WO2011126442A2 - Methods for segmenting objects in images - Google Patents

Methods for segmenting objects in images Download PDF

Info

Publication number
WO2011126442A2
WO2011126442A2 PCT/SE2011/050407 SE2011050407W WO2011126442A2 WO 2011126442 A2 WO2011126442 A2 WO 2011126442A2 SE 2011050407 W SE2011050407 W SE 2011050407W WO 2011126442 A2 WO2011126442 A2 WO 2011126442A2
Authority
WO
WIPO (PCT)
Prior art keywords
image
segmentation
probability map
segmented
probability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/SE2011/050407
Other languages
English (en)
French (fr)
Other versions
WO2011126442A3 (en
Inventor
Ali Can
Alberto Santamaria-Pang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Global Life Sciences Solutions USA LLC
Original Assignee
General Electric Co
GE Healthcare Bio Sciences Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co, GE Healthcare Bio Sciences Corp filed Critical General Electric Co
Priority to CN2011800179707A priority Critical patent/CN102834846A/zh
Priority to EP11766245.2A priority patent/EP2556491B1/en
Priority to JP2013503713A priority patent/JP5744177B2/ja
Publication of WO2011126442A2 publication Critical patent/WO2011126442A2/en
Publication of WO2011126442A3 publication Critical patent/WO2011126442A3/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/143Segmentation; Edge detection involving probabilistic approaches, e.g. Markov random field [MRF] modelling
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/155Segmentation; Edge detection involving morphological operators
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/26Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
    • G06V10/267Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion by performing operations on regions, e.g. growing, shrinking or watersheds
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/695Preprocessing, e.g. image segmentation
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10064Fluorescence image
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20036Morphological image processing
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20076Probabilistic image processing
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20112Image segmentation details
    • G06T2207/20152Watershed segmentation
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30024Cell structures in vitro; Tissue sections in vitro

