WO2011132335A1 - Electric vehicle, braking program, and control method and control device of electric vehicle - Google Patents

Electric vehicle, braking program, and control method and control device of electric vehicle Download PDF

Info

Publication number
WO2011132335A1
WO2011132335A1 PCT/JP2010/066857 JP2010066857W WO2011132335A1 WO 2011132335 A1 WO2011132335 A1 WO 2011132335A1 JP 2010066857 W JP2010066857 W JP 2010066857W WO 2011132335 A1 WO2011132335 A1 WO 2011132335A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking
driving force
slip ratio
wheels
predetermined value
Prior art date
Application number
PCT/JP2010/066857
Other languages
French (fr)
Japanese (ja)
Inventor
信義 武藤
忠彦 加藤
和利 村上
Original Assignee
株式会社ユニバンス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010096954A external-priority patent/JP2011229286A/en
Priority claimed from JP2010125087A external-priority patent/JP2011254590A/en
Application filed by 株式会社ユニバンス filed Critical 株式会社ユニバンス
Publication of WO2011132335A1 publication Critical patent/WO2011132335A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/106Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels
    • B60L3/108Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels whilst braking, i.e. ABS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/14Electronic locking-differential
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/10Detection or estimation of road conditions
    • B60T2210/12Friction
    • B60T2210/124Roads with different friction levels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to an electric vehicle, a braking program, and a control device and a control method for an electric vehicle in which front and rear wheels are independently driven by two electric motors.
  • Patent Document 1 a braking / driving control device for a vehicle in which front and rear wheels are independently driven by two electric motors is known (for example, see Patent Document 1).
  • This vehicle braking / driving control device estimates the slip ratio of the front wheels and the rear wheels, and exceeds the maximum braking / driving force when the slip ratios of the front wheels and the rear wheels do not exceed the corresponding threshold values for the front wheels and rear wheels.
  • the target braking / driving force is calculated according to the driver's required braking / driving force within the range, and when the front wheel and rear wheel slip rates exceed the corresponding front wheel threshold and rear wheel threshold, the front wheel and rear wheel
  • the braking / driving force at the time of slip occurrence is set as the target braking / driving force of the front wheels and the rear wheels.
  • Patent Document 2 an electric vehicle in which each of the four wheels is driven by a motor is known (for example, see Patent Document 2).
  • This electric vehicle is steered on the basis of four motors for driving each of the four wheels, a yaw rate sensor for detecting the rotational speed around the Z-axis, that is, the turning speed of the vehicle body, and the turning speed of the vehicle body detected by the yaw rate sensor. And a control device that controls the torques of the four motors so as to obtain a turning acceleration corresponding to the angle.
  • each motor of the four wheels is controlled independently, and therefore, when various road surfaces and travel conditions change, the left and right wheels of the front and rear wheels are controlled. Since a power change occurs, there is a problem that an acceleration change from a turning acceleration corresponding to the steering angle suddenly occurs when the vehicle turns, and control for maintaining vehicle stability becomes complicated.
  • an object of the present invention is to provide an electric vehicle, a braking program, and an electric vehicle capable of generating an optimal braking / driving force between tire road surfaces even when the friction coefficients of the road surfaces on which the front wheels and the rear wheels are traveling are different.
  • the present invention provides a control device and a control method.
  • Another object of the present invention is to provide an electric vehicle, a braking program, and a control device and control method for an electric vehicle that can easily ensure stable traveling performance under various road surfaces and traveling conditions. is there.
  • one aspect of the present invention provides a first electric motor that transmits braking / driving force to the left and right wheels on the front wheel side via the first differential, and the left and right wheels on the rear wheel side.
  • a second electric motor that transmits braking / driving force via the second differential, a first friction coefficient of the road surface on which the front wheels travel, and a second friction coefficient of the road surface on which the rear wheels travel.
  • An estimation unit for estimating; a first predetermined value of the slip ratio of the front wheel according to the first friction coefficient; and a second predetermined value of the slip ratio of the rear wheel according to the second friction coefficient.
  • a setting unit for setting a value, a calculation unit for calculating the slip ratio of each wheel, and the higher slip ratio of the slip ratios of the left and right wheels on the front wheel side becomes the first predetermined value.
  • slip ratio provides an electric vehicle and a control unit for controlling the longitudinal force of the second electric motor such that the second predetermined value.
  • an optimal braking / driving force can be generated between the tire road surfaces even when the friction coefficients of the road surfaces on which the front wheels and the rear wheels travel are different.
  • FIG. 1 is a block diagram conceptually showing the structure of the electric vehicle according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram functionally showing the control device.
  • FIG. 3 is a diagram showing the relationship between the driving force and braking force and the slip ratio.
  • FIG. 4 is a diagram for explaining a method of distributing the braking force to the front wheels and the rear wheels.
  • FIG. 5 is a flowchart showing an example of braking / driving force control of the electric vehicle according to the first embodiment of the present invention.
  • FIG. 6 is a block diagram conceptually showing the structure of the electric vehicle according to the second embodiment of the present invention.
  • FIG. 7 is a block diagram functionally showing the control device according to the second embodiment of the present invention.
  • FIG. 1 is a block diagram conceptually showing the structure of the electric vehicle according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram functionally showing the control device.
  • FIG. 3 is a diagram showing the relationship between the driving force and
  • FIG. 8 is a diagram for explaining the braking / driving force control according to the steering angle.
  • FIG. 9 is a plan view showing a state in which the vehicle body is about to turn.
  • FIG. 10 is a plan view showing a state in which the vehicle body is turning and moving in the lateral direction.
  • FIG. 11 is a flowchart showing an example of control of braking / driving force of the electric vehicle according to the second embodiment of the present invention.
  • FIG. 1 is a block diagram conceptually showing the structure of the electric vehicle according to the first embodiment of the present invention.
  • additional symbols f, r, fr which indicate whether the position of the component is the front wheel side or the rear wheel side, the right side or the left side of the front wheel side, the right side or the left side of the rear wheel side, fl, rr, and rl are attached to the constituent elements.
  • the words “for front wheels” and “for rear wheels” indicating the additional symbols and positions may be omitted.
  • the electric vehicle 1 includes a front wheel motor 3f as a first electric motor that drives front wheels 2fr and 2fl via a front wheel differential 4f and axles 5fr and 5fl as a first differential, and a rear wheel. 2rr, 2rl as rear differential gear 4r as second differential device and rear wheel motor 3r as second electric motor driven via axles 5rr, 5rl, and drive energy source of electric vehicle 1
  • a power supply unit 7 a front wheel inverter 8 f and a rear wheel inverter 8 r that convert electric power from the power supply unit 7 into AC power, and a first drive circuit that outputs signals corresponding to the target torque to the inverters 8 f and 8 r
  • the front wheel drive circuit 9f and the rear wheel drive circuit 9r as the second drive circuit, and the front wheel motor 3f and the rear wheel motor 3 by outputting command signals to the drive circuits 9f and 9r.
  • a control unit 10 for controlling independently of each other, a wheel independent drive electric vehicles back and forth.
  • the electric vehicle 1 includes an accelerator pedal 12 and a brake pedal 13 operated by a driver, operating means such as a shift lever 14 for designating forward and reverse, a front wheel motor 3f and a rear wheel motor 3r.
  • Encoders 16f and 16r for detecting the respective rotational speeds, mechanical brakes 18fr, 18fl, 18rr and 18rl for braking the rotation of the axles 5fr, 5fl, 5rr and 5rl, and two cameras 20fr provided on the front side of the vehicle body 25, 20rl, a camera 21 provided on the rear side of the vehicle body 25, an accelerator sensor 22 for detecting the amount of depression of the accelerator pedal 12, a brake sensor 23 for detecting the amount of depression of the brake pedal 13, and the positions of the shift lever 14
  • a shift sensor 24 to detect and an acceleration sensor to detect the acceleration of the vehicle body 25 It includes a degree detecting unit) 26, a temperature sensor 27f for detecting the motor 3f, a temperature of 3r respectively, and 27r, the wheel speed sensor 28f
  • an “electric vehicle” is an automobile having an electric motor for driving front wheels and rear wheels, and has both an electric motor and an engine as power sources for wheels, and can be regeneratively braked by the electric motor. It is a concept that includes a hybrid car.
  • “automobile” is a concept including not only passenger cars but also buses and freight cars, regardless of whether they are ordinary cars, large cars, and oversized cars.
  • “braking / driving force” may mean both braking force for decelerating the vehicle and driving force for accelerating the vehicle or only one of them.
  • the power supply unit 7 includes a battery 70, a front wheel smoothing capacitor 71f, a rear wheel smoothing capacitor 71r, a voltage sensor 72f for detecting the voltage (inverter input voltage) of the front wheel smoothing capacitor 71f, and a rear wheel smoothing capacitor 71r. Is provided with a voltage sensor 72r for detecting the voltage (inverter input voltage) and a battery capacity sensor 73 for detecting the storage capacity of the battery 70.
  • the battery 70 is a high voltage battery that can output electric power for driving the front wheel motor 3f and the rear wheel motor 3r.
  • a primary battery such as a dry battery, a fuel cell, or the like may be used as a drive energy source for the electric vehicle 1.
  • the front wheel motor 3f and the rear wheel motor 3r for example, various motors such as a synchronous motor and an induction motor can be used.
  • the rotation of the motor 3 is transmitted to the axle 5 via the differential device 4 on each of the front wheel side and the rear wheel side.
  • the axle 5 rotates integrally with the wheel 2. That is, the electric vehicle 1 has two torque generation sources corresponding to the front wheels 2fr and 2fl and the rear wheels 2rr and rl so that the front wheels 2fr and 2fl and the rear wheels 2rr and rl can be controlled independently of each other.
  • the output torque (motor capacity) generated by the front wheel motor 3f and the rear wheel motor 3r may or may not be equal to each other.
  • the inverter 8 converts the power from the battery 70 into AC power and outputs a current corresponding to a signal from the drive circuit 9 to the motor 3 to drive the motor 3. Further, the inverter 8 converts AC power generated by the motor 3 into DC power and charges the battery 70 via the capacitors 71f and 71r.
  • the front wheel drive circuit 9f receives current detection signals from the current sensors 15a, 15b, 15c that detect the current of the primary winding of the front wheel motor 3f.
  • the rear wheel drive circuit 9r receives current detection signals from the current sensors 17a, 17b, and 17c that detect the current of the primary winding of the rear wheel motor 3r.
  • the drive circuits 9 f and 9 r output a signal corresponding to the target torque commanded from the control device 10 to the inverter 8.
  • the differential devices 4f and 4r can rotate, for example, a pair of side gears connected to the front wheel axles 5fr and 5fl or the rear wheel axles 5rr and 5rl, a plurality of pinion gears engaged with the pair of side gears, and a plurality of pinion gears.
  • a so-called open differential provided with a differential case supported on the front can be used.
  • the braking / driving force of the front wheel motor 3f is distributed to the right front wheel 2fr and the left front wheel 2fl by the front wheel differential 4f.
  • the braking / driving force of the rear wheel motor 3r is distributed to the right rear wheel 2rr and the left rear wheel 2rl by the rear wheel differential 4r.
  • the differential device has a mechanism capable of controlling the distribution ratio of braking / driving force to the front wheel axles 5fr and 5fl or the distribution ratio of braking / driving force to the rear wheel axles 5rr and 5rl by the control device 10. It may be provided.
  • the encoders 16f and 16r detect the rotation speeds of the motors 3f and 3r on the front wheel side and the rear wheel side, respectively, and output a signal corresponding to the detected rotation speed to the control device 10.
  • the accelerator sensor 22 detects the depression amount of the accelerator pedal 12 and outputs a signal xa corresponding to the detected depression amount to the control device 10.
  • the brake sensor 23 detects the depression amount of the brake pedal 13, and outputs a signal xb corresponding to the detected depression amount to the control device 10.
  • the shift sensor 24 detects the position of the shift lever 14 and outputs it to the signal S control device 10 according to the detected position.
  • the acceleration sensor 26 is provided in the vicinity of the center of gravity position of the vehicle body 25 and detects accelerations a Y , a X , and a ⁇ in three directions of the vehicle body 25 in the forward / backward direction, the lateral direction, and the rotational direction (turning direction) around the center of gravity axis. And outputs signals corresponding to the detected accelerations a Y , a X , and a ⁇ to the control device 10.
  • Wheel speed sensors 28fr, 28fl, 28rr, 28rl detect the rotational speed ⁇ of the wheel and output a signal corresponding to the detected rotational speed ⁇ to the control device 10.
  • the voltage sensors 72f and 72r detect the voltage (inverter input voltage) of the capacitors 71f and 71r, and output a signal corresponding to the detected inverter input voltage to the control device 10.
  • Battery capacity sensor 73 detects the storage capacity (remaining capacity) of battery 70 and outputs a signal corresponding to the detected storage capacity to control device 10.
  • the battery capacity sensor 73 is obtained by, for example, a method based on the battery terminal voltage (open voltage), a method based on the battery internal resistance, a method based on the integrated value of the battery charge / discharge current, or a combination of these. Thus, the storage capacity of the battery 70 is detected.
  • an electric brake and a mechanical brake are used in combination. That is, in the electric vehicle 1, a braking force can be generated by the motor 3 as a drive source.
  • the electric brake is, for example, a power generation brake that converts braking energy into heat energy, and a regenerative brake that regenerates electricity generated by braking.
  • a regenerative brake is mainly used, but a power generation brake may be used in a low speed region. The regenerative brake regenerates the electric power generated by the motor 3 to the battery 70 via the capacitor 71, thereby generating a braking force.
  • the mechanical brake 18 is, for example, a drum brake or a disc brake, and presses a brake shoe against a member to be braked by pressurized liquid from the pressure adjustment unit 11 to obtain friction braking by a friction force.
  • the operation of the mechanical brake 18 is controlled independently for each wheel 2 by the control device 10.
  • the brake shoe may be pressed against the member to be braked by an actuator such as a motor.
  • the pressure adjustment unit 11 is configured to be able to apply a different braking force to each mechanical brake 18 by distributing pressurized liquid to the mechanical brake 18 according to a signal from the control device 10.
  • the pressure adjusting unit 11 and the mechanical brake 18 constitute a friction brake mechanism.
  • the front cameras 20 fr and 20 fl capture the road surface in front of the electric vehicle 1 and output the captured image to the control device 10.
  • the control device 10 detects a change in the road surface based on the images acquired from the cameras 20fr and 20fl, and executes processing related to braking / driving.
  • the imaging regions of the front cameras 20fr and 20fl overlap at least partially with each other.
  • the cameras 20fr and 20fl are constituted by, for example, a CCD (Charge Coupled Device) camera.
  • the rear camera 21 images the road surface behind the electric vehicle 1 and outputs the captured image to the control device 10.
  • the control device 10 detects a change in the road surface based on the image acquired from the camera 21 and executes processing related to braking / driving.
  • the camera 21 is constituted by a CCD camera, for example.
  • FIG. 2 is a block diagram functionally showing the control device 10.
  • the control device 10 is configured by a computer, for example, and includes a CPU 100 and a storage unit 110 such as a semiconductor memory or a hard disk.
  • the control device 10 issues an operation command for performing an operation such as acceleration and deceleration according to operation input information generated by the driver operating the operating means such as the accelerator pedal 12 and the brake pedal 13.
  • the rear wheel drive circuit 9r and the mechanical brake 18 are output to control the driving torque (driving force) and braking torque (braking force) of the front wheel driving system and the rear wheel driving system.
  • the electric vehicle 1 can drive
  • the control device 10 calculates the target torque of the front wheel motor 3f and the target torque of the rear wheel motor 3Rr according to the signals from the sensors 22, 23, 24, etc., respectively, and the front wheel drive circuit 9f and the rear wheel drive are calculated. Output to the circuit 9r. On each of the front wheel side and the rear wheel side, the drive circuit 9 outputs a signal corresponding to the target torque commanded from the control device 10 to the inverter 8.
  • the storage unit 110 stores various data such as a road surface pattern 111, a ⁇ -SrLimit table 112, information on the relationship between braking / driving force and slip ratio as shown in FIG. 3 to be described later, and various programs such as a braking / driving program 113a. Stored.
  • the CPU 100 operates in accordance with the braking / driving program 113a, so that the road surface friction coefficient ⁇ estimating unit (estimating unit) 101, the slip ratio upper limit value setting unit (setting unit) 102, the slip rate calculating unit (calculating unit) 103, the braking force control. It functions as the means (control unit) 104a and the like.
  • the road surface friction coefficient ⁇ estimation means 101 is based on an image captured by the front cameras 20fr and fl (the rear camera 21 when the vehicle is reverse), and the road surface on which the automobile 1 travels is a dry road surface, a wet road surface, a frozen / snow surface. It is determined whether the road surface is a road surface or the like, and a first friction coefficient ⁇ f of the road surface on which the front wheels 2fr and 2fl travel and a second friction coefficient ⁇ r of the road surface on which the rear wheels 2rr and 2rl travel are estimated. These road surfaces are typical road surfaces with greatly different friction coefficients ⁇ .
  • the determination is performed by pattern matching between the captured image and the road surface pattern 111 captured in advance in each road surface condition.
  • the road surface pattern 111 is stored in the storage unit 110 in association with the friction coefficient ⁇ of the road surface.
  • the coefficient of friction with the road surface may be estimated in consideration of tire characteristic information (deterioration, type, wheel load, air pressure, etc. of the tire) estimated from the use history such as the travel distance and use period for each tire. . That is, it can be predicted that the tire is deteriorated as the traveling distance of the tire or the period of use is longer, and the coefficient of friction with the road surface may be estimated according to the degree of deterioration of the tire.
  • FIG. 3 is a diagram showing the relationship between the driving force and braking force and the slip ratio.
  • a solid line L1 indicates a dry road surface
  • a solid line L2 indicates a wet road surface
  • a solid line L3 indicates a frozen / snow road surface.
  • Each of these road surfaces is a typical road surface having a significantly different friction coefficient.
  • the coefficient of friction is, for example, 0.75 on a dry road surface, 0.4 on a wet road surface, and 0.2 on a frozen / snow road surface.
  • the storage unit 110 stores a ⁇ -SrLimit table 112 indicating the relationship between the road friction coefficient ⁇ and the slip ratio upper limit value SrLimit.
  • the slip ratio upper limit value SrLimit1 (
  • SrLimit2 (
  • 0.14)
  • SrLimit3 (
  • the slip ratio upper limit setting means 102 refers to the ⁇ -SrLimit table 112 in the storage unit 110 based on the first and second friction coefficients ⁇ f and ⁇ r of the road surface estimated by the road surface friction coefficient ⁇ estimation means 101, A slip ratio upper limit value SrLimit-f as a first predetermined value for the front wheels 2fr and 2fl and a slip ratio upper limit value SrLimit-r as a second predetermined value for the rear wheels 2rr and 2rl are set.
  • the slip ratio upper limit value SrLimit is set to a value near the maximum value of the braking / driving force that can be exhibited according to each road surface condition in FIG. 3, but is not limited to a value near the maximum value.
  • the slip ratio upper limit value SrLimit can be set to a slip ratio at which a braking / driving force higher than 70 to 90% of the maximum braking force that can be exhibited according to the friction coefficient of the road surface, for example.
  • the slip ratio upper limit setting means 102 is a timing at which the front cameras 20fr and 20fl (the rear camera 21 when the vehicle is reverse) images the road surface, and the front wheels 2fr and 2fl and the rear wheels 2rr and 2rl enter the imaged road surface.
  • SrLimit-f and SrLimit-r for the front wheels 2fr and 2fl and the rear wheels 2rr and 2rl, respectively.
  • a slip ratio upper limit value for example,
  • 0.14
  • a slip ratio upper limit value (for example,
  • 0.16) corresponding to the dry road surface is set.
  • the friction coefficient estimated from the images captured by the front cameras 20fr and 20fl and the friction coefficient estimated from the images captured by the rear camera 21 are used as the friction coefficient and slip ratio of the rear wheels. It may be used as an upper limit value, or an intermediate value thereof may be used as a front wheel friction coefficient or a slip ratio upper limit value when the vehicle is moving backward.
  • the state where the absolute value of the slip ratio Sr is 1 is a state where any braking / driving force (driving force or braking force) cannot be transmitted to the road surface.
  • the state where the slip ratio Sr is 0 is a state where there is no slip between the wheel 2 and the road surface.
  • the braking / driving force control means 104a uses the ⁇ -SrLimit table 112, the slip ratio control for controlling the slip ratio to a certain target value based on the relation information between the braking / driving force and the slip ratio as shown in FIG. Carry out wheel lock and wheel spin suppression control.
  • ⁇ -SrLimit table 112 the slip ratio control for controlling the slip ratio to a certain target value based on the relation information between the braking / driving force and the slip ratio as shown in FIG. Carry out wheel lock and wheel spin suppression control.
  • the braking / driving force control means 104a compares the slip ratio
  • the driving force of the motors 3f and 3r or the braking force of the electric brake and the mechanical brake 18 of the motors 3f and 3r is controlled.
  • the braking / driving force control means 104a controls the braking / driving force within a range not exceeding the braking / driving force depending on the depression amount of the accelerator pedal 12 or the brake pedal 13.
  • the braking / driving force control means 104a determines the slip ratio of the left and right wheels with the larger motor capacity as the smaller motor capacity.
  • the braking / driving force of the motors 3f and 3r may be controlled in preference to the slip ratio of the left and right wheels.
  • the braking / driving force control means 104 may distribute the braking / driving force to the front and rear wheels according to the ratio of the motor capacity of the motors 3f and 3r.
  • FIG. 4 is a diagram for explaining a method of distributing braking force to the front wheels 2fr, 2fl and the rear wheels 2rr, 2rl in the electric vehicle 1.
  • M is the mass (body mass) of the entire electric vehicle 1.
  • the load movement amount Z at that time is obtained by the following equation (4) in which the moment around the center of gravity G of the electric vehicle 1 generated by the braking force Fcar is converted to the vertical load at the contact point of the front wheels 2fr and 2fl and the rear wheels 2rr and 2rl. It is done.
