WO2011125437A1 - N-オキシル化合物の製法 - Google Patents
N-オキシル化合物の製法 Download PDFInfo
- Publication number
- WO2011125437A1 WO2011125437A1 PCT/JP2011/056173 JP2011056173W WO2011125437A1 WO 2011125437 A1 WO2011125437 A1 WO 2011125437A1 JP 2011056173 W JP2011056173 W JP 2011056173W WO 2011125437 A1 WO2011125437 A1 WO 2011125437A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reaction
- hydrogen peroxide
- secondary amine
- oxyl
- solution
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D211/00—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
- C07D211/92—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with a hetero atom directly attached to the ring nitrogen atom
- C07D211/94—Oxygen atom, e.g. piperidine N-oxide
Definitions
- the present invention relates to a method for producing an N-oxyl compound that makes it possible to produce the N-oxyl compound with a high yield.
- N-oxyl compounds such as 2,2,6,6-tetramethylpiperidine-N-oxyl include, for example, radical polymerization inhibitors of unsaturated compounds, light stabilizers of organic polymer compounds, light stabilizers, redox Widely used for catalysts.
- Patent Document 1 and Patent Document 2 require a purification process for removing the metal catalyst used at the time of the reaction, which makes the production process complicated and is a simple production process. It ’s not good.
- Patent Document 3 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl used as a catalyst when purifying the reaction product is converted into the target N-oxyl compound. Therefore, it is difficult to obtain a high-purity product because it tends to remain as impurities.
- the present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for producing an N-oxyl compound capable of producing a high-purity N-oxyl compound in a high yield.
- the method for producing an N-oxyl compound of the present invention is a method for producing an N-oxyl compound by reacting a secondary amine and hydrogen peroxide, wherein the reaction is carried out in a non-reactive catalyst system. It is configured to be performed at.
- the reaction between the secondary amine and hydrogen peroxide is performed by adding the solution containing hydrogen peroxide in a plurality of times to the solution containing the secondary amine, the reactivity is further improved.
- the N-oxyl compound can be produced with a high yield.
- reaction product-containing solution after the reaction is used to Removal is facilitated, and subsequent purification steps can be facilitated.
- the component (A) containing a secondary amine contains the secondary amine, and for example, a solvent capable of dissolving the secondary amine can be blended.
- a solvent capable of dissolving the secondary amine include water, and organic solvents such as methanol, ethanol, propanol, 2-propanol, butanol, 2-butanol, tert-butanol, and other aromatic solvents such as toluene and xylene. can give. These may be used alone or in combination of two or more.
- organic solvent such as methanol, ethanol, propanol, 2-propanol, butanol, 2-butanol, tert-butanol, and other aromatic solvents such as toluene and xylene.
- these may be used alone or in combination of two or more.
- the viscosity of the component (A) itself to be supplied can be reduced.
- the secondary amine concentration of the secondary amine solution when preparing the secondary amine solution by mixing the secondary amine and the solvent is preferably set to 10 to 100% by weight, for example. Preferably, it is 50 to 100% by weight.
- the hydrogen peroxide is used for the reaction, it is used as a solution, preferably an aqueous solution in consideration of handling properties, a subsequent purification step, and the like. Therefore, in the present invention, a preferred embodiment of the component (B) containing hydrogen peroxide is a hydrogen peroxide aqueous solution having a predetermined concentration.
- the concentration of the aqueous hydrogen peroxide solution is set as appropriate, but is preferably set in the concentration range of 1 to 60% by weight, more preferably 5 to 50% by weight, particularly preferably 20 to 35% by weight. is there.
- the amount of hydrogen peroxide used is preferably 1.5 to 5.0 moles, particularly preferably 1.5 to 3.0 moles, per mole of the secondary amine. That is, if the amount of hydrogen peroxide used is too small, the reaction rate tends to decrease. Conversely, if the amount of hydrogen peroxide used is too large, hydrogen peroxide that cannot be used for the reaction remains due to excessive supply. This is because an undesirable tendency is seen in terms of cost.
- the reaction between the secondary amine and hydrogen peroxide is performed using a continuous micro-reaction channel (reaction tube).
- reaction tube The reaction is carried out using a reactor.
- Each of the solution supply devices 1a and 1b is a device that can supply a component (A) containing a secondary amine as a reaction raw material and a component (B) containing hydrogen peroxide at a constant flow rate.
- a quantitative pump such as a pump, a plunger pump, a gear pump, or a tube pump can be used. Among these, it is preferable to use a syringe pump or a plunger pump because of excellent flow rate accuracy and durability.
- the mixing device 2 mixes the reaction raw materials [liquid: component (A), component (B)] supplied from the solution supply devices 1a and 1b, and allows the two reaction raw materials to merge.
- a T-shaped connector for example, a T-shaped connector, a Y-shaped connector, a static mixer for a microfluid such as a gradient mixer, a microchip, and the like.
- a T-shaped connector that is inexpensive and easy to design is preferable.
- the micro-diameter reaction channel (reaction tube) 3 is for retaining a mixed liquid composed of reaction raw materials mixed in the mixing device 2 and reacting inside thereof.
- a mixed liquid composed of reaction raw materials mixed in the mixing device 2 and reacting inside thereof.
- SUS stainless steel
- iron titanium
- Non-metallic reaction tubes such as metal reaction tubes, such as metal and Hastelloy (registered trademark) (corrosion resistant alloy made of nickel, molybdenum, chromium, etc.)
- fluororesins such as polytetrafluoroethylene, polyether ether ketone, glass, ceramics, etc. can give.
- the reaction tube 3 preferably has an inner diameter of 0.1 to 10 mm.
- the inner diameter is the longest portion of the cross section of the tube, which corresponds to a diameter in the case of a circle, a long diameter in the case of an ellipse, and a diagonal line in the case of a rectangle.
- the length of the reaction tube 3 may be a length that can sufficiently promote and complete the reaction between the secondary amine and hydrogen peroxide, and depends on the inner diameter of the reaction tube 3 and the like. Specifically, the length of the reaction tube 3 is preferably 0.1 to 20 m, more preferably 1 to 10 m.
- examples of the reaction tube 3 include a usage method such as a mode in which the reaction tube 3 is used in a spirally wound state of several to several tens of turns.
- a pressure adjusting device for example, a backrest
- a pressure valve or the like.
- the solution supply devices 1a and 1b, the mixing device 2 for mixing the reaction raw materials supplied from the solution supply devices 1a and 1b, and the mixing device 2 and the minute diameter reaction channel (reaction tube) 3 are, for example, An embodiment in which each is connected with the same minute diameter reaction channel (reaction tube) 3 is preferable.
- the reaction temperature in the reaction tube 3 is preferably set to 40 to 120 ° C., more preferably 60 to 100 ° C., and particularly preferably 80 to 95 ° C. That is, if the reaction temperature is too low, the time for the oxidation reaction becomes long, so that the rate of hydrogen peroxide self-decomposition increases, and a lot of hydrogen peroxide tends to be required. Further, if the reaction temperature is too high, the decomposition rate of hydrogen peroxide increases, and the target reaction (oxidation reaction) tends to be difficult to proceed.
- the pressure in the continuous microreactor is preferably 0.1 to 2 MPa, more preferably 0.2 to 1 MPa, and particularly preferably 0.2 to 0.5 MPa. That is, if the pressure is too low, there is a tendency that sufficient reaction time cannot be secured due to gas (oxygen) generated by decomposition of hydrogen peroxide as a side reaction. In addition, if the pressure is too high, each device constituting the continuous microreactor must be pressure resistant, which is not economical.
- the pressure in the continuous microreactor can be adjusted, for example, by connecting a pressure regulator (not shown) such as the back pressure valve described above to the end of the reaction tube 3.
- the residence time of the reaction solution in the reaction tube 3 is preferably 10 to 120 minutes, more preferably 30 to 90 minutes. That is, if the residence time is too short, the reaction may not be completed, and if the residence time is too long, the reaction is often completed, which is not economical.
- the said residence time means what divided
- the reaction completion liquid is allowed to stand to separate into two layers of water and an organic solvent, and then the reaction is performed.
- the upper layer containing the product N-oxyl compound is collected, and then the N-oxyl compound can be purified by distilling off water and the organic solvent under reduced pressure.
- the yield of the N-oxyl compound in the embodiment a of the production method of the present invention (the production weight of the N-oxyl compound containing impurities after the purification step / theoretical N-- when the secondary amine as the raw material is reacted 100%
- the production weight of the oxyl compound is usually 90 to 100%.
- Aspect b is a method for producing an N-oxyl compound by reacting a secondary amine and hydrogen peroxide as described above, wherein the above reaction is carried out in a non-reacting catalyst system.
- the reaction step is performed, for example, by adding a solution containing hydrogen peroxide to a solution containing a secondary amine.
- the hydrogen peroxide When used for the reaction, it is used as a solution, preferably an aqueous solution in consideration of handling properties, a subsequent purification step, and the like.
- the concentration of the aqueous hydrogen peroxide solution in the embodiment b is appropriately set. For example, it is preferably set to a concentration range of 5 to 100% by weight, more preferably 10 to 80% by weight, particularly preferably 20 to 80%. % By weight.
- the reaction step in the embodiment b includes (1) a method in which a solution containing hydrogen peroxide is added to a solution containing a secondary amine in a plurality of times, and (2) a secondary amine is added.
- An example is a method of adding a large amount of a solution containing hydrogen peroxide to the solution containing the solution at a time.
- the method (1) is preferable from the viewpoint of good industrial productivity.
