WO2011129216A1 - Fluorine gas generation device - Google Patents

Fluorine gas generation device Download PDF

Info

Publication number
WO2011129216A1
WO2011129216A1 PCT/JP2011/058529 JP2011058529W WO2011129216A1 WO 2011129216 A1 WO2011129216 A1 WO 2011129216A1 JP 2011058529 W JP2011058529 W JP 2011058529W WO 2011129216 A1 WO2011129216 A1 WO 2011129216A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine gas
pressure
gas
anode
flow rate
Prior art date
Application number
PCT/JP2011/058529
Other languages
French (fr)
Japanese (ja)
Inventor
章史 八尾
啓太 中原
達夫 宮崎
亜紀応 菊池
敦之 徳永
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2011129216A1 publication Critical patent/WO2011129216A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/245Fluorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation

Definitions

  • the present invention relates to a fluorine gas generator.
  • JP2004-43885A is equipped with an electrolytic cell that electrolyzes hydrogen fluoride in an electrolytic bath made of a molten salt containing hydrogen fluoride, and generates a product gas containing fluorine gas as the main component in the first gas phase portion on the anode side.
  • a fluorine gas generation device that generates a by-product gas mainly containing hydrogen gas in a second gas phase portion on the cathode side is disclosed.
  • the product gas is stored in the main buffer tank, and the pressure in the main buffer tank is measured with a pressure gauge.
  • the measurement result of the pressure gauge is transmitted to the control member, and the control member controls the current source on and off based on the measurement result of the pressure gauge.
  • the amount of product gas generated at the anode is controlled based on the pressure in the main buffer tank.
  • the amount of product gas generated at the anode is controlled based on the pressure in the main buffer tank. For this reason, when the fluorine gas supply flow rate to the external device changes rapidly, the amount of fluorine gas generated at the anode cannot be controlled with good response. Therefore, the fluorine gas cannot be stably and automatically supplied to the external device.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a fluorine gas generation device that can stably and automatically supply fluorine gas.
  • the present invention relates to a fluorine gas generating device that generates fluorine gas by electrolyzing hydrogen fluoride in a molten salt, the fluorine generated at an anode in which the molten salt is stored and immersed in the molten salt.
  • the first gas chamber in which main gas mainly composed of gas is guided and the second chamber in which by-product gas mainly composed of hydrogen gas generated at the cathode immersed in the molten salt is guided are melted.
  • a buffer tank provided in the main passage for storing main raw gas, a pressure detector for detecting the pressure of the buffer tank, and a power supply device for supplying a current between the anode and the cathode, Supplied between the anode and the cathode from the power supply device
  • a control device for controlling the current to be generated, wherein the control device calculates a current value based on a supply flow rate of main raw gas to the external device, and the calculated current value is detected by the pressure detector. Correct based on the results.
  • the current value supplied between the anode and the cathode from the power supply device is calculated based on the flow rate of the main raw gas supplied from the buffer tank to the external device, and the calculated current value is Since correction is performed based on the pressure in the buffer tank, the main raw gas can be stably and automatically supplied to the external device.
  • FIG. 1 is a system diagram showing a fluorine gas generator according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing the start-up procedure of the electrolytic cell.
  • FIG. 3 is a flowchart showing a fluorine gas supply preparation procedure.
  • FIG. 4 is a flowchart showing a fluorine gas supply procedure.
  • FIG. 5 is a flowchart showing a fluorine gas supply stop procedure.
  • FIG. 6 is a flowchart showing a procedure for stopping the electrolytic cell.
  • FIG. 1 a fluorine gas generation apparatus 100 according to an embodiment of the present invention will be described.
  • the fluorine gas generation device 100 generates fluorine gas by electrolysis and supplies the generated fluorine gas to the external device 4.
  • the external device 4 is, for example, a semiconductor manufacturing device.
  • the fluorine gas is used as a cleaning gas in, for example, a semiconductor manufacturing process.
  • the fluorine gas generation device 100 includes an electrolytic cell 1 that generates fluorine gas by electrolysis, a fluorine gas supply system 2 that supplies the fluorine gas generated from the electrolytic cell 1 to the external device 4, and the generation of fluorine gas. And a by-product gas processing system 3 for processing the generated by-product gas.
  • the fluorine gas generation device 100 also includes a controller 10 as a control device that controls the operation of each device and each valve based on the detection result output from each meter.
  • the controller 10 is configured by a microcomputer including a CPU, a ROM, and a RAM.
  • a molten salt containing hydrogen fluoride (HF) is stored.
  • a mixture (KF ⁇ 2HF) of hydrogen fluoride and potassium fluoride (KF) is used as the molten salt.
  • the inside of the electrolytic cell 1 is partitioned into an anode chamber 11 and a cathode chamber 12 by a partition wall 6 immersed in the molten salt.
  • the anode 7 and the cathode 8 are immersed, respectively.
  • a main gas mainly composed of fluorine gas (F 2 ) is generated at the anode 7, and hydrogen gas (H 2 ) is generated at the cathode 8.
  • F 2 fluorine gas
  • H 2 hydrogen gas
  • By-product gas as a main component is generated.
  • a carbon electrode is used for the anode 7, and soft iron, monel, or nickel is used for the cathode 8.
  • a first gas chamber 11a into which fluorine gas generated at the anode 7 is guided, and a second gas chamber 12a into which hydrogen gas generated at the cathode 8 is guided. are partitioned by the partition wall 6 so that the mutual gas cannot pass.
  • the first air chamber 11a and the second air chamber 12a are completely separated by the partition wall 6 in order to prevent a reaction due to the contact of fluorine gas and hydrogen gas.
  • the molten salt in the anode chamber 11 and the cathode chamber 12 is not separated by the partition wall 6 but communicates through the lower portion of the partition wall 6.
  • the temperature of the molten salt in the electrolytic cell 1 is adjusted by the temperature adjusting device 65 to 71.7 ° C. or higher, specifically 85 to 95 ° C., which is the melting point of KF ⁇ 2HF.
  • the electrolytic cell 1 is provided with a thermometer 69 as a temperature detector for detecting the temperature of the molten salt. The detection result of the thermometer 69 is output to the controller 10.
  • the temperature adjusting device 65 includes a jacket 66 provided on the outer wall of the electrolytic cell 1, a tube (not shown) provided inside the electrolytic cell 1, and heating / cooling for circulating steam or cooling water through the jacket 66 and the tube.
  • Device 67 When raising the temperature of the molten salt, steam is circulated from the heating / cooling device 67 to the jacket 66 and the tube, and when lowering the temperature of the molten salt, cooling water is circulated from the heating / cooling device 67 to the jacket 66 and the tube. To adjust the temperature.
  • One of the jacket 66 and the tube may be provided. Further, instead of circulating steam or cooling water through the jacket 66 and the tube, a hot refrigerant such as silicone oil may be circulated. Furthermore, you may make it adjust the temperature of molten salt by providing heat exchangers, such as a heater and a capacitor
  • each of the fluorine gas and the hydrogen gas generated from the anode 7 and the cathode 8 of the electrolytic cell 1 hydrogen fluoride is vaporized from the molten salt by the vapor pressure and mixed.
  • each of the fluorine gas generated at the anode 7 and guided to the first air chamber 11a and the hydrogen gas generated at the cathode 8 and guided to the second air chamber 12a includes hydrogen fluoride gas. Yes.
  • the electrolytic cell 1 is provided with a liquid level gauge 14 as a liquid level detector for detecting the liquid level of the stored molten salt.
  • the level gauge 14 detects a back pressure when nitrogen gas having a constant flow rate is purged into the molten salt through the insertion tube 14a inserted into the electrolytic cell 1, and the liquid level gauge 14 detects the liquid pressure from the back pressure and the liquid specific gravity of the molten salt. It is a back pressure type liquid level gauge that detects the surface level.
  • the detection result of the liquid level gauge 14 is output to the controller 10.
  • the electrolytic cell 1 is provided with a first differential pressure gauge 20 as a differential pressure detector for detecting a pressure difference between the first air chamber 11a and the second air chamber 12a.
  • the detection result of the first differential pressure gauge 20 is output to the controller 10.
  • a first main passage 15 for supplying fluorine gas to the external device 4 is connected to the first air chamber 11a.
  • the first main passage 15 is provided with a first pump 17 as a transfer device for deriving and transferring fluorine gas from the first air chamber 11a.
  • a positive displacement pump such as a bellows pump or a diaphragm pump is used.
  • a first return passage 18 Connected to the first main passage 15 is a first return passage 18 that connects the discharge side and the suction side of the first pump 17.
  • the first reflux passage 18 is provided with a first pressure adjusting valve 19 for returning the fluorine gas discharged from the first pump 17 to the suction side of the first pump 17.
  • a first pressure gauge 13 as a pressure detector for detecting the pressure in the first main passage 15 is provided upstream of the first pump 17 in the first main passage 15. The detection result of the first pressure gauge 13 is output to the controller 10.
  • the opening of the first pressure regulating valve 19 is controlled based on a signal output from the controller 10. Specifically, the controller 10 controls the opening degree of the first pressure regulating valve 19 so that the pressure detected by the first pressure gauge 13 is stored in the ROM and becomes a predetermined first set value.
  • an activation valve 70 that opens when the fluorine gas generation device 100 is activated and allows the flow of the fluorine gas generated at the anode 7 is provided.
  • the start valve 70 is normally open during normal operation of the fluorine gas generator 100.
  • the first main passage 15 is provided with a second differential pressure gauge 71 as a differential pressure detector that detects a pressure difference before and after the start valve 70 in the closed state.
  • the detection result of the second differential pressure gauge 71 is output to the controller 10.
  • the controller 10 opens the start valve 70 when the differential pressure detected by the second differential pressure gauge 71 is stored in the ROM and is within a predetermined setting range when the fluorine gas generator 100 is started. To control. Detailed control will be described later.
  • a branch passage 72 is connected upstream of the start valve 70 in the first main passage 15, and an abatement part 73 is provided at the downstream end of the branch passage 72.
  • the branch passage 72 is provided with a first shut-off valve 74 that switches between the flow and shut-off of the fluorine gas.
  • a purification device 16 that collects hydrogen fluoride gas mixed in the fluorine gas and purifies the fluorine gas is provided.
  • the purification device 16 includes two systems, a first purification device 16a and a second purification device 16b, which are provided in parallel.
  • the first purification device 16a and the second purification device 16b are configured so that the gas passage portion 50 through which the fluorine gas passes and the hydrogen fluoride gas mixed in the fluorine gas solidify, while the fluorine gas passes through the gas passage portion 50.
  • a cooling device 51 that cools the gas passage portion 50 at a temperature not lower than the boiling point of fluorine and not higher than the melting point of hydrogen fluoride.
  • Inlet valves 22a and 22b are provided upstream of the first purifier 16a and the second purifier 16b, respectively, and outlet valves 23a and 23b are respectively provided downstream.
  • the inlet valves 22a and 22b and the outlet valves 23a and 23b are switched between open and closed so that the fluorine gas generated from the anode 7 passes through only one of the first purification device 16a and the second purification device 16b. That is, when one of the first refining device 16a and the second refining device 16b is in an operating state, the other is stopped or in a standby state.
  • the first main passage 15 is provided with a third differential pressure gauge 53 as a differential pressure detector that detects a pressure difference before and after the purifier 16.
  • the detection result of the third differential pressure gauge 53 is output to the controller 10.
  • the controller 10 determines that the accumulated amount of hydrogen fluoride solidified in the gas passage 50 is a predetermined amount. Therefore, the opening and closing of the inlet valves 22a and 22b and the outlet valves 23a and 23b are controlled to switch the operation of the purifier 16.
  • a buffer tank 21 for storing the fluorine gas transported by the first pump 17 is provided downstream of the first pump 17 in the first main passage 15.
  • the fluorine gas stored in the buffer tank 21 is supplied to the external device 4.
  • the buffer tank 21 is provided with a second pressure gauge 24 as a pressure detector for detecting the internal pressure. The detection result of the second pressure gauge 24 is output to the controller 10.
  • a flow meter 26 as a flow rate detector for detecting the flow rate of the fluorine gas supplied from the buffer tank 21 to the external device 4 is provided downstream of the buffer tank 21 in the first main passage 15. The detection result of the flow meter 26 is output to the controller 10.
  • a flow rate control valve 27 for adjusting the flow rate of the fluorine gas supplied to the external device 4 is provided downstream of the flow meter 26 in the first main passage 15.
  • the opening degree of the flow control valve 27 is controlled based on a signal output from the controller 10.
  • the controller 10 controls the opening degree of the flow control valve 27 so that the flow rate of the fluorine gas detected by the flow meter 26 is stored in the ROM and becomes a predetermined target flow rate.
  • a plurality of target flow rates are stored in the ROM of the controller 10.
  • the target flow rate is a flow rate of fluorine gas required by the external device 4 and is changed by an operator who operates the fluorine gas generation device 100.
  • the controller 10 controls the current supplied from the power source 9 between the anode 7 and the cathode 8 based on the target flow rate of the fluorine gas. Specifically, a current value corresponding to the target flow rate is calculated, and the power source 9 is controlled so that the current value is energized between the anode 7 and the cathode 8. Thus, the amount of fluorine gas generated at the anode 7 is controlled so as to replenish the fluorine gas supplied from the buffer tank 21 to the external device 4.
  • the controller 10 corrects the current value calculated based on the target flow rate of the fluorine gas based on the detection result of the second pressure gauge 24. Specifically, when the pressure of the buffer tank 21 detected by the second pressure gauge 24 is larger than a predetermined setting range stored in the ROM, the calculated current value is corrected to be small, Further, when it is smaller than the set range, the calculated current value is corrected so as to increase. That is, the current value calculated based on the target flow rate of the fluorine gas is corrected so that the pressure of the buffer tank 21 is maintained within the set range (reference pressure).
  • the setting range of the pressure in the buffer tank 21 is set to a pressure higher than the atmospheric pressure.
  • the fluorine gas supplied to the external device 4 is controlled to be replenished, and the internal pressure of the buffer tank 21 is controlled to a pressure higher than the atmospheric pressure.
  • the external device 4 side where fluorine gas is used is atmospheric pressure, if the valve provided in the external device 4 is opened, the pressure difference between the buffer tank 21 and the external device 4 Fluorine gas is supplied from the buffer tank 21 to the external device 4.
  • a second shutoff valve 28 for switching between supply and shutoff of fluorine gas to the external device 4 is provided downstream of the flow control valve 27 in the first main passage 15.
  • a branch passage 55 is connected to the first main passage 15 upstream of the second shut-off valve 28, and an abatement part 56 is provided at the downstream end of the branch passage 55.
  • the branch passage 55 is provided with a third shut-off valve 57 that switches between the flow and shut-off of the fluorine gas.
  • a second main passage 30 for discharging hydrogen gas to the outside is connected to the second air chamber 12a.
  • the second main passage 30 is provided with a second pump 31 as a transfer device for deriving and transferring hydrogen gas from the second air chamber 12a.
  • the second main passage 30 is connected to a second recirculation passage 32 that connects the discharge side and the suction side of the second pump 31.
  • the second recirculation passage 32 is provided with a second pressure regulating valve 33 for returning the hydrogen gas discharged from the second pump 31 to the suction side of the second pump 31.
  • a third pressure gauge 35 as a pressure detector for detecting the pressure of the second main passage 30 is provided upstream of the second pump 31 in the second main passage 30. The detection result of the third pressure gauge 35 is output to the controller 10.
  • the opening of the second pressure regulating valve 33 is controlled based on a signal output from the controller 10. Specifically, the controller 10 controls the opening degree of the second pressure regulating valve 33 so that the pressure detected by the third pressure gauge 35 is stored in the ROM and becomes a predetermined second set value.
  • the abatement part 34 is provided downstream of the second pump 31 in the second main passage 30, and the hydrogen gas transported by the second pump 31 is rendered harmless by the abatement part 34 and released.
  • the fluorine gas generator 100 also includes a raw material supply system 5 that supplies hydrogen fluoride, which is a raw material of fluorine gas, into the molten salt of the electrolytic cell 1. Below, the raw material supply system 5 is demonstrated.
  • the raw material supply system 5 includes a hydrogen fluoride supply source 40 in which hydrogen fluoride for replenishing the electrolytic cell 1 is stored.
  • the hydrogen fluoride supply source 40 and the electrolytic cell 1 are connected via a raw material supply passage 41.
  • Hydrogen fluoride stored in the hydrogen fluoride supply source 40 is supplied into the molten salt of the electrolytic cell 1 through the raw material supply passage 41.
  • the raw material supply passage 41 is provided with a flow rate control valve 42 for controlling the supply flow rate of hydrogen fluoride.
  • the flow control valve 42 is controlled in opening degree based on a signal output from the controller 10. Specifically, the controller 10 controls the supply flow rate of hydrogen fluoride so that the liquid level of the molten salt detected by the level gauge 14 is stored in the ROM and becomes a predetermined level set in advance. That is, the flow rate control valve 42 controls the supply flow rate of hydrogen fluoride so as to replenish hydrogen fluoride electrolyzed in the molten salt.
  • the carrier gas supply passage 46 is connected to the raw material supply passage 41 to guide the carrier gas supplied from the carrier gas supply source 45 into the raw material supply passage 41.
  • the carrier gas supply passage 46 is provided with a cutoff valve 47 for switching between supply and cutoff of the carrier gas.
  • the carrier gas is a gas for introducing hydrogen fluoride into the molten salt of the electrolytic cell 1, and nitrogen gas which is an inert gas is used.
  • the shut-off valve 47 is basically open, and nitrogen gas is supplied into the molten salt in the cathode chamber 12. The nitrogen gas is hardly dissolved in the molten salt and is discharged from the second air chamber 12a through the byproduct gas processing system 3.
  • another inert gas such as argon gas or helium gas may be used as the carrier gas.
  • the molten salt in the electrolytic cell 1 contains a trace amount of water. This moisture is brought into the electrolytic cell 1 together with hydrogen fluoride supplied through the raw material supply passage 41, or is brought into the electrolytic cell 1 together with nitrogen gas supplied to the raw material supply passage 41 through the carrier gas supply passage 46. In other words, it is brought into the electrolytic cell 1 together with nitrogen gas purged through the liquid level gauge 14. Further, the moisture contained in the molten salt includes the moisture mixed into the molten salt from the beginning, in addition to the moisture brought in during electrolysis.
  • the electrolytic cell 1 When electrolysis is performed in a state where the water concentration in the molten salt in the electrolytic cell 1 is high, the surface of the anode 7 is oxidized due to the reaction between the water in the molten salt and the carbon electrode, and the anode effect may occur.
  • the anode effect refers to a phenomenon in which the electrolysis voltage increases until electrolysis cannot be continued. Therefore, the electrolytic cell 1 is provided with a moisture concentration measuring device 59 that samples the molten salt through the sampling passage 58 and measures the moisture concentration in the molten salt.
  • the Karl Fischer method is used to measure the moisture concentration by the moisture concentration measuring device 59.
  • gas concentration measurement is performed in which fluorine gas is sampled through the sampling passage 60 and the concentration of a reaction product such as OF 2 produced by the reaction between fluorine and moisture in the molten salt is measured.
  • a device 61 is provided.
  • An infrared spectrophotometer is used for the gas concentration measuring device 61.
  • Only one of the moisture concentration measuring device 59 and the gas concentration measuring device 61 may be provided.
  • the first shut-off valve 74 In the stop state of the fluorine gas generation device 100, the first shut-off valve 74 is open, and the other start valves 70, inlet valves 22a and 22b, outlet valves 23a and 23b, the second shut-off valve 28, and the second The three shutoff valve 57 is in a closed state.
  • step 1 the temperature adjusting device 65 is activated, and steam is supplied from the heating and cooling device 67 to the jacket 66 and the tube of the electrolytic cell 1. Thereby, the temperature of molten salt rises.
  • step 2 it is determined whether or not the temperature of the molten salt has reached a predetermined temperature. If it is determined that the predetermined temperature has been reached, the process proceeds to step 3.
  • the predetermined temperature is set to 80 ° C. at which the molten salt is in a dissolved state, for example. After the temperature of the molten salt reaches a predetermined temperature, the temperature of the molten salt is controlled to 85 to 95 ° C. by the heating and cooling device 67 based on the detection result of the thermometer 69.
  • step 3 the molten salt liquid level control by the flow rate control valve 42 is started.
  • the controller 10 controls the opening degree of the flow rate control valve 42 based on the detection result of the liquid level gauge 14 so that the liquid level of the molten salt becomes a predetermined level, and supplies hydrogen fluoride.
  • the flow rate of hydrogen fluoride supplied from 40 to the electrolytic cell 1 is adjusted.
  • the predetermined level is set to a level higher than the lower end portion of the partition wall 6 and lower than a support (not shown) that supports the electrodes 7 and 8.
  • step 4 the moisture concentration in the molten salt is measured by the moisture concentration measuring device 59.
  • step 5 it is determined whether or not the moisture concentration in the molten salt measured by the moisture concentration measuring device 59 is stored in the ROM and is equal to or lower than a predetermined reference concentration. When it is determined that the concentration is lower than the reference concentration, the start-up of the electrolytic cell 1 is completed. On the other hand, if it is determined that the reference density is exceeded, the process proceeds to step 6.
  • the reference concentration is determined from the viewpoint of preventing the generation of the anode effect, that is, protecting the anode 7, for example, 500 wt. Set to ppm.
  • step 6 a current of 0.5 to 5 A / dm 2 is supplied from the power source 9 between the anode 7 and the cathode 8.
  • fluorine gas is generated at the anode 7, and the fluorine gas is discharged from the first main passage 15 through the branch passage 72, detoxified by the abatement part 73, and released.
  • Step 7 as in Step 6, it is determined whether or not the moisture concentration in the molten salt measured by the moisture concentration measuring device 59 is equal to or lower than the reference concentration. If it is determined that the density is not more than the reference density, the process proceeds to Step 8. The energization between the anode 7 and the cathode 8 is performed until the water concentration in the molten salt becomes equal to or lower than the reference concentration.