  • Z Fcar ⁇ Hcar / Lcar (4)
  • Hcar is the height of the center of gravity G of the electric vehicle 1 from the ground contact surface
  • Lcar is the wheel base of the electric vehicle 1.
  • the braking force control means 104 sets the front wheel slip ratio upper limit value SrLimit to a slip ratio at which a braking force higher than 70 to 90% of the maximum braking force that can be exhibited according to an increase in wheel load, for example, is exhibited. Can do. Further, by correcting the rear wheel side slip ratio upper limit value SrLimit so as to limit the braking force according to the decrease in the load on the rear wheel side, a braking force larger than that on the rear wheel side is generated on the front wheel side, A more appropriate braking force can be applied to each wheel 2.
  • the braking force control means 104 sets the rear wheel slip ratio upper limit value SrLimit to a slip ratio at which a driving force higher than 70 to 90% of the maximum braking force that can be exhibited in response to an increase in wheel load, for example. be able to. Further, by correcting the front wheel side slip ratio upper limit value SrLimit so as to limit the driving force according to the decrease in the load on the front wheel side, a larger driving force is generated on the rear wheel side than on the front wheel side, and more appropriately Drive force can be applied to each wheel 2.
  • FIG. 4 is a flowchart illustrating an example of braking / driving force control of the electric vehicle 1.
  • the accelerator sensor 22 When the driver depresses the accelerator pedal 12, the accelerator sensor 22 outputs a signal xa corresponding to the depression amount of the accelerator pedal 12 to the control device 10.
  • the brake sensor 23 When the driver depresses the brake pedal 13, the brake sensor 23 outputs a signal xb corresponding to the depression amount of the brake pedal 13 to the control device 10.
  • the braking / driving force control means 104a determines whether or not there is an accelerator or brake operation based on the presence or absence of signals xa and xb from the accelerator sensor 22 or the brake sensor 23 (S1).
  • the braking / driving force control means 104a applies a braking / driving force corresponding to the operation amount of the accelerator or the brake to each wheel 2 (S2).
  • the braking / driving force control means 104a calculates a driving torque corresponding to the depression amount based on the signal xa from the accelerator sensor 22, distributes the calculated driving torque to the front wheel side and the rear wheel side, and distributes the driving torque distributed. Is output to the corresponding drive circuits 9f and 9r.
  • the drive circuits 9f and 9r drive the motors 3f and 3r by the inverters 8f and 8r based on the control signal from the braking / driving force control means 104.
  • the motors 3f and 3r transmit the driving force to the wheels 2 via the differential devices 4f and 4r.
  • the braking / driving force control means 104 calculates a braking torque corresponding to the depression amount based on the signal xb from the brake sensor 23, distributes the calculated braking torque to the front wheel side and the rear wheel side, and responds to the distributed braking torque.
  • the control signal is output to the pressure adjustment unit 11 and the drive circuits 9f and 9r.
  • the pressure adjustment unit 11 distributes the pressurized liquid based on the control signal from the braking / driving force control means 104 and operates the mechanical brake 18.
  • the drive circuits 9f and 9r operate the electric brake by the inverters 8f and 8r based on the control signal from the braking / driving force control means 104. A braking force by the mechanical brake 18 and the electric brake is applied to each wheel 2.
  • the road surface friction coefficient ⁇ estimation means 101 estimates a first friction coefficient ⁇ f on the road surface on the front wheels 2fr and 2fl side on which the electric vehicle 1 travels and a second friction coefficient ⁇ r on the road surface on the rear wheels 2rr and 2rl side. (S3).
  • the first and second friction coefficients ⁇ f and ⁇ r of the road surface are estimated by pattern matching between the images captured by the front cameras 20 fr and fl and the road surface pattern 111 stored in the storage unit 110.
  • the slip ratio upper limit setting means 102 sets the slip ratio upper limit values SrLimit-f and SrLimit-r for the front wheels 2fr and 2fl and the rear wheels 2rr and 2rl corresponding to the estimated road friction coefficients ⁇ f and ⁇ r, respectively. Set with reference to the SrLimit table 112 (S4).
  • slip rate calculating means 103 on the basis of the signals corresponding to the acceleration a Y longitudinal direction of the propulsion of the vehicle body 25 from the acceleration sensor 26, promoting longitudinal direction by integrating the acceleration a Y of the propulsion longitudinal direction of the vehicle body 25 Vehicle body speed V is obtained.
  • the slip ratio calculating means 103 obtains the rotational speed ⁇ of the wheel 2 based on a signal corresponding to the rotational speed ⁇ of the wheel 2 from the wheel speed sensor 28.
  • the slip ratio calculating means 103 calculates the slip ratio Sr of each wheel 2 from the radius R of the wheel 2, the rotational speed ⁇ of the wheel 2, and the vehicle body speed V using the above formula (2) (S5).
  • the braking force control means 104a compares the slip ratio
  • the braking force control means 104a compares the larger slip ratio
  • step S8 if the slip ratio
  • step S9 if the slip ratio
  • FIG. 6 is a block diagram conceptually showing the structure of the electric vehicle according to the second embodiment of the present invention. Since the present embodiment is mainly different from the first embodiment in the braking / driving control means and the braking / driving program, the differences will be mainly described.
  • the electric vehicle 1 includes a front wheel differential 4f, 4r, a front wheel motor 3f, a rear wheel motor 3r, a power supply unit 7, a front wheel inverter 8f, and a rear wheel inverter 8r.
  • the electric vehicle 1 includes operating means such as an accelerator pedal 12, a brake pedal 13, and a shift lever 14, encoders 16f and 16r, mechanical brakes 18fr and 18fl, cameras 20fr and 20r, 21, an accelerator sensor 22, a brake sensor 23, a shift sensor 24, an acceleration sensor (acceleration detection unit) 26, temperature sensors 27f and 27r, and wheel speed sensors 28fr, 28fl, 28rr, and 28rl, and a steering angle of the steering wheel 19 And a steering angle sensor 29 for detecting.
  • operating means such as an accelerator pedal 12, a brake pedal 13, and a shift lever 14, encoders 16f and 16r, mechanical brakes 18fr and 18fl, cameras 20fr and 20r, 21, an accelerator sensor 22, a brake sensor 23, a shift sensor 24, an acceleration sensor (acceleration detection unit) 26, temperature sensors 27f and 27r, and wheel speed sensors 28fr, 28fl, 28rr, and 28rl, and a steering angle of the steering wheel 19 And a steering angle sensor 29 for detecting.
  • the steering angle sensor 29 detects the steering angle ⁇ of the steering wheel 19 and outputs a signal corresponding to the detected steering angle ⁇ to the control device 10.
  • FIG. 7 is a block diagram functionally showing the control device 10.
  • the control device 10 is configured by a computer, for example, and includes a CPU 100 and a storage unit 110 such as a semiconductor memory or a hard disk.
  • the control device 10 issues an operation command for performing an operation such as acceleration and deceleration according to operation input information generated by the driver operating the operating means such as the accelerator pedal 12 and the brake pedal 13.
  • the rear wheel drive circuit 9r and the mechanical brake 18 are output to control the driving torque (driving force) and braking torque (braking force) of the front wheel driving system and the rear wheel driving system.
  • the electric vehicle 1 can drive
  • the control device 10 calculates the target torque of the front wheel motor 3f and the target torque of the rear wheel motor 3Rr according to the signals from the sensors 22, 23, 24, etc., respectively, and the front wheel drive circuit 9f and the rear wheel drive are calculated. Output to the circuit 9r. On each of the front wheel side and the rear wheel side, the drive circuit 9 outputs a signal corresponding to the target torque commanded from the control device 10 to the inverter 8.
  • the storage unit 110 includes a road surface pattern 111, a ⁇ -SrLimit table 112, information on the relationship between braking / driving force and slip rate as shown in FIG. 3 to be described later, a threshold value a ⁇ th 115 of acceleration (turning acceleration) a ⁇ in the turning direction, lateral
  • a direction acceleration a X being a threshold value a Xth 116 and various programs such as a braking / driving program 113b are stored.
  • the CPU 100 operates in accordance with the braking / driving program 113b, so that the road surface friction coefficient ⁇ estimating unit 101, the slip ratio upper limit setting unit 102, the slip rate calculating unit (slip rate calculating unit) 103, and the braking / driving force control unit (control unit). 104b or the like.
  • the braking / driving force control means 104b determines whether or not the slip ratio Sr calculated by the slip ratio calculating means 103 is equal to or less than the slip ratio upper limit value SrLimit. In addition, when the braking / driving force control means 104b compares the slip ratio, the absolute value is used. Then, the braking / driving force control means 104b performs slip ratio control, meandering to control the slip ratio to a certain target value based on the ⁇ -SrLimit table 112, the relation information between the braking / driving force and the slip ratio as shown in FIG. Serpentine suppression control that suppresses the wheel, wheel lock accompanying load movement, wheel spin suppression control, braking / driving force control according to the steering angle, and the like are performed. Hereinafter, those controls will be described.
  • the braking / driving force control means 104b exerts the driving force of the electric motor 3 according to the depression amount of the accelerator pedal 12 and the depression amount of the brake pedal 13 when the slip ratio of each wheel 2 is equal to or less than the slip ratio upper limit value SrLimit. Accordingly, both the braking force by the mechanical brake 18 and the braking force of the electric brake by the drive circuit 9 are exhibited. Further, the braking / driving force control means 104, for example, on a low ⁇ road with a small friction coefficient, one of the slip rates of each wheel 2 (including the case where a plurality of wheels 2 are simultaneously used) sets the slip rate upper limit value SrLimit.
  • the driving force of the electric motor 3 is controlled so that the slip ratio exceeding the slip ratio upper limit value SrLimit is less than or equal to the slip ratio upper limit value SrLimit, regardless of the depression amount of the accelerator pedal 12, and the brake pedal 13 is depressed. Regardless of the amount, the braking force by the electric brake and the braking force by the mechanical brake 18 are controlled so that the slip rate exceeding the slip rate upper limit value SrLimit is equal to or less than the slip rate upper limit value SrLimit.
  • the braking / driving force control means 104 may determine the braking / driving force control based on the larger slip ratio by determining which of the slip ratios of the left and right wheels is larger.
  • ⁇ Meander suppression control> In the braking / driving force control means 104b, the slip rate of one of the wheels 2 exceeds the slip rate upper limit value, and the turning acceleration a ⁇ detected by the acceleration sensor 26 exceeds the threshold value a ⁇ th (predetermined acceleration). Control to reduce the braking / driving force of the electric motors 3f, 3r corresponding to the front wheels 2fr, 2fl or the rear wheels 2rr, 2rl to which the one wheel 2 belongs so as to suppress the movement (meandering) of the vehicle body 25 in the turning direction.
  • the braking / driving force control means 104b exceeds the slip ratio upper limit value of at least one of the wheels 2, and the turning acceleration a ⁇ and the lateral acceleration a X detected by the acceleration sensor 26 are the respective threshold values a ⁇ .
  • the braking / driving forces of the electric motors 3f and 3r are controlled so as to suppress the turning and lateral movement (meandering) of the vehicle body 25.
  • FIG. 8 is a diagram for explaining the braking / driving force control according to the steering angle.
  • ⁇ fr, ⁇ fl, ⁇ rr, ⁇ rl indicate the rotational speed of each wheel
  • indicates the steering angle.
  • the braking / driving force control means 104b controls the braking / driving force of the front wheels 2fr, 2fl according to the friction coefficient of the road surface (wheel slip ratio), so that the total braking / driving force of the front and rear wheels does not change. Control is performed to compensate with a braking / driving force of 2 rl.
  • the front wheel differential speed 4w has a relationship of ⁇ fl> ⁇ fr by the front wheel differential device 4f.
  • control for increasing the braking / driving force of the rear wheel motor 3r is performed in order to compensate the corresponding braking / driving force on the rear wheels 2rr, 2rl side. Thereby, a stable driving force can be obtained.
  • FIG. 9 is a plan view showing a state in which the vehicle body 25 is about to turn.
  • FIG. 10 is a plan view showing a state where the vehicle body 25 is turning and moving in the lateral direction.
  • FIG. 11 is a flowchart illustrating an example of control of braking / driving force of the electric vehicle 1.
  • Srfr and Srfl indicate the slip ratio of the front wheel
  • Srrr and Srrl indicate the slip ratio of the rear wheel.
  • the accelerator sensor 22 When the driver steps on the accelerator pedal 12, the accelerator sensor 22 outputs a signal corresponding to the amount of depression of the accelerator pedal 12 to the control device 10.
  • the brake sensor 23 When the driver steps on the brake pedal 13, the brake sensor 23 outputs a signal corresponding to the amount of depression of the brake pedal 13 to the control device 10.
  • the braking / driving force control means 104b calculates the driving torque according to the depression amount based on the signal from the accelerator sensor 22, and calculates the driving torque calculated so as to obtain the turning acceleration according to the steering angle as the front wheel side. Distribute to the rear wheel side.
  • the CPU 100 outputs a control signal corresponding to the driving torque distributed to the front wheel side to the front wheel driving circuit 9f, and outputs a control signal corresponding to the driving torque distributed to the rear wheel side to the rear wheel driving circuit 9r.
  • the front wheel drive circuit 9f drives the front wheel motor 3f by the front wheel inverter 8f based on a control signal from the control device 10.
  • the rear-wheel drive circuit 9r drives the rear-wheel motor 3r by the rear-wheel inverter 8r based on a control signal from the control device 10.
  • the braking / driving force control means 104b calculates a braking torque corresponding to the depression amount based on a signal from the brake sensor 23, and distributes the calculated braking torque to the mechanical brake and the electric brake.
  • the braking / driving force control means 104b outputs a control signal corresponding to the braking torque distributed to the mechanical brake to the pressure adjustment unit 11, and outputs a control signal corresponding to the braking torque distributed to the electric brake to the drive circuits 9f and 9r. .
  • the pressure adjusting unit 11 distributes the pressurized liquid based on the control signal from the braking / driving force control means 104b and operates the mechanical brake 18.
  • the drive circuits 9f and 9r operate the electric brake by the inverters 8f and 8r based on the control signal from the braking / driving force control means 104.
  • the road surface friction coefficient ⁇ estimation means 101 estimates the friction coefficient ⁇ of the road surface on which the electric vehicle 1 travels, as in the first embodiment.
  • the road surface friction coefficients ⁇ f and ⁇ r are estimated by pattern matching between the images captured by the front cameras 20fr and fl and the road surface pattern 111 stored in the storage unit 110 (S11).
  • the slip ratio upper limit value setting means 102 sets the slip ratio upper limit values SrLimt-f and SrLimt-r corresponding to the estimated road friction coefficients ⁇ f and ⁇ r to ⁇ SrLimit. Setting is made with reference to the table 112 (S12).
  • slip rate calculating means 103 on the basis of the signals corresponding to the acceleration a Y longitudinal direction of the propulsion of the vehicle body 25 from the acceleration sensor 26, promoting longitudinal direction by integrating the acceleration a Y of the propulsion longitudinal direction of the vehicle body 25 Vehicle body speed V is obtained.
  • the slip ratio calculating means 103 obtains the rotational speed ⁇ of the wheel 2 based on a signal corresponding to the rotational speed ⁇ of the wheel 2 from the wheel speed sensor 28.
  • the slip ratio calculating means 103 calculates the slip ratio Sr of each wheel 2 from the radius R of the wheel 2, the rotational speed ⁇ of the wheel 2, and the vehicle body speed V using the above formula (2) (S13).
  • the braking / driving force control means 104b determines whether or not the slip ratio
  • of the front right wheel 2fr exceeds the corresponding slip ratio upper limit values SrLimt-f and SrLimt-r, and the slips of the other wheels 2fl, 2rr and 2rl
  • the braking / driving force control means 104b detects the turning acceleration a ⁇ detected by the acceleration sensor 26. It is equal to or exceeds the threshold A.theta. t h a turn acceleration stored in the storage unit 110 (S15).
  • the braking / driving force control unit 104b determines that the lateral acceleration aX detected by the acceleration sensor 26 is stored in the storage unit 110. It is determined whether or not the threshold value a Xth is exceeded (S16).
  • the braking / driving force control means 104b performs control to bring the turning of the vehicle body 25 closer to the turning acceleration corresponding to the steering angle, as shown in FIG. (S17). That is, control is performed to reduce the braking / driving force of the front wheel motor 3f on the right wheel 2fr side where the slip ratio has increased, and control is performed to increase the braking / driving force of the rear wheel motor 3r. In this case, either one of the controls may be performed.
  • the turn is controlled to the turn intended by the driver, and the meandering of the vehicle body 25 can be suppressed.
  • Turn acceleration A.theta. Exceeds the threshold a ⁇ th (S15: Yes), and if the lateral acceleration a X exceeds the threshold value a Xth (S16: Yes), the braking-driving force control unit 104b is shown in FIG. 9
  • control for suppressing the turning and lateral movement of the vehicle body 25 is performed (S18). That is, control is performed to reduce the braking / driving force of the front wheel motor 3f on the right wheel 2fr side where the slip ratio has increased, and control is performed to increase the braking / driving force of the rear wheel motor 3r.
  • the ratio of increasing the braking / driving force of the rear wheel motor 3r is larger than that in the case of FIG.
  • Turn acceleration A.theta. Exceeds the threshold a ⁇ th (S15: Yes), and if the lateral acceleration a X does not exceed the threshold a Xth (S16: No), S15: No similar, the braking-driving force control unit 104b As shown in FIG. 8, the vehicle body 25 is controlled to turn to turn acceleration corresponding to the steering angle (S17).
  • each means 101, 102, 103, 104a, 104b is realized by the CPU 100 and the braking / driving programs 113a, 113b, but may be realized by hardware such as ASIC (ApplicationASpecific IC).
  • ASIC ApplicationASpecific IC
  • the braking / driving programs 113a and 113b may be taken into the control device 10 from a computer-readable recording medium such as a CD-ROM in which the braking / driving programs 113b and 113b are recorded, or may be taken into the control device 10 from a server device or the like via a network. Good.
  • the present invention provides an electric vehicle control device, an electric vehicle control method, and a computer-readable recording medium recording a braking / driving program according to the following other embodiments. You can also.
  • An electric vehicle control device includes a first electric motor that transmits braking / driving force to the left and right wheels on the front wheel side via the first differential device, and a first electric motor on the left and right wheels on the rear wheel side.
  • a device for controlling an electric vehicle including a second electric motor for transmitting braking / driving force via two differential devices, the first friction coefficient of the road surface on which the front wheel travels, and the rear wheel
  • An estimation unit that estimates a second friction coefficient of a road surface on which the vehicle travels, a first predetermined value of a slip ratio of the front wheel according to the first friction coefficient, and the first friction coefficient according to the second friction coefficient
  • a setting unit that sets a second predetermined value of the slip ratio of the rear wheel, a calculation unit that calculates the slip ratio of each wheel, and the higher slip ratio among the slip ratios of the left and right wheels on the front wheel side Controlling the braking / driving force of the first electric motor to be a first predetermined value, or And a control unit higher slip rate of the slip rate
  • An electric vehicle control method includes a first electric motor for transmitting braking / driving force to the left and right wheels on the front wheel side via the first differential, and a first electric motor on the left and right wheels on the rear wheel side.
  • a method for controlling an electric vehicle including a second electric motor that transmits braking / driving force via two differential devices, the first friction coefficient of the road surface on which the front wheel travels, and the rear wheel Estimating the second friction coefficient of the road surface on which the vehicle travels, the first predetermined value of the slip ratio of the front wheel according to the first friction coefficient, and the second friction coefficient according to the second friction coefficient
  • a setting step for setting a second predetermined value of the slip ratio of the rear wheel, a calculation step for calculating the slip ratio of each wheel, and the higher slip ratio among the slip ratios of the left and right wheels on the front wheel side Controlling the first electric motor to a first predetermined value Control for controlling the force or the braking / driving force of the second electric motor so that the higher one of the slip ratios of the left and right
  • a computer-readable recording medium includes a first electric motor that transmits braking / driving force to the left and right wheels on the front wheel side via the first differential, and the left and right wheels on the rear wheel side.
  • a computer included in an electric vehicle having a second electric motor that transmits braking / driving force via a second differential device has a first friction coefficient of a road surface on which the front wheels travel, and the rear wheels travel
  • a setting step for setting a second predetermined value of the slip ratio of the vehicle, a calculation step for calculating the slip ratio of each wheel, and the higher slip ratio of the slip ratios of the left and right wheels on the front wheel side is the first slip ratio.
  • the first value so as to be a predetermined value of The braking / driving force of the second electric motor is controlled such that the braking / driving force of the pneumatic motor is controlled, or the higher slip ratio of the slip ratios of the left and right wheels on the rear wheel side becomes the second predetermined value.
  • a program for executing a control step for controlling force is recorded.
  • SYMBOLS 1 Electric vehicle, 2 ... Wheel, 2fr, 2fl ... Front wheel, 2rr, rl ... Rear wheel, 3f ... Motor for front wheel, 3r ... Motor for rear wheel, 4f ... Differential device for front wheel, 4r ... Differential for rear wheel Device, 5fr, 5fl, 5rr, 5rl ... axle, 7 ... power supply, 8f ... front wheel inverter, 8r ... rear wheel inverter, 9f ... front wheel drive circuit, 9r ... rear wheel drive circuit, 10 ... control device, DESCRIPTION OF SYMBOLS 11 ... Pressure adjustment unit, 12 ... Accelerator pedal, 13 ... Brake pedal, 14 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Even if the coefficients of friction of the respective road surfaces on which the front wheels and the rear wheels travel are different, the disclosed electric vehicle can easily secure stable travelling characteristics under various road and travelling conditions by generating optimal braking/driving power between the tires and the road surface. The electric vehicle (1), which has two motors (3) that independently drive the front and back wheels (2) with a differential gear (4) therebetween, is provided with: a road surface friction coefficient (µ) estimation means that estimates a first and second coefficient of friction of the respective road surfaces that the front and back wheels are travelling over; a slip ratio upper limit setting means that sets a first and second predetermined value for the slip ratio of each front and back wheel in accordance with the first and second coefficients of friction; a slip ratio computation means that computes the slip ratio of each wheel; and a braking/driving power control means that controls the braking/driving power of the front wheel motor (3f) in a manner so that the higher slip ratio of the slip ratios of the left and right front wheels becomes the first predetermined value, or controls the braking/driving power of the rear wheel motor (3r) in a manner so that the higher slip ratio of the slip ratios of the left and right rear wheels becomes the second predetermined value.

