WO2011130991A1 - 一种信道估计方法及装置 - Google Patents

一种信道估计方法及装置 Download PDF

Info

Publication number
WO2011130991A1
WO2011130991A1 PCT/CN2010/077263 CN2010077263W WO2011130991A1 WO 2011130991 A1 WO2011130991 A1 WO 2011130991A1 CN 2010077263 W CN2010077263 W CN 2010077263W WO 2011130991 A1 WO2011130991 A1 WO 2011130991A1
Authority
WO
WIPO (PCT)
Prior art keywords
specified
slot
symbol period
channel estimation
user
Prior art date
Application number
PCT/CN2010/077263
Other languages
English (en)
French (fr)
Inventor
张孝中
张玉杰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011130991A1 publication Critical patent/WO2011130991A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • H04L25/023Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
    • H04L25/0232Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols by interpolation between sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present invention relates to the field of wireless communications, and in particular to a global microwave interconnection access
  • beamforming techniques form the optimal superposition of baseband signals based on system performance metrics. Its main purpose is to compensate for signal fading and distortion caused by spatial loss, multipath effects and other factors during wireless propagation, while reducing mutual interference between co-channel users. Beamforming technology is based directly on channel measurement, so the modeling and estimation of wireless propagation channels is the basis of beamforming technology.
  • the Sounding mechanism described in the current 802.16e protocol is also a method for implementing beamforming techniques.
  • the Sounding mechanism is to use the uplink and downlink channel reciprocity of a Time Division Duplexing (TDD) system.
  • the user station provides channel response information or channel state information (CSI) to the base station.
  • CSI channel state information
  • the channel estimation is performed according to the CSI, and then beamforming is performed according to the estimation result.
  • the base station indicates, by using a specified position in the downlink frame, a Sounding Zone resource allocated for the uplink frame;
  • the base station indicates, by another specified position in the downlink frame, each symbol used in the Sounding Zone for the sounding signal transmission and the user station in each Sounding symbol defines an implementation manner of the Sounding mechanism
  • the user station is in the uplink frame according to the information carried in the specified location in the downlink frame.
  • the base station receives the Sounding signal sent by the subscriber station, acquires the CSI according to the Sounding signal, uses the uplink and downlink channel reciprocity of the TDD system, and uses beamforming, spatial division multiplexing access (SDMA, Spatial Division Multiple Access), and closed loop multiple Multi-antenna transmission technology such as CL-MIMO (Closed-Loop Multiple Input Multiple Output) performs downlink data transmission of the user to improve system capacity and signal quality.
  • SDMA Spatial Division Multiple Access
  • CL-MIMO Cell-Loop Multiple Input Multiple Output
  • the Sounding mechanism transmits a Sounding signal according to symbols divided in the time direction. Symbols required to send a Sounding signal can only be sent exclusively for Sounding signals and cannot be used to transfer data. Since the transmission of the uplink data in the WiMax system is divided and transmitted in accordance with the three symbols as the basic unit of one symbol period, the three symbols for transmitting the Sounding signal cannot be used for transmitting data. As a result, the transmission efficiency of the uplink data is reduced, especially when the number of users using the Sounding mechanism is small, which causes waste of bandwidth resources. Summary of the invention
  • Embodiments of the present invention provide a channel estimation method and apparatus, which are used to improve the utilization rate of bandwidth resources, thereby improving data transmission efficiency.
  • An embodiment of the present invention provides a channel estimation method, including:
  • Channel estimation is performed on each pilot subcarrier included in the specified slot, and each estimated value corresponding to each pilot subcarrier is obtained;
  • the channel estimation values of the other subcarriers other than the pilot subcarriers in the full frequency band are obtained by the interpolation algorithm using the obtained estimated values.
  • the embodiment of the invention further provides a channel estimation apparatus, including:
  • a determining unit configured to determine a designated time slot occupied by the designated user for data transmission; and an estimating unit, configured to perform channel estimation on each pilot subcarrier included in the specified slot, Obtaining respective estimated values respectively corresponding to the pilot subcarriers;
  • an interpolation calculation unit configured to obtain, by using the obtained each of the estimated values, a channel estimation value of the subcarriers other than the pilot subcarrier in the full frequency band by using an interpolation algorithm.
  • a specified time slot occupied by a specified user for data transmission is determined; then, channel estimation is performed on each pilot subcarrier included in the determined specified slot, and obtained separately from each pilot subcarrier. Corresponding estimated values; finally, the estimated values obtained by using the interpolation algorithm are used to obtain channel estimation values of subcarriers other than the pilot subcarriers in the full frequency band.
  • the solution provided by the embodiment of the present invention performs channel estimation by using information carried by each pilot subcarrier included in the slot for data transmission, and further Then, the channel estimation value of the sub-bands other than the above-mentioned pilot sub-carriers of the full-band is obtained by the interpolation algorithm, so that the sound-banding signal dedicated to channel estimation is no longer needed, and the full-band can also be realized.
  • FIG. 1 is a flowchart of a channel estimation method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a system frame structure
  • FIG. 3 is a schematic structural diagram of an uplink frame composed of a basic unit slot
  • Figure 4 is a schematic structural view of a slot
  • FIG. 5 is a schematic diagram of a mapping relationship between a logical tile and a physical tile included in a slot