  • step 8 the energization between the anode 7 and the cathode 8 is stopped.
  • the start-up of the electrolytic cell 1 is completed, and the electrolytic cell 1 enters a standby state in which current can be supplied between the anode 7 and the cathode 8.
  • the gas concentration measuring device 61 may measure the concentration of the reaction product such as OF 2 in the fluorine gas. In that case, after step 3 above, a current of 0.5 to 5 A / dm 2 is supplied from the power source 9 between the anode 7 and the cathode 8, and the concentration of the reaction product in the fluorine gas generated from the anode 7 is increased. Measure. And when the density
  • the fluorine gas generated at the anode 7 is discharged through the branch passage 72, and when the concentration of the reaction product becomes lower than the reference concentration, The energization between the cathodes 8 is stopped.
  • the fluorine gas supply preparation flow shown in FIG. 3 starts when the operator turns on the gas supply preparation switch.
  • step 11 preliminary energization between the anode 7 and the cathode 8 is started.
  • the current is stepped from 0 A / dm 2 to 5 A / dm 2 .
  • fluorine gas is generated at the anode 7, and the fluorine gas is discharged from the first main passage 15 through the branch passage 72, detoxified by the abatement part 73, and released.
  • step 12 the first pump 17 is started, and the pressure control of the first main passage 15 by the first pressure regulating valve 19 is started. Specifically, based on the detection result of the first pressure gauge 13, the controller 10 adjusts the first pressure so that the pressure on the upstream side of the first pump 17 in the first main passage 15 becomes the first set value.
  • the opening degree of the valve 19 is controlled to adjust the flow rate of the fluorine gas recirculated through the first pressure regulating valve 19.
  • the first set value is set to, for example, 100.5 to 102.0 kPa.
  • the opening of the first pressure regulating valve 19 is large so that the flow rate of fluorine gas recirculated to the suction side of the first pump 17 is increased.
  • the opening degree of the first pressure regulating valve 19 is set so that the flow rate of the fluorine gas returning to the suction side of the first pump 17 is reduced. Is set small.
  • the fluorine gas in the buffer tank 21 moves to the first pump 17 side in the state where the fluorine gas is accumulated in the buffer tank 21. The gas flows backward and flows back through the first pressure regulating valve 19.
  • step 13 the inlet and outlet valves of one system of the refiner 16 are opened.
  • the inlet valve 22a and the outlet valve 23a of the first purification device 16a are opened, and the first purification device 16a and the first pump 17 are connected.
  • step 14 it is determined whether or not the pressure difference before and after the start valve 70 detected by the second differential pressure gauge 71 is within the set range. If it is determined that it is within the set range, the process proceeds to step 16. On the other hand, if it is determined that the set range is exceeded, the process proceeds to step 15.
  • step 16 the start valve 70 is opened and the first shut-off valve 74 is closed, and the first air chamber 11a of the electrolytic cell 1 and the first pump 17 are connected. As a result, the fluorine gas generated at the anode 7 is conveyed by the first pump 17 and guided to the buffer tank 21.
  • the first set value is changed so that the pressure difference before and after the start valve 70 detected by the second differential pressure gauge 71 is within the set range. Specifically, when the pressure upstream and downstream of the start valve 70 exceeds the set range because the pressure upstream of the start valve 70 is greater than the pressure downstream, the first pressure is set to increase the pressure downstream of the start valve 70. The set value is changed to a larger value. Thereby, the opening degree of the first pressure regulating valve 19 is increased, and the differential pressure across the start valve 70 is decreased. On the other hand, if the differential pressure across the start valve 70 exceeds the set range because the pressure upstream of the start valve 70 is lower than the downstream pressure, the first set value is set to reduce the pressure downstream of the start valve 70. Changed to a smaller value.
  • the opening degree of the 1st pressure regulation valve 19 becomes small, and the differential pressure before and behind the starting valve 70 becomes small.
  • the change of the first set value is repeated until it is determined that the differential pressure across the start valve 70 is within the set range. And when it determines with it being in the setting range, it progresses to step 16 and the connection of the 1st air chamber 11a and the 1st pump 17 is performed as mentioned above.
  • the setting range depends on the size of the electrolytic cell 1, but is set to 500 Pa, for example.
  • the opening of the starting valve 70 that is, the connection between the first air chamber 11a and the first pump 17 is performed when the differential pressure across the starting valve 70 is within the set range. Therefore, when the start valve 70 is opened, the fluorine gas in the first air chamber 11a is prevented from suddenly flowing downstream of the start valve 70, so that fluctuations in the liquid level of the anode chamber 11 are suppressed. . Therefore, the first air chamber 11a and the first pump 17 can be stably connected.
  • step 17 the third shut-off valve 57 is opened, and the fluorine gas in the buffer tank 21 is discharged from the first main passage 15 through the branch passage 55, detoxified by the abatement part 56, and released.
  • step 18 pressure control of the buffer tank 21 by the flow control valve 27 is started.
  • the controller 10 controls the opening degree of the flow control valve 27 based on the detection result of the second pressure gauge 24 so that the pressure of the buffer tank 21 is within a set range (reference pressure).
  • the setting range is set to a range of 110 to 400 kPa, for example.
  • the flow rate control valve 27 performs pressure control of the buffer tank 21 instead of flow rate control of the fluorine gas.
  • the second air chamber 12 a and the second pump 31 are connected in the same manner as the fluorine gas supply system 2.
  • An activation valve and a branch passage may be provided between them, and the same procedure as in Steps 12, 14, 15, and 16 may be performed.
  • the by-product gas processing system 3 may not be provided with the second pump 31, and the hydrogen gas generated at the cathode 8 may be directly discharged through the second main passage 30.
  • the fluorine gas supply flow and normal operation control shown in FIG. 4 are started when the operator turns on the gas supply switch.
  • step 21 the flow rate control valve 27 shifts from the pressure control of the buffer tank 21 to the flow rate control of the fluorine gas. Specifically, the controller 10 controls the opening degree of the flow rate control valve 27 so that the flow rate of the fluorine gas detected by the flow meter 26 becomes the target flow rate. Thereby, the fluorine gas flow rate detected by the flow meter 26 and the target flow rate substantially coincide.
  • step 22 the current control between the anode 7 and the cathode 8 is changed from 5 A / dm 2 constant control to control according to the fluorine gas supply flow rate to the external device 4.
  • This control will be specifically described.
  • the flow rate of the fluorine gas can be obtained by the following formula.
  • the above equation (2) is stored in the ROM of the controller 10.
  • the controller 10 calculates a current value corresponding to the target flow rate of the fluorine gas using the above equation (2), and controls the power source 9 so that the calculated current value is supplied between the anode 7 and the cathode 8. To do. As a result, fluorine gas corresponding to the flow rate of fluorine gas supplied to the external device 4 is generated at the anode 7.
  • step 23 the second cutoff valve 28 is opened and the third cutoff valve 57 is closed. Thereby, the fluorine gas in the buffer tank 21 is supplied to the external device 4 and shifts to normal operation. Hereinafter, control of normal operation will be described.
  • step 24 it is determined whether or not there is a change in the target flow rate of fluorine gas by the operator. If it is determined that there is a change in the target flow rate, the process proceeds to step 25, and the current value corresponding to the changed target flow rate is recalculated using the above equation (2).
  • the recalculated current value is output to the power source 9, and the power source 9 supplies the recalculated current value between the anode 7 and the cathode 8.
  • the current value supplied between the anode 7 and the cathode 8 is increased to the recalculated current value at a predetermined increase rate.
  • the recalculated current value is lower than the current current value of the power supply 9, the current value supplied between the anode 7 and the cathode 8 is lowered to the recalculated current value at a stretch.
  • the minimum current value is set as the current value supplied between the anode 7 and the cathode 8.
  • the minimum current value is set to about 0.5 A / dm 2 , for example. Therefore, even if the target flow rate is 0 L / min, the current value supplied between the anode 7 and the cathode 8 is controlled so as not to be lower than the minimum current value. However, when the flow rate of the fluorine gas detected by the flow meter 26 continues for 0 L / min for a certain period of time, the supply of fluorine gas (described later) is stopped (see FIG. 5).
  • the current value corresponding to the target flow rate of fluorine gas is calculated using the above equation (2) as the current value supplied between the anode 7 and the cathode 8.
  • the current value corresponding to the fluorine gas flow rate detected by the flow meter 26 may be calculated using the above equation (2). That is, the flow rate (L / min) of the above equation (2) may be calculated as the fluorine gas flow rate detected by the flow meter 26 instead of the target flow rate of fluorine gas.
  • step 25 After the current value is recalculated in step 25, the process proceeds to step 26. If it is determined in step 24 that there is no change in the target flow rate, the process proceeds to step 26 without recalculating the current value.
  • the anode 7 supplies the current to the external device 4. Fluorine gas corresponding to the fluorine gas flow rate is generated. That is, since the fluorine gas supplied from the buffer tank 21 to the external device 4 is supplemented by the fluorine gas generated at the anode 7, theoretically, the pressure in the buffer tank 21 is always kept constant. become.
  • step 26 it is determined whether or not the pressure in the buffer tank 21 detected by the second pressure gauge 24 is outside the set range. If it is determined that the current value is outside the set range, the process proceeds to step 27 where the current value supplied between the anode 7 and the cathode 8 is corrected. Specifically, when the pressure in the buffer tank 21 is larger than the set range, the current value calculated in step 22 or step 25 is corrected so as to be small. For example, it is corrected to about 90% of the calculated current value. On the other hand, when the pressure in the buffer tank 21 is smaller than the set range, the current value calculated in step 22 or step 25 is corrected so as to increase. For example, it is corrected to about 110% of the calculated current value.
  • the calculated current value is corrected based on the detection result of the second pressure gauge 24. That is, the calculated current value is based on a comparison between the detection result of the second pressure gauge 24 and the set range (reference pressure) so that the pressure of the buffer tank 21 is maintained within the set range (reference pressure). It is corrected.
  • the setting range is set to a range of 110 to 400 kPa, for example.
  • step 28 After the current value is corrected in step 27, the process proceeds to step 28. On the other hand, if it is determined in step 26 that the pressure in the buffer tank 21 is not outside the set range, the process proceeds to step 28 without correcting the current value.
  • the opening degree of the first pressure regulating valve 19 is controlled so that the pressure detected by the first pressure gauge 13 becomes the first set value, and the opening degree of the second pressure regulating valve 33 is detected by the third pressure gauge 35.
  • the pressure is controlled to be the second set value.
  • the first set value and the second set value are set so that the pressures in the first air chamber 11a and the second air chamber 12a are equal, that is, no pressure difference is generated between the two chambers.
  • the pressure difference between the first air chamber 11a and the second air chamber 12a is controlled so as not to increase.
  • the pressure difference between the first air chamber 11a and the second air chamber 12a may increase.
  • the pressure difference between the first air chamber 11a and the second air chamber 12a greatly affects the difference in liquid level between the anode chamber 11 and the cathode chamber 12, and if the difference in liquid level between the two chambers increases, the first air chamber There is a possibility that the fluorine gas of 11a and the hydrogen gas of the second air chamber 12a come into contact with each other and react.
  • step 28 it is determined whether or not the pressure difference between the first air chamber 11a and the second air chamber 12a detected by the first differential pressure gauge 20 is outside the set range. If it is determined that the pressure is outside the set range, the process proceeds to step 29 where the pressure difference between the first air chamber 11a and the second air chamber 12a detected by the first differential pressure gauge 20 is stored in the ROM and set in a predetermined range. The first set value or the second set value is changed so that Specifically, when the pressure in the first air chamber 11a is larger than the pressure in the second air chamber 12a and the differential pressure between the two chambers exceeds the set range, the pressure in the first air chamber 11a is decreased.
  • the first set value is changed to a small value as much as possible, or the second set value is changed to a large value so as to increase the pressure in the second air chamber 12a.
  • the opening degree of the 1st pressure regulation valve 19 becomes small, or the opening degree of the 2nd pressure regulation valve 33 becomes large, and the pressure difference of the 1st air chamber 11a and the 2nd air chamber 12a becomes small.
  • the pressure in the first air chamber 11a is smaller than the pressure in the second air chamber 12a and the differential pressure between the two chambers exceeds the set range, the pressure in the first air chamber 11a is increased to increase.
  • the first set value is changed to a larger value, or the second set value is changed to a smaller value in order to reduce the pressure in the second air chamber 12a.
  • the opening degree of the 1st pressure regulation valve 19 becomes large, or the opening degree of the 2nd pressure regulation valve 33 becomes small, and the pressure difference of the 1st air chamber 11a and the 2nd air chamber 12a becomes small.
  • both the first set value and the second set value may be changed simultaneously. That is, in step 29, at least one of the first set value and the second set value is changed.
  • the change of the first set value and the second set value is repeated until it is determined that the differential pressure in both chambers is within the set range. And when it determines with it being in a setting range, it progresses to step 30.
  • the setting range depends on the size of the electrolytic cell 1, but is set to 500 Pa, for example.
  • the pressure difference between the first air chamber 11a and the second air chamber 12a is controlled to be within the setting range by changing the first setting value and the second setting value.
  • the pressure indicated by the first pressure gauge 13 and the third pressure gauge 35 and the actual pressure, or the pressure loss from the first pressure gauge 13 and the third pressure gauge 35 to the electrolytic cell 1 has changed over time. Even in this case, a difference in the liquid level between the anode chamber 11 and the cathode chamber 12 is suppressed, and the liquid level control of the electrolytic cell 1 can be stably performed.
  • step 28 the case where at least one of the first set value and the second set value is changed has been described.
  • the first air chamber 11a and the second air chamber 12a The pressure difference may be controlled to be within the set range.
  • the first pressure gauge 13 detects the pressure on the upstream side of the first pump 17 in the first main passage 15 and does not directly detect the pressure in the first air chamber 11a.
  • the third pressure gauge 35 detects the pressure upstream of the second pump 31 in the second main passage 30 and does not directly detect the pressure in the second air chamber 12a. Therefore, in order to eliminate the influence of the aging of the pressure loss from the first pressure gauge 13 and the third pressure gauge 35 to the electrolytic cell 1, the first air chamber 11 a is provided in each of the anode chamber 11 and the cathode chamber 12 of the electrolytic cell 1.
  • a pressure gauge that directly detects the pressure in the second air chamber 12a, and the first pressure adjustment valve 19 and the second pressure adjustment valve 33 so that the detection result of the pressure gauge becomes the first set value and the second set value.
  • the degree of opening may be controlled. However, in this case as well, there may occur a difference between the pressure indicated by the pressure gauge and the actual pressure in the air chamber due to an instrument error or the like. Therefore, as in steps 28 and 29, the first air chamber 11a and the second air chamber 11 It is effective to change the first set value and the second set value so that the pressure difference with the chamber 12a is within the set range.
  • step 30 it is determined whether or not the differential pressure across the purifier 16 detected by the third differential pressure gauge 53 has reached a set value. If it is determined that the set value has not been reached, the process returns to step 24. On the other hand, if it is determined that the set value has been reached, the process proceeds to step 31.
  • step 31 it is determined that the accumulated amount of hydrogen fluoride solidified in the gas passage section 50 of the first purification device 16a has reached a predetermined amount, and the operation is switched from the first purification device 16a to the second purification device 16b. Is done. Specifically, after the inlet valve 22b and the outlet valve 23b of the second refining device 16b being stopped are opened, the operation is switched by closing the inlet valve 22a and the outlet valve 23a of the first refining device 16a that is in operation. Is done. After the operation switching of the purifier 16 is completed, the process returns to step 24.
  • steps 24 to 31 are repeated.
  • the fluorine gas supply stop flow shown in FIG. 5 starts when the operator turns off the gas supply switch. Further, as described in step 24 above, when the fluorine gas flow rate detected by the flow meter 26 continues for a fixed time of 0 L / min, that is, the fluorine gas supply flow rate to the external device 4 is fixed for a fixed time of 0 L / min. Even when the state of min continues, the fluorine gas supply stop flow shown in FIG. 5 starts.
  • step 41 the third cutoff valve 57 is opened and the second cutoff valve 28 is closed. Thereby, the supply of the fluorine gas to the external device is stopped, and the fluorine gas in the buffer tank 21 is discharged through the branch passage 55, detoxified by the abatement part 56, and released.
  • step 42 the flow rate control valve 27 shifts from the flow rate control of the fluorine gas to the pressure control of the buffer tank 21. Specifically, the controller 10 controls the opening degree of the flow control valve 27 based on the detection result of the second pressure gauge 24 so that the pressure of the buffer tank 21 falls within the set range.
  • step 43 the current value supplied between the anode 7 and the cathode 8 is reduced to 5 A / dm 2 . If the flow of fluorine gas detected by the flow meter 26 continues to be 0 L / min for a certain period of time, this step 43 is skipped when the fluorine gas supply stop flow has progressed.
  • step 44 the first shut-off valve 74 is opened and the start valve 70 is closed. Thereby, the fluorine gas produced
  • step 45 energization between the anode 7 and the cathode 8 is stopped.
  • step 46 the inlet valve 22b and the outlet valve 23b of the second refining device 16b in operation are closed, and the refining device 16 stops.
  • step 47 the first pump 17 is stopped, and the pressure control of the first main passage 15 by the first pressure regulating valve 19 is stopped.
  • step 48 the third shut-off valve 57 is closed, and the pressure control of the buffer tank 21 by the flow rate control valve 27 is stopped.
  • the electrolytic cell 1 is stopped when the fluorine gas generator 100 is stopped for a long period of time.
  • the stop flow of the electrolytic cell 1 shown in FIG. 6 starts when the operator turns off the switch of the power source 9 of the electrolytic cell 1.
  • step 51 the temperature adjusting device 65 is stopped, and the temperature control of the molten salt is stopped.
  • step 52 the flow control valve 42 is closed, and the supply of hydrogen fluoride from the hydrogen fluoride supply source 40 to the electrolytic cell 1 is stopped. Thereby, the liquid level control of the molten salt is stopped.
  • step 53 the measurement of the moisture concentration in the molten salt by the moisture concentration measuring device 59 is stopped.
  • the gas concentration measuring device 61 is used instead of the moisture concentration measuring device 59, the measurement of the concentration of the reaction product in the fluorine gas by the gas concentration measuring device 61 is stopped.
  • the current value supplied from the power source 9 between the anode 7 and the cathode 8 is calculated based on the flow rate of fluorine gas supplied from the buffer tank 21 to the external device 4, and the calculated current value is the pressure in the buffer tank 21. Therefore, fluorine gas can be stably and automatically supplied to the external device 4.
  • the controller 10 changes the first set value so that the pressure difference detected by the second differential pressure gauge 71 is within a predetermined set range, and the pressure difference is set.
  • the start valve 70 is opened.
  • the start valve 70 is opened in a state where the pressure difference between the upstream and downstream is small, and the connection between the first air chamber 11a and the first pump 17 is performed. Therefore, fluctuations in the liquid level of the electrolytic cell 1 can be suppressed when the fluorine gas generator 100 is started.
  • the controller 10 controls the opening of the first pressure regulating valve 19 so that the pressure detected by the first pressure gauge 13 becomes a predetermined first set value.
  • the first set value or the second set value is changed so that the pressure difference between the first air chamber 11a and the second air chamber 12a detected by the first differential pressure gauge 20 is within a predetermined set range. To do. Therefore, an increase in the pressure difference between the first air chamber 11a and the second air chamber 12a is prevented, and the liquid level control of the electrolytic cell 1 can be performed stably.
  • the first main passage 15, the first air chamber 11a, and the second air are controlled in order to minimize the fluctuation in the liquid level of the electrolytic cell 1 during startup and normal operation.
  • the pressure in the chamber 12a is controlled with high accuracy.
  • the controller 10 is illustrated for each device or valve.
  • the detection result of each instrument is output to one controller, and the operation of each device and each valve is controlled by the one controller. Also good.
  • the purification device 16 is a cryogenic purification device that separates and removes the hydrogen fluoride gas from the fluorine gas using the difference in boiling point between fluorine and hydrogen fluoride.
  • the purification device 16 a device that separates and removes the hydrogen fluoride gas from the fluorine gas by adsorbing the hydrogen fluoride gas in the fluorine gas to an adsorbent such as sodium fluoride (NaF) instead of the cryogenic purification device is used. You may do it.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Disclosed is a fluorine gas generation device provided with: an electrolytic cell in which a first air chamber, into which fluorine gas generated at an anode is led, and a second air chamber, into which hydrogen gas generated at a cathode is led, are separated and partitioned above the surface of a molten salt; a first main passage for supplying the fluorine gas generated at the anode to an external device; a buffer tank for storing the fluorine gas; a pressure detector which detects the pressure of the buffer tank; a power supply which supplies electric current between the anode and the cathode; and a control device which controls the electric current supplied from the power supply between the anode and the cathode. The control device calculates an electric current value on the basis of the rate of the supply flow of fluorine gas to the external device and corrects the calculated electric current value on the basis of the detection result from the pressure detector.

