WO2011132614A1 - Induction cooker - Google Patents

Induction cooker Download PDF

Info

Publication number
WO2011132614A1
WO2011132614A1 PCT/JP2011/059417 JP2011059417W WO2011132614A1 WO 2011132614 A1 WO2011132614 A1 WO 2011132614A1 JP 2011059417 W JP2011059417 W JP 2011059417W WO 2011132614 A1 WO2011132614 A1 WO 2011132614A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
top plate
pan
heated
estimated
Prior art date
Application number
PCT/JP2011/059417
Other languages
French (fr)
Japanese (ja)
Inventor
茂俊 一法師
和裕 亀岡
宏 中村
匡薫 伊藤
壮 北古味
宏和 吉岡
Original Assignee
三菱電機株式会社
三菱電機ホーム機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 三菱電機ホーム機器株式会社 filed Critical 三菱電機株式会社
Priority to JP2012511638A priority Critical patent/JP5340479B2/en
Publication of WO2011132614A1 publication Critical patent/WO2011132614A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/07Heating plates with temperature control means

Definitions

  • the present invention relates to an induction heating cooking appliance, and particularly to an induction heating cooking appliance capable of accurately estimating the surface temperature of a heated object such as a pan and heating the heated object at an appropriate temperature.
  • optical sensors optical temperature sensor
  • Japanese Patent Laid-Open No. 2004-227976 (FIG. 1)
  • the temperature of the top plate measured using a contact-type temperature sensor does not reflect the surface temperature of the pan in real time because of the large thermal resistance and heat capacity of the top plate made of heat-resistant glass, etc.
  • the surface temperature of the pan detected from the temperature of the top plate rises behind the actual surface temperature of the pan, so that the power supply to the heating coil could not be properly controlled.
  • the optical temperature sensor utilizes the fact that the radiant energy from a high-temperature object is proportional to the fourth power of the surface temperature.
  • the temperature reached by the pan surface during normal practical cooking about 150 ° C.
  • the radiant energy from the surface of the pan was so small that the surface temperature of the pan could not be accurately detected. That is, when the surface temperature of the pan detected using the optical temperature sensor is lower than the practical cooking temperature (immediately after the start of heating), the temperature detection accuracy is low, and the heating coil is the same as when using the contact temperature sensor. It was not possible to accurately control the power supply to the.
  • detecting the temperature using an optical temperature sensor is likely to impair the detection accuracy due to, for example, the surface condition of the pan (stained, glossy, etc.), and may be affected by other thermal power, contents, and the surrounding environment. It was easy to receive, making accurate detection of the surface temperature of the pan more difficult.
  • the present invention has been made in order to solve the above-described problems, and is provided with a top plate on which a heated object is placed at a predetermined interval ( ⁇ a ) and a lower portion of the top plate.
  • a heating coil that induction-heats the object to be heated
  • a drive circuit that supplies a high-frequency current to the heating coil
  • a temperature sensor that is disposed below the top plate and detects the temperature (T g ) of the top plate
  • a control unit There is provided an electrically heated cooker.
  • the induction heating cooker it is possible to supply an appropriate high-frequency current to the heating coil by detecting the surface temperature of the pan, which is the object to be heated, accurately and responsively (in real time). .
  • FIG. 3 is an enlarged partial sectional view in which a region indicated by a broken line in FIG. 2 is enlarged. It is a graph which shows the time transition of the estimated temperature of a pan estimated based on the measured temperature of a top plate by this invention with respect to the measured temperature of a pan.
  • FIG. 3 is an enlarged partial sectional view in which a region indicated by a one-dot chain line in FIG. 2 is enlarged.
  • 1 is a circuit block diagram of an induction heating cooker according to Embodiment 1.
  • FIG. 1 is a circuit block diagram of an induction heating cooker according to Embodiment 1.
  • FIG. 6 is a circuit block diagram of induction heating cooker 1 according to Embodiment 3.
  • FIG. It is a schematic perspective view similar to FIG. 1 of the induction heating cooking appliance 1 by Embodiment 3, Comprising: A displacement detection area
  • FIG. 1 is a perspective view schematically illustrating the entire induction heating cooker 1 according to the present invention.
  • An induction heating cooker 1 shown in FIG. 1 schematically includes a casing 2, a top plate 3 formed of heat-resistant glass or the like covering substantially the entire upper surface thereof, and a pair of induction heating type disposed symmetrically. It has IH heating units 4a and 4b, a radiant heating type radial heating unit 5, and a grill unit 6 suitable for cooking fish and the like.
  • Each IH heating section 4a, 4b has a heating coil 20 (FIG. 2) that is spirally wound in parallel with the top plate 3.
  • the induction heating cooker 1 having a so-called side grill structure in which the grill portion 6 is arranged to be biased to the left side of the housing 2 will be described as an example, but the present invention is limited to this.
  • the present invention can be equally applied to an induction heating cooker having a center grill structure in which the grill portion 6 is disposed at substantially the center of the housing 2 or an induction heating cooker that does not include the grill portion 6.
  • the radiant heating unit 5 may be an IH heating unit or may have a configuration similar to that of the IH heating units 4a and 4b.
  • the induction heating cooker 1 also includes an operation panel 7 and heating power adjustment dials 8a, 8b, and 8c used by the user to operate the IH heating units 4a and 4b, the radiant heating unit 5 and the grill unit 6, and controls thereof.
  • a liquid crystal display unit 9 for displaying the state is provided.
  • the induction heating cooker 1 has an intake hole 10 and an exhaust hole 11 provided on the top plate 3 adjacent to the rear wall of the housing 2.
  • FIG. 2 is an enlarged cross-sectional view of the induction heating cooker 1 of FIG. 1 as viewed from the line II-II.
  • a heated object P (hereinafter simply referred to as “pan”) is placed on the top plate 3. This shows the state.
  • the induction heating cooker 1 according to the present invention has a temperature sensor 30 such as a thermistor disposed so as to abut on the lower surface of the top plate 3, and can measure the temperature (T g ) of the top plate 3. it can.
  • the induction heating cooker 1 includes a drive circuit (inverter circuit) 60 for supplying a high-frequency current to the heating coil 20 of each IH heating unit 4 and a top plate 3 measured by the temperature sensor 30. Based on the surface temperature of the pan P estimated from the temperature (T g ) and the “heating power” (load heating value of the heating coil 20) set by the user with the heating power adjustment dial 8 or the like, an appropriate high-frequency current for the heating coil 20 The control circuit 50 controls the drive circuit 60 so as to supply (FIG. 6).
  • FIG. 3 is an enlarged partial sectional view in which a region indicated by a broken line in FIG. 2 is enlarged.
  • the control circuit 50 drives the drive circuit 60 according to a desired heating power set by the user using the operation panel 7 and the heating power adjustment dial 8 and supplies a high frequency current to the heating coil 20 provided below the pan P.
  • An alternating magnetic field (closed magnetic path) including the bottom plate B of the pan P around the heating coil 20 is formed.
  • an eddy current is formed near the surface of the bottom plate B of the pan P, and the bottom plate B of the pan P is heated by the Joule heat. That is, the pan P that is the object to be heated is directly induction heated.
  • the amount of heat generated when the bottom plate B of the pan P is heated cooks and heats the food F such as moisture contained in the pan P and is also transmitted to the top plate 3 below the bottom plate B.
  • the bottom plate B (and the top plate 3) of the pan P cannot be formed to be completely flat (the flatness is zero) and has a minute curved shape.
  • An air layer A having a predetermined interval or gap ( ⁇ a ) is formed therebetween.
  • heat is conducted from the lower surface of the bottom plate B of the pan P on the top plate 3 Q 1 for (i.e. the amount of heat Q 1 to conduct air layer A is formed between the lower surface and the top plate 3 of the bottom plate B of the pan P)
  • the amount of heat Q 1 generally increases as the temperature difference (T p ⁇ T a ) between the temperature (T p ) of the bottom plate B of the pan P and the surface temperature (T a ) of the top plate 3 increases.
  • the amount of heat Q 1 also depends on the thermal conductivity ( ⁇ a ) of the air layer A. Therefore, the amount of heat Q 1 conducted per unit time from the lower surface of the bottom plate B of the pan P to the top plate 3 is expressed by the following equation.
  • the amount of heat Q 2 conducted to the top plate 3 is transmitted from the upper surface to the lower surface of the top plate 3.
  • the amount of stored heat Q 2 is the mass (M), specific heat (c g ), and temperature (T g ) of the top plate 3. It is expressed by the following equation using the time change rate ( ⁇ T g / ⁇ t).
  • T p Estimated temperature of pan P
  • T g Temperature of top plate measured by temperature sensor ⁇ a : Spacing between pan P and top plate ⁇ g : Density of top plate c g : Specific heat of top plate ⁇ g : Top plate thickness ⁇ a : Thermal conductivity of air That is, since the coefficient C is a constant uniquely determined by the top plate 3, the temperature T p of the bottom plate B of the pan P is the lower surface of the bottom plate B of the pan P The distance ( ⁇ a ) of the air layer A formed between the top plate 3 and the temperature T g of the top plate 3 measured by the temperature sensor 30 and the rate of change over time ( ⁇ T g / ⁇ t) are used. Can be expressed.
  • FIG. 4 is a graph obtained by plotting the temporal transition of the above i) to iii).
  • a spacer (thickness: 1.5 mm) is arranged between the pan P and the top plate 3 so that the interval ( ⁇ a ) of the air layer A is defined as 1.5 mm, and the heating coil 20 has a high frequency for 250 seconds. After supplying the current to heat the pan P, the power supply to the heating coil 20 was stopped.
  • the estimated temperature of the pan P obtained by the above equation (3) generally approximates (estimates) the measured temperature of the pan P immediately after the start of heating with good followability.
  • the surface temperature of the pan P is estimated from the measured temperature (T g ) of the top plate 3 very precisely with good followability. It was confirmed from the graph of FIG.
  • the actual thermal conductivity ( ⁇ g ) of the glass that is the constituent material of the top plate 3 is about 1 W / (m ⁇ K), but is assumed to be infinite.
  • the formula (3) was derived, it was confirmed that the estimated temperature of the pan P obtained based on the above formula (3) accurately approximates the actually measured temperature of the pan P.
  • the density, specific heat, and thickness of the glass constituting the top plate 3 are design matters and are known (the coefficient C is uniquely determined), so that the distance between the pan P and the top plate 3 ( ⁇ a ), the measured temperature (T g ) of the top plate 3 and the rate of change over time ( ⁇ T g / ⁇ t), the temperature of the pan P can be accurately tracked using the above equation (3) (in real time) ) Can be estimated accurately.
  • FIG. 5 is an enlarged partial sectional view in which a region indicated by a one-dot chain line 24 in FIG. 2 is enlarged.
  • the distance ( ⁇ a ) between the bottom plate B of the pan P and the top plate 3 varies widely in the entire region of the bottom plate B of the pan P, the variation in Joule heat generated by the region (part) of the heating coil 20 also increases.
  • the interval ( ⁇ a ) varies depending on the position where the pan P is placed, the estimated temperature of the pan P obtained by the above equation (3) also varies. Therefore, it is preferable to process the bottom plate B and the top plate 3 of the pan P so as to have high flatness, and it is preferable to maintain or define the distance ( ⁇ a ) as constant as possible.
  • the top plate 3 and the bottom plate of the pan P are processed into a shape with high flatness, and a plurality of pieces are formed on the peripheral portion of the bottom plate B of the pan P.
  • the protruding portion 25 (FIG. 5A) or the protruding portion 26 (FIG. 5B) may be formed.
  • the top plate 3 may be provided with the protrusions 27 (FIG. 5C) at a plurality of positions.
  • the protrusions 27 on the top plate 3 are preferably disposed at various positions in the radial direction. .
  • a ridge shape (not shown) extending radially from the center of the IH heating unit 4 may be used.
  • a flat plate or a ring plate 28 (FIG. 5 (d)) having a certain thickness is used as the gap regulating spacer (interval maintaining means). And the top plate 3 may be interposed.
  • the gap defining spacer 28 may be formed using a rigid material or a flexible material.
  • FIG. 6 is a circuit block diagram of the induction heating cooker 1 according to the first embodiment of the present invention.
  • the induction heating cooker 1 includes a drive circuit (inverter circuit) 60 for supplying a high-frequency current to the heating coil 20 and a temperature sensor 30 such as a thermistor for measuring the temperature (T g ) of the top plate 3. And a temperature estimation circuit 40 that estimates the surface temperature of the pan P from the measured temperature (T g ) of the top plate 3.
  • the induction heating cooker 1 has a drive circuit so that an appropriate high-frequency current is supplied to the heating coil 20 based on the “heating power” (load heat generation amount) set by the user with the setting device 70 such as the heating power adjustment dial 8.
  • the 60 has a control circuit 50 for controlling 60.
  • the control circuit 50 receives information about the temperature (T p ) of the pan P, which is precisely estimated with good followability as described above, from the temperature estimation circuit 40 so that a more accurate high-frequency current is supplied.
  • the drive circuit 60 is controlled.
  • the induction heating cooker 1 is preferably described in detail later, but when it is detected that the estimated temperature of the pan P is abnormally high, such as when the estimated temperature of the pan P reaches an abnormally high temperature,
  • a warning device 80 such as a liquid crystal display unit 9 for displaying a beep or a warning display for receiving a warning signal from 50 and generating a warning sound for giving a warning to the user.
  • the control circuit 50 responds accordingly.
  • the drive circuit 60 is controlled to supply a high frequency current to the heating coil 20.
  • a high frequency current is supplied to the heating coil 20
  • a high frequency magnetic field is generated around the heating coil 20
  • an eddy current is generated in the bottom plate B of the pan P
  • the pan P is heated by the Joule heat.
  • the heat generated in the bottom plate B of the pan P by induction heating is transmitted from the pan P to the food F, and the food F is cooked.
  • the heat generated in the bottom plate B of the pan P is transmitted to the top plate 3 through the air layer A formed therebelow to raise the temperature of the top plate 3.
  • the temperature sensor 30 provided below the top plate 3 continuously measures the temperature (T g ) of the top plate 3 and transmits the measurement signal to the temperature estimation circuit 40.
  • the temperature estimation circuit 40 calculates the time change rate of the temperature (T g ) based on the measurement signal from the temperature sensor 30 as described above, and the known interval between the pan P and the top plate 3 ( The surface temperature of the pan P is estimated using ⁇ a ), and the signal is transmitted to the control circuit 50.
  • the control circuit 50 calls a drive program (default value) stored in a memory (not shown) built in the control circuit 50 in accordance with the input signal set by the setting device 70, and based on this drive program A driving signal is transmitted to the driving circuit 60 and, if necessary, a warning signal is supplied to the warning device 80 to give a warning to the user.
  • a drive program default value stored in a memory (not shown) built in the control circuit 50 in accordance with the input signal set by the setting device 70, and based on this drive program A driving signal is transmitted to the driving circuit 60 and, if necessary, a warning signal is supplied to the warning device 80 to give a warning to the user.
  • the drive circuit 60 drives a semiconductor switching element such as an IGBT by a drive signal from the control circuit 50, supplies an appropriate high-frequency current to the heating coil 20, and according to an input signal set by the setting device 70. Adjust the heating power to the pan P.
  • the warning device 80 gives a warning to the user based on a warning signal from the control circuit 50.
  • control circuit 50 repeatedly monitors the setting signal from the setting device 70 and the measurement signal from the temperature sensor 30 in the above-described series of operations, so that the cooking state desired by the user is obtained.
  • the drive circuit 60 can be controlled to maintain the above.
  • the measured temperature (T g ) of the top plate does not change responsively to the measured temperature of the pan P, the accurate temperature of the pan P can be detected in real time.
  • the cooking state desired by the user cannot always be realized. For example, although the actual temperature of the pan P is sufficiently high and the food F is boiling, the pan P may be heated excessively to cause spillage.
  • the responsiveness of the estimated temperature of the pan P is increased and actually Since the temperature can be approximated by the temperature of the pan P, the user can grasp the desired cooking state with good followability.
  • the top plate 3 is generally a translucent glass plate. However, when a contact temperature sensor such as a thermistor is used in the present invention, a non-translucent glass plate may be used. In addition, the temperature of the pan P can be accurately detected with good responsiveness. Therefore, according to the present invention, it is possible to improve the design by forming a non-translucent film (paint) on the surface of the top plate 3, and the top plate 3 can be colored glass material, resin material, ceramic. It is also possible to improve the heat resistance and impact resistance by using a material and a clad material (for example, a laminated structure in which the surface is made of glass and the back is made of resin or the like, a glass base resin laminated plate).
  • a material and a clad material for example, a laminated structure in which the surface is made of glass and the back is made of resin or the like, a glass base resin laminated plate.
  • resin materials and ceramic materials have excellent impact resistance and moldability, can suppress cracking (crushing) of the top plate 3, and have various shapes (concave shapes, convex shapes, curved shapes at corners). Etc.), and can be formed integrally with a frame member provided on the peripheral portion (not shown) of the top plate 3, thereby reducing the number of parts and manufacturing. Cost can also be reduced.
  • the top plate 3 by producing the top plate 3 using a material having excellent formability, moisture is generated when the food F is blown out on the surface of the top plate 3 to guide the proper placement position of the pan P or the food F. Concavities and convexities that constitute guides or flow paths for guiding the above can be easily formed. Furthermore, by forming Braille on the top plate 3, it is possible to provide the induction heating cooker 1 that is easy to use even for visually impaired persons.
  • the ingredients contained in the heated object P are foods such as water, soup stock, oil, vegetables, meat and fish.
  • the to-be-heated body P means what accommodates the said foodstuffs, such as a pan, a frying pan, a kettle which can be heated by induction heating.
  • the setting device 70 refers to the operation state of the induction heating cooker 1 such as an ON / OFF switch of a power source, a cooking mode, a thermal power mode, or a pan temperature selection switch in addition to the operation panel 7 and the thermal power adjustment dial 8 described above. This means that a signal for setting is input to the control circuit 50.
  • the pan P estimated by the temperature estimation circuit 40 is used.
  • the heating power may be adjusted according to the cooking program of the rice cooking mode stored in the memory. Also, select the fried food cooking mode with the cooking mode selection switch, set the pan temperature to “180” ° C. using the pan temperature selection switch, and adjust the heating power so that the oil temperature is kept constant. You can also.
  • the induction heating cooker 1 also has a communication device (communication cable, infrared sensor, etc.) that enables communication with a slot that accepts an electronic storage medium (SD card, USB) or an external PC or mobile phone as the setting device 70. ) May be included.
  • a communication device communication cable, infrared sensor, etc.
  • the warning device 80 is a warning when the safety standard is deviated by using sounds such as synthetic voice, beep sound, melody, etc. in addition to the liquid crystal display unit 9 or using light such as lighting / flashing of light. Or something that informs the user of the cooking status. Moreover, you may make it display the temperature of the actual pan P in the liquid crystal display part 9 in real time so that it can compare with the temperature of the pan P set with the setting apparatus 70 by the user. Further, the progress of cooking may be displayed on the liquid crystal display unit 9.
  • any sensor in addition to the thermistor (which estimates the temperature by utilizing the characteristic that the electrical resistance of the semiconductor changes depending on the temperature), any sensor can be used as long as it can measure the temperature of the top plate 3 ( Contact temperature sensors and optical temperature sensors) can be used.
  • a contact-type temperature sensor uses, for example, a thermocouple (a weak thermoelectromotive force generated according to the temperature difference between the two ends when a temperature is applied to the joint with a temperature sensor in which one end of two types of metal wires having different properties is joined.
  • Temperature sensor Temperature sensor
  • resistance thermometer if the material is metal, the temperature is estimated using the property that the electrical resistance increases in proportion to the temperature
  • radiation thermometer the object radiates
  • Infrared energy received by an infrared sensor and a reference temperature correction, emissivity correction, etc. are applied to estimate the temperature).
  • a film painting or the like that suppresses transmission of infrared light may be formed on the lower surface of the top plate 3.
  • FIG. Embodiment 2 of the induction heating cooker according to the present invention will be described in detail below with reference to FIG.
  • the pan 25 and the top plate 3 are provided with the protrusion 25, the protrusions 26 and 27, or the gap-defining spacer 28 having a known thickness in order to define the interval ( ⁇ a ).
  • the induction heating cooker 1 of the second embodiment performs a boiling test for each pot P used to measure and store an appropriate interval ( ⁇ a ). Since it has the same configuration as the electromagnetic cooker 1 of the first embodiment except for the points to be described, the description of the overlapping points is omitted.
  • the induction heating cooker 1 performs a boiling test in advance before actually using a new pan P, and measures and stores an appropriate interval ( ⁇ a ). It is configured as follows.
  • the boiling test will be described below.
  • Water is put into the pan P and the pan P is heated with a constant heating power. After the temperature of the water stored in the pan P gradually rises and reaches 100 ° C., the water is maintained in a boiling state (100 ° C.), and all the Joule heat generated in the bottom plate B of the pan P is vaporized. Since it is consumed as heat, the temperature of the bottom plate B of the pan P also converges to a constant value.
  • FIG. 7 shows the measured temperature of water when the pan P containing water is heated for about 12 minutes with a constant heating power, the temperature (T g ) of the top plate 3 measured by the temperature sensor 30, and another temperature sensor (not shown). 3) is a graph plotting the temporal transition of the temperature of the pan P actually measured in (1).
  • FIG. 7 plots the transition of three types of estimated temperatures T1, T2, and T3.
  • the temperature of water reaches a boiling state of 100 ° C. after 130 seconds, and similarly the measured temperature of the pan P rises steeply until 130 seconds, and then enters a thermal equilibrium state to reach a substantially constant temperature (about approximately 135 ° C.).