  • FIG. 6 is a schematic diagram of a correspondence between a physical tile included in one slot and each segment divided into a full band
  • FIG. 7 is a schematic structural diagram of a channel estimation apparatus according to an embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a determining unit in a channel estimating apparatus according to an embodiment of the present invention. detailed description
  • the present invention provides a channel estimation method and apparatus for improving the utilization of bandwidth resources, thereby improving the efficiency of data transmission.
  • the preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
  • the preferred embodiments described herein are for illustrative purposes only and are not intended to limit the invention. And in the case of no conflict, the embodiments in the present application and the features in the embodiments can be combined with each other.
  • the embodiment of the invention provides a channel estimation method, which is applied to a beamforming technology of a WiMax network. As shown in FIG. 1, the method includes:
  • Step S101 Determine a designated slot occupied by the designated user for data transmission.
  • Step S102 Perform channel estimation on each of the determined pilot subcarriers included in the specified slot, and obtain respective estimated values corresponding to the pilot subcarriers.
  • Step S103 Obtain a channel estimation value of the subcarriers other than the pilot subcarriers in the full frequency band by using an interpolation algorithm using the obtained estimated values.
  • each subcarrier including pilot subcarriers and data subcarriers
  • the channel estimation of each subcarrier (including pilot subcarriers and data subcarriers) of the full frequency band of each user is implemented by the above method, and it is considered that each subcarrier position of the uplink and downlink channel has the same channel characteristic, and then the uplink channel is utilized.
  • the estimated channel estimation value performs beamforming on the downlink signal transmission. In the process of beamforming, each user compensates each subcarrier of the downlink channel when transmitting the signal according to its own channel condition, in multipath The best overlay is achieved when you reach the terminal.
  • the frame structure of the WiMax system is first introduced. As shown in FIG. 2, the downlink frame structure and the uplink frame structure are included, where the downlink frame is in the time direction (FIG. 2)
  • the horizontal axis direction is divided into M symbols, and is divided into N subchannels according to the carrier frequency in the frequency direction (the vertical axis direction in FIG.
  • each downlink burst is used to transmit data for different users;
  • the uplink frame is divided into K symbols in the time direction, and is also divided into N subchannels in the frequency direction, and the entire uplink frame is divided into several uplink bursts.
  • Each upstream burst is used to transmit data for different users.
  • the basic unit when performing uplink data transmission, is a slot consisting of one symbol period consisting of three consecutive symbols in the time direction and one subchannel in the frequency direction, as shown in FIG.
  • One slot corresponds to one symbol period, and also corresponds to one subchannel.
  • the uplink burst corresponding to each user is composed of several slots; as shown in FIG. 4, one slot is divided into six slices in the frequency direction ( Tile ), each tile includes 4 subcarriers that are physically consecutive, that is, 1 subchannel is divided into 24 subcarriers in the frequency direction, including pilot subcarriers and data subcarriers; but due to channel selectivity in WiMax systems The effect of fading, the subcarriers included in the 6 tiles are physically discontinuous.
  • tile ( 1 , 0 ) -tile ( 1 , 5 ) is called a logical tile.
  • the mapping between logical tiles and physical tiles is as follows:
  • the channel estimation value of each pilot subcarrier included in the physical tile is calculated by interpolation, that is, the channel estimation value of the other subcarriers of the whole frequency band except the pilot subcarriers can be obtained, and it can be seen that the embodiment of the present invention provides The above method is feasible.
  • a specified slot for data transmission which is used by the specified user, is determined, and the designated slot is used for subsequent channel estimation.
  • the MAP information corresponding to the specified user in the UL-MAP may be used to determine that the designated user is occupied.
  • the determined slot may be multiple. For the simpler one, one slot can be arbitrarily selected as the designated slot, or multiple slots belonging to the same symbol period can be selected as the designated slot.
  • Slot preferably, the specified slot can also be determined as follows:
  • the first mode is: determining a symbol period used by the designated user for data transmission; determining a number of slots occupied by the specified user included in each symbol period, and selecting a symbol period in which the slot is included is a specified symbol period; And determining that all slots occupied by the designated user included in the specified symbol period are designated slots.
  • the designated slot can be determined as much as possible, and the more the number of designated slots, the more pilot subcarriers used in subsequent channel estimation, and thus the more accurate estimation of the entire frequency band.
  • the second mode is: determining that the slot included in the symbol sequence closest to the next frame data used by the specified user for data transmission is a specified slot.
  • the purpose of this method is also that the time difference between the specified symbol period and the next frame data is the smallest, and therefore, the estimation result is more accurate, and the effect of beamforming is also better.
  • the channel pilot estimation is performed on each pilot subcarrier included in the specified designated slot in the above step S102, and each estimated value corresponding to each pilot subcarrier is obtained.