Definitions

  • the invention relates generally to digital images and more specifically to segmentation of objects in the digital images to extract content from the images.
  • Segmenting images of complex, three-dimensional materials into discrete and identifiable objects or targets for analysis is a challenging problem because of the high degree of variability associated with the materials, and inconsistencies between, and anomalies introduced by, the imaging systems themselves.
  • Cells are three-dimensional objects, and the images of such cells capture a two-dimensional projection that corresponds to the given slice of the tissue. Partial cell volumes that are outside the focal plane are commonly observed. Nuclei shape and size also vary widely across different tissue types and even within the same tissue type. For example, the shape of epithelial cell nuclei in lung tissue is different than the shape of stromal cell nuclei in lung tissue. The grade of a given cancer also may significantly affect the shape and the size of the nuclei. For example, the size of the cell nuclei in breast cancer is a diagnostic indicator.
  • staining quality and tissue processing also vary from sample to sample; although non-specific binding and tissue autofluorescence can be reduced, they typically cannot be eliminated; the image acquisition system further introduces noise, particularly, for example, if the image acquisition camera is not actively cooled; and most microscopes are manufactured with tolerances up to 20% non-uniformity of illumination.
  • the methods of the invention provide a highly robust boosted approach wherein the technical effect is to segment images into discreet or targeted objects.
  • the methods build a strong or reliably consistent segmentation result from a plurality of generally weaker or less consistent segmentation results.
  • Each weaker segmentation method generates a probability map that captures different, yet complementary, information.
  • the strong segmentation integrates the probability results from the weaker segmentation methods, based on various parameters or predefined rules such as, for example, a weighted average or sum.
  • a watershed method is applied, together with one or more morphological constraints to the integrated, but stronger, combined segmentation, to identify and segment the nuclear regions of the image.
  • the methods are first described here using a more general workflow, where weak segmentation algorithms are combined to generate a strong segmentation algorithm, that may be applied to a variety of images for a variety of purposes.
  • the general method is then applied to a specific, but non- limiting, example in which an image of a biological sample is segmented into cells.
  • segmentation algorithms comprising, curvature based segmentation, image gradients, Gabor filters, and intensity, that are particularly useful with images of biological materials
  • the methods of the invention may be applied to other types of subject matter and so may comprise alternative subsets of algorithms.
  • An embodiment of the method of the invention for segmenting a digital image into a plurality of target objects, comprises: generating a plurality of probability maps of the image, wherein each probability map is derived from a different segmentation classifier;
  • FIG. 1 is a flow diagram of an example of the method and system of the invention for segmenting an image
  • FIG. 2 is a flow diagram of a specific example of the method and system of the invention for segmenting an image
  • FIGs. 3A-3D are examples of probability maps based four weak classifiers.
  • FIG. 3A-3D are examples of probability maps based four weak classifiers.
  • FIG. 3A was generated using a curvature-based classifier
  • FIG. 3B was generated using a Gabor filter bank
  • FIG. 3C was generated using a gradient classifier
  • FIG. 3D was generated using an intensity classifier.
  • FIG. 4A is an example of a probability map generated using an example of a strong segmentation classifier
  • FIG. 4B is an example of a map showing the detected object centers
  • FIG. 4C is an example of a weighted image using morphological constraints
  • FIG. 4D is an example of a segmented image
  • FIG. 4E is an example of a final segmented image merged with the mapped nuclei.
  • FIG. 5A is an example of an original, unsegmented image with a portion outlined in a red square
  • FIG. 5B is an example of a final segmented image generated using an example of a method of the invention with the same corresponding portion outlined in a red
  • FIG. 5C is a magnified view of the outlined portion of FIG. 5 A
  • FIG. 5D is a magnified view of the corresponding outlined portion of FIG. 5B.
  • FIG. 6A is another example of an original, unsegmented image of a xenograft model with a portion outlined in a red square
  • FIG. 6B is an example of a final segmented image generated using an example of a method of the invention with the same corresponding portion outlined in a red
  • FIG. 6C is a magnified view of the outlined portion of FIG. 5A
  • FIG. 6D is a magnified view of the corresponding outlined portion of FIG. 5B.
  • the methods and systems provide significant improvements to previous methods for segmenting digital images.
  • the methods in part construct a strong classifier from a number (N) of weak classifiers.
  • the term weak classifier is used in this description merely to denote a classifier that, when used alone, does not provide a reproducibly strong, consistent segmented image, as does the stronger classifier of the invention which comprises a combination of a plurality of individual weaker classifiers.
  • Each of the weaker classifiers, used in one or more of the embodiments described provides unique and different information in the form of a probability estimate whether a given pixel belongs to a target object, such as a nucleus of a cell.