- a method of adding a solution containing hydrogen peroxide to a solution containing a secondary amine in a plurality of times is performed as follows, for example. That is, a secondary amine is dissolved in an organic solvent to prepare a uniform solution, and an aqueous hydrogen peroxide solution is added thereto in several portions to react the secondary amine with hydrogen peroxide to produce an N-oxyl compound. Is to produce.
- a secondary amine is dissolved in an organic solvent.
- An embodiment is also included in which a homogeneous solution is prepared, and an aqueous hydrogen peroxide solution is continuously added dropwise thereto to react the secondary amine with hydrogen peroxide.
- the reaction temperature is preferably set to 70 to 100 ° C., particularly preferably 75 to 90 ° C. That is, if the reaction temperature is too low, the time required for the oxidation reaction becomes long, so that the rate of self-decomposition of hydrogen peroxide increases and a large amount of oxidizing agent tends to be required. In addition, if the reaction temperature is too high, control of the reaction temperature by an exothermic reaction tends to be difficult, particularly in a large scale batch reaction step.
- the above reaction step is preferably performed in a mixed solvent composed of water and an organic solvent capable of forming a two-layer with water. That is, by using the organic solvent capable of forming two layers, the solvent can be easily removed from the reaction product-containing solution. For example, after removing the separated aqueous layer, the organic solvent is removed under reduced pressure. The purification process can be facilitated.
- the organic solvent capable of forming a two-layer with water may be any organic solvent having a boiling point higher than the reaction temperature.
- organic solvent having a boiling point higher than the reaction temperature.
- alcohols having 3 to 6 carbon atoms are more preferably used, and specifically, 2-propanol or the like is preferably used.
- the secondary amine concentration of the secondary amine solution when preparing the secondary amine solution by mixing the secondary amine and the organic solvent is preferably set to, for example, 5 to 80% by weight, particularly preferably. Is 20 to 60% by weight.
- the reaction step in the embodiment b is a method that is performed by, for example, adding the solution containing hydrogen peroxide in a plurality of times to the solution containing (1) the secondary amine
- the secondary step is performed. After mixing the amine and the organic solvent to prepare a secondary amine solution with a predetermined concentration, after adjusting a hydrogen peroxide aqueous solution with a predetermined concentration, the hydrogen peroxide aqueous solution is divided into the secondary amine solution in multiple times. Is added.
- the reaction liquid obtained after the reaction of the secondary amine and hydrogen peroxide in the reaction step in aspect b may contain impurities
- the purification method include methods such as distillation under reduced pressure and filtration.
- the yield of the N-oxyl compound in the embodiment b of the production method of the present invention (the weight of the N-oxyl compound containing impurities after the purification step / theoretical N-- when the secondary amine as the raw material is reacted 100%
- the production weight of the oxyl compound is usually 90 to 100%.
- the N-oxyl compound obtained by the production method of the present invention can be used for applications such as radical polymerization inhibitors of unsaturated compounds, light stabilizers of organic polymer compounds, light stabilizers, redox catalysts, and the like. it can.
- Solution supply device Syringe pump (trade name: Model11-Plus, manufactured by Harvard)
- Mixing device T-shaped connector (trade name: T-shaped union (manufactured by GL Sciences), material: polyetheretherketone)
- Micro-diameter reaction channel reaction tube: Cylindrical polytetrafluoroethylene tube (inner diameter 1 mm x length 10 m)
- Pressure regulator Back pressure valve (Product name: Back pressure regulator (manufactured by GL Sciences), Material: Polyetheretherketone, Operating pressure: 0.28 MPa)
- ⁇ Device configuration> The cylindrical polytetrafluoroethylene tubes (each of which is coated with an aluminum foil) are connected to the two syringe pumps, and the other ends of the tubes are connected to a T-shaped connector. At the outlet of the T-shaped connector, a cylindrical polytetrafluoroethylene tube through which the mixed reaction raw material is circulated is connected, and the tube is wound 30 times with a diameter of about 15 cm. Immerse in a water bath set at a predetermined temperature. Next, the tube extending from the water bath is connected to the reaction liquid outlet through a pressure adjusting device (back pressure valve) on the way.
- a pressure adjusting device back pressure valve
- Example a-3 Reaction in non-organic solvent system
- the resulting reaction solution had a TEMPO conversion rate (conversion rate of the charged TEMP to TEMPO) of 90.3%, the hydrogen peroxide concentration in the aqueous phase was 8.4%, and no by-product was detected. .
- reaction rate is the conversion rate of the charged 2,2,6,6-tetramethylpiperidine to 2,2,6,6-tetramethylpiperidine-N-oxyl.
- the yield is [(weight of 2,2,6,6-tetramethylpiperidine-N-oxyl containing impurities obtained after purification) / (100% of 2,2,6,6-tetramethylpiperidine charged]. % Theoretical production when reacting 2,2,6,6-tetramethylpiperidine-N-oxyl weight) ⁇ 100].
- Example b-1 (Addition in multiple times) Into a 500 ml flask, 20 g (0.142 mol) of 2,2,6,6-tetramethylpiperidine (TEMP) and 34 g of 2-propanol (IPA) were respectively added and mixed to obtain a homogeneous solution, which was adjusted to 80 ° C. . Next, 68 g (0.70 mol) of a 35 wt% aqueous hydrogen peroxide solution was added thereto and reacted for 6 hours. The hydrogen peroxide was added in 6 equal portions every hour (total 6 additions). The reaction rate between TEMP and hydrogen peroxide (conversion rate of 2,2,6,6-tetramethylpiperidine charged to 2,2,6,6-tetramethylpiperidine-N-oxyl) is 99% or more. there were.
- TEMP 2,2,6,6-tetramethylpiperidine
- IPA 2-propanol
- reaction solution is cooled and allowed to stand to separate into two layers.
- the upper layer is collected, and water and 2-propanol are distilled off under reduced pressure to obtain 2,2,6,6-tetramethylpiperazine-N.
- 20.1 g of oxyl (TEMPO) yield 91%, purity 99% or more was obtained. No sodium tungstate was detected from the obtained 2,2,6,6-tetramethylpiperazine-N-oxyl.
- Example b-2 (Addition in multiple times) Into a 500 ml flask, 20 g (0.142 mol) of 2,2,6,6-tetramethylpiperidine (TEMP) and 34 g of 2-propanol (IPA) were respectively added and mixed to obtain a homogeneous solution, which was adjusted to 80 ° C. . Next, 45.3 g (0.47 mol) of a 35% by weight aqueous hydrogen peroxide solution was added thereto and reacted for 4 hours. Hydrogen peroxide was divided into four equal parts and added every hour (total four times). The reaction rate between TEMP and hydrogen peroxide (conversion rate of 2,2,6,6-tetramethylpiperidine charged to 2,2,6,6-tetramethylpiperidine-N-oxyl) is 99% or more. there were.
- TEMP 2,2,6,6-tetramethylpiperidine
- IPA 2-propanol
- reaction solution is cooled and allowed to stand to separate into two layers.
- the upper layer is collected, and water and 2-propanol are distilled off under reduced pressure to obtain 2,2,6,6-tetramethylpiperazine-N.
- 20.3 g of oxyl (TEMPO) yield 92%, purity 99% or more was obtained. No sodium tungstate was detected from the obtained 2,2,6,6-tetramethylpiperazine-N-oxyl.
- Example b-3 (added all at once) The same operation as in Example 1 was performed except that 68 g (0.70 mol) of a 35 wt% aqueous hydrogen peroxide solution was added all at once. As a result, the reaction rate between the TEMP and hydrogen peroxide (conversion rate of the charged 2,2,6,6-tetramethylpiperidine to 2,2,6,6-tetramethylpiperidine-N-oxyl) was 95. %Met.
- Example b-5 (Addition in multiple times) 20 g (0.142 mol) of 2,2,6,6-tetramethylpiperidine (TEMP) was replaced with 19.5 g (0.142 mol) of 2-azaadamantane. Otherwise, the same operation as in Example 1 was performed. As a result, the reaction rate between 2-azaadamantane and hydrogen peroxide (conversion rate of charged 2-azaadamantane to 2-azaadamantane-N-oxyl) was 99% or more.
- TMP 2,2,6,6-tetramethylpiperidine
- Example b-7 (Addition in multiple times) The total addition amount of the 35 wt% aqueous hydrogen peroxide solution was changed to 82.6 g (0.85 mol). Otherwise, the same operation as in Example 1 was performed. As a result, the reaction rate between TEMP and hydrogen peroxide (conversion rate of 2,2,6,6-tetramethylpiperidine charged to 2,2,6,6-tetramethylpiperidine-N-oxyl) was 99. % Or more.
- reaction solution is cooled and allowed to stand to separate into two layers.
- the upper layer is collected, and water and 2-propanol are distilled off under reduced pressure to obtain 2,2,6,6-tetramethylpiperazine-N.
- TEMPO oxyl
- No sodium tungstate was detected from the obtained 2,2,6,6-tetramethylpiperazine-N-oxyl.
- the detection of the above-mentioned sodium tungstate was performed by analyzing the tungsten concentration by ICP emission spectroscopic analysis, and when detected, it was converted to the amount of sodium tungstate.
- Example b-1, 2 in which a 35% by weight aqueous hydrogen peroxide solution was added in several portions to a 2-propanol solution containing 2,2,6,6-tetramethylpiperidine (TEMP) or 2-azaadamantane. , 4-7, TEMPO or 2-azaadamantane-N-oxyl having a particularly high yield and high purity was obtained.
- TMP 2,2,6,6-tetramethylpiperidine
- 2-azaadamantane-N-oxyl having a particularly high yield and high purity was obtained.