  • the specific channel estimation algorithm can use various algorithms in the prior art, and will not be described in detail herein. Since the uplink channel estimation for the beamforming technology only needs to perform channel estimation on each subcarrier of the full frequency band of one symbol, preferably, in the above step S102, the symbol period to which the specified slot belongs may be selected. Each pilot subcarrier of one symbol performs channel estimation. According to an existing protocol standard, among the three symbols included in one symbol period, the first subcarrier and the third symbol include pilot subcarriers, and any one of them may be selected. One can be.
  • the channel estimation values of the other subcarriers other than the pilot subcarriers in the entire frequency band are obtained by the interpolation algorithm using the obtained estimated values.
  • the full-band sub-carrier may be divided into several segments, for example, equally distributed into a plurality of segments, each of which corresponds to each physical tile included in the specified slot, and then used by the pilot sub-carriers included in each physical tile.
  • the channel estimation value estimates the channel estimation values of other subcarriers corresponding to one segment by an interpolation algorithm.
  • the slot consisting of the symbol 0-2 and the subchannel 1 is an example of a slot.
  • the physical tiles included in the specified slot are tilell, tile32, tile44, tile53, tile80, and tile94.
  • the sub-carriers of the full-band can be equally divided into six segments, namely, the first segment of tile0 ⁇ tliel6, the second segment of tilel7 ⁇ tile33, the third segment of tile34 ⁇ tile50, and the fourth segment of tile51 ⁇ tile67, The five segments tile68 ⁇ tile84 and the sixth segment tile85 ⁇ tilel01, as shown in FIG.
  • the channel estimation values of the pilot subcarriers included in each physical tile of the specified slot are respectively obtained by an interpolation algorithm to obtain a corresponding segment (ie, the physics) The channel estimation value of the other subcarriers in the section where the tile is located, thereby obtaining the channel estimation value of the subcarriers of the full frequency band.
  • the specific interpolation algorithm can also use various algorithms in the prior art, and will not be described in detail herein.
  • the embodiment of the present invention Compared with the above-mentioned method provided by the embodiment of the present invention, it is no longer necessary to provide a dedicated symbol period for channel estimation, that is, all symbol periods can be used for transmitting data, as compared with the sounding mechanism that requires a symbol period dedicated to transmitting a Sounding signal. In addition, the utilization of bandwidth resources is improved, thereby improving data transmission efficiency. Moreover, the beamforming technology based on the Sounding mechanism in the prior art has a high requirement on scheduling and the terminal, and requires a specific terminal to support the mechanism. In the current common beceem terminal and MOTO terminal, not all terminals can support the Sounding mechanism.
  • the Sounding signal sent by the terminal to the base station tends to cause detection errors in the base station, resulting in unreliability of channel estimation, which affects Beam entropy of the downlink channel.
  • the above method provided by the embodiment of the present invention has good versatility for the terminal.
  • the channel included in any symbol period used by the user for transmitting data may be used for channel estimation.
  • signals of other symbol periods may be selected for channel estimation, which improves reliability of channel estimation.
  • the effect of beamforming on the downlink channel is further improved.
  • the channel estimation method according to the above embodiment of the present invention in accordance with another embodiment of the present invention, further provides a channel estimation apparatus, and a schematic structural diagram thereof is shown in FIG.
  • a determining unit 702 configured to determine a designated slot used by the specified user for data transmission, and an estimating unit 702, configured to perform channel estimation on each pilot subcarrier included in the specified slot, to obtain a separate pilot segment from the pilot subcarrier Corresponding estimated values;
  • the interpolation calculation unit 703 is configured to obtain, by using an interpolation algorithm, the channel estimation values of the subcarriers other than the pilot subcarriers in the full frequency band by using the obtained estimation values.
  • the determining unit 701 specifically includes:
  • a first determining subunit 801 configured to determine a symbol period occupied by the designated user for data transmission
  • a selecting sub-unit 802 configured to select, in the determined symbol period, a symbol period including a slot for data transmission occupied by the designated user to be a specified symbol period;
  • the second determining sub-unit 803 is configured to determine that all slots occupied by the designated user included in the specified symbol period are designated slots.
  • the selecting subunit 802 is specifically configured to: when there are multiple symbol periods including the slot for data transmission occupied by the designated user in the determined symbol period, select the data that is closest to the next frame.
  • One symbol period is the specified symbol period.
  • the determining unit 701 is specifically configured to determine that the slot included in the symbol period closest to the next frame data used by the designated user for data transmission is a specified slot.
  • the estimating unit 702 is specifically configured to perform channel estimation on each pilot subcarrier included in the designated slot that is located in one symbol period of the symbol slot to which the designated slot belongs.
  • the device further includes:
  • the shaping unit 704 is configured to perform beamforming on the transmission of the downlink signal by using the channel estimation values of the respective subcarriers in the obtained full frequency band.
  • the solution provided by the embodiment of the present invention includes: determining a designated time slot occupied by a specified user for data transmission; and performing channel estimation on each of the determined pilot subcarriers included in the specified slot, and obtaining Each estimated value corresponding to each pilot subcarrier; and the channel estimation value of the other subcarriers except the pilot subcarriers in the full frequency band are obtained by the interpolation algorithm using the obtained estimated values.