  • a combination classifier of the invention combines the results of the weaker individual classifier results.
  • the stronger, classifier integrates both global and local information derived from the weaker segmentations to generate a more consistently accurate segmented image.
  • a watershed algorithm is applied to the stronger data to identify and map individual target objects, such as cell nuclei.
  • target object refers to any item of interest, to which a plurality of different classifiers or definitions can be applied, for the purpose of extracting content from a segmented digital image.
  • classifier refers to one or more parameters of a digital image that can be expressed as an algorithm.
  • the term "probability map” refers to a map, of all or a portion of the pixels or image points in a digital image, which indicates the likelihood that a given pixel falls within a class based on a classifier previously applied to the digital image.
  • the map may be virtual, actual, stored or ephemeral, depending on a given application or system.
  • the term "local object maxima” refers to the highest value or degree as defined by a given classifier, among the pixels or image points associated with a discrete target object in a digital image.
  • object constraint refers to one or more algorithmic statements or rules that may be applied to an object that may include, but are not limited to, those that define or limit the object's context or situation; a property, attribute or characteristic of the object; and conditions or expression qualifiers.
  • local object information refers to any information associated with a given object including, but not necessarily limited to, facts, data, conclusions, estimates, statistics, transformations, and conditions associated with an object.
  • regional threshold refers to a rule or statement that is applied to an image to segment the image into regions such as, for example, watershed or watershed-based algorithms.
  • digital device refers to any device that can at least temporarily store, display, generate, manipulate, modify or print a digital image.
  • the methods and system may be used to segment of a broad class of objects in digital images.
  • the methods and systems may be used, for example, to segment objects that have elliptical shapes, such as those found in images associated with industrial inspection and medical and biological imaging.
  • One or more embodiments of the methods construct a probability map using a novel boosting approach, to which a watershed algorithm, with at least one object constraint, is applied.
  • a strong classifier is constructed, together with one or more morphological constraints, based on a plurality of weaker classifiers that provide complementary information such as, but not limited to, shape, intensity and texture information.
  • detection of cell nuclei comprises modeling various nuclei attributes such as shape, intensity and texture in the cell.
  • nuclei texture when imaging cells, nuclei texture may vary, in part, due to uneven binding and distribution of the fluorescent dyes applied to the cellular material or tissue sample. Image intensity also varies between images and across a single and may be caused by a number of factors, some of which are associated with microscopy system itself.
  • detection of two-dimensional cell nuclei obtained from three- dimensional tissue sections comprises modeling various nuclei attributes such as shape, intensity and texture in the cell.
  • nuclei attributes such as shape, intensity and texture in the cell.
  • shape, intensity and texture may vary, in part, due to uneven binding and distribution of the fluorescent dyes applied to the cellular material or tissue sample.
  • Image intensity also varies between images and across a single and may be caused by a number of factors, some of which are associated with microscopy system itself.
  • FIG. 1 An embodiment of the method of the invention, that is readily applicable to a variety of modalities and purposes, is generally shown and referred to in the flow diagram of FIG. 1 as method 10.
  • three segmentation classifiers 12A, 12B, and 12C are applied in step 14 to image 16.
  • classifier may comprise shape, intensity, and textural primitives.
  • the resulting probability maps PI . PN generated by the three weaker segmentation classifiers 12A-12N are used to generate a stronger segmentation classifier 18 that is based on a weighted combination of the weaker classifiers.
  • the method is not limited to using a specific number of weaker classifiers (e.g. Si . . . SN) or a specific number of weaker classifiers
  • morphological constraints e.g. Mi . . .MN
  • Individual, weaker classifiers may include, but are not limited to, shape features (such as, regular and irregular elliptical, circular, semi-circular shapes), intensity features (such as, homogeneity, histogram based-methods), textural features, (such as fractals, wavelets, second or higher order statistcs).
  • Combination classifier 18 together with combined morphological constraints 20A, 20B and 20C, is then applied to image 16 using one or more regional thresholding algorithms, in step 22, together with one or more local constraints, to generate a resulting image 24, segmented at least in part into the target objects (e.g. cell nuclei).
  • target objects e.g. cell nuclei
  • the first step comprises generating a strong segmentation classifier using a plurality of weaker segmentation algorithms.
  • the strong classifier is generated using a curvature based segmentation algorithm, two different gradient based segmentation algorithms and an intensity based algorithm, which can be expressed as follows:
  • p CBS represents the probability map that is computed using a curvature based segmentation algorithm