Description

フッ素ガス生成装置Fluorine gas generator
 本発明は、フッ素ガス生成装置に関するものである。 The present invention relates to a fluorine gas generator.
 従来のフッ素ガス生成装置として、電解槽を使用し、電気分解によってフッ素ガスを生成する装置が知られている。 As a conventional fluorine gas generator, an apparatus that uses an electrolytic cell and generates fluorine gas by electrolysis is known.
 JP2004-43885Aには、フッ化水素を含む溶融塩からなる電解浴中でフッ化水素を電解する電解槽を備え、陽極側の第1気相部分にフッ素ガスを主成分とするプロダクトガスを発生させると共に、陰極側の第2気相部分に水素ガスを主成分とする副生ガスを発生させるフッ素ガス生成装置が開示されている。 JP2004-43885A is equipped with an electrolytic cell that electrolyzes hydrogen fluoride in an electrolytic bath made of a molten salt containing hydrogen fluoride, and generates a product gas containing fluorine gas as the main component in the first gas phase portion on the anode side. In addition, a fluorine gas generation device that generates a by-product gas mainly containing hydrogen gas in a second gas phase portion on the cathode side is disclosed.
 JP2004-43885Aに記載のフッ素ガス生成装置では、プロダクトガスは主バッファタンクに貯留され、主バッファタンク内の圧力は圧力計にて測定される。圧力計の測定結果は制御部材に伝達され、制御部材は圧力計の測定結果に基づいて電流源をオンオフ制御する。このように、陽極にて発生するプロダクトガスの発生量は、主バッファタンク内の圧力に基づいて制御される。 In the fluorine gas generator described in JP2004-43885A, the product gas is stored in the main buffer tank, and the pressure in the main buffer tank is measured with a pressure gauge. The measurement result of the pressure gauge is transmitted to the control member, and the control member controls the current source on and off based on the measurement result of the pressure gauge. Thus, the amount of product gas generated at the anode is controlled based on the pressure in the main buffer tank.
 このように、JP2004-43885Aに記載のフッ素ガス生成装置では、陽極にて発生するプロダクトガスの発生量は、主バッファタンク内の圧力に基づいて制御される。このため、外部装置へのフッ素ガス供給流量が急激に変化した場合には、陽極にて発生するフッ素ガスの発生量を応答良く制御することができない。したがって、外部装置へとフッ素ガスを安定して自動供給することができない。 Thus, in the fluorine gas generator described in JP2004-43885A, the amount of product gas generated at the anode is controlled based on the pressure in the main buffer tank. For this reason, when the fluorine gas supply flow rate to the external device changes rapidly, the amount of fluorine gas generated at the anode cannot be controlled with good response. Therefore, the fluorine gas cannot be stably and automatically supplied to the external device.
 本発明は、上記の問題点に鑑みてなされたものであり、フッ素ガスを安定して自動供給することができるフッ素ガス生成装置を提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a fluorine gas generation device that can stably and automatically supply fluorine gas.
 本発明は、溶融塩中のフッ化水素を電気分解することによって、フッ素ガスを生成するフッ素ガス生成装置であって、溶融塩が貯留され、溶融塩に浸漬された陽極にて生成されたフッ素ガスを主成分とする主生ガスが導かれる第1気室と、溶融塩に浸漬された陰極にて生成された水素ガスを主成分とする副生ガスが導かれる第2気室とが溶融塩液面上に分離して区画された電解槽と、前記第1気室に接続され、前記電解槽の前記陽極にて生成された主生ガスを外部装置へと供給するためのメイン通路と、前記メイン通路に設けられ、主生ガスを貯留するためのバッファタンクと、前記バッファタンクの圧力を検出する圧力検出器と、前記陽極と前記陰極との間に電流を供給する電源装置と、前記電源装置から前記陽極と前記陰極との間に供給される電流を制御する制御装置と、を備え、前記制御装置は、前記外部装置への主生ガスの供給流量に基づいて電流値を演算し、当該演算された電流値を前記圧力検出器の検出結果に基づいて補正する。
 本発明によれば、電源装置から陽極と陰極との間に供給される電流値はバッファタンクから外部装置へと供給される主生ガスの流量に基づいて演算され、その演算された電流値はバッファタンクの圧力に基づいて補正されるため、主生ガスを外部装置へと安定して自動供給することができる。
The present invention relates to a fluorine gas generating device that generates fluorine gas by electrolyzing hydrogen fluoride in a molten salt, the fluorine generated at an anode in which the molten salt is stored and immersed in the molten salt. The first gas chamber in which main gas mainly composed of gas is guided and the second chamber in which by-product gas mainly composed of hydrogen gas generated at the cathode immersed in the molten salt is guided are melted. An electrolytic cell separated on the surface of the salt solution, and a main passage connected to the first air chamber for supplying main raw gas generated at the anode of the electrolytic cell to an external device; A buffer tank provided in the main passage for storing main raw gas, a pressure detector for detecting the pressure of the buffer tank, and a power supply device for supplying a current between the anode and the cathode, Supplied between the anode and the cathode from the power supply device And a control device for controlling the current to be generated, wherein the control device calculates a current value based on a supply flow rate of main raw gas to the external device, and the calculated current value is detected by the pressure detector. Correct based on the results.
According to the present invention, the current value supplied between the anode and the cathode from the power supply device is calculated based on the flow rate of the main raw gas supplied from the buffer tank to the external device, and the calculated current value is Since correction is performed based on the pressure in the buffer tank, the main raw gas can be stably and automatically supplied to the external device.
図1は、本発明の実施の形態に係るフッ素ガス生成装置を示す系統図である。FIG. 1 is a system diagram showing a fluorine gas generator according to an embodiment of the present invention. 図2は、電解槽の起動手順を示すフローチャートである。FIG. 2 is a flowchart showing the start-up procedure of the electrolytic cell. 図3は、フッ素ガスの供給準備手順を示すフローチャートである。FIG. 3 is a flowchart showing a fluorine gas supply preparation procedure. 図4は、フッ素ガスの供給手順を示すフローチャートである。FIG. 4 is a flowchart showing a fluorine gas supply procedure. 図5は、フッ素ガスの供給停止手順を示すフローチャートである。FIG. 5 is a flowchart showing a fluorine gas supply stop procedure. 図6は、電解槽の停止手順を示すフローチャートである。FIG. 6 is a flowchart showing a procedure for stopping the electrolytic cell.
 以下、図面を参照して、本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1を参照して、本発明の実施の形態に係るフッ素ガス生成装置100について説明する。 Referring to FIG. 1, a fluorine gas generation apparatus 100 according to an embodiment of the present invention will be described.
 フッ素ガス生成装置100は、電気分解によってフッ素ガスを生成し、生成されたフッ素ガスを外部装置4へと供給するものである。外部装置4は、例えば半導体製造装置である。その場合、フッ素ガスは、例えば半導体の製造工程においてクリーニングガスとして使用される。 The fluorine gas generation device 100 generates fluorine gas by electrolysis and supplies the generated fluorine gas to the external device 4. The external device 4 is, for example, a semiconductor manufacturing device. In that case, the fluorine gas is used as a cleaning gas in, for example, a semiconductor manufacturing process.
 フッ素ガス生成装置100は、電気分解によってフッ素ガスを生成する電解槽1と、電解槽1から生成したフッ素ガスを外部装置4へと供給するフッ素ガス供給系統2と、フッ素ガスの生成に伴って生成された副生ガスを処理する副生ガス処理系統3とを備える。また、フッ素ガス生成装置100は、各計器から出力される検出結果に基づいて各機器及び各弁の動作を制御する制御装置としてのコントローラ10も備える。コントローラ10は、CPU、ROM、及びRAMを備えるマイコンにて構成される。 The fluorine gas generation device 100 includes an electrolytic cell 1 that generates fluorine gas by electrolysis, a fluorine gas supply system 2 that supplies the fluorine gas generated from the electrolytic cell 1 to the external device 4, and the generation of fluorine gas. And a by-product gas processing system 3 for processing the generated by-product gas. The fluorine gas generation device 100 also includes a controller 10 as a control device that controls the operation of each device and each valve based on the detection result output from each meter. The controller 10 is configured by a microcomputer including a CPU, a ROM, and a RAM.
 まず、電解槽1について説明する。 First, the electrolytic cell 1 will be described.
 電解槽1には、フッ化水素(HF)を含む溶融塩が貯留される。本実施の形態では、溶融塩として、フッ化水素とフッ化カリウム(KF)の混合物(KF・2HF)が用いられる。 In the electrolytic cell 1, a molten salt containing hydrogen fluoride (HF) is stored. In the present embodiment, a mixture (KF · 2HF) of hydrogen fluoride and potassium fluoride (KF) is used as the molten salt.
 電解槽1の内部は、溶融塩中に浸漬された区画壁6によって陽極室11と陰極室12とに区画される。陽極室11及び陰極室12の溶融塩中には、それぞれ陽極7及び陰極8が浸漬される。陽極7と陰極8の間に電源9から電流が供給されることによって、陽極7ではフッ素ガス(F)を主成分とする主生ガスが生成され、陰極8では水素ガス(H)を主成分とする副生ガスが生成される。陽極7には炭素電極が用いられ、陰極8には軟鉄、モネル、又はニッケルが用いられる。 The inside of the electrolytic cell 1 is partitioned into an anode chamber 11 and a cathode chamber 12 by a partition wall 6 immersed in the molten salt. In the molten salt of the anode chamber 11 and the cathode chamber 12, the anode 7 and the cathode 8 are immersed, respectively. By supplying a current from the power source 9 between the anode 7 and the cathode 8, a main gas mainly composed of fluorine gas (F 2 ) is generated at the anode 7, and hydrogen gas (H 2 ) is generated at the cathode 8. By-product gas as a main component is generated. A carbon electrode is used for the anode 7, and soft iron, monel, or nickel is used for the cathode 8.
 電解槽1内の溶融塩液面上には、陽極7にて生成されたフッ素ガスが導かれる第1気室11aと、陰極8にて生成された水素ガスが導かれる第2気室12aとが互いのガスが行き来不能に区画壁6によって区画される。このように、第1気室11aと第2気室12aは、フッ素ガスと水素ガスとの混触による反応を防ぐため、区画壁6によって完全に分離される。これに対して、陽極室11と陰極室12の溶融塩は、区画壁6によって分離されず区画壁6の下方を通じて連通している。 On the surface of the molten salt solution in the electrolytic cell 1, a first gas chamber 11a into which fluorine gas generated at the anode 7 is guided, and a second gas chamber 12a into which hydrogen gas generated at the cathode 8 is guided. Are partitioned by the partition wall 6 so that the mutual gas cannot pass. As described above, the first air chamber 11a and the second air chamber 12a are completely separated by the partition wall 6 in order to prevent a reaction due to the contact of fluorine gas and hydrogen gas. On the other hand, the molten salt in the anode chamber 11 and the cathode chamber 12 is not separated by the partition wall 6 but communicates through the lower portion of the partition wall 6.
 電解槽1内の溶融塩の温度は、温度調節装置65によってKF・2HFの融点である71.7℃以上、具体的には85~95℃に調節される。電解槽1には、溶融塩の温度を検出する温度検出器としての温度計69が設けられる。温度計69の検出結果はコントローラ10に出力される。 The temperature of the molten salt in the electrolytic cell 1 is adjusted by the temperature adjusting device 65 to 71.7 ° C. or higher, specifically 85 to 95 ° C., which is the melting point of KF · 2HF. The electrolytic cell 1 is provided with a thermometer 69 as a temperature detector for detecting the temperature of the molten salt. The detection result of the thermometer 69 is output to the controller 10.
 温度調節装置65は、電解槽1の外壁に設けられたジャケット66と、電解槽1の内部に設けられたチューブ(図示せず)と、ジャケット66及びチューブに蒸気又は冷却水を循環させる加熱冷却装置67とを備える。溶融塩の温度を上げる場合には、加熱冷却装置67からジャケット66及びチューブに蒸気を流通させ、溶融塩の温度を下げる場合には、加熱冷却装置67からジャケット66及びチューブに冷却水を流通させて温度調節を行う。なお、ジャケット66及びチューブのいずれか一方を設けるようにしてもよい。また、ジャケット66及びチューブに蒸気又は冷却水を循環させる代わりに、シリコンオイル等の温冷媒を循環させるようにしてもよい。さらに、電解槽1の外壁にヒータやコンデンサ等の熱交換機を設けて溶融塩の温度を調節するようにしてもよい。 The temperature adjusting device 65 includes a jacket 66 provided on the outer wall of the electrolytic cell 1, a tube (not shown) provided inside the electrolytic cell 1, and heating / cooling for circulating steam or cooling water through the jacket 66 and the tube. Device 67. When raising the temperature of the molten salt, steam is circulated from the heating / cooling device 67 to the jacket 66 and the tube, and when lowering the temperature of the molten salt, cooling water is circulated from the heating / cooling device 67 to the jacket 66 and the tube. To adjust the temperature. One of the jacket 66 and the tube may be provided. Further, instead of circulating steam or cooling water through the jacket 66 and the tube, a hot refrigerant such as silicone oil may be circulated. Furthermore, you may make it adjust the temperature of molten salt by providing heat exchangers, such as a heater and a capacitor | condenser, in the outer wall of the electrolytic cell 1. FIG.
 電解槽1の陽極7及び陰極8から生成したフッ素ガス及び水素ガスのそれぞれには、溶融塩からフッ化水素が蒸気圧分だけ気化して混入する。このように、陽極7にて生成され第1気室11aに導かれるフッ素ガス及び陰極8にて生成され第2気室12aに導かれる水素ガスのそれぞれには、フッ化水素ガスが含まれている。 In each of the fluorine gas and the hydrogen gas generated from the anode 7 and the cathode 8 of the electrolytic cell 1, hydrogen fluoride is vaporized from the molten salt by the vapor pressure and mixed. As described above, each of the fluorine gas generated at the anode 7 and guided to the first air chamber 11a and the hydrogen gas generated at the cathode 8 and guided to the second air chamber 12a includes hydrogen fluoride gas. Yes.
 電解槽1には、貯留された溶融塩の液面レベルを検出する液面レベル検出器としての液面計14が設けられる。液面計14は、電解槽1内に挿入された挿入管14aを通じて一定流量の窒素ガスを溶融塩中にパージした際の背圧を検知し、その背圧と溶融塩の液比重とから液面レベルを検出する背圧式液面計である。液面計14の検出結果はコントローラ10に出力される。 The electrolytic cell 1 is provided with a liquid level gauge 14 as a liquid level detector for detecting the liquid level of the stored molten salt. The level gauge 14 detects a back pressure when nitrogen gas having a constant flow rate is purged into the molten salt through the insertion tube 14a inserted into the electrolytic cell 1, and the liquid level gauge 14 detects the liquid pressure from the back pressure and the liquid specific gravity of the molten salt. It is a back pressure type liquid level gauge that detects the surface level. The detection result of the liquid level gauge 14 is output to the controller 10.
 また、電解槽1には、第1気室11aと第2気室12aとの圧力差を検出する差圧検出器としての第1差圧計20が設けられる。第1差圧計20の検出結果はコントローラ10に出力される。 Further, the electrolytic cell 1 is provided with a first differential pressure gauge 20 as a differential pressure detector for detecting a pressure difference between the first air chamber 11a and the second air chamber 12a. The detection result of the first differential pressure gauge 20 is output to the controller 10.
 次に、フッ素ガス供給系統2について説明する。 Next, the fluorine gas supply system 2 will be described.
 第1気室11aには、フッ素ガスを外部装置4へと供給するための第1メイン通路15が接続される。 A first main passage 15 for supplying fluorine gas to the external device 4 is connected to the first air chamber 11a.
 第1メイン通路15には、第1気室11aからフッ素ガスを導出して搬送する搬送機器としての第1ポンプ17が設けられる。第1ポンプ17には、ベローズポンプやダイアフラムポンプ等の容積型ポンプが用いられる。第1メイン通路15には、第1ポンプ17の吐出側と吸込側を接続する第1還流通路18が接続される。第1還流通路18には、第1ポンプ17から吐出されたフッ素ガスを第1ポンプ17の吸込側へと戻すための第1圧力調整弁19が設けられる。 The first main passage 15 is provided with a first pump 17 as a transfer device for deriving and transferring fluorine gas from the first air chamber 11a. As the first pump 17, a positive displacement pump such as a bellows pump or a diaphragm pump is used. Connected to the first main passage 15 is a first return passage 18 that connects the discharge side and the suction side of the first pump 17. The first reflux passage 18 is provided with a first pressure adjusting valve 19 for returning the fluorine gas discharged from the first pump 17 to the suction side of the first pump 17.
 第1メイン通路15における第1ポンプ17の上流には、第1メイン通路15の圧力を検出する圧力検出器としての第1圧力計13が設けられる。第1圧力計13の検出結果はコントローラ10に出力される。 A first pressure gauge 13 as a pressure detector for detecting the pressure in the first main passage 15 is provided upstream of the first pump 17 in the first main passage 15. The detection result of the first pressure gauge 13 is output to the controller 10.
 第1圧力調整弁19は、コントローラ10から出力される信号に基づいて開度が制御される。具体的には、コントローラ10は、第1圧力計13によって検出された圧力がROMに記憶され予め定められた第1設定値となるように、第1圧力調整弁19の開度を制御する。 The opening of the first pressure regulating valve 19 is controlled based on a signal output from the controller 10. Specifically, the controller 10 controls the opening degree of the first pressure regulating valve 19 so that the pressure detected by the first pressure gauge 13 is stored in the ROM and becomes a predetermined first set value.
 第1メイン通路15における第1圧力計13の上流には、フッ素ガス生成装置100の起動時に開弁して陽極7にて生成されたフッ素ガスの流通を許容する起動弁70が設けられる。起動弁70は、フッ素ガス生成装置100の通常運転時には常時開状態となる。第1メイン通路15には、閉弁状態での起動弁70の前後の圧力差を検出する差圧検出器としての第2差圧計71が設けられる。第2差圧計71の検出結果はコントローラ10に出力される。コントローラ10は、フッ素ガス生成装置100の起動時に、第2差圧計71によって検出された差圧がROMに記憶され予め定められた設定範囲内である場合には、起動弁70を開弁するように制御する。詳しい制御については後述する。 In the first main passage 15, upstream of the first pressure gauge 13, an activation valve 70 that opens when the fluorine gas generation device 100 is activated and allows the flow of the fluorine gas generated at the anode 7 is provided. The start valve 70 is normally open during normal operation of the fluorine gas generator 100. The first main passage 15 is provided with a second differential pressure gauge 71 as a differential pressure detector that detects a pressure difference before and after the start valve 70 in the closed state. The detection result of the second differential pressure gauge 71 is output to the controller 10. The controller 10 opens the start valve 70 when the differential pressure detected by the second differential pressure gauge 71 is stored in the ROM and is within a predetermined setting range when the fluorine gas generator 100 is started. To control. Detailed control will be described later.