- the N-oxyl compound obtained by the production method of the present invention can be used, for example, as a radical polymerization inhibitor for unsaturated compounds, a light stabilizer for organic polymer compounds, a light resistance agent, a redox catalyst, and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Hydrogenated Pyridines (AREA)
Abstract
本発明は、高純度のN-オキシル化合物を高収率で製造することのできるN-オキシル化合物の製法の提供を目的とする。本発明は、二級アミンと過酸化水素とを反応させてN-オキシル化合物を製造する方法であって、上記反応を非反応触媒系にて行なうことによりN-オキシル化合物を製造するというものである。
Description
本発明は、高収率にてN-オキシル化合物を製造することが可能となるN-オキシル化合物の製法に関するものである。
従来から、2,2,6,6-テトラメチルピペリジン-N-オキシル等のN-オキシル化合物は、例えば、不飽和化合物のラジカル重合禁止剤、有機高分子化合物の光安定剤、耐光剤、レドックス触媒等に多用されている。
一般的に、上記N-オキシル化合物は、二級アミンを過酸化水素で酸化することにより得られることは知られている。しかしながら、上記過酸化水素は容易に分解して水と酸素を生成することから、いかに上記酸化反応に供することができるようにするかが重要である。
このようなことから、二級アミンと過酸化水素との反応において二価の金属塩を触媒として使用することが提案されている(特許文献1参照)。また、二級アミンと過酸化水素との反応において、タングステン化合物を触媒として使用することが提案されている(特許文献2参照)。このように、上記触媒を用いることによって過酸化水素が効率的に酸化反応に寄与されるのである。
さらに、二級アミンと過酸化水素との反応において、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-N-オキシルを触媒として使用することが提案されている(特許文献3参照)。
しかしながら、特許文献1および特許文献2の製法では、反応時に用いた上記金属系触媒を除くための精製工程が必要となることから、製造工程が煩雑となってしまい、簡便な製法であるとはいい難い。
また、特許文献3の製法では、反応生成物を精製する際に、触媒として使用した4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-N-オキシルを、目的とするN-オキシル化合物と分離することが困難であるため、不純物として残存しやすく、高純度のものを得ることが困難であった。
本発明は、このような事情に鑑みなされたもので、高純度のN-オキシル化合物を高収率で製造することのできるN-オキシル化合物の製法の提供をその目的とする。
上記の目的を達成するため、本発明のN-オキシル化合物の製法は、二級アミンと過酸化水素とを反応させてN-オキシル化合物を製造する方法であって、上記反応を非反応触媒系にて行なうという構成をとる。
すなわち、本発明者らは、N-オキシル化合物の製造に際して、高純度のものをより収率良く製造できる方法はないか研究を重ねた。そして、触媒を用いて反応を行なうという従来の技術常識にとらわれず、新たな視点から検討を重ね結果、二級アミンと過酸化水素との反応に際して、反応触媒を用いずに両者を反応させることを想起した。この思想に基づき反応触媒を用いないという非反応触媒系にて二級アミンと過酸化水素との反応を行なうと、高純度のN-オキシル化合物が得られることはもちろん、触媒を用いないことから、反応生成物から触媒を除去するという工程を経由する必要もなく、高収率でN-オキシル化合物が得られることを見出し、本発明に到達した。
そして、上記非反応触媒系での二級アミンと過酸化水素との反応に際して、例えば、微小径反応流路を備えた連続式マイクロ反応装置を用い、これに反応原料である二級アミンと過酸化水素を投入し、上記微小径反応流路内にて二級アミンと過酸化水素を反応させると、反応効率良く高純度のN-オキシル化合物が得られることを突き止めた。
このように、本発明のN-オキシル化合物の製法は、二級アミンと過酸化水素とを反応させてN-オキシル化合物を製造するに際して、上記反応を非反応触媒系にて行なうものである。このため、反応生成物に触媒である不純物が混入することもなく高純度のN-オキシル化合物を高収率で得ることが可能となる。しかも、触媒を使用しないことから、触媒を除去するための煩雑な精製工程を経由する必要もなく、製造工程の簡略化が図られる。
そして、上記二級アミンと過酸化水素とを反応させてN-オキシル化合物を製造するに際して、微小径反応流路を備えた連続式マイクロ反応装置を用い、これに反応原料である二級アミンを含む成分(A)と過酸化水素を含む成分(B)を投入し、上記微小径反応流路内にて二級アミンと過酸化水素を反応させることによりN-オキシル化合物を製造する方法を採用すると、高純度のN-オキシル化合物を高収率で得ることが可能となる。しかも、二級アミンと過酸化水素の反応を微小径反応流路にて行なうことから、反応の際に生じる発熱を容易に除去することができる。
また、上記二級アミンと過酸化水素との反応を、非有機溶媒系にて行なうと、環境への影響の低減および低コスト化が図られる。
そして、上記二級アミンと過酸化水素との反応を、上記二級アミンを含む溶液に、上記過酸化水素を含む溶液を複数回に分けて添加することにより行なうと、より一層反応性が向上して高収率でN-オキシル化合物を製造することができる。
また、上記二級アミンと過酸化水素との反応を、70~100℃の温度雰囲気下にて行なうと、反応性の制御が容易となり、反応性の向上により高収率でN-オキシル化合物を製造することができる。
さらに、上記二級アミンと過酸化水素との反応を、水および水との二層形成可能な有機溶媒からなる混合溶媒中にて行なうと、反応後の反応生成物含有溶液から、水層の除去が容易となり、後の精製工程を容易にすることが可能となる。
つぎに、本発明の実施の形態について詳しく説明する。ただし、本発明は、この実施の形態に限定されるものではない。
本発明のN-オキシル化合物の製法は、二級アミンと過酸化水素とを反応させてN-オキシル化合物を製造する方法であり、上記反応を非反応触媒系にて行なうことを最大の特徴とする。なお、本発明において、二級アミンと過酸化水素との反応を非反応触媒系にて行なうとは、二級アミンと過酸化水素とを反応させる際に、上記反応を促進させるための触媒を一切使用しないことを意味する。
本発明のN-オキシル化合物の製法では、二つの態様に大別することができる。一つは、製造工程および使用する装置に基づく製法(態様a)であり、もう一つは反応形態に基づく製法(態様b)である。
〔態様a〕
上記製造工程および使用する装置に基づく製法(態様a)について詳しく述べる。
上記製法は、二級アミンと過酸化水素とを反応させてN-オキシル化合物を製造するに際して、微小径反応流路を備えた連続式マイクロ反応装置を用いることを最大の特徴とする。そして、上記二級アミンと過酸化水素との反応では、上記二級アミンを含有する成分(A)と、過酸化水素を含む成分(B)を上記連続式マイクロ反応装置に投入し、上記微小径反応流路内にて二級アミンと過酸化水素との反応を行なう。
上記製造工程および使用する装置に基づく製法(態様a)について詳しく述べる。
上記製法は、二級アミンと過酸化水素とを反応させてN-オキシル化合物を製造するに際して、微小径反応流路を備えた連続式マイクロ反応装置を用いることを最大の特徴とする。そして、上記二級アミンと過酸化水素との反応では、上記二級アミンを含有する成分(A)と、過酸化水素を含む成分(B)を上記連続式マイクロ反応装置に投入し、上記微小径反応流路内にて二級アミンと過酸化水素との反応を行なう。
《反応材料》
<二級アミンを含む成分(A)>
上記二級アミンは、2つの三級炭素原子が結合した二級アミノ基を有する化合物である。このような化合物としては、例えば、2,2,6,6-テトラメチルピペリジン(TEMP)、4-アセトキシ-2,2,6,6-テトラメチルピペリジン、4-プロピオニルオキシ-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン、4-メトキシ-2,2,6,6-テトラメチルピペリジン、4-エトキシ-2,2,6,6-テトラメチルピペリジン、4-ベンジルオキシ-2,2,6,6-テトラメチルピペリジン、4-アセトアミド-2,2,6,6-テトラメチルピペリジン、4-オキソ-2,2,6,6-テトラメチルピペリジン、2,2,5,5-テトラメチルピロリジン、ジ-tert-ブチルアミン、2-アザアダマンタン、1-メチル-2-アザアダマンタン等があげられる。これらは単独でもしくは2種以上併せて用いられる。中でも、入手し易さ等の観点から、2,2,6,6-テトラメチルピペリジン(TEMP)が好ましく用いられる。
<二級アミンを含む成分(A)>