  • the measured temperature (T g ) of the top plate rises gently as in the graph of FIG. 4, but reaches the measured temperature (about 135 ° C.) of the pan P after about 12 minutes.
  • the estimated temperature T1 is estimated using an interval ( ⁇ a ) that is larger than the actual temperature, and after the substantial time has passed after the peak (maximum point) is exceeded, the estimated temperature T1 is changed to the measured temperature of the pan P.
  • the estimated temperature T2 was estimated using a smaller interval ( ⁇ a ) than the actual temperature, and it took a considerable time to approach the measured temperature of the pan P asymptotically.
  • the estimated temperature T3 is estimated using a value that most closely matches the actual interval ( ⁇ a ), and converges to the measured temperature of the pan P most rapidly (after 130 seconds). .
  • the interval ( ⁇ a ) when the estimated temperature according to the above equation (3) converges to the predetermined temperature (the measured temperature of the pan P in an equilibrium state) in the shortest time is the pan P and the top plate. 3 is considered to represent the actual spacing between the two.
  • the temperature estimation circuit 40 determines the time until the estimated temperature (T p ) is determined to converge to a predetermined temperature (for example, the 10-second fluctuation of the estimated temperature is plus or minus 1 ° C. with respect to the predetermined temperature).
  • the interval ( ⁇ a ) that minimizes the time until it is determined that the transition is made in the range of () is determined, and this is a characteristic characteristic of the pan P, and is associated with the pan P in the temperature estimation circuit 40. (Not shown).
  • the interval ( ⁇ a ) once associated with the pan P and recorded in the memory is called to the temperature estimation circuit 40 when the pan P is specified by the setting device 70 in use after the boiling test. Then, the temperature estimation circuit 40 sets the interval ( ⁇ a ) individually measured for the pan P in the boiling test, the measured temperature (T g ) of the top plate 3, and the rate of change over time ( ⁇ T g / ⁇ t). Based on the above equation (3), the surface temperature of the pan P can be estimated precisely.
  • the temperature of the water contained in the pot P increased with a large temperature gradient until about 130 seconds, but after about 130 seconds, the temperature gradient became 0, and the temperature was 100 ° C. (boiling). ).
  • the estimated temperature using an appropriate interval ( ⁇ a ) according to the present invention changes in response to the measured temperature of the pan P, although the temperature changes with a gentle temperature rise gradient in about 110 to about 130 seconds.
  • the temperature of the pan P increased with a large temperature gradient until about 100 seconds, but after about 100 seconds, the temperature gradient was almost 0, and the temperature converged at 135 ° C. These show that subcooled boiling occurred from about 80 to about 100 seconds and saturated boiling after about 100 seconds. Although there was a time lag, the measured temperature of the pan P, the measured temperature of water, and The estimated temperature of the pan P according to the present invention has a temperature gradient of 0 when boiling starts. Therefore, according to the present invention, it is possible to detect the start of boiling when the estimated temperature gradient changes suddenly or when the temperature gradient becomes almost zero.
  • the boiling state is detected in actual cooking, boiling water, boiling disinfection, etc., and the heating coil 20 is optimally driven by the control circuit 50 to adjust the heating power, thereby preventing excessive heating and saving energy. It is possible to improve, and spillage and liquid scattering can be suppressed.
  • the pan P filled with water is placed on the top plate 3, heated by the heating coil 20, and based on the temperature detected by the temperature sensor 30. estimating a distance ([delta] a) between the bottom plate B and the top plate 3 of the pot P, since the memory as a characteristic of the pan P, in an actual cooking of boiled testing, proper spacing of pots P according ([delta] a ) Can be used to accurately estimate the surface temperature of the pan P.
  • the interval ( ⁇ a ) unique to the pan P is measured and stored, so that the stored data is used when actually cooking.
  • the temperature of the pan P can be accurately measured.
  • errors due to changes in the pan P over time such as deformation of the pan P and adhesion of dirt, can be reduced.
  • the interval ( ⁇ a ) between the bottom plate B and the top plate 3 of the normal pan P is about 0.3 to 0.8 mm, and by setting 0.5 mm as the specified value (default value), Temperature detection suitable for actual use is possible.
  • a calibration button (not shown) provided on the setting device 70 is pushed, and only the specific pan P is pressed. You may calibrate by the said boiling test. This operation is memorized about pan a, pan b, pan c, etc., and the temperature detection suitable for each pan P can be performed by reading the setting of pan B that is actually desired to be used from the setting device.
  • the said method was described as a method calibrated beforehand as a boiling test, it can be implemented also at the time of an actual cooking, and you may optimize a space
  • the time until the contents accommodated in the pan P boil that is, the total amount of heat applied to the pan P to boil the water (specified heating amount Q 0 ) and the difference between the contents and the temperature of the bottom plate B of the pan P ( ⁇ T p0 ), that is, the degree of superheat ( ⁇ T P0 ) of the bottom plate B with respect to the specified heating amount (Q 0 ).
  • the degree of superheat ( ⁇ T P ) of the bottom plate B with respect to an arbitrary heating amount (Q) applied to the pan P can be estimated by the following equation.
  • the index (n) is a value of 0.5 to 0.9, preferably a value of 0.6 to 0.8, and can be determined in advance by a boiling test. Therefore, the predetermined heating amount (Q 0 ), the degree of superheat ( ⁇ T P0 ) of the bottom plate B, and the index (n), which are parameters in the above equation (4), are stored in advance in a memory (not shown), thereby allowing an arbitrary heating amount.
  • the temperature ( ⁇ T P ) of the bottom plate B when (Q) is added can be estimated from the above equation (4).
  • the temperature of the food F may be transmitted to the user instead of the temperature of the bottom plate B of the pan P.
  • the temperature of the pan P is estimated by assuming an arbitrary gap larger than the actual one, rather than estimating the interval ( ⁇ a ) between the bottom plate B and the top plate 3 of the pan P. 7, when the estimated temperature starts to decrease (overshoot), it can be determined that the contents stored in the pan P have started to boil. Due to the decrease in the estimated temperature, the start of boiling can be estimated and can be used as a criterion for various controls. Further, that the time rate of change of temperature (T g) of the top plate 3 ( ⁇ T g / ⁇ t) showed a maximum value may be estimated based on the start of boiling.
  • the accuracy of the time change rate ( ⁇ T g / ⁇ t) is important, it is preferable to perform an averaging process.
  • the temperature of the top plate 3 (T g) are averaged by calculating the time rate of change ( ⁇ T g / ⁇ t), it is possible to improve the prediction accuracy.
  • Embodiment 3 The third embodiment of the induction heating cooker according to the present invention will be described in detail below with reference to FIG.
  • the induction heating cooker 1 according to the second embodiment measures the interval ( ⁇ a ) for each pan P by a boiling test, but the induction heating cooker 1 according to the third embodiment uses the interval ( ⁇ Since it has the same configuration as the electromagnetic cooker 1 of Embodiment 1 except that a displacement sensor 90 for measuring a ) is separately provided below the top plate 3, the description of the overlapping points is omitted.
  • FIG. 8 is a circuit block diagram of the induction heating cooker 1 according to the third embodiment of the present invention.
  • the induction heating cooker 1 according to the third embodiment has a displacement sensor 90 that measures a distance ( ⁇ a ) between the bottom plate B of the pan P and the top plate 3 below the top plate 3.
  • the measured interval signal is input to the temperature estimation circuit 40. That is, according to the induction heating cooker 1 of the third embodiment, the interval ( ⁇ a ) is directly measured using the displacement sensor 90 before or during cooking, and the temperature of the pan P is accurately estimated. Can do. Therefore, unlike Embodiment 2, it is not necessary to perform a boiling test in advance, and for all pans P whose distance ( ⁇ a ) from the top plate 3 is unknown, the pan using the above equation (3) The temperature of P can be estimated precisely.
  • any sensor can be adopted as long as the distance ( ⁇ a ) between the pan P and the top plate 3 can be estimated.
  • the displacement sensor 90 may be a method, a triangulation method, an autocollimation method, a laser non-contact method, an ultrasonic method, or a capacitance method. A displacement sensor according to each of these methods will be schematically described below.
  • the eddy current type displacement sensor generates a high-frequency magnetic field by passing a high-frequency current through a coil inside the sensor head, and when there is an object (pan P) in this magnetic field, the surface of the object is perpendicular to the passage of the magnetic field.
  • Directional eddy current flows, and energy loss due to the eddy current changes depending on the distance to the object, and a change in the transmission state due to the eddy current loss is detected to estimate the distance.
  • the laser light passes through the objective lens that moves up and down at high speed by the tuning fork, focuses on the object, and the reflected light is condensed at one point at the position of the pinhole, and the light receiving element
  • the distance can be estimated by measuring the position of the objective lens at that moment with a sensor.
  • the displacement sensor of the triangulation system diffuses and reflects the projected laser light on the surface of the object, condenses a part of the reflected light with a light receiving lens and forms an image on the CCD, and the object is displaced. Then, the angle at which the diffusely reflected light is collected changes and the imaging position on the CCD moves, but the distance is estimated by detecting the imaging position.
  • an autocollimation type displacement sensor In an autocollimation type displacement sensor, parallel laser light that has been irradiated from a laser light emitting element and then converted in parallel by a collimator lens is reflected by an object, collected by a light receiving lens, and located on the focal length of the lens. An image is formed on a CCD element. Since the image formation position at this time changes depending on the irradiation laser beam and the angle of the object, the image formation position on the CCD also changes when the inclination of the object changes. The distance can be estimated by converting the amount of change into an angle.
  • the light in the wide wavelength band emitted from the laser light source is partially reflected by the reference surface inside the head, and the transmitted light is regularly reflected by the object and returned to the head.
  • the two reflected lights interfere with each other, and the intensity of the interference light of each wavelength is determined by the distance between the reference surface and the object, and becomes maximum when the wavelength is an integral multiple of the wavelength.
  • the ultrasonic displacement sensor transmits ultrasonic waves from the sensor head, receives the ultrasonic waves reflected by the object again with the sensor head, and measures the time from transmission to reception of the sound waves to estimate the distance. Is.
  • the capacitance type displacement sensor estimates the distance using the change in the capacitance because the capacitance changes with the reciprocal of the distance when an electric field is applied to the object.
  • the displacement sensors it is preferable to employ a non-optical displacement sensor that is not affected by dirt or liquid spillage on the top plate 3.
  • the heating coil 20 since the heating coil 20 equivalent to an eddy current sensor or a capacitance sensor is mounted, the heating coil 20 may be used as these displacement sensors. Further, one heating coil 20 of the multiple arranged heating coils 20 may be used so that the displacement sensor 90 and the heating coil 20 are combined.
  • the temperature sensor 30 is preferably disposed at a position where the distance ( ⁇ a ) is measured by the displacement sensor 90, that is, close to the displacement sensor 90.
  • the pan P is formed with a region where the food (especially moisture) is likely to boil (a boiling region) and a region where the boiling is difficult (a non-boiling region). Since more vaporization heat is taken away from the non-boiling region and the temperature becomes low, the temperature distribution may vary in the entire bottom plate B of the pan P. Therefore, it is preferable to provide a large number (a plurality) of temperature sensors 30 at a plurality of positions facing the heating coil 20.
  • the displacement sensor and the temperature sensor 30 are provided inside the inner diameter of the heating coil 20.
  • the pan P generally used has various sizes (diameters)
  • the displacement sensor and the temperature sensor 30 preferably have a radius from the center of the heating coil 20 in order to accurately detect the temperature even in the small-diameter pan P. It arrange
  • the displacement sensor 90 may be arranged outside the IH heating unit 4 (and the radiant heating unit 5) as shown in FIG. 9 instead of being provided inside the inner diameter of the heating coil 20.
  • the induction heating cooker 1 has a displacement detection region 92 for measuring the interval ( ⁇ a ) between the pan P and the top plate 3, and the displacement sensor 90 is substantially at the center of the displacement detection region 92. It is disposed below the top plate 3.
  • the user places the pan P in the displacement detection region 92 before cooking and heating using the pan P, and automatically measures the interval ( ⁇ a ) by pressing a measurement switch (not shown).
  • the interval ( ⁇ a ) is stored in the memory of the temperature estimation circuit 40 or the control circuit 50. Thereafter, the user moves the pan P onto the IH heating unit 4 to start cooking and heating, and the induction heating cooker 1 estimates the temperature of the pan P using the interval ( ⁇ a ) stored in the memory. .
  • the displacement sensor 90 is disposed below the displacement detection region 92 that is maintained at a relatively low temperature, a displacement sensor having a lower heat resistance temperature (lower cost) can be used. Further, even in the induction heating cooker 1 having a plurality of IH heating units 4, the single displacement sensor 90 can be shared, the space in the housing 2 can be effectively used, and the heating coil 20 can be located inside. Complicated circuit wiring can be avoided as compared with the case where it is provided. In this case, in order to make it easier for the user to place the pan P in the displacement detection area 92, it is preferable to display a marking such as a graphic indicating the displacement detection area 92 on the top plate 3.
  • the temperature sensor 30 and the displacement sensor 90 are exposed to a strong magnetic field and a high temperature atmosphere by the heating coil 20 especially when provided inside the inner diameter of the heating coil 20, so that as shown in FIG. Alternatively, it is preferable to protect from a strong magnetic field and a high temperature atmosphere by surrounding it with a magnetic shield pipe 94).
  • the temperature sensor 30 and the displacement sensor 90 may be housed in separate protective tubes 94, but may be protected by a single protective tube 94 when arranged adjacent to each other.
  • the protective tube 94 is for suppressing the high-frequency magnetic field from the heating coil 20 and protecting the temperature sensor 30 and the displacement sensor 90.
  • the protective tube 94 is made of copper, aluminum, ferrite, or the like that has a magnetic shielding effect and is difficult to be induction-heated. It is preferable that it is a cylindrical tube formed by the following.
  • the protective tube 94 is preferably a seamless copper tube, and its thickness is 0.8 mm or more, more preferably 1.0 mm or more.
  • the protective tube 94 is exposed to a high temperature by a strong magnetic field or radiant heat from the heating coil 20, it is preferable to provide a gap between the temperature sensor 30 and the mutation sensor 90.
  • the inner surface of the protective tube 94 is brought into contact with the sensor via a spacer or a rib so that the contact area is made as small as possible.
  • the wiring which transmits a signal from the temperature sensor 30 and the displacement sensor 90 to the temperature estimation circuit 40 employs a twisted line or a covered wiring, or is wound around a ferrite rod a plurality of times, thereby causing noise caused by a high-frequency magnetic field. It is preferable to estimate the temperature of the pan P based on the temperature (T g ) and the interval ( ⁇ a ) of the top plate 3 more accurately measured while suppressing (disturbance).
  • the contact-type temperature sensor 30 such as a thermistor usually has a high heat transfer structure (for example, aluminum) that contacts the top plate 3 with as wide a contact area as possible in order to reduce the contact thermal resistance with the top plate 3 as much as possible.
  • a high heat transfer structure for example, aluminum
  • it is preferably embedded in a material (for example, ceramic, resin, etc.) that is not induction heated by a high frequency magnetic field. Thereby, it can prevent that the temperature sensor 30 becomes high temperature, and can measure the temperature ( Tg ) of the top plate 3 more correctly.
  • FIG. 11A is a side sectional view of the thermistor 100 and its peripheral portion
  • FIG. 11B is a sectional view taken along the line BB in FIG. 11A
  • FIG. The CC sectional view in a) is shown.
  • the thermistor 100 is housed in a high heat transfer structure 101, and the high heat transfer structure 101 is attached to the coil base using a resin folder 102.
  • the folder 102 has a folder cage 102a, and a spring 103 for biasing the folder cage 102a upward is provided in order to press the high heat transfer structure 101 against the top plate 3.
  • the protective tube 94 having an inner diameter larger than the outer diameter of the folder 102 is provided. It is preferable to provide an insulator 104 (for example, a mica plate) in order to insulate between the protective tube 94 and the high heat transfer structure 101, as shown in FIGS. 11B and 11C. It is preferable to provide a plurality of ribs 105 on the folder outer wall 102b and the folder basket 102a to provide a gap between the protective tube 94 and the folder 102 and to reduce the contact area between the protective tube 94 and the folder 102.
  • an insulator 104 for example, a mica plate
  • the temperature sensor 30 is heated by radiant heat from the heating coil 20 particularly when it is disposed close to the heating coil 20. Therefore, in addition to or instead of the protective tube 94, a heat insulating material (not shown) for blocking heat transfer from the heating coil 20 may be provided around the temperature sensor 30. In this case, a gap may be provided between the temperature sensor 30 and the heat insulating material, and cooling may be performed by flowing air (wind) through the gap.
  • the control circuit 50 can perform various abnormal modes (ignition, oil smoke, bumping). , Spilling, emptying, scorching, etc.) can be detected, and the drive circuit 60 can be emergency stopped or reduced in thermal power (including stepwise reduction), thus improving safety during cooking.
  • the oil ignites when the temperature of the pan P exceeds a predetermined temperature.
  • the temperature rises easily and ignition is likely. Therefore, when the time change rate ( ⁇ T g / ⁇ t) of the temperature (T g ) of the top plate 3 obtained by the temperature estimation circuit 40 at this time exceeds a predetermined positive threshold, the control circuit 50 Therefore, the drive circuit 60 is stopped in an emergency.
  • the control circuit 50 determines that there is a spill and the heating coil
  • the drive circuit 60 is controlled so as to suppress the high-frequency current supplied to 20.
  • the warning device 80 when the abnormal mode is detected, can be used to give a warning to the user. This is particularly useful when the user leaves the induction heating cooker 1.
  • the control circuit 50 controls various warning devices 80, emits a beep, outputs a synthesized voice, lights or flashes a warning lamp, or displays a warning on the liquid crystal display unit 9. Can be made. Thereby, when the abnormal mode is detected, the control circuit 50 promptly notifies the user to call attention and stop or suppress the power supply to the heating coil 20 to realize higher safety. Can do.
  • the control circuit compares the temperature of the pan P set by the heating power adjustment dial 8 or the like with the temperature of the pan P precisely estimated by the above equation (3).
  • the drive circuit 60 can be controlled so as to heat with an optimum heating power.
  • the actual temperature can be displayed in real time on the liquid crystal display unit 9 instead of the temperature of the pan P set as in the prior art, the heating power adjustment according to the cooking method desired by the user is realized. And it can help you complete delicious dishes more easily.
  • the temperature of the frying pan P is set in advance to prevent emptying that reaches an abnormal temperature.
  • the frying pan P can be maintained at an appropriate and safe preheating temperature.
  • the temperature of the pan P can be accurately estimated even when cooking a stewed dish such as oden, or when heated and kept at a low temperature such as hot salmon or milk, so that it can be reliably set to a desired temperature.
  • the temperature increase rate (dT / dt) of the pan P and the food F is determined by the following equation using the heat capacity C and the input heating amount Q: It is represented by Therefore, by providing a circuit for estimating the heat capacities of the pot P and the food F based on the estimated rate of time change (dT / dt) of the temperature of the pot P and the input electric power, the time until the boiling state is reached is provided.
  • the user can estimate and display, and the user can know the timing of putting the food F into the pan P and the cooking completion time, and can efficiently cook. Also, the cooking time can be controlled and shortened by optimal heating control.
  • the induction heating cooker 1 is provided with a menu selection device (not shown) that allows a specific menu such as rice cooking to be selected, and controls a cooking program in which cooking time and heating power are set for the selected menu. You may memorize
  • the induction heating cooker 1 may have an additional memory slot (both not shown) in which an external memory is detachable, and may perform “automatic cooking” according to a cooking program stored in the external memory.
  • the cooking program stored in the external memory can be freely changed or updated from a PC or an appropriate electronic storage medium, and the latest cooking method, professional cooking method, and cooking method of your choice can be easily done. Can be reproduced.
  • the user can perform actual cooking while receiving instructions on the cooking method and procedure guidance of the cooking program stored in advance. You can also enjoy it. Similarly, the user can use these devices to cook while listening to favorite music during cooking.
  • the degree of superheat due to boiling heat transfer is related by heat flux (transfer heat per unit area). That is, the temperature of the pan P at any thermal power (the temperature obtained by adding the superheat degree to the boiling point of water) is known, and the temperature of the pan P described above is determined by considering the superheat degree associated with the thermal power.
  • the temperature of the food F accommodated in the pan P can be set, and the temperature of the pan P described above can be displayed, set and controlled as the temperature of the food F.
  • a correction term may be considered in the estimated value.
  • the correction term the cooling section by the air supply (e.g., the function f (T g, T air), where T air temperature of the cooling air), radiant section from the induction heating coil (for example, the function f (T g, T c ), where T c is the temperature of the induction heating coil), contact thermal resistance between the temperature sensor and the top plate (for example, function f (T g , Q)), and the like. Therefore, it is preferable to have means for measuring the temperature of the cooling air (T air ) and the temperature of the induction heating coil (T c ).