Description

一种信道估计方法及装置 技术领域
本发明涉及无线通信领域, 尤其涉及一种用于全球微波互联接入
( WiMax, Worldwide Interoperability for Microwave Access ) 网络的波束赋 形技术的信道估计方法及装置。 背景技术
在 WiMax网络中, 波束赋形技术根据系统性能指标, 形成对基带信号 的最佳叠加组合。 它的主要目的是补偿在无线传播过程中由空间损耗、 多 径效应等因素引起的信号衰落与失真, 同时降低同信道用户之间的相互干 扰。 波束赋形技术是直接建立在信道测量的基础上, 因此无线传播信道的 建模与估计是波束赋形技术的基础。 目前 802.16e协议中描述的 Sounding 机制, 也就是一种实现波束赋形技术的方法。
简单的说, Sounding 机制就是利用时分双工 (TDD , Time Division Duplexing ) 系统的上下行信道互易性, 由用户站向基站提供信道响应信息 或信道状态信息 ( CSI, channel state information ), 基站才艮据 CSI进行信道 估计, 进而根据估计结果进行波束赋形。
Sounding机制的过程可以简述如下:
首先, 基站通过下行帧中的指定位置指示为上行帧分配的 Sounding Zone资源;
以及,基站通过下行帧中的另一指定位置指示 Sounding Zone中的每个 用于 Sounding信号传送的符号以及每个 Sounding符号中的用户站定义其 Sounding机制的实现方式;
然后, 用户站根据下行帧中的上述指定位置中携带的信息, 在上行帧 对应资源位置发送对应模式的 Sounding信号;
最后, 基站接收用户站发送的 Sounding信号, 根据该 Sounding信号获 取 CSI, 利用 TDD系统上下行信道互易性, 使用波束赋形、 空分复用接入 ( SDMA, Spatial Division Multiple Access )、闭环多输入多输出( CL-MIMO, Closed-Loop Multiple Input Multiple Output )等多天线发射技术进行该用户 的下行数据发射以提高系统容量及信号质量。
现有技术中, Sounding 机制是按照在时间方向上划分的符号来发送 Sounding信号的。要求用于发送 Sounding信号的符号, 只能为 Sounding信 号发送专用, 不能用于传送数据。 由于 WiMax系统中上行数据的发送是按 照 3 个符号作为一个符号周期的基本单位来划分及发送的, 所以发送 Sounding信号的这 3个符号就不能用于传送数据。 进而导致降低了上行数 据的传送效率, 尤其在使用 Sounding机制的用户较少的时候, 会带来带宽 资源的浪费。 发明内容
本发明实施例提供一种信道估计方法及装置, 用以提高带宽资源的利 用率, 进而提高数据的传送效率。
本发明实施例提供一种信道估计方法, 包括:
确定指定用户占用的用于数据传送的指定时隙 slot;
对所述指定 slot 包括的各导频子载波进行信道估计, 得到与所述各导 频子载波分别对应的各估计值;
使用得到的所述各估计值通过插值算法, 得到全频带中的除所述各导 频子载波之外的其他子载波的信道估计值。
本发明实施例还提供了一种信道估计装置, 包括:
确定单元, 用于确定指定用户占用的用于数据传送的指定时隙 slot; 估计单元, 用于对所述指定 slot 包括的各导频子载波进行信道估计, 得到与所述各导频子载波分别对应的各估计值;
插值计算单元, 用于使用得到的所述各估计值通过插值算法, 得到全 频带中的除所述导频子载波之外的其他子载波的信道估计值。
本发明实施例提供的方法中, 首先确定指定用户占用的用于数据传送 的指定时隙 slot;然后对确定的指定 slot包括的各导频子载波进行信道估计, 得到与各导频子载波分别对应的各估计值; 最后使用得到的各估计值通过 插值算法, 得到全频带中的除各导频子载波之外的其他子载波的信道估计 值。 由于用于数据传送的 slot是属于用于数据传送的符号周期内的, 本发 明实施例提供的方案利用用于数据传送的 slot 中本身包括的各导频子载波 携带的信息进行信道估计, 进而再通过插值算法得到全频带的除上述各导 频子载波外的其他子载波的信道估计值, 从而基于不再需要传送专用于进 行信道估计的 Sounding信号的基础上, 也可以实现对全频带的子载波的信 道估计, 这样由于不再需要提供专用于传送 Sounding信号而无法传送数据 的符号周期, 使得全部符号周期均可用于数据传送, 即不需要额外的带宽 资源专用于信道估计, 因此, 提高了带宽资源的利用率, 进而提高了数据 的传送效率。 附图说明
图 1为本发明实施例提供的信道估计方法的流程图;
图 2为系统帧结构示意图;
图 3为由基本单位 slot组成的上行帧的结构示意图;
图 4为 slot的结构示意图;
图 5为 1个 slot包括的逻辑 tile与物理 tile的映射关系示意图; 图 6为 1个 slot包括的物理 tile与对全频带划分的各段的对应关系示意 图;
图 7为本发明实施例提供的信道估计装置的结构示意图; 图 8为本发明实施例提供的信道估计装置中的确定单元的结构示意图。 具体实施方式
为了给出提高带宽资源的利用率, 进而提高数据的传送效率的实现方 案, 本发明实施例提供了一种信道估计方法及装置, 以下结合说明书附图 对本发明的优选实施例进行说明, 应当理解, 此处所描述的优选实施例仅 用于说明和解释本发明, 并不用于限定本发明。 并且在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。