 第1メイン通路15における起動弁70の上流には分岐通路72が接続され、分岐通路72の下流端には除害部73が設けられる。分岐通路72には、フッ素ガスの流通と遮断を切り換える第1遮断弁74が設けられる。起動弁70が閉弁状態でかつ第1遮断弁74が開弁状態では、陽極7にて生成されたフッ素ガスは分岐通路72を通じて排出され除害部73にて無害化されて放出される。 A branch passage 72 is connected upstream of the start valve 70 in the first main passage 15, and an abatement part 73 is provided at the downstream end of the branch passage 72. The branch passage 72 is provided with a first shut-off valve 74 that switches between the flow and shut-off of the fluorine gas. When the start valve 70 is closed and the first shut-off valve 74 is opened, the fluorine gas generated at the anode 7 is discharged through the branch passage 72, detoxified by the abatement part 73, and released.
 第1メイン通路15における第1ポンプ17の上流には、フッ素ガスに混入したフッ化水素ガスを捕集してフッ素ガスを精製する精製装置16が設けられる。精製装置16は、並列に設けられた第1精製装置16aと第2精製装置16bの2つの系統からなる。第1精製装置16a及び第2精製装置16bは、フッ素ガスが通過するガス通過部50と、フッ素ガスに混入したフッ化水素ガスが凝固する一方、フッ素ガスはガス通過部50を通過するように、フッ素の沸点以上かつフッ化水素の融点以下の温度でガス通過部50を冷却する冷却装置51とを備える。第1精製装置16a及び第2精製装置16bの上流にはそれぞれ入口弁22a,22bが設けられ、下流にはそれぞれ出口弁23a,23bが設けられる。入口弁22a,22b及び出口弁23a,23bは、陽極7から生成されたフッ素ガスが第1精製装置16a及び第2精製装置16bのいずれか一方のみを通過するように開閉が切り換えられる。つまり、第1精製装置16a及び第2精製装置16bのうち一方が運転状態である場合には、他方は停止又は待機状態となる。 In the first main passage 15, upstream of the first pump 17, a purification device 16 that collects hydrogen fluoride gas mixed in the fluorine gas and purifies the fluorine gas is provided. The purification device 16 includes two systems, a first purification device 16a and a second purification device 16b, which are provided in parallel. The first purification device 16a and the second purification device 16b are configured so that the gas passage portion 50 through which the fluorine gas passes and the hydrogen fluoride gas mixed in the fluorine gas solidify, while the fluorine gas passes through the gas passage portion 50. And a cooling device 51 that cools the gas passage portion 50 at a temperature not lower than the boiling point of fluorine and not higher than the melting point of hydrogen fluoride. Inlet valves 22a and 22b are provided upstream of the first purifier 16a and the second purifier 16b, respectively, and outlet valves 23a and 23b are respectively provided downstream. The inlet valves 22a and 22b and the outlet valves 23a and 23b are switched between open and closed so that the fluorine gas generated from the anode 7 passes through only one of the first purification device 16a and the second purification device 16b. That is, when one of the first refining device 16a and the second refining device 16b is in an operating state, the other is stopped or in a standby state.
 第1メイン通路15には、精製装置16の前後の圧力差を検出する差圧検出器としての第3差圧計53が設けられる。第3差圧計53の検出結果はコントローラ10に出力される。コントローラ10は、第3差圧計53によって検出された差圧がROMに記憶され予め定められた設定値に達した場合には、ガス通過部50内で凝固したフッ化水素の蓄積量が所定量に達したと判断して、入口弁22a,22b及び出口弁23a,23bの開閉を制御して、精製装置16の運転を切り換える。 The first main passage 15 is provided with a third differential pressure gauge 53 as a differential pressure detector that detects a pressure difference before and after the purifier 16. The detection result of the third differential pressure gauge 53 is output to the controller 10. When the differential pressure detected by the third differential pressure gauge 53 is stored in the ROM and reaches a predetermined set value, the controller 10 determines that the accumulated amount of hydrogen fluoride solidified in the gas passage 50 is a predetermined amount. Therefore, the opening and closing of the inlet valves 22a and 22b and the outlet valves 23a and 23b are controlled to switch the operation of the purifier 16.
 第1メイン通路15における第1ポンプ17の下流には、第1ポンプ17によって搬送されたフッ素ガスを貯留するためのバッファタンク21が設けられる。バッファタンク21に貯留されたフッ素ガスは外部装置4へと供給される。バッファタンク21には、内部圧力を検出する圧力検出器としての第2圧力計24が設けられる。第2圧力計24の検出結果はコントローラ10に出力される。 A buffer tank 21 for storing the fluorine gas transported by the first pump 17 is provided downstream of the first pump 17 in the first main passage 15. The fluorine gas stored in the buffer tank 21 is supplied to the external device 4. The buffer tank 21 is provided with a second pressure gauge 24 as a pressure detector for detecting the internal pressure. The detection result of the second pressure gauge 24 is output to the controller 10.
 第1メイン通路15におけるバッファタンク21の下流には、バッファタンク21から外部装置4へと供給されるフッ素ガスの流量を検出する流量検出器としての流量計26が設けられる。流量計26の検出結果はコントローラ10に出力される。 A flow meter 26 as a flow rate detector for detecting the flow rate of the fluorine gas supplied from the buffer tank 21 to the external device 4 is provided downstream of the buffer tank 21 in the first main passage 15. The detection result of the flow meter 26 is output to the controller 10.
 第1メイン通路15における流量計26の下流には、外部装置4へと供給されるフッ素ガスの流量を調整する流量制御弁27が設けられる。流量制御弁27はコントローラ10から出力される信号に基づいて開度が制御される。具体的には、コントローラ10は、流量計26によって検出されたフッ素ガスの流量がROMに記憶され予め定められた目標流量となるように、流量制御弁27の開度を制御する。コントローラ10のROMには複数の目標流量が記憶されている。目標流量は、外部装置4が必要とするフッ素ガスの流量であり、フッ素ガス生成装置100を操作するオペレータによって変更される。 A flow rate control valve 27 for adjusting the flow rate of the fluorine gas supplied to the external device 4 is provided downstream of the flow meter 26 in the first main passage 15. The opening degree of the flow control valve 27 is controlled based on a signal output from the controller 10. Specifically, the controller 10 controls the opening degree of the flow control valve 27 so that the flow rate of the fluorine gas detected by the flow meter 26 is stored in the ROM and becomes a predetermined target flow rate. A plurality of target flow rates are stored in the ROM of the controller 10. The target flow rate is a flow rate of fluorine gas required by the external device 4 and is changed by an operator who operates the fluorine gas generation device 100.
 コントローラ10は、フッ素ガスの目標流量に基づいて、電源9から陽極7と陰極8の間に供給される電流を制御する。具体的には、目標流量に相当する電流値を演算し、その電流値が陽極7と陰極8の間に通電されるように電源9を制御する。このように、陽極7におけるフッ素ガスの生成量は、バッファタンク21から外部装置4へと供給されたフッ素ガスを補充するように制御される。 The controller 10 controls the current supplied from the power source 9 between the anode 7 and the cathode 8 based on the target flow rate of the fluorine gas. Specifically, a current value corresponding to the target flow rate is calculated, and the power source 9 is controlled so that the current value is energized between the anode 7 and the cathode 8. Thus, the amount of fluorine gas generated at the anode 7 is controlled so as to replenish the fluorine gas supplied from the buffer tank 21 to the external device 4.
 さらに、コントローラ10は、フッ素ガスの目標流量に基づいて演算された電流値を第2圧力計24の検出結果に基づいて補正する。具体的には、第2圧力計24によって検出されたバッファタンク21の圧力が、ROMに記憶され予め定められた設定範囲よりも大きい場合には演算された電流値が小さくなるように補正し、また、設定範囲よりも小さい場合には演算された電流値が大きくなるように補正する。つまり、フッ素ガスの目標流量に基づいて演算された電流値は、バッファタンク21の圧力が設定範囲内(基準圧力)に保たれるように補正される。バッファタンク21の圧力の設定範囲は大気圧よりも高い圧力に設定される。 Furthermore, the controller 10 corrects the current value calculated based on the target flow rate of the fluorine gas based on the detection result of the second pressure gauge 24. Specifically, when the pressure of the buffer tank 21 detected by the second pressure gauge 24 is larger than a predetermined setting range stored in the ROM, the calculated current value is corrected to be small, Further, when it is smaller than the set range, the calculated current value is corrected so as to increase. That is, the current value calculated based on the target flow rate of the fluorine gas is corrected so that the pressure of the buffer tank 21 is maintained within the set range (reference pressure). The setting range of the pressure in the buffer tank 21 is set to a pressure higher than the atmospheric pressure.
 このように、外部装置4へと供給されたフッ素ガスは補充されるように制御され、バッファタンク21の内部圧力は大気圧よりも高い圧力に制御される。これに対して、フッ素ガスが使用される外部装置4側は大気圧であるため、外部装置4に設けられるバルブを開弁すれば、バッファタンク21と外部装置4との間の圧力差によって、バッファタンク21から外部装置4へとフッ素ガスが供給されることになる。 Thus, the fluorine gas supplied to the external device 4 is controlled to be replenished, and the internal pressure of the buffer tank 21 is controlled to a pressure higher than the atmospheric pressure. On the other hand, since the external device 4 side where fluorine gas is used is atmospheric pressure, if the valve provided in the external device 4 is opened, the pressure difference between the buffer tank 21 and the external device 4 Fluorine gas is supplied from the buffer tank 21 to the external device 4.
 第1メイン通路15における流量制御弁27の下流には、外部装置4へのフッ素ガスの供給と遮断を切り換える第2遮断弁28が設けられる。また、第1メイン通路15には第2遮断弁28の上流に分岐通路55が接続され、分岐通路55の下流端には除害部56が設けられる。分岐通路55には、フッ素ガスの流通と遮断を切り換える第3遮断弁57が設けられる。第2遮断弁28が閉弁状態でかつ第3遮断弁57が開弁状態では、第1メイン通路15のフッ素ガスは分岐通路55を通じて排出され除害部56にて無害化されて放出される。 A second shutoff valve 28 for switching between supply and shutoff of fluorine gas to the external device 4 is provided downstream of the flow control valve 27 in the first main passage 15. A branch passage 55 is connected to the first main passage 15 upstream of the second shut-off valve 28, and an abatement part 56 is provided at the downstream end of the branch passage 55. The branch passage 55 is provided with a third shut-off valve 57 that switches between the flow and shut-off of the fluorine gas. When the second shut-off valve 28 is closed and the third shut-off valve 57 is open, the fluorine gas in the first main passage 15 is discharged through the branch passage 55, detoxified by the abatement part 56, and released. .
 次に、副生ガス処理系統3について説明する。 Next, the byproduct gas processing system 3 will be described.
 第2気室12aには、水素ガスを外部へと排出するための第2メイン通路30が接続される。 A second main passage 30 for discharging hydrogen gas to the outside is connected to the second air chamber 12a.
 第2メイン通路30には、第2気室12aから水素ガスを導出して搬送する搬送機器としての第2ポンプ31が設けられる。また、第2メイン通路30には、第2ポンプ31の吐出側と吸込側を接続する第2還流通路32が接続される。第2還流通路32には、第2ポンプ31から吐出された水素ガスを第2ポンプ31の吸込側へと戻すための第2圧力調整弁33が設けられる。 The second main passage 30 is provided with a second pump 31 as a transfer device for deriving and transferring hydrogen gas from the second air chamber 12a. The second main passage 30 is connected to a second recirculation passage 32 that connects the discharge side and the suction side of the second pump 31. The second recirculation passage 32 is provided with a second pressure regulating valve 33 for returning the hydrogen gas discharged from the second pump 31 to the suction side of the second pump 31.
 第2メイン通路30における第2ポンプ31の上流には、第2メイン通路30の圧力を検出する圧力検出器としての第3圧力計35が設けられる。第3圧力計35の検出結果はコントローラ10に出力される。 A third pressure gauge 35 as a pressure detector for detecting the pressure of the second main passage 30 is provided upstream of the second pump 31 in the second main passage 30. The detection result of the third pressure gauge 35 is output to the controller 10.
 第2圧力調整弁33は、コントローラ10から出力される信号に基づいて開度が制御される。具体的には、コントローラ10は、第3圧力計35によって検出された圧力がROMに記憶され予め定められた第2設定値となるように、第2圧力調整弁33の開度を制御する。 The opening of the second pressure regulating valve 33 is controlled based on a signal output from the controller 10. Specifically, the controller 10 controls the opening degree of the second pressure regulating valve 33 so that the pressure detected by the third pressure gauge 35 is stored in the ROM and becomes a predetermined second set value.
 第2メイン通路30における第2ポンプ31の下流には除害部34が設けられ、第2ポンプ31にて搬送された水素ガスは除害部34にて無害化されて放出される。 The abatement part 34 is provided downstream of the second pump 31 in the second main passage 30, and the hydrogen gas transported by the second pump 31 is rendered harmless by the abatement part 34 and released.
 フッ素ガス生成装置100は、電解槽1の溶融塩中にフッ素ガスの原料であるフッ化水素を供給する原料供給系統5も備える。以下では、原料供給系統5について説明する。 The fluorine gas generator 100 also includes a raw material supply system 5 that supplies hydrogen fluoride, which is a raw material of fluorine gas, into the molten salt of the electrolytic cell 1. Below, the raw material supply system 5 is demonstrated.
 原料供給系統5は、電解槽1に補充するためのフッ化水素が貯留されたフッ化水素供給源40を備える。フッ化水素供給源40と電解槽1は原料供給通路41を介して接続される。フッ化水素供給源40に貯留されたフッ化水素は、原料供給通路41を通じて電解槽1の溶融塩中に供給される。 The raw material supply system 5 includes a hydrogen fluoride supply source 40 in which hydrogen fluoride for replenishing the electrolytic cell 1 is stored. The hydrogen fluoride supply source 40 and the electrolytic cell 1 are connected via a raw material supply passage 41. Hydrogen fluoride stored in the hydrogen fluoride supply source 40 is supplied into the molten salt of the electrolytic cell 1 through the raw material supply passage 41.
 原料供給通路41には、フッ化水素の供給流量を制御する流量制御弁42が設けられる。流量制御弁42は、コントローラ10から出力される信号に基づいて開度が制御される。具体的には、コントローラ10は、液面計14によって検出された溶融塩の液面レベルがROMに記憶され予め定められた所定レベルとなるように、フッ化水素の供給流量を制御する。つまり、流量制御弁42は、溶融塩中で電気分解されたフッ化水素を補給するように、フッ化水素の供給流量を制御する。 The raw material supply passage 41 is provided with a flow rate control valve 42 for controlling the supply flow rate of hydrogen fluoride. The flow control valve 42 is controlled in opening degree based on a signal output from the controller 10. Specifically, the controller 10 controls the supply flow rate of hydrogen fluoride so that the liquid level of the molten salt detected by the level gauge 14 is stored in the ROM and becomes a predetermined level set in advance. That is, the flow rate control valve 42 controls the supply flow rate of hydrogen fluoride so as to replenish hydrogen fluoride electrolyzed in the molten salt.
 原料供給通路41には、キャリアガス供給源45から供給されるキャリアガスを原料供給通路41内に導くキャリアガス供給通路46が接続される。キャリアガス供給通路46には、キャリアガスの供給と遮断を切り換える遮断弁47が設けられる。キャリアガスは、フッ化水素を電解槽1の溶融塩中に導くためのガスであり、不活性ガスである窒素ガスが用いられる。フッ素ガス生成装置100の運転時には遮断弁47は原則開状態であり、窒素ガスは陰極室12の溶融塩中に供給される。窒素ガスは、溶融塩中にほとんど溶けず、第2気室12aから副生ガス処理系統3を通じて排出される。なお、キャリアガスとして、他の不活性ガス、例えばアルゴンガスやヘリウムガスを用いるようにしてもよい。 The carrier gas supply passage 46 is connected to the raw material supply passage 41 to guide the carrier gas supplied from the carrier gas supply source 45 into the raw material supply passage 41. The carrier gas supply passage 46 is provided with a cutoff valve 47 for switching between supply and cutoff of the carrier gas. The carrier gas is a gas for introducing hydrogen fluoride into the molten salt of the electrolytic cell 1, and nitrogen gas which is an inert gas is used. When the fluorine gas generator 100 is in operation, the shut-off valve 47 is basically open, and nitrogen gas is supplied into the molten salt in the cathode chamber 12. The nitrogen gas is hardly dissolved in the molten salt and is discharged from the second air chamber 12a through the byproduct gas processing system 3. Note that another inert gas such as argon gas or helium gas may be used as the carrier gas.
 電解槽1の溶融塩中には微量の水分が含まれている。この水分は、原料供給通路41を通じて供給されるフッ化水素と共に電解槽1内に持ち込まれたり、キャリアガス供給通路46を通じて原料供給通路41に供給される窒素ガスと共に電解槽1内に持ち込まれたり、液面計14を通じてパージされる窒素ガスと共に電解槽1内に持ち込まれたりするものである。また、溶融塩中に含まれる水分には、電解中に持ち込まれる水分の他、当初から溶融塩中に混入している水分もある。電解槽1の溶融塩中の水分濃度が高い状態で電解を実施すると、溶融塩中の水分と炭素電極とが反応することによって陽極7の表面が酸化され、陽極効果が発生するおそれある。陽極効果とは、電気分解の継続が不可能になるまで電解電圧が上昇する現象のことをいう。そこで、電解槽1には、サンプリング通路58を通じて溶融塩をサンプリングし、溶融塩中の水分濃度を測定する水分濃度測定装置59が設けられる。水分濃度測定装置59による水分濃度の測定は、カールフィッシャー法が用いられる。 The molten salt in the electrolytic cell 1 contains a trace amount of water. This moisture is brought into the electrolytic cell 1 together with hydrogen fluoride supplied through the raw material supply passage 41, or is brought into the electrolytic cell 1 together with nitrogen gas supplied to the raw material supply passage 41 through the carrier gas supply passage 46. In other words, it is brought into the electrolytic cell 1 together with nitrogen gas purged through the liquid level gauge 14. Further, the moisture contained in the molten salt includes the moisture mixed into the molten salt from the beginning, in addition to the moisture brought in during electrolysis. When electrolysis is performed in a state where the water concentration in the molten salt in the electrolytic cell 1 is high, the surface of the anode 7 is oxidized due to the reaction between the water in the molten salt and the carbon electrode, and the anode effect may occur. The anode effect refers to a phenomenon in which the electrolysis voltage increases until electrolysis cannot be continued. Therefore, the electrolytic cell 1 is provided with a moisture concentration measuring device 59 that samples the molten salt through the sampling passage 58 and measures the moisture concentration in the molten salt. The Karl Fischer method is used to measure the moisture concentration by the moisture concentration measuring device 59.