上記二級アミンは、2つの三級炭素原子が結合した二級アミノ基を有する化合物である。このような化合物としては、例えば、2,2,6,6-テトラメチルピペリジン(TEMP)、4-アセトキシ-2,2,6,6-テトラメチルピペリジン、4-プロピオニルオキシ-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン、4-メトキシ-2,2,6,6-テトラメチルピペリジン、4-エトキシ-2,2,6,6-テトラメチルピペリジン、4-ベンジルオキシ-2,2,6,6-テトラメチルピペリジン、4-アセトアミド-2,2,6,6-テトラメチルピペリジン、4-オキソ-2,2,6,6-テトラメチルピペリジン、2,2,5,5-テトラメチルピロリジン、ジ-tert-ブチルアミン、2-アザアダマンタン、1-メチル-2-アザアダマンタン等があげられる。これらは単独でもしくは2種以上併せて用いられる。中でも、入手し易さ等の観点から、2,2,6,6-テトラメチルピペリジン(TEMP)が好ましく用いられる。
上記態様aにおいて、二級アミンを含む成分(A)は、上記二級アミンを含むものであり、例えば、上記二級アミンを溶解可能な溶媒を配合することができる。このような溶媒としては、水、さらには、メタノール、エタノール、プロパノール、2-プロパノール、ブタノール、2-ブタノール、tert-ブタノール等のアルコール類、トルエン、キシレン等の芳香族系溶媒等の有機溶媒があげられる。これらは単独でもしくは2種以上併せて用いられる。このような溶媒を用いることにより、供給する成分(A)自体の粘度を低下させることができる。ただし、環境に対する影響および経済性の観点から、有機溶媒を使用しないことが好ましい。このようなことから、二級アミンを含む成分(A)としては、二級アミンのみから構成されることが好ましい。
なお、上記二級アミンと上記溶媒とを混合して二級アミン溶液を調整する際の二級アミン溶液の二級アミン濃度としては、例えば、10~100重量%に設定することが好ましく、特に好ましくは50~100重量%である。
<過酸化水素を含む成分(B)>
上記過酸化水素は、反応に供する際には、取り扱い性、後の精製工程等を考慮して溶液、好適には水溶液として用いられる。したがって、本発明において、過酸化水素を含む成分(B)の好ましい態様としては、所定濃度の過酸化水素水溶液があげられる。この過酸化水素水溶液の濃度は、適宜設定されるが、例えば、1~60重量%の濃度範囲に設定することが好ましく、より好ましくは5~50重量%、特に好ましくは20~35重量%である。
上記過酸化水素は、反応に供する際には、取り扱い性、後の精製工程等を考慮して溶液、好適には水溶液として用いられる。したがって、本発明において、過酸化水素を含む成分(B)の好ましい態様としては、所定濃度の過酸化水素水溶液があげられる。この過酸化水素水溶液の濃度は、適宜設定されるが、例えば、1~60重量%の濃度範囲に設定することが好ましく、より好ましくは5~50重量%、特に好ましくは20~35重量%である。
つぎに、反応材料の使用割合について述べる。上記過酸化水素の使用量は、上記二級アミン1モルに対して過酸化水素1.5~5.0モルであることが好ましく、特に好ましくは1.5~3.0モルである。すなわち、過酸化水素の使用量が少なすぎると、反応率が低下するという傾向がみられ、逆に過酸化水素の使用量が多すぎると、過剰供給により反応に供しない過酸化水素が残存してしまいコストの面で好ましくない傾向がみられるからである。
《連続式マイクロ反応装置》
本発明のN-オキシル化合物の製法のうち態様aは、先に述べたように、上記二級アミンと過酸化水素との反応を、微小径反応流路(反応管)を備えた連続式マイクロ反応装置を用いて行なうことを特徴とする。
本発明のN-オキシル化合物の製法のうち態様aは、先に述べたように、上記二級アミンと過酸化水素との反応を、微小径反応流路(反応管)を備えた連続式マイクロ反応装置を用いて行なうことを特徴とする。
上記連続式マイクロ反応装置は、例えば、図1に示すように、二種類の反応原料〔二級アミンを含む成分(A)、過酸化水素を含む成分(B)〕を供給する各溶液供給装置1a,1bと、上記各溶液供給装置1a,1bから供給された反応原料を混合する混合装置2と、上記混合装置2にて混合した反応原料を反応させるための微小径反応流路(反応管)3とを備えた構成からなる。
上記各溶液供給装置1a,1bは、反応原料である二級アミンを含む成分(A)および上記過酸化水素を含む成分(B)をそれぞれ一定流量で供給可能とする装置であり、例えば、シリンジポンプ、プランジャポンプ、ギアポンプ、チューブポンプ等の定量式ポンプを用いることができる。これらのうち、流量の精度や耐久性に優れることからシリンジポンプまたはプランジャポンプを用いることが好ましい。
上記溶液供給装置1a,1bでは、反応原料である二級アミンを含む成分(A)と、上記過酸化水素を含む成分(B)をそれぞれ一定流量で供給するが、互いの流量比は、各成分の粘度等により適宜に設定され、二級アミンと過酸化水素とのモル比が先に述べた割合であればよい。具体的には、経済性,反応性等の点から、反応原料である二級アミンを含む成分(A)の流量と、上記過酸化水素を含む成分(B)の流量の比が、体積基準(体積比)で、〔成分(A)の流量〕/〔成分(B)の流量〕=0.2/1~10/1であることが好ましく、より好ましくは0.5/1~3/1である。
上記混合装置2は、上記溶液供給装置1a,1bから供給された反応原料〔液状:成分(A),成分(B)〕を混合するものであり、上記二つの反応原料が合流可能な混合形式を備えるものであればよく、例えば、T字コネクタ、Y字コネクタ、グラジエントミキサー等の微量流体用静止型混合器、マイクロチップ等があげられる。中でも、価格が安価であり、装置設計が容易であるT字コネクタが好ましい。
上記微小径反応流路(反応管)3は、上記混合装置2にて混合された反応原料からなる混合液を滞留させ内部で反応させるものであり、例えば、SUS(ステンレス鋼)や鉄、チタンやハステロイ(登録商標)(ニッケルやモリブデン、クロム等からなる耐食合金)等の金属製反応管、ポリテトラフルオロエチレン等のフッ素樹脂、ポリエーテルエーテルケトンやガラス、セラミックス等の非金属製反応管があげられる。これらのうち、過酸化水素の分解反応を促進しないという点から非金属製反応管を用いることが好ましく、さらにはフッ素樹脂、ポリエーテルエーテルケトン、あるいはガラスからなる反応管がより好ましい。上記反応管3の断面形状は、円形の他、楕円形や四角形等各種形状があげられる。また、上記反応管3は、途中で2以上の経路に分岐していてもよく、2以上の経路が合流してもよい。
そして、上記反応管3は、内径が0.1~10mmであることが好ましい。上記内径は、管の断面の最も長い部分であり、円形の場合は直径、楕円の場合は長径、四角形の場合は対角線がこれに該当する。
さらに、上記反応管3の長さに関しては、二級アミンと過酸化水素との反応を充分に促進させ完結させることが可能な長さであればよく、反応管3の内径等にもよるが、具体的には、上記反応管3の長さは0.1~20mであることが好ましく、より好ましくは1~10mである。
また、上記反応管3としては、例えば、螺旋状に数巻~数十巻程度巻回した状態にて使用する態様等の使用方法があげられる。
そして、上記反応管3の反応領域から反応生成物取り出し口までの間に、反応により上記反応管3内部で一定圧力を超えた場合に、圧力を外部に逃がすための圧力調整装置(例えば、背圧弁等)を設けることが好ましい。
上記溶液供給装置1a,1bと、上記溶液供給装置1a,1bから供給された反応原料を混合する混合装置2、および、上記混合装置2と微小径反応流路(反応管)3は、例えば、それぞれ微小径反応流路(反応管)3と同じもので接続される態様が好ましい。
《反応条件》
上記反応管3での反応温度は、40~120℃に設定することが好ましく、より好ましくは60~100℃、特に好ましくは80~95℃である。すなわち、反応温度が低すぎると、酸化反応の時間が長くなることから、過酸化水素の自己分解の割合が多くなり、多くの過酸化水素が必要となる傾向がある。また、反応温度が高すぎると、過酸化水素の分解速度が大きくなり、目的の反応(酸化反応)が進みにくくなる傾向がみられるからである。
上記反応管3での反応温度は、40~120℃に設定することが好ましく、より好ましくは60~100℃、特に好ましくは80~95℃である。すなわち、反応温度が低すぎると、酸化反応の時間が長くなることから、過酸化水素の自己分解の割合が多くなり、多くの過酸化水素が必要となる傾向がある。また、反応温度が高すぎると、過酸化水素の分解速度が大きくなり、目的の反応(酸化反応)が進みにくくなる傾向がみられるからである。
このような反応温度に設定するには、例えば、反応管3を所望の温度に設定したウォーターバスやオイルバス等の媒体槽に浸漬する態様、反応管3全体に加熱ヒーター等を設置する態様、反応管3を所望の温度に設定した加熱炉内に設置する態様等があげられる。
上記連続式マイクロ反応装置内の圧力は、0.1~2MPaであることが好ましく、より好ましくは0.2~1MPa、特に好ましくは0.2~0.5MPaである。すなわち、圧力が低すぎると、副反応である過酸化水素の分解によって生じる気体(酸素)により、充分な反応時間を確保できなくなる傾向が生じる。また、圧力が高すぎると、連続式マイクロ反応装置を構成する各装置を耐圧仕様としなければならず、経済的ではないからである。なお、上記連続式マイクロ反応装置内の圧力調整は、例えば、上述の背圧弁等の圧力調整装置(図示せず)を反応管3の末端に接続することにより行なうことができる。
本発明における反応液の反応管3内での滞留時間は、10~120分間であることが好ましく、より好ましくは30~90分間である。すなわち、滞留時間が短すぎると、反応が完了していないおそれがあり、滞留時間が長すぎると、すでに反応が完了している場合が多く経済的ではないからである。なお、上記滞留時間とは、反応管3容量を、1分間における上記成分(A)および成分(B)の流量の和で除したものをいう。