Abstract

Disclosed is an induction cooker which supplies an appropriate high-frequency current to a heating coil by detecting the surface temperature of a pan, which is the object to be heated, accurately and with good responsiveness. The disclosed induction cooker is provided with: a top plate, onto which the object to be heated is placed at a specified interval (δ) therefrom; a heating coil which is arranged below the top plate and which induction heats the object to be heated; a drive circuit which supplies a high-frequency current to the heating coil; a temperature sensor which is arranged below the top plate and which detects the temperature (Tg) of the top plate; a temperature estimation circuit which calculates the change rate over time (∂T/∂ t) of the top plate temperature (Tg) detected by the temperature sensor, and estimates the temperature (Tp) of the surface of the object to be heated on the basis of the interval (δ) and the change rate over time (∂T/∂ t); and a control unit which uses the estimated temperature (Tp) estimated by the temperature estimation circuit to control the drive circuit.

Description

誘導加熱調理器Induction heating cooker
 本願発明は、誘導加熱調理機器に関し、特に鍋などの被加熱体の表面温度を正確に推定するとともに、被加熱体を適正な温度で加熱することができる誘導加熱調理機器に関するものである。 The present invention relates to an induction heating cooking appliance, and particularly to an induction heating cooking appliance capable of accurately estimating the surface temperature of a heated object such as a pan and heating the heated object at an appropriate temperature.
 これまでの誘導加熱調理機器において、鍋の表面温度を正確に測定し、これに基づいて加熱コイルに適正な電力を供給することにより、最適な調理方法の実現に対する市場の強い要請があった。そして従来の誘導加熱調理機器の多くは、一般に、トッププレートの下面に直接的に接触させたサーミスタや熱電対など感熱素子(接触式温度センサ)を用いてトッププレートの温度を測定し、熱平衡状態にあるときのトッププレートの温度と鍋の表面温度が一定の関係を有することに基づいて、トッププレートの温度から鍋の表面温度を検知するものであった。 In conventional induction cooking equipment, there has been a strong market demand for the realization of an optimal cooking method by accurately measuring the surface temperature of the pan and supplying appropriate power to the heating coil based on this measurement. Many conventional induction cooking appliances generally measure the temperature of the top plate using a thermal element (contact temperature sensor) such as a thermistor or thermocouple that is in direct contact with the lower surface of the top plate, and are in a thermal equilibrium state. The surface temperature of the pan is detected from the temperature of the top plate based on the fact that the temperature of the top plate and the surface temperature of the pan have a certain relationship.
 これに対し、たとえば特許文献1に記載の誘導加熱調理機器のように、トッププレートの下方に配置された赤外線センサなどの光センサ(光学式温度センサ)を用いて、トッププレートを介して通過する赤外線などの放射エネルギを測定することにより、鍋の表面温度を検知するものも提案されている。
特開2004-227976号公報(図1)
On the other hand, it passes through a top plate using optical sensors (optical temperature sensor), such as an infrared sensor arrange | positioned under the top plate like the induction heating cooking appliance of patent document 1, for example. Some have been proposed that detect the surface temperature of a pan by measuring radiant energy such as infrared rays.
Japanese Patent Laid-Open No. 2004-227976 (FIG. 1)
 しかしながら、接触式温度センサを用いて測定されたトッププレートの温度は、耐熱ガラスなどで作製されたトッププレートの熱抵抗および熱容量が大きいため、鍋の表面温度をリアルタイムで反映するものではなく、とりわけ加熱開始直後において、トッププレートの温度から検知された鍋の表面温度が実際の鍋の表面温度に遅れて上昇するため、加熱コイルへの給電を適正に制御することはできなかった。 However, the temperature of the top plate measured using a contact-type temperature sensor does not reflect the surface temperature of the pan in real time because of the large thermal resistance and heat capacity of the top plate made of heat-resistant glass, etc. Immediately after the start of heating, the surface temperature of the pan detected from the temperature of the top plate rises behind the actual surface temperature of the pan, so that the power supply to the heating coil could not be properly controlled.
 一方、光学式温度センサは、高温物体からの放射エネルギが表面温度の4乗に比例することを利用するものであるところ、特に、通常の実用調理時に鍋の表面が達する温度(約150℃)以下の比較的に低い温度においては、鍋の表面からの放射エネルギは非常に小さいため、鍋の表面温度を正確に検知することができなかった。すなわち、光学式温度センサを用いて検知された鍋の表面温度は、とりわけ実用調理温度より低いとき(加熱開始直後)、温度検知精度が低く、接触式温度センサを用いた場合と同様、加熱コイルへの給電を適確に制御することはできなかった。また、光学式温度センサを用いて温度を検知することは、たとえば鍋の表面状態(汚れ、光沢の有無など)により検知精度が損なわれやすく、その他火力や、内容物、周囲環境などにより影響を受けやすく、鍋の表面温度の正確な検知をより困難なものとしていた。 On the other hand, the optical temperature sensor utilizes the fact that the radiant energy from a high-temperature object is proportional to the fourth power of the surface temperature. In particular, the temperature reached by the pan surface during normal practical cooking (about 150 ° C.) At the following relatively low temperatures, the radiant energy from the surface of the pan was so small that the surface temperature of the pan could not be accurately detected. That is, when the surface temperature of the pan detected using the optical temperature sensor is lower than the practical cooking temperature (immediately after the start of heating), the temperature detection accuracy is low, and the heating coil is the same as when using the contact temperature sensor. It was not possible to accurately control the power supply to the. In addition, detecting the temperature using an optical temperature sensor is likely to impair the detection accuracy due to, for example, the surface condition of the pan (stained, glossy, etc.), and may be affected by other thermal power, contents, and the surrounding environment. It was easy to receive, making accurate detection of the surface temperature of the pan more difficult.
 本願発明は、上述のような課題を解決するためになされたもので、被加熱体が所定の間隔(δ)を隔てて載置されるトッププレートと、前記トッププレートの下方に配置された、前記被加熱体を誘導加熱する加熱コイルと、前記加熱コイルに高周波電流を供給する駆動回路と、前記トッププレートの下方に配置された、該トッププレートの温度(T)を検出する温度センサと、前記温度センサで検出された前記トッププレートの温度(T)の時間変化率(∂T/∂t)を算出するとともに、前記間隔(δ)および該時間変化率(∂T/∂t)に基づいて、前記被加熱体の表面温度(T)を推定する温度推定回路と、前記温度推定回路で推定された推定温度(T)を用いて前記駆動回路を制御する制御部とを備えた誘導加熱調理器を提供するものである。 The present invention has been made in order to solve the above-described problems, and is provided with a top plate on which a heated object is placed at a predetermined interval (δ a ) and a lower portion of the top plate. A heating coil that induction-heats the object to be heated, a drive circuit that supplies a high-frequency current to the heating coil, and a temperature sensor that is disposed below the top plate and detects the temperature (T g ) of the top plate And a time change rate (∂T g / ∂t) of the temperature (T g ) of the top plate detected by the temperature sensor, and the interval (δ a ) and the time change rate (∂T g / ∂t) based on the temperature estimation circuit that estimates the surface temperature (T p ) of the heated object, and the drive circuit is controlled using the estimated temperature (T p ) estimated by the temperature estimation circuit With a control unit There is provided an electrically heated cooker.
 本願発明に係る誘導加熱調理器によれば、被加熱体である鍋の表面温度を正確に、かつ応答性よく(リアルタイムで)検知することにより、加熱コイルに適正な高周波電流供給することができる。 According to the induction heating cooker according to the present invention, it is possible to supply an appropriate high-frequency current to the heating coil by detecting the surface temperature of the pan, which is the object to be heated, accurately and responsively (in real time). .
本願発明に係る誘導加熱調理器の全体を概略的に図示する斜視図である。It is a perspective view showing the whole induction heating cooking appliance concerning the present invention roughly. 図1の誘導加熱調理器のII-II線から見た拡大断面図である。It is the expanded sectional view seen from the II-II line of the induction heating cooking appliance of FIG. 図2の破線で示す領域を拡大した拡大部分断面図である。FIG. 3 is an enlarged partial sectional view in which a region indicated by a broken line in FIG. 2 is enlarged. 鍋の実測温度に対し、本願発明によりトッププレートの実測温度に基づいて推定される鍋の推定温度の時間的推移を示すグラフである。It is a graph which shows the time transition of the estimated temperature of a pan estimated based on the measured temperature of a top plate by this invention with respect to the measured temperature of a pan. 図2の一点鎖線で示す領域を拡大した拡大部分断面図である。FIG. 3 is an enlarged partial sectional view in which a region indicated by a one-dot chain line in FIG. 2 is enlarged. 実施の形態1による誘導加熱調理器の回路ブロック図である。1 is a circuit block diagram of an induction heating cooker according to Embodiment 1. FIG. 煮沸テストにおいて、鍋の実測温度、食材の実測温度、トッププレートの実測温度、および異なる間隔で推定した鍋の推定温度の時間的推移を示すグラフである。In a boiling test, it is a graph which shows the time transition of the estimated temperature of a pot, the measured temperature of foodstuffs, the measured temperature of a top plate, and the estimated temperature of the pot estimated at different intervals. 実施の形態3による誘導加熱調理器1の回路ブロック図である。6 is a circuit block diagram of induction heating cooker 1 according to Embodiment 3. FIG. 実施の形態3による誘導加熱調理器1の図1と同様の概略斜視図であって、変位検知領域を示すものである。It is a schematic perspective view similar to FIG. 1 of the induction heating cooking appliance 1 by Embodiment 3, Comprising: A displacement detection area | region is shown. 実施の形態3による誘導加熱調理器1の図6と同様の回路ブロック図である。It is a circuit block diagram similar to FIG. 6 of the induction heating cooking appliance 1 by Embodiment 3. サーミスタを用いた温度センサの一例である。It is an example of the temperature sensor using a thermistor.
1…誘導加熱調理器、2…筐体、3…トッププレート、4…IH加熱部、5…ラジエント加熱部、6…グリル部、7…操作パネル、8…火力調整ダイヤル、9…液晶表示部、20…加熱コイル、25…突出部、26,27…突起部、28…隙間規定用スペーサ(間隔維持手段)、30…温度センサ、40…温度推定回路、50…制御回路、60…駆動回路、70…設定機器、80…警告機器、90…変位センサ、92…変位検知領域、94…保護管(外乱抑制容器または防磁パイプ)、100…サーミスタ、101…高伝熱構造体、102…フォルダ、103…バネ、104…絶縁体、105…リブ、P…被加熱体(鍋、フライパン)、B…被加熱体の底板、A…空気層。 DESCRIPTION OF SYMBOLS 1 ... Induction heating cooker, 2 ... Case, 3 ... Top plate, 4 ... IH heating part, 5 ... Radiant heating part, 6 ... Grill part, 7 ... Operation panel, 8 ... Thermal power adjustment dial, 9 ... Liquid crystal display part , 20... Heating coil, 25... Projection, 26 and 27... Projection, 28 .. spacer for gap definition (interval maintaining means), 30... Temperature sensor, 40. , 70 ... Setting equipment, 80 ... Warning equipment, 90 ... Displacement sensor, 92 ... Displacement detection area, 94 ... Protection tube (disturbance suppression container or magnetic shield pipe), 100 ... Thermistor, 101 ... High heat transfer structure, 102 ... Folder DESCRIPTION OF SYMBOLS 103 ... Spring, 104 ... Insulator, 105 ... Rib, P ... To-be-heated body (pan, frying pan), B ... Bottom plate of to-be-heated body, A ... Air layer.
 以下、添付図面を参照して本願発明に係る誘導加熱調理器の実施の形態を説明する。各実施の形態の説明において、理解を容易にするために方向を表す用語(たとえば「上方」および「下方」など)を適宜用いるが、これは説明のためのものであって、これらの用語は本願発明を限定するものでない。また以下の添付図面において、同様の構成部品については同様の符号を用いて参照する。 Hereinafter, an embodiment of an induction heating cooker according to the present invention will be described with reference to the accompanying drawings. In the description of each embodiment, terms indicating directions (for example, “upward” and “downward”) are used as appropriate for easy understanding. It does not limit the present invention. In the accompanying drawings, the same components are referred to by the same reference numerals.
実施の形態1.
 図1~図6を参照しながら、本願発明に係る誘導加熱調理器の実施の形態1について以下詳細に説明する。図1は、本願発明に係る誘導加熱調理器1の全体を概略的に図示する斜視図である。図1に示す誘導加熱調理器1は、概略、筐体2、その上側表面のほぼ全体を覆う耐熱性ガラスなどで形成されたトッププレート3、左右対称的に配置された誘導加熱式の一対のIH加熱部4a,4b、輻射加熱式のラジエント加熱部5、および魚などの調理に適したグリル部6を有する。なお各IH加熱部4a,4bは、トッププレート3と平行に螺旋状に捲回されてなる加熱コイル20(図2)を有する。
Embodiment 1 FIG.
A first embodiment of the induction heating cooker according to the present invention will be described in detail below with reference to FIGS. FIG. 1 is a perspective view schematically illustrating the entire induction heating cooker 1 according to the present invention. An induction heating cooker 1 shown in FIG. 1 schematically includes a casing 2, a top plate 3 formed of heat-resistant glass or the like covering substantially the entire upper surface thereof, and a pair of induction heating type disposed symmetrically. It has IH heating units 4a and 4b, a radiant heating type radial heating unit 5, and a grill unit 6 suitable for cooking fish and the like. Each IH heating section 4a, 4b has a heating coil 20 (FIG. 2) that is spirally wound in parallel with the top plate 3.
 なお、以下の実施形態において、グリル部6が筐体2の左側に偏って配置された、いわゆるサイドグリル構造を有する誘導加熱調理器1について例示的に説明するが、本願発明は、これに限定されず、グリル部6が筐体2のほぼ中央に配置されたセンタグリル構造を有する誘導加熱調理器、またはグリル部6を具備しない誘導加熱調理器にも同等に適用することができる。
 またラジエント加熱部5は、IH加熱部でもよく、IH加熱部4a,4bと同様の構成を有するものであってもよい。
In the following embodiments, the induction heating cooker 1 having a so-called side grill structure in which the grill portion 6 is arranged to be biased to the left side of the housing 2 will be described as an example, but the present invention is limited to this. In addition, the present invention can be equally applied to an induction heating cooker having a center grill structure in which the grill portion 6 is disposed at substantially the center of the housing 2 or an induction heating cooker that does not include the grill portion 6.
In addition, the radiant heating unit 5 may be an IH heating unit or may have a configuration similar to that of the IH heating units 4a and 4b.
 また誘導加熱調理器1は、ユーザがIH加熱部4a,4b、ラジエント加熱部5、およびグリル部6を操作するために用いられる操作パネル7および火力調整ダイヤル8a,8b,8c、ならびにこれらの制御状態を表示するための液晶表示部9を備える。さらに誘導加熱調理器1は、筐体2の後壁に隣接してトッププレート3上に設けられた吸気孔10および排気孔11とを有する。 The induction heating cooker 1 also includes an operation panel 7 and heating power adjustment dials 8a, 8b, and 8c used by the user to operate the IH heating units 4a and 4b, the radiant heating unit 5 and the grill unit 6, and controls thereof. A liquid crystal display unit 9 for displaying the state is provided. Furthermore, the induction heating cooker 1 has an intake hole 10 and an exhaust hole 11 provided on the top plate 3 adjacent to the rear wall of the housing 2.
 図2は、図1の誘導加熱調理器1のII-II線から見た拡大断面図であって、被加熱体P(以下、単に「鍋」という。)がトッププレート3上に載置された状態を示すものである。本願発明に係る誘導加熱調理器1は、トッププレート3の下側表面に当接するように配置されたサーミスタなどの温度センサ30を有し、トッププレート3の温度(T)を測定することができる。 FIG. 2 is an enlarged cross-sectional view of the induction heating cooker 1 of FIG. 1 as viewed from the line II-II. A heated object P (hereinafter simply referred to as “pan”) is placed on the top plate 3. This shows the state. The induction heating cooker 1 according to the present invention has a temperature sensor 30 such as a thermistor disposed so as to abut on the lower surface of the top plate 3, and can measure the temperature (T g ) of the top plate 3. it can.
 なお詳細後述するが、誘導加熱調理器1は、各IH加熱部4の加熱コイル20に高周波電流を供給するための駆動回路(インバータ回路)60と、温度センサ30で測定されたトッププレート3の温度(T)から推定された鍋Pの表面温度、および火力調整ダイヤル8などによりユーザが設定した「火力」(加熱コイル20の負荷発熱量)に基づいて、加熱コイル20に適正な高周波電流を供給するように駆動回路60を制御する制御回路50を有する(図6)。 As will be described in detail later, the induction heating cooker 1 includes a drive circuit (inverter circuit) 60 for supplying a high-frequency current to the heating coil 20 of each IH heating unit 4 and a top plate 3 measured by the temperature sensor 30. Based on the surface temperature of the pan P estimated from the temperature (T g ) and the “heating power” (load heating value of the heating coil 20) set by the user with the heating power adjustment dial 8 or the like, an appropriate high-frequency current for the heating coil 20 The control circuit 50 controls the drive circuit 60 so as to supply (FIG. 6).
 次に図3を参照しながら、本願発明に係る、温度センサ30で測定されたトッププレート3の温度(T)から被加熱体Pの表面温度の推定する方法(推定原理)について説明する。図3は図2の破線で示す領域を拡大した拡大部分断面図である。
 制御回路50は、ユーザが操作パネル7および火力調整ダイヤル8などを用いて設定した所望の火力に従って駆動回路60を駆動し、鍋Pの下方に設けられた加熱コイル20に高周波電流を供給すると、加熱コイル20の周囲における鍋Pの底板Bを含む交流磁場(閉磁路)が形成される。このとき鍋Pの底板Bの表面近傍に渦電流が形成され、そのジュール熱により鍋Pの底板Bが加熱される。すなわち被加熱体である鍋Pが直接的に誘導加熱される。
Next, a method (estimation principle) for estimating the surface temperature of the heated body P from the temperature (T g ) of the top plate 3 measured by the temperature sensor 30 according to the present invention will be described with reference to FIG. FIG. 3 is an enlarged partial sectional view in which a region indicated by a broken line in FIG. 2 is enlarged.
When the control circuit 50 drives the drive circuit 60 according to a desired heating power set by the user using the operation panel 7 and the heating power adjustment dial 8 and supplies a high frequency current to the heating coil 20 provided below the pan P, An alternating magnetic field (closed magnetic path) including the bottom plate B of the pan P around the heating coil 20 is formed. At this time, an eddy current is formed near the surface of the bottom plate B of the pan P, and the bottom plate B of the pan P is heated by the Joule heat. That is, the pan P that is the object to be heated is directly induction heated.
 鍋Pの底板Bが加熱されて生じた熱量は、鍋Pに収容された水分など食材Fを調理加熱するとともに、底板Bの下方にあるトッププレート3にも伝わる。このとき、とりわけ鍋Pの底板B(およびトッププレート3)は、完全に平坦に形成すること(平坦度をゼロとする)ことはできず、微小な湾曲形状を有するため、トッププレート3との間には所定の間隔または隙間(δ)を有する空気層Aが形成される。 The amount of heat generated when the bottom plate B of the pan P is heated cooks and heats the food F such as moisture contained in the pan P and is also transmitted to the top plate 3 below the bottom plate B. At this time, in particular, the bottom plate B (and the top plate 3) of the pan P cannot be formed to be completely flat (the flatness is zero) and has a minute curved shape. An air layer A having a predetermined interval or gap (δ a ) is formed therebetween.
 ここで鍋Pの底板Bの下面からトッププレート3に伝導する熱量Q(すなわち鍋Pの底板Bの下面とトッププレート3との間に形成される空気層Aを伝導する熱量Q)について考える。このとき熱量Qは、一般に、鍋Pの底板Bの温度(T)とトッププレート3の表面の温度(T)との温度差(T-T)が大きいほど、両者が対向する面積(S)が大きいほど、また隙間(δ)が小さいほど大きい。また熱量Qは、空気層Aの熱伝導率(λ)にも依存する。したがって、鍋Pの底板Bの下面からトッププレート3に単位時間あたりに伝導する熱量Qは、次式で表される。
Figure JPOXMLDOC01-appb-M000003
Here heat is conducted from the lower surface of the bottom plate B of the pan P on the top plate 3 Q 1 for (i.e. the amount of heat Q 1 to conduct air layer A is formed between the lower surface and the top plate 3 of the bottom plate B of the pan P) Think. At this time, the amount of heat Q 1 generally increases as the temperature difference (T p −T a ) between the temperature (T p ) of the bottom plate B of the pan P and the surface temperature (T a ) of the top plate 3 increases. The larger the area (S) to be processed is, the smaller the gap (δ a ) is. The amount of heat Q 1 also depends on the thermal conductivity (λ a ) of the air layer A. Therefore, the amount of heat Q 1 conducted per unit time from the lower surface of the bottom plate B of the pan P to the top plate 3 is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000003
 さらにトッププレート3に伝導する熱量Qは、トッププレート3の上面から下面に伝わる。このとき、耐熱ガラスなどで形成されたトッププレート3を顕熱蓄熱材として見ると、その蓄熱量Qは、トッププレート3の質量(M)、比熱(c)および温度(T)の時間変化率(∂T/∂t)を用いて次式で表される。
Figure JPOXMLDOC01-appb-M000004
Further, the amount of heat Q 2 conducted to the top plate 3 is transmitted from the upper surface to the lower surface of the top plate 3. At this time, when the top plate 3 formed of heat-resistant glass or the like is viewed as a sensible heat storage material, the amount of stored heat Q 2 is the mass (M), specific heat (c g ), and temperature (T g ) of the top plate 3. It is expressed by the following equation using the time change rate (∂T g / ∂t).
Figure JPOXMLDOC01-appb-M000004
 ここで、トッププレート3の熱伝導率(λ)が無限大である(すなわちTとTとが等しい。T=T)と仮定すると、上式(1)および(2)の左辺の熱量Q,Q(Q=Q)が等しいので、これらを連立させて整理すると次式を得ることができる。
Figure JPOXMLDOC01-appb-M000005
:鍋Pの推定温度
:温度センサで測定されたトッププレートの温度
δ:鍋Pとトッププレートとの間の間隔
ρ:トッププレートの密度
:トッププレートの比熱
δ:トッププレートの厚み
λ:空気の熱伝導率
 すなわち、上記係数Cはトッププレート3により一意的に決まる定数であるので、鍋Pの底板Bの温度Tは、鍋Pの底板Bの下面とトッププレート3との間に形成される空気層Aの間隔(δ)、および温度センサ30が測定するトッププレート3の温度Tとその時間変化率(∂T/∂t)を用いて表すことができる。
Here, assuming that the thermal conductivity (λ g ) of the top plate 3 is infinite (that is, T a is equal to T g , T a = T g ), the above equations (1) and (2) Since the amounts of heat Q 1 and Q 2 (Q 1 = Q 2 ) on the left side are equal, the following equation can be obtained by arranging them together.
Figure JPOXMLDOC01-appb-M000005
T p : Estimated temperature of pan P T g : Temperature of top plate measured by temperature sensor δ a : Spacing between pan P and top plate ρ g : Density of top plate c g : Specific heat of top plate δ g : Top plate thickness λ a : Thermal conductivity of air That is, since the coefficient C is a constant uniquely determined by the top plate 3, the temperature T p of the bottom plate B of the pan P is the lower surface of the bottom plate B of the pan P The distance (δ a ) of the air layer A formed between the top plate 3 and the temperature T g of the top plate 3 measured by the temperature sensor 30 and the rate of change over time (∂T g / ∂t) are used. Can be expressed.
 上述のように、トッププレート3の熱伝導率(λ)が無限大であると仮定しても、上式(3)に示す関係が成り立つことを検証するために以下の評価実験を行った。
 すなわち、鍋Pを加熱コイル20により誘導加熱した際に、
i)温度センサ30で測定したトッププレート3の実測温度(T)と、
ii)別の温度センサ(図示せず)で測定した鍋Pの実測温度と、
iii)上式(3)で求められた鍋Pの推定温度とを比較した。
 図4は、上記i)~iii)の時間的推移をプロットして得たグラフである。このとき空気層Aの間隔(δ)が1.5mmに規定されるように、鍋Pとトッププレート3との間にスペーサ(厚み1.5mm)を配置し、加熱コイル20に250秒間高周波電流を供給して鍋Pを加熱した後、加熱コイル20への給電を停止した。
As described above, the following evaluation experiment was performed in order to verify that the relationship shown in the above equation (3) holds even if the thermal conductivity (λ g ) of the top plate 3 is assumed to be infinite. .
That is, when the pan P is induction-heated by the heating coil 20,
i) the measured temperature (T g ) of the top plate 3 measured by the temperature sensor 30;
ii) the actual temperature of the pan P measured by another temperature sensor (not shown),
iii) The estimated temperature of the pan P obtained by the above equation (3) was compared.
FIG. 4 is a graph obtained by plotting the temporal transition of the above i) to iii). At this time, a spacer (thickness: 1.5 mm) is arranged between the pan P and the top plate 3 so that the interval (δ a ) of the air layer A is defined as 1.5 mm, and the heating coil 20 has a high frequency for 250 seconds. After supplying the current to heat the pan P, the power supply to the heating coil 20 was stopped.
 図4のグラフから明らかなように、加熱開始250秒経過した時、鍋Pの実測温度が200℃以上に達しているのに対し、温度センサ30で測定したトッププレート3の実測温度(T)は約70℃であり、両者において約130℃以上の温度差があり、応答性が非常に悪い。