 また、第1メイン通路15には、サンプリング通路60を通じてフッ素ガスをサンプリングし、フッ素と溶融塩中の水分とが反応して生成されるOF等の反応生成物の濃度を測定するガス濃度測定装置61が設けられる。ガス濃度測定装置61には赤外分光光度計が用いられる。 Further, in the first main passage 15, gas concentration measurement is performed in which fluorine gas is sampled through the sampling passage 60 and the concentration of a reaction product such as OF 2 produced by the reaction between fluorine and moisture in the molten salt is measured. A device 61 is provided. An infrared spectrophotometer is used for the gas concentration measuring device 61.
 水分濃度測定装置59及びガス濃度測定装置61のいずれか一方のみを設けるようにしてもよい。 Only one of the moisture concentration measuring device 59 and the gas concentration measuring device 61 may be provided.
 次に、図2~図6を参照して、コントローラ10によって実行されるフッ素ガス生成装置100の自動運転制御について説明する。 Next, automatic operation control of the fluorine gas generation device 100 executed by the controller 10 will be described with reference to FIGS.
 フッ素ガス生成装置100の停止状態においては、第1遮断弁74が開弁状態であり、それ以外の起動弁70、入口弁22a,22b、出口弁23a,23b、第2遮断弁28、及び第3遮断弁57は閉弁状態である。 In the stop state of the fluorine gas generation device 100, the first shut-off valve 74 is open, and the other start valves 70, inlet valves 22a and 22b, outlet valves 23a and 23b, the second shut-off valve 28, and the second The three shutoff valve 57 is in a closed state.
 まず、図1及び図2を参照して、電解槽1の起動手順について説明する。 First, the starting procedure of the electrolytic cell 1 will be described with reference to FIGS.
 図2に示す電解槽1の起動フローは、オペレータが電解槽1の電源9のスイッチをONとすることによってスタートする。 2 is started when the operator turns on the switch of the power source 9 of the electrolytic cell 1.
 ステップ1では、温度調節装置65が起動し、加熱冷却装置67から電解槽1のジャケット66及びチューブに蒸気が供給される。これにより、溶融塩の温度が上昇する。 In step 1, the temperature adjusting device 65 is activated, and steam is supplied from the heating and cooling device 67 to the jacket 66 and the tube of the electrolytic cell 1. Thereby, the temperature of molten salt rises.
 ステップ2では、溶融塩の温度が所定温度に到達したか否かが判定される。所定温度に到達したと判定された場合にはステップ3に進む。所定温度は、例えば溶融塩が溶解状態となる80℃に設定される。溶融塩の温度が所定温度に到達した後は、溶融塩の温度は、温度計69の検出結果に基づいて、加熱冷却装置67によって85~95℃に制御される。 In step 2, it is determined whether or not the temperature of the molten salt has reached a predetermined temperature. If it is determined that the predetermined temperature has been reached, the process proceeds to step 3. The predetermined temperature is set to 80 ° C. at which the molten salt is in a dissolved state, for example. After the temperature of the molten salt reaches a predetermined temperature, the temperature of the molten salt is controlled to 85 to 95 ° C. by the heating and cooling device 67 based on the detection result of the thermometer 69.
 ステップ3では、流量制御弁42による溶融塩の液面レベル制御が開始される。具体的には、コントローラ10は、液面計14の検出結果に基づいて、溶融塩の液面レベルが所定レベルとなるように、流量制御弁42の開度を制御してフッ化水素供給源40から電解槽1に供給されるフッ化水素の流量を調整する。所定レベルは、区画壁6の下端部よりも高く、電極7,8を支持する支持体(図示せず)よりも低いレベルに設定される。 In step 3, the molten salt liquid level control by the flow rate control valve 42 is started. Specifically, the controller 10 controls the opening degree of the flow rate control valve 42 based on the detection result of the liquid level gauge 14 so that the liquid level of the molten salt becomes a predetermined level, and supplies hydrogen fluoride. The flow rate of hydrogen fluoride supplied from 40 to the electrolytic cell 1 is adjusted. The predetermined level is set to a level higher than the lower end portion of the partition wall 6 and lower than a support (not shown) that supports the electrodes 7 and 8.
 ステップ4では、水分濃度測定装置59による溶融塩中の水分濃度の測定が行われる。 In step 4, the moisture concentration in the molten salt is measured by the moisture concentration measuring device 59.
 ステップ5では、水分濃度測定装置59によって測定された溶融塩中の水分濃度がROMに記憶され予め定められた基準濃度以下か否かが判定される。基準濃度以下と判定された場合には、電解槽1の起動が完了する。一方、基準濃度を超えると判定された場合にはステップ6に進む。基準濃度は、陽極効果発生の防止、つまり陽極7の保護の観点から決定され、例えば500wt.ppmに設定される。 In step 5, it is determined whether or not the moisture concentration in the molten salt measured by the moisture concentration measuring device 59 is stored in the ROM and is equal to or lower than a predetermined reference concentration. When it is determined that the concentration is lower than the reference concentration, the start-up of the electrolytic cell 1 is completed. On the other hand, if it is determined that the reference density is exceeded, the process proceeds to step 6. The reference concentration is determined from the viewpoint of preventing the generation of the anode effect, that is, protecting the anode 7, for example, 500 wt. Set to ppm.
 ステップ6では、陽極7と陰極8の間に電源9から0.5~5A/dmの電流が供給される。これにより、陽極7ではフッ素ガスが生成され、そのフッ素ガスは第1メイン通路15から分岐通路72を通じて排出され除害部73にて無害化されて放出される。 In step 6, a current of 0.5 to 5 A / dm 2 is supplied from the power source 9 between the anode 7 and the cathode 8. As a result, fluorine gas is generated at the anode 7, and the fluorine gas is discharged from the first main passage 15 through the branch passage 72, detoxified by the abatement part 73, and released.
 ステップ7では、ステップ6と同様に、水分濃度測定装置59によって測定された溶融塩中の水分濃度が基準濃度以下か否かが判定される。基準濃度以下と判定された場合にはステップ8に進む。陽極7と陰極8の間への通電は、溶融塩中の水分濃度が基準濃度以下となるまで行われる。 In Step 7, as in Step 6, it is determined whether or not the moisture concentration in the molten salt measured by the moisture concentration measuring device 59 is equal to or lower than the reference concentration. If it is determined that the density is not more than the reference density, the process proceeds to Step 8. The energization between the anode 7 and the cathode 8 is performed until the water concentration in the molten salt becomes equal to or lower than the reference concentration.
 ステップ8では、陽極7と陰極8の間への通電が停止される。 In step 8, the energization between the anode 7 and the cathode 8 is stopped.
 以上にて、電解槽1の起動が完了し、電解槽1は陽極7と陰極8の間への通電が可能なスタンバイ状態となる。 As described above, the start-up of the electrolytic cell 1 is completed, and the electrolytic cell 1 enters a standby state in which current can be supplied between the anode 7 and the cathode 8.
 水分濃度測定装置59による溶融塩中の水分濃度の測定に代わり、ガス濃度測定装置61によってフッ素ガス中のOF等の反応生成物の濃度を測定するようにしてもよい。その場合には、上記ステップ3の後、陽極7と陰極8の間に電源9から0.5~5A/dmの電流を供給し、陽極7から生成するフッ素ガス中の反応生成物の濃度を測定する。そして、反応生成物の濃度が基準濃度以下である場合には、陽極7と陰極8の間への通電が停止され、電解槽1はスタンバイ状態となる。一方、反応生成物の濃度が基準濃度を超える場合には、陽極7にて生成されるフッ素ガスを分岐通路72を通じて排出し、反応生成物の濃度が基準濃度以下になった場合に陽極7と陰極8の間への通電が停止される。 Instead of measuring the moisture concentration in the molten salt by the moisture concentration measuring device 59, the gas concentration measuring device 61 may measure the concentration of the reaction product such as OF 2 in the fluorine gas. In that case, after step 3 above, a current of 0.5 to 5 A / dm 2 is supplied from the power source 9 between the anode 7 and the cathode 8, and the concentration of the reaction product in the fluorine gas generated from the anode 7 is increased. Measure. And when the density | concentration of a reaction product is below a reference | standard density | concentration, electricity supply between the anode 7 and the cathode 8 is stopped, and the electrolytic cell 1 will be in a standby state. On the other hand, when the concentration of the reaction product exceeds the reference concentration, the fluorine gas generated at the anode 7 is discharged through the branch passage 72, and when the concentration of the reaction product becomes lower than the reference concentration, The energization between the cathodes 8 is stopped.
 次に、図1及び図3を参照して、フッ素ガスの供給準備手順について説明する。 Next, the fluorine gas supply preparation procedure will be described with reference to FIGS.
 図3に示すフッ素ガスの供給準備フローは、オペレータがガス供給準備スイッチをONとすることによってスタートする。 The fluorine gas supply preparation flow shown in FIG. 3 starts when the operator turns on the gas supply preparation switch.
 ステップ11では、陽極7と陰極8の間への予備通電が開始される。電流は0A/dmから5A/dmまでステップ状に上げられる。これにより、陽極7ではフッ素ガスが生成され、そのフッ素ガスは第1メイン通路15から分岐通路72を通じて排出され除害部73にて無害化されて放出される。 In step 11, preliminary energization between the anode 7 and the cathode 8 is started. The current is stepped from 0 A / dm 2 to 5 A / dm 2 . As a result, fluorine gas is generated at the anode 7, and the fluorine gas is discharged from the first main passage 15 through the branch passage 72, detoxified by the abatement part 73, and released.
 ステップ12では、第1ポンプ17が起動すると共に、第1圧力調整弁19による第1メイン通路15の圧力制御が開始される。具体的には、コントローラ10は、第1圧力計13の検出結果に基づいて、第1メイン通路15における第1ポンプ17の上流側の圧力が第1設定値となるように、第1圧力調整弁19の開度を制御して第1圧力調整弁19を通じて還流するフッ素ガス流量を調整する。第1設定値は、例えば100.5~102.0kPaに設定される。第1圧力計13の検出圧力が第1設定値よりも小さい場合には、第1ポンプ17の吸込側に還流するフッ素ガス流量が多くなるように、第1圧力調整弁19の開度は大きく設定される。また、第1圧力計13の検出圧力が第1設定値よりも大きい場合には、第1ポンプ17の吸込側に還流するフッ素ガス流量が少なくなるように、第1圧力調整弁19の開度は小さく設定される。ここで、第1圧力計13の検出圧力が第1設定値よりも小さい場合において、バッファタンク21にフッ素ガスが蓄圧された状態では、バッファタンク21内のフッ素ガスは第1ポンプ17側へと逆流して第1圧力調整弁19を通じて還流することになる。 In step 12, the first pump 17 is started, and the pressure control of the first main passage 15 by the first pressure regulating valve 19 is started. Specifically, based on the detection result of the first pressure gauge 13, the controller 10 adjusts the first pressure so that the pressure on the upstream side of the first pump 17 in the first main passage 15 becomes the first set value. The opening degree of the valve 19 is controlled to adjust the flow rate of the fluorine gas recirculated through the first pressure regulating valve 19. The first set value is set to, for example, 100.5 to 102.0 kPa. When the detected pressure of the first pressure gauge 13 is smaller than the first set value, the opening of the first pressure regulating valve 19 is large so that the flow rate of fluorine gas recirculated to the suction side of the first pump 17 is increased. Is set. Further, when the detected pressure of the first pressure gauge 13 is larger than the first set value, the opening degree of the first pressure regulating valve 19 is set so that the flow rate of the fluorine gas returning to the suction side of the first pump 17 is reduced. Is set small. Here, when the detected pressure of the first pressure gauge 13 is smaller than the first set value, the fluorine gas in the buffer tank 21 moves to the first pump 17 side in the state where the fluorine gas is accumulated in the buffer tank 21. The gas flows backward and flows back through the first pressure regulating valve 19.
 ステップ13では、精製装置16の片系統の入口弁と出口弁が開弁する。ここでは、第1精製装置16aの入口弁22aと出口弁23aが開弁し、第1精製装置16aと第1ポンプ17が接続される。 In step 13, the inlet and outlet valves of one system of the refiner 16 are opened. Here, the inlet valve 22a and the outlet valve 23a of the first purification device 16a are opened, and the first purification device 16a and the first pump 17 are connected.
 ステップ14では、第2差圧計71によって検出された起動弁70の前後の圧力差が設定範囲内か否かが判定される。設定範囲内と判定された場合にはステップ16に進む。一方、設定範囲を超えると判定された場合にはステップ15に進む。 In step 14, it is determined whether or not the pressure difference before and after the start valve 70 detected by the second differential pressure gauge 71 is within the set range. If it is determined that it is within the set range, the process proceeds to step 16. On the other hand, if it is determined that the set range is exceeded, the process proceeds to step 15.
 ステップ16では、起動弁70が開弁すると共に第1遮断弁74が閉弁し、電解槽1の第1気室11aと第1ポンプ17の接続が行われる。これにより、陽極7にて生成されたフッ素ガスは、第1ポンプ17によって搬送されてバッファタンク21へと導かれる。 In step 16, the start valve 70 is opened and the first shut-off valve 74 is closed, and the first air chamber 11a of the electrolytic cell 1 and the first pump 17 are connected. As a result, the fluorine gas generated at the anode 7 is conveyed by the first pump 17 and guided to the buffer tank 21.
 ステップ15では、第2差圧計71によって検出された起動弁70の前後の圧力差が設定範囲内となるように第1設定値の変更が行われる。具体的には、起動弁70上流の圧力が下流の圧力よりも大きいことによって起動弁70の前後差圧が設定範囲を超えている場合には、起動弁70下流の圧力を大きくすべく第1設定値は大きい値に変更される。これにより、第1圧力調整弁19の開度は大きくなり、起動弁70の前後差圧は小さくなる。一方、起動弁70上流の圧力が下流の圧力よりも小さいことによって起動弁70の前後差圧が設定範囲を超えている場合には、起動弁70下流の圧力を小さくすべく第1設定値は小さい値に変更される。これにより、第1圧力調整弁19の開度は小さくなり、起動弁70の前後差圧は小さくなる。第1設定値の変更は、起動弁70の前後差圧が設定範囲内と判定されるまで繰り返し行われる。そして、設定範囲内と判定された場合には、ステップ16に進み、上述したように、第1気室11aと第1ポンプ17の接続が行われる。設定範囲は、電解槽1のサイズによるが、例えば500Paに設定される。 In step 15, the first set value is changed so that the pressure difference before and after the start valve 70 detected by the second differential pressure gauge 71 is within the set range. Specifically, when the pressure upstream and downstream of the start valve 70 exceeds the set range because the pressure upstream of the start valve 70 is greater than the pressure downstream, the first pressure is set to increase the pressure downstream of the start valve 70. The set value is changed to a larger value. Thereby, the opening degree of the first pressure regulating valve 19 is increased, and the differential pressure across the start valve 70 is decreased. On the other hand, if the differential pressure across the start valve 70 exceeds the set range because the pressure upstream of the start valve 70 is lower than the downstream pressure, the first set value is set to reduce the pressure downstream of the start valve 70. Changed to a smaller value. Thereby, the opening degree of the 1st pressure regulation valve 19 becomes small, and the differential pressure before and behind the starting valve 70 becomes small. The change of the first set value is repeated until it is determined that the differential pressure across the start valve 70 is within the set range. And when it determines with it being in the setting range, it progresses to step 16 and the connection of the 1st air chamber 11a and the 1st pump 17 is performed as mentioned above. The setting range depends on the size of the electrolytic cell 1, but is set to 500 Pa, for example.
 このように、起動弁70の開弁、つまり第1気室11aと第1ポンプ17との接続は、起動弁70の前後差圧が設定範囲内である場合に行われる。したがって、起動弁70が開弁した際に、第1気室11aのフッ素ガスが急激に起動弁70の下流に流れ込むことが防止されるため、陽極室11の液面レベルの変動が抑制される。よって、第1気室11aと第1ポンプ17との接続を安定に行うことができる。 Thus, the opening of the starting valve 70, that is, the connection between the first air chamber 11a and the first pump 17 is performed when the differential pressure across the starting valve 70 is within the set range. Therefore, when the start valve 70 is opened, the fluorine gas in the first air chamber 11a is prevented from suddenly flowing downstream of the start valve 70, so that fluctuations in the liquid level of the anode chamber 11 are suppressed. . Therefore, the first air chamber 11a and the first pump 17 can be stably connected.
 ステップ17では、第3遮断弁57が開弁し、バッファタンク21のフッ素ガスは、第1メイン通路15から分岐通路55を通じて排出され除害部56にて無害化されて放出される。 In step 17, the third shut-off valve 57 is opened, and the fluorine gas in the buffer tank 21 is discharged from the first main passage 15 through the branch passage 55, detoxified by the abatement part 56, and released.