そして、態様aにおいては、上記二級アミンと過酸化水素との反応を連続式マイクロ反応装置の微小径反応流路(反応管)3内にて行なう際に、上記反応を非反応触媒系にて行なう。このように、反応系触媒を用いず反応を行なうことにより、反応液からは溶媒を除去するのみで、高純度の反応生成物であるN-オキシル化合物を容易に得ることができ、生産性の向上が図られる。
また、態様aにおいては、上記二級アミンと過酸化水素との反応を連続式マイクロ反応装置の微小径反応流路(反応管)3内にて行なう際には、上記反応を非有機溶媒系にて行なうことが好ましい。具体的には、先に述べたように、前記二級アミンを含む成分(A)として、二級アミンのみから構成されてなるものを用いることが好ましい。このように、非有機溶媒系、すなわち、実質的に有機溶媒を用いずに反応を行なうことが環境に対する影響および経済性の観点から好ましい。
《精製工程》
上記二級アミンと過酸化水素との反応終了後、得られた反応液中には、不純物等が含まれる可能性があるため、上記不純物と、生成した反応生成物であるN-オキシル化合物とを分離してN-オキシル化合物を精製することが好ましい。上記精製方法としては、例えば、減圧留去、ろ過等の方法が用いられる。
上記二級アミンと過酸化水素との反応終了後、得られた反応液中には、不純物等が含まれる可能性があるため、上記不純物と、生成した反応生成物であるN-オキシル化合物とを分離してN-オキシル化合物を精製することが好ましい。上記精製方法としては、例えば、減圧留去、ろ過等の方法が用いられる。
例えば、反応系に水および水との二層形成可能な有機溶媒からなる混合溶媒を用いた場合には、反応終了液を静置して水と有機溶媒の二層に分離させた後、反応生成物であるN-オキシル化合物を含む上層を採取し、ついで水および有機溶媒を減圧留去することにより、N-オキシル化合物を精製することができる。
本発明の製法の態様aにおける、N-オキシル化合物の収率(精製工程後の不純物を含むN-オキシル化合物の生成重量/原料である二級アミンが100%反応した場合の理論上のN-オキシル化合物の生成重量)は、通常、90~100%である。
〔態様b〕
態様bは、前述のとおり、二級アミンと過酸化水素とを反応させてN-オキシル化合物を製造する方法であって、上記反応を非反応触媒系にて行なうことを特徴とするものであり、その反応工程は、例えば、二級アミンを含む溶液に過酸化水素を含む溶液を添加することにより行なわれる。
態様bは、前述のとおり、二級アミンと過酸化水素とを反応させてN-オキシル化合物を製造する方法であって、上記反応を非反応触媒系にて行なうことを特徴とするものであり、その反応工程は、例えば、二級アミンを含む溶液に過酸化水素を含む溶液を添加することにより行なわれる。
《反応材料》
上記二級アミンとしては、前記態様aにて述べたと同様、2つの三級炭素原子が結合した二級アミノ基を有する化合物が用いられる。このような化合物としては、例えば、2,2,6,6-テトラメチルピペリジン(TEMP)、4-アセトキシ-2,2,6,6-テトラメチルピペリジン、4-プロピオニルオキシ-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン、4-メトキシ-2,2,6,6-テトラメチルピペリジン、4-エトキシ-2,2,6,6-テトラメチルピペリジン、4-ベンジルオキシ-2,2,6,6-テトラメチルピペリジン、4-アセトアミド-2,2,6,6-テトラメチルピペリジン、4-オキソ-2,2,6,6-テトラメチルピペリジン、2,2,5,5-テトラメチルピロリジン、ジ-tert-ブチルアミン、2-アザアダマンタン、1-メチル-2-アザアダマンタン等があげられる。これらは単独でもしくは2種以上併せて用いられる。中でも、入手し易さ等の観点から、2,2,6,6-テトラメチルピペリジン(TEMP)が好ましく用いられる。
上記二級アミンとしては、前記態様aにて述べたと同様、2つの三級炭素原子が結合した二級アミノ基を有する化合物が用いられる。このような化合物としては、例えば、2,2,6,6-テトラメチルピペリジン(TEMP)、4-アセトキシ-2,2,6,6-テトラメチルピペリジン、4-プロピオニルオキシ-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン、4-メトキシ-2,2,6,6-テトラメチルピペリジン、4-エトキシ-2,2,6,6-テトラメチルピペリジン、4-ベンジルオキシ-2,2,6,6-テトラメチルピペリジン、4-アセトアミド-2,2,6,6-テトラメチルピペリジン、4-オキソ-2,2,6,6-テトラメチルピペリジン、2,2,5,5-テトラメチルピロリジン、ジ-tert-ブチルアミン、2-アザアダマンタン、1-メチル-2-アザアダマンタン等があげられる。これらは単独でもしくは2種以上併せて用いられる。中でも、入手し易さ等の観点から、2,2,6,6-テトラメチルピペリジン(TEMP)が好ましく用いられる。
上記過酸化水素は、反応に供する際には、取り扱い性、後の精製工程等を考慮して溶液、好適には水溶液として用いられる。態様bにおける過酸化水素水溶液の濃度としては、適宜設定されるが、例えば、5~100重量%の濃度範囲に設定することが好ましく、より好ましくは10~80重量%、特に好ましくは20~80重量%である。
態様bにおける上記過酸化水素の使用量は、上記二級アミン1モルに対して過酸化水素1.5~10.0モルに設定することが好ましく、特に好ましくは3.0~6.0モルに設定することである。すなわち、過酸化水素の使用量が少なすぎると、反応率が低下する傾向がみられ、逆に過酸化水素の使用量が多すぎると、過剰供給により反応に供しない過酸化水素が残存してしまいコストの面で好ましくない傾向がみられるからである。
《反応工程》
態様bにおける反応工程としては、具体的には、(1)二級アミンを含む溶液に、過酸化水素を含む溶液を複数回に分けて添加することにより行なう方法、(2)二級アミンを含む溶液に、過酸化水素を含む溶液を一度に大量に添加する方法があげられる。中でも、工業的生産性が良好であるという点から、上記(1)の方法が好ましい。
態様bにおける反応工程としては、具体的には、(1)二級アミンを含む溶液に、過酸化水素を含む溶液を複数回に分けて添加することにより行なう方法、(2)二級アミンを含む溶液に、過酸化水素を含む溶液を一度に大量に添加する方法があげられる。中でも、工業的生産性が良好であるという点から、上記(1)の方法が好ましい。
上記(1)二級アミンを含む溶液に、過酸化水素を含む溶液を複数回に分けて添加することにより行なう方法は、例えば、つぎのようにして行なわれる。すなわち、二級アミンを有機溶媒に溶解して均一溶液を調製し、これに過酸化水素水溶液を複数回に分けて添加して、二級アミンと過酸化水素を反応させて、N-オキシル化合物を作製するというものである。
上記二級アミンを含む溶液に、過酸化水素を含む溶液を複数回に分けて添加する際の回数としては、例えば、2~50回に設定することが好ましく、特に好ましくは3~10回である。また、上記過酸化水素を含む溶液を複数回に分けて添加する際の添加の間隔(時間)としては、例えば、5~300分間に設定することが好ましく、特に好ましくは10~120分間である。
上記過酸化水素を含む溶液を複数回に分けて添加して二級アミンと過酸化水素とを反応させるための反応時間の合計は、例えば、1~20時間に設定することが好ましく、特に好ましくは2~10時間である。
なお、上記過酸化水素を含む溶液を複数回に分けて添加するという工程には、間隔を空けて複数回に分けて添加するという態様以外に、例えば、二級アミンを有機溶媒に溶解して均一溶液を調製し、これに過酸化水素水溶液を継続的に滴下して添加し、二級アミンと過酸化水素を反応させるという態様も含む。
一方、上記(2)二級アミンを含む溶液に、過酸化水素を含む溶液を一度に大量に添加する方法としては、過酸化水素を含む溶液の添加量を二級アミン1モルに対して6モル以下に設定することが好ましい。なお、この方法における添加量の下限は、通常2モルである。このような添加量に設定することにより、急激な反応熱による過度の温度上昇を防止することが可能となる。
態様bにおける二級アミンと過酸化水素との反応工程では、その反応温度を70~100℃に設定することが好ましく、特に好ましくは75~90℃である。すなわち、反応温度が低すぎると、酸化反応に要する時間が長くなることから、過酸化水素の自己分解の割合が多くなり、多くの酸化剤が必要となる傾向がみられる。また、反応温度が高すぎると、特に規模の大きい回分反応工程の場合、発熱反応による反応温度の制御が困難となる傾向がみられるからである。
上記反応工程は、水および水との二層形成可能な有機溶媒からなる混合溶媒中にて行なうことが好ましい。すなわち、上記二層形成可能な有機溶媒を用いることにより、反応生成物含有溶液から溶媒の除去が容易となり、例えば、分離した水層を除去した後、有機溶媒を減圧除去するというように、後の精製工程を容易にすることが可能となる。
上記水との二層形成可能な有機溶媒としては、反応温度より高い沸点を有する有機溶媒であればよく、例えば、2-プロパノール、2-ブタノール、tert-ブタノール、2-ペンタノール、2-ヘキサノール、シクロヘキサノール等の炭素数3~6の2級または3級アルコール、トルエン、キシレン等の芳香族系溶媒等があげられる。これらのうち、炭素数3~6のアルコールを用いることがより好ましく、具体的には、2-プロパノール等が好ましく用いられる。
