, 크롬(Cr)을 포함하는 물질로 구비되는 것이 바람직하며, 크롬(Cr) 대신 티타늄(Ti)을 포함하는 물질로 구비될 수 있다. 그 밖에 금(Au), 알루미늄(Al) 등이 더 함유된 물질로 구비될 수 있다. The bonding pads 15a and 15c may be formed of an electrically conductive material and may be formed of a material containing chromium (Cr), and may include a material including titanium (Ti) instead of chromium (Cr). It may be provided. In addition, gold (Au), aluminum (Al) may be provided as a material further containing.
이에 의해, 본딩 패드(15a,15c)를 통해 빛이 투과되는 것이 방지되며, 추후 설명하는 본딩 패드(15a,15c)의 포토 마스크로서의 기능이 향상될 수 있다.As a result, light is prevented from being transmitted through the bonding pads 15a and 15c, and a function as a photo mask of the bonding pads 15a and 15c described later can be improved.
구체적으로, 포토 마스크의 금속 재료로는 크롬(Cr)이 가장 많이 사용되는데, 그 이유로는 쿼츠(quartz) 나 글래스 등에의 접착력이 좋고 패턴의 정밀도가 높으며, 세정시에 화학 약품에 강한 특성을 보이는 등 전체적으로 수명이 길기 때문이다. Specifically, chromium (Cr) is most commonly used as the metal material of the photomask, because of good adhesion to quartz or glass, high pattern accuracy, and strong chemical resistance during cleaning. This is because the overall life is long.
여기서, 다층구조의 반도체층(11)이 성장된 기판(13)을 소위 '에피 웨이퍼(Epi-wafer)'라 하며, 발광다이오드(10)는 에피 웨이퍼를 절단하는 공정에 의해 형성된다.Here, the substrate 13 on which the semiconductor layer 11 of the multilayer structure is grown is referred to as a so-called epi-wafer, and the light emitting diode 10 is formed by a process of cutting an epi wafer.
에피 웨이퍼를 절단하는 공정은 레이저 또는 다이아몬드 커팅기를 이용하여 진행된다.The process of cutting the epi wafer is performed using a laser or diamond cutting machine.
에피 웨이퍼를 절단하는 공정에 의해 분리된 복수 개의 발광다이오드(10)는 고정부재(30)에 부착되어 제각각 움직이는 것이 방지된다.The plurality of light emitting diodes 10 separated by the process of cutting the epi wafer is attached to the fixing member 30 to prevent movement of the light emitting diodes.
고정부재(30)는 접착제가 도포된 투광성의 기판이나 연신 가능한 물질(예: 투명테이프)로 구비된다.The fixing member 30 is made of a light-transmissive substrate coated with an adhesive or a stretchable material (eg, transparent tape).
고정부재(30)에 부착된 복수 개의 발광다이오드(10) 사이의 간격은 고정부재(30)를 연신시킴으로써 넓혀질 수 있다.The interval between the plurality of light emitting diodes 10 attached to the fixing member 30 may be widened by stretching the fixing member 30.
이와 달리, 분리된 복수 개의 발광다이오드(10)를 성능검사를 통해 성능에 따라 배열시키는 공정이 추가될 수 있는데, 이 과정에서 발광다이오드(10) 사이의 간격이 형성되도록 배열될 수 있다. Alternatively, a process of arranging the separated plurality of light emitting diodes 10 according to the performance through a performance test may be added, and in this process, the light emitting diodes 10 may be arranged to form a gap between the light emitting diodes 10.
다음으로, 도 3을 참조하면, 고정부재(30) 위에 소정의 간격만큼 떨어져 배치된 발광다이오드(10)에 코팅물질(20)이 도포된다.Next, referring to FIG. 3, the coating material 20 is applied to the light emitting diodes 10 disposed on the fixing member 30 by a predetermined interval.
코팅물질(20)은 발광다이오드(10)를 덮는 두께로 도포된다.The coating material 20 is applied to a thickness covering the light emitting diodes 10.
이때, 도포된 코팅 물질(20)이 소정의 두께를 갖도록 코팅물질(20)의 도포 속도를 적절히 조절하는 것이 필요하다. At this time, it is necessary to properly adjust the application rate of the coating material 20 so that the applied coating material 20 has a predetermined thickness.