本发明实施例提供一种信道估计方法, 应用于 WiMax网络的波束赋形 技术, 如图 1所示, 包括:
步骤 S101 , 确定指定用户占用的用于数据传送的指定时隙 (slot )。 步骤 S102, 对确定的该指定 slot包括的各导频子载波进行信道估计, 得到与所述各导频子载波分别对应的各估计值。
步骤 S103 , 使用得到的各估计值通过插值算法, 得到全频带中的除所 述各导频子载波之外的其他子载波的信道估计值。
通过上述方法实现了针对每个用户的全频带的各子载波(包括导频子 载波和数据子载波) 的信道估计, 并认为上下行信道每个子载波位置具有 相同的信道特性, 进而利用上行信道估计得到的信道估计值对下行信号的 发送进行波束赋形, 在波束赋形的过程中, 每个用户根据自身的信道条件, 在发送信号时对下行信道的每个子载波进行补偿, 在多径到达终端时就能 达到最佳的叠加效果。
在对本发明实施例提供的上述方法进行详细描述之前, 首先对 WiMax 系统帧结构进行介绍, 如图 2所示, 包括下行帧结构和上行帧结构, 其中, 下行帧在时间方向上(图 2中横轴方向) 划分为 M个符号, 在频率方向上 (图 2中的纵轴方向)根据载波频率的不同划分为 N个子信道, 整个下行 帧划分为前导码、 下行映射(DL-MAP )、 上行映射(UL-MAP )和若干个 下行突发, 各下行突发用于针对不同用户传送数据; 上行帧在时间方向上 划分为 K个符号, 在频率方向上也划分为 N个子信道, 整个上行帧划分为 若干个上行突发, 各上行突发用于针对不同用户传送数据。
对于上述上行帧结构, 在进行上行数据传送时, 基本单位是由时间方 向上的 3个连续符号组成的 1个符号周期与频率方向上的 1个子信道组成 的 slot, 如图 3所示, 即 1个 slot对应了 1个符号周期, 也对应了 1个子信 道, 每个用户对应的上行突发由若干个 slot组成; 如图 4所示, 1个 slot在 频率方向上划分为 6个片 ( tile ), 每个 tile包括物理上连续的 4个子载波, 即在频率方向上 1个子信道划分为 24个子载波, 包括导频子载波和数据子 载波; 但由于在 WiMax系统中要对抗信道选择性衰落的影响, 6个 tile所 包括的子载波在物理上是不连续的。
802.16e协议中将 tile ( 1 , 0 ) -tile ( 1 , 5 )称为逻辑 tile , 逻辑 tile与物 理 tile的映射关系参见如下公式:
title (s, n) = N , , , X n + (Pt (s + η )mod N , , , ] + UL PermBase )mod N , , , 其中, s是子信道序号; Λ^¾α^是子信道数量, 由带宽决定; η是逻 辑 tile 在 1 个子信道中的序号, 取值范围为 0-5 ; Λ是置换序列; UL _ PermBase一般是一个固定分配的整数值。
以带宽为 5M为例, 此时子信道的数量为 17 , 物理 tile的数量为 102 , 按照频率的连续性用 tileO-tilelOl表示, JJL _ PermBase为 0时, 由符号 0-2和子信道 1组成的 slot包括的符号 0中的逻辑 tile与物理 tile的映射关 系如图 5所示,从中可见, 一个 slot包括的 6个物理 tile是均勾分布在整个 物理频带中的, 因此, 利用这 6个物理 tile包括的各导频子载波的信道估计 值, 通过插值计算, 即可以得到整个全频带的除该各导频子载波外的其他 子载波的信道估计值, 可见, 本发明实施例提供的上述方法是可行的。 上述步骤 S101中, 确定指定用户占用的用于数据传送的指定 slot, 该 指定 slot即用于后续的信道估计, 具体可以通过 UL-MAP中对应该指定用 户的 MAP信息, 确定出该指定用户占用的用于数据传送的 slot, 此时, 确 定出的 slot可能为多个, 较简单的, 可以任意选择其中 1个 slot作为指定 slot, 也可以选择属于同 1个符号周期的多个 slot作为指定 slot, 较佳的, 还可以釆用如下方式确定指定 slot:
第一种方式: 确定该指定用户占用的用于数据传送的符号周期; 并确 定出每个符号周期包括的该指定用户占用的 slot 的数量, 选择包括的 slot 最多的符号周期为指定符号周期; 以及确定该指定符号周期包括的该指定 用户占用的全部 slot为指定 slot。
釆用上述第一种方式能够尽可能多的确定出指定 slot,指定 slot的数量 越多, 后续进行信道估计时所使用的导频子载波越多, 进而能够更准确的 估计全频带的除上述各导频子载波之外的其他子载波的信道估计值。
上述第一种方式中, 当在确定的符号周期中, 包括该指定用户占用的 用于数据传送的 slot最多的符号周期有多个时, 选择其中最靠近下一帧数 据的一个符号周期为指定符号周期, 由于该指定符号周期与下一帧数据之 间的时间差最小, 因此, 估计结果更准确, 进而波束赋形的效果也更好。
第二种方式: 确定该指定用户占用的用于数据传送的最靠近下一帧数 据的一个符号周期包括的 slot为指定 slot。釆用本方式的目的同样是由于该 指定符号周期与下一帧数据之间的时间差最小, 因此, 估计结果更准确, 进而波束赋形的效果也更好。