 一方、上式(3)で求められた鍋Pの推定温度は、加熱開始直後から全般的に鍋Pの実測温度に追従性よく近似(推定)している。したがって、上式(3)で規定される本願発明に係る被加熱体温度の推定方法によれば、トッププレート3の実測温度(T)から鍋Pの表面温度を極めて精緻に追従性よく推定できることが図4のグラフから確認された。
As is apparent from the graph of FIG. 4, when 250 seconds have elapsed since the start of heating, the actual temperature of the pan P has reached 200 ° C. or higher, whereas the actual temperature (T g ) of the top plate 3 measured by the temperature sensor 30. ) Is about 70 ° C., there is a temperature difference of about 130 ° C. or more between the two, and the response is very poor.
On the other hand, the estimated temperature of the pan P obtained by the above equation (3) generally approximates (estimates) the measured temperature of the pan P immediately after the start of heating with good followability. Therefore, according to the method for estimating the temperature of the object to be heated according to the present invention defined by the above formula (3), the surface temperature of the pan P is estimated from the measured temperature (T g ) of the top plate 3 very precisely with good followability. It was confirmed from the graph of FIG.
 このようにトッププレート3の構成材料であるガラスの実際の熱伝導率(λ)は、約1W/(m・K)であるにもかかわらず、これを無限大であると仮定して上式(3)を導出したが、上式(3)に基づいて得られた鍋Pの推定温度は、鍋Pの実測温度を正確に近似するものであることが確認された。
 換言すると、トッププレート3を構成するガラスの密度、比熱、および厚みは、設計事項であり既知である(上記係数Cが一意的に決まる)ので、鍋Pとトッププレート3との間の間隔(δ)、トッププレート3の実測温度(T)およびその時間変化率(∂T/∂t)に基づいて、上式(3)を用いて鍋Pの温度を追従性よく(リアルタイムで)正確に推定することができる。
As described above, the actual thermal conductivity (λ g ) of the glass that is the constituent material of the top plate 3 is about 1 W / (m · K), but is assumed to be infinite. Although the formula (3) was derived, it was confirmed that the estimated temperature of the pan P obtained based on the above formula (3) accurately approximates the actually measured temperature of the pan P.
In other words, the density, specific heat, and thickness of the glass constituting the top plate 3 are design matters and are known (the coefficient C is uniquely determined), so that the distance between the pan P and the top plate 3 ( δ a ), the measured temperature (T g ) of the top plate 3 and the rate of change over time (∂T g / ∂t), the temperature of the pan P can be accurately tracked using the above equation (3) (in real time) ) Can be estimated accurately.
 図5は図2の一点鎖線24で示す領域を拡大した拡大部分断面図である。鍋Pの底板Bとトッププレート3との間の間隔(δ)が鍋Pの底板Bの全体領域においてばらつきが大きいとき、加熱コイル20の領域(部位)により生じるジュール熱のばらつきも大きくなる。そして鍋Pの載置位置により間隔(δ)が変動すると、上式(3)で得られる鍋Pの推定温度も変動することになる。したがって、鍋Pの底板Bおよびトッププレート3は、高い平坦度を有するように加工することが好ましく、かつ、間隔(δ)ができるだけ一定となるように維持または規定しておくことが好ましい。 FIG. 5 is an enlarged partial sectional view in which a region indicated by a one-dot chain line 24 in FIG. 2 is enlarged. When the distance (δ a ) between the bottom plate B of the pan P and the top plate 3 varies widely in the entire region of the bottom plate B of the pan P, the variation in Joule heat generated by the region (part) of the heating coil 20 also increases. . When the interval (δ a ) varies depending on the position where the pan P is placed, the estimated temperature of the pan P obtained by the above equation (3) also varies. Therefore, it is preferable to process the bottom plate B and the top plate 3 of the pan P so as to have high flatness, and it is preferable to maintain or define the distance (δ a ) as constant as possible.
 そこで図5に示すように、間隔(δ)を一定に規定するために、トッププレート3および鍋Pの底板を平坦度の高い形状に加工するとともに、鍋Pの底板Bの周縁部に複数の突出部25(図5(a))または突起部26(図5(b))を形成してもよい。
 択一的には、トッププレート3が複数の位置に突起部27(図5(c))を設けてもよい。このとき、トッププレート3上に載置される鍋Pが位置や、鍋Pの大きさは異なるので、トッププレート3上の突起部27は半径方向のさまざまな位置に配置しておくことが好ましい。またIH加熱部4の中心から放射状に延びるリッジ状のもの(図示せず)であってもよい。
Therefore, as shown in FIG. 5, in order to uniformly define the interval (δ a ), the top plate 3 and the bottom plate of the pan P are processed into a shape with high flatness, and a plurality of pieces are formed on the peripheral portion of the bottom plate B of the pan P. The protruding portion 25 (FIG. 5A) or the protruding portion 26 (FIG. 5B) may be formed.
Alternatively, the top plate 3 may be provided with the protrusions 27 (FIG. 5C) at a plurality of positions. At this time, since the position of the pan P placed on the top plate 3 and the size of the pan P are different, the protrusions 27 on the top plate 3 are preferably disposed at various positions in the radial direction. . Further, a ridge shape (not shown) extending radially from the center of the IH heating unit 4 may be used.
 さらに択一的には、鍋Pをトッププレート3に載置する際、隙間規定用スペーサ(間隔維持手段)として、一定の厚みを有する平板やリング板28(図5(d))を鍋Pとトッププレート3の間に介在させてもよい。なお、隙間規定用スペーサ28は、剛性を有する材料または柔軟な材質を用いて構成してもよい。
 上記のように鍋P、トッププレート3、または隙間規定用スペーサ28(間隔維持手段)を構成することにより、鍋Pの底板Bとトッププレート3との間の間隔(δ)を既知の一定の値に規定することができる。
Further alternatively, when placing the pan P on the top plate 3, a flat plate or a ring plate 28 (FIG. 5 (d)) having a certain thickness is used as the gap regulating spacer (interval maintaining means). And the top plate 3 may be interposed. The gap defining spacer 28 may be formed using a rigid material or a flexible material.
By configuring the pan P, the top plate 3 or the gap regulating spacer 28 (interval maintaining means) as described above, the interval (δ a ) between the bottom plate B of the pan P and the top plate 3 is known constant. The value of
 図6は本願発明に係る実施の形態1による誘導加熱調理器1の回路ブロック図である。誘導加熱調理器1は、上述のように、加熱コイル20に高周波電流を供給するための駆動回路(インバータ回路)60と、トッププレート3の温度(T)を測定するサーミスタなどの温度センサ30と、トッププレート3の実測温度(T)から鍋Pの表面温度を推定する温度推定回路40とを有する。また誘導加熱調理器1は、火力調整ダイヤル8などの設定機器70によりユーザが設定した「火力」(負荷発熱量)に基づいて、加熱コイル20に適正な高周波電流が供給されるように駆動回路60を制御する制御回路50を有する。本願発明に係る制御回路50は、上述のように精緻に追従性よく推定された鍋Pの温度(T)に関する情報を温度推定回路40から受け、より適確な高周波電流が供給されるように駆動回路60を制御するものである。
 なお誘導加熱調理器1は、好適には、詳細後述するが、鍋Pの推定温度が異常に高温に達した場合など、基準値を越える異常な使用状態であることを検知した場合、制御回路50からの警告信号を受け、警告をユーザに与えるための警告音を発するビーパーまたは警告表示などを表示する液晶表示部9などの警告機器80を有する。
FIG. 6 is a circuit block diagram of the induction heating cooker 1 according to the first embodiment of the present invention. As described above, the induction heating cooker 1 includes a drive circuit (inverter circuit) 60 for supplying a high-frequency current to the heating coil 20 and a temperature sensor 30 such as a thermistor for measuring the temperature (T g ) of the top plate 3. And a temperature estimation circuit 40 that estimates the surface temperature of the pan P from the measured temperature (T g ) of the top plate 3. Further, the induction heating cooker 1 has a drive circuit so that an appropriate high-frequency current is supplied to the heating coil 20 based on the “heating power” (load heat generation amount) set by the user with the setting device 70 such as the heating power adjustment dial 8. 60 has a control circuit 50 for controlling 60. The control circuit 50 according to the present invention receives information about the temperature (T p ) of the pan P, which is precisely estimated with good followability as described above, from the temperature estimation circuit 40 so that a more accurate high-frequency current is supplied. The drive circuit 60 is controlled.
The induction heating cooker 1 is preferably described in detail later, but when it is detected that the estimated temperature of the pan P is abnormally high, such as when the estimated temperature of the pan P reaches an abnormally high temperature, A warning device 80 such as a liquid crystal display unit 9 for displaying a beep or a warning display for receiving a warning signal from 50 and generating a warning sound for giving a warning to the user.
 図6を参照しながら、本願発明に係る誘導加熱調理器1の動作について説明する。ユーザにより鍋またはフライパンなどの被加熱体Pがトッププレート3上に載置され、操作パネル7および火力調整ダイヤル8などの設定機器70により火力が設定されると、これに応じて制御回路50が駆動回路60を制御して、加熱コイル20に高周波電流を供給する。加熱コイル20に高周波電流が供給されると、加熱コイル20の周りに高周波磁界が発生し、鍋Pの底板Bに渦電流が発生して、そのジュール熱により鍋Pが加熱される。誘導加熱により鍋Pの底板Bに生じた熱は、鍋Pから食材Fへ伝達され、食材Fが加熱調理される。 The operation of the induction heating cooker 1 according to the present invention will be described with reference to FIG. When the user places a heated object P such as a pan or a frying pan on the top plate 3 and the heating power is set by the setting device 70 such as the operation panel 7 and the heating power adjustment dial 8, the control circuit 50 responds accordingly. The drive circuit 60 is controlled to supply a high frequency current to the heating coil 20. When a high frequency current is supplied to the heating coil 20, a high frequency magnetic field is generated around the heating coil 20, an eddy current is generated in the bottom plate B of the pan P, and the pan P is heated by the Joule heat. The heat generated in the bottom plate B of the pan P by induction heating is transmitted from the pan P to the food F, and the food F is cooked.
 一方、鍋Pの底板Bに生じた熱は、その下方に形成された空気層Aを介して、トッププレート3に伝わり、トッププレート3を昇温させる。トッププレート3の下方に設けられた温度センサ30は、継続的にトッププレート3の温度(T)を測定するとともに、その測定信号を温度推定回路40に送信する。
 そして温度推定回路40は、上述のように温度センサ30からの測定信号に基づいて、温度(T)の時間変化率を算出するとともに、鍋Pとトッププレート3との間の既知の間隔(δ)を用いて鍋Pの表面温度を推定し、その信号を制御回路50に送信する。
On the other hand, the heat generated in the bottom plate B of the pan P is transmitted to the top plate 3 through the air layer A formed therebelow to raise the temperature of the top plate 3. The temperature sensor 30 provided below the top plate 3 continuously measures the temperature (T g ) of the top plate 3 and transmits the measurement signal to the temperature estimation circuit 40.
And the temperature estimation circuit 40 calculates the time change rate of the temperature (T g ) based on the measurement signal from the temperature sensor 30 as described above, and the known interval between the pan P and the top plate 3 ( The surface temperature of the pan P is estimated using δ a ), and the signal is transmitted to the control circuit 50.
 制御回路50は、設定機器70で設定された入力信号に応じて、制御回路50に内蔵されたメモリ(図示せず)に記憶された駆動プログラム(デフォルト値)を呼び出し、この駆動プログラムに基づいて駆動回路60に駆動信号を送信するとともに、必要ならば警告機器80に警告信号を供給して警告をユーザに与える。 The control circuit 50 calls a drive program (default value) stored in a memory (not shown) built in the control circuit 50 in accordance with the input signal set by the setting device 70, and based on this drive program A driving signal is transmitted to the driving circuit 60 and, if necessary, a warning signal is supplied to the warning device 80 to give a warning to the user.
 駆動回路60は、制御回路50からの駆動信号により、IGBTなどの半導体スイッチング素子を駆動して、適正な高周波電流を加熱コイル20へ供給して、設定機器70で設定された入力信号に応じて鍋Pへの火力を調整する。また警告機器80は、制御回路50からの警告信号に基づいてユーザに警告を与える。 The drive circuit 60 drives a semiconductor switching element such as an IGBT by a drive signal from the control circuit 50, supplies an appropriate high-frequency current to the heating coil 20, and according to an input signal set by the setting device 70. Adjust the heating power to the pan P. The warning device 80 gives a warning to the user based on a warning signal from the control circuit 50.
 以上のように、本願発明に係る制御回路50は、上記一連の動作において、設定機器70からの設定信号および温度センサ30からの測定信号を反復的にモニタすることにより、ユーザが所望する調理状態を維持するように駆動回路60を制御することができる。 As described above, the control circuit 50 according to the present invention repeatedly monitors the setting signal from the setting device 70 and the measurement signal from the temperature sensor 30 in the above-described series of operations, so that the cooking state desired by the user is obtained. The drive circuit 60 can be controlled to maintain the above.
 従来技術によれば、図4のグラフに示すように、トッププレートの実測温度(T)が鍋Pの実測温度に応答性よく推移しないので、正確な鍋Pの温度をリアルタイムで検知することができず、ユーザが所望する調理状態を必ずしも実現するものでなかった。たとえば鍋Pの実際の温度は十分高く、食材Fは沸騰しているにも拘わらず、鍋Pをさらに過剰に加熱して、吹きこぼれが生じるおそれがあった。 According to the prior art, as shown in the graph of FIG. 4, since the measured temperature (T g ) of the top plate does not change responsively to the measured temperature of the pan P, the accurate temperature of the pan P can be detected in real time. The cooking state desired by the user cannot always be realized. For example, although the actual temperature of the pan P is sufficiently high and the food F is boiling, the pan P may be heated excessively to cause spillage.
 しかしながら本願発明によれば、トッププレートの実測温度(T)の時間変化率(∂T/∂t)を新たなパラメータとして用いることにより、鍋Pの推定温度の応答性を高め、かつ実際の鍋Pの温度により近似して推定することができるので、ユーザは所望する調理状態を追随性よく把握することができる。 However, according to the present invention, by using the time change rate (∂T g / ∂t) of the measured temperature (T g ) of the top plate as a new parameter, the responsiveness of the estimated temperature of the pan P is increased and actually Since the temperature can be approximated by the temperature of the pan P, the user can grasp the desired cooking state with good followability.
 なおトッププレート3は、一般には、透光性を有するガラス板が用いられるが、本願発明においてサーミスタなどの接触式の温度センサを用いる場合、非透光性のガラス板を用いてもよく、同様に鍋Pの温度を正確に応答性よく検知することができる。したがって、本願発明によれば、トッププレート3の表面に非透光性の皮膜(塗料)を形成して、デザイン性を向上させることができ、またトッププレート3を着色ガラス材料、樹脂材料、セラミック材料およびクラッド材(たとえば表面はガラスで背面は樹脂などで形成された積層構造体、ガラス基材樹脂積層板)などを用いて作製し、耐熱性および耐衝撃性を改善することもできる。 The top plate 3 is generally a translucent glass plate. However, when a contact temperature sensor such as a thermistor is used in the present invention, a non-translucent glass plate may be used. In addition, the temperature of the pan P can be accurately detected with good responsiveness. Therefore, according to the present invention, it is possible to improve the design by forming a non-translucent film (paint) on the surface of the top plate 3, and the top plate 3 can be colored glass material, resin material, ceramic. It is also possible to improve the heat resistance and impact resistance by using a material and a clad material (for example, a laminated structure in which the surface is made of glass and the back is made of resin or the like, a glass base resin laminated plate).
 特に樹脂材料およびセラミック材料は、その耐衝撃性および成形性が優れており、トッププレート3の割れ(破砕)を抑制することができ、さまざまな形状(凹形状、凸形状、角部に湾曲形状など)を有するトッププレート3を容易に作製することができ、さらにトッププレート3の周縁部(図示せず)に設けた枠部材と一体に形成することができるので、部品点数を削減し、製造コストを低減することもできる。 In particular, resin materials and ceramic materials have excellent impact resistance and moldability, can suppress cracking (crushing) of the top plate 3, and have various shapes (concave shapes, convex shapes, curved shapes at corners). Etc.), and can be formed integrally with a frame member provided on the peripheral portion (not shown) of the top plate 3, thereby reducing the number of parts and manufacturing. Cost can also be reduced.
 また成形性が優れた材料を用いてトッププレート3を作製することにより、トッププレート3の表面上において、鍋Pの適正な載置位置を示すためのガイドや、食材Fが吹きこぼれた際に水分を誘導するためのガイドまたは流路などを構成する凹凸を容易に形成することができる。さらに、トッププレート3上に点字を形成することにより、視覚障害者でも利用しやすい誘導加熱調理器1を提供することができる。 In addition, by producing the top plate 3 using a material having excellent formability, moisture is generated when the food F is blown out on the surface of the top plate 3 to guide the proper placement position of the pan P or the food F. Concavities and convexities that constitute guides or flow paths for guiding the above can be easily formed. Furthermore, by forming Braille on the top plate 3, it is possible to provide the induction heating cooker 1 that is easy to use even for visually impaired persons.
 ここで鍋などの被加熱体Pに収容される食材とは、水、だし汁、油、野菜、肉、魚などの食品をいう。また被加熱体Pとは、誘導加熱により発熱することができる鍋、フライパン、やかんなど、上記食材を収容するためのものをいう。 Here, the ingredients contained in the heated object P such as a pan are foods such as water, soup stock, oil, vegetables, meat and fish. Moreover, the to-be-heated body P means what accommodates the said foodstuffs, such as a pan, a frying pan, a kettle which can be heated by induction heating.
 設定機器70とは、上述の操作パネル7および火力調整ダイヤル8の他、電源のON/OFFスイッチ、調理モード、火力モードまたは鍋温度の選択スイッチなど、ユーザが誘導加熱調理器1の駆動状態を設定するための信号を制御回路50に入力するものをいう。 The setting device 70 refers to the operation state of the induction heating cooker 1 such as an ON / OFF switch of a power source, a cooking mode, a thermal power mode, or a pan temperature selection switch in addition to the operation panel 7 and the thermal power adjustment dial 8 described above. This means that a signal for setting is input to the control circuit 50.
 たとえば調理モードの選択スイッチを用いて、制御回路50のメモリ内に事前に記憶された数多くのメニュの中から炊飯調理モードを選択入力したとき、本願発明による温度推定回路40により推定された鍋Pの温度(T)に基づいて、同様にメモリ内に格納された炊飯調理モードの調理プログラムに応じて火力調整するようにしてもよい。また調理モードの選択スイッチで揚げ物調理モードを選択し、さらに鍋温度の選択スイッチを用いて鍋温度を「180」℃に設定して、油の温度が一定に維持されるように火力調整することもできる。 For example, when the cooking mode is selected and input from a number of menus stored in advance in the memory of the control circuit 50 using the cooking mode selection switch, the pan P estimated by the temperature estimation circuit 40 according to the present invention is used. On the basis of the temperature (T p ), the heating power may be adjusted according to the cooking program of the rice cooking mode stored in the memory. Also, select the fried food cooking mode with the cooking mode selection switch, set the pan temperature to “180” ° C. using the pan temperature selection switch, and adjust the heating power so that the oil temperature is kept constant. You can also.
 また誘導加熱調理器1は、設定機器70として、電子記憶媒体(SDカード、USB)を受容するスロットや、外部のPCや携帯電話等との通信を可能にする通信手段(通信ケーブル、赤外線センサ)を有するものであってもよい。 The induction heating cooker 1 also has a communication device (communication cable, infrared sensor, etc.) that enables communication with a slot that accepts an electronic storage medium (SD card, USB) or an external PC or mobile phone as the setting device 70. ) May be included.
 警告機器80とは、上記液晶表示部9の他、合成音声、ビープ音、メロディなどのサウンドを利用して、あるいはライトの点灯/点滅など光を利用して、安全基準を逸脱した場合の警告や調理状況をユーザに通知するものをいう。また、ユーザが設定機器70で設定した鍋Pの温度と比較できるように、液晶表示部9において実際の鍋Pの温度をリアルタイムで表示するようにしてもよい。さらに、液晶表示部9で調理の進捗状況を表示するようにしてもよい。 The warning device 80 is a warning when the safety standard is deviated by using sounds such as synthetic voice, beep sound, melody, etc. in addition to the liquid crystal display unit 9 or using light such as lighting / flashing of light. Or something that informs the user of the cooking status. Moreover, you may make it display the temperature of the actual pan P in the liquid crystal display part 9 in real time so that it can compare with the temperature of the pan P set with the setting apparatus 70 by the user. Further, the progress of cooking may be displayed on the liquid crystal display unit 9.
 本願発明に係る温度センサ30として、サーミスタ(半導体の電気抵抗が温度により変化する特性を利用して温度を推定するもの)の他、トッププレート3の温度を測定できるものであれば任意のもの(接触式温度センサおよび光学式温度センサ)を利用することができる。接触式温度センサは、たとえば熱電対(性質の異なる2種類の金属線の一端を接合した温度センサで接合部に温度を加えると両端の温度差に応じて発生する微弱な熱起電力を利用して温度を推定するもの)、測温抵抗体(物質が金属の場合、温度に比例して電気抵抗が大きくなる特性を利用して温度を推定するもの)、放射温度計(物体が放射している赤外線エネルギを赤外線センサで受け、基準温度補正、放射率補正などをほどこして温度を推定するもの)などであってもよい。また光学式温度センサの放射温度計を用いて,鍋Pの温度を測定する場合には、トッププレート3の下面に赤外光の透過を抑制する皮膜(塗装など)を形成してもよい。 As the temperature sensor 30 according to the present invention, in addition to the thermistor (which estimates the temperature by utilizing the characteristic that the electrical resistance of the semiconductor changes depending on the temperature), any sensor can be used as long as it can measure the temperature of the top plate 3 ( Contact temperature sensors and optical temperature sensors) can be used. A contact-type temperature sensor uses, for example, a thermocouple (a weak thermoelectromotive force generated according to the temperature difference between the two ends when a temperature is applied to the joint with a temperature sensor in which one end of two types of metal wires having different properties is joined. Temperature sensor), resistance thermometer (if the material is metal, the temperature is estimated using the property that the electrical resistance increases in proportion to the temperature), radiation thermometer (the object radiates) Infrared energy received by an infrared sensor, and a reference temperature correction, emissivity correction, etc. are applied to estimate the temperature). When the temperature of the pan P is measured using a radiation thermometer of an optical temperature sensor, a film (painting or the like) that suppresses transmission of infrared light may be formed on the lower surface of the top plate 3.
実施の形態2.
 図7を参照しながら、本願発明に係る誘導加熱調理器の実施の形態2について以下詳細に説明する。実施の形態1に係る誘導加熱調理器1は、間隔(δ)を規定するために既知の厚みを有する突出部25、突起部26,27または隙間規定用スペーサ28を鍋Pとトッププレート3との間に介在させるものであったが、実施の形態2の誘導加熱調理器1は、使用される鍋Pごとに煮沸テストを行って適正な間隔(δ)を計測して、記憶しておく点を除き、実施の形態1の電磁調理器1と同様の構成を有するので、重複する点については説明を省略する。
Embodiment 2. FIG.
Embodiment 2 of the induction heating cooker according to the present invention will be described in detail below with reference to FIG. In the induction heating cooker 1 according to the first embodiment, the pan 25 and the top plate 3 are provided with the protrusion 25, the protrusions 26 and 27, or the gap-defining spacer 28 having a known thickness in order to define the interval (δ a ). However, the induction heating cooker 1 of the second embodiment performs a boiling test for each pot P used to measure and store an appropriate interval (δ a ). Since it has the same configuration as the electromagnetic cooker 1 of the first embodiment except for the points to be described, the description of the overlapping points is omitted.
 上述のように、実施の形態2の誘導加熱調理器1は、新規の鍋Pを実際に使用する前に、あらかじめ煮沸テストを行い、適正な間隔(δ)を計測し、記憶しておくように構成されている。 As described above, the induction heating cooker 1 according to the second embodiment performs a boiling test in advance before actually using a new pan P, and measures and stores an appropriate interval (δ a ). It is configured as follows.
 まず煮沸テストについて以下説明する。鍋Pに水を入れて一定の火力で鍋Pを加熱する。鍋Pに収容された水の温度は徐々に上昇して100℃に達した後においては、水は沸騰状態(100℃)に維持され、鍋Pの底板Bで生じるジュール熱はすべて水の気化熱として消費されるので、鍋Pの底板Bの温度も一定の値に収束する。 First, the boiling test will be described below. Water is put into the pan P and the pan P is heated with a constant heating power. After the temperature of the water stored in the pan P gradually rises and reaches 100 ° C., the water is maintained in a boiling state (100 ° C.), and all the Joule heat generated in the bottom plate B of the pan P is vaporized. Since it is consumed as heat, the temperature of the bottom plate B of the pan P also converges to a constant value.