한편, 코팅물질(20)을 도포하는 속도가 빠를 경우 도포된 코팅물질(20)이나 복수 개의 발광다이오드(10) 사이의 간격에 기포가 생길 수 있으므로 이를 방지하기 위한 코팅물질(20)의 도포 속도를 적절히 조절하는 것이 필요하다. On the other hand, when the speed of applying the coating material 20 is fast, since bubbles may occur in the interval between the applied coating material 20 or the plurality of light emitting diodes 10, the application speed of the coating material 20 to prevent this It is necessary to adjust properly.
코팅물질(20)은 빛에 의해 경화되는 광경화성 물질로 구비된다.The coating material 20 is provided with a photocurable material that is cured by light.
광경화성 물질은 UV epoxy, UV-patternable polymer를 예로 들 수 있으며, 이 밖에 광에 의해 경화 또는 패터닝될 수 있는 수지로 구비될 수 있다.Examples of the photocurable material include UV epoxy and UV-patternable polymer, and may be provided with a resin that may be cured or patterned by light.
특히, 코팅물질(20)은 자외선 영역의 빛에 의해 경화되는 광경화성 물질로 구비되는 것이 바람직하다. In particular, the coating material 20 is preferably provided with a photocurable material that is cured by light in the ultraviolet region.
일반적으로, 경화성 물질(수지)은 광경화성 수지와 열경화성 수지로 나누어진다. 열경화성 수지는 열(또는 적외선)에 의해 경화되는 수지로서 안정적인 특성 및 신뢰성을 갖는다. 반면에 광경화성 수지에 비하여 경화 시간이 오래 걸리고, 패터닝이 요구되거나 국부적으로 경화시키고자 할 때에는 사용할 수 없는 단점이 있다. Generally, the curable material (resin) is divided into a photocurable resin and a thermosetting resin. Thermosetting resins are resins cured by heat (or infrared rays) and have stable characteristics and reliability. On the other hand, the curing time is longer than that of the photocurable resin, and there is a disadvantage that it cannot be used when patterning is required or to be locally cured.
이에 비해 광경화성 수지는 일반적으로 자외선에 의해 경화되는 수지로서 짧은 시간에 경화가 이루어지므로 공정 시간이 단축되고 국부적 경화가 요구되거나, 패터닝이 요구되는 경우에도 사용될 수 있는 장점이 있다. On the other hand, the photocurable resin is generally a resin cured by ultraviolet rays, so that curing is performed in a short time, so that the process time may be shortened and local curing may be required or patterning may be used.
한편, 코팅물질(20)에는 활성층(11b)에서 방출되는 빛의 파장을 변화시키는 형광체(23)가 혼입될 수 있다.On the other hand, the coating material 20 may be mixed with a phosphor 23 for changing the wavelength of the light emitted from the active layer (11b).
이에 의해, 발광다이오드(10)에서 방출되는 빛의 색이 다양하게 연출될 수 있다.As a result, various colors of light emitted from the light emitting diodes 10 may be produced.
다음으로, 도 4를 참조하면, 도포된 코팅물질(20)의 선택적인 경화를 위해 고정부재(30)의 하부에 포토 마스크(40)가 구비된다.Next, referring to FIG. 4, a photo mask 40 is provided under the fixing member 30 for the selective curing of the applied coating material 20.
포토 마스크(40)는, 복수 개의 발광다이오드(10)에 대응되는 수로 구획된 윈도우(A), 즉 빛이 투과되는 영역과, 복수 개의 발광다이오드(10) 사이의 간격에 정렬되는 빛이 통과하지 못하는 영역(B)의 마스크 패턴을 가진다.The photo mask 40 may have a window A partitioned into a number corresponding to the plurality of light emitting diodes 10, that is, light aligned with an interval between the light transmitting region and the plurality of light emitting diodes 10. It does not have the mask pattern of the area B.
복수 개의 윈도우(A)는 복수 개의 발광다이오드(10)와 정렬되도록 구비되며, 각 윈도우(A)의 외곽선의 내부에 발광다이오드(10)가 위치된다.The plurality of windows A are provided to be aligned with the plurality of light emitting diodes 10, and the light emitting diodes 10 are positioned inside the outline of each window A.
이에 의해, 각 윈도우(A)의 외곽선과 그에 대응되는 발광다이오드(10)의 측면 사이에 소정의 수평 간격(W)이 형성된다.As a result, a predetermined horizontal gap W is formed between the outline of each window A and the side surface of the light emitting diode 10 corresponding thereto.