  • p Gabor represents the probability map that is computed using a Gabor filter based segmentation algorithm
  • p Gradient represents the probability map that is computed using a gradient segmentation
  • p f represents the probability map that is computed using an intensity based segmentation.
  • the resulting probability map is a weighted average of the individual probability maps that are generated by the individual weak segmentation algorithms. The weights may be determined empirically or using supervised classification algorithms.
  • the method comprises generating a probability map for each of the four weaker segmentation algorithms.
  • the probability map (FIG. 3A), in this example, that is generated using a curvature based segmentation algorithm 34A represented by p CBS .
  • the eigenvalues (x, ⁇ ), ⁇ 2 ( ⁇ , y) are numerically computed from: d 2 I(x, y) , d 2 I(x, y) r d 2 I(x, y) d 2 I(x, y) d 2 I(x, y)
  • a probability map p CBS is estimated iteratively, where the probability that a pixel will belong in a blob-like structure is at a maximum when the pixel is at the center of the blob structure. Then a binary mask is estimated by selecting a threshold value, estimating the distance transform of the binary mask, where the response of the distance transform is at a maximum in the center of the bloblike structures and decreases outward toward the border or membrane of the cell or nucleus in this example.
  • the image captures geometrical information derived from the defined filter bank and is suitable to detecting elliptical structures at different orientations.
  • the image I Gabor captures the geometrical information derived from the defined filter bank and is suitable for detecting elliptical structures, such as cells and cell nuclei, at different orientations.
  • the response of the filter bank can be interpreted as the maximum likelihood of a given pixel to be nuclei. The response is maximum in the center, and close to zero near the borders.
  • a mapping function, p Gabor : R— > [0,1] is defined from the response of the filter bank I Gabor .
  • the mapping function p Gabor is constructed so that it can be interpreted as a likelihood function that captures relevant morphological information from the given filter bank.
  • Images of DAPI channels in cell-based tissue comprise rich morphological nuclei information.
  • the morphological information a DAPI image provides can be used with other image transformations.
  • the DAPI channel is used as a source of morphological information.
  • the DAPI image is preprocesseed by applying morphological operations to the image, such as erosion and dilation.
  • a function 34D, p j : R ⁇ [0,1] is defined, which maps the intensity values to probabilities (FIG. 3D).
  • a parametric sigmoid function is defined to map the image intensity values to probability values.
  • an estimate (FIG. 3C) is also generated based on a gradient segmentation algorithm 34C.
  • the gradient segmentation is based on the magnitude of the gradient and has a maximum response at the border of the object, (e.g. in this example, the membrane of the nucleus) and a minimum response inside the object (e.g. nucleus). This is a penalty or distinguishing element that is used to separate the nuclei.
  • the information of the gradient is complementary to the probability maps.
  • seed points are also determined (FIG. 4B).
  • the seed points I Seeds are located at the local maximum probabilities that are, in this example, normally at the center of the nuclei, and they are defined as Seed Seed
  • the single connected regions c. are estimated from the probability map I CBS by applying the watershed transform to the distance transform image, derived from binary volume B CBS .
  • FIG. 4B shows the detected nuclei center points I Seeds . These are used as a set 42 to impose regions of local minimum in the watershed algorithm. The background is also excluded, so regions
  • the background is estimated from the combined stronger probability map generated from the individual weaker segmentations.
  • a watershed step 44 is then carried out by applying the morphological constraints to the weighted image (FIG. 4C), as illustrated below:
  • FIG. 4C is the local constraints image, notice that the nuclei center is black since it corresponds to a local minimum, and the cell borders are brighter since they correspond to local maximum.
  • FIG. 4D presents the detected nuclei regions
  • FIG. 4E presents the final segmentation after merging those regions that correspond to the same nuclei Example
  • FIG. 5A-5D show a DAPI image corresponding to the xenograft model.
  • FIG. 5A and 5B are the original and the segmented image, respectively.
  • FIG. 6C and 6D show of the original image and the segmentation, respectively.
  • the variations in shape, size, and appearance shown are due to non uniformity of the fluorescent dye.
  • the segmentation results from the method are highly accurate and consistent, even in images where the cell nuclei are crowded, overlapping and frequently touching. As shown in FIG. 6, cells 50, 36, and 37 are clear distinguishable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Probability & Statistics with Applications (AREA)
  • Software Systems (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)
PCT/SE2011/050407 2010-04-09 2011-04-06 Methods for segmenting objects in images Ceased WO2011126442A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011800179707A CN102834846A (zh) 2010-04-09 2011-04-06 用于分割图像中的对象的方法
EP11766245.2A EP2556491B1 (en) 2010-04-09 2011-04-06 Methods for segmenting objects in images
JP2013503713A JP5744177B2 (ja) 2010-04-09 2011-04-06 画像中の物体をセグメンテーションする方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/757,668 US8300938B2 (en) 2010-04-09 2010-04-09 Methods for segmenting objects in images
US12/757,668 2010-04-09