上記混合溶媒の使用態様としては、具体的には、水および水との二層形成可能な有機溶媒からなる混合溶媒をそのまま用いるのではなく、二級アミンと上記有機溶媒とを混合して二級アミン溶液を調整するとともに、過酸化水素の水溶液を調整して両者を反応工程に供して反応系を上記水および水との二層形成可能な有機溶媒からなる混合溶媒とする態様が好ましい。
上記二級アミンと上記有機溶媒とを混合して二級アミン溶液を調整する際の二級アミン溶液の二級アミン濃度としては、例えば、5~80重量%に設定することが好ましく、特に好ましくは20~60重量%である。
したがって、態様bでの反応工程が、例えば、上記(1)二級アミンを含む溶液に、過酸化水素を含む溶液を複数回に分けて添加することにより行なう方法である場合には、二級アミンと上記有機溶媒とを混合して所定濃度の二級アミン溶液を調整するとともに、所定の濃度の過酸化水素水溶液を調整した後、上記二級アミン溶液に過酸化水素水溶液を複数回に分けて添加する方法が行なわれる。
《精製工程》
前述の態様aと同様、態様bでの反応工程にて上記二級アミンと過酸化水素との反応終了後、得られた反応液中には、不純物等が含まれる可能性があるため、上記不純物と、反応生成物であるN-オキシル化合物とを分離してN-オキシル化合物を精製することが好ましい。上記精製方法としては、例えば、減圧留去、ろ過等の方法が用いられる。
前述の態様aと同様、態様bでの反応工程にて上記二級アミンと過酸化水素との反応終了後、得られた反応液中には、不純物等が含まれる可能性があるため、上記不純物と、反応生成物であるN-オキシル化合物とを分離してN-オキシル化合物を精製することが好ましい。上記精製方法としては、例えば、減圧留去、ろ過等の方法が用いられる。
例えば、反応系に上記水および水との二層形成可能な有機溶媒からなる混合溶媒を用いた場合には、反応終了液を静置して水と有機溶媒の二層に分離させた後、反応生成物であるN-オキシル化合物を含む上層を採取し、ついで水および有機溶媒を減圧留去することにより、N-オキシル化合物を精製することができる。
本発明の製法の態様bにおける、N-オキシル化合物の収率(精製工程後の不純物を含むN-オキシル化合物の生成重量/原料である二級アミンが100%反応した場合の理論上のN-オキシル化合物の生成重量)は、通常、90~100%である。
このようにして本発明の製法により得られたN-オキシル化合物は、例えば、不飽和化合物のラジカル重合禁止剤、有機高分子化合物の光安定剤、耐光剤、レドックス触媒等の用途に用いることができる。
つぎに、実施例について、態様a,bに分けて比較例と併せて説明する。ただし、本発明はこれら実施例に限定されるものではない。なお、例中、「%」とあるのは、断りのない限り重量基準を意味する。
<態様a:連続式マイクロ反応装置>
連続式マイクロ反応装置として下記の構成からなる装置を用いた。
溶液供給装置:シリンジポンプ(商品名:Model11-Plus、ハーバード社製)混合装置:T字型コネクタ(商品名:T字型ユニオン(ジーエルサイエンス社製)、材質:ポリエーテルエーテルケトン)
微小径反応流路(反応管):円筒形ポリテトラフルオロエチレン製チューブ(内径1mm×長さ10m)
圧力調整装置:背圧弁(商品名:バックプレッシャーレギュレーター(ジーエルサイエンス社製)、材質:ポリエーテルエーテルケトン、動作圧:0.28MPa)
連続式マイクロ反応装置として下記の構成からなる装置を用いた。
溶液供給装置:シリンジポンプ(商品名:Model11-Plus、ハーバード社製)混合装置:T字型コネクタ(商品名:T字型ユニオン(ジーエルサイエンス社製)、材質:ポリエーテルエーテルケトン)
微小径反応流路(反応管):円筒形ポリテトラフルオロエチレン製チューブ(内径1mm×長さ10m)
圧力調整装置:背圧弁(商品名:バックプレッシャーレギュレーター(ジーエルサイエンス社製)、材質:ポリエーテルエーテルケトン、動作圧:0.28MPa)
<反応原料>
二級アミン:2,2,6,6-テトラメチルピペリジン(TEMP)
過酸化水素:35重量%過酸化水素水溶液
二級アミン:2,2,6,6-テトラメチルピペリジン(TEMP)
過酸化水素:35重量%過酸化水素水溶液
<装置の構成>
二つの上記シリンジポンプにそれぞれ上記円筒形ポリテトラフルオロエチレン製チューブ(外周を各々アルミニウム箔にて被覆してなる)を接続し、各チューブ他端をT字型コネクタに接続する。このT字型コネクタの出口には、混合してなる反応原料を流通させる円筒形ポリテトラフルオロエチレン製チューブを接続し、さらに上記チューブを直径15cm程度で30回巻回して、この巻回部分を所定温度に設定したウォーターバスに浸漬する。ついで、ウォーターバスから延びた上記チューブを、途中、圧力調整装置(背圧弁)を介して反応液取り出し口に接続する。
二つの上記シリンジポンプにそれぞれ上記円筒形ポリテトラフルオロエチレン製チューブ(外周を各々アルミニウム箔にて被覆してなる)を接続し、各チューブ他端をT字型コネクタに接続する。このT字型コネクタの出口には、混合してなる反応原料を流通させる円筒形ポリテトラフルオロエチレン製チューブを接続し、さらに上記チューブを直径15cm程度で30回巻回して、この巻回部分を所定温度に設定したウォーターバスに浸漬する。ついで、ウォーターバスから延びた上記チューブを、途中、圧力調整装置(背圧弁)を介して反応液取り出し口に接続する。
〔実施例a-1〕(水-有機溶媒系での反応)
成分(A)として、2,2,6,6-テトラメチルピペリジン(TEMP)20g(0.14mol)と2-プロパノール20gとの混合液を、また成分(B)として、35重量%過酸化水素水溶液22.6g(0.23mol)を準備し、それぞれの溶液供給装置(シリンジポンプ)に設置した。ついで、流量比が成分(A)/成分(B)=2.0/1(体積比)で滞留時間(反応時間)が30分間となる流量で混合装置(T字型コネクタ)にて混合した後、90℃のウォーターバスに浸漬した反応管内にて反応させた。得られた反応溶液の有機相中の2,2,6,6-テトラメチルピペリジン-N-オキシル(TEMPO)転化率(仕込んだ2,2,6,6-テトラメチルピペリジンの2,2,6,6-テトラメチルピペリジン-N-オキシルへの変換率)は98.2%、副生成物0.14%、水相中の過酸化水素濃度は10.2%であった。
成分(A)として、2,2,6,6-テトラメチルピペリジン(TEMP)20g(0.14mol)と2-プロパノール20gとの混合液を、また成分(B)として、35重量%過酸化水素水溶液22.6g(0.23mol)を準備し、それぞれの溶液供給装置(シリンジポンプ)に設置した。ついで、流量比が成分(A)/成分(B)=2.0/1(体積比)で滞留時間(反応時間)が30分間となる流量で混合装置(T字型コネクタ)にて混合した後、90℃のウォーターバスに浸漬した反応管内にて反応させた。得られた反応溶液の有機相中の2,2,6,6-テトラメチルピペリジン-N-オキシル(TEMPO)転化率(仕込んだ2,2,6,6-テトラメチルピペリジンの2,2,6,6-テトラメチルピペリジン-N-オキシルへの変換率)は98.2%、副生成物0.14%、水相中の過酸化水素濃度は10.2%であった。
〔実施例a-2〕(非有機溶媒系での反応)
成分(A)として、TEMP20g(0.14mol)、成分(B)として35重量%過酸化水素水溶液22.6g(0.23mol)を準備し、それぞれの溶液供給装置(シリンジポンプ)に設置した。ついで、流量比が成分(A)/成分(B)=0.9/1(体積比)で滞留時間(反応時間)が90分間となる流量で混合装置(T字型コネクタ)にて混合した後、90℃のウォーターバスに浸漬した反応管内にて反応させた。得られた反応溶液のTEMPO転化率は93.3%、水相中の過酸化水素濃度は4.2%であり、副生成物は検出されなかった。
成分(A)として、TEMP20g(0.14mol)、成分(B)として35重量%過酸化水素水溶液22.6g(0.23mol)を準備し、それぞれの溶液供給装置(シリンジポンプ)に設置した。ついで、流量比が成分(A)/成分(B)=0.9/1(体積比)で滞留時間(反応時間)が90分間となる流量で混合装置(T字型コネクタ)にて混合した後、90℃のウォーターバスに浸漬した反応管内にて反応させた。得られた反応溶液のTEMPO転化率は93.3%、水相中の過酸化水素濃度は4.2%であり、副生成物は検出されなかった。
〔実施例a-3〕(非有機溶媒系での反応)
流量比を成分(A)/成分(B)=0.9/1(体積比)に、また滞留時間を10分間に変えた。それ以外は実施例2と同様にして反応原料を90℃のウォーターバスに浸漬した反応管内にて反応させた。得られた反応溶液のTEMPO転化率(仕込んだTEMPのTEMPOへの変換率)は90.3%、水相中の過酸化水素濃度は8.4%であり、副生成物は検出されなかった。
流量比を成分(A)/成分(B)=0.9/1(体積比)に、また滞留時間を10分間に変えた。それ以外は実施例2と同様にして反応原料を90℃のウォーターバスに浸漬した反応管内にて反応させた。得られた反応溶液のTEMPO転化率(仕込んだTEMPのTEMPOへの変換率)は90.3%、水相中の過酸化水素濃度は8.4%であり、副生成物は検出されなかった。
〔実施例a-4〕(非有機溶媒系での反応)
流量比を成分(A)/成分(B)=0.9/1(体積比)に、また滞留時間を120分間に変えた。それ以外は実施例2と同様にして反応原料を90℃のウォーターバスに浸漬した反応管内にて反応させた。得られた反応溶液のTEMPO転化率(仕込んだTEMPのTEMPOへの変換率)は97.2%、水相中の過酸化水素濃度は1.6%であり、副生成物は検出されなかった。
流量比を成分(A)/成分(B)=0.9/1(体積比)に、また滞留時間を120分間に変えた。それ以外は実施例2と同様にして反応原料を90℃のウォーターバスに浸漬した反応管内にて反応させた。得られた反応溶液のTEMPO転化率(仕込んだTEMPのTEMPOへの変換率)は97.2%、水相中の過酸化水素濃度は1.6%であり、副生成物は検出されなかった。