다음으로, 포토 마스크(40)의 하부로부터 발광다이오드(10)의 상부를 향하는 방향으로 코팅물질(20)의 경화를 위한 빛이 조사된다.Next, light for curing the coating material 20 is irradiated from the lower portion of the photo mask 40 toward the upper portion of the light emitting diode 10.
빛은 자외선 영역의 빛으로 구비되는 것이 바람직하다.Light is preferably provided with light in the ultraviolet region.
이에 의해, 각각의 발광다이오드(10) 측면의 코팅물질(20a)은 윈도우(A)를 투과한 빛의 일부에 의해 경화되며, 발광다이오드(10)의 상면의 코팅물질(20b)은 윈도우(A) 및 발광다이오드(10)를 투과한 빛에 의해 경화된다. 그러나, 각각의 발광다이오드(10) 사이 간격의 코팅물질(20c)은 빛이 통과하지 못하는 영역(B)에 의해 경화되지 않은 상태로 유지된다.As a result, the coating material 20a on each side of the light emitting diode 10 is cured by a part of the light passing through the window A, and the coating material 20b on the top surface of the light emitting diode 10 is formed by the window A. FIG. And light transmitted through the light emitting diode 10. However, the coating material 20c at intervals between the respective light emitting diodes 10 is kept uncured by the region B through which light cannot pass.
한편, 발광다이오드(10)의 상면의 코팅물질 중 본딩 패드(15a,15c) 위의 코팅물질(20d)은 빛이 본딩 패드(15a,15c)에 의해 차단되므로 경화되지 않은 상태로 유지된다.Meanwhile, the coating material 20d on the bonding pads 15a and 15c among the coating materials on the upper surface of the light emitting diode 10 is kept uncured because light is blocked by the bonding pads 15a and 15c.
여기서, 본딩 패드(15a,15c)는 일종의 포토 마스크로서 기능을 하게 된다.Here, the bonding pads 15a and 15c function as a kind of photo mask.
따라서, 크기가 매우 작은 본딩 패드(15a,15c)에 대응되는 마스크 패턴 형성의 어려움이 해소될 수 있으며, 본딩 패드(15a,15c)에 대응되는 마스크 패턴을 형성할 필요가 없어지므로 공수가 절감되어 코팅 공정의 수율을 크게 향상시킬 수 있다.Therefore, the difficulty of forming the mask pattern corresponding to the bonding pads 15a and 15c having a very small size can be eliminated, and the labor cost is reduced because the mask pattern corresponding to the bonding pads 15a and 15c is not required. The yield of the coating process can be greatly improved.
한편, 본 예에서 발광다이오드(10)의 측면에 코팅물질(20a)이 코팅되는 두께는 각 윈도우(A)의 외곽선과 그에 대응되는 발광다이오드(10)의 측면 사이의 수평 간격(W)에 따라 결정된다.On the other hand, in this example, the thickness of the coating material 20a is coated on the side of the light emitting diode 10 according to the horizontal distance (W) between the outline of each window (A) and the side of the light emitting diode 10 corresponding thereto. Is determined.
따라서, 윈도우(A)의 외곽선과 발광다이오드(10)의 측면 사이의 수평 간격(W) 조절을 통해 발광다이오드(10)의 측면에 코팅물질(20a)이 코팅되는 두께를 최적화시킬 수 있을 것이다. Therefore, the thickness of the coating material 20a on the side surface of the light emitting diode 10 may be optimized by adjusting the horizontal spacing W between the outline of the window A and the side surface of the light emitting diode 10.
또한, 본 예에서 발광다이오드(10)의 측면 코팅 두께가 일정하도록 빛은 다층구조 반도체층(11) 하부로부터 본딩 패드(15a,15c)에 수직한 방향으로 조사되는 것이 바람직하다.In addition, in this example, the light is preferably irradiated in a direction perpendicular to the bonding pads 15a and 15c from the bottom of the multilayer semiconductor layer 11 so that the side coating thickness of the light emitting diode 10 is constant.
한편, 본 예에서 포토 마스크(40)가 별도로 구비되는 경우에 대해 설명되었으나, 고정부재(30)의 하면에 직접 마스크 패턴을 형성하는 것도 가능할 것이다.Meanwhile, in the present example, the case in which the photo mask 40 is separately provided has been described, but it will be possible to form the mask pattern directly on the lower surface of the fixing member 30.