 図7は、水を入れた鍋Pを約12分間一定の火力で加熱したときの水の実測温度、温度センサ30で実測したトッププレート3の温度(T)、別の温度センサ(図示せず)で実測した鍋Pの温度の時間的推移をプロットしたグラフである。また図7は、3種類の推定温度T1,T2,T3の推移をプロットしている。 FIG. 7 shows the measured temperature of water when the pan P containing water is heated for about 12 minutes with a constant heating power, the temperature (T g ) of the top plate 3 measured by the temperature sensor 30, and another temperature sensor (not shown). 3) is a graph plotting the temporal transition of the temperature of the pan P actually measured in (1). FIG. 7 plots the transition of three types of estimated temperatures T1, T2, and T3.
 図7のグラフにおいて、水の温度は130秒後に100℃の沸騰状態に達し、同様に鍋Pの実測温度も130秒までは急峻に上昇した後、熱平衡状態となってほぼ一定の温度(約135℃)に維持される。トッププレートの実測温度(T)は、図4のグラフと同様、緩やかに上昇するが、約12分後には鍋Pの実測温度(約135℃)に達する。 In the graph of FIG. 7, the temperature of water reaches a boiling state of 100 ° C. after 130 seconds, and similarly the measured temperature of the pan P rises steeply until 130 seconds, and then enters a thermal equilibrium state to reach a substantially constant temperature (about approximately 135 ° C.). The measured temperature (T g ) of the top plate rises gently as in the graph of FIG. 4, but reaches the measured temperature (about 135 ° C.) of the pan P after about 12 minutes.
 一方、3種類の推定温度T1,T2,T3は、トッププレート3の実測温度(T)およびその時間変化率(∂T/∂t)に基づいて、上式(3)を用いて鍋Pの温度を推定したものであるが、鍋Pとトッププレート3との間の間隔(δ)について互いに異なる値を用いたものである。すなわち推定温度T1は、実際より大きい間隔(δ)を用いて推定されたものであって、ピーク(極大点)を越えた後、実質的な時間が経過した後、鍋Pの実測温度に収束し、推定温度T2は、実際より小さい間隔(δ)を用いて推定されたものであって、鍋Pの実測温度に漸近するまでに相当の時間を要した。 On the other hand, three types of estimated temperatures T1, T2, and T3 are calculated based on the measured temperature (T g ) of the top plate 3 and its time change rate (∂T g / ∂t) using the above equation (3). The temperature of P is estimated, but different values are used for the interval (δ a ) between the pan P and the top plate 3. That is, the estimated temperature T1 is estimated using an interval (δ a ) that is larger than the actual temperature, and after the substantial time has passed after the peak (maximum point) is exceeded, the estimated temperature T1 is changed to the measured temperature of the pan P. The estimated temperature T2 was estimated using a smaller interval (δ a ) than the actual temperature, and it took a considerable time to approach the measured temperature of the pan P asymptotically.
 これに対し、推定温度T3は、実際の間隔(δ)に最も合致した値を用いて推定されたものであって、最も速やかに(130秒後に)鍋Pの実測温度に収束している。 On the other hand, the estimated temperature T3 is estimated using a value that most closely matches the actual interval (δ a ), and converges to the measured temperature of the pan P most rapidly (after 130 seconds). .
 換言すると、煮沸テストにおいて、上式(3)による推定温度が最短時間で所定の温度(平衡状態にある鍋Pの実測温度)に収束するときの間隔(δ)が、鍋Pとトッププレート3との間の実際の間隔を表すものと考えられる。
 具体的には、温度推定回路40は、推定温度(T)が所定の温度に収束すると判断されるまでの時間(たとえば推定温度の10秒間の変動が所定の温度に対してプラスマイナス1℃の範囲で推移すると判断されるまでの時間)が最も短くなるような間隔(δ)を決定し、これを鍋Pの固有の特性として、鍋Pに関連付けて温度推定回路40に内蔵するメモリ(図示せず)に記憶する。
In other words, in the boiling test, the interval (δ a ) when the estimated temperature according to the above equation (3) converges to the predetermined temperature (the measured temperature of the pan P in an equilibrium state) in the shortest time is the pan P and the top plate. 3 is considered to represent the actual spacing between the two.
Specifically, the temperature estimation circuit 40 determines the time until the estimated temperature (T p ) is determined to converge to a predetermined temperature (for example, the 10-second fluctuation of the estimated temperature is plus or minus 1 ° C. with respect to the predetermined temperature). The interval (δ a ) that minimizes the time until it is determined that the transition is made in the range of () is determined, and this is a characteristic characteristic of the pan P, and is associated with the pan P in the temperature estimation circuit 40. (Not shown).
 こうして一旦鍋Pに関連付けられ、メモリに記録された間隔(δ)は、煮沸テスト後の使用に際して、設定機器70により鍋Pが特定されると、温度推定回路40に呼び出される。そして温度推定回路40は、煮沸テストで鍋Pに対して個々に計測された間隔(δ)、トッププレート3の実測温度(T)およびその時間変化率(∂T/∂t)に基づいて、上式(3)を用いて鍋Pの表面温度を精緻に推定することができる。 Thus, the interval (δ a ) once associated with the pan P and recorded in the memory is called to the temperature estimation circuit 40 when the pan P is specified by the setting device 70 in use after the boiling test. Then, the temperature estimation circuit 40 sets the interval (δ a ) individually measured for the pan P in the boiling test, the measured temperature (T g ) of the top plate 3, and the rate of change over time (∂T g / ∂t). Based on the above equation (3), the surface temperature of the pan P can be estimated precisely.
 再び図7を参照すると、鍋Pに収容された水は、約130秒までは大きな温度勾配で温度上昇していたが、約130秒以降は温度勾配が0となり、その温度は100℃(沸騰)で維持されている。本願発明に係る適正な間隔(δ)を用いた推定温度は、約110~約130秒において緩やかな温度上昇勾配で温度変化するものの、鍋Pの実測温度に呼応して変化している。 Referring to FIG. 7 again, the temperature of the water contained in the pot P increased with a large temperature gradient until about 130 seconds, but after about 130 seconds, the temperature gradient became 0, and the temperature was 100 ° C. (boiling). ). The estimated temperature using an appropriate interval (δ a ) according to the present invention changes in response to the measured temperature of the pan P, although the temperature changes with a gentle temperature rise gradient in about 110 to about 130 seconds.
 また、鍋Pの温度は約100秒までは大きな温度勾配で温度上昇していたが、約100秒以降は温度勾配がほぼ0で、その温度は135℃で収束している。これらは、約80~約100秒までサブクール沸騰が発生し、約100秒以降では飽和沸騰になったことを示しており、時間のずれはあるものの鍋Pの実測温度、水の実測温度、および本願発明に係る鍋Pの推定温度は、沸騰が開始したとき温度勾配が0になる。したがって本願発明によれば、推定される温度の温度勾配が急変した場合または温度勾配がほぼ0になったときに沸騰開始として検知することができる。 Also, the temperature of the pan P increased with a large temperature gradient until about 100 seconds, but after about 100 seconds, the temperature gradient was almost 0, and the temperature converged at 135 ° C. These show that subcooled boiling occurred from about 80 to about 100 seconds and saturated boiling after about 100 seconds. Although there was a time lag, the measured temperature of the pan P, the measured temperature of water, and The estimated temperature of the pan P according to the present invention has a temperature gradient of 0 when boiling starts. Therefore, according to the present invention, it is possible to detect the start of boiling when the estimated temperature gradient changes suddenly or when the temperature gradient becomes almost zero.
 こうして上記沸騰検知により、実調理、湯沸し、煮沸消毒などにおいて沸騰状態を検知し、制御回路50により加熱コイル20を最適に駆動して火力調節することにより、過剰な加熱を防止し、省エネ性を向上させることができ、吹きこぼれや液飛散などを抑制することができる。 Thus, by detecting the boiling, the boiling state is detected in actual cooking, boiling water, boiling disinfection, etc., and the heating coil 20 is optimally driven by the control circuit 50 to adjust the heating power, thereby preventing excessive heating and saving energy. It is possible to improve, and spillage and liquid scattering can be suppressed.
 上述のように、本願発明によれば、煮沸テストにおいて、水を満たした鍋Pをトッププレート3上に載置し、加熱コイル20により加熱し、温度センサ30で検知された温度をもとに鍋Pの底板Bとトッププレート3との間の間隔(δ)を推定し、鍋Pの特性として記憶するので、煮沸テスト後の実際の調理において、係る鍋Pの適正な間隔(δ)を利用して、鍋Pの表面温度を正確に推定することができる。 As described above, according to the present invention, in the boiling test, the pan P filled with water is placed on the top plate 3, heated by the heating coil 20, and based on the temperature detected by the temperature sensor 30. estimating a distance ([delta] a) between the bottom plate B and the top plate 3 of the pot P, since the memory as a characteristic of the pan P, in an actual cooking of boiled testing, proper spacing of pots P according ([delta] a ) Can be used to accurately estimate the surface temperature of the pan P.
 また図7に示す3つの異なる間隔(δ)をもとに予測した過渡温度変化より、適正な間隔(δ)を用いた場合は、沸騰開始後の温度上昇勾配は0になり一定の温度を示すが、実際より大きな隙間を用いた場合は、オーバーシュート後に下に凸の曲線にて低下しつつ鍋Pの実測温度に漸近する。逆に実際より小さな隙間を用いた場合には、沸騰前後の温度上昇の勾配変化が緩やかになり、上に凸の曲線にて上昇しつつ鍋Pの実測温度に漸近する。このように、適正でない隙間を用いた場合、沸騰後においても温度変化することから、この関係を用いて隙間を補正することができる。 Further, from the transient temperature change predicted based on the three different intervals (δ a ) shown in FIG. 7, when the appropriate interval (δ a ) is used, the temperature increase gradient after the start of boiling becomes zero and is constant. Although temperature is shown, when a gap larger than actual is used, it gradually approaches the measured temperature of the pan P while decreasing in a convex curve downward after overshoot. On the other hand, when a gap smaller than the actual one is used, the gradient change of the temperature rise before and after boiling becomes gentle and gradually approaches the measured temperature of the pan P while rising in a convex curve. As described above, when a gap that is not appropriate is used, the temperature changes even after boiling, so that the gap can be corrected using this relationship.
 このように、それぞれの鍋Pに対して、あらかじめ煮沸テストを行うことにより、鍋Pに固有の間隔(δ)を計測し、記憶することにより、実際に料理するときにその記憶データを用いて鍋Pの温度を精度よく計測することができる。また、定期的に計測し、記憶データを更新することにより、鍋Pの変形や汚れの付着など鍋Pの経時変化による誤差を小さくすることができる。 In this way, by performing a boiling test on each pan P in advance, the interval (δ a ) unique to the pan P is measured and stored, so that the stored data is used when actually cooking. The temperature of the pan P can be accurately measured. Further, by periodically measuring and updating the stored data, errors due to changes in the pan P over time, such as deformation of the pan P and adhesion of dirt, can be reduced.
 また、通常の鍋Pの底板Bとトッププレート3との間の間隔(δ)は、0.3から0.8mm程度で、規定値(デフォルト値)として0.5mmと設定することにより、実際の使用に適した温度検知が可能である。鍋Pの底板Bが当初から変形している場合(反り鍋など)や使用により変形した場合には、たとえば設定機器70に設けた校正用ボタン(図示せず)を押し、特定の鍋Pだけ上記煮沸テストにより校正してもよい。この操作を鍋a,鍋b,鍋cなどについて記憶し、実際に使用したい鍋Bの設定を設定機器より読み出すことにより、それぞれの鍋Pに適した温度検知を行うことができる。
 なお、上記手法は、煮沸テストとして予め校正する手法として記載したが、実調理時にも実施することができ、随時間隔(δ)を最適化してもよい。
In addition, the interval (δ a ) between the bottom plate B and the top plate 3 of the normal pan P is about 0.3 to 0.8 mm, and by setting 0.5 mm as the specified value (default value), Temperature detection suitable for actual use is possible. When the bottom plate B of the pan P is deformed from the beginning (warp pan or the like) or deforms due to use, for example, a calibration button (not shown) provided on the setting device 70 is pushed, and only the specific pan P is pressed. You may calibrate by the said boiling test. This operation is memorized about pan a, pan b, pan c, etc., and the temperature detection suitable for each pan P can be performed by reading the setting of pan B that is actually desired to be used from the setting device.
In addition, although the said method was described as a method calibrated beforehand as a boiling test, it can be implemented also at the time of an actual cooking, and you may optimize a space | interval ((delta) a ) at any time.
 また、上記煮沸テストによれば、図7に示すように、鍋Pに収容された内容物が沸騰するまでの時間、すなわち水を煮沸させるために鍋Pに加えた熱量全体(規定加熱量Q)、および内容物と鍋Pの底板Bの温度との差(ΔTp0)、すなわち規定加熱量(Q)に対する底板Bの過熱度(ΔTP0)を知ることができる。このとき、鍋Pに加えた任意の加熱量(Q)に対する底板Bの過熱度(ΔT)を次式により推定することができる。
Figure JPOXMLDOC01-appb-M000006
ここで指数(n)は、0.5~0.9の値であり、好ましくは0.6~0.8の値であって、煮沸テストにより予め決定することができる。
 したがって、上式(4)におけるパラメータである規定加熱量(Q)、底板Bの過熱度(ΔTP0)、指数(n)を図示しないメモリに予め記憶しておくことにより、任意の加熱量(Q)を加えたときの底板Bの温度(ΔT)を、上式(4)より推定することができる。こうして鍋Pの底板Bの温度ではなく、食材Fの温度としてユーザに伝達するようにしてもよい。
Moreover, according to the said boiling test, as shown in FIG. 7, the time until the contents accommodated in the pan P boil, that is, the total amount of heat applied to the pan P to boil the water (specified heating amount Q 0 ) and the difference between the contents and the temperature of the bottom plate B of the pan P (ΔT p0 ), that is, the degree of superheat (ΔT P0 ) of the bottom plate B with respect to the specified heating amount (Q 0 ). At this time, the degree of superheat (ΔT P ) of the bottom plate B with respect to an arbitrary heating amount (Q) applied to the pan P can be estimated by the following equation.
Figure JPOXMLDOC01-appb-M000006
Here, the index (n) is a value of 0.5 to 0.9, preferably a value of 0.6 to 0.8, and can be determined in advance by a boiling test.
Therefore, the predetermined heating amount (Q 0 ), the degree of superheat (ΔT P0 ) of the bottom plate B, and the index (n), which are parameters in the above equation (4), are stored in advance in a memory (not shown), thereby allowing an arbitrary heating amount. The temperature (ΔT P ) of the bottom plate B when (Q) is added can be estimated from the above equation (4). Thus, the temperature of the food F may be transmitted to the user instead of the temperature of the bottom plate B of the pan P.
 さらに、上記煮沸テストにおいて、鍋Pの底板Bとトッププレート3との間の間隔(δ)を推定するのではなく、実際より大きな任意の隙間を仮定して、鍋Pの温度を推定し、図7に示すように推定温度が低下(オーバーシュート)し始めたときに、鍋Pに収容された内容物が沸騰し始めたものと判断することができる。この推定温度の低下により、沸騰開始を推定することができ、さまざまな制御の判断基準として利用することができる。
 また、トッププレート3の温度(T)の時間変化率(∂T/∂t)が極大値を示したことを、沸騰開始の推定基準としてもよい。なお、時間変化率(∂T/∂t)の精度が重要であることから、平均化処理を施した方が好ましい。特に、トッププレート3の温度(T)を平均化して、時間変化率(∂T/∂t)を算出することにより、予測精度を向上させることができる。
Furthermore, in the above boiling test, the temperature of the pan P is estimated by assuming an arbitrary gap larger than the actual one, rather than estimating the interval (δ a ) between the bottom plate B and the top plate 3 of the pan P. 7, when the estimated temperature starts to decrease (overshoot), it can be determined that the contents stored in the pan P have started to boil. Due to the decrease in the estimated temperature, the start of boiling can be estimated and can be used as a criterion for various controls.
Further, that the time rate of change of temperature (T g) of the top plate 3 (∂T g / ∂t) showed a maximum value may be estimated based on the start of boiling. In addition, since the accuracy of the time change rate (∂T g / ∂t) is important, it is preferable to perform an averaging process. In particular, the temperature of the top plate 3 (T g) are averaged by calculating the time rate of change (∂T g / ∂t), it is possible to improve the prediction accuracy.
実施の形態3.
 図8を参照しながら、本願発明に係る誘導加熱調理器の実施の形態3について以下詳細に説明する。実施の形態2に係る誘導加熱調理器1は、煮沸テストにより個々の鍋Pに対する間隔(δ)を計測するものであったが、実施の形態3の誘導加熱調理器1は、間隔(δ)を計測する変位センサ90をトッププレート3の下方に別途設ける点を除き、実施の形態1の電磁調理器1と同様の構成を有するので、重複する点については説明を省略する。
Embodiment 3 FIG.
The third embodiment of the induction heating cooker according to the present invention will be described in detail below with reference to FIG. The induction heating cooker 1 according to the second embodiment measures the interval (δ a ) for each pan P by a boiling test, but the induction heating cooker 1 according to the third embodiment uses the interval (δ Since it has the same configuration as the electromagnetic cooker 1 of Embodiment 1 except that a displacement sensor 90 for measuring a ) is separately provided below the top plate 3, the description of the overlapping points is omitted.
 図8は本願発明に係る実施の形態3による誘導加熱調理器1の回路ブロック図である。図示のように、実施の形態3による誘導加熱調理器1は、トッププレート3の下方において、鍋Pの底板Bとトッププレート3との間の間隔(δ)を計測する変位センサ90を有し、計測された間隔信号は温度推定回路40に入力される。すなわち実施の形態3の誘導加熱調理器1によれば、変位センサ90を用いて調理開始前または調理中に間隔(δ)を直接的に計測し、鍋Pの温度を正確に推定することができる。したがって、実施の形態2とは異なり、煮沸テストを事前に行う必要もなく、トッププレート3との間の間隔(δ)が未知のすべての鍋Pについて、上式(3)を用いて鍋Pの温度を精緻に推定することができる。 FIG. 8 is a circuit block diagram of the induction heating cooker 1 according to the third embodiment of the present invention. As shown in the figure, the induction heating cooker 1 according to the third embodiment has a displacement sensor 90 that measures a distance (δ a ) between the bottom plate B of the pan P and the top plate 3 below the top plate 3. The measured interval signal is input to the temperature estimation circuit 40. That is, according to the induction heating cooker 1 of the third embodiment, the interval (δ a ) is directly measured using the displacement sensor 90 before or during cooking, and the temperature of the pan P is accurately estimated. Can do. Therefore, unlike Embodiment 2, it is not necessary to perform a boiling test in advance, and for all pans P whose distance (δ a ) from the top plate 3 is unknown, the pan using the above equation (3) The temperature of P can be estimated precisely.
 なお本願発明に係る変位センサ90は、鍋Pとトッププレート3との間の間隔(δ)を推定できるものであれば任意のものを採用することができ、たとえば渦電流式、共焦点測定方式、三角測距方式、オートコリメート方式、レーザ非接触式、超音波式、静電容量式の変位センサ90であってもよい。これらの各方式による変位センサについて概略的に以下説明する。 As the displacement sensor 90 according to the present invention, any sensor can be adopted as long as the distance (δ a ) between the pan P and the top plate 3 can be estimated. For example, eddy current type, confocal measurement The displacement sensor 90 may be a method, a triangulation method, an autocollimation method, a laser non-contact method, an ultrasonic method, or a capacitance method. A displacement sensor according to each of these methods will be schematically described below.
 渦電流式の変位センサは、センサヘッド内部のコイルに高周波電流を流し、発生した高周波磁界を発生し、この磁界内に対象物(鍋P)があると、対象物表面に磁界の通過と垂直方向の渦電流が流れ、対象物との距離に依存して、この渦電流によるエネルギ損失が変化し、この渦電流損失による発信状態の変化を検出して、距離を推定するものである。 The eddy current type displacement sensor generates a high-frequency magnetic field by passing a high-frequency current through a coil inside the sensor head, and when there is an object (pan P) in this magnetic field, the surface of the object is perpendicular to the passage of the magnetic field. Directional eddy current flows, and energy loss due to the eddy current changes depending on the distance to the object, and a change in the transmission state due to the eddy current loss is detected to estimate the distance.
 共焦点測定方式の変位センサによれば、レーザ光が音叉により高速に上下する対物レンズを通過し、対象物上で焦点を結び、その反射光がピンホールの位置で一点に集光され受光素子に入光し、その瞬間の対物レンズの位置をセンサで測定することにより、距離を推定することができる。 According to the confocal measurement type displacement sensor, the laser light passes through the objective lens that moves up and down at high speed by the tuning fork, focuses on the object, and the reflected light is condensed at one point at the position of the pinhole, and the light receiving element The distance can be estimated by measuring the position of the objective lens at that moment with a sensor.
 三角測距方式の変位センサは、投光されたレーザ光が対象物の表面で拡散反射し、その反射光の一部を受光レンズで集光してCCD上に結像させ、対象物が変位すると、拡散反射光の集光する角度が変化し、CCD上の結像位置が移動するが、その結像位置を検知することにより距離を推定するものである。 The displacement sensor of the triangulation system diffuses and reflects the projected laser light on the surface of the object, condenses a part of the reflected light with a light receiving lens and forms an image on the CCD, and the object is displaced. Then, the angle at which the diffusely reflected light is collected changes and the imaging position on the CCD moves, but the distance is estimated by detecting the imaging position.
 オートコリメート方式の変位センサにおいては、レーザ発光素子から照射後、コリメータレンズで平行に変換された平行レーザ光が、対象物に反射し、受光レンズで集光され、そのレンズの焦点距離上にあるCCD素子に結像する。このときの結像位置は、照射レーザ光と対象物の構成角によって変化するため、対象物の傾きが変化するとCCD上の結像位置も変化する。そして、この変化量を角度換算して距離を推定することができる。 In an autocollimation type displacement sensor, parallel laser light that has been irradiated from a laser light emitting element and then converted in parallel by a collimator lens is reflected by an object, collected by a light receiving lens, and located on the focal length of the lens. An image is formed on a CCD element. Since the image formation position at this time changes depending on the irradiation laser beam and the angle of the object, the image formation position on the CCD also changes when the inclination of the object changes. The distance can be estimated by converting the amount of change into an angle.
 レーザ非接触式の変位センサにおいては、レーザ光源から出た広波長帯域の光がヘッド内部の参照面で一部反射し、透過した光が対象物で正反射してヘッド内に返る。このとき2つの反射光は互いに干渉し、各波長の干渉光強度は参照面と対象物間の距離によって定まっており、波長の整数倍のとき極大となる。干渉光を分光器で波長ごとに分光することにより、波長の光強度分布が得られ、これを波形解析することにより、距離を推定することができる。 In the laser non-contact type displacement sensor, the light in the wide wavelength band emitted from the laser light source is partially reflected by the reference surface inside the head, and the transmitted light is regularly reflected by the object and returned to the head. At this time, the two reflected lights interfere with each other, and the intensity of the interference light of each wavelength is determined by the distance between the reference surface and the object, and becomes maximum when the wavelength is an integral multiple of the wavelength. By separating the interference light for each wavelength with a spectroscope, the light intensity distribution of the wavelength is obtained, and the distance can be estimated by analyzing the waveform.
 超音波式の変位センサは、センサヘッドから超音波を発信し、対象物で反射してくる超音波を再度センサヘッドで受信し、この音波の発信から受信までの時間を計測し距離を推定するものである。 The ultrasonic displacement sensor transmits ultrasonic waves from the sensor head, receives the ultrasonic waves reflected by the object again with the sensor head, and measures the time from transmission to reception of the sound waves to estimate the distance. Is.
 静電容量式の変位センサは、対象物に電場を印加すると距離の逆数にて静電容量が変化するので、この静電容量の変化を利用して距離を推定するものである。 The capacitance type displacement sensor estimates the distance using the change in the capacitance because the capacitance changes with the reciprocal of the distance when an electric field is applied to the object.
 なお、上記変位センサの中でも、トッププレート3上の汚れや液こぼれなどの影響がない、非光学系の変位センサを採用することが好ましい。
 また、誘導加熱調理器1では、渦電流センサまたは静電容量センサに相当する加熱コイル20が搭載されているので、加熱コイル20をそれら変位センサとして利用してもよい。さらに、多重配置の加熱コイル20の1つの加熱コイル20を、上記変位センサ90および加熱コイル20を兼用させるように使用してもよい。
Among the displacement sensors, it is preferable to employ a non-optical displacement sensor that is not affected by dirt or liquid spillage on the top plate 3.
Moreover, in the induction heating cooker 1, since the heating coil 20 equivalent to an eddy current sensor or a capacitance sensor is mounted, the heating coil 20 may be used as these displacement sensors. Further, one heating coil 20 of the multiple arranged heating coils 20 may be used so that the displacement sensor 90 and the heating coil 20 are combined.
 温度センサ30は、温度検知精度を改善するためには、変位センサ90で間隔(δ)を測定した位置に、すなわち変位センサ90に近接して配置することが好ましい。
 また鍋Pには、加熱コイル20に対する載置位置などにより、食材(特に水分)が沸騰しやすい領域(沸騰領域)と、沸騰しにくい領域(非沸騰領域)が形成され、沸騰領域の方が非沸騰領域より多くの気化熱が奪われて低温になるので、鍋Pの底板Bの全体において、温度分布にばらつきが生じることがある。そこで温度センサ30は、加熱コイル20に対向する複数の位置において数多く(複数)設けておくことが好ましい。