上記各実施例における、転化率(反応率)、収率、副生成率、残存過酸化水素濃度の算出方法および測定方法を下記に示す。さらに、各実施例における、反応条件〔反応温度,反応時間,成分(A)/成分(B)の流量比(体積比)〕、反応結果(転化率、収率、副生成率、残存過酸化水素濃度)を後記の表1に併せて示す。
上記転化率(反応率)は、仕込んだ2,2,6,6-テトラメチルピペリジンの2,2,6,6-テトラメチルピペリジン-N-オキシルへの変換率である。
上記収率は、〔(精製後に得られた不純物を含む2,2,6,6-テトラメチルピペリジン-N-オキシルの重量)/(仕込んだ2,2,6,6-テトラメチルピペリジンが100%反応した場合の理論生成2,2,6,6-テトラメチルピペリジン-N-オキシル重量)×100〕にて算出される。
〔反応溶液の測定方法〕
(測定条件)
反応溶液の測定は、ガスクロマトグラフ(商品名:7890A、Agilent Technology社製)を用いて下記の条件で行った。
カラム:DB-1(J&W Scientific社製)
検出器:FID(温度:250℃)
カラム温度:初期温度50℃。開始5分後に毎分15℃で250℃まで昇温し、さらに250℃で5分間保持。
注入口温度:115℃
(測定条件)
反応溶液の測定は、ガスクロマトグラフ(商品名:7890A、Agilent Technology社製)を用いて下記の条件で行った。
カラム:DB-1(J&W Scientific社製)
検出器:FID(温度:250℃)
カラム温度:初期温度50℃。開始5分後に毎分15℃で250℃まで昇温し、さらに250℃で5分間保持。
注入口温度:115℃
(検量線作成)
TEMPO(純度98%、ALDRICH社製)の2体積%エチレングリコールモノイソプロピルエーテル水溶液を用いて検量線を作成した。
TEMPO(純度98%、ALDRICH社製)の2体積%エチレングリコールモノイソプロピルエーテル水溶液を用いて検量線を作成した。
(測定)
反応後の溶液を静置して分層した後、上層(有機層)約500μlを採取した。これを精秤し、2体積%エチレングリコールモノイソプロピルエーテル水溶液1mlを加えた後、メタノール10mlで希釈した溶液を、上記方法にて測定した。
反応後の溶液を静置して分層した後、上層(有機層)約500μlを採取した。これを精秤し、2体積%エチレングリコールモノイソプロピルエーテル水溶液1mlを加えた後、メタノール10mlで希釈した溶液を、上記方法にて測定した。
(転化率〔反応率〕)
検量線から反応液のTEMPO濃度を算出し、下記計算式よりTEMPO転化率(反応率)を算出した。
(TEMPO転化率)=(TEMPO濃度)/(理論TEMPO濃度)×100
検量線から反応液のTEMPO濃度を算出し、下記計算式よりTEMPO転化率(反応率)を算出した。
(TEMPO転化率)=(TEMPO濃度)/(理論TEMPO濃度)×100
(副生成率)
上記ガスクロマトグラフの測定結果から、下記計算式より副生成率を算出した。
(副生成率)=(溶媒、TEMP、TEMPO以外のピーク面積の和)/(TEMPOのピーク面積)×100
上記ガスクロマトグラフの測定結果から、下記計算式より副生成率を算出した。
(副生成率)=(溶媒、TEMP、TEMPO以外のピーク面積の和)/(TEMPOのピーク面積)×100
(残存過酸化水素濃度)
反応溶液に残存する過酸化水素濃度は、過マンガン酸カリウムによる電位差滴定(JIS K1463:2007)により測定した。
反応溶液に残存する過酸化水素濃度は、過マンガン酸カリウムによる電位差滴定(JIS K1463:2007)により測定した。
上記結果から、実施例での製法(態様a)では、転化率(反応率)が高く高収率で、副生成率および残存過酸化水素濃度がともに低いことから純度の高いN-オキシル化合物が得られたことがわかる。
<態様b:二級アミンを含む溶液に過酸化水素を含む溶液を添加してなる反応形態>
〔実施例b-1〕(複数回に分けての添加)
500mlフラスコに、2,2,6,6-テトラメチルピペリジン(TEMP)20g(0.142mol)と2-プロパノール(IPA)34gを各々投入して混合することにより均一溶液とし、80℃に調整した。ついで、これに35重量%過酸化水素水溶液68g(0.70mol)を添加し、6時間反応させた。なお、上記過酸化水素の添加に際しては、6等分して1時間毎に添加した(計6回の添加)。上記TEMPと過酸化水素との反応率(仕込んだ2,2,6,6-テトラメチルピペリジンの2,2,6,6-テトラメチルピペリジン-N-オキシルへの変換率)は99%以上であった。
500mlフラスコに、2,2,6,6-テトラメチルピペリジン(TEMP)20g(0.142mol)と2-プロパノール(IPA)34gを各々投入して混合することにより均一溶液とし、80℃に調整した。ついで、これに35重量%過酸化水素水溶液68g(0.70mol)を添加し、6時間反応させた。なお、上記過酸化水素の添加に際しては、6等分して1時間毎に添加した(計6回の添加)。上記TEMPと過酸化水素との反応率(仕込んだ2,2,6,6-テトラメチルピペリジンの2,2,6,6-テトラメチルピペリジン-N-オキシルへの変換率)は99%以上であった。
つぎに、反応溶液を冷却、静置することにより二層に分離させ、上層を採取し、水および2-プロパノールを減圧留去することにより、2,2,6,6-テトラメチルピペラジン-N-オキシル(TEMPO)20.1g(収率91%、純度99%以上)を得た。得られた2,2,6,6-テトラメチルピペラジン-N-オキシルからタングステン酸ナトリウムは検出されなかった。
〔実施例b-2〕(複数回に分けての添加)
500mlフラスコに、2,2,6,6-テトラメチルピペリジン(TEMP)20g(0.142mol)と2-プロパノール(IPA)34gを各々投入して混合することにより均一溶液とし、80℃に調整した。ついで、これに35重量%過酸化水素水溶液45.3g(0.47mol)を添加し、4時間反応させた。なお、過酸化水素は4等分して1時間毎に添加した(計4回の添加)。上記TEMPと過酸化水素との反応率(仕込んだ2,2,6,6-テトラメチルピペリジンの2,2,6,6-テトラメチルピペリジン-N-オキシルへの変換率)は99%以上であった。
500mlフラスコに、2,2,6,6-テトラメチルピペリジン(TEMP)20g(0.142mol)と2-プロパノール(IPA)34gを各々投入して混合することにより均一溶液とし、80℃に調整した。ついで、これに35重量%過酸化水素水溶液45.3g(0.47mol)を添加し、4時間反応させた。なお、過酸化水素は4等分して1時間毎に添加した(計4回の添加)。上記TEMPと過酸化水素との反応率(仕込んだ2,2,6,6-テトラメチルピペリジンの2,2,6,6-テトラメチルピペリジン-N-オキシルへの変換率)は99%以上であった。
つぎに、反応溶液を冷却、静置することにより二層に分離させ、上層を採取し、水および2-プロパノールを減圧留去することにより、2,2,6,6-テトラメチルピペラジン-N-オキシル(TEMPO)20.3g(収率92%、純度99%以上)を得た。得られた2,2,6,6-テトラメチルピペラジン-N-オキシルからタングステン酸ナトリウムは検出されなかった。
〔実施例b-3〕(一括にて添加)
35重量%過酸化水素水溶液68g(0.70mol)を1度に全て添加した以外は、実施例1と同様の操作を行った。その結果、上記TEMPと過酸化水素との反応率(仕込んだ2,2,6,6-テトラメチルピペリジンの2,2,6,6-テトラメチルピペリジン-N-オキシルへの変換率)は95%であった。
35重量%過酸化水素水溶液68g(0.70mol)を1度に全て添加した以外は、実施例1と同様の操作を行った。その結果、上記TEMPと過酸化水素との反応率(仕込んだ2,2,6,6-テトラメチルピペリジンの2,2,6,6-テトラメチルピペリジン-N-オキシルへの変換率)は95%であった。
つぎに、反応溶液を冷却、静置することにより二層に分離させ、上層を採取し、水および2-プロパノールを減圧留去することにより、2,2,6,6-テトラメチルピペラジン-N-オキシル(TEMPO)20.0g(収率90%、純度95%)を得た。得られた2,2,6,6-テトラメチルピペラジン-N-オキシルからタングステン酸ナトリウムは検出されなかった。
〔実施例b-4〕(複数回に分けての添加)
2-プロパノール(IPA)34gに代えて2-ブタノール24gを用いた。また、反応温度を90℃に変えた。それ以外は、実施例1と同様の操作を行った。その結果、上記TEMPと過酸化水素との反応率(仕込んだ2,2,6,6-テトラメチルピペリジンの2,2,6,6-テトラメチルピペリジン-N-オキシルへの変換率)は99%以上であった。
2-プロパノール(IPA)34gに代えて2-ブタノール24gを用いた。また、反応温度を90℃に変えた。それ以外は、実施例1と同様の操作を行った。その結果、上記TEMPと過酸化水素との反応率(仕込んだ2,2,6,6-テトラメチルピペリジンの2,2,6,6-テトラメチルピペリジン-N-オキシルへの変換率)は99%以上であった。
つぎに、反応溶液を冷却、静置することにより二層に分離させ、上層を採取し、水および2-ブタノールを減圧留去することにより、2,2,6,6-テトラメチルピペラジン-N-オキシル(TEMPO)20.8g(収率94%、純度99%以上)を得た。得られた2,2,6,6-テトラメチルピペラジン-N-オキシルからタングステン酸ナトリウムは検出されなかった。