이 경우, 공정이 보다 간단해지게 된다.In this case, the process becomes simpler.
다음으로, 도 5를 참조하면, 경화되지 않은 코팅물질(20c,20d)이 제거된다.Next, referring to FIG. 5, the uncured coating materials 20c and 20d are removed.
이 과정에서 복수 개의 발광다이오드(10)는 서로 분리된 상태로 코팅되므로, 각각의 발광다이오드(10) 별로 분리를 위한 기계적 공정이 불필요하게 된다.In this process, since the plurality of light emitting diodes 10 are coated in a separated state from each other, a mechanical process for separation of each light emitting diode 10 is unnecessary.
또한, 본딩 패드(15a,15c) 상부의 코팅물질(20d)도 경화되지 않고 제거되므로, 코팅 공정을 완료한 후 와이어 본딩 공정을 진행할 수 있게 된다. In addition, since the coating material 20d on the bonding pads 15a and 15c is also removed without curing, the wire bonding process may be performed after the coating process is completed.
도 6은 본 개시에 따른 발광다이오드의 코팅 방법의 다른 예를 설명하는 도면으로서, 발광다이오드(10)에 도포되는 코팅물질(20)의 정확한 두께 조절을 위해, 코팅물질(20)이 고정부재(30)와 평행한 방향으로 계속 유동되는 것을 방지하는 흐름방지막(35)이 고정부재(30)의 둘레에 구비되는 점에서 앞서 설명한 예와 차이가 있다.6 is a view for explaining another example of the coating method of the light emitting diode according to the present disclosure, in order to control the thickness of the coating material 20 applied to the light emitting diode 10, the coating material 20 is fixed member ( There is a difference from the above-described example in that the flow preventing film 35 which is prevented from continuously flowing in the direction parallel to the 30 is provided around the fixing member 30.
흐름방지막(35)은 발광다이오드(10)의 두께보다 높게 형성되며, 이 경우 코팅물질(20)의 두께는 발광다이오드(10)의 도포를 위해 공급되는 코팅물질(20)의 양에 의해 조절될 수 있을 것이다.The flow preventing film 35 is formed to be higher than the thickness of the light emitting diode 10, in which case the thickness of the coating material 20 may be controlled by the amount of the coating material 20 supplied for the application of the light emitting diode 10. Could be.
이하 본 개시의 다양한 실시 형태에 대하여 설명한다.Hereinafter, various embodiments of the present disclosure will be described.
(1) 본딩 패드 위에 구비된 코팅물질은 경화되지 않는 것을 특징으로 하는 발광다이오드의 코팅방법. 이는 발광다이오드의 저면에서 코팅물질을 경화시키는 광이 조사됨으로써 가능해진다. 이때 본딩 패드는 일종의 마스크로서 역할을 하게 된다.(1) The coating method of the light emitting diode, characterized in that the coating material provided on the bonding pad is not cured. This is made possible by irradiating light curing the coating material on the bottom surface of the light emitting diode. In this case, the bonding pad serves as a kind of mask.
(2) 광은 다층구조 반도체층 하부로부터 본딩 패드에 수직한 방향으로 조사되는 것을 특징으로 하는 발광다이오드의 코팅 방법. 이는 경화되지 않은 코팅물질의 제거 시 본딩 패드의 수직방향으로 제거되므로, 와이어 본딩 공정이 보다 용이해지게 된다.(2) A method of coating a light emitting diode, wherein light is irradiated from a lower portion of the multilayer semiconductor layer in a direction perpendicular to the bonding pad. This is removed in the vertical direction of the bonding pad when the uncured coating material is removed, thereby making the wire bonding process easier.
(3) 본딩 패드는 자외선이 투과하지 못하는 전기 전도성 물질로 구비되는 것을 특징으로 하는 발광다이오드의 코팅 방법. 이에 의해 본딩 패드가 일종을 마스크로 기능하게 되며, 와이어 본딩을 위해 본딩 패드에 대응되는 별도의 마스크 제작에 소요되는 공수를 감소시키게 된다.(3) The method of coating a light emitting diode, characterized in that the bonding pad is made of an electrically conductive material that does not transmit ultraviolet light. As a result, the bonding pad functions as a mask and reduces the number of labors required to manufacture a separate mask corresponding to the bonding pad for wire bonding.