 ステップ18では、流量制御弁27によるバッファタンク21の圧力制御が開始される。具体的には、コントローラ10は、第2圧力計24の検出結果に基づいて、バッファタンク21の圧力が設定範囲内(基準圧力)となるように、流量制御弁27の開度を制御する。設定範囲は、例えば110~400kPaの範囲に設定される。このように、フッ素ガスの供給準備手順においては、流量制御弁27はフッ素ガスの流量制御ではなく、バッファタンク21の圧力制御を行うことになる。 In step 18, pressure control of the buffer tank 21 by the flow control valve 27 is started. Specifically, the controller 10 controls the opening degree of the flow control valve 27 based on the detection result of the second pressure gauge 24 so that the pressure of the buffer tank 21 is within a set range (reference pressure). The setting range is set to a range of 110 to 400 kPa, for example. Thus, in the fluorine gas supply preparation procedure, the flow rate control valve 27 performs pressure control of the buffer tank 21 instead of flow rate control of the fluorine gas.
 以上にて、フッ素ガスの供給準備が完了する。これにより、フッ素ガス生成装置100では、陽極7と陰極8の間に必要最小限の電流が通電され、外部装置4へのフッ素ガスの供給が可能な状態となる。 This completes preparations for supplying fluorine gas. As a result, in the fluorine gas generation device 100, a necessary minimum current is passed between the anode 7 and the cathode 8, and the fluorine gas can be supplied to the external device 4.
 副生ガス処理系統3についても、第2気室12aと第2ポンプ31との接続を安定に行うために、フッ素ガス供給系統2と同様に、第2気室12aと第2ポンプ31との間に起動弁及び分岐通路を設け、上記ステップ12,14,15,及び16と同様の手順を行うようにしてもよい。また、副生ガス処理系統3に第2ポンプ31を設けず、陰極8にて生成された水素ガスが第2メイン通路30を通じて直接排出されるようにしてもよい。 Also in the by-product gas processing system 3, in order to stably connect the second air chamber 12 a and the second pump 31, the second air chamber 12 a and the second pump 31 are connected in the same manner as the fluorine gas supply system 2. An activation valve and a branch passage may be provided between them, and the same procedure as in Steps 12, 14, 15, and 16 may be performed. Alternatively, the by-product gas processing system 3 may not be provided with the second pump 31, and the hydrogen gas generated at the cathode 8 may be directly discharged through the second main passage 30.
 次に、図1及び図4を参照して、フッ素ガスの供給手順、及びフッ素ガス生成装置100の通常運転時の制御について説明する。 Next, the fluorine gas supply procedure and the control during normal operation of the fluorine gas generator 100 will be described with reference to FIGS.
 図4に示すフッ素ガスの供給フロー及び通常運転制御は、オペレータがガス供給スイッチをONとすることによってスタートする。 The fluorine gas supply flow and normal operation control shown in FIG. 4 are started when the operator turns on the gas supply switch.
 ステップ21では、流量制御弁27がバッファタンク21の圧力制御からフッ素ガスの流量制御に移行する。具体的には、コントローラ10は、流量計26によって検出されたフッ素ガスの流量が目標流量となるように、流量制御弁27の開度を制御する。これにより、流量計26によって検出されるフッ素ガス流量と目標流量とは、ほぼ一致することになる。 In step 21, the flow rate control valve 27 shifts from the pressure control of the buffer tank 21 to the flow rate control of the fluorine gas. Specifically, the controller 10 controls the opening degree of the flow rate control valve 27 so that the flow rate of the fluorine gas detected by the flow meter 26 becomes the target flow rate. Thereby, the fluorine gas flow rate detected by the flow meter 26 and the target flow rate substantially coincide.
 ステップ22では、陽極7と陰極8の間の電流制御が5A/dm一定制御から外部装置4へのフッ素ガスの供給流量に応じた制御に変更される。この制御について具体的に説明する。陽極7と陰極8の間に通電する電流値と、陽極7にて発生するフッ素ガスの流量とには、以下に示す式の関係がある。 In step 22, the current control between the anode 7 and the cathode 8 is changed from 5 A / dm 2 constant control to control according to the fluorine gas supply flow rate to the external device 4. This control will be specifically described. There is a relationship of the following equation between the value of the current supplied between the anode 7 and the cathode 8 and the flow rate of the fluorine gas generated at the anode 7.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、電流効率を95%とすると、フッ素ガスの流量は、以下に示す式にて求められる。 Here, assuming that the current efficiency is 95%, the flow rate of the fluorine gas can be obtained by the following formula.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 上記(2)式はコントローラ10のROMに記憶されている。コントローラ10は、上記(2)式を用いて、フッ素ガスの目標流量に相当する電流値を演算し、この演算した電流値が陽極7と陰極8の間に供給されるように電源9を制御する。これにより、陽極7では、外部装置4へと供給されるフッ素ガス流量に相当するフッ素ガスが生成されることになる。 The above equation (2) is stored in the ROM of the controller 10. The controller 10 calculates a current value corresponding to the target flow rate of the fluorine gas using the above equation (2), and controls the power source 9 so that the calculated current value is supplied between the anode 7 and the cathode 8. To do. As a result, fluorine gas corresponding to the flow rate of fluorine gas supplied to the external device 4 is generated at the anode 7.
 ステップ23では、第2遮断弁28が開弁すると共に第3遮断弁57が閉弁する。これにより、バッファタンク21のフッ素ガスは外部装置4へと供給され、通常運転に移行する。以下では、通常運転の制御について説明する。 In step 23, the second cutoff valve 28 is opened and the third cutoff valve 57 is closed. Thereby, the fluorine gas in the buffer tank 21 is supplied to the external device 4 and shifts to normal operation. Hereinafter, control of normal operation will be described.
 ステップ24では、オペレータによるフッ素ガスの目標流量の変更があるか否かが判定される。目標流量の変更があると判定された場合にはステップ25に進み、上記(2)式を用いて、変更された目標流量に相当する電流値が再演算される。再演算された電流値は電源9に出力され、電源9は陽極7と陰極8の間にその再演算された電流値を供給する。ここで、再演算された電流値が電源9の現状の電流値よりも高い場合には、陽極7と陰極8の間に供給する電流値を所定の上昇速度で再演算された電流値まで上昇させる。一方、再演算された電流値が電源9の現状の電流値よりも低い場合には、陽極7と陰極8の間に供給する電流値を再演算された電流値まで一気に低下させる。 In step 24, it is determined whether or not there is a change in the target flow rate of fluorine gas by the operator. If it is determined that there is a change in the target flow rate, the process proceeds to step 25, and the current value corresponding to the changed target flow rate is recalculated using the above equation (2). The recalculated current value is output to the power source 9, and the power source 9 supplies the recalculated current value between the anode 7 and the cathode 8. Here, when the recalculated current value is higher than the current current value of the power source 9, the current value supplied between the anode 7 and the cathode 8 is increased to the recalculated current value at a predetermined increase rate. Let On the other hand, when the recalculated current value is lower than the current current value of the power supply 9, the current value supplied between the anode 7 and the cathode 8 is lowered to the recalculated current value at a stretch.
 陽極7と陰極8の間に供給される電流値には最低電流値が設定される。最低電流値は、例えば0.5A/dm程度に設定される。したがって、目標流量が0L/minであっても、陽極7と陰極8の間に供給される電流値は最低電流値より低下しないように制御される。ただし、流量計26によって検出されるフッ素ガス流量が一定時間0L/minの状態が継続した場合には、後述するフッ素ガスの供給停止(図5参照)が実行される。 The minimum current value is set as the current value supplied between the anode 7 and the cathode 8. The minimum current value is set to about 0.5 A / dm 2 , for example. Therefore, even if the target flow rate is 0 L / min, the current value supplied between the anode 7 and the cathode 8 is controlled so as not to be lower than the minimum current value. However, when the flow rate of the fluorine gas detected by the flow meter 26 continues for 0 L / min for a certain period of time, the supply of fluorine gas (described later) is stopped (see FIG. 5).
 ステップ22及び25では、陽極7と陰極8の間に供給する電流値として、上記(2)式を用いて、フッ素ガスの目標流量に相当する電流値を演算すると説明した。しかし、陽極7と陰極8の間に供給する電流値として、上記(2)式を用いて、流量計26によって検出されたフッ素ガス流量に相当する電流値を演算するようにしてもよい。つまり、上記(2)式の流量(L/min)を、フッ素ガスの目標流量ではなく、流量計26によって検出されたフッ素ガス流量として演算するようにしてもよい。このようにして電流値を演算すれば、外部装置4へと供給されるフッ素ガス流量が連続的に変化するような場合には、それに対応して電極7にて生成されるフッ素ガスの流量を制御することが可能となる。 In steps 22 and 25, it has been described that the current value corresponding to the target flow rate of fluorine gas is calculated using the above equation (2) as the current value supplied between the anode 7 and the cathode 8. However, as the current value supplied between the anode 7 and the cathode 8, the current value corresponding to the fluorine gas flow rate detected by the flow meter 26 may be calculated using the above equation (2). That is, the flow rate (L / min) of the above equation (2) may be calculated as the fluorine gas flow rate detected by the flow meter 26 instead of the target flow rate of fluorine gas. When the current value is calculated in this way, when the flow rate of the fluorine gas supplied to the external device 4 changes continuously, the flow rate of the fluorine gas generated at the electrode 7 is correspondingly changed. It becomes possible to control.
 ステップ25にて電流値が再演算された後、ステップ26に進む。また、ステップ24にて目標流量の変更がないと判定された場合には、電流値の再演算を行わずにステップ26に進む。ステップ22及び25にて説明したように、陽極7と陰極8の間に供給される電流値はフッ素ガスの目標流量に基づいて演算されるため、陽極7では、外部装置4へと供給されるフッ素ガス流量に相当するフッ素ガスが生成されることになる。つまり、バッファタンク21から外部装置4へと供給されるフッ素ガスは陽極7にて生成されるフッ素ガスによって補充されるため、理論的には、バッファタンク21の圧力は常に一定に保たれることになる。しかし、上記(1)式中の電流効率は85~99%程度の範囲で変動するため、バッファタンク21から外部装置4へと供給されるフッ素ガス流量と陽極7にて生成されるフッ素ガス流量とに差が生じる可能性がある。その場合には、バッファタンク21の圧力は一定に保たれず変動する。 After the current value is recalculated in step 25, the process proceeds to step 26. If it is determined in step 24 that there is no change in the target flow rate, the process proceeds to step 26 without recalculating the current value. As described in Steps 22 and 25, since the current value supplied between the anode 7 and the cathode 8 is calculated based on the target flow rate of fluorine gas, the anode 7 supplies the current to the external device 4. Fluorine gas corresponding to the fluorine gas flow rate is generated. That is, since the fluorine gas supplied from the buffer tank 21 to the external device 4 is supplemented by the fluorine gas generated at the anode 7, theoretically, the pressure in the buffer tank 21 is always kept constant. become. However, since the current efficiency in the above equation (1) fluctuates in the range of about 85 to 99%, the flow rate of fluorine gas supplied from the buffer tank 21 to the external device 4 and the flow rate of fluorine gas generated at the anode 7 There may be a difference between In that case, the pressure in the buffer tank 21 varies without being kept constant.
 そこで、ステップ26では、第2圧力計24によって検出されたバッファタンク21の圧力が設定範囲外か否かが判定される。設定範囲外と判定された場合にはステップ27に進み、陽極7と陰極8の間に供給する電流値の補正が行われる。具体的には、バッファタンク21の圧力が、設定範囲よりも大きい場合にはステップ22又はステップ25にて演算された電流値が小さくなるように補正される。例えば、演算された電流値の90%程度に補正される。一方、バッファタンク21の圧力が、設定範囲よりも小さい場合にはステップ22又はステップ25にて演算された電流値が大きくなるように補正される。例えば、演算された電流値の110%程度に補正される。このように、ステップ27では、演算された電流値が第2圧力計24の検出結果に基づいて補正される。つまり、演算された電流値は、バッファタンク21の圧力が設定範囲内(基準圧力)に保たれるように、第2圧力計24の検出結果と設定範囲(基準圧力)との比較に基づいて補正される。設定範囲は、例えば110~400kPaの範囲に設定される。 Therefore, in step 26, it is determined whether or not the pressure in the buffer tank 21 detected by the second pressure gauge 24 is outside the set range. If it is determined that the current value is outside the set range, the process proceeds to step 27 where the current value supplied between the anode 7 and the cathode 8 is corrected. Specifically, when the pressure in the buffer tank 21 is larger than the set range, the current value calculated in step 22 or step 25 is corrected so as to be small. For example, it is corrected to about 90% of the calculated current value. On the other hand, when the pressure in the buffer tank 21 is smaller than the set range, the current value calculated in step 22 or step 25 is corrected so as to increase. For example, it is corrected to about 110% of the calculated current value. As described above, in step 27, the calculated current value is corrected based on the detection result of the second pressure gauge 24. That is, the calculated current value is based on a comparison between the detection result of the second pressure gauge 24 and the set range (reference pressure) so that the pressure of the buffer tank 21 is maintained within the set range (reference pressure). It is corrected. The setting range is set to a range of 110 to 400 kPa, for example.
 ステップ27にて電流値が補正された後、ステップ28に進む。また、ステップ26にてバッファタンク21の圧力が設定範囲外でないと判定された場合には、電流値の補正を行わずにステップ28に進む。第1圧力調整弁19の開度は第1圧力計13によって検出された圧力が第1設定値となるように制御され、第2圧力調整弁33の開度は第3圧力計35によって検出された圧力が第2設定値となるように制御される。第1設定値と第2設定値は、第1気室11aと第2気室12aの圧力が同等となるように、つまり、両室に圧力差が生じないような値に設定される。したがって、基本的には、第1気室11aと第2気室12aの圧力差は大きくならないように制御される。しかし、計器誤差等によって第1圧力計13及び第3圧力計35が示す圧力と実際の圧力とに差が生じた場合や、第1圧力計13,第3圧力計35から電解槽1までの圧力損失が経年変化した場合等には、第1気室11aと第2気室12aの圧力差が大きくなる可能性がある。第1気室11aと第2気室12aの圧力差は陽極室11と陰極室12の液面レベルの差に大きな影響を及ぼし、両室の液面レベルの差が大きくなると、第1気室11aのフッ素ガスと第2気室12aの水素ガスとが混触して反応するおそれがある。 After the current value is corrected in step 27, the process proceeds to step 28. On the other hand, if it is determined in step 26 that the pressure in the buffer tank 21 is not outside the set range, the process proceeds to step 28 without correcting the current value. The opening degree of the first pressure regulating valve 19 is controlled so that the pressure detected by the first pressure gauge 13 becomes the first set value, and the opening degree of the second pressure regulating valve 33 is detected by the third pressure gauge 35. The pressure is controlled to be the second set value. The first set value and the second set value are set so that the pressures in the first air chamber 11a and the second air chamber 12a are equal, that is, no pressure difference is generated between the two chambers. Therefore, basically, the pressure difference between the first air chamber 11a and the second air chamber 12a is controlled so as not to increase. However, when there is a difference between the actual pressure and the pressure indicated by the first pressure gauge 13 and the third pressure gauge 35 due to instrument error or the like, or from the first pressure gauge 13 or the third pressure gauge 35 to the electrolytic cell 1 When the pressure loss changes over time, the pressure difference between the first air chamber 11a and the second air chamber 12a may increase. The pressure difference between the first air chamber 11a and the second air chamber 12a greatly affects the difference in liquid level between the anode chamber 11 and the cathode chamber 12, and if the difference in liquid level between the two chambers increases, the first air chamber There is a possibility that the fluorine gas of 11a and the hydrogen gas of the second air chamber 12a come into contact with each other and react.
 そこで、ステップ28では、第1差圧計20によって検出された第1気室11aと第2気室12aとの圧力差が設定範囲外か否かが判定される。設定範囲外と判定された場合にはステップ29に進み、第1差圧計20によって検出された第1気室11aと第2気室12aとの圧力差がROMに記憶され予め定められた設定範囲となるように第1設定値又は第2設定値の変更が行われる。具体的には、第1気室11aの圧力が第2気室12aの圧力よりも大きいことによって両室の差圧が設定範囲を超えている場合には、第1気室11aの圧力を小さくすべく第1設定値が小さい値に変更されるか、又は第2気室12aの圧力を大きくすべく第2設定値が大きい値に変更される。これにより、第1圧力調整弁19の開度が小さくなるか、又は第2圧力調整弁33の開度が大きくなり、第1気室11aと第2気室12aとの圧力差は小さくなる。一方、第1気室11aの圧力が第2気室12aの圧力よりも小さいことによって両室の差圧が設定範囲を超えている場合には、第1気室11aの圧力を大きくすべく第1設定値が大きい値に変更されるか、又は第2気室12aの圧力を小さくすべく第2設定値が小さい値に変更される。これにより、第1圧力調整弁19の開度が大きくなるか、又は第2圧力調整弁33の開度が小さくなり、第1気室11aと第2気室12aとの圧力差は小さくなる。これに代えて、第1設定値及び第2設定値の双方を同時に変更するようにしてもよい。つまり、ステップ29では、第1設定値及び第2設定値の少なくとも一方の変更が行われる。第1設定値及び第2設定値の変更は、両室の差圧が設定範囲内と判定されるまで繰り返し行われる。そして、設定範囲内と判定された場合にはステップ30に進む。設定範囲は、電解槽1のサイズによるが、例えば500Paに設定される。 Therefore, in step 28, it is determined whether or not the pressure difference between the first air chamber 11a and the second air chamber 12a detected by the first differential pressure gauge 20 is outside the set range. If it is determined that the pressure is outside the set range, the process proceeds to step 29 where the pressure difference between the first air chamber 11a and the second air chamber 12a detected by the first differential pressure gauge 20 is stored in the ROM and set in a predetermined range. The first set value or the second set value is changed so that Specifically, when the pressure in the first air chamber 11a is larger than the pressure in the second air chamber 12a and the differential pressure between the two chambers exceeds the set range, the pressure in the first air chamber 11a is decreased. The first set value is changed to a small value as much as possible, or the second set value is changed to a large value so as to increase the pressure in the second air chamber 12a. Thereby, the opening degree of the 1st pressure regulation valve 19 becomes small, or the opening degree of the 2nd pressure regulation valve 33 becomes large, and the pressure difference of the 1st air chamber 11a and the 2nd air chamber 12a becomes small. On the other hand, when the pressure in the first air chamber 11a is smaller than the pressure in the second air chamber 12a and the differential pressure between the two chambers exceeds the set range, the pressure in the first air chamber 11a is increased to increase. The first set value is changed to a larger value, or the second set value is changed to a smaller value in order to reduce the pressure in the second air chamber 12a. Thereby, the opening degree of the 1st pressure regulation valve 19 becomes large, or the opening degree of the 2nd pressure regulation valve 33 becomes small, and the pressure difference of the 1st air chamber 11a and the 2nd air chamber 12a becomes small. Instead of this, both the first set value and the second set value may be changed simultaneously. That is, in step 29, at least one of the first set value and the second set value is changed. The change of the first set value and the second set value is repeated until it is determined that the differential pressure in both chambers is within the set range. And when it determines with it being in a setting range, it progresses to step 30. FIG. The setting range depends on the size of the electrolytic cell 1, but is set to 500 Pa, for example.