Description

電気自動車、制動プログラム、並びに電気自動車の制御装置および制御方法Electric vehicle, braking program, and control device and control method for electric vehicle
 本発明は、前後輪を2つの電気モータで独立に駆動する電気自動車、制動プログラム、並びに電気自動車の制御装置および制御方法 The present invention relates to an electric vehicle, a braking program, and a control device and a control method for an electric vehicle in which front and rear wheels are independently driven by two electric motors.
 従来、前後輪を2つの電気モータで独立に駆動する車両の制駆動制御装置が知られている(例えば、特許文献1参照。)。 Conventionally, a braking / driving control device for a vehicle in which front and rear wheels are independently driven by two electric motors is known (for example, see Patent Document 1).
 この車両の制駆動制御装置は、前輪および後輪のスリップ率を推定し、前輪および後輪のスリップ率が対応する前輪用閾値および後輪用閾値を超えないときは、最大制駆動力を超えない範囲で運転者の要求制駆動力に応じて目標制駆動力を算出し、前輪および後輪のスリップ率が対応する前輪用閾値および後輪用閾値を超えたときは、前輪および後輪のスリップ発生時の制駆動力を前輪および後輪の目標制駆動力とする。 This vehicle braking / driving control device estimates the slip ratio of the front wheels and the rear wheels, and exceeds the maximum braking / driving force when the slip ratios of the front wheels and the rear wheels do not exceed the corresponding threshold values for the front wheels and rear wheels. The target braking / driving force is calculated according to the driver's required braking / driving force within the range, and when the front wheel and rear wheel slip rates exceed the corresponding front wheel threshold and rear wheel threshold, the front wheel and rear wheel The braking / driving force at the time of slip occurrence is set as the target braking / driving force of the front wheels and the rear wheels.
 従来、4輪それぞれをモータにより駆動する電気自動車が知られている(例えば、特許
文献2参照。)。
Conventionally, an electric vehicle in which each of the four wheels is driven by a motor is known (for example, see Patent Document 2).
 この電気自動車は、4輪それぞれを駆動する4つのモータと、Z軸の回りの回転速度、すなわち車体の旋回速度を検出するヨーレートセンサと、ヨーレートセンサによって検出された車体の旋回速度に基づいて操舵角に応じた旋回加速度が得られるように4つのモータのトルクを制御する制御装置とを備える。 This electric vehicle is steered on the basis of four motors for driving each of the four wheels, a yaw rate sensor for detecting the rotational speed around the Z-axis, that is, the turning speed of the vehicle body, and the turning speed of the vehicle body detected by the yaw rate sensor. And a control device that controls the torques of the four motors so as to obtain a turning acceleration corresponding to the angle.
特開2008-228407号公報JP 2008-228407 A 特開2005-184911号公報JP 2005-184911 A
 しかし、特許文献1に記載された従来の車両の制駆動制御装置によれば、前後輪が走行するそれぞれの路面の摩擦係数を同一のものとして各車輪の制駆動力を制御しているため、前後輪の路面状況が異なるときにホイールスピンやホイールロックが発生するおそれがある。 However, according to the conventional braking / driving control device for a vehicle described in Patent Document 1, the braking / driving force of each wheel is controlled with the same friction coefficient of the road surface on which the front and rear wheels travel, There is a possibility that wheel spin or wheel lock may occur when the road surface conditions of the front and rear wheels are different.
 また、特許文献2に記載された従来の電気自動車によれば、4輪の各モータを独立に制御するため、様々な路面や走行条件の変化が発生した際、前後輪各々の左右輪に制動力変化が生じる為、車両旋回時に操舵角に応じた旋回加速度からの加速度変化が急に発生し車両安定性を維持する制御が複雑になるという問題がある。 Further, according to the conventional electric vehicle described in Patent Document 2, each motor of the four wheels is controlled independently, and therefore, when various road surfaces and travel conditions change, the left and right wheels of the front and rear wheels are controlled. Since a power change occurs, there is a problem that an acceleration change from a turning acceleration corresponding to the steering angle suddenly occurs when the vehicle turns, and control for maintaining vehicle stability becomes complicated.
 従って、本発明の目的は、前輪および後輪が走行するそれぞれの路面の摩擦係数が異なる場合でも、最適な制駆動力をタイヤ路面間に発生させることができる電気自動車、制動プログラム、並びに電気自動車の制御装置および制御方法を提供することにある。 Accordingly, an object of the present invention is to provide an electric vehicle, a braking program, and an electric vehicle capable of generating an optimal braking / driving force between tire road surfaces even when the friction coefficients of the road surfaces on which the front wheels and the rear wheels are traveling are different. The present invention provides a control device and a control method.
 また、本発明の他の目的は、様々な路面や走行条件下で安定した走行性を確保することが容易にできる電気自動車、制動プログラム、並びに電気自動車の制御装置および制御方法を提供することにある。 Another object of the present invention is to provide an electric vehicle, a braking program, and a control device and control method for an electric vehicle that can easily ensure stable traveling performance under various road surfaces and traveling conditions. is there.
 本発明の一態様は、上記目的を達成するために、前輪側の左右輪に第1の差動装置を介して制駆動力を伝達する第1の電気モータと、後輪側の左右輪に第2の差動装置を介して制駆動力を伝達する第2の電気モータと、前記前輪が走行する路面の第1の摩擦係数、および前記後輪が走行する路面の第2の摩擦係数を推定する推定部と、前記第1の摩擦係数に応じて前記前輪のスリップ率の第1の所定の値、および前記第2の摩擦係数に応じて前記後輪のスリップ率の第2の所定の値を設定する設定部と、各車輪のスリップ率を演算する演算部と、前記前輪側の左右輪の前記スリップ率のうち高い方のスリップ率が前記第1の所定の値になるように前記第1の電気モータの制駆動力を制御し、又は前記後輪側の左右輪の前記スリップ率のうち高い方のスリップ率が前記第2の所定の値になるように前記第2の電気モータの制駆動力を制御する制御部とを備えた電気自動車を提供する。 In order to achieve the above object, one aspect of the present invention provides a first electric motor that transmits braking / driving force to the left and right wheels on the front wheel side via the first differential, and the left and right wheels on the rear wheel side. A second electric motor that transmits braking / driving force via the second differential, a first friction coefficient of the road surface on which the front wheels travel, and a second friction coefficient of the road surface on which the rear wheels travel. An estimation unit for estimating; a first predetermined value of the slip ratio of the front wheel according to the first friction coefficient; and a second predetermined value of the slip ratio of the rear wheel according to the second friction coefficient. A setting unit for setting a value, a calculation unit for calculating the slip ratio of each wheel, and the higher slip ratio of the slip ratios of the left and right wheels on the front wheel side becomes the first predetermined value. Control the braking / driving force of the first electric motor, or out of the slip ratio of the left and right wheels on the rear wheel side There way slip ratio provides an electric vehicle and a control unit for controlling the longitudinal force of the second electric motor such that the second predetermined value.
 本発明によれば、前輪および後輪が走行するそれぞれの路面の摩擦係数が異なる場合でも、最適な制駆動力をタイヤ路面間に発生させることができる。また、様々な路面や走行条件下で安定した走行性を確保することが容易にできる。 According to the present invention, an optimal braking / driving force can be generated between the tire road surfaces even when the friction coefficients of the road surfaces on which the front wheels and the rear wheels travel are different. In addition, it is possible to easily ensure stable running performance under various road surfaces and running conditions.
図1は、本発明の第1の実施の形態に係る電気自動車の構成を概念的に示すブロック図である。FIG. 1 is a block diagram conceptually showing the structure of the electric vehicle according to the first embodiment of the present invention. 図2は、制御装置を機能的に示すブロック図である。FIG. 2 is a block diagram functionally showing the control device. 図3は、駆動力および制動力とスリップ率との関係を示す図である。FIG. 3 is a diagram showing the relationship between the driving force and braking force and the slip ratio. 図4は、制動力の前輪および後輪への分配方法を説明するための図である。FIG. 4 is a diagram for explaining a method of distributing the braking force to the front wheels and the rear wheels. 図5は、本発明の第1の実施の形態に係る電気自動車の制駆動力制御の一例を示すフローチャートである。FIG. 5 is a flowchart showing an example of braking / driving force control of the electric vehicle according to the first embodiment of the present invention. 図6は、本発明の第2の実施の形態に係る電気自動車の構成を概念的に示すブロック図である。FIG. 6 is a block diagram conceptually showing the structure of the electric vehicle according to the second embodiment of the present invention. 図7は、本発明の第2の実施の形態に係る制御装置を機能的に示すブロック図である。FIG. 7 is a block diagram functionally showing the control device according to the second embodiment of the present invention. 図8は、操舵角に応じた制駆動力制御を説明するための図である。FIG. 8 is a diagram for explaining the braking / driving force control according to the steering angle. 図9は、車体が旋回しようとしている状態を示す平面図である。FIG. 9 is a plan view showing a state in which the vehicle body is about to turn. 図10は、車体が旋回し横方向に動こうとしている状態を示す平面図である。FIG. 10 is a plan view showing a state in which the vehicle body is turning and moving in the lateral direction. 図11は、本発明の第2の実施の形態に係る電気自動車の制駆動力の制御の一例を示すフローチャートである。FIG. 11 is a flowchart showing an example of control of braking / driving force of the electric vehicle according to the second embodiment of the present invention.
 以下、本発明の実施の形態について図面を参照して説明する。なお、各図中、実質的に同一の機能を有する構成要素については、同一の符号を付してその重複した説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in each figure, about the component which has the substantially same function, the same code | symbol is attached | subjected and the duplicate description is abbreviate | omitted.
[第1の実施の形態]
 図1は、本発明の第1の実施の形態に係る電気自動車の構成を概念的に示すブロック図である。なお、同図および後述する図6では、構成要素の位置が前輪側か後輪側か、前輪側の右側か左側か、後輪側の右側か左側かを示す付加記号f、r、fr、fl、rr、rlを構成要素に付している。また、構成要素の位置を特に区別する必要がない場合には、上記付加記号や位置を示す「前輪用」、「後輪用」の語を省略することもある。
[First Embodiment]
FIG. 1 is a block diagram conceptually showing the structure of the electric vehicle according to the first embodiment of the present invention. In FIG. 6 and FIG. 6 to be described later, additional symbols f, r, fr, which indicate whether the position of the component is the front wheel side or the rear wheel side, the right side or the left side of the front wheel side, the right side or the left side of the rear wheel side, fl, rr, and rl are attached to the constituent elements. Further, when it is not necessary to particularly distinguish the positions of the constituent elements, the words “for front wheels” and “for rear wheels” indicating the additional symbols and positions may be omitted.
 この電気自動車1は、前輪2fr、2flを第1の差動装置としての前輪用差動装置4fおよび車軸5fr、5flを介して駆動する第1の電気モータとしての前輪用モータ3fと、後輪2rr、2rlを第2の差動装置としての後輪用差動装置4rおよび車軸5rr、5rlを介して駆動する第2の電気モータとしての後輪用モータ3rと、電気自動車1の駆動エネルギー源としての電源部7と、電源部7からの電力を交流電力に変換する前輪用インバータ8fおよび後輪用インバータ8rと、目標トルクに応じた信号をインバータ8f、8rに出力する第1の駆動回路としての前輪用駆動回路9fおよび第2の駆動回路としての後輪用駆動回路9rと、駆動回路9f、9rに指令信号を出力して前輪用モータ3fおよび後輪用モータ3rを互いに独立に制御する制御装置10とを備えた、前後輪独立駆動型電気自動車である。 The electric vehicle 1 includes a front wheel motor 3f as a first electric motor that drives front wheels 2fr and 2fl via a front wheel differential 4f and axles 5fr and 5fl as a first differential, and a rear wheel. 2rr, 2rl as rear differential gear 4r as second differential device and rear wheel motor 3r as second electric motor driven via axles 5rr, 5rl, and drive energy source of electric vehicle 1 As a power supply unit 7, a front wheel inverter 8 f and a rear wheel inverter 8 r that convert electric power from the power supply unit 7 into AC power, and a first drive circuit that outputs signals corresponding to the target torque to the inverters 8 f and 8 r The front wheel drive circuit 9f and the rear wheel drive circuit 9r as the second drive circuit, and the front wheel motor 3f and the rear wheel motor 3 by outputting command signals to the drive circuits 9f and 9r. Was a control unit 10 for controlling independently of each other, a wheel independent drive electric vehicles back and forth.
 また、この電気自動車1は、運転者が操作するアクセルペダル12、ブレーキペダル13、および前進や後進を指定するためのシフトレバー14等の操作手段と、前輪用モータ3fおよび後輪用モータ3rの回転数をそれぞれ検出するエンコーダ16f、16rと、車軸5fr、5fl、5rr、5rlの回転を制動する機械ブレーキ18fr、18fl、18rr、18rlと、車体25の前方側に設けられた2つのカメラ20fr、20rlと、車体25の後方側に設けられたカメラ21と、アクセルペダル12の踏み込み量を検出するアクセルセンサ22と、ブレーキペダル13の踏み込み量を検出するブレーキセンサ23と、シフトレバー14の位置を検出するシフトセンサ24と、車体25の加速度を検出する加速度センサ(加速度検出部)26と、モータ3f、3rの温度をそれぞれ検出する温度センサ27f、27rと、車輪2の回転速度を検出する車輪速センサ28fr、28fl、28rr、28rlとを備える。 The electric vehicle 1 includes an accelerator pedal 12 and a brake pedal 13 operated by a driver, operating means such as a shift lever 14 for designating forward and reverse, a front wheel motor 3f and a rear wheel motor 3r. Encoders 16f and 16r for detecting the respective rotational speeds, mechanical brakes 18fr, 18fl, 18rr and 18rl for braking the rotation of the axles 5fr, 5fl, 5rr and 5rl, and two cameras 20fr provided on the front side of the vehicle body 25, 20rl, a camera 21 provided on the rear side of the vehicle body 25, an accelerator sensor 22 for detecting the amount of depression of the accelerator pedal 12, a brake sensor 23 for detecting the amount of depression of the brake pedal 13, and the positions of the shift lever 14 A shift sensor 24 to detect and an acceleration sensor to detect the acceleration of the vehicle body 25 It includes a degree detecting unit) 26, a temperature sensor 27f for detecting the motor 3f, a temperature of 3r respectively, and 27r, the wheel speed sensor 28fr for detecting the rotational speed of the wheel 2, 28fl, 28rr, and 28RL.
 なお、本明細書において、「電気自動車」は、前輪および後輪を駆動する電気モータを有する自動車や、車輪の動力源として電気モータとエンジンの両方を有し、電気モータによる回生制動が可能なハイブリッドカーを含む概念である。ここで、「自動車」とは乗用自動車に限らず、バスや貨物自動車を含む概念であり、普通車、大型車、特大車を問わない。また、本明細書において、「制駆動力」は、自動車を減速させる制動力と、自動車を加速させる駆動力の両方を意味する場合や一方のみを意味する場合がある。 In this specification, an “electric vehicle” is an automobile having an electric motor for driving front wheels and rear wheels, and has both an electric motor and an engine as power sources for wheels, and can be regeneratively braked by the electric motor. It is a concept that includes a hybrid car. Here, “automobile” is a concept including not only passenger cars but also buses and freight cars, regardless of whether they are ordinary cars, large cars, and oversized cars. Further, in this specification, “braking / driving force” may mean both braking force for decelerating the vehicle and driving force for accelerating the vehicle or only one of them.
 次に、上記各部の詳細を説明する。 Next, the details of each part will be described.
(電源系)
 電源部7は、バッテリ70と、前輪用平滑コンデンサ71fと、後輪用平滑コンデンタ71rと、前輪用平滑コンデンサ71fの電圧(インバータ入力電圧)を検出する電圧センサ72fと、後輪用平滑コンデンサ71rの電圧(インバータ入力電圧)を検出する電圧センサ72rと、バッテリ70の蓄電容量を検出するバッテリ容量センサ73とを備える。
(Power supply system)
The power supply unit 7 includes a battery 70, a front wheel smoothing capacitor 71f, a rear wheel smoothing capacitor 71r, a voltage sensor 72f for detecting the voltage (inverter input voltage) of the front wheel smoothing capacitor 71f, and a rear wheel smoothing capacitor 71r. Is provided with a voltage sensor 72r for detecting the voltage (inverter input voltage) and a battery capacity sensor 73 for detecting the storage capacity of the battery 70.
 バッテリ70は、前輪用モータ3fおよび後輪用モータ3rを駆動するための電力を出力することができる高電圧バッテリである。なお、電気自動車1の駆動エネルギー源として、バッテリ70の他に、乾電池等の一次電池、燃料電池等を用いてもよい。 The battery 70 is a high voltage battery that can output electric power for driving the front wheel motor 3f and the rear wheel motor 3r. In addition to the battery 70, a primary battery such as a dry battery, a fuel cell, or the like may be used as a drive energy source for the electric vehicle 1.
(駆動系)
 前輪用モータ3fおよび後輪用モータ3rは、例えば同期モータ(Synchronous Motor)、誘導モータ(Induction Motor)等の各種のモータを用いることができる。前輪側および後輪側それぞれにおいて、モータ3の回転は、差動装置4を介して車軸5に伝達される。車軸5は車輪2と一体的に回転する。すなわち、電気自動車1は、前輪2fr、2flと、後輪2rr、rlを互いに独立に制御可能に前輪2fr、2flおよび後輪2rr、rlに対応して2つのトルク発生源を有している。なお、前輪用モータ3fおよび後輪用モータ3rが発生する出力トルク(モータ容量)は、互いに等しくてもよいし、等しくなくてもよい。
(Drive system)
As the front wheel motor 3f and the rear wheel motor 3r, for example, various motors such as a synchronous motor and an induction motor can be used. The rotation of the motor 3 is transmitted to the axle 5 via the differential device 4 on each of the front wheel side and the rear wheel side. The axle 5 rotates integrally with the wheel 2. That is, the electric vehicle 1 has two torque generation sources corresponding to the front wheels 2fr and 2fl and the rear wheels 2rr and rl so that the front wheels 2fr and 2fl and the rear wheels 2rr and rl can be controlled independently of each other. The output torque (motor capacity) generated by the front wheel motor 3f and the rear wheel motor 3r may or may not be equal to each other.
 インバータ8は、バッテリ70からの電力を交流電力に変換し、駆動回路9からの信号に応じた電流をモータ3に出力してモータ3を駆動する。また、インバータ8は、モータ3により発電された交流電力を直流電力に変換してコンデンサ71f、71rを介してバッテリ70を充電する。 The inverter 8 converts the power from the battery 70 into AC power and outputs a current corresponding to a signal from the drive circuit 9 to the motor 3 to drive the motor 3. Further, the inverter 8 converts AC power generated by the motor 3 into DC power and charges the battery 70 via the capacitors 71f and 71r.
 前輪用駆動回路9fは、前輪用モータ3fの1次巻線の電流を検出する電流センサ15a、15b、15cからの電流検出信号を受信する。後輪用駆動回路9rは、後輪用モータ3rの1次巻線の電流を検出する電流センサ17a、17b、17cからの電流検出信号を受信する。駆動回路9f、9rは、制御装置10から指令された目標トルクに応じた信号をインバータ8に出力する。 The front wheel drive circuit 9f receives current detection signals from the current sensors 15a, 15b, 15c that detect the current of the primary winding of the front wheel motor 3f. The rear wheel drive circuit 9r receives current detection signals from the current sensors 17a, 17b, and 17c that detect the current of the primary winding of the rear wheel motor 3r. The drive circuits 9 f and 9 r output a signal corresponding to the target torque commanded from the control device 10 to the inverter 8.
 差動装置4f、4rは、例えば前輪側の車軸5fr、5fl又は後輪側の車軸5rr、5rlに連結された一対のサイドギヤ、これら一対のサイドギヤに噛み合う複数のピニオンギヤ、及び複数のピニオンギヤを自転可能に支持するデフケースを備えた所謂オープンデフを用いることができる。前輪用モータ3fの制駆動力は、前輪用差動装置4fにより右前輪2fr及び左前輪2flに配分される。また、後輪用モータ3rの制駆動力は、後輪用差動装置4rにより右後輪2rr及び左後輪2rlに配分される。なお、差動装置は、前輪側の車軸5fr、5flへの制駆動力の配分率、又は後輪側の車軸5rr、5rlへの制駆動力の配分率を制御装置10により制御可能な機構を備えたものでもよい。 The differential devices 4f and 4r can rotate, for example, a pair of side gears connected to the front wheel axles 5fr and 5fl or the rear wheel axles 5rr and 5rl, a plurality of pinion gears engaged with the pair of side gears, and a plurality of pinion gears. A so-called open differential provided with a differential case supported on the front can be used. The braking / driving force of the front wheel motor 3f is distributed to the right front wheel 2fr and the left front wheel 2fl by the front wheel differential 4f. The braking / driving force of the rear wheel motor 3r is distributed to the right rear wheel 2rr and the left rear wheel 2rl by the rear wheel differential 4r. The differential device has a mechanism capable of controlling the distribution ratio of braking / driving force to the front wheel axles 5fr and 5fl or the distribution ratio of braking / driving force to the rear wheel axles 5rr and 5rl by the control device 10. It may be provided.
(センサ系)
 エンコーダ16f、16rは、前輪側および後輪側のそれぞれにおいて、モータ3f、3rの回転数を検出し、検出した回転数に応じた信号を制御装置10に出力する。
(Sensor system)
The encoders 16f and 16r detect the rotation speeds of the motors 3f and 3r on the front wheel side and the rear wheel side, respectively, and output a signal corresponding to the detected rotation speed to the control device 10.
 アクセルセンサ22は、アクセルペダル12の踏み込み量を検出し、検出した踏み込み量に応じた信号xaを制御装置10に出力する。 The accelerator sensor 22 detects the depression amount of the accelerator pedal 12 and outputs a signal xa corresponding to the detected depression amount to the control device 10.
 ブレーキセンサ23は、ブレーキペダル13の踏み込み量を検出し、検出した踏み込み量に応じた信号xbを制御装置10に出力する。 The brake sensor 23 detects the depression amount of the brake pedal 13, and outputs a signal xb corresponding to the detected depression amount to the control device 10.
 シフトセンサ24は、シフトレバー14の位置を検出し、検出した位置に応じた信号S制御装置10に出力する。 The shift sensor 24 detects the position of the shift lever 14 and outputs it to the signal S control device 10 according to the detected position.
 加速度センサ26は、車体25の重心位置の近傍に設けられ、車体25の推進前後方向、横方向、重心軸回りの回転方向(旋回方向)の3方向の加速度aY、aX、aθを検出する3軸加速度センサであり、検出したそれぞれの加速度aY、aX、aθに応じた信号を制御装置10に出力する。 The acceleration sensor 26 is provided in the vicinity of the center of gravity position of the vehicle body 25 and detects accelerations a Y , a X , and aθ in three directions of the vehicle body 25 in the forward / backward direction, the lateral direction, and the rotational direction (turning direction) around the center of gravity axis. And outputs signals corresponding to the detected accelerations a Y , a X , and aθ to the control device 10.
 車輪速センサ28fr、28fl、28rr、28rlは、車輪の回転速度ωを検出し、検出した回転速度ωに応じた信号を制御装置10に出力する。 Wheel speed sensors 28fr, 28fl, 28rr, 28rl detect the rotational speed ω of the wheel and output a signal corresponding to the detected rotational speed ω to the control device 10.
 電圧センサ72f、72rは、コンデンサ71f、71rの電圧(インバータ入力電圧)を検出し、検出したインバータ入力電圧に応じた信号を制御装置10に出力する。 The voltage sensors 72f and 72r detect the voltage (inverter input voltage) of the capacitors 71f and 71r, and output a signal corresponding to the detected inverter input voltage to the control device 10.
 バッテリ容量センサ73は、バッテリ70の蓄電容量(残容量)を検出し、検出した蓄電容量に応じた信号を制御装置10に出力する。バッテリ容量センサ73は、例えば、バッテリ端子電圧(オープン電圧)に基づいて求める方法、バッテリ内部抵抗に基づいて求める方法、バッテリ充放電電流の積算値に基づいて求める方法、あるいはこれらの組み合わせた方法等により、バッテリ70の蓄電容量を検出する。 Battery capacity sensor 73 detects the storage capacity (remaining capacity) of battery 70 and outputs a signal corresponding to the detected storage capacity to control device 10. The battery capacity sensor 73 is obtained by, for example, a method based on the battery terminal voltage (open voltage), a method based on the battery internal resistance, a method based on the integrated value of the battery charge / discharge current, or a combination of these. Thus, the storage capacity of the battery 70 is detected.