In order to improve temperature detection accuracy, the temperature sensor 30 is preferably disposed at a position where the distance (δ a ) is measured by the displacement sensor 90, that is, close to the displacement sensor 90.
In addition, depending on the mounting position with respect to the heating coil 20 and the like, the pan P is formed with a region where the food (especially moisture) is likely to boil (a boiling region) and a region where the boiling is difficult (a non-boiling region). Since more vaporization heat is taken away from the non-boiling region and the temperature becomes low, the temperature distribution may vary in the entire bottom plate B of the pan P. Therefore, it is preferable to provide a large number (a plurality) of temperature sensors 30 at a plurality of positions facing the heating coil 20.
 さらに変位センサおよび温度センサ30は、加熱コイル20の内径より内側に設けられることが好ましい。一般に使用される鍋Pはさまざまな大きさ(直径)を有するが、小さな直径の鍋Pでも精度よく温度検知するために、変位センサおよび温度センサ30は、好適には加熱コイル20の中心から半径60mm以内に配置し、より好適には加熱コイル20のほぼ中心に配置する。 Furthermore, it is preferable that the displacement sensor and the temperature sensor 30 are provided inside the inner diameter of the heating coil 20. Although the pan P generally used has various sizes (diameters), the displacement sensor and the temperature sensor 30 preferably have a radius from the center of the heating coil 20 in order to accurately detect the temperature even in the small-diameter pan P. It arrange | positions within 60 mm, and arrange | positions in the approximate center of the heating coil 20 more suitably.
 択一的には、変位センサ90を加熱コイル20の内径より内側に設けるのではなく、図9に示すように、IH加熱部4(およびラジエント加熱部5)の外側に配置してもよい。
 この誘導加熱調理器1は、鍋Pとトッププレート3との間の間隔(δ)を測定するための変位検知領域92を有し、変位センサ90が変位検知領域92のほぼ中央であってトッププレート3の下方に配置されている。ユーザは、鍋Pを用いて調理加熱する前に鍋Pを変位検知領域92に載置し、図示しない計測スイッチを押下することにより間隔(δ)を自動計測し、誘導加熱調理器1は温度推定回路40または制御回路50のメモリ内に間隔(δ)を記憶する。その後、ユーザは鍋PをIH加熱部4の上に移動させて調理加熱を開始し、誘導加熱調理器1はメモリ内に記憶された間隔(δ)を用いて鍋Pの温度を推定する。
Alternatively, the displacement sensor 90 may be arranged outside the IH heating unit 4 (and the radiant heating unit 5) as shown in FIG. 9 instead of being provided inside the inner diameter of the heating coil 20.
The induction heating cooker 1 has a displacement detection region 92 for measuring the interval (δ a ) between the pan P and the top plate 3, and the displacement sensor 90 is substantially at the center of the displacement detection region 92. It is disposed below the top plate 3. The user places the pan P in the displacement detection region 92 before cooking and heating using the pan P, and automatically measures the interval (δ a ) by pressing a measurement switch (not shown). The interval (δ a ) is stored in the memory of the temperature estimation circuit 40 or the control circuit 50. Thereafter, the user moves the pan P onto the IH heating unit 4 to start cooking and heating, and the induction heating cooker 1 estimates the temperature of the pan P using the interval (δ a ) stored in the memory. .
 このように変位センサ90を比較的に低温に維持される変位検知領域92の下方に配置したので、耐熱温度のより低い(より安価な)変位センサを利用することができる。また複数のIH加熱部4を有する誘導加熱調理器1であっても、単一の変位センサ90を共有化することができ、筐体2内のスペースを有効活用し、加熱コイル20より内側に設けた場合に比して煩雑な回路配線を回避することができる。
 なお、この場合、ユーザが変位検知領域92内に鍋Pを載置しやすくするために、トッププレート3に変位検知領域92を示す図形などのマーキングを表示することが好ましい。
As described above, since the displacement sensor 90 is disposed below the displacement detection region 92 that is maintained at a relatively low temperature, a displacement sensor having a lower heat resistance temperature (lower cost) can be used. Further, even in the induction heating cooker 1 having a plurality of IH heating units 4, the single displacement sensor 90 can be shared, the space in the housing 2 can be effectively used, and the heating coil 20 can be located inside. Complicated circuit wiring can be avoided as compared with the case where it is provided.
In this case, in order to make it easier for the user to place the pan P in the displacement detection area 92, it is preferable to display a marking such as a graphic indicating the displacement detection area 92 on the top plate 3.
 一方、温度センサ30および変位センサ90は、とりわけ加熱コイル20の内径より内側に設ける場合、加熱コイル20による強磁場および高温雰囲気に曝されるので、図10に示すように保護管(外乱抑制容器または防磁パイプ)94で包囲して、強磁場および高温雰囲気から保護することが好ましい。温度センサ30および変位センサ90は別個の保護管94に収容してもよいが、隣接して配置される場合は単一の保護管94で保護するようにしてもよい。保護管94は、加熱コイル20からの高周波磁場を抑制して、温度センサ30および変位センサ90を保護するためのものであるので、防磁効果があり誘導加熱されにくい銅、アルミニウム、フェライトなどを用いて形成される円筒管であることが好ましい。
 なお、保護管94は継ぎ目のない銅管であることが好適であり、その厚みは0.8mm以上で、より好ましくは1.0mm以上である。また、保護管94は強磁場また加熱コイル20からの輻射熱により高い温度に曝されるため、温度センサ30および変異センサ90との間に空隙を設けることが好ましい。たとえば、保護管94の内面にスペーサやリブなどを介してセンサと接触し、可能な限り接触面積を小さくすることが好ましい。
On the other hand, the temperature sensor 30 and the displacement sensor 90 are exposed to a strong magnetic field and a high temperature atmosphere by the heating coil 20 especially when provided inside the inner diameter of the heating coil 20, so that as shown in FIG. Alternatively, it is preferable to protect from a strong magnetic field and a high temperature atmosphere by surrounding it with a magnetic shield pipe 94). The temperature sensor 30 and the displacement sensor 90 may be housed in separate protective tubes 94, but may be protected by a single protective tube 94 when arranged adjacent to each other. The protective tube 94 is for suppressing the high-frequency magnetic field from the heating coil 20 and protecting the temperature sensor 30 and the displacement sensor 90. Therefore, the protective tube 94 is made of copper, aluminum, ferrite, or the like that has a magnetic shielding effect and is difficult to be induction-heated. It is preferable that it is a cylindrical tube formed by the following.
The protective tube 94 is preferably a seamless copper tube, and its thickness is 0.8 mm or more, more preferably 1.0 mm or more. Further, since the protective tube 94 is exposed to a high temperature by a strong magnetic field or radiant heat from the heating coil 20, it is preferable to provide a gap between the temperature sensor 30 and the mutation sensor 90. For example, it is preferable that the inner surface of the protective tube 94 is brought into contact with the sensor via a spacer or a rib so that the contact area is made as small as possible.
 また、温度センサ30および変位センサ90から温度推定回路40へ信号を送信する配線は、寄り線または被覆付き配線を採用し、またはフェライト棒に複数回捲回することにより、高周波磁場に起因するノイズ(外乱)を抑制して、より正確に測定されたトッププレート3の温度(T)および間隔(δ)に基づいて鍋Pの温度を推定することが好ましい。 Moreover, the wiring which transmits a signal from the temperature sensor 30 and the displacement sensor 90 to the temperature estimation circuit 40 employs a twisted line or a covered wiring, or is wound around a ferrite rod a plurality of times, thereby causing noise caused by a high-frequency magnetic field. It is preferable to estimate the temperature of the pan P based on the temperature (T g ) and the interval (δ a ) of the top plate 3 more accurately measured while suppressing (disturbance).
 さらに、サーミスタなどの接触式温度センサ30は、通常、トッププレート3との間の接触熱抵抗を極力低減するために、できるだけ広い接触面積でトッププレート3と接触する高伝熱構造体(たとえばアルミニウム)の中に埋め込まれるように構成されているが、高伝熱構造体に代わって、高周波磁場により誘導加熱されない材料(たとえばセラミック、樹脂など)の中に埋設されることが好ましい。これにより、温度センサ30が高温になることを防止し、トッププレート3の温度(T)をより正確に測定することができる。 Furthermore, the contact-type temperature sensor 30 such as a thermistor usually has a high heat transfer structure (for example, aluminum) that contacts the top plate 3 with as wide a contact area as possible in order to reduce the contact thermal resistance with the top plate 3 as much as possible. However, in place of the high heat transfer structure, it is preferably embedded in a material (for example, ceramic, resin, etc.) that is not induction heated by a high frequency magnetic field. Thereby, it can prevent that the temperature sensor 30 becomes high temperature, and can measure the temperature ( Tg ) of the top plate 3 more correctly.
 ここで、温度センサ30としてサーミスタ100を用いた一例を図11に示す。図11(a)はサーミスタ100とその周辺部分の側方断面図であり、図11(b)は図11(a)中のB-B断面図を示し、図11(c)は図11(a)中のC-C断面図を示す。図11(a)に示すように、サーミスタ100は高伝熱構造体101に収容され、高伝熱構造体101は樹脂製のフォルダ102を用いてコイルベースに取り付けられている。またフォルダ102はフォルダ鍔102aを有し、高伝熱構造体101をトッププレート3に押圧するために、フォルダ鍔102aを上方に付勢するばね103が設けられている。本発明に係る一態様によれば、フォルダ102の外径より大きな内径を有する保護管94が設けられている。なお、保護管94と高伝熱構造体101との間を絶縁するために絶縁体104(例えば、マイカ板など)を設けることが好ましく、また図11(b)および(c)に示すように、フォルダ外壁102bおよびフォルダ鍔102aに複数のリブ105を設け、保護管94とフォルダ102との間に空隙を設けるとともに、保護管94とフォルダ102の接触面積を小さくすることが好ましい。 Here, an example in which the thermistor 100 is used as the temperature sensor 30 is shown in FIG. 11A is a side sectional view of the thermistor 100 and its peripheral portion, FIG. 11B is a sectional view taken along the line BB in FIG. 11A, and FIG. The CC sectional view in a) is shown. As shown in FIG. 11A, the thermistor 100 is housed in a high heat transfer structure 101, and the high heat transfer structure 101 is attached to the coil base using a resin folder 102. Further, the folder 102 has a folder cage 102a, and a spring 103 for biasing the folder cage 102a upward is provided in order to press the high heat transfer structure 101 against the top plate 3. According to one aspect of the present invention, the protective tube 94 having an inner diameter larger than the outer diameter of the folder 102 is provided. It is preferable to provide an insulator 104 (for example, a mica plate) in order to insulate between the protective tube 94 and the high heat transfer structure 101, as shown in FIGS. 11B and 11C. It is preferable to provide a plurality of ribs 105 on the folder outer wall 102b and the folder basket 102a to provide a gap between the protective tube 94 and the folder 102 and to reduce the contact area between the protective tube 94 and the folder 102.
 また温度センサ30は、とりわけ加熱コイル20に近接して配置される場合、加熱コイル20からの輻射熱により昇温する。そこで、上記保護管94に加えて、またはこれに代わって、温度センサ30の周りに加熱コイル20からの伝熱を遮断するための断熱材(図示せず)を配設してもよい。この場合、温度センサ30と断熱材の間に隙間を設け、隙間に空気(風)を流すことにより冷却するようにしてもよい。 Further, the temperature sensor 30 is heated by radiant heat from the heating coil 20 particularly when it is disposed close to the heating coil 20. Therefore, in addition to or instead of the protective tube 94, a heat insulating material (not shown) for blocking heat transfer from the heating coil 20 may be provided around the temperature sensor 30. In this case, a gap may be provided between the temperature sensor 30 and the heat insulating material, and cooling may be performed by flowing air (wind) through the gap.
 本願発明に係る誘導加熱調理器1によれば、温度推定回路40により正確に応答性よく推定された鍋Pの表面温度に基づいて、制御回路50は、さまざまな異常モード(発火、油煙、突沸、吹きこぼれ、空焚き、焦げつきなど)を検知し、駆動回路60を非常停止または火力低下(段階的低下も含む)を行うことができるので、調理時の安全性を向上させることができる。 According to the induction heating cooker 1 according to the present invention, based on the surface temperature of the pan P accurately and accurately estimated by the temperature estimation circuit 40, the control circuit 50 can perform various abnormal modes (ignition, oil smoke, bumping). , Spilling, emptying, scorching, etc.) can be detected, and the drive circuit 60 can be emergency stopped or reduced in thermal power (including stepwise reduction), thus improving safety during cooking.
 たとえば揚げ物調理に際して、鍋Pの温度が所定の温度を越えると、油が発火する。特に油量が少ない場合に温度上昇しやすく、発火しやすい。したがって、このとき温度推定回路40で求められたトッププレート3の温度(T)の時間変化率(∂T/∂t)が所定の正の閾値を越えたとき、制御回路50は、油が発火する可能性があると判断して、駆動回路60を非常停止させる。 For example, when fried food is cooked, the oil ignites when the temperature of the pan P exceeds a predetermined temperature. In particular, when the amount of oil is small, the temperature rises easily and ignition is likely. Therefore, when the time change rate (∂T g / ∂t) of the temperature (T g ) of the top plate 3 obtained by the temperature estimation circuit 40 at this time exceeds a predetermined positive threshold, the control circuit 50 Therefore, the drive circuit 60 is stopped in an emergency.
 また吹きこぼれが発生すると、トッププレート3の温度は急激に下がる。このとき同様に、温度推定回路40で求められた時間変化率(∂T/∂t)が所定の負の閾値を越えたとき、制御回路50は、吹きこぼれがあったと判断して、加熱コイル20に供給される高周波電流を抑制するように駆動回路60を制御する。 Further, when spilling occurs, the temperature of the top plate 3 rapidly decreases. Similarly, when the time change rate (時間 T g / ∂t) obtained by the temperature estimation circuit 40 exceeds a predetermined negative threshold, the control circuit 50 determines that there is a spill and the heating coil The drive circuit 60 is controlled so as to suppress the high-frequency current supplied to 20.
 さらに焦げ付きが発生した場合、鍋Pの底板Bに食材Fの炭化物による皮膜が形成され、食材Fに熱が伝わりにくくなり、鍋Pの温度が徐々に上昇する。制御回路50は、推定された鍋Pの温度が所定の温度より高くなったとき、または温度上昇し続けるとき、制御回路50は、加熱コイル20への給電を停止または抑制する。 When further scorching occurs, a film made of the carbide of the food material F is formed on the bottom plate B of the pan P, heat is hardly transmitted to the food material F, and the temperature of the pan P gradually increases. When the estimated temperature of the pan P becomes higher than a predetermined temperature, or when the temperature continues to rise, the control circuit 50 stops or suppresses power feeding to the heating coil 20.
 また本願発明に係る誘導加熱調理器1によれば、上記異常モードが検知された場合に、上記警告機器80を用いて、ユーザに警告を与えることができる。ユーザが誘導加熱調理器1から離れた場合に特に有用である。 Moreover, according to the induction heating cooker 1 according to the present invention, when the abnormal mode is detected, the warning device 80 can be used to give a warning to the user. This is particularly useful when the user leaves the induction heating cooker 1.
 たとえば上記異常モードを検知したとき、制御回路50はさまざまな警告機器80を制御して、ビープ音を発し、合成音声を出力し、警告灯を点灯または点滅させ、あるいは液晶表示部9に警告表示させることができる。これにより制御回路50は、異常モードが検知された際には、速やかにユーザに通知して注意を喚起するとともに、加熱コイル20への給電を停止または抑制してより高い安全性を実現することができる。 For example, when the above abnormal mode is detected, the control circuit 50 controls various warning devices 80, emits a beep, outputs a synthesized voice, lights or flashes a warning lamp, or displays a warning on the liquid crystal display unit 9. Can be made. Thereby, when the abnormal mode is detected, the control circuit 50 promptly notifies the user to call attention and stop or suppress the power supply to the heating coil 20 to realize higher safety. Can do.
 さらに本願発明に係る誘導加熱調理器1によれば、制御回路は、火力調整ダイヤル8などで設定された鍋Pの温度と、上式(3)で精緻に推定された鍋Pの温度を比較した上で、最適な火力で加熱するように駆動回路60を制御することができる。また液晶表示部9上には、従来技術のように設定された鍋Pの温度ではなく、実際の温度をリアルタイムで表示することができるので、ユーザの希望する調理方法に即した火力調節を実現し、より容易においしい料理の完成を支援することができる。 Furthermore, according to the induction heating cooker 1 according to the present invention, the control circuit compares the temperature of the pan P set by the heating power adjustment dial 8 or the like with the temperature of the pan P precisely estimated by the above equation (3). In addition, the drive circuit 60 can be controlled so as to heat with an optimum heating power. Moreover, since the actual temperature can be displayed in real time on the liquid crystal display unit 9 instead of the temperature of the pan P set as in the prior art, the heating power adjustment according to the cooking method desired by the user is realized. And it can help you complete delicious dishes more easily.
 たとえば、揚げ物調理においてじっくり火を通したい場合は160℃に設定し、表面をこんがりと揚げたい場合は200℃に調節し、ミルクやお茶などを加熱する場合は一旦沸騰させた後、約70~90℃になるように調節する。まち煮込み料理時においては煮込み具材が60℃に維持されるように調節し、みそ汁などを加熱する場合には沸騰させない程度の温度に調節する。このように、ユーザはそれぞれの調理方法に適した温度を設定することができ、従来のユーザの感覚に頼った火力調整する必要が無く、美味しい調理を行うことができる。また従前、鍋Pに収容された食材Fの内容量により火力調整しなければならなかったが、鍋Pの温度を正確に推定し、これに基づいて火力調節することができるので、食材Fの内容量に応じた火力調整は不要であり、より容易に調理することができる。 For example, if you want to cook thoroughly in deep-fried food cooking, set it to 160 ° C. If you want to fry the surface, adjust it to 200 ° C. If you want to heat milk or tea, boil it once and bring it to a boil. Adjust to 90 ° C. At the time of cooking in the town, adjust the temperature so that the cooking ingredients are maintained at 60 ° C., and adjust the temperature so that it does not boil when miso soup is heated. In this way, the user can set a temperature suitable for each cooking method, and there is no need to adjust the heating power depending on the conventional user's sense, and delicious cooking can be performed. In the past, the heating power had to be adjusted based on the content of the food F contained in the pan P. However, since the temperature of the pan P can be estimated accurately and the heating power can be adjusted based on this, It is not necessary to adjust the heating power according to the content, and cooking can be performed more easily.
 また、卵焼き、目玉焼き、ハンバーグ、クレープ、餃子などを調理する場合、予熱したフライパンPに食材を入れるとき、事前にフライパンPの温度を設定することにより、異常温度に達する空焚きを未然防止しつつ、フライパンPを適正かつ安全な予熱温度に維持することができる。 In addition, when cooking eggs, fried eggs, hamburgers, crepes, dumplings, etc., when the ingredients are put into the pre-heated frying pan P, the temperature of the frying pan P is set in advance to prevent emptying that reaches an abnormal temperature. The frying pan P can be maintained at an appropriate and safe preheating temperature.
 さらに、おでんなどの煮込み料理を調理する場合、または熱燗やミルクなど低温で加熱保温した場合においても鍋Pの温度を正確に推定できるので、確実に所望する温度に設定することができる。 Furthermore, the temperature of the pan P can be accurately estimated even when cooking a stewed dish such as oden, or when heated and kept at a low temperature such as hot salmon or milk, so that it can be reliably set to a desired temperature.
 加熱開始当初、食材Fが沸騰していない状態(非沸騰状態)にあるとき、鍋Pと食材Fの温度上昇率(dT/dt)は、これらの熱容量Cと投入加熱量Qにより、次式で表される。
Figure JPOXMLDOC01-appb-M000007
 そこで推定された鍋Pの温度の時間変化率(dT/dt)および投入された電力に基づいて、鍋Pと食材Fの熱容量を推定する回路を設けることにより、沸騰状態になるまでの時間を推測して表示することができ、ユーザは、食材Fを鍋Pに入れるタイミングや、調理完了時間を知ることができ、効率よく調理を行うことができる。また、最適な加熱制御により、調理時間の制御し短縮することもできる。
At the beginning of heating, when the food F is not boiling (non-boiling state), the temperature increase rate (dT / dt) of the pan P and the food F is determined by the following equation using the heat capacity C and the input heating amount Q: It is represented by
Figure JPOXMLDOC01-appb-M000007
Therefore, by providing a circuit for estimating the heat capacities of the pot P and the food F based on the estimated rate of time change (dT / dt) of the temperature of the pot P and the input electric power, the time until the boiling state is reached is provided. The user can estimate and display, and the user can know the timing of putting the food F into the pan P and the cooking completion time, and can efficiently cook. Also, the cooking time can be controlled and shortened by optimal heating control.
 また誘導加熱調理器1は、炊飯などの特定のメニュを選択可能にしたメニュ選択機器(図示せず)を設け、選択されたメニュに対して調理時間および火力が設定された調理プログラムを制御回路50の内臓メモリ内に記憶しておき、この調理プログラムに従って調理時間および火力を自動的に制御する(「おまかせ調理」を行う)ものであってもよい。 The induction heating cooker 1 is provided with a menu selection device (not shown) that allows a specific menu such as rice cooking to be selected, and controls a cooking program in which cooking time and heating power are set for the selected menu. You may memorize | store in 50 built-in memories, and control a cooking time and a thermal power automatically according to this cooking program ("automatic cooking" is performed).
 さらに誘導加熱調理器1は、外部メモリを着脱可能にした増設メモリスロット(ともに図示せず)を有し、外部メモリに格納された調理プログラムに従って「おまかせ調理」を行うものであってもよい。この場合、外部メモリに格納された調理プログラムは、PCまたは適当な電子記憶媒体から自在に変更または更新することができ、最新の調理方法や、プロの調理方法、自分好みの調理方法を容易に再現することができる。 Furthermore, the induction heating cooker 1 may have an additional memory slot (both not shown) in which an external memory is detachable, and may perform “automatic cooking” according to a cooking program stored in the external memory. In this case, the cooking program stored in the external memory can be freely changed or updated from a PC or an appropriate electronic storage medium, and the latest cooking method, professional cooking method, and cooking method of your choice can be easily done. Can be reproduced.
 必要ならば、合成音声出力機器または動画表示機器(ともに図示せず)を設けることにより、ユーザは、事前に記憶された調理プログラムの調理手法および手順の案内について指示を受けながら、実際の調理を楽しむこともできる。同様にユーザは、これらの機器を利用して、調理中に好きな音楽を聴きながら調理することもできる。 If necessary, by providing a synthesized voice output device or a video display device (both not shown), the user can perform actual cooking while receiving instructions on the cooking method and procedure guidance of the cooking program stored in advance. You can also enjoy it. Similarly, the user can use these devices to cook while listening to favorite music during cooking.
 なお、沸騰熱伝達による過熱度(伝熱壁と水の沸点との温度差)は熱流束(単位面積当たりの伝達熱量)により関連付けられる。すなわち、任意の火力時の鍋Pの温度(水の沸点に上記過熱度を加算した温度)は既知であり、上記説明してきた鍋Pの温度は火力に関連付けられた過熱度を考慮することにより、鍋Pに収容された食材Fの温度にすることができ、上述してきた鍋Pの温度は食材Fの温度として表示、設定、制御することができる。 Note that the degree of superheat due to boiling heat transfer (temperature difference between the heat transfer wall and the boiling point of water) is related by heat flux (transfer heat per unit area). That is, the temperature of the pan P at any thermal power (the temperature obtained by adding the superheat degree to the boiling point of water) is known, and the temperature of the pan P described above is determined by considering the superheat degree associated with the thermal power. The temperature of the food F accommodated in the pan P can be set, and the temperature of the pan P described above can be displayed, set and controlled as the temperature of the food F.
 なお、上記した温度推定法に関して、推定値に補正項を考慮してもよい。補正項としては、送風による冷却項(例えば、関数f(T,Tair)、ここでTairは冷却風の温度)、誘導加熱コイルからの輻射項(例えば、関数f(T,T)、ここでTは誘導加熱コイルの温度)、温度センサと天板の接触熱抵抗(例えば、関数f(T,Q))などである。したがって、冷却風の温度(Tair)および誘導加熱コイルの温度(T)を計測する手段を有する方が好ましい。 In addition, regarding the temperature estimation method described above, a correction term may be considered in the estimated value. The correction term, the cooling section by the air supply (e.g., the function f (T g, T air), where T air temperature of the cooling air), radiant section from the induction heating coil (for example, the function f (T g, T c ), where T c is the temperature of the induction heating coil), contact thermal resistance between the temperature sensor and the top plate (for example, function f (T g , Q)), and the like. Therefore, it is preferable to have means for measuring the temperature of the cooling air (T air ) and the temperature of the induction heating coil (T c ).