 このように、第1気室11aと第2気室12aとの圧力差は第1設定値及び第2設定値を変更することによって設定範囲内となるように制御されるため、計器誤差等によって第1圧力計13及び第3圧力計35が示す圧力と実際の圧力とに差が生じた場合や、第1圧力計13,第3圧力計35から電解槽1までの圧力損失が経年変化した場合でも、陽極室11と陰極室12との液面レベルに差が生じることが抑制され、電解槽1の液面レベル制御を安定して行うことができる。 As described above, the pressure difference between the first air chamber 11a and the second air chamber 12a is controlled to be within the setting range by changing the first setting value and the second setting value. When there is a difference between the pressure indicated by the first pressure gauge 13 and the third pressure gauge 35 and the actual pressure, or the pressure loss from the first pressure gauge 13 and the third pressure gauge 35 to the electrolytic cell 1 has changed over time. Even in this case, a difference in the liquid level between the anode chamber 11 and the cathode chamber 12 is suppressed, and the liquid level control of the electrolytic cell 1 can be stably performed.
 以上のステップ28では、第1設定値及び第2設定値の少なくとも一方を変更する場合について説明したが、第1設定値のみを変更することによって、第1気室11aと第2気室12aとの圧力差が設定範囲内となるように制御するようにしてもよい。 In the above step 28, the case where at least one of the first set value and the second set value is changed has been described. However, by changing only the first set value, the first air chamber 11a and the second air chamber 12a The pressure difference may be controlled to be within the set range.
 また、第1圧力計13は、第1メイン通路15における第1ポンプ17の上流側の圧力を検出するものであり、第1気室11aの圧力を直接検出するものではない。また、同様に、第3圧力計35は、第2メイン通路30における第2ポンプ31の上流側の圧力を検出するものであり、第2気室12aの圧力を直接検出するものではない。そこで、第1圧力計13,第3圧力計35から電解槽1までの圧力損失の経年変化が及ぼす影響を無くすため、電解槽1の陽極室11及び陰極室12のそれぞれに第1気室11a及び第2気室12aの圧力を直接検出する圧力計を設け、この圧力計の検出結果が第1設定値及び第2設定値となるように第1圧力調整弁19及び第2圧力調整弁33の開度を制御するようにしてもよい。ただし、この場合も、計器誤差等によって圧力計が示す圧力と実際の気室の圧力とに差が生じる場合が起こり得るため、ステップ28及び29のように、第1気室11aと第2気室12aとの圧力差が設定範囲内となるように第1設定値及び第2設定値の変更を行うことは有効である。 The first pressure gauge 13 detects the pressure on the upstream side of the first pump 17 in the first main passage 15 and does not directly detect the pressure in the first air chamber 11a. Similarly, the third pressure gauge 35 detects the pressure upstream of the second pump 31 in the second main passage 30 and does not directly detect the pressure in the second air chamber 12a. Therefore, in order to eliminate the influence of the aging of the pressure loss from the first pressure gauge 13 and the third pressure gauge 35 to the electrolytic cell 1, the first air chamber 11 a is provided in each of the anode chamber 11 and the cathode chamber 12 of the electrolytic cell 1. And a pressure gauge that directly detects the pressure in the second air chamber 12a, and the first pressure adjustment valve 19 and the second pressure adjustment valve 33 so that the detection result of the pressure gauge becomes the first set value and the second set value. The degree of opening may be controlled. However, in this case as well, there may occur a difference between the pressure indicated by the pressure gauge and the actual pressure in the air chamber due to an instrument error or the like. Therefore, as in steps 28 and 29, the first air chamber 11a and the second air chamber 11 It is effective to change the first set value and the second set value so that the pressure difference with the chamber 12a is within the set range.
 ステップ30では、第3差圧計53によって検出された精製装置16の前後差圧が設定値に達したか否かが判定される。設定値に達していないと判定された場合にはステップ24に戻る。一方、設定値に達したと判定された場合にはステップ31に進む。 In step 30, it is determined whether or not the differential pressure across the purifier 16 detected by the third differential pressure gauge 53 has reached a set value. If it is determined that the set value has not been reached, the process returns to step 24. On the other hand, if it is determined that the set value has been reached, the process proceeds to step 31.
 ステップ31では、第1精製装置16aのガス通過部50内で凝固したフッ化水素の蓄積量が所定量に達したと判断して、第1精製装置16aから第2精製装置16bへの運転切り替えが行われる。具体的には、停止中の第2精製装置16bの入口弁22bと出口弁23bを開弁した後、運転中の第1精製装置16aの入口弁22aと出口弁23aを閉弁して運転切り替えが行われる。精製装置16の運転切り替え完了後、ステップ24に戻る。 In step 31, it is determined that the accumulated amount of hydrogen fluoride solidified in the gas passage section 50 of the first purification device 16a has reached a predetermined amount, and the operation is switched from the first purification device 16a to the second purification device 16b. Is done. Specifically, after the inlet valve 22b and the outlet valve 23b of the second refining device 16b being stopped are opened, the operation is switched by closing the inlet valve 22a and the outlet valve 23a of the first refining device 16a that is in operation. Is done. After the operation switching of the purifier 16 is completed, the process returns to step 24.
 通常運転の間、ステップ24~ステップ31が繰り返される。 During the normal operation, steps 24 to 31 are repeated.
 次に、図1及び図5を参照して、フッ素ガスの供給停止手順について説明する。 Next, the procedure for stopping the supply of fluorine gas will be described with reference to FIGS.
 図5に示すフッ素ガスの供給停止フローは、オペレータがガス供給スイッチをOFFとすることによってスタートする。また、上記ステップ24にて説明したように、流量計26によって検出されるフッ素ガス流量が一定時間0L/minの状態が継続した場合、つまり外部装置4へのフッ素ガス供給流量が一定時間0L/minの状態が継続した場合にも、図5に示すフッ素ガスの供給停止フローがスタートする。 The fluorine gas supply stop flow shown in FIG. 5 starts when the operator turns off the gas supply switch. Further, as described in step 24 above, when the fluorine gas flow rate detected by the flow meter 26 continues for a fixed time of 0 L / min, that is, the fluorine gas supply flow rate to the external device 4 is fixed for a fixed time of 0 L / min. Even when the state of min continues, the fluorine gas supply stop flow shown in FIG. 5 starts.
 ステップ41では、第3遮断弁57が開弁すると共に第2遮断弁28が閉弁する。これにより、外部装置へのフッ素ガスの供給が停止され、バッファタンク21のフッ素ガスは分岐通路55を通じて排出され除害部56にて無害化されて放出される。 In step 41, the third cutoff valve 57 is opened and the second cutoff valve 28 is closed. Thereby, the supply of the fluorine gas to the external device is stopped, and the fluorine gas in the buffer tank 21 is discharged through the branch passage 55, detoxified by the abatement part 56, and released.
 ステップ42では、流量制御弁27がフッ素ガスの流量制御からバッファタンク21の圧力制御に移行する。具体的には、コントローラ10は、第2圧力計24の検出結果に基づいて、バッファタンク21の圧力が設定範囲内となるように、流量制御弁27の開度を制御する。 In step 42, the flow rate control valve 27 shifts from the flow rate control of the fluorine gas to the pressure control of the buffer tank 21. Specifically, the controller 10 controls the opening degree of the flow control valve 27 based on the detection result of the second pressure gauge 24 so that the pressure of the buffer tank 21 falls within the set range.
 ステップ43では、陽極7と陰極8の間に供給する電流値を5A/dmまで低下する。なお、流量計26によって検出されるフッ素ガス流量が一定時間0L/minの状態が継続した結果、フッ素ガス供給停止フローが進行した場合には、このステップ43はスキップされる。 In step 43, the current value supplied between the anode 7 and the cathode 8 is reduced to 5 A / dm 2 . If the flow of fluorine gas detected by the flow meter 26 continues to be 0 L / min for a certain period of time, this step 43 is skipped when the fluorine gas supply stop flow has progressed.
 ステップ44では、第1遮断弁74が開弁すると共に起動弁70が閉弁する。これにより、陽極7にて生成されたフッ素ガスは分岐通路72を通じて排出され除害部73にて無害化されて放出される。 In step 44, the first shut-off valve 74 is opened and the start valve 70 is closed. Thereby, the fluorine gas produced | generated at the anode 7 is discharged | emitted through the branch channel | path 72, detoxified in the abatement part 73, and is discharge | released.
 ステップ45では、陽極7と陰極8の間の通電が停止される。 In step 45, energization between the anode 7 and the cathode 8 is stopped.
 ステップ46では、運転中の第2精製装置16bの入口弁22bと出口弁23bが閉弁され、精製装置16が停止する。 In step 46, the inlet valve 22b and the outlet valve 23b of the second refining device 16b in operation are closed, and the refining device 16 stops.
 ステップ47では、第1ポンプ17が停止し、第1圧力調整弁19による第1メイン通路15の圧力制御が停止する。 In step 47, the first pump 17 is stopped, and the pressure control of the first main passage 15 by the first pressure regulating valve 19 is stopped.
 ステップ48では、第3遮断弁57が閉弁し、流量制御弁27によるバッファタンク21の圧力制御が停止する。 In step 48, the third shut-off valve 57 is closed, and the pressure control of the buffer tank 21 by the flow rate control valve 27 is stopped.
 以上にて、フッ素ガスの供給停止が完了し、電解槽1はスタンバイ状態となる。 Thus, the supply stop of the fluorine gas is completed, and the electrolytic cell 1 is in a standby state.
 次に、図1及び図6を参照して、電解槽1の停止手順について説明する。電解槽1の停止は、フッ素ガス生成装置100を長期間停止させる場合に行われる。 Next, the procedure for stopping the electrolytic cell 1 will be described with reference to FIGS. The electrolytic cell 1 is stopped when the fluorine gas generator 100 is stopped for a long period of time.
 図6に示す電解槽1の停止フローは、オペレータが電解槽1の電源9のスイッチをOFFとすることによってスタートする。 The stop flow of the electrolytic cell 1 shown in FIG. 6 starts when the operator turns off the switch of the power source 9 of the electrolytic cell 1.
 ステップ51では、温度調節装置65が停止し、溶融塩の温度制御が停止する。 In step 51, the temperature adjusting device 65 is stopped, and the temperature control of the molten salt is stopped.
 ステップ52では、流量制御弁42が閉弁し、フッ化水素供給源40から電解槽1へのフッ化水素の供給が停止される。これにより、溶融塩の液面レベル制御が停止する。 In step 52, the flow control valve 42 is closed, and the supply of hydrogen fluoride from the hydrogen fluoride supply source 40 to the electrolytic cell 1 is stopped. Thereby, the liquid level control of the molten salt is stopped.
 ステップ53では、水分濃度測定装置59による溶融塩中の水分濃度測定が停止する。水分濃度測定装置59に代わりガス濃度測定装置61を用いる場合には、ガス濃度測定装置61によるフッ素ガス中の反応生成物の濃度測定が停止する。 In step 53, the measurement of the moisture concentration in the molten salt by the moisture concentration measuring device 59 is stopped. When the gas concentration measuring device 61 is used instead of the moisture concentration measuring device 59, the measurement of the concentration of the reaction product in the fluorine gas by the gas concentration measuring device 61 is stopped.
 以上にて、電解槽1の停止が完了する。これにより、フッ素ガス生成装置100の停止が完了する。 Thus, the stop of the electrolytic cell 1 is completed. Thereby, the stop of the fluorine gas production | generation apparatus 100 is completed.
 以上の実施の形態によれば、以下に示す作用効果を奏する。 According to the above embodiment, the following effects are obtained.
 電源9から陽極7と陰極8の間に供給される電流値はバッファタンク21から外部装置4へと供給されるフッ素ガス流量に基づいて演算され、その演算された電流値はバッファタンク21の圧力に基づいて補正されるため、フッ素ガスを外部装置4へと安定して自動供給することができる。 The current value supplied from the power source 9 between the anode 7 and the cathode 8 is calculated based on the flow rate of fluorine gas supplied from the buffer tank 21 to the external device 4, and the calculated current value is the pressure in the buffer tank 21. Therefore, fluorine gas can be stably and automatically supplied to the external device 4.
 また、フッ素ガス生成装置100の起動時には、コントローラ10は、第2差圧計71によって検出された圧力差が予め定められた設定範囲内となるように第1設定値を変更し、圧力差が設定範囲内となった場合に起動弁70を開弁する。このように、上流と下流の圧力差が小さい状態で起動弁70の開弁が行われ、第1気室11aと第1ポンプ17との接続が行われる。したがって、フッ素ガス生成装置100の起動時において、電解槽1の液面レベルの変動を抑制することができる。 In addition, when the fluorine gas generation device 100 is started, the controller 10 changes the first set value so that the pressure difference detected by the second differential pressure gauge 71 is within a predetermined set range, and the pressure difference is set. When it falls within the range, the start valve 70 is opened. Thus, the start valve 70 is opened in a state where the pressure difference between the upstream and downstream is small, and the connection between the first air chamber 11a and the first pump 17 is performed. Therefore, fluctuations in the liquid level of the electrolytic cell 1 can be suppressed when the fluorine gas generator 100 is started.
 また、フッ素ガス生成装置100の通常運転時には、コントローラ10は、第1圧力計13によって検出された圧力が予め定められた第1設定値となるように第1圧力調整弁19の開度を制御すると共に、第1差圧計20によって検出された第1気室11aと第2気室12aとの圧力差が予め定められた設定範囲内となるように第1設定値又は第2設定値を変更する。したがって、第1気室11aと第2気室12aとの圧力差が大きくなることが防止され、電解槽1の液面レベル制御を安定して行うことができる。 Further, during the normal operation of the fluorine gas generation device 100, the controller 10 controls the opening of the first pressure regulating valve 19 so that the pressure detected by the first pressure gauge 13 becomes a predetermined first set value. In addition, the first set value or the second set value is changed so that the pressure difference between the first air chamber 11a and the second air chamber 12a detected by the first differential pressure gauge 20 is within a predetermined set range. To do. Therefore, an increase in the pressure difference between the first air chamber 11a and the second air chamber 12a is prevented, and the liquid level control of the electrolytic cell 1 can be performed stably.
 このように、フッ素ガス生成装置100では、起動時及び通常運転時における電解槽1の液面レベル変動を最小限に抑えるために、第1メイン通路15、第1気室11a、及び第2気室12aの圧力が高精度に制御される。 As described above, in the fluorine gas generation device 100, the first main passage 15, the first air chamber 11a, and the second air are controlled in order to minimize the fluctuation in the liquid level of the electrolytic cell 1 during startup and normal operation. The pressure in the chamber 12a is controlled with high accuracy.
 本発明は上記の実施の形態に限定されずに、その技術的な思想の範囲内において種々の変更がなしうることは明白である。 The present invention is not limited to the above-described embodiment, and it is obvious that various modifications can be made within the scope of the technical idea.
 例えば、図1では、機器や弁毎にコントローラ10を図示したが、各計器の検出結果を1つのコントローラに出力し、その1つのコントローラにて各機器及び各弁の動作を制御するようにしてもよい。 For example, in FIG. 1, the controller 10 is illustrated for each device or valve. However, the detection result of each instrument is output to one controller, and the operation of each device and each valve is controlled by the one controller. Also good.
 また、上記実施の形態では、精製装置16がフッ素とフッ化水素との沸点の違いを利用して、フッ素ガスからフッ化水素ガスを分離して取り除く深冷精製装置である場合について説明した。精製装置16として、深冷精製装置に代わり、フッ素ガス中のフッ化水素ガスをフッ化ナトリウム(NaF)等の吸着剤に吸着させてフッ素ガスからフッ化水素ガスを分離して取り除く装置を用いるようにしてもよい。 In the above-described embodiment, the case where the purification device 16 is a cryogenic purification device that separates and removes the hydrogen fluoride gas from the fluorine gas using the difference in boiling point between fluorine and hydrogen fluoride has been described. As the purification device 16, a device that separates and removes the hydrogen fluoride gas from the fluorine gas by adsorbing the hydrogen fluoride gas in the fluorine gas to an adsorbent such as sodium fluoride (NaF) instead of the cryogenic purification device is used. You may do it.
 本願は2010年4月16日に日本国特許庁に出願された特願2010-95205に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2010-95205 filed with the Japan Patent Office on April 16, 2010, the entire contents of which are incorporated herein by reference.