Publications (2)

Publication Number Publication Date
WO2011126442A2 true WO2011126442A2 (en) 2011-10-13
WO2011126442A3 WO2011126442A3 (en) 2011-11-24

Family

ID=44760963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2011/050407 Ceased WO2011126442A2 (en) 2010-04-09 2011-04-06 Methods for segmenting objects in images

Country Status (5)

Country Link
US (1) US8300938B2 (enExample)
EP (1) EP2556491B1 (enExample)
JP (1) JP5744177B2 (enExample)
CN (1) CN102834846A (enExample)
WO (1) WO2011126442A2 (enExample)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014172527A1 (en) * 2013-04-17 2014-10-23 General Electric Company Systems and methods for multiplexed biomarker quantitation using single cell segmentation on sequentially stained tissue
JP2016518813A (ja) * 2013-03-15 2016-06-30 ベンタナ メディカル システムズ, インコーポレイテッド デジタル・ホール・スライドの自動採点のための組織物体に基づく機械学習システム
WO2019043162A1 (en) * 2017-09-01 2019-03-07 Ludwigs-Maximilians-Universität München DETECTION OF BIOLOGICAL CELLS AND CELL LINE TRACING

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9628722B2 (en) 2010-03-30 2017-04-18 Personify, Inc. Systems and methods for embedding a foreground video into a background feed based on a control input
DE102010024859B3 (de) * 2010-06-24 2011-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur Segmentierung von biologischen Zellen in einer Aufnahme
US8649592B2 (en) 2010-08-30 2014-02-11 University Of Illinois At Urbana-Champaign System for background subtraction with 3D camera
US8521418B2 (en) 2011-09-26 2013-08-27 Honeywell International Inc. Generic surface feature extraction from a set of range data
EP2833123A4 (en) * 2012-03-30 2015-12-09 Konica Minolta Inc MEDICAL IMAGE PROCESSOR AND PROGRAM
JP5804194B2 (ja) * 2012-03-30 2015-11-04 コニカミノルタ株式会社 医用画像処理装置及びプログラム
US9589360B2 (en) 2012-07-23 2017-03-07 General Electric Company Biological unit segmentation with ranking based on similarity applying a geometric shape and scale model
US9153067B2 (en) 2013-01-21 2015-10-06 Honeywell International Inc. Systems and methods for 3D data based navigation using descriptor vectors
US9123165B2 (en) 2013-01-21 2015-09-01 Honeywell International Inc. Systems and methods for 3D data based navigation using a watershed method
US20140307939A1 (en) * 2013-04-15 2014-10-16 Drvision Technologies Llc Teachable object contour mapping for biology image region partition
US20140307930A1 (en) * 2013-04-15 2014-10-16 Drvision Technologies Llc Teachable object contour mapping for biology image region partition
CN104427291B (zh) * 2013-08-19 2018-09-28 华为技术有限公司 一种图像处理方法及设备
US9940709B2 (en) * 2013-10-12 2018-04-10 H. Lee Moffitt Cancer Center And Research Institute, Inc. Systems and methods for diagnosing tumors in a subject by performing a quantitative analysis of texture-based features of a tumor object in a radiological image
US9778263B2 (en) 2013-11-13 2017-10-03 General Electric Company Quantitative in situ characterization of biological samples
WO2015102919A2 (en) 2013-12-30 2015-07-09 Clarient Diagnostic Services, Inc. Modular image analysis system and method
US9414016B2 (en) 2013-12-31 2016-08-09 Personify, Inc. System and methods for persona identification using combined probability maps
US9485433B2 (en) 2013-12-31 2016-11-01 Personify, Inc. Systems and methods for iterative adjustment of video-capture settings based on identified persona
US9558393B2 (en) * 2014-03-27 2017-01-31 Konica Minolta, Inc. Image processing device and storage medium for image processing