在确定出用于信道估计的指定 slot后, 上述步骤 S102中对确定出的指 定 slot 包括的各导频子载波进行信道估计, 得到各导频子载波分别对应的 各估计值。 具体的信道估计算法可以釆用现有技术中的各种算法, 在此不 再进行详细描述。 由于用于波束赋形技术的上行信道估计仅需要对一个符号的全频带的 各子载波进行信道估计即可, 所以, 较佳的, 上述步骤 S102中, 可以选择 对指定 slot所属的符号周期中的一个符号的各导频子载波进行信道估计, 根据现有协议标准, 在一个符号周期包括的 3个符号中, 第 1个符号和第 3 个符号中包括导频子载波, 可以选择其中任一个均可。
上述步骤 S103中, 使用得到的各估计值通过插值算法, 得到全频带中 的除该各导频子载波之外的其他子载波的信道估计值。
具体可以为将全频带子载波分为若干段, 例如平均分配为若干段, 该 若干段子载波分别与指定 slot包括的各物理 tile——对应,然后使用每个物 理 tile包括的导频子载波的信道估计值通过插值算法,估计对应一段的其他 子载波的信道估计值。
仍以带宽为 5M, 由符号 0-2和子信道 1组成的 slot为指定 slot为例, 根据图 5所示可知,该指定 slot包括的物理 tile为 tilell、tile32、tile44、tile53、 tile80和 tile94, 在进行插值算法时, 可以将全频带的子载波平均分为 6段, 分别为第一段 tile0~tliel6、 第二段 tilel7~tile33、 第三段 tile34~tile50、 第四 段 tile51~tile67、 第五段 tile68~tile84和第六段 tile85~tilel01 , 如图 6所示, 分别使用该指定 slot的每个物理 tile包括的导频子载波的信道估计值通过插 值算法, 得到对应段(即该物理 tile所在段) 的其他子载波的信道估计值, 进而得到全频带的子载波的信道估计值。
具体的插值算法亦可釆用现有技术中的各种算法, 在此不再进行详细 描述。
相比需要专用于发送 Sounding信号的符号周期的 Sounding机制,釆用 本发明实施例提供的上述方法, 不再需要提供专用的符号周期用于信道估 计, 即所有的符号周期均可用于传送数据, 进而提高了带宽资源的利用率, 进而提高了数据的传送效率。 且现有技术中的基于 Sounding机制的波束赋形技术, 在带来带宽资源 浪费的同时, 无论是对调度还是终端都有较高的要求, 需要特定的终端才 能支持这种机制。 在目前常见的 beceem终端和 MOTO终端中, 并不是所 有的终端都能够支持 Sounding机制。 而且通过实际测试发现, 如果无线传 播中存在较大的时偏或者多径效应明显的时候, 终端发送至基站的 Sounding信号在基站往往容易造成检测误差, 从而导致信道估计的不可靠 性, 影响到下行信道的波束赋性。
而釆用本发明实施例提供的上述方法, 对终端而言具有良好的通用性。 且可以使用用户占用的用于传送数据的任一符号周期包括的 slot进行信道 估计, 当个别符号周期的信号不理想时, 可以选择其他符号周期的信号用 于信道估计, 提高了信道估计的可靠性, 进而提高了下行信道的波束赋形 的效果。
基于同一发明构思, 根据本发明上述实施例提供的信道估计方法, 相 应地, 本发明另一实施例还提供了一种信道估计装置, 其结构示意图如图 7 所示, 包括:
确定单元 701 , 用于确定指定用户占用的用于数据传送的指定 slot; 估计单元 702, 用于对该指定 slot包括的各导频子载波进行信道估计, 得到与所述各导频子载波分别对应的各估计值;
插值计算单元 703 , 用于使用得到的各估计值通过插值算法,得到全频 带中的除所述各导频子载波之外的其他子载波的信道估计值。
较佳的, 上述确定单元 701 , 如图 8所示, 具体包括:
第一确定子单元 801 ,用于确定指定用户占用的用于数据传送的符号周 期;
选择子单元 802, 用于在确定的符号周期中, 选择包括该指定用户占用 的用于数据传送的 slot最多的符号周期为指定符号周期; 第二确定子单元 803 ,用于确定该指定符号周期包括的该指定用户占用 的全部 slot为指定 slot。
较佳的, 上述选择子单元 802, 具体用于当在确定的符号周期中, 包括 该指定用户占用的用于数据传送的 slot最多的符号周期有多个时, 选择其 中最靠近下一帧数据的一个符号周期为指定符号周期。
较佳的, 上述确定单元 701 , 具体用于确定指定用户占用的用于数据传 送的最靠近下一帧数据的一个符号周期包括的 slot为指定 slot。
较佳的, 上述估计单元 702, 具体用于对该指定 slot包括的位于该指定 slot所属的符号周期中的一个符号的各导频子载波进行信道估计。
较佳的, 上述装置, 还包括:
赋形单元 704, 用于利用得到的全频带中的各子载波的信道估计值,对 下行信号的发送进行波束赋形。
综上所述, 本发明实施例提供的方案, 包括: 确定指定用户占用的用 于数据传送的指定时隙 slot; 并对确定的该指定 slot包括的各导频子载波进 行信道估计, 得到与各导频子载波分别对应的各估计值; 以及使用得到的 各估计值通过插值算法, 得到全频带中的除该各导频子载波之外的其他子 载波的信道估计值。 釆用本发明实施例提供的方案, 提高了带宽资源的利 用率, 进而提高了数据的传送效率。 本发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权 利要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在 内。