(ブレーキ系)
 電気自動車1では、電気ブレーキと機械ブレーキとが併用される。すなわち、電気自動車1では、駆動源としてのモータ3により制動力を発生可能である。電気ブレーキは、例えば、制動エネルギーを熱エネルギーに変換する発電ブレーキ、および制動により発生する電気を回生する回生ブレーキである。本実施の形態では、主として回生ブレーキを用いるが、低速領域では発電ブレーキを用いる場合もある。回生ブレーキは、モータ3が発電した電力をコンデンサ71を介してバッテリ70に回生し、これにより制動力を発生させる。
(Brake system)
In the electric vehicle 1, an electric brake and a mechanical brake are used in combination. That is, in the electric vehicle 1, a braking force can be generated by the motor 3 as a drive source. The electric brake is, for example, a power generation brake that converts braking energy into heat energy, and a regenerative brake that regenerates electricity generated by braking. In the present embodiment, a regenerative brake is mainly used, but a power generation brake may be used in a low speed region. The regenerative brake regenerates the electric power generated by the motor 3 to the battery 70 via the capacitor 71, thereby generating a braking force.
 機械ブレーキ18は、例えばドラムブレーキやディスクブレーキであり、圧力調整ユニット11からの加圧液体によりブレーキシューを被制動部材に押し付けて摩擦力による摩擦制動を得るものである。機械ブレーキ18の動作は、制御装置10により各車輪2に対して独立に制御される。なお、ブレーキシューをモータ等のアクチュエータにより被制動部材に押し付けてもよい。 The mechanical brake 18 is, for example, a drum brake or a disc brake, and presses a brake shoe against a member to be braked by pressurized liquid from the pressure adjustment unit 11 to obtain friction braking by a friction force. The operation of the mechanical brake 18 is controlled independently for each wheel 2 by the control device 10. The brake shoe may be pressed against the member to be braked by an actuator such as a motor.
 圧力調整ユニット11は、制御装置10からの信号により機械ブレーキ18に加圧液体を分配して機械ブレーキ18毎に異なる制動力を付与可能に構成されている。なお、圧力調整ユニット11および機械ブレーキ18は、摩擦ブレーキ機構を構成する。 The pressure adjustment unit 11 is configured to be able to apply a different braking force to each mechanical brake 18 by distributing pressurized liquid to the mechanical brake 18 according to a signal from the control device 10. The pressure adjusting unit 11 and the mechanical brake 18 constitute a friction brake mechanism.
(撮像系)
 前方のカメラ20fr、20flは、電気自動車1の前方側の路面を撮像し、撮像した画像を制御装置10に出力する。制御装置10は、カメラ20fr、20flから取得した画像に基づいて路面の変化を検出して、制駆動に関する処理を実行する。前方のカメラ20fr、20flは、その撮像領域は互いに少なくとも一部が重複している。カメラ20fr、20flは、例えばCCD(Charge Coupled Device)カメラにより構成されている。
(Imaging system)
The front cameras 20 fr and 20 fl capture the road surface in front of the electric vehicle 1 and output the captured image to the control device 10. The control device 10 detects a change in the road surface based on the images acquired from the cameras 20fr and 20fl, and executes processing related to braking / driving. The imaging regions of the front cameras 20fr and 20fl overlap at least partially with each other. The cameras 20fr and 20fl are constituted by, for example, a CCD (Charge Coupled Device) camera.
 後方のカメラ21は、電気自動車1の後方側の路面を撮像し、撮像した画像を制御装置10に出力する。制御装置10は、カメラ21から取得した画像に基づいて路面の変化を検出して、制駆動に関する処理を実行する。カメラ21は、例えばCCDカメラにより構成されている。 The rear camera 21 images the road surface behind the electric vehicle 1 and outputs the captured image to the control device 10. The control device 10 detects a change in the road surface based on the image acquired from the camera 21 and executes processing related to braking / driving. The camera 21 is constituted by a CCD camera, for example.
(制御系)
 図2は、制御装置10を機能的に示すブロック図である。制御装置10は、例えばコンピュータにより構成され、CPU100と、半導体メモリ、ハードディスク等の記憶部110とを有する。
(Control system)
FIG. 2 is a block diagram functionally showing the control device 10. The control device 10 is configured by a computer, for example, and includes a CPU 100 and a storage unit 110 such as a semiconductor memory or a hard disk.
 制御装置10は、運転者がアクセルペダル12、ブレーキペダル13等の操作手段を操作することによって発生する操作入力情報に応じた加速、減速等の動作を行うための動作指令を前輪用駆動回路9f、後輪用駆動回路9r、機械ブレーキ18に出力し、前輪駆動系および後輪駆動系の駆動トルク(駆動力)および制動トルク(制動力)を制御する。これにより、電気自動車1は、運転者の操作に従って走行することができる。 The control device 10 issues an operation command for performing an operation such as acceleration and deceleration according to operation input information generated by the driver operating the operating means such as the accelerator pedal 12 and the brake pedal 13. The rear wheel drive circuit 9r and the mechanical brake 18 are output to control the driving torque (driving force) and braking torque (braking force) of the front wheel driving system and the rear wheel driving system. Thereby, the electric vehicle 1 can drive | work according to a driver | operator's operation.
 制御装置10は、各センサ22、23、24からの信号等に応じて前輪用モータ3fの目標トルクおよび後輪用モータ3Rrの目標トルクをそれぞれ算出し、前輪用駆動回路9f、後輪用駆動回路9rに出力する。前輪側および後輪側それぞれにおいて、駆動回路9は、制御装置10から指令された目標トルクに応じた信号をインバータ8に出力する。 The control device 10 calculates the target torque of the front wheel motor 3f and the target torque of the rear wheel motor 3Rr according to the signals from the sensors 22, 23, 24, etc., respectively, and the front wheel drive circuit 9f and the rear wheel drive are calculated. Output to the circuit 9r. On each of the front wheel side and the rear wheel side, the drive circuit 9 outputs a signal corresponding to the target torque commanded from the control device 10 to the inverter 8.
 記憶部110には、路面パターン111、μ-SrLimitテーブル112、後述する図3に示すような制駆動力とスリップ率の関係情報等の各種のデータと、制駆動プログラム113a等の各種のプログラムが格納されている。 The storage unit 110 stores various data such as a road surface pattern 111, a μ-SrLimit table 112, information on the relationship between braking / driving force and slip ratio as shown in FIG. 3 to be described later, and various programs such as a braking / driving program 113a. Stored.
 CPU100は、制駆動プログラム113aに従って動作することにより、路面摩擦係数μ推定手段(推定部)101、スリップ率上限値設定手段(設定部)102、スリップ率演算手段(演算部)103、制動力制御手段(制御部)104a等として機能する。 The CPU 100 operates in accordance with the braking / driving program 113a, so that the road surface friction coefficient μ estimating unit (estimating unit) 101, the slip ratio upper limit value setting unit (setting unit) 102, the slip rate calculating unit (calculating unit) 103, the braking force control. It functions as the means (control unit) 104a and the like.
(路面摩擦係数μ推定手段)
 路面摩擦係数μ推定手段101は、前方のカメラ20fr、fl(車両後退時は後方のカメラ21)が撮像した画像に基づいて、自動車1の走行する路面が、乾燥路面、湿潤路面、凍結・雪路路面等のいずれかであるかを判定し、前輪2fr、2flが走行する路面の第1の摩擦係数μfと後輪2rr、2rlが走行する路面の第2の摩擦係数μrを推定する。これらの路面は、摩擦係数μが大きく異なる代表的な路面である。当該判定は、撮像した画像と、予め各路面状況において撮像された路面パターン111とのパターンマッチングにより行う。路面パターン111は、路面の摩擦係数μに関連付けて記憶部110に記憶されている。なお、当該判定を輝度等が所定の閾値を超えたか否かの判断により行うなど、公知の技術を適宜用いて行ってよい。また、タイヤ毎の走行距離、使用期間等の使用履歴から推定されるタイヤの特性情報(タイヤの劣化、種類、輪荷重、空気圧等)を加味して路面との摩擦係数を推定してもよい。すなわち、タイヤの走行距離又は使用期間が長い程タイヤが劣化していると予想することができ、タイヤの劣化度合いに応じて路面との摩擦係数を推定してもよい。
(Road surface friction coefficient μ estimation means)
The road surface friction coefficient μ estimation means 101 is based on an image captured by the front cameras 20fr and fl (the rear camera 21 when the vehicle is reverse), and the road surface on which the automobile 1 travels is a dry road surface, a wet road surface, a frozen / snow surface. It is determined whether the road surface is a road surface or the like, and a first friction coefficient μf of the road surface on which the front wheels 2fr and 2fl travel and a second friction coefficient μr of the road surface on which the rear wheels 2rr and 2rl travel are estimated. These road surfaces are typical road surfaces with greatly different friction coefficients μ. The determination is performed by pattern matching between the captured image and the road surface pattern 111 captured in advance in each road surface condition. The road surface pattern 111 is stored in the storage unit 110 in association with the friction coefficient μ of the road surface. In addition, you may perform using the well-known technique suitably, such as performing the said determination by determination whether the brightness | luminance etc. exceeded the predetermined threshold value. In addition, the coefficient of friction with the road surface may be estimated in consideration of tire characteristic information (deterioration, type, wheel load, air pressure, etc. of the tire) estimated from the use history such as the travel distance and use period for each tire. . That is, it can be predicted that the tire is deteriorated as the traveling distance of the tire or the period of use is longer, and the coefficient of friction with the road surface may be estimated according to the degree of deterioration of the tire.
(スリップ率上限値設定手段)
 図3は、駆動力および制動力とスリップ率との関係を示す図である。実線L1は、乾路路面、実線L2は湿潤路面、実線L3は凍結・雪路路面の場合を示している。これらの各路面は、摩擦係数が大きく異なる代表的な路面である。摩擦係数は、例えば、乾路路面では0.75、湿潤路面では0.4、凍結・雪路路面では0.2である。記憶部110には、図2に示すように、路面の摩擦係数μとスリップ率上限値SrLimitとの関係を示すμ-SrLimitテーブル112が記憶されている。μ-SrLimitテーブル112には、例えば、乾路路面(μ=0.75)に対応してスリップ率上限値SrLimit1(|Sr|=0.16)が記憶され、湿潤路面(μ=0.4)に対応してスリップ率上限値SrLimit2(|Sr|=0.14)が記憶され、凍結・雪路路面(μ=0.2)に対応してスリップ率上限値SrLimit3(|Sr|=0.12)が記憶されている。
(Slip rate upper limit setting means)
FIG. 3 is a diagram showing the relationship between the driving force and braking force and the slip ratio. A solid line L1 indicates a dry road surface, a solid line L2 indicates a wet road surface, and a solid line L3 indicates a frozen / snow road surface. Each of these road surfaces is a typical road surface having a significantly different friction coefficient. The coefficient of friction is, for example, 0.75 on a dry road surface, 0.4 on a wet road surface, and 0.2 on a frozen / snow road surface. As shown in FIG. 2, the storage unit 110 stores a μ-SrLimit table 112 indicating the relationship between the road friction coefficient μ and the slip ratio upper limit value SrLimit. In the μ-SrLimit table 112, for example, the slip ratio upper limit value SrLimit1 (| Sr | = 0.16) is stored corresponding to the dry road surface (μ = 0.75), and the wet road surface (μ = 0.4). ) Is stored in response to the slip ratio upper limit value SrLimit2 (| Sr | = 0.14), and the slip ratio upper limit value SrLimit3 (| Sr | = 0) corresponding to the frozen / snow road surface (μ = 0.2). .12) is stored.
 スリップ率上限値設定手段102は、路面摩擦係数μ推定手段101が推定した路面の第1および第2の摩擦係数μf、μrに基づいて、記憶部110内のμ-SrLimitテーブル112を参照し、前輪2fr、2fl用の第1の所定の値としてのスリップ率上限値SrLimit-fと後輪2rr、2rl用の第2の所定の値としてのスリップ率上限値SrLimit-rを設定する。スリップ率上限値SrLimitは、例えば、図3における各路面状況に応じて発揮し得る制駆動力の最大値付近の値に設定されるが、最大値付近の値に限られない。スリップ率上限値SrLimitは、例えば路面の摩擦係数に応じて発揮し得る最大制動力の70~90%よりも高い制駆動力が発揮されるスリップ率に設定することができる。 The slip ratio upper limit setting means 102 refers to the μ-SrLimit table 112 in the storage unit 110 based on the first and second friction coefficients μf and μr of the road surface estimated by the road surface friction coefficient μ estimation means 101, A slip ratio upper limit value SrLimit-f as a first predetermined value for the front wheels 2fr and 2fl and a slip ratio upper limit value SrLimit-r as a second predetermined value for the rear wheels 2rr and 2rl are set. For example, the slip ratio upper limit value SrLimit is set to a value near the maximum value of the braking / driving force that can be exhibited according to each road surface condition in FIG. 3, but is not limited to a value near the maximum value. The slip ratio upper limit value SrLimit can be set to a slip ratio at which a braking / driving force higher than 70 to 90% of the maximum braking force that can be exhibited according to the friction coefficient of the road surface, for example.
 スリップ率上限値設定手段102は、前方のカメラ20fr、20fl(車両後退時は後方のカメラ21)が路面を撮像し、その撮像した路面に前輪2fr、2fl及び後輪2rr、2rlが進入するタイミングで前輪2fr、2fl及び後輪2rr、2rlのスリップ率上限値SrLimit-f、SrLimit-rをそれぞれ設定する。例えば、乾路路面を走行中に前輪2fr、2flが湿潤路面に進入した場合、前輪2fr、2flについては、湿潤路面に対応したスリップ率上限値(例えば、|Sr|=0.14)が設定され、後輪2rr、2rlについては、乾路路面に対応したスリップ率上限値(例えば、|Sr|=0.16)が設定される。なお、車両前進時に、前方のカメラ20fr、20flが撮像した画像から推定される摩擦係数と後方のカメラ21が撮像した画像から推定される摩擦係数との中間値を後輪の摩擦係数やスリップ率上限値として用いてもよく、車両後退時に、その中間値を前輪の摩擦係数やスリップ率上限値として用いてもよい。 The slip ratio upper limit setting means 102 is a timing at which the front cameras 20fr and 20fl (the rear camera 21 when the vehicle is reverse) images the road surface, and the front wheels 2fr and 2fl and the rear wheels 2rr and 2rl enter the imaged road surface. To set the slip ratio upper limit values SrLimit-f and SrLimit-r for the front wheels 2fr and 2fl and the rear wheels 2rr and 2rl, respectively. For example, when the front wheels 2fr and 2fl enter a wet road surface while traveling on a dry road surface, a slip ratio upper limit value (for example, | Sr | = 0.14) corresponding to the wet road surface is set for the front wheels 2fr and 2fl. For the rear wheels 2rr and 2rl, a slip ratio upper limit value (for example, | Sr | = 0.16) corresponding to the dry road surface is set. When the vehicle moves forward, intermediate values between the friction coefficient estimated from the images captured by the front cameras 20fr and 20fl and the friction coefficient estimated from the images captured by the rear camera 21 are used as the friction coefficient and slip ratio of the rear wheels. It may be used as an upper limit value, or an intermediate value thereof may be used as a front wheel friction coefficient or a slip ratio upper limit value when the vehicle is moving backward.
(スリップ率演算手段)
 スリップ率演算手段103は、車体速度をV、車輪2の回転速度をω、車輪2の半径をRとしたとき、駆動時の車輪2のスリップ率Srを以下の式により算出する。
   Sr=(Rω-V)/Rω  ・・・・式(1)
(Slip rate calculation means)
The slip ratio calculating means 103 calculates the slip ratio Sr of the wheel 2 during driving by the following formula, where V is the vehicle body speed, ω is the rotational speed of the wheel 2, and R is the radius of the wheel 2.
Sr = (Rω−V) / Rω (1)
 また、スリップ率演算手段103は、制動時の車輪2のスリップ率Srを以下の式により算出する。
   Sr=(Rω-V)/V    ・・・・式(2)
Moreover, the slip ratio calculating means 103 calculates the slip ratio Sr of the wheel 2 at the time of braking by the following formula.
Sr = (Rω−V) / V (2)
 式(1)から理解されるように、駆動時においてスリップ率Srが1.0になる場合は、V=0であり、ホイルスピンが生じている状態である。式(2)から理解されるように、制動時においてスリップ率Srが-1.0になる場合は、ω=0であり、ホイルロックが生じている状態である。すなわち、スリップ率Srの絶対値が1である状態は、いずれも路面に制駆動力(駆動力又は制動力)を伝えられない状態である。また、スリップ率Srが0である状態は、車輪2と路面との間に滑りがない状態である。 As understood from the equation (1), when the slip ratio Sr becomes 1.0 at the time of driving, V = 0 and the wheel spin is generated. As understood from the equation (2), when the slip ratio Sr becomes −1.0 during braking, ω = 0 and a wheel lock is generated. That is, the state where the absolute value of the slip ratio Sr is 1 is a state where any braking / driving force (driving force or braking force) cannot be transmitted to the road surface. The state where the slip ratio Sr is 0 is a state where there is no slip between the wheel 2 and the road surface.
(制駆動力制御手段)
 制駆動力制御手段104aは、μ-SrLimitテーブル112、図3に示すような制駆動力とスリップ率の関係情報等に基づいて、スリップ率をある目標値に制御するスリップ率制御、荷重移動に伴うホイールロック、ホイールスピンの抑制制御等を行う。以下、それらの制御について説明する。
(Braking / driving force control means)
The braking / driving force control means 104a uses the μ-SrLimit table 112, the slip ratio control for controlling the slip ratio to a certain target value based on the relation information between the braking / driving force and the slip ratio as shown in FIG. Carry out wheel lock and wheel spin suppression control. Hereinafter, those controls will be described.
<スリップ率制御>
 制駆動力制御手段104aは、左右輪同士でスリップ率|Sr|を比較し、大きい方のスリップ率|Sr|が前後輪それぞれについて設定されたスリップ率上限値SrLimit-f、SrLimit-rとなるようにモータ3f、3rの駆動力、又はモータ3f、3rの電気ブレーキおよび機械ブレーキ18の制動力を制御する。また、制駆動力制御手段104aは、アクセルペダル12又はブレーキペダル13の踏み込み量による制駆動力を超えない範囲で制駆動力を制御する。
<Slip rate control>
The braking / driving force control means 104a compares the slip ratio | Sr | between the left and right wheels, and the larger slip ratio | Sr | becomes the slip ratio upper limit values SrLimit-f and SrLimit-r set for the front and rear wheels, respectively. Thus, the driving force of the motors 3f and 3r or the braking force of the electric brake and the mechanical brake 18 of the motors 3f and 3r is controlled. Further, the braking / driving force control means 104a controls the braking / driving force within a range not exceeding the braking / driving force depending on the depression amount of the accelerator pedal 12 or the brake pedal 13.
 なお、制駆動力制御手段104aは、前輪用モータ3fおよび後輪用モーア3r間でモータ容量に差がある場合には、モータ容量の大きい方の左右輪のスリップ率をモータ容量の小さい方の左右輪のスリップ率よりも優先してモータ3f、3rの制駆動力を制御してもよい。例えば、制駆動力制御手段104は、モータ3f、3rが有するモータ容量の比に応じて制駆動力を前後輪に分配してもよい。 If there is a difference in motor capacity between the front wheel motor 3f and the rear wheel mower 3r, the braking / driving force control means 104a determines the slip ratio of the left and right wheels with the larger motor capacity as the smaller motor capacity. The braking / driving force of the motors 3f and 3r may be controlled in preference to the slip ratio of the left and right wheels. For example, the braking / driving force control means 104 may distribute the braking / driving force to the front and rear wheels according to the ratio of the motor capacity of the motors 3f and 3r.
<荷重移動に伴うホイールロック、ホイールスピンの抑制制御>
 図4は、電気自動車1における制動力の前輪2fr、2fl及び後輪2rr、2rlヘの分配方法を説明するための図である。
<Control of wheel lock and wheel spin suppression with load transfer>
FIG. 4 is a diagram for explaining a method of distributing braking force to the front wheels 2fr, 2fl and the rear wheels 2rr, 2rl in the electric vehicle 1.
 図4に示すように、電気自動車1が加速度aYで減速するときの制動力Fcarは、
   Fcar=M×aY        ・・・式(3)
となる。ここで、Mは、電気自動車1全体の質量(車体質量)である。
As shown in FIG. 4, the braking force Fcar when the electric vehicle 1 decelerates at an acceleration a Y is
Fcar = M × a Y Expression (3)
It becomes. Here, M is the mass (body mass) of the entire electric vehicle 1.
 そのときの荷重移動量Zは、制動力Fcarによって生じる電気自動車1の重心G回りのモーメントを前輪2fr、2fl及び後輪2rr、2rlの接地点における垂直荷重に換算した次式(4)により得られる。
   Z=Fcar×Hcar/Lcar        ・・・式(4)
 ここで、Hcarは、電気自動車1の重心Gの接地面からの高さであり、Lcarは、電気自動車1のホイールベースである。
The load movement amount Z at that time is obtained by the following equation (4) in which the moment around the center of gravity G of the electric vehicle 1 generated by the braking force Fcar is converted to the vertical load at the contact point of the front wheels 2fr and 2fl and the rear wheels 2rr and 2rl. It is done.
Z = Fcar × Hcar / Lcar (4)
Here, Hcar is the height of the center of gravity G of the electric vehicle 1 from the ground contact surface, and Lcar is the wheel base of the electric vehicle 1.
 また、電気自動車1が停止しているときの前輪荷重をWf、後輪荷重をWr、路面の摩擦係数をμとすると、摩擦力と釣り合う前輪及び後輪の制動力、すなわち、前輪2fr、2flの最大制動力Ffmax及び後輪2rr、2rlの最大制動力Frmaxは、それぞれ次式(5)、(6)により表される。
   Ffmax=μ(Wf+Z)     ・・・式(5)
   Frmax=μ(Wr-Z)     ・・・式(6)
When the front wheel load when the electric vehicle 1 is stopped is Wf, the rear wheel load is Wr, and the friction coefficient of the road surface is μ, the braking force of the front and rear wheels that balances the friction force, that is, the front wheels 2fr, 2fl. The maximum braking force Ffmax and the maximum braking force Frmax of the rear wheels 2rr and 2rl are expressed by the following equations (5) and (6), respectively.
Ffmax = μ (Wf + Z) (5)
Frmax = μ (Wr−Z) (6)
 従って、前輪側及び後輪側のそれぞれにおけるモータ3及び機械ブレーキ18による制動力が、最大制動力Ffmax及び最大制動力Frmaxとなるように、モータ3及び機械ブレーキ18の動作を制御すれば、電気自動車1全体として最も制動力が大きくなり、ホイールロックを抑制することができる。以上は減速時の説明であるが、加速時も同様であり、荷重移動に基づいて最適な駆動力となるように制御することにより、ホイールスピンを抑制することができる。 Therefore, if the operation of the motor 3 and the mechanical brake 18 is controlled so that the braking force by the motor 3 and the mechanical brake 18 on the front wheel side and the rear wheel side becomes the maximum braking force Ffmax and the maximum braking force Frmax, respectively. The entire vehicle 1 has the largest braking force, and wheel lock can be suppressed. The above is the explanation at the time of deceleration, but the same is true at the time of acceleration, and wheel spin can be suppressed by controlling so as to obtain an optimum driving force based on the load movement.
 例えば、電気自動車1の前進時における減速時には、加速度の大きさに応じた荷重移動によって前輪側の荷重が増加し、後輪側の荷重が減少する。制動力制御手段104は、前輪のスリップ率上限値SrLimitを、例えば車輪荷重の増加に応じて発揮し得る最大制動力の70~90%よりも高い制動力が発揮されるスリップ率に設定することができる。また、後輪側のスリップ率上限値SrLimitを後輪側の荷重の減少分に応じて制動力を制限するように補正することによって、前輪側に後輪側よりも大きな制動力を発生させ、より適切な制動力を各車輪2に付与することができる。 For example, when the electric vehicle 1 decelerates when moving forward, the load on the front wheel side increases and the load on the rear wheel side decreases due to load movement corresponding to the magnitude of acceleration. The braking force control means 104 sets the front wheel slip ratio upper limit value SrLimit to a slip ratio at which a braking force higher than 70 to 90% of the maximum braking force that can be exhibited according to an increase in wheel load, for example, is exhibited. Can do. Further, by correcting the rear wheel side slip ratio upper limit value SrLimit so as to limit the braking force according to the decrease in the load on the rear wheel side, a braking force larger than that on the rear wheel side is generated on the front wheel side, A more appropriate braking force can be applied to each wheel 2.