Claims (14)

  1.  被加熱体が所定の間隔(δ)を隔てて載置されるトッププレートと、
     前記トッププレートの下方に配置された、前記被加熱体を誘導加熱する加熱コイルと、
     前記加熱コイルに高周波電流を供給する駆動回路と、
     前記トッププレートの下方に配置された、該トッププレートの温度(T)を検出する温度センサと、
     前記温度センサで検出された前記トッププレートの温度(T)の時間変化率(∂T/∂t)を算出するとともに、前記間隔(δ)および該時間変化率(∂T/∂t)に基づいて、前記被加熱体の表面温度(T)を推定する温度推定回路と、
     前記温度推定回路で推定された推定温度(T)を用いて前記駆動回路を制御する制御部とを備えたことを特徴とする誘導加熱調理器。
    A top plate on which the object to be heated is placed at a predetermined interval (δ a );
    A heating coil disposed under the top plate for induction heating the object to be heated;
    A drive circuit for supplying a high-frequency current to the heating coil;
    A temperature sensor disposed below the top plate for detecting the temperature (T g ) of the top plate;
    A time change rate (∂T g / ∂t) of the temperature (T g ) of the top plate detected by the temperature sensor is calculated, and the interval (δ a ) and the time change rate (∂T g / ∂) are calculated. a temperature estimation circuit for estimating a surface temperature (T p ) of the heated object based on t);
    An induction heating cooker comprising: a control unit that controls the drive circuit using the estimated temperature (T p ) estimated by the temperature estimation circuit.
  2.  温度推定回路は、次式により被加熱体の表面温度(T)を推定することを特徴とする請求項1に記載の誘導加熱調理器。
    Figure JPOXMLDOC01-appb-M000001
    :温度推定回路で推定された被加熱体推定温度
    :温度センサで検出されたトッププレートの温度
    δ:被加熱体とトッププレートとの間の間隔
    ρ:トッププレートの密度
    :トッププレートの比熱
    δ:トッププレートの厚み
    λ:空気の熱伝導率
    The induction heating cooker according to claim 1, wherein the temperature estimation circuit estimates a surface temperature (T p ) of the object to be heated by the following equation.
    Figure JPOXMLDOC01-appb-M000001
    T p : heated object estimated temperature estimated by the temperature estimation circuit T g : temperature of the top plate detected by the temperature sensor δ a : distance between the heated object and the top plate ρ g : top plate density c g : Specific heat of the top plate δ g : Top plate thickness λ a : Thermal conductivity of air
  3.  温度推定回路は、水を収容した被加熱体を加熱した際に推定した被加熱体の推定温度(T)が最短時間で所定の値に収束するときの間隔を、被加熱体とトッププレートとの間の間隔(δ)と推定することを特徴とする請求項1に記載の誘導加熱調理器。 The temperature estimation circuit determines the interval when the estimated temperature (T p ) of the heated object estimated when the heated object containing water converges to a predetermined value in the shortest time, and the heated object and the top plate The induction heating cooker according to claim 1, wherein the interval is estimated as an interval (δ a ).
  4.  温度推定回路は、推定された間隔(δ)を被加熱体に関連付けて記憶する記憶手段を有することを特徴とする請求項3に記載の誘導加熱調理器。 The induction heating cooker according to claim 3, wherein the temperature estimation circuit includes storage means for storing the estimated interval (δ a ) in association with the object to be heated.
  5.  加熱コイルからの高周波磁場を抑制するための保護管を温度センサの周囲に配置したことを特徴とする請求項1~4のいずれか1に記載の誘導加熱調理器。 The induction heating cooker according to any one of claims 1 to 4, wherein a protective tube for suppressing a high-frequency magnetic field from the heating coil is disposed around the temperature sensor.
  6.  温度センサの周囲に断熱部材が配置されたことを特徴とする請求項1~5のいずれか1に記載の誘導加熱調理器。 The induction heating cooker according to any one of claims 1 to 5, wherein a heat insulating member is disposed around the temperature sensor.
  7.  被加熱体とトッププレートとの間の間隔を一定に維持する間隔維持手段を有することを特徴とする請求項1~6のいずれか1に記載の誘導加熱調理器。 The induction heating cooker according to any one of claims 1 to 6, further comprising interval maintaining means for maintaining a constant interval between the object to be heated and the top plate.
  8.  トッププレートの下方に配置され、被加熱体と該トッププレートとの間の間隔(δ)を計測する変位センサを有することを特徴とする請求項1または2に記載の誘導加熱調理器。 The induction heating cooker according to claim 1 or 2, further comprising a displacement sensor that is disposed below the top plate and that measures a distance (δ a ) between the object to be heated and the top plate.
  9.  変位センサが加熱コイルの中心から半径60mm以内の範囲に配置されていることを特徴とする請求項8に記載の誘導加熱調理器。 The induction heating cooker according to claim 8, wherein the displacement sensor is disposed within a radius of 60 mm from the center of the heating coil.
  10.  変位センサは、トッププレートの下方であって加熱コイルが配置されない変位検知領域内に配置されていることを特徴とする請求項8または9に記載の誘導加熱調理器。 10. The induction heating cooker according to claim 8 or 9, wherein the displacement sensor is arranged in a displacement detection region below the top plate and in which no heating coil is arranged.
  11.  保護管が銅製であり、厚みが0.8mm以上であることを特徴とする請求項5に記載の誘導加熱調理器。 The induction heating cooker according to claim 5, wherein the protective tube is made of copper and has a thickness of 0.8 mm or more.
  12.  任意の間隔(δ)を仮定し、上式(6)を用いて推定した温度(T)が極大値を示した以降において沸騰したと判断し、所定の制御を行うことを特徴とする請求項2に記載の誘導加熱調理器。 An arbitrary interval (δ a ) is assumed, and it is determined that boiling has occurred after the temperature (T p ) estimated using the above equation (6) shows a maximum value, and predetermined control is performed. The induction heating cooker according to claim 2.
  13.  絶縁板に対して所定の間隔(δ)を隔てて配置された被加熱体を加熱するステップと、
     絶縁板を介して被加熱体に対向する温度センサを用いて、絶縁板の温度(T)を検出するステップと、
     温度センサで検出された絶縁板の温度(T)の時間変化率(∂T/∂t)を算出するステップと、
     間隔(δ)および温度の時間変化率(∂T/∂t)に基づいて、被加熱体の表面温度(T)を推定するステップと、
     温度推定回路で推定された推定温度(T)を用いて被加熱体への加熱を制御するステップとを有することを特徴とする加熱制御方法。
    Heating an object to be heated disposed at a predetermined interval (δ a ) with respect to the insulating plate;
    Detecting a temperature (T g ) of the insulating plate using a temperature sensor facing the object to be heated via the insulating plate;
    Calculating a rate of time change (∂T g / ∂t) of the temperature (T g ) of the insulating plate detected by the temperature sensor;
    Estimating the surface temperature (T p ) of the object to be heated based on the interval (δ a ) and the time rate of change of temperature (∂T g / ∂t);
    And a step of controlling heating of the object to be heated using the estimated temperature (T p ) estimated by the temperature estimation circuit.
  14.  次式により被加熱体の表面温度(T)を推定するステップを有することを特徴とする請求項11に記載の加熱制御方法。
    Figure JPOXMLDOC01-appb-M000002
    :被加熱体の推定温度
    :温度センサで検出された絶縁板の温度
    δ:被加熱体と絶縁板との間の間隔
    ρ:絶縁板の密度
    :絶縁板の比熱
    δ:絶縁板の厚み
    λ:空気の熱伝導率
    The heating control method according to claim 11, further comprising a step of estimating a surface temperature (T p ) of the object to be heated by the following equation.
    Figure JPOXMLDOC01-appb-M000002
    T p : Estimated temperature of heated body T g : Temperature of insulating plate detected by temperature sensor δ a : Distance between heated body and insulating plate ρ g : Density of insulating plate c g : Specific heat of insulating plate δ g : thickness of insulating plate λ a : thermal conductivity of air
PCT/JP2011/059417 2010-04-21 2011-04-15 Induction cooker WO2011132614A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012511638A JP5340479B2 (en) 2010-04-21 2011-04-15 Induction heating cooker