(4) 코팅물질은 형광체를 포함하는 것을 특징으로 하는 발광다이오드의 코팅 방법.(4) The coating method of the light emitting diode, characterized in that the coating material comprises a phosphor.
(5) 경화된 코팅층 형성단계는 다층구조 반도체층 하부에 구비되는 포토 마스크를 사용하여 코팅물질에 선택적으로 광을 조사하는 것을 특징으로 하는 발광다이오드의 코팅 방법. (5) The step of forming a cured coating layer is a method of coating a light emitting diode, characterized in that for selectively irradiating light to the coating material using a photo mask provided under the multi-layer semiconductor layer.
(6) 포토 마스크는 하나의 발광다이오드와 대응되도록 구획되며 빛이 투과되는 적어도 하나의 윈도우를 가지며, 발광다이오드의 측면에 형성된 경화된 코팅층의 두께는 윈도우의 외곽선과 다층구조 반도체층의 수평간격에 의해 조절되는 것을 특징으로 하는 발광다이오드의 코팅 방법.(6) The photomask has at least one window partitioned so as to correspond to one light emitting diode and has light transmitted therethrough, and the thickness of the cured coating layer formed on the side of the light emitting diode is equal to the horizontal gap of the window and the multilayer semiconductor layer. Method of coating a light emitting diode, characterized in that controlled by.
(7) 발광다이오드는 복수 개로 구비되며, 설정된 간격만큼 떨어져 배열되는 것을 특징으로 하는 발광다이오드의 코팅 방법. (7) A coating method of a light emitting diode, characterized in that provided with a plurality of light emitting diodes, arranged apart by a predetermined interval.
(8) 복수의 개의 발광다이오드는 투광성 부재에 의해 일체로 고정되며, 경화된 코팅층 형성단계는 투광성 부재의 하부에 구비되는 포토 마스크로써, 복수 개의 발광다이오드와 일대일 대응되도록 구획되며 빛이 투과되는 복수 개의 윈도우를 가지는 포토 마스크를 사용하여 코팅물질에 선택적으로 광을 조사하는 것을 특징으로 하는 발광다이오드의 코팅 방법.(8) The plurality of light emitting diodes are fixed integrally by the light transmitting member, and the step of forming the cured coating layer is a photo mask provided under the light transmitting member, which is partitioned so as to correspond to the plurality of light emitting diodes one-to-one and transmits light. A method of coating a light emitting diode, comprising irradiating light selectively to a coating material using a photomask having two windows.
(9) 포토 마스크는 투광성 부재의 하면에 구비되는 것을 특징으로 하는 발광다이오드의 코팅 방법.(9) A method of coating a light emitting diode, wherein the photo mask is provided on the lower surface of the light transmitting member.
(10) 하나의 발광다이오드의 외곽선은 그와 일대일 대응되는 윈도우의 외곽선 내부에 위치되는 것을 특징으로 하는 발광다이오드의 코팅 방법.(10) The method of coating a light emitting diode, characterized in that the outline of one light emitting diode is located inside the outline of the window corresponding one to one.
(11) 코팅물질은 형광체를 포함하며, 본딩 패드는 크롬(Cr)을 포함하는 전기 전도성 물질로 구비되는 것을 특징으로 하는 발광다이오드의 코팅 방법.(11) The coating material includes a phosphor, and the bonding pad is coated with a light emitting diode, characterized in that provided with an electrically conductive material containing chromium (Cr).
(12) 복수 개의 발광다이오드는 투광성 부재에 의해 일체로 고정되며, 경화된 코팅층 형성단계는, 투광성 부재의 하면에 형성되는 패턴으로서, 빛이 투과하는 영역(A)과 투과하지 못하는 영역(B)을 포함하는 패턴을 사용하여 코팅물질에 선택적으로 광을 조사하는 것을 특징으로 하는 발광다이오드의 코팅 방법.(12) The plurality of light emitting diodes are fixed integrally by the light transmissive member, and the step of forming the cured coating layer is a pattern formed on the lower surface of the light transmissive member. Method of coating a light emitting diode, characterized in that for selectively irradiating light to the coating material using a pattern comprising a.