 また、電気自動車1の前進時における加速時には、加速度の大きさに応じた荷重移動によって前輪側の荷重が減少し、後輪側の荷重が増加する。制動力制御手段104は、後輪のスリップ率上限値SrLimitを、例えば車輪荷重の増加に応じて発揮し得る最大制動力の70~90%よりも高い駆動力が発揮されるスリップ率に設定することができる。また、前輪側のスリップ率上限値SrLimitを前輪側の荷重の減少分に応じて駆動力を制限するように補正することによって、後輪側に前輪側よりも大きな駆動力を発生させ、より適切な駆動力を各車輪2に付与することができる。 In addition, when the electric vehicle 1 is accelerated when moving forward, the load on the front wheel side is reduced and the load on the rear wheel side is increased by moving the load according to the magnitude of the acceleration. The braking force control means 104 sets the rear wheel slip ratio upper limit value SrLimit to a slip ratio at which a driving force higher than 70 to 90% of the maximum braking force that can be exhibited in response to an increase in wheel load, for example. be able to. Further, by correcting the front wheel side slip ratio upper limit value SrLimit so as to limit the driving force according to the decrease in the load on the front wheel side, a larger driving force is generated on the rear wheel side than on the front wheel side, and more appropriately Drive force can be applied to each wheel 2.
(第1の実施の形態の動作)
 次に、電気自動車1の制駆動力制御について図4を参照して説明する。図4は、電気自動車1の制駆動力制御の一例を示すフローチャートである。
(Operation of the first embodiment)
Next, braking / driving force control of the electric vehicle 1 will be described with reference to FIG. FIG. 4 is a flowchart illustrating an example of braking / driving force control of the electric vehicle 1.
 運転者がアクセルペダル12を踏み込むと、アクセルセンサ22は、アクセルペダル12の踏み込み量に応じた信号xaを制御装置10に出力する。運転者がブレーキペダル13を踏み込むと、ブレーキセンサ23は、ブレーキペダル13の踏み込み量に応じた信号xbを制御装置10に出力する。 When the driver depresses the accelerator pedal 12, the accelerator sensor 22 outputs a signal xa corresponding to the depression amount of the accelerator pedal 12 to the control device 10. When the driver depresses the brake pedal 13, the brake sensor 23 outputs a signal xb corresponding to the depression amount of the brake pedal 13 to the control device 10.
 制駆動力制御手段104aは、アクセルセンサ22又はブレーキセンサ23からの信号xa、xbの有無によりアクセル又はブレーキの操作が有ったか否かを判断する(S1)。 The braking / driving force control means 104a determines whether or not there is an accelerator or brake operation based on the presence or absence of signals xa and xb from the accelerator sensor 22 or the brake sensor 23 (S1).
 アクセル又はブレーキの操作があると(S1:Yes)、制駆動力制御手段104aは、アクセル又はブレーキの操作量に応じた制駆動力を各車輪2に付与する(S2)。 When the accelerator or brake is operated (S1: Yes), the braking / driving force control means 104a applies a braking / driving force corresponding to the operation amount of the accelerator or the brake to each wheel 2 (S2).
 すなわち、制駆動力制御手段104aは、アクセルセンサ22からの信号xaに基づいて踏み込み量に応じた駆動トルクを算出し、算出した駆動トルクを前輪側と後輪側に分配し、分配した駆動トルクに応じた制御信号を対応する駆動回路9f、9rに出力する。駆動回路9f、9rは、制駆動力制御手段104からの制御信号に基づいてインバータ8f、8rによりモータ3f、3rを駆動する。モータ3f、3rは、駆動力を差動装置4f、4rを介して各車輪2に伝達する。 That is, the braking / driving force control means 104a calculates a driving torque corresponding to the depression amount based on the signal xa from the accelerator sensor 22, distributes the calculated driving torque to the front wheel side and the rear wheel side, and distributes the driving torque distributed. Is output to the corresponding drive circuits 9f and 9r. The drive circuits 9f and 9r drive the motors 3f and 3r by the inverters 8f and 8r based on the control signal from the braking / driving force control means 104. The motors 3f and 3r transmit the driving force to the wheels 2 via the differential devices 4f and 4r.
 制駆動力制御手段104は、ブレーキセンサ23からの信号xbに基づいて踏み込み量に応じた制動トルクを算出し、算出した制動トルクを前輪側と後輪側に分配し、分配した制動トルクに応じた制御信号を圧力調整ユニット11および駆動回路9f、9rに出力する。圧力調整ユニット11は、制駆動力制御手段104からの制御信号に基づいて加圧液体を分配して機械ブレーキ18を作動させる。駆動回路9f、9rは、制駆動力制御手段104からの制御信号に基づいてインバータ8f、8rにより電気ブレーキを作動させる。機械ブレーキ18および電気ブレーキによる制動力が各車輪2に付与される。 The braking / driving force control means 104 calculates a braking torque corresponding to the depression amount based on the signal xb from the brake sensor 23, distributes the calculated braking torque to the front wheel side and the rear wheel side, and responds to the distributed braking torque. The control signal is output to the pressure adjustment unit 11 and the drive circuits 9f and 9r. The pressure adjustment unit 11 distributes the pressurized liquid based on the control signal from the braking / driving force control means 104 and operates the mechanical brake 18. The drive circuits 9f and 9r operate the electric brake by the inverters 8f and 8r based on the control signal from the braking / driving force control means 104. A braking force by the mechanical brake 18 and the electric brake is applied to each wheel 2.
 次に、路面摩擦係数μ推定手段101は、電気自動車1が走行する前輪2fr、2fl側の路面の第1の摩擦係数μfと後輪2rr、2rl側の路面の第2の摩擦係数μrを推定する(S3)。例えば、前方のカメラ20fr、flが撮像した画像と記憶部110に記憶されている路面パターン111とのパターンマッチングにより路面の第1および第2の摩擦係数μf、μrを推定する。 Next, the road surface friction coefficient μ estimation means 101 estimates a first friction coefficient μf on the road surface on the front wheels 2fr and 2fl side on which the electric vehicle 1 travels and a second friction coefficient μr on the road surface on the rear wheels 2rr and 2rl side. (S3). For example, the first and second friction coefficients μf and μr of the road surface are estimated by pattern matching between the images captured by the front cameras 20 fr and fl and the road surface pattern 111 stored in the storage unit 110.
 次に、スリップ率上限値設定手段102は、推定された路面の摩擦係数μf、μrに応じた前輪2fr、2flおよび後輪2rr、2rlについてそれぞれスリップ率上限値SrLimit-f、SrLimit-rをμ-SrLimitテーブル112を参照して設定する(S4)。 Next, the slip ratio upper limit setting means 102 sets the slip ratio upper limit values SrLimit-f and SrLimit-r for the front wheels 2fr and 2fl and the rear wheels 2rr and 2rl corresponding to the estimated road friction coefficients μf and μr, respectively. Set with reference to the SrLimit table 112 (S4).
 次に、スリップ率演算手段103は、加速度センサ26からの車体25の推進前後方向の加速度aYに応じた信号に基づいて、車体25の推進前後方向の加速度aYを積分して推進前後方向の車体速度Vを求める。 Then, slip rate calculating means 103, on the basis of the signals corresponding to the acceleration a Y longitudinal direction of the propulsion of the vehicle body 25 from the acceleration sensor 26, promoting longitudinal direction by integrating the acceleration a Y of the propulsion longitudinal direction of the vehicle body 25 Vehicle body speed V is obtained.
 続いて、スリップ率演算手段103は、車輪速センサ28からの車輪2の回転速度ωに応じた信号に基づいて、車輪2の回転速度ωを求める。 Subsequently, the slip ratio calculating means 103 obtains the rotational speed ω of the wheel 2 based on a signal corresponding to the rotational speed ω of the wheel 2 from the wheel speed sensor 28.
 次に、スリップ率演算手段103は、車輪2の半径R、車輪2の回転速度ω、車体速度Vから上記式(2)を用いて各車輪2のスリップ率Srを算出する(S5)。 Next, the slip ratio calculating means 103 calculates the slip ratio Sr of each wheel 2 from the radius R of the wheel 2, the rotational speed ω of the wheel 2, and the vehicle body speed V using the above formula (2) (S5).
 次に、制動力制御手段104aは、左右輪同士でスリップ率|Sr|を比較する(S6)。すなわち、前輪2fr、2flのスリップ率|Sr|を比較し、後輪2rr、2rlのスリップ率|Sr|を比較する。 Next, the braking force control means 104a compares the slip ratio | Sr | between the left and right wheels (S6). That is, the slip ratios | Sr | of the front wheels 2fr and 2fl are compared, and the slip ratios | Sr | of the rear wheels 2rr and 2rl are compared.
 次に、制動力制御手段104aは、大きい方のスリップ率|Sr|と設定されたスリップ率上限値SrLimit-f、SrLimit-rとを比較する(S7)。すなわち、前輪2fr、2flのうち大きい方のスリップ率|Sr|と前輪2fr、2flについて設定されたスリップ率上限値SrLimit-fとを比較し、後輪2rr、2rlのうち大きい方のスリップ率|Sr|と後輪2rr、2rlについて設定されたスリップ率上限値SrLimit-rとを比較する。 Next, the braking force control means 104a compares the larger slip ratio | Sr | with the set slip ratio upper limit values SrLimit-f and SrLimit-r (S7). That is, the larger slip ratio | Sr | of the front wheels 2fr and 2fl is compared with the slip ratio upper limit value SrLimit-f set for the front wheels 2fr and 2fl, and the larger slip ratio of the rear wheels 2rr and 2rl | Sr | is compared with the slip ratio upper limit value SrLimit-r set for the rear wheels 2rr and 2rl.
 上記ステップS7の比較の結果、スリップ率|Sr|がスリップ率上限値SrLimit-f、SrLimit-rよりも小さい場合には、前輪又は後輪側の制駆動力を増加させる(S8)。すなわち、上記ステップS1においてアクセルペダル12が操作されているときは、前輪用モータ3f又は後輪用モータ3rの駆動力を増加させる。上記ステップS1においてブレーキペダル13が操作されているときは、前輪用モータ3fの電気ブレーキおよび機械ブレーキ18fr、18flの制動力を増加させ、又は後輪用モータ3rの電気ブレーキおよび機械ブレーキ18rr、18rlの制動力を増加させる。 As a result of the comparison in step S7, if the slip ratio | Sr | is smaller than the slip ratio upper limit values SrLimit-f and SrLimit-r, the braking / driving force on the front wheel or rear wheel side is increased (S8). That is, when the accelerator pedal 12 is operated in step S1, the driving force of the front wheel motor 3f or the rear wheel motor 3r is increased. When the brake pedal 13 is operated in step S1, the braking force of the electric brake and mechanical brakes 18fr and 18fl of the front wheel motor 3f is increased, or the electric brake and mechanical brakes 18rr and 18rl of the rear wheel motor 3r are increased. Increase the braking force.
 上記ステップS7の比較の結果、スリップ率|Sr|がスリップ率上限値SrLimit-f、SrLimit-rよりも大きい場合には、前輪又は後輪側の制駆動力を減少させる(S9)。すなわち、上記ステップS1においてアクセルペダル12が操作されているときは、前輪用モータ3f又は後輪用モータ3rの駆動力を減少させる。上記ステップS1においてブレーキペダル13が操作されているときは、前輪用モータ3fの電気ブレーキおよび機械ブレーキ18fr、18flの制動力を減少させ、又は後輪用モータ3rの電気ブレーキおよび機械ブレーキ18rr、18rlの制動力を減少させる。 As a result of the comparison in step S7, if the slip ratio | Sr | is larger than the slip ratio upper limit values SrLimit-f and SrLimit-r, the braking / driving force on the front or rear wheel side is decreased (S9). That is, when the accelerator pedal 12 is operated in step S1, the driving force of the front wheel motor 3f or the rear wheel motor 3r is decreased. When the brake pedal 13 is operated in step S1, the braking force of the electric brake and mechanical brakes 18fr and 18fl of the front wheel motor 3f is decreased, or the electric brake and mechanical brakes 18rr and 18rl of the rear wheel motor 3r are reduced. Reduce the braking force.
 上記ステップS7の比較の結果、スリップ率|Sr|と上限値SrLimit(SrLimit-f、SrLimit-r)とが等しい場合には、アクセル又はブレーキの操作量に応じた制駆動力を車輪2に付与する(S2)。 If the slip ratio | Sr | is equal to the upper limit value SrLimit (SrLimit-f, SrLimit-r) as a result of the comparison in step S7, a braking / driving force corresponding to the accelerator or brake operation amount is applied to the wheel 2. (S2).
(第1の実施の形態の効果)
 第1の実施の形態によれば、以下の効果を奏する。
(イ)前輪および後輪が走行するそれぞれの路面の摩擦係数が異なる場合でも、最大の制駆動力をタイヤ路面間に発生させることができる。
(ロ)最大の制駆動力を発揮できることから、省エネルギー走行が可能となる。
(ハ)摩擦係数の小さい路面(低μ路)での発進および停止時のホイールスピンおよびホイールロックを抑制して安定した走行が可能となる。
(Effects of the first embodiment)
According to the first embodiment, the following effects are obtained.
(A) Even when the friction coefficients of the road surfaces on which the front wheels and the rear wheels travel are different, the maximum braking / driving force can be generated between the tire road surfaces.
(B) Since the maximum braking / driving force can be exhibited, energy-saving driving is possible.
(C) Stable running is possible by suppressing wheel spin and wheel lock when starting and stopping on a road surface with a low friction coefficient (low μ road).
[第2の実施の形態]
 図6は、本発明の第2の実施の形態に係る電気自動車の構成を概念的に示すブロック図である。本実施の形態は、第1の実施の形態とは、主として制駆動制御手段および制駆動プログラムが相違するため、相違点を中心に説明する。
[Second Embodiment]
FIG. 6 is a block diagram conceptually showing the structure of the electric vehicle according to the second embodiment of the present invention. Since the present embodiment is mainly different from the first embodiment in the braking / driving control means and the braking / driving program, the differences will be mainly described.
 この電気自動車1は、第1の実施の形態と同様に、前輪用差動装置4f、4r、前輪用モータ3f、後輪用モータ3r、電源部7、前輪用インバータ8f、後輪用インバータ8r、前輪用駆動回路9f、後輪用駆動回路9r、および制御装置10を備える。 As in the first embodiment, the electric vehicle 1 includes a front wheel differential 4f, 4r, a front wheel motor 3f, a rear wheel motor 3r, a power supply unit 7, a front wheel inverter 8f, and a rear wheel inverter 8r. A front wheel drive circuit 9f, a rear wheel drive circuit 9r, and a control device 10.
 また、この電気自動車1は、第1の実施の形態と同様に、アクセルペダル12、ブレーキペダル13、シフトレバー14等の操作手段、エンコーダ16f、16r、機械ブレーキ18fr、18fl、カメラ20fr、20r、21、アクセルセンサ22、ブレーキセンサ23、シフトセンサ24、加速度センサ(加速度検出部)26、温度センサ27f、27r、および車輪速センサ28fr、28fl、28rr、28rlを備え、さらにステアリングホイール19の操舵角を検出する操舵角センサ29とを備える。 Further, as in the first embodiment, the electric vehicle 1 includes operating means such as an accelerator pedal 12, a brake pedal 13, and a shift lever 14, encoders 16f and 16r, mechanical brakes 18fr and 18fl, cameras 20fr and 20r, 21, an accelerator sensor 22, a brake sensor 23, a shift sensor 24, an acceleration sensor (acceleration detection unit) 26, temperature sensors 27f and 27r, and wheel speed sensors 28fr, 28fl, 28rr, and 28rl, and a steering angle of the steering wheel 19 And a steering angle sensor 29 for detecting.
 操舵角センサ29は、ステアリングホイール19の操舵角γを検出し、検出した操舵角γに応じた信号を制御装置10に出力する。 The steering angle sensor 29 detects the steering angle γ of the steering wheel 19 and outputs a signal corresponding to the detected steering angle γ to the control device 10.
(制御系)
 図7は、制御装置10を機能的に示すブロック図である。制御装置10は、例えばコンピュータにより構成され、CPU100と、半導体メモリ、ハードディスク等の記憶部110とを有する。
(Control system)
FIG. 7 is a block diagram functionally showing the control device 10. The control device 10 is configured by a computer, for example, and includes a CPU 100 and a storage unit 110 such as a semiconductor memory or a hard disk.
 制御装置10は、運転者がアクセルペダル12、ブレーキペダル13等の操作手段を操作することによって発生する操作入力情報に応じた加速、減速等の動作を行うための動作指令を前輪用駆動回路9f、後輪用駆動回路9r、機械ブレーキ18に出力し、前輪駆動系および後輪駆動系の駆動トルク(駆動力)および制動トルク(制動力)を制御する。これにより、電気自動車1は、運転者の操作に従って走行することができる。 The control device 10 issues an operation command for performing an operation such as acceleration and deceleration according to operation input information generated by the driver operating the operating means such as the accelerator pedal 12 and the brake pedal 13. The rear wheel drive circuit 9r and the mechanical brake 18 are output to control the driving torque (driving force) and braking torque (braking force) of the front wheel driving system and the rear wheel driving system. Thereby, the electric vehicle 1 can drive | work according to a driver | operator's operation.
 制御装置10は、各センサ22、23、24からの信号等に応じて前輪用モータ3fの目標トルクおよび後輪用モータ3Rrの目標トルクをそれぞれ算出し、前輪用駆動回路9f、後輪用駆動回路9rに出力する。前輪側および後輪側それぞれにおいて、駆動回路9は、制御装置10から指令された目標トルクに応じた信号をインバータ8に出力する。 The control device 10 calculates the target torque of the front wheel motor 3f and the target torque of the rear wheel motor 3Rr according to the signals from the sensors 22, 23, 24, etc., respectively, and the front wheel drive circuit 9f and the rear wheel drive are calculated. Output to the circuit 9r. On each of the front wheel side and the rear wheel side, the drive circuit 9 outputs a signal corresponding to the target torque commanded from the control device 10 to the inverter 8.
 記憶部110には、路面パターン111、μ-SrLimitテーブル112、後述する図3に示すような制駆動力とスリップ率の関係情報、旋回方向の加速度(旋回加速度)aθの閾値aθth115、横方向加速度aXが閾値aXth116等の各種のデータと、制駆動プログラム113b等の各種のプログラムが格納されている。 The storage unit 110 includes a road surface pattern 111, a μ-SrLimit table 112, information on the relationship between braking / driving force and slip rate as shown in FIG. 3 to be described later, a threshold value aθ th 115 of acceleration (turning acceleration) aθ in the turning direction, lateral Various data such as a direction acceleration a X being a threshold value a Xth 116 and various programs such as a braking / driving program 113b are stored.
 CPU100は、制駆動プログラム113bに従って動作することにより、路面摩擦係数μ推定手段101、スリップ率上限値設定手段102、スリップ率演算手段(スリップ率演算部)103、制駆動力制御手段(制御部)104b等として機能する。 The CPU 100 operates in accordance with the braking / driving program 113b, so that the road surface friction coefficient μ estimating unit 101, the slip ratio upper limit setting unit 102, the slip rate calculating unit (slip rate calculating unit) 103, and the braking / driving force control unit (control unit). 104b or the like.
(制駆動力制御手段)
 制駆動力制御手段104bは、スリップ率演算手段103が算出したスリップ率Srがスリップ率上限値SrLimit以下であるか否かを判断する。なお、制駆動力制御手段104bがスリップ率の比較を行うときは、絶対値で行う。そして、制駆動力制御手段104bは、μ-SrLimitテーブル112、図3に示すような制駆動力とスリップ率の関係情報等に基づいて、スリップ率をある目標値に制御するスリップ率制御、蛇行を抑制する蛇行抑制制御、荷重移動に伴うホイールロック、ホイールスピンの抑制制御、操舵角に応じた制駆動力制御等を行う。以下、それらの制御について説明する。
(Braking / driving force control means)
The braking / driving force control means 104b determines whether or not the slip ratio Sr calculated by the slip ratio calculating means 103 is equal to or less than the slip ratio upper limit value SrLimit. In addition, when the braking / driving force control means 104b compares the slip ratio, the absolute value is used. Then, the braking / driving force control means 104b performs slip ratio control, meandering to control the slip ratio to a certain target value based on the μ-SrLimit table 112, the relation information between the braking / driving force and the slip ratio as shown in FIG. Serpentine suppression control that suppresses the wheel, wheel lock accompanying load movement, wheel spin suppression control, braking / driving force control according to the steering angle, and the like are performed. Hereinafter, those controls will be described.
<スリップ率制御>
 制駆動力制御手段104bは、各車輪2のスリップ率がスリップ率上限値SrLimit以下のときは、アクセルペダル12の踏み込み量に応じて電気モータ3の駆動力を発揮させ、ブレーキペダル13の踏み込み量に応じて機械ブレーキ18による制動力、および駆動回路9による電気ブレーキの制動力を共に発揮させる。また、制駆動力制御手段104は、例えば摩擦係数が小さい低μ路において、各車輪2のスリップ率のいずれか(複数の車輪2が同時の場合も含む。)が、スリップ率上限値SrLimitを超えたとき、アクセルペダル12の踏み込み量に関わらず、スリップ率上限値SrLimitを超えたスリップ率がスリップ率上限値SrLimit以下になるように電気モータ3の駆動力を制御し、ブレーキペダル13の踏み込み量に関わらず、スリップ率上限値SrLimitを超えたスリップ率がスリップ率上限値SrLimit以下になるように、電気ブレーキによる制動力を制御するとともに、機械ブレーキ18による制動力を制御する。なお、制駆動力制御手段104は、制駆動力の制御を左右輪のスリップ率のうちいずれかが大きい方かを判断し、大きい方のスリップ率に基づいて行ってもよい。
<Slip rate control>
The braking / driving force control means 104b exerts the driving force of the electric motor 3 according to the depression amount of the accelerator pedal 12 and the depression amount of the brake pedal 13 when the slip ratio of each wheel 2 is equal to or less than the slip ratio upper limit value SrLimit. Accordingly, both the braking force by the mechanical brake 18 and the braking force of the electric brake by the drive circuit 9 are exhibited. Further, the braking / driving force control means 104, for example, on a low μ road with a small friction coefficient, one of the slip rates of each wheel 2 (including the case where a plurality of wheels 2 are simultaneously used) sets the slip rate upper limit value SrLimit. When exceeded, the driving force of the electric motor 3 is controlled so that the slip ratio exceeding the slip ratio upper limit value SrLimit is less than or equal to the slip ratio upper limit value SrLimit, regardless of the depression amount of the accelerator pedal 12, and the brake pedal 13 is depressed. Regardless of the amount, the braking force by the electric brake and the braking force by the mechanical brake 18 are controlled so that the slip rate exceeding the slip rate upper limit value SrLimit is equal to or less than the slip rate upper limit value SrLimit. The braking / driving force control means 104 may determine the braking / driving force control based on the larger slip ratio by determining which of the slip ratios of the left and right wheels is larger.
<蛇行抑制制御>
 制駆動力制御手段104bは、各車輪2のうち1つの車輪2のスリップ率がスリップ率上限値を超え、かつ、加速度センサ26が検出した旋回加速度aθが閾値aθth(所定の加速度)を超えたとき、車体25の旋回方向の動き(蛇行)を抑制するように、当該1つの車輪2が属する前輪2fr、2fl又は後輪2rr、2rlに対応する電気モータ3f、3rの制駆動力を減じる制御、および当該1つの車輪2が属しない後輪2rr、2rl又は前輪2fr、2flに対応する電気モータ3f、3rの制駆動力を増やす制御を行う。なお、両制御のうち一方のみを行ってもよい。
<Meander suppression control>
In the braking / driving force control means 104b, the slip rate of one of the wheels 2 exceeds the slip rate upper limit value, and the turning acceleration aθ detected by the acceleration sensor 26 exceeds the threshold value aθth (predetermined acceleration). Control to reduce the braking / driving force of the electric motors 3f, 3r corresponding to the front wheels 2fr, 2fl or the rear wheels 2rr, 2rl to which the one wheel 2 belongs so as to suppress the movement (meandering) of the vehicle body 25 in the turning direction. , And control to increase the braking / driving force of the electric motors 3f, 3r corresponding to the rear wheels 2rr, 2rl or the front wheels 2fr, 2fl to which the one wheel 2 does not belong. Only one of the two controls may be performed.
 また、制駆動力制御手段104bは、各車輪2のうち少なくとも1つの車輪2のスリップ率上限値を超え、かつ、加速度センサ26が検出した旋回加速度aθおよび横方向加速aXがそれぞれの閾値aθthおよび閾値aXth(所定の加速度)を超えたとき、車体25の旋回および横方向の動き(蛇行)を抑制するように電気モータ3f、3rの制駆動力を制御する。 Further, the braking / driving force control means 104b exceeds the slip ratio upper limit value of at least one of the wheels 2, and the turning acceleration aθ and the lateral acceleration a X detected by the acceleration sensor 26 are the respective threshold values aθ. When th and the threshold value a Xth (predetermined acceleration) are exceeded, the braking / driving forces of the electric motors 3f and 3r are controlled so as to suppress the turning and lateral movement (meandering) of the vehicle body 25.
<荷重移動に伴うホイールロック、ホイールスピンの抑制制御>
 第1の実施の形態と同様であるので、説明を省略する。
<Control of wheel lock and wheel spin suppression with load transfer>
Since it is the same as that of 1st Embodiment, description is abbreviate | omitted.
<操舵角に応じた制駆動力制御>
 図8は、操舵角に応じた制駆動力制御を説明するための図である。同図中、ωfr、ωfl、ωrr、ωrlは、各車輪の回転数を示し、γは操舵角を示す。制駆動力制御手段104bは、前輪2fr、2flの制駆動力を路面の摩擦係数(車輪のスリップ率)に応じて制御し、前後輪のトータルの制駆動力が変化しないように後輪2rr、2rlの制駆動力で補償するように制御する。例えば、運転者がステアリングホイール19を右方向へ操作したとき、前輪用差動装置4fにより前輪側の回転数はωfl>ωfrの関係となるが、制駆動力制御手段104bは、上述したスリップ率制御により前輪用モータ3fの制駆動力を減らす場合は、その分の制駆動力を後輪2rr、2rl側で補うために後輪用モータ3rの制駆動力を増やす制御を行う。これにより、安定した推進力を得ることができる。
<Braking / driving force control according to steering angle>