Claims (4)

  1.  溶融塩中のフッ化水素を電気分解することによって、フッ素ガスを生成するフッ素ガス生成装置であって、
     溶融塩に浸漬された陽極にて生成されたフッ素ガスを主成分とする主生ガスが導かれる第1気室と、溶融塩に浸漬された陰極にて生成された水素ガスを主成分とする副生ガスが導かれる第2気室とが溶融塩液面上に分離して区画された電解槽と、
     前記第1気室に接続され、前記電解槽の前記陽極にて生成された主生ガスを外部装置へと供給するためのメイン通路と、
     前記メイン通路に設けられ、主生ガスを貯留するためのバッファタンクと、
     前記バッファタンクの圧力を検出する圧力検出器と、
     前記陽極と前記陰極との間に電流を供給する電源装置と、
     前記電源装置から前記陽極と前記陰極との間に供給される電流を制御する制御装置と、を備え、
     前記制御装置は、前記外部装置への主生ガスの供給流量に基づいて電流値を演算し、当該演算された電流値を前記圧力検出器の検出結果に基づいて補正することを特徴とするフッ素ガス生成装置。
    A fluorine gas generator that generates fluorine gas by electrolyzing hydrogen fluoride in a molten salt,
    A first air chamber into which main gas mainly composed of fluorine gas generated at an anode immersed in molten salt is guided, and hydrogen gas generated at a cathode immersed in molten salt as a main component. An electrolytic cell in which a second gas chamber into which a by-product gas is guided is separated on the surface of the molten salt liquid,
    A main passage connected to the first air chamber and for supplying main raw gas generated at the anode of the electrolytic cell to an external device;
    A buffer tank provided in the main passage for storing main raw gas;
    A pressure detector for detecting the pressure of the buffer tank;
    A power supply device for supplying a current between the anode and the cathode;
    A control device for controlling a current supplied between the anode and the cathode from the power supply device,
    The control device calculates a current value based on a supply flow rate of main raw gas to the external device, and corrects the calculated current value based on a detection result of the pressure detector. Gas generator.
  2.  請求項1に記載のフッ素ガス生成装置であって、
     前記制御装置は、前記外部装置が必要とする主生ガスの目標流量に相当する電流値を演算し、当該演算された電流値を前記圧力検出器による検出圧力と予め定められた基準圧力との比較に基づいて補正するフッ素ガス生成装置。
    The fluorine gas generator according to claim 1,
    The control device calculates a current value corresponding to a target flow rate of the main raw gas required by the external device, and calculates the calculated current value between a pressure detected by the pressure detector and a predetermined reference pressure. A fluorine gas generator that corrects based on the comparison.
  3.  請求項1に記載のフッ素ガス生成装置であって、
     前記メイン通路に設けられ、前記バッファタンクから前記外部装置へと供給される主生ガスの流量を検出する流量検出器をさらに備え、
     前記制御装置は、前記流量検出器にて検出された主生ガスの流量に相当する電流値を演算し、当該演算された電流値を前記圧力検出器による検出圧力と予め定められた基準圧力との比較に基づいて補正するフッ素ガス生成装置。
    The fluorine gas generator according to claim 1,
    A flow rate detector that is provided in the main passage and detects a flow rate of main raw gas supplied from the buffer tank to the external device;
    The control device calculates a current value corresponding to the flow rate of the main raw gas detected by the flow rate detector, and calculates the calculated current value from a pressure detected by the pressure detector and a predetermined reference pressure. Fluorine gas generator that corrects based on the comparison.
  4.  請求項2又は請求項3に記載のフッ素ガス生成装置であって、
     前記制御装置による電流値の補正は、前記バッファタンクの圧力が前記基準圧力に保たれるように行われるフッ素ガス生成装置。
    The fluorine gas generation device according to claim 2 or 3, wherein
    The current value correction by the control device is a fluorine gas generation device that is performed so that the pressure of the buffer tank is maintained at the reference pressure.
PCT/JP2011/058529 2010-04-16 2011-04-04 Fluorine gas generation device WO2011129216A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010095205A JP5720112B2 (en) 2010-04-16 2010-04-16 Fluorine gas generator
JP2010-095205 2010-04-16

Publications (1)

Publication Number Publication Date
WO2011129216A1 true WO2011129216A1 (en) 2011-10-20

Family

ID=44798593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058529 WO2011129216A1 (en) 2010-04-16 2011-04-04 Fluorine gas generation device

Country Status (2)

Country Link
JP (1) JP5720112B2 (en)
WO (1) WO2011129216A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112941545A (en) * 2021-03-09 2021-06-11 北京市公用工程设计监理有限公司 Control method for hydrogen production by double closed-loop electrolysis method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5991070B2 (en) * 2012-08-10 2016-09-14 セントラル硝子株式会社 Fluorine gas generator and control method of fluorine gas generator
CN114111070B (en) * 2021-11-24 2023-08-18 东方电气集团东方锅炉股份有限公司 Outlet buffer tank of fused salt heat absorber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003119586A (en) * 2001-10-15 2003-04-23 Mitsubishi Heavy Ind Ltd Hydrogen supply system
JP2005264231A (en) * 2004-03-18 2005-09-29 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude Fluorine-gas-generating apparatus
JP2007031739A (en) * 2005-07-22 2007-02-08 Mitsubishi Heavy Ind Ltd Method for controlling operation of water electrolysis apparatus, and device therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003119586A (en) * 2001-10-15 2003-04-23 Mitsubishi Heavy Ind Ltd Hydrogen supply system
JP2005264231A (en) * 2004-03-18 2005-09-29 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude Fluorine-gas-generating apparatus
JP2007031739A (en) * 2005-07-22 2007-02-08 Mitsubishi Heavy Ind Ltd Method for controlling operation of water electrolysis apparatus, and device therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112941545A (en) * 2021-03-09 2021-06-11 北京市公用工程设计监理有限公司 Control method for hydrogen production by double closed-loop electrolysis method
CN112941545B (en) * 2021-03-09 2023-08-04 北京市公用工程设计监理有限公司 Control method for preparing hydrogen by double closed loop electrolysis method

Also Published As

Publication number Publication date
JP5720112B2 (en) 2015-05-20
JP2011225920A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
JP5569116B2 (en) Fluorine gas generator
TW202010875A (en) Gas production apparatus, and gas productionmethod
JP3905433B2 (en) Fluorine gas generator
WO2011129216A1 (en) Fluorine gas generation device
WO2020085434A1 (en) Hydrogen/oxygen generation system and hydrogen/oxygen generation method
JP5716288B2 (en) Fluorine gas generator
JP4000415B2 (en) Solid polymer water electrolyzer
WO2011090014A1 (en) Fluorine gas generation device
JP5991070B2 (en) Fluorine gas generator and control method of fluorine gas generator
JP5906742B2 (en) Fluorine gas generator
JP5375673B2 (en) Fluorine gas generator
US8864960B2 (en) Fluorine gas generating apparatus
WO2010113611A1 (en) Fluorine gas generation device
JP2007090228A (en) Electrolytic water generator
JP2013130316A (en) Heating deaeration system for boiler and method of controlling amount of water to be supplied
WO2010113612A1 (en) Fluorine gas generation device
CN117987848A (en) Electrolytic synthesis system
WO2010113613A1 (en) Fluorine gas generation device
JP3553927B2 (en) Fluorine gas generator and electrolytic bath liquid level control method thereof
JP2003268585A (en) Water electrolyzer and method for operating the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11768737

Country of ref document: EP

Kind code of ref document: A1