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-097673 2010-04-21
JP2010097673 2010-04-21

Publications (1)

Publication Number Publication Date
WO2011132614A1 true WO2011132614A1 (en) 2011-10-27

Family

ID=44834134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059417 WO2011132614A1 (en) 2010-04-21 2011-04-15 Induction cooker

Country Status (2)

Country Link
JP (1) JP5340479B2 (en)
WO (1) WO2011132614A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013218869A (en) * 2012-04-09 2013-10-24 Mitsubishi Electric Corp Induction heating cooker
JP2014011020A (en) * 2012-06-29 2014-01-20 Mitsubishi Electric Corp Induction heating cooker and control method of the same
EP2775790A1 (en) * 2013-03-04 2014-09-10 Miele & Cie. KG Cooking device
WO2016087921A3 (en) * 2014-12-02 2016-07-28 King Abdulaziz University An energy efficient electric cooker
WO2020152499A1 (en) * 2019-01-23 2020-07-30 Gorenje Gospodinjski Aparati, D.D. Device for detecting cooking vessel characteristics and method for detecting cooking vessel characteristics
CN112004432A (en) * 2018-12-11 2020-11-27 韩国烟草人参公社 Aerosol generating device
JP2021177467A (en) * 2020-05-08 2021-11-11 三菱電機株式会社 Combined heating cooker, kitchen furniture, control program for combined heating cooker, and operation management system for home appliance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004227976A (en) * 2003-01-24 2004-08-12 Matsushita Electric Ind Co Ltd Induction heating cooker
JP2009187965A (en) * 2009-05-27 2009-08-20 Panasonic Corp Cooker and its program
JP2010040175A (en) * 2008-07-31 2010-02-18 Toshiba Corp Induction heating cooking appliance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004227976A (en) * 2003-01-24 2004-08-12 Matsushita Electric Ind Co Ltd Induction heating cooker
JP2010040175A (en) * 2008-07-31 2010-02-18 Toshiba Corp Induction heating cooking appliance
JP2009187965A (en) * 2009-05-27 2009-08-20 Panasonic Corp Cooker and its program

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013218869A (en) * 2012-04-09 2013-10-24 Mitsubishi Electric Corp Induction heating cooker
JP2014011020A (en) * 2012-06-29 2014-01-20 Mitsubishi Electric Corp Induction heating cooker and control method of the same
EP2775790A1 (en) * 2013-03-04 2014-09-10 Miele & Cie. KG Cooking device
WO2016087921A3 (en) * 2014-12-02 2016-07-28 King Abdulaziz University An energy efficient electric cooker
US10907838B2 (en) 2014-12-02 2021-02-02 King Abdulaziz University Energy efficient electric cooker
CN112004432A (en) * 2018-12-11 2020-11-27 韩国烟草人参公社 Aerosol generating device
CN112004432B (en) * 2018-12-11 2024-04-05 韩国烟草人参公社 Aerosol generating device, aerosol generating method, and computer-readable recording medium
WO2020152499A1 (en) * 2019-01-23 2020-07-30 Gorenje Gospodinjski Aparati, D.D. Device for detecting cooking vessel characteristics and method for detecting cooking vessel characteristics
JP2021177467A (en) * 2020-05-08 2021-11-11 三菱電機株式会社 Combined heating cooker, kitchen furniture, control program for combined heating cooker, and operation management system for home appliance
JP7450452B2 (en) 2020-05-08 2024-03-15 三菱電機株式会社 Operation management system for complex heating cookers, kitchen furniture, and home appliances

Also Published As

Publication number Publication date
JPWO2011132614A1 (en) 2013-07-18
JP5340479B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP5340479B2 (en) Induction heating cooker
CN100466869C (en) Induction heating cooker
ES2533470T3 (en) Heat induction cooking device
JP5254966B2 (en) Hob that enables temperature detection of cookware
JP6109207B2 (en) Temperature sensor probe and cooking device
JP5033733B2 (en) Induction heating cooker
WO2013134239A1 (en) Method and apparatus for temperature measurement during induction cooking
JP2009543275A (en) Cookware whose temperature is detected via the cooking plate
JP5286144B2 (en) Induction heating cooker
JP5308830B2 (en) Induction heating cooker
JP2009295457A (en) Induction heating cooker
JP2011023159A (en) Heating cooker
JP5653546B1 (en) Sensor case structure and cooking device provided with the sensor case structure
JP2009176751A (en) Induction heating cooker
JP2010244999A (en) Induction heating cooker
JP5241575B2 (en) Induction heating cooker
JP5868483B2 (en) Induction heating cooker
JP5889130B2 (en) Induction heating cooker and control method thereof
JP2009170433A (en) Induction-heating cooker
JP5677263B2 (en) Induction heating cooker
JP2004241220A (en) Induction heating cooking device
JP5889092B2 (en) Induction heating cooker
JP2009176553A (en) Induction heating cooker
JP5859085B2 (en) Sensor case structure and cooking device provided with the sensor case structure
JP2020126750A (en) Induction heating cooker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771949

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012511638

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11771949

Country of ref document: EP

Kind code of ref document: A1