FIG. 8 is a diagram for explaining the braking / driving force control according to the steering angle. In the figure, ωfr, ωfl, ωrr, ωrl indicate the rotational speed of each wheel, and γ indicates the steering angle. The braking / driving force control means 104b controls the braking / driving force of the front wheels 2fr, 2fl according to the friction coefficient of the road surface (wheel slip ratio), so that the total braking / driving force of the front and rear wheels does not change. Control is performed to compensate with a braking / driving force of 2 rl. For example, when the driver operates the steering wheel 19 in the right direction, the front wheel differential speed 4w has a relationship of ωfl> ωfr by the front wheel differential device 4f. When the braking / driving force of the front wheel motor 3f is reduced by the control, control for increasing the braking / driving force of the rear wheel motor 3r is performed in order to compensate the corresponding braking / driving force on the rear wheels 2rr, 2rl side. Thereby, a stable driving force can be obtained.
(第2の実施の形態の動作)
 次に、電気自動車1の動作について図9、図10および図11を参照して説明する。図9は、車体25が旋回しようとしている状態を示す平面図である。図10は、車体25が旋回し横方向に動こうとしている状態を示す平面図である。図11は、電気自動車1の制駆動力の制御の一例を示すフローチャートである。なお、図96、図107中、Srfr、Srflは前輪のスリップ率、Srrr、Srrlは後輪のスリップ率を示す。
(Operation of Second Embodiment)
Next, the operation of the electric vehicle 1 will be described with reference to FIG. 9, FIG. 10, and FIG. FIG. 9 is a plan view showing a state in which the vehicle body 25 is about to turn. FIG. 10 is a plan view showing a state where the vehicle body 25 is turning and moving in the lateral direction. FIG. 11 is a flowchart illustrating an example of control of braking / driving force of the electric vehicle 1. In FIGS. 96 and 107, Srfr and Srfl indicate the slip ratio of the front wheel, and Srrr and Srrl indicate the slip ratio of the rear wheel.
 運転者がアクセルペダル12を踏むと、アクセルセンサ22は、アクセルペダル12の踏み込み量に応じた信号を制御装置10に出力する。運転者がブレーキペダル13を踏むと、ブレーキセンサ23は、ブレーキペダル13の踏み込み量に応じた信号を制御装置10に出力する。 When the driver steps on the accelerator pedal 12, the accelerator sensor 22 outputs a signal corresponding to the amount of depression of the accelerator pedal 12 to the control device 10. When the driver steps on the brake pedal 13, the brake sensor 23 outputs a signal corresponding to the amount of depression of the brake pedal 13 to the control device 10.
 駆動時には、制駆動力制御手段104bは、アクセルセンサ22からの信号に基づいて踏み込み量に応じた駆動トルクを算出し、操舵角に応じた旋回加速度が得られるよう算出した駆動トルクを前輪側と後輪側に分配する。CPU100は、前輪側に分配した駆動トルクに応じた制御信号を前輪用駆動回路9fに出力し、後輪側に分配した駆動トルクに応じた制御信号を後輪用駆動回路9rに出力する。前輪用駆動回路9fは、制御装置10からの制御信号に基づいて前輪用インバータ8fにより前輪用モータ3fを駆動する。後輪用駆動回路9rは、制御装置10からの制御信号に基づいて後輪用インバータ8rにより後輪用モータ3rを駆動する。 At the time of driving, the braking / driving force control means 104b calculates the driving torque according to the depression amount based on the signal from the accelerator sensor 22, and calculates the driving torque calculated so as to obtain the turning acceleration according to the steering angle as the front wheel side. Distribute to the rear wheel side. The CPU 100 outputs a control signal corresponding to the driving torque distributed to the front wheel side to the front wheel driving circuit 9f, and outputs a control signal corresponding to the driving torque distributed to the rear wheel side to the rear wheel driving circuit 9r. The front wheel drive circuit 9f drives the front wheel motor 3f by the front wheel inverter 8f based on a control signal from the control device 10. The rear-wheel drive circuit 9r drives the rear-wheel motor 3r by the rear-wheel inverter 8r based on a control signal from the control device 10.
 制動時には、制駆動力制御手段104bは、ブレーキセンサ23からの信号に基づいて踏み込み量に応じた制動トルクを算出し、算出した制動トルクを機械ブレーキと電気ブレーキに分配する。制駆動力制御手段104bは、機械ブレーキに分配した制動トルクに応じた制御信号を圧力調整ユニット11に出力し、電気ブレーキに分配した制動トルクに応じた制御信号を駆動回路9f、9rに出力する。圧力調整ユニット11は、制駆動力制御手段104bからの制御信号に基づいて加圧液体を分配して機械ブレーキ18を作動させる。駆動回路9f、9rは、制駆動力制御手段104からの制御信号に基づいてインバータ8f、8rにより電気ブレーキを作動させる。 During braking, the braking / driving force control means 104b calculates a braking torque corresponding to the depression amount based on a signal from the brake sensor 23, and distributes the calculated braking torque to the mechanical brake and the electric brake. The braking / driving force control means 104b outputs a control signal corresponding to the braking torque distributed to the mechanical brake to the pressure adjustment unit 11, and outputs a control signal corresponding to the braking torque distributed to the electric brake to the drive circuits 9f and 9r. . The pressure adjusting unit 11 distributes the pressurized liquid based on the control signal from the braking / driving force control means 104b and operates the mechanical brake 18. The drive circuits 9f and 9r operate the electric brake by the inverters 8f and 8r based on the control signal from the braking / driving force control means 104.
 次に、路面摩擦係数μ推定手段101は、第1の実施の形態と同様に、電気自動車1が走行する路面の摩擦係数μを推定する。例えば、前方のカメラ20fr、flが撮像した画像と記憶部110に記憶されている路面パターン111とのパターンマッチングにより路面の摩擦係数μf、μrを推定する(S11)。 Next, the road surface friction coefficient μ estimation means 101 estimates the friction coefficient μ of the road surface on which the electric vehicle 1 travels, as in the first embodiment. For example, the road surface friction coefficients μf and μr are estimated by pattern matching between the images captured by the front cameras 20fr and fl and the road surface pattern 111 stored in the storage unit 110 (S11).
 次に、スリップ率上限値設定手段102は、第1の実施の形態と同様に、推定された路面の摩擦係数μf、μrに応じたスリップ率上限値SrLimt-f、SrLimt-rをμ-SrLimtテーブル112を参照して設定する(S12)。 Next, as in the first embodiment, the slip ratio upper limit value setting means 102 sets the slip ratio upper limit values SrLimt-f and SrLimt-r corresponding to the estimated road friction coefficients μf and μr to μ−SrLimit. Setting is made with reference to the table 112 (S12).
 次に、スリップ率演算手段103は、加速度センサ26からの車体25の推進前後方向の加速度aYに応じた信号に基づいて、車体25の推進前後方向の加速度aYを積分して推進前後方向の車体速度Vを求める。 Then, slip rate calculating means 103, on the basis of the signals corresponding to the acceleration a Y longitudinal direction of the propulsion of the vehicle body 25 from the acceleration sensor 26, promoting longitudinal direction by integrating the acceleration a Y of the propulsion longitudinal direction of the vehicle body 25 Vehicle body speed V is obtained.
 続いて、スリップ率演算手段103は、車輪速センサ28からの車輪2の回転速度ωに応じた信号に基づいて、車輪2の回転速度ωを求める。 Subsequently, the slip ratio calculating means 103 obtains the rotational speed ω of the wheel 2 based on a signal corresponding to the rotational speed ω of the wheel 2 from the wheel speed sensor 28.
 次に、スリップ率演算手段103は、車輪2の半径R、車輪2の回転速度ω、車体速度Vから上記式(2)を用いて各車輪2のスリップ率Srを算出する(S13)。 Next, the slip ratio calculating means 103 calculates the slip ratio Sr of each wheel 2 from the radius R of the wheel 2, the rotational speed ω of the wheel 2, and the vehicle body speed V using the above formula (2) (S13).
 次に、制駆動力制御手段104bは、各車輪2のスリップ率Srのうち最も大きい車輪2のスリップ率|Sr|が対応するスリップ率上限値SrLimt-f、SrLimt-rを超えたか否かを判断する(S14)。 Next, the braking / driving force control means 104b determines whether or not the slip ratio | Sr | of the largest wheel 2 among the slip ratios Sr of each wheel 2 exceeds the corresponding slip ratio upper limit values SrLimt-f and SrLimt-r. Judgment is made (S14).
 例えば、図8、図9に示すように、前側の右輪2frのスリップ率|Sr|が対応するスリップ率上限値SrLimt-f、SrLimt-rを超え、他の車輪2fl、2rr、2rlのスリップ率|Sr|が対応するスリップ上限値SrLimt-f、SrLimt-rを超えていないと判断した場合は(S4:Yes)、制駆動力制御手段104bは、加速度センサ26によって検出された旋回加速度aθが記憶部110に記憶されている旋回加速度の閾値aθthを超えたか否かを判断する(S15)。 For example, as shown in FIGS. 8 and 9, the slip ratio | Sr | of the front right wheel 2fr exceeds the corresponding slip ratio upper limit values SrLimt-f and SrLimt-r, and the slips of the other wheels 2fl, 2rr and 2rl When it is determined that the rate | Sr | does not exceed the corresponding slip upper limit values SrLimt-f and SrLimt-r (S4: Yes), the braking / driving force control means 104b detects the turning acceleration aθ detected by the acceleration sensor 26. It is equal to or exceeds the threshold A.theta. t h a turn acceleration stored in the storage unit 110 (S15).
 旋回加速度aθが閾値aθthを超えた場合には(S15:Yes)、制駆動力制御手段104bは、加速度センサ26によって検出された横方向加速度aXが記憶部110に記憶されている横方向加速度の閾値aXthを超えたか否かを判断する(S16)。 When the turning acceleration aθ exceeds the threshold value aθ th (S15: Yes), the braking / driving force control unit 104b determines that the lateral acceleration aX detected by the acceleration sensor 26 is stored in the storage unit 110. It is determined whether or not the threshold value a Xth is exceeded (S16).
 旋回加速度aθが閾値aθth以下の場合には(S15:No)、制駆動力制御手段104bは、図8に示すように、車体25の旋回を操舵角に応じた旋回加速度に近づける制御を行う(S17)。すなわち、スリップ率が大きくなった右輪2fr側の前輪用モータ3fの制駆動力を減じる制御を行うとともに、後輪用モータ3rの制駆動力を増やす制御を行う。なお、この場合、いずれか一方の制御を行ってもよい。以上の制御により、旋回が運転者の意図する旋回に制御され、車体25の蛇行を抑制することができる。 When the turning acceleration aθ is equal to or less than the threshold value aθ th (S15: No), the braking / driving force control means 104b performs control to bring the turning of the vehicle body 25 closer to the turning acceleration corresponding to the steering angle, as shown in FIG. (S17). That is, control is performed to reduce the braking / driving force of the front wheel motor 3f on the right wheel 2fr side where the slip ratio has increased, and control is performed to increase the braking / driving force of the rear wheel motor 3r. In this case, either one of the controls may be performed. By the above control, the turn is controlled to the turn intended by the driver, and the meandering of the vehicle body 25 can be suppressed.
 旋回加速度aθが閾値aθthを超え(S15:Yes)、かつ、横方向加速度aXが閾値aXthを超えた場合には(S16:Yes)、制駆動力制御手段104bは、図9に示すように、車体25の旋回と横方向の動きを抑制する制御を行う(S18)。すなわち、スリップ率が大きくなった右輪2fr側の前輪用モータ3fの制駆動力を減じる制御を行うとともに、後輪用モータ3rの制駆動力を増やす制御を行う。後輪用モータ3rの制駆動力を増やす割合は、図8の場合よりも大きくする。以上の制御により、旋回および横方向の動きが抑制され、車体25の蛇行を抑制することができる。 Turn acceleration A.theta. Exceeds the threshold aθ th (S15: Yes), and if the lateral acceleration a X exceeds the threshold value a Xth (S16: Yes), the braking-driving force control unit 104b is shown in FIG. 9 In this manner, control for suppressing the turning and lateral movement of the vehicle body 25 is performed (S18). That is, control is performed to reduce the braking / driving force of the front wheel motor 3f on the right wheel 2fr side where the slip ratio has increased, and control is performed to increase the braking / driving force of the rear wheel motor 3r. The ratio of increasing the braking / driving force of the rear wheel motor 3r is larger than that in the case of FIG. By the above control, turning and lateral movement are suppressed, and the meandering of the vehicle body 25 can be suppressed.
 旋回加速度aθが閾値aθthを超え(S15:Yes)、かつ、横方向加速度aXが閾値aXthを超えない場合には(S16:No)、S15:Noと同様、制駆動力制御手段104bは、図8に示すように、車体25の旋回を操舵角に応じた旋回加速度に近づける制御を行う(S17)。 Turn acceleration A.theta. Exceeds the threshold aθ th (S15: Yes), and if the lateral acceleration a X does not exceed the threshold a Xth (S16: No), S15: No similar, the braking-driving force control unit 104b As shown in FIG. 8, the vehicle body 25 is controlled to turn to turn acceleration corresponding to the steering angle (S17).
(第2の実施の形態の効果)
 第2の実施の形態によれば、以下の効果を奏する。
(イ)加減速等によって発生する荷重移動に伴って生じるホイールロックやホイールスピン等を抑制し、さらに路面状態によって過渡的に発生するヨーレートや横滑り等を抑制することができ、安全な走行を実現することができる。
(ロ)スリップ率および加速度に基づいて車両の動きを検出しているので、蛇行をより確実に検出することができる。
(Effect of the second embodiment)
According to the second embodiment, the following effects are obtained.
(A) Wheel lock and wheel spin, etc. that occur due to load movement caused by acceleration / deceleration, etc. can be suppressed, and transitional yaw rate and side slip, etc. that occur transiently depending on road surface conditions can be suppressed, realizing safe driving can do.
(B) Since movement of the vehicle is detected based on the slip ratio and acceleration, meandering can be detected more reliably.
 本発明は、上記実施の形態に限定されず、本発明の趣旨を逸脱しない範囲内で種々に変形実施が可能である。例えば、各手段101、102、103、104a、104bをCPU100と制駆動プログラム113a、113bによって実現したが、ASIC(Application Specific IC)等のハードウエアによって実現してもよい。 The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, each means 101, 102, 103, 104a, 104b is realized by the CPU 100 and the braking / driving programs 113a, 113b, but may be realized by hardware such as ASIC (ApplicationASpecific IC).
 また、制駆動プログラム113a、113bは、これを記録したCD-ROM等のコンピュータ読み取り可能な記録媒体から制御装置10内に取り込んでもよく、サーバ装置等からネットワークを介して制御装置10内に取り込んでもよい。 The braking / driving programs 113a and 113b may be taken into the control device 10 from a computer-readable recording medium such as a CD-ROM in which the braking / driving programs 113b and 113b are recorded, or may be taken into the control device 10 from a server device or the like via a network. Good.
 本発明は、上記各実施の形態の他に、以下の他の実施の形態に係る電気自動車の制御装置、電気自動車の制御方法、制駆動プログラムを記録したコンピュータ読み取り可能な記録媒体を提供することもできる。 In addition to the above-described embodiments, the present invention provides an electric vehicle control device, an electric vehicle control method, and a computer-readable recording medium recording a braking / driving program according to the following other embodiments. You can also.
 他の実施の形態に係る電気自動車の制御装置は、前輪側の左右輪に第1の差動装置を介して制駆動力を伝達する第1の電気モータと、後輪側の左右輪に第2の差動装置を介して制駆動力を伝達する第2の電気モータとを備えた電気自動車を制御する装置であって、前記前輪が走行する路面の第1の摩擦係数、および前記後輪が走行する路面の第2の摩擦係数を推定する推定部と、前記第1の摩擦係数に応じて前記前輪のスリップ率の第1の所定の値、および前記第2の摩擦係数に応じて前記後輪のスリップ率の第2の所定の値を設定する設定部と、各車輪のスリップ率を演算する演算部と、前記前輪側の左右輪の前記スリップ率のうち高い方のスリップ率が前記第1の所定の値になるように前記第1の電気モータの制駆動力を制御し、又は前記後輪側の左右輪の前記スリップ率のうち高い方のスリップ率が前記第2の所定の値になるように前記第2の電気モータの制駆動力を制御する制御部とを備える。 An electric vehicle control device according to another embodiment includes a first electric motor that transmits braking / driving force to the left and right wheels on the front wheel side via the first differential device, and a first electric motor on the left and right wheels on the rear wheel side. A device for controlling an electric vehicle including a second electric motor for transmitting braking / driving force via two differential devices, the first friction coefficient of the road surface on which the front wheel travels, and the rear wheel An estimation unit that estimates a second friction coefficient of a road surface on which the vehicle travels, a first predetermined value of a slip ratio of the front wheel according to the first friction coefficient, and the first friction coefficient according to the second friction coefficient A setting unit that sets a second predetermined value of the slip ratio of the rear wheel, a calculation unit that calculates the slip ratio of each wheel, and the higher slip ratio among the slip ratios of the left and right wheels on the front wheel side Controlling the braking / driving force of the first electric motor to be a first predetermined value, or And a control unit higher slip rate of the slip rate of the left and right wheels of the serial rear wheel to control the braking and driving force of the to be the second predetermined value a second electric motor.
 他の実施の形態に係る電気自動車の制御方法は、前輪側の左右輪に第1の差動装置を介して制駆動力を伝達する第1の電気モータと、後輪側の左右輪に第2の差動装置を介して制駆動力を伝達する第2の電気モータとを備えた電気自動車を制御する方法であって、前記前輪が走行する路面の第1の摩擦係数、および前記後輪が走行する路面の第2の摩擦係数を推定する推定ステップと、前記第1の摩擦係数に応じて前記前輪のスリップ率の第1の所定の値、および前記第2の摩擦係数に応じて前記後輪のスリップ率の第2の所定の値を設定する設定ステップと、各車輪のスリップ率を演算する演算ステップと、前記前輪側の左右輪の前記スリップ率のうち高い方のスリップ率が前記第1の所定の値になるように前記第1の電気モータの制駆動力を制御し、又は前記後輪側の左右輪の前記スリップ率のうち高い方のスリップ率が前記第2の所定の値になるように前記第2の電気モータの制駆動力を制御する制御ステップとを含む。 An electric vehicle control method according to another embodiment includes a first electric motor for transmitting braking / driving force to the left and right wheels on the front wheel side via the first differential, and a first electric motor on the left and right wheels on the rear wheel side. A method for controlling an electric vehicle including a second electric motor that transmits braking / driving force via two differential devices, the first friction coefficient of the road surface on which the front wheel travels, and the rear wheel Estimating the second friction coefficient of the road surface on which the vehicle travels, the first predetermined value of the slip ratio of the front wheel according to the first friction coefficient, and the second friction coefficient according to the second friction coefficient A setting step for setting a second predetermined value of the slip ratio of the rear wheel, a calculation step for calculating the slip ratio of each wheel, and the higher slip ratio among the slip ratios of the left and right wheels on the front wheel side Controlling the first electric motor to a first predetermined value Control for controlling the force or the braking / driving force of the second electric motor so that the higher one of the slip ratios of the left and right wheels on the rear wheel side becomes the second predetermined value Steps.
 他の実施の形態に係るコンピュータ読み取り可能な記録媒体は、前輪側の左右輪に第1の差動装置を介して制駆動力を伝達する第1の電気モータと、後輪側の左右輪に第2の差動装置を介して制駆動力を伝達する第2の電気モータとを有する電気自動車に含まれるコンピュータに、前記前輪が走行する路面の第1の摩擦係数、および前記後輪が走行する路面の第2の摩擦係数を推定する推定ステップと、前記第1の摩擦係数に応じて前記前輪のスリップ率の第1の所定の値、および前記第2の摩擦係数に応じて前記後輪のスリップ率の第2の所定の値を設定する設定ステップと、各車輪のスリップ率を演算する演算ステップと、前記前輪側の左右輪の前記スリップ率のうち高い方のスリップ率が前記第1の所定の値になるように前記第1の電気モータの制駆動力を制御し、又は前記後輪側の左右輪の前記スリップ率のうち高い方のスリップ率が前記第2の所定の値になるように前記第2の電気モータの制駆動力を制御する制御ステップとを実行させるためのプログラムが記録されたものである。 A computer-readable recording medium according to another embodiment includes a first electric motor that transmits braking / driving force to the left and right wheels on the front wheel side via the first differential, and the left and right wheels on the rear wheel side. A computer included in an electric vehicle having a second electric motor that transmits braking / driving force via a second differential device has a first friction coefficient of a road surface on which the front wheels travel, and the rear wheels travel An estimation step of estimating a second friction coefficient of the road surface, a first predetermined value of a slip ratio of the front wheel according to the first friction coefficient, and the rear wheel according to the second friction coefficient A setting step for setting a second predetermined value of the slip ratio of the vehicle, a calculation step for calculating the slip ratio of each wheel, and the higher slip ratio of the slip ratios of the left and right wheels on the front wheel side is the first slip ratio. The first value so as to be a predetermined value of The braking / driving force of the second electric motor is controlled such that the braking / driving force of the pneumatic motor is controlled, or the higher slip ratio of the slip ratios of the left and right wheels on the rear wheel side becomes the second predetermined value. A program for executing a control step for controlling force is recorded.
 前輪および後輪を駆動する電気モータを有する自動車や、車輪の動力源として電気モータとエンジンの両方を有し、電気モータによる回生制動が可能なハイブリッドカー等に適用することでき、乗用自動車、バス、貨物自動車、普通車、大型車、特大車等の種類を問わない。 It can be applied to automobiles having electric motors for driving front wheels and rear wheels, and hybrid cars having both electric motors and engines as power sources for wheels and capable of regenerative braking by electric motors. Regardless of type, such as lorry, ordinary car, large car, extra large car.
1…電気自動車、2…車輪、2fr、2fl…前輪、2rr、rl…後輪、3f…前輪用モータ、3r…後輪用モータ、4f…前輪用差動装置、4r…後輪用差動装置、5fr、5fl、5rr、5rl…車軸、7…電源部、8f…前輪用インバータ、8r…後輪用インバータ、9f…前輪用駆動回路、9r…後輪用駆動回路、10…制御装置、11…圧力調整ユニット、12…アクセルペダル、13…ブレーキペダル、14…シフトレバー、15a~15c…電流センサ、16f、16r…エンコーダ、17a~17c…電流センサ、18fr、18fl、18rr、18rl…機械ブレーキ、19…ステアリングホイール、20fr、20fl…カメラ、21…カメラ、22…アクセルセンサ、23…ブレーキセンサ、24…シフトセンサ、25…車体、26…加速度センサ、27f、27r…温度センサ、28…車輪速センサ、29…操舵角センサ、70…バッテリ、71f…前輪用平滑コンデンサ、71r…後輪用平滑コンデンタ、72f、72r…電圧センサ、73…バッテリ容量センサ、100…CPU、101…路面摩擦係数μ推定手段、102…スリップ率上限値設定手段、103…スリップ率演算手段、104a、104b…制駆動力制御手段、110…記憶部、111…路面パターン、112…μ-SrLimitテーブル、113a、113b…制駆動プログラム DESCRIPTION OF SYMBOLS 1 ... Electric vehicle, 2 ... Wheel, 2fr, 2fl ... Front wheel, 2rr, rl ... Rear wheel, 3f ... Motor for front wheel, 3r ... Motor for rear wheel, 4f ... Differential device for front wheel, 4r ... Differential for rear wheel Device, 5fr, 5fl, 5rr, 5rl ... axle, 7 ... power supply, 8f ... front wheel inverter, 8r ... rear wheel inverter, 9f ... front wheel drive circuit, 9r ... rear wheel drive circuit, 10 ... control device, DESCRIPTION OF SYMBOLS 11 ... Pressure adjustment unit, 12 ... Accelerator pedal, 13 ... Brake pedal, 14 ... Shift lever, 15a-15c ... Current sensor, 16f, 16r ... Encoder, 17a-17c ... Current sensor, 18fr, 18fl, 18rr, 18rl ... Machine Brake, 19 ... steering wheel, 20fr, 20fl ... camera, 21 ... camera, 22 ... accelerator sensor, 23 ... brake sensor, 24 ... shift sensor 25 ... Vehicle body, 26 ... Acceleration sensor, 27f, 27r ... Temperature sensor, 28 ... Wheel speed sensor, 29 ... Steering angle sensor, 70 ... Battery, 71f ... Smoothing capacitor for front wheel, 71r ... Smoothing capacitor for rear wheel, 72f, 72r ... voltage sensor, 73 ... battery capacity sensor, 100 ... CPU, 101 ... road surface friction coefficient μ estimation means, 102 ... slip ratio upper limit value setting means, 103 ... slip ratio calculation means, 104a, 104b ... braking / driving force control means, DESCRIPTION OF SYMBOLS 110 ... Memory | storage part, 111 ... Road surface pattern, 112 ... μ-SrLimit table, 113a, 113b ... Braking / driving program