본 개시에 따른 하나의 발광다이오드의 코팅 방법에 의하면, 발광다이오드에 구비되는 본딩 패드를 일종의 포토 마스크로 사용하므로 본딩 패드 윗부분의 코팅 물질 제거를 위해 별도의 포토 마스크를 제작하는데 소요되는 비용 및 공수를 제거하여 수율을 크게 향상시킬 수 있게 된다.According to one method of coating a light emitting diode according to the present disclosure, since the bonding pad provided in the light emitting diode is used as a kind of photo mask, the cost and labor required to manufacture a separate photo mask for removing the coating material on the upper portion of the bonding pad is reduced. Removal can greatly improve yield.
또한 본 개시에 따른 다른 발광다이오드의 코팅 방법에 의하면, 발광다이오드를 마운트에 고정하거나, 와이어 본딩 공정 전에 코팅하므로 코팅 불량으로 인한 손실이 줄어드는 이점을 가질 수 있다.In addition, according to another method of coating a light emitting diode according to the present disclosure, since the light emitting diode is fixed to the mount or coated before the wire bonding process, a loss due to coating failure may be reduced.
또한 본 개시에 따른 또다른 발광다이오드의 코팅 방법에 의하면, 코팅 물질이 복수의 발광다이오드에 동시에 도포된 상태에서 광경화에 의해 코팅이 이루어지므로 코팅 공정에 소요되는 공수를 줄일 수 있다. 따라서, 제조 수율을 향상시킬 수 있다.In addition, according to another method of coating a light emitting diode according to the present disclosure, since coating is performed by photocuring in a state in which a coating material is applied to a plurality of light emitting diodes at the same time, the labor required for the coating process can be reduced. Therefore, manufacturing yield can be improved.

Claims (14)

  1. 다층구조 반도체층 및 그에 구비된 본딩 패드를 포함하는 발광다이오드의 코팅 방법에 있어서,In the method of coating a light emitting diode comprising a multilayer semiconductor layer and a bonding pad provided therein,
    발광다이오드 위에 코팅물질을 구비하는 단계;Providing a coating material on the light emitting diode;
    본딩 패드를 투과하지 못하는 광을 다층구조 반도체층에서 본딩 패드를 향하는 방향으로 코팅물질에 선택적으로 조사하여 발광다이오드에 경화된 코팅층을 형성하는 단계; 및Selectively irradiating light that does not pass through the bonding pad to the coating material in a direction from the multilayer semiconductor layer to the bonding pad to form a cured coating layer on the light emitting diode; And
    경화되지 않은 코팅물질을 제거하는 단계;를 포함하는 발광다이오드의 코팅 방법.Removing the uncured coating material; coating method of a light emitting diode comprising a.
  2. 청구항 1에 있어서,The method according to claim 1,
    본딩 패드 위에 구비된 코팅물질은 경화되지 않는 것을 특징으로 하는 발광다이오드의 코팅방법.Coating method of the light emitting diode, characterized in that the coating material provided on the bonding pad is not cured.
  3. 청구항 1에 있어서,The method according to claim 1,
    광은 다층구조 반도체층 하부로부터 본딩 패드에 수직한 방향으로 조사되는 것을 특징으로 하는 발광다이오드의 코팅 방법.The light is irradiated in a direction perpendicular to the bonding pad from the lower portion of the multilayer semiconductor layer coating method of the light emitting diode.
  4. 청구항 1에 있어서,The method according to claim 1,
    코팅물질은 광경화성 수지로 구비되며, 광은 자외선인 것을 특징으로 발광다이오드의 코팅 방법.The coating material is provided with a photocurable resin, the light is UV coating method, characterized in that the ultraviolet light.
  5. 청구항 4에 있어서,The method according to claim 4,
    본딩 패드는 자외선이 투과하지 못하는 전기 전도성 물질로 구비되는 것을 특징으로 하는 발광다이오드의 코팅 방법.Bonding pad is a coating method of a light emitting diode, characterized in that provided with an electrically conductive material that does not transmit ultraviolet light.
  6. 청구항 1에 있어서,The method according to claim 1,
    코팅물질은 형광체를 포함하는 것을 특징으로 하는 발광다이오드의 코팅 방법.The coating material is a coating method of the light emitting diode, characterized in that it comprises a phosphor.