WO2015177268A1 (en) * 2014-05-23 2015-11-26 Ventana Medical Systems, Inc. Systems and methods for detection of biological structures and/or patterns in images
US9563962B2 (en) 2015-05-19 2017-02-07 Personify, Inc. Methods and systems for assigning pixels distance-cost values using a flood fill technique
US9916668B2 (en) 2015-05-19 2018-03-13 Personify, Inc. Methods and systems for identifying background in video data using geometric primitives
US9607397B2 (en) 2015-09-01 2017-03-28 Personify, Inc. Methods and systems for generating a user-hair-color model
US10019796B2 (en) 2015-10-16 2018-07-10 General Electric Company System and method for blood vessel analysis and quantification in highly multiplexed fluorescence imaging
EP3432776B1 (en) * 2016-03-23 2023-03-29 The Procter & Gamble Company Imaging method for determining stray fibers
CN105868580B (zh) * 2016-04-05 2018-12-07 西安交通大学 一种基于面积约束与形状约束的细胞结构三维形貌恢复方法
US9883155B2 (en) 2016-06-14 2018-01-30 Personify, Inc. Methods and systems for combining foreground video and background video using chromatic matching
US9881207B1 (en) 2016-10-25 2018-01-30 Personify, Inc. Methods and systems for real-time user extraction using deep learning networks
WO2018091486A1 (en) 2016-11-16 2018-05-24 Ventana Medical Systems, Inc. Convolutional neural networks for locating objects of interest in images of biological samples
WO2018200715A1 (en) 2017-04-25 2018-11-01 The University Of Chicago Cellular analysis
CN107123102A (zh) * 2017-05-24 2017-09-01 天津工业大学 一种贴壁细胞生长融合度自动分析方法
CN110709749B (zh) * 2017-06-09 2021-10-26 电子慕泽雷帕里公司 组合式明视场和相衬显微镜系统及配备其的图像处理设备
US10915606B2 (en) 2018-07-17 2021-02-09 Grupiks Llc Audiovisual media composition system and method
CN109717722B (zh) * 2018-11-14 2021-01-26 中画高新技术产业发展(重庆)有限公司 多功能监控型电锅
CN110322465B (zh) * 2019-06-29 2020-12-25 东南大学苏州医疗器械研究院 肿瘤微球的轮廓检测方法及装置
CN110543837B (zh) * 2019-08-16 2022-03-15 北京航空航天大学 一种基于潜在目标点的可见光机场飞机检测方法
KR102330263B1 (ko) * 2019-11-22 2021-11-23 재단법인대구경북과학기술원 인공신경망을 이용한 핵 영역 검출 방법 및 그 장치
US11800056B2 (en) 2021-02-11 2023-10-24 Logitech Europe S.A. Smart webcam system
US11800048B2 (en) 2021-02-24 2023-10-24 Logitech Europe S.A. Image generating system with background replacement or modification capabilities
CN113139950B (zh) * 2021-05-08 2024-04-16 佳都科技集团股份有限公司 一种目标对象识别的方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000331143A (ja) * 1999-05-14 2000-11-30 Mitsubishi Electric Corp 画像処理方法
WO2003078965A2 (en) * 2002-03-13 2003-09-25 Q3Dm, Llc System and method for measurement of a response of localized cellular compartments
WO2003095986A1 (en) * 2002-05-14 2003-11-20 Amersham Biosciences Niagara, Inc. System and methods for rapid and automated screening of cells
US7035461B2 (en) * 2002-08-22 2006-04-25 Eastman Kodak Company Method for detecting objects in digital images
US7039222B2 (en) * 2003-02-28 2006-05-02 Eastman Kodak Company Method and system for enhancing portrait images that are processed in a batch mode
US7263220B2 (en) * 2003-02-28 2007-08-28 Eastman Kodak Company Method for detecting color objects in digital images
JP4500138B2 (ja) * 2004-09-07 2010-07-14 オリンパス株式会社 細胞画像解析方法
EP1882237A2 (en) 2005-05-13 2008-01-30 Tripath Imaging, Inc. Methods of chromogen separation-based image analysis
US7664328B2 (en) * 2005-06-24 2010-02-16 Siemens Corporation Joint classification and subtype discovery in tumor diagnosis by gene expression profiling
GB2435093A (en) * 2006-02-14 2007-08-15 Cytokinetics Inc Assay for distinguishing live and dead cells
US8060348B2 (en) * 2006-08-07 2011-11-15 General Electric Company Systems for analyzing tissue samples