Claims (14)

  1.  前輪側の左右輪に第1の差動装置を介して制駆動力を伝達する第1の電気モータと、
     後輪側の左右輪に第2の差動装置を介して制駆動力を伝達する第2の電気モータと、
     前記前輪が走行する路面の第1の摩擦係数、および前記後輪が走行する路面の第2の摩擦係数を推定する推定部と、
     前記第1の摩擦係数に応じて前記前輪のスリップ率の第1の所定の値、および前記第2の摩擦係数に応じて前記後輪のスリップ率の第2の所定の値を設定する設定部と、
     各車輪のスリップ率を演算する演算部と、
     前記前輪側の左右輪の前記スリップ率のうち高い方のスリップ率が前記第1の所定の値になるように前記第1の電気モータの制駆動力を制御し、又は前記後輪側の左右輪の前記スリップ率のうち高い方のスリップ率が前記第2の所定の値になるように前記第2の電気モータの制駆動力を制御する制御部とを備えた電気自動車。
    A first electric motor that transmits braking / driving force to the left and right wheels on the front wheel side via the first differential;
    A second electric motor for transmitting braking / driving force to the left and right wheels on the rear wheel side via a second differential;
    An estimation unit that estimates a first friction coefficient of a road surface on which the front wheels travel and a second friction coefficient of a road surface on which the rear wheels travel;
    A setting unit that sets a first predetermined value of the slip ratio of the front wheel in accordance with the first friction coefficient and a second predetermined value of the slip ratio of the rear wheel in accordance with the second friction coefficient. When,
    A calculation unit for calculating the slip ratio of each wheel;
    The braking / driving force of the first electric motor is controlled so that the higher one of the slip ratios of the left and right wheels on the front wheel side becomes the first predetermined value, or the left and right wheels on the rear wheel side are controlled. An electric vehicle comprising: a control unit configured to control a braking / driving force of the second electric motor so that a higher slip ratio of the wheel slip ratio becomes the second predetermined value.
  2.  前記制御部は、駆動時又は制動時に発生する荷重移動量に基づいて、前記第1又は第2の電気モータの制駆動力を制御する請求項1に記載の電気自動車。 The electric vehicle according to claim 1, wherein the control unit controls a braking / driving force of the first or second electric motor based on a load movement amount generated during driving or braking.
  3.  前記各車輪のそれぞれに摩擦による制動力を付与可能な摩擦ブレーキ機構を備え、
     前記制御装置は、前記第1又は第2の電気モータの制動力を制御するとき、前記機械ブレーキ機構の制動力を制御する請求項1に記載の電気自動車。
    A friction brake mechanism capable of applying a braking force by friction to each of the wheels;
    The electric vehicle according to claim 1, wherein the control device controls the braking force of the mechanical brake mechanism when the braking force of the first or second electric motor is controlled.
  4.  前記第1および第2の所定の値は、推定された前記摩擦係数において最大の制駆動力が得られるスリップ率である請求項1に記載の電気自動車。 2. The electric vehicle according to claim 1, wherein the first and second predetermined values are slip rates at which a maximum braking / driving force can be obtained with the estimated friction coefficient.
  5.  前記制御部は、アクセル又はブレーキの操作による制駆動力を超えない範囲で前記制駆動力および前記制動力を制御する請求項3に記載の電気自動車。 The electric vehicle according to claim 3, wherein the control unit controls the braking / driving force and the braking force within a range not exceeding a braking / driving force by an operation of an accelerator or a brake.
  6.  前記制御部は、演算された前記前輪又は前記後輪の前記スリップ率が前記第1又は第2の所定の値以下のときは、アクセル又はブレーキの操作量に応じて前記第1又は第2の電気モータの制駆動力、又は前記摩擦ブレーキ機構の制動力を発揮させ、
     演算された前記前輪又は前記後輪の前記スリップが前記第1又は第2の所定の値を超えたとき、前記アクセル又は前記ブレーキの操作量に関わらず、前記第1又は第2の電気モータの制駆動力、又は前記摩擦ブレーキ機構による制動力を減らす制御を行う請求項3に記載の電気自動車。
    When the calculated slip ratio of the front wheel or the rear wheel is equal to or less than the first or second predetermined value, the control unit performs the first or second operation according to an operation amount of an accelerator or a brake. Demonstrate the braking / driving force of the electric motor or the braking force of the friction brake mechanism,
    When the calculated slip of the front wheel or the rear wheel exceeds the first or second predetermined value, regardless of the operation amount of the accelerator or the brake, the first or second electric motor The electric vehicle according to claim 3, wherein control for reducing braking / driving force or braking force by the friction brake mechanism is performed.
  7.  前記制御部は、前記第1および第2の電気モータ間でモータ容量に差があるとき、前記モータ容量の大きい方の左右輪のスリップ率を前記モータ容量の小さい方の左右輪のスリップ率よりも優先して前記第1および第2の電気モータの制駆動力を制御する請求項1に記載の電気自動車。 When there is a difference in motor capacity between the first and second electric motors, the control unit determines the slip ratio of the left and right wheels having the larger motor capacity from the slip ratio of the left and right wheels having the smaller motor capacity. The electric vehicle according to claim 1, wherein the braking / driving force of the first and second electric motors is controlled with priority.
  8.  操舵角を検出する操舵角検出部をさらに備え、
     前記制御部は、前記旋回加速度が前記操舵角に応じた旋回加速度となるように前記各車輪のスリップ率が前記第1および第2の所定の値を超えない範囲で前記第1および第2の電気モータの制駆動力を制御する制御部とを備えた請求項1に記載の電気自動車。
    A steering angle detector for detecting the steering angle;
    The control unit includes the first and second control units within a range in which a slip rate of each wheel does not exceed the first and second predetermined values so that the turning acceleration becomes a turning acceleration corresponding to the steering angle. The electric vehicle according to claim 1, further comprising a controller that controls braking / driving force of the electric motor.
  9.  前記制御部は、各車輪のうち後輪の一方の車輪のスリップ率が第2の所定の値を超え、かつ、前記旋回加速度が前記操舵角に反して所定の加速度を超えたとき、前記旋回加速度が前記操舵角に応じた旋回加速度となるように前記第2の電気モータの制駆動力を前記後輪の一方の車輪のスリップ率が前記第2の所定の値以下となるように減じる制御、および前記第1の電気モータの制駆動力を前輪のスリップ率が前記第1の所定の値を超えない範囲で前記第2の電気モータの制駆動力を減じた分を増やす制御を行う請求項8に記載の電気自動車。 When the slip ratio of one of the rear wheels of each wheel exceeds a second predetermined value and the turning acceleration exceeds a predetermined acceleration against the steering angle, the control unit turns the turning Control that reduces the braking / driving force of the second electric motor so that the slip rate of one of the rear wheels is equal to or less than the second predetermined value so that the acceleration becomes a turning acceleration corresponding to the steering angle. And a control for increasing the braking / driving force of the first electric motor by an amount obtained by reducing the braking / driving force of the second electric motor within a range where the slip ratio of the front wheels does not exceed the first predetermined value. Item 9. The electric vehicle according to Item 8.
  10.  前記制御部は、各車輪のうち前輪の一方の車輪のスリップ率が第1の所定の値を超え、かつ、前記旋回加速度が前記操舵角に反して所定の加速度を超えたとき、前記旋回加速度が前記操舵角に応じた旋回加速度となるように前記第1の電気モータの制駆動力を前記前輪の一方の車輪のスリップ率が前記第1の所定の値以下となるように減じる制御、および前記第2の電気モータの制駆動力を後輪のスリップ率が前記第2の所定の値を超えない範囲で前記第1の電気モータの制駆動力を減じた分を増やす制御を行う請求項8に記載の電気自動車。 When the slip rate of one of the front wheels among the wheels exceeds a first predetermined value and the turning acceleration exceeds a predetermined acceleration against the steering angle, the turning acceleration is greater than the turning acceleration. Control for reducing the braking / driving force of the first electric motor so that the slip ratio of one of the front wheels is equal to or less than the first predetermined value so that the turning acceleration according to the steering angle becomes, The control is performed to increase the braking / driving force of the second electric motor by reducing the braking / driving force of the first electric motor within a range where the slip ratio of the rear wheel does not exceed the second predetermined value. 8. The electric vehicle according to 8.
  11.  前記加速度検出部は、さらに前記車体の横方向加速を検出し、
     前記制御部は、各車輪のうち少なくとも1つの車輪のスリップ率が前記第1および第2の所定の値を超え、かつ、前記旋回加速度および前記横方向加速度が前記操舵角に反してそれぞれの所定の加速度を超えたとき、前記旋回加速度が前記操舵角に応じた旋回加速度となるように前記第1および第2の電気モータの制駆動力を制御する請求項10に記載の電気自動車。
    The acceleration detection unit further detects lateral acceleration of the vehicle body,
    The control unit has a slip ratio of at least one of the wheels that exceeds the first and second predetermined values, and the turning acceleration and the lateral acceleration are different from the predetermined steering angle. The electric vehicle according to claim 10, wherein the braking / driving force of the first and second electric motors is controlled so that the turning acceleration becomes a turning acceleration corresponding to the steering angle when the acceleration exceeds a predetermined acceleration.
  12.  前輪側の左右輪に第1の差動装置を介して制駆動力を伝達する第1の電気モータと、後輪側の左右輪に第2の差動装置を介して制駆動力を伝達する第2の電気モータとを有する電気自動車に含まれるコンピュータに、
     前記前輪が走行する路面の第1の摩擦係数、および前記後輪が走行する路面の第2の摩擦係数を推定する推定ステップと、
     前記第1の摩擦係数に応じて前記前輪のスリップ率の第1の所定の値、および前記第2の摩擦係数に応じて前記後輪のスリップ率の第2の所定の値を設定する設定ステップと、
     各車輪のスリップ率を演算する演算ステップと、
     前記前輪側の左右輪の前記スリップ率のうち高い方のスリップ率が前記第1の所定の値になるように前記第1の電気モータの制駆動力を制御し、又は前記後輪側の左右輪の前記スリップ率のうち高い方のスリップ率が前記第2の所定の値になるように前記第2の電気モータの制駆動力を制御する制御ステップとを実行させるためのプログラム。
    A first electric motor for transmitting braking / driving force to the left and right wheels on the front wheel side via the first differential device, and a braking / driving force to the left and right wheels on the rear wheel side via the second differential device. A computer included in an electric vehicle having a second electric motor;
    An estimation step for estimating a first friction coefficient of a road surface on which the front wheels travel and a second friction coefficient of a road surface on which the rear wheels travel;
    A setting step of setting a first predetermined value of the slip ratio of the front wheel according to the first friction coefficient and a second predetermined value of the slip ratio of the rear wheel according to the second friction coefficient. When,
    A calculation step for calculating the slip ratio of each wheel;
    The braking / driving force of the first electric motor is controlled so that the higher one of the slip ratios of the left and right wheels on the front wheel side becomes the first predetermined value, or the left and right wheels on the rear wheel side are controlled. A program for executing a control step of controlling a braking / driving force of the second electric motor so that a higher slip ratio of the wheel slip ratio becomes the second predetermined value.
  13.  前輪側の左右輪に第1の差動装置を介して制駆動力を伝達する第1の電気モータと、
     後輪側の左右輪に第2の差動装置を介して制駆動力を伝達する第2の電気モータとを備えた電気自動車を制御する装置であって、
     前記前輪が走行する路面の第1の摩擦係数、および前記後輪が走行する路面の第2の摩擦係数を推定する推定部と、
     前記第1の摩擦係数に応じて前記前輪のスリップ率の第1の所定の値、および前記第2の摩擦係数に応じて前記後輪のスリップ率の第2の所定の値を設定する設定部と、
     各車輪のスリップ率を演算する演算部と、
     前記前輪側の左右輪の前記スリップ率のうち高い方のスリップ率が前記第1の所定の値になるように前記第1の電気モータの制駆動力を制御し、又は前記後輪側の左右輪の前記スリップ率のうち高い方のスリップ率が前記第2の所定の値になるように前記第2の電気モータの制駆動力を制御する制御部とを備えた電気自動車の制御装置。
    A first electric motor that transmits braking / driving force to the left and right wheels on the front wheel side via the first differential;
    A device for controlling an electric vehicle including a second electric motor that transmits braking / driving force to the left and right wheels on the rear wheel side via a second differential device;
    An estimation unit that estimates a first friction coefficient of a road surface on which the front wheels travel and a second friction coefficient of a road surface on which the rear wheels travel;
    A setting unit that sets a first predetermined value of the slip ratio of the front wheel in accordance with the first friction coefficient and a second predetermined value of the slip ratio of the rear wheel in accordance with the second friction coefficient. When,
    A calculation unit for calculating the slip ratio of each wheel;
    The braking / driving force of the first electric motor is controlled so that the higher one of the slip ratios of the left and right wheels on the front wheel side becomes the first predetermined value, or the left and right wheels on the rear wheel side are controlled. A control device for an electric vehicle, comprising: a controller that controls a braking / driving force of the second electric motor so that a higher slip ratio of the slip ratio of the wheel becomes the second predetermined value.
  14.  前輪側の左右輪に第1の差動装置を介して制駆動力を伝達する第1の電気モータと、
     後輪側の左右輪に第2の差動装置を介して制駆動力を伝達する第2の電気モータとを備えた電気自動車を制御する方法であって、
     前記前輪が走行する路面の第1の摩擦係数、および前記後輪が走行する路面の第2の摩擦係数を推定する推定ステップと、
     前記第1の摩擦係数に応じて前記前輪のスリップ率の第1の所定の値、および前記第2の摩擦係数に応じて前記後輪のスリップ率の第2の所定の値を設定する設定ステップと、
     各車輪のスリップ率を演算する演算ステップと、
     前記前輪側の左右輪の前記スリップ率のうち高い方のスリップ率が前記第1の所定の値になるように前記第1の電気モータの制駆動力を制御し、又は前記後輪側の左右輪の前記スリップ率のうち高い方のスリップ率が前記第2の所定の値になるように前記第2の電気モータの制駆動力を制御する制御ステップとを含む電気自動車の制御方法。
    A first electric motor that transmits braking / driving force to the left and right wheels on the front wheel side via the first differential;
    A method of controlling an electric vehicle including a second electric motor that transmits braking / driving force to the left and right wheels on the rear wheel side via a second differential device,
    An estimation step for estimating a first friction coefficient of a road surface on which the front wheels travel and a second friction coefficient of a road surface on which the rear wheels travel;
    A setting step of setting a first predetermined value of the slip ratio of the front wheel according to the first friction coefficient and a second predetermined value of the slip ratio of the rear wheel according to the second friction coefficient. When,
    A calculation step for calculating the slip ratio of each wheel;
    The braking / driving force of the first electric motor is controlled so that the higher one of the slip ratios of the left and right wheels on the front wheel side becomes the first predetermined value, or the left and right wheels on the rear wheel side are controlled. A control step of controlling a braking / driving force of the second electric motor so that a higher slip ratio of the wheel slip ratio becomes the second predetermined value.
PCT/JP2010/066857 2010-04-20 2010-09-28 Electric vehicle, braking program, and control method and control device of electric vehicle WO2011132335A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010096954A JP2011229286A (en) 2010-04-20 2010-04-20 Electric vehicle and program
JP2010-096954 2010-04-20
JP2010-125087 2010-05-31
JP2010125087A JP2011254590A (en) 2010-05-31 2010-05-31 Electric vehicle and program