  7. 청구항 1에 있어서,The method according to claim 1,
    경화된 코팅층 형성단계는 다층구조 반도체층 하부에 구비되는 포토 마스크를 사용하여 코팅물질에 선택적으로 광을 조사하는 것을 특징으로 하는 발광다이오드의 코팅 방법. Forming the cured coating layer is a method of coating a light emitting diode, characterized in that for selectively irradiating light to the coating material using a photo mask provided under the multilayer semiconductor layer.
  8. 청구항 1에 있어서,The method according to claim 1,
    포토 마스크는 하나의 발광다이오드와 대응되도록 구획되며 빛이 투과되는 적어도 하나의 윈도우를 가지며,The photo mask is partitioned to correspond to one light emitting diode and has at least one window through which light is transmitted.
    발광다이오드의 측면에 형성된 경화된 코팅층의 두께는 윈도우의 외곽선과 다층구조 반도체층의 수평간격에 의해 조절되는 것을 특징으로 하는 발광다이오드의 코팅 방법.The thickness of the cured coating layer formed on the side of the light emitting diode is a coating method of the light emitting diode, characterized in that controlled by the horizontal gap of the window and the multilayer semiconductor layer.
  9. 청구항 1에 있어서,The method according to claim 1,
    발광다이오드는 복수 개로 구비되며, 설정된 간격만큼 떨어져 배열되는 것을 특징으로 하는 발광다이오드의 코팅 방법. The light emitting diode is provided with a plurality, the coating method of the light emitting diode, characterized in that arranged at a predetermined interval apart.
  10. 청구항 9에 있어서,The method according to claim 9,
    복수의 개의 발광다이오드는 투광성 부재에 의해 일체로 고정되며,The plurality of light emitting diodes are integrally fixed by the light transmitting member,
    경화된 코팅층 형성단계는 투광성 부재의 하부에 구비되는 포토 마스크로써, 복수 개의 발광다이오드와 일대일 대응되도록 구획되며 빛이 투과되는 복수 개의 윈도우를 가지는 포토 마스크를 사용하여 코팅물질에 선택적으로 광을 조사하는 것을 특징으로 하는 발광다이오드의 코팅 방법.The cured coating layer forming step is a photo mask provided on the lower part of the light transmissive member, and selectively irradiates light onto the coating material by using a photo mask having a plurality of windows through which light is transmitted and partitioned to correspond to the plurality of light emitting diodes one-to-one. Coating method of the light emitting diode, characterized in that.
  11. 청구항 10에 있어서,The method according to claim 10,
    포토 마스크는 투광성 부재의 하면에 구비되는 것을 특징으로 하는 발광다이오드의 코팅 방법.The photo mask is provided on the lower surface of the light transmitting member, the coating method of the light emitting diode.
  12. 청구항 10에 있어서,The method according to claim 10,
    하나의 발광다이오드의 외곽선은 그와 일대일 대응되는 윈도우의 외곽선 내부에 위치되는 것을 특징으로 하는 발광다이오드의 코팅 방법.The outline of one light emitting diode is located inside the outline of the window corresponding one-to-one with the light emitting diode coating method.
  13. 청구항 10에 있어서,The method according to claim 10,
    코팅물질은 형광체를 포함하며,The coating material includes a phosphor,
    본딩 패드는 크롬(Cr)을 포함하는 전기 전도성 물질로 구비되는 것을 특징으로 하는 발광다이오드의 코팅 방법.Bonding pad is a coating method of a light emitting diode, characterized in that provided with an electrically conductive material containing chromium (Cr).
  14. 청구항 9에 있어서,The method according to claim 9,
    복수 개의 발광다이오드는 투광성 부재에 의해 일체로 고정되며, The plurality of light emitting diodes are fixed integrally by the light transmitting member,
    경화된 코팅층 형성단계는, 투광성 부재의 하면에 형성되는 패턴으로서, 빛이 투과하는 영역(A)과 투과하지 못하는 영역(B)을 포함하는 패턴을 사용하여 코팅물질에 선택적으로 광을 조사하는 것을 특징으로 하는 발광다이오드의 코팅 방법.The step of forming the cured coating layer is a pattern formed on the lower surface of the light transmissive member, and selectively irradiating light to the coating material using a pattern including a region A through which light passes and a region B through which light cannot pass. A method of coating a light emitting diode, characterized in that.