Claims

权利要求书
1、 一种信道估计方法, 其特征在于, 包括:
确定指定用户占用的用于数据传送的指定时隙 (slot );
对所述指定 slot 包括的各导频子载波进行信道估计, 得到与所述各导 频子载波分别对应的各估计值;
使用得到的所述各估计值通过插值算法, 得到全频带中的除所述各导 频子载波之外的其他子载波的信道估计值。
2、 如权利要求 1所述的方法, 其特征在于, 所述确定指定用户占用的 用于数据传送的指定 slot, 具体包括:
确定指定用户占用的用于数据传送的符号周期;
在确定的符号周期中, 选择包括所述指定用户占用的用于数据传送的 slot最多的符号周期为指定符号周期;
确定所述指定符号周期包括的所述指定用户占用的全部 slot 为指定 slot„
3、 如权利要求 2所述的方法, 其特征在于, 当在确定的符号周期中, 包括所述指定用户占用的用于数据传送的 slot最多的符号周期有多个时, 选择其中最靠近下一帧数据的一个符号周期为指定符号周期。
4、 如权利要求 1所述的方法, 其特征在于, 所述确定指定用户占用的 用于数据传送的指定 slot, 具体为:
确定指定用户占用的用于数据传送的最靠近下一帧数据的一个符号周 期包括的 slot为指定 slot。
5、 如权利要求 1所述的方法, 其特征在于, 对所述指定 slot包括的各 导频子载波进行信道估计, 具体为:
对所述指定 slot包括的位于所述指定 slot所属的符号周期中的一个符号 的各导频子载波进行信道估计。
6、 如权利要求 1-5任一项所述的方法, 其特征在于, 利用得到的全频 带中的各子载波的信道估计值, 对下行信号的发送进行波束赋形。
7、 一种信道估计装置, 其特征在于, 包括:
确定单元, 用于确定指定用户占用的用于数据传送的指定时隙 (slot ); 估计单元, 用于对所述指定 slot 包括的各导频子载波进行信道估计, 得到与所述各导频子载波分别对应的各估计值;
插值计算单元, 用于使用得到的所述各估计值通过插值算法, 得到全 频带中的除所述导频子载波之外的其他子载波的信道估计值。
8、如权利要求 7所述的装置, 其特征在于, 所述确定单元, 具体包括: 第一确定子单元, 用于确定指定用户占用的用于数据传送的符号周期; 选择子单元, 用于在确定的符号周期中, 选择包括所述指定用户占用 的用于数据传送的 slot最多的符号周期为指定符号周期;
第二确定子单元, 用于确定所述指定符号周期包括的所述指定用户占 用的全部 slot为指定 slot。
9、如权利要求 8所述的装置,其特征在于, 所述选择子单元具体用于, 当在确定的符号周期中, 包括所述指定用户占用的用于数据传送的 slot最 多的符号周期有多个时, 选择其中最靠近下一帧数据的一个符号周期为指 定符号周期。
10、 如权利要求 7所述的装置, 其特征在于, 所述确定单元具体用于, 确定指定用户占用的用于数据传送的最靠近下一帧数据的一个符号周期包 括的 slot为指定 slot。
11、 如权利要求 7所述的装置, 其特征在于, 所述估计单元具体用于, 对所述指定 slot包括的位于所述指定 slot所属的符号周期中的一个符号的各 导频子载波进行信道估计。
12、 如权利要求 7-11任一项所述的装置, 其特征在于, 该装置还包括: 赋形单元, 用于利用得到的全频带中的各子载波的信道估计值, 对下行信 号的发送进行波束赋形。
PCT/CN2010/077263 2010-04-22 2010-09-25 一种信道估计方法及装置 WO2011130991A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010153923.2 2010-04-22
CN201010153923.2A CN102238109B (zh) 2010-04-22 2010-04-22 一种信道估计方法及装置

Publications (1)

Publication Number Publication Date
WO2011130991A1 true WO2011130991A1 (zh) 2011-10-27