Publications (1)

Publication Number Publication Date
WO2011132335A1 true WO2011132335A1 (en) 2011-10-27

Family

ID=44833885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066857 WO2011132335A1 (en) 2010-04-20 2010-09-28 Electric vehicle, braking program, and control method and control device of electric vehicle

Country Status (1)

Country Link
WO (1) WO2011132335A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3517345A4 (en) * 2016-09-23 2019-08-21 Hitachi Automotive Systems, Ltd. Electric vehicle control device, control method, and control system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007062448A (en) * 2005-08-29 2007-03-15 Advics:Kk Brake device for vehicle
JP2008228407A (en) * 2007-03-09 2008-09-25 Tokyo Metropolitan Univ Braking/driving controller of vehicle
JP2010051136A (en) * 2008-08-25 2010-03-04 Tokyo Metropolitan Univ Environmentally friendly vehicle and method of controlling driving force thereof
JP2010151205A (en) * 2008-12-25 2010-07-08 Nissan Motor Co Ltd Driving force distribution control device for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007062448A (en) * 2005-08-29 2007-03-15 Advics:Kk Brake device for vehicle
JP2008228407A (en) * 2007-03-09 2008-09-25 Tokyo Metropolitan Univ Braking/driving controller of vehicle
JP2010051136A (en) * 2008-08-25 2010-03-04 Tokyo Metropolitan Univ Environmentally friendly vehicle and method of controlling driving force thereof
JP2010151205A (en) * 2008-12-25 2010-07-08 Nissan Motor Co Ltd Driving force distribution control device for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3517345A4 (en) * 2016-09-23 2019-08-21 Hitachi Automotive Systems, Ltd. Electric vehicle control device, control method, and control system

Similar Documents

Publication Publication Date Title
CN110650862B (en) Control device for electric vehicle, control system for electric vehicle, and control method for electric vehicle
US7458650B2 (en) Regenerative braking system for motor vehicles
KR101360038B1 (en) Control method of vehicle using in-wheel motor
WO2012023305A1 (en) Automobile
US9744862B2 (en) Slip-controlled braking system for electrically driven motor vehicles
KR20180058322A (en) Brake control system and method for electric vehicle
WO2012086223A1 (en) Electric vehicle
JP5841265B2 (en) Wheel control device, vehicle, wheel control method
JP2007282406A (en) Braking force control system of vehicle
KR20160040629A (en) Vehicle
WO2011151936A1 (en) Electric vehicle, program, and control device and control method for electric vehicle
JP4655895B2 (en) Vehicle control device
JP2006264628A (en) Vehicular braking/driving force control system
JP2011193702A (en) Electric vehicle and braking program
JP2006327335A (en) Torque distribution controller for vehicle
JP2011036062A (en) Control device for four-wheel independent drive vehicle
JP2011229286A (en) Electric vehicle and program
JP2011254590A (en) Electric vehicle and program
JP2011229211A (en) Regenerative controller
WO2011151935A1 (en) Electric vehicle, program, and control device and control method for electric vehicle
WO2011114557A1 (en) Electric vehicle, braking program, and method for controlling and device for controlling electric vehicle
JP6152705B2 (en) Vehicle control device
JP2010200590A (en) Device for regenerative braking control of electric vehicle
JP2010241166A (en) Four-wheel drive controller and four-wheel drive control method for vehicle
JP6267485B2 (en) Control device for four-wheel drive hybrid vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10850276

Country of ref document: EP

Kind code of ref document: A1