PCT/KR2010/002548 2010-04-23 2010-04-23 Method for coating an led WO2011132805A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2010/002548 WO2011132805A1 (en) 2010-04-23 2010-04-23 Method for coating an led

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2010/002548 WO2011132805A1 (en) 2010-04-23 2010-04-23 Method for coating an led

Publications (1)

Publication Number Publication Date
WO2011132805A1 true WO2011132805A1 (en) 2011-10-27

Family

ID=44834318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/002548 WO2011132805A1 (en) 2010-04-23 2010-04-23 Method for coating an led

Country Status (1)

Country Link
WO (1) WO2011132805A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019158648A1 (en) * 2018-02-19 2019-08-22 Signify Holding B.V. Sealed device with light engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040024545A (en) * 2001-02-21 2004-03-20 인터내셔널 비지네스 머신즈 코포레이션 High-Resolution Photoresist Structuring of Multi-Layer Structures Deposited onto Substrate
US6756186B2 (en) * 2002-03-22 2004-06-29 Lumileds Lighting U.S., Llc Producing self-aligned and self-exposed photoresist patterns on light emitting devices
KR20090076101A (en) * 2008-01-07 2009-07-13 서울대학교산학협력단 Method for coating light emitting diode
JP2009188237A (en) * 2008-02-07 2009-08-20 Fuji Xerox Co Ltd Manufacturing method of light emitting element array chip, microlens mold, light emitting element head, and image forming apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040024545A (en) * 2001-02-21 2004-03-20 인터내셔널 비지네스 머신즈 코포레이션 High-Resolution Photoresist Structuring of Multi-Layer Structures Deposited onto Substrate
US6756186B2 (en) * 2002-03-22 2004-06-29 Lumileds Lighting U.S., Llc Producing self-aligned and self-exposed photoresist patterns on light emitting devices
KR20090076101A (en) * 2008-01-07 2009-07-13 서울대학교산학협력단 Method for coating light emitting diode
JP2009188237A (en) * 2008-02-07 2009-08-20 Fuji Xerox Co Ltd Manufacturing method of light emitting element array chip, microlens mold, light emitting element head, and image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019158648A1 (en) * 2018-02-19 2019-08-22 Signify Holding B.V. Sealed device with light engine
JP2021508182A (en) * 2018-02-19 2021-02-25 シグニファイ ホールディング ビー ヴィSignify Holding B.V. Encapsulation device with light engine

Similar Documents

Publication Publication Date Title
US20190393066A1 (en) Micro device transferring method and micro device transferring apparatus
WO2013151387A1 (en) Method for manufacturing semiconductor device structure
WO2020013478A1 (en) Micro-led display and method for manufacturing same
WO2009088198A2 (en) Light emitting diode coating method
KR20120061376A (en) Method of applying phosphor on semiconductor light emitting device
WO2011037436A2 (en) Composite film for use in a light-emitting device, light-emitting device, and method for producing the composite film
WO2021125775A1 (en) Micro-led transfer method and micro-led transfer apparatus
EP1526574B1 (en) Semiconductor device, light emitting diode print head and image-forming apparatus using the same
JPH11307878A (en) Manufacture of light input/output device array
CN1139984A (en) Interconnection optical a fibre parallel
KR19980064844A (en) Light-emitting display device, method of connecting electric wiring board to same and manufacturing method thereof
WO2019112206A1 (en) Led display panel and manufacturing method therefor
EP2628176A2 (en) Radiant heat circuit board, method of manufacturing the same, heat generating device package having the same, and backlight
US10971890B2 (en) Micro laser diode transfer method and manufacturing method
WO2011132805A1 (en) Method for coating an led
WO2013024916A1 (en) Wavelength conversion chip for a light emitting diode, and method for manufacturing same
TWI470840B (en) Method for producing a plurality of semiconductor components
EP4046194B1 (en) Forming a multicolor phosphor-converted led array
CN106887507B (en) Light emitting device and method for manufacturing the same
US20200006924A1 (en) Micro Laser Diode Display Device and Electronics Apparatus
WO2021137625A1 (en) Display panel, display device, and method for manufacturing same
US20220238766A1 (en) Forming a multicolor phosphor-converted led array
WO2020242175A1 (en) Light emitting element having cantilever electrode, display panel having same, and display device
CN113363276B (en) Display panel and manufacturing method thereof
KR101051328B1 (en) Coating method for light emitting diode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10850288

Country of ref document: EP

Kind code of ref document: A1