Family

ID=44833663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077263 WO2011130991A1 (zh) 2010-04-22 2010-09-25 一种信道估计方法及装置

Country Status (2)

Country Link
CN (1) CN102238109B (zh)
WO (1) WO2011130991A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1178640A1 (en) * 2000-08-01 2002-02-06 Sony International (Europe) GmbH Device and method for channel estimating an OFDM system
CN1697429A (zh) * 2004-05-13 2005-11-16 株式会社Ntt都科摩 信道估计装置、信道估计方法及无线接收机
CN1909538A (zh) * 2005-08-04 2007-02-07 华为技术有限公司 无线接入系统中数据传送的实现方法
CN101075998A (zh) * 2006-05-15 2007-11-21 中兴通讯股份有限公司 一种基于正交频分复用系统的信道估计方法
CN101083644A (zh) * 2006-06-01 2007-12-05 大唐移动通信设备有限公司 一种正交频分复用系统的信道估计方法
CN101155157A (zh) * 2006-09-30 2008-04-02 华为技术有限公司 基于变换域的信道估计结果处理方法与装置和接收机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100594084B1 (ko) * 2004-04-30 2006-06-30 삼성전자주식회사 직교 주파수 분할 다중 수신기의 채널 추정 방법 및 채널추정기
KR101275806B1 (ko) * 2006-04-24 2013-06-18 한국전자통신연구원 적응형 채널 추정이 가능한 파일럿 패턴 생성 방법, 상기파일럿 패턴을 이용한 송수신 방법 및 그 장치
CN101499990B (zh) * 2008-02-03 2012-04-25 华为技术有限公司 基于多输入多输出的导频发送方法及装置
EP2136521A1 (en) * 2008-06-20 2009-12-23 Nokia Siemens Networks Oy Method, device and system using interference rejection combining in OFDMA
CN101635619B (zh) * 2009-08-28 2012-09-05 华为技术有限公司 子载波发送方法、基站和系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1178640A1 (en) * 2000-08-01 2002-02-06 Sony International (Europe) GmbH Device and method for channel estimating an OFDM system
CN1697429A (zh) * 2004-05-13 2005-11-16 株式会社Ntt都科摩 信道估计装置、信道估计方法及无线接收机
CN1909538A (zh) * 2005-08-04 2007-02-07 华为技术有限公司 无线接入系统中数据传送的实现方法
CN101075998A (zh) * 2006-05-15 2007-11-21 中兴通讯股份有限公司 一种基于正交频分复用系统的信道估计方法
CN101083644A (zh) * 2006-06-01 2007-12-05 大唐移动通信设备有限公司 一种正交频分复用系统的信道估计方法
CN101155157A (zh) * 2006-09-30 2008-04-02 华为技术有限公司 基于变换域的信道估计结果处理方法与装置和接收机

Also Published As

Publication number Publication date
CN102238109A (zh) 2011-11-09
CN102238109B (zh) 2015-06-10

Similar Documents

Publication Publication Date Title
KR101128190B1 (ko) 무선 통신 시스템, 송신 장치 및 수신 장치
US10277424B2 (en) Uplink sounding in a wireless local area network
JP7333413B2 (ja) 複数の送信/受信ポイント(trp)上でトランスポートブロック(tb)を繰り返す方法
WO2019029343A1 (zh) 信息上报方法及装置、信息传输的方法及装置
KR20180096729A (ko) 개선된 통신 시스템용 프레임 구조를 위한 방법 및 장치
JP6027988B2 (ja) 端末、基地局、送信方法及び受信方法
JP2007221746A (ja) 通信装置、移動局及び方法
US9509473B2 (en) Method and device for sending and receiving a reference signal
WO2013155710A1 (zh) 导频信号发送方法、接收方法、用户设备及基站
WO2018211821A1 (ja) 通信装置、基地局、方法及び記録媒体
JP2019503609A (ja) 同期情報の送信
TWI482445B (zh) 用於在多天線ofdm系統中選取循環延遲的方法和系統
WO2010061768A1 (ja) 基地局、基地局でのサブバースト領域の配置方法、通信対象端末決定方法及び下りバースト領域の割り当て方法
JP2006229766A (ja) 無線通信装置及び無線通信方法
US20130215868A1 (en) Method and device for transmitting midamble signals in wireless communication system
US10326570B2 (en) Frequency selective scheduling
WO2011130991A1 (zh) 一种信道估计方法及装置
WO2017144113A1 (en) Transmission and reception devices processing flexible configurable time-frequency resources
JP2011066771A (ja) 無線通信システム、通信制御装置、通信端末装置および通信制御装置の制御プログラム
JP2010010966A (ja) 無線通信装置、及びmimo無線通信における信号送信方法
WO2018033134A1 (zh) 资源确定方法、基站及移动台
JP5749542B2 (ja) 移動通信システム及び基地局装置
CN107317664B (zh) 一种控制信道的传输方法
CN115733591A (zh) 基于多站协作的下行传输方法和相关装置
KR20140129975A (ko) 참조 신호 정보를 활용한 스몰셀 네트워크 검색 및 접속

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10850123

Country of ref document: EP

Kind code of ref document: A1