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HIEU NGUYEN ET AL.: "IEEE TRANSACTIONS ON MEDICAL IMAGING", vol. 27, 1 May 2008, IEEE SERVICE CENTER, article "Shape-Driven Three-Dimensional Watersnake Segmentation of Biological Membranes in Electron Tomography", pages: 616 - 628
ILYA LEVNER ET AL.: "IEEE TRANSACTIONS ON IMAGE PROCESSING", vol. 16, 1 May 2007, IEEE SERVICE CENTER, article "Classification-Driven Watershed Segmentation", pages: 1437 - 1445
See also references of EP2556491A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016518813A (ja) * 2013-03-15 2016-06-30 ベンタナ メディカル システムズ, インコーポレイテッド デジタル・ホール・スライドの自動採点のための組織物体に基づく機械学習システム
US10176579B2 (en) 2013-03-15 2019-01-08 Ventana Medical Systems, Inc. Tissue object-based machine learning system for automated scoring of digital whole slides
WO2014172527A1 (en) * 2013-04-17 2014-10-23 General Electric Company Systems and methods for multiplexed biomarker quantitation using single cell segmentation on sequentially stained tissue
WO2019043162A1 (en) * 2017-09-01 2019-03-07 Ludwigs-Maximilians-Universität München DETECTION OF BIOLOGICAL CELLS AND CELL LINE TRACING

Also Published As

Publication number Publication date
WO2011126442A3 (en) 2011-11-24
US8300938B2 (en) 2012-10-30
JP5744177B2 (ja) 2015-07-01
EP2556491B1 (en) 2020-07-29
EP2556491A2 (en) 2013-02-13
JP2013524361A (ja) 2013-06-17
CN102834846A (zh) 2012-12-19
EP2556491A4 (en) 2017-07-05
US20110249883A1 (en) 2011-10-13

Similar Documents

Publication Publication Date Title
EP2556491B1 (en) Methods for segmenting objects in images
JP2013524361A5 (enExample)
Andres et al. Segmentation of SBFSEM volume data of neural tissue by hierarchical classification
George et al. Automated cell nuclei segmentation for breast fine needle aspiration cytology
Phoulady et al. A framework for nucleus and overlapping cytoplasm segmentation in cervical cytology extended depth of field and volume images
EP3895122B1 (en) Systems and methods for automated cell segmentation and labeling in immunofluorescence microscopy
Phoulady et al. Automatic quantification and classification of cervical cancer via adaptive nucleus shape modeling
US7574304B2 (en) Chromatin segmentation
Mabaso et al. Spot detection methods in fluorescence microscopy imaging: a review
Liu et al. Infrared ship target segmentation through integration of multiple feature maps
Florindo et al. Morphological classification of odontogenic keratocysts using Bouligand–Minkowski fractal descriptors
Abdelsamea An automatic seeded region growing for 2d biomedical image segmentation
CN116580397A (zh) 病理图像识别方法、装置、设备及存储介质
Pourakpour et al. Automated mitosis detection based on combination of effective textural and morphological features from breast cancer histology slide images
Ram et al. Symmetry-based detection of nuclei in microscopy images
Rege et al. Automatic leukemia identification system using otsu image segmentation and mser approach for microscopic smear image database
Ma et al. A counting and segmentation method of blood cell image with logical and morphological feature of cell
Ishikawa et al. Automatic segmentation of hepatocellular structure from HE-stained liver tissue
Sertel et al. An image analysis approach for detecting malignant cells in digitized H&E-stained histology images of follicular lymphoma
Tafavogh et al. Segmenting neuroblastoma tumor images and splitting overlapping cells using shortest paths between cell contour convex regions
Anantha Sivaprakasam et al. SEGMENTATION AND CLASSIFICATION OF CERVICAL CYTOLOGY IMAGES USING MORPHOLOGICAL AND STATISTICAL OPERATIONS.
Ashour et al. Neutrosophic hough transform for blood cells nuclei detection
CN116934776B (zh) 一种fish显微图像信号点区域提取方法、装置、设备及介质
Amitha et al. A survey on automatic breast cancer grading of histopathological images
Ajemba et al. Integrated segmentation of cellular structures

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180017970.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11766245

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2013503713

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 8752/DELNP/2012

Country of ref document: IN

Ref document number: 2011766245

Country of ref document: EP