〔実施例b-5〕(複数回に分けての添加)
2,2,6,6-テトラメチルピペリジン(TEMP)20g(0.142mol)を、2-アザアダマンタン19.5g(0.142mol)に代えた。それ以外は、実施例1と同様の操作を行った。その結果、上記2-アザアダマンタンと過酸化水素との反応率(仕込んだ2-アザアダマンタンの2-アザアダマンタン-N-オキシルへの変換率)は99%以上であった。
2,2,6,6-テトラメチルピペリジン(TEMP)20g(0.142mol)を、2-アザアダマンタン19.5g(0.142mol)に代えた。それ以外は、実施例1と同様の操作を行った。その結果、上記2-アザアダマンタンと過酸化水素との反応率(仕込んだ2-アザアダマンタンの2-アザアダマンタン-N-オキシルへの変換率)は99%以上であった。
つぎに、反応溶液を冷却、静置することにより二層に分離させ、上層を採取し、水および2-プロパノールを減圧留去することにより、2-アザアダマンタン-N-オキシル19.9g(収率92%、純度99%以上)を得た。得られた2-アザアダマンタン-N-オキシルからタングステン酸ナトリウムは検出されなかった。
〔実施例b-6〕(複数回に分けての添加)
35重量%過酸化水素水溶液の合計添加量を41.8g(0.43mol)に変えた。それ以外は実施例1と同様の操作を行った。その結果、上記TEMPと過酸化水素との反応率(仕込んだ2,2,6,6-テトラメチルピペリジンの2,2,6,6-テトラメチルピペリジン-N-オキシルへの変換率)は99%以上であった。
35重量%過酸化水素水溶液の合計添加量を41.8g(0.43mol)に変えた。それ以外は実施例1と同様の操作を行った。その結果、上記TEMPと過酸化水素との反応率(仕込んだ2,2,6,6-テトラメチルピペリジンの2,2,6,6-テトラメチルピペリジン-N-オキシルへの変換率)は99%以上であった。
つぎに、反応溶液を冷却、静置することにより二層に分離させ、上層を採取し、水および2-プロパノールを減圧留去することにより、2,2,6,6-テトラメチルピペラジン-N-オキシル(TEMPO)20.0g(収率90%、純度99%以上)を得た。得られた2,2,6,6-テトラメチルピペラジン-N-オキシルからタングステン酸ナトリウムは検出されなかった。
〔実施例b-7〕(複数回に分けての添加)
35重量%過酸化水素水溶液の合計添加量を82.6g(0.85mol)に変えた。それ以外は実施例1と同様の操作を行った。その結果、上記TEMPと過酸化水素との反応率(仕込んだ2,2,6,6-テトラメチルピペリジンの2,2,6,6-テトラメチルピペリジン-N-オキシルへの変換率)は99%以上であった。
35重量%過酸化水素水溶液の合計添加量を82.6g(0.85mol)に変えた。それ以外は実施例1と同様の操作を行った。その結果、上記TEMPと過酸化水素との反応率(仕込んだ2,2,6,6-テトラメチルピペリジンの2,2,6,6-テトラメチルピペリジン-N-オキシルへの変換率)は99%以上であった。
つぎに、反応溶液を冷却、静置することにより二層に分離させ、上層を採取し、水および2-プロパノールを減圧留去することにより、2,2,6,6-テトラメチルピペラジン-N-オキシル(TEMPO)20.8g(収率94%、純度99%以上)を得た。得られた2,2,6,6-テトラメチルピペラジン-N-オキシルからタングステン酸ナトリウムは検出されなかった。
〔比較例b-1〕
500mlフラスコに、2,2,6,6-テトラメチルピペリジン(TEMP)20g(0.142mol)とメタノール34gを各々投入して混合することにより均一溶液とし、50℃に調整した。ついで、これに触媒としてタングステン酸ナトリウムを1.8g、35重量%過酸化水素水溶液68g(0.70mol)を添加し、6時間反応させた。なお、上記35重量%過酸化水素水溶液は一回で全て添加した。上記TEMPと過酸化水素との反応率(仕込んだ2,2,6,6-テトラメチルピペリジンの2,2,6,6-テトラメチルピペリジン-N-オキシルへの変換率)は96.0%であった。
500mlフラスコに、2,2,6,6-テトラメチルピペリジン(TEMP)20g(0.142mol)とメタノール34gを各々投入して混合することにより均一溶液とし、50℃に調整した。ついで、これに触媒としてタングステン酸ナトリウムを1.8g、35重量%過酸化水素水溶液68g(0.70mol)を添加し、6時間反応させた。なお、上記35重量%過酸化水素水溶液は一回で全て添加した。上記TEMPと過酸化水素との反応率(仕込んだ2,2,6,6-テトラメチルピペリジンの2,2,6,6-テトラメチルピペリジン-N-オキシルへの変換率)は96.0%であった。
つぎに、反応溶液を冷却後、水およびメタノールを減圧留去することにより、2,2,6,6-テトラメチルピペラジン-N-オキシル23.8g(収率108%、純度92%)を得た。得られた2,2,6,6-テトラメチルピペラジン-N-オキシル中からはタングステン酸ナトリウムが80000ppm検出された。
さらに、以下に示す精製工程を実施した。まず、触媒であるタングステン酸ナトリウムを含む2,2,6,6-テトラメチルピペラジン-N-オキシル23.8gに水60gと2-プロパノール30gを加え、40℃にて混合した後、溶液を冷却、静置することにより二層に分離させ、下層を廃棄した。さらに、水を30g加え40℃で混合後、溶液を冷却、静置することにより二層に分離させ、下層を廃棄した。そして、上層を採取し、水および2-プロパノールを減圧留去することにより、2,2,6,6-テトラメチルピペラジン-N-オキシル(TEMPO)16.8g(収率76%、純度99%以上)を得た。得られた2,2,6,6-テトラメチルピペラジン-N-オキシル中からタングステン酸ナトリウムが25ppm検出された。
上記各実施例および比較例における、転化率(反応率)、収率、タングステン酸ナトリウムの検出方法および測定方法を下記に示す。さらに、各実施例および比較例にて用いる反応材料、反応条件、反応結果(転化率、収率、純度)を後記の表2に併せて示す。
上記転化率(反応率)は、仕込んだ2,2,6,6-テトラメチルピペリジンの2,2,6,6-テトラメチルピペリジン-N-オキシルへの変換率、あるいは仕込んだ2-アザアダマンタンの2-アザアダマンタン-N-オキシルへの変換率である。
上記収率は、〔(精製後に得られた不純物を含む2,2,6,6-テトラメチルピペリジン-N-オキシルまたは2-アザアダマンタン-N-オキシルの重量)/(仕込んだ2,2,6,6-テトラメチルピペリジンまたは2-アザアダマンタンが100%反応した場合の理論生成2,2,6,6-テトラメチルピペリジン-N-オキシル重量または2-アザアダマンタン-N-オキシル重量)×100〕にて算出される。
上記タングステン酸ナトリウムの検出は、ICP発光分光分析によりタングステン濃度を分析し、検出された場合にタングステン酸Na量に換算した。
〔反応溶液の測定方法〕
(測定条件)
反応溶液の測定は、ガスクロマトグラフ(商品名:7890A、Agilent Technology社製)を用いて下記の条件で行った。
カラム:DB-1(J&W Scientific社製)
検出器:FID(温度:250℃)
カラム温度:初期温度50℃。開始5分後に毎分15℃で250℃まで昇温し、さらに250℃で5分間保持。
注入口温度:115℃
(測定条件)
反応溶液の測定は、ガスクロマトグラフ(商品名:7890A、Agilent Technology社製)を用いて下記の条件で行った。
カラム:DB-1(J&W Scientific社製)
検出器:FID(温度:250℃)
カラム温度:初期温度50℃。開始5分後に毎分15℃で250℃まで昇温し、さらに250℃で5分間保持。
注入口温度:115℃
(検量線作成)
TEMPO(純度98%、ALDRICH社製)の2体積%エチレングリコールモノイソプロピルエーテル水溶液を用いて検量線を作成した。また、2-アザアダマンタン-N-オキシルの場合も、上記TEMPOと同様、2-アザアダマンタン-N-オキシル(純度98%、和光純薬社製)の2体積%エチレングリコールモノイソプロピルエーテル水溶液を用いて検量線を作成した。
TEMPO(純度98%、ALDRICH社製)の2体積%エチレングリコールモノイソプロピルエーテル水溶液を用いて検量線を作成した。また、2-アザアダマンタン-N-オキシルの場合も、上記TEMPOと同様、2-アザアダマンタン-N-オキシル(純度98%、和光純薬社製)の2体積%エチレングリコールモノイソプロピルエーテル水溶液を用いて検量線を作成した。
(測定)
反応後の溶液を静置して分層した後、上層(有機層)約500μlを採取した。これを精秤し、2体積%エチレングリコールモノイソプロピルエーテル水溶液1mlを加えた後、メタノール10mlで希釈した溶液を、上記方法にて測定した。
反応後の溶液を静置して分層した後、上層(有機層)約500μlを採取した。これを精秤し、2体積%エチレングリコールモノイソプロピルエーテル水溶液1mlを加えた後、メタノール10mlで希釈した溶液を、上記方法にて測定した。
(転化率〔反応率〕)
検量線から反応液のTEMPO濃度を算出し、下記計算式よりTEMPO転化率(反応率)を算出した。
(TEMPO転化率)=(TEMPO濃度)÷(理論TEMPO濃度)×100
検量線から反応液のTEMPO濃度を算出し、下記計算式よりTEMPO転化率(反応率)を算出した。
(TEMPO転化率)=(TEMPO濃度)÷(理論TEMPO濃度)×100
(純度)
下記計算式により算出した。
(純度)=〔100-タングステン酸濃度(%)〕×(TEMPOのピーク面積)÷(溶媒成分を除くピーク面積の和)×100
下記計算式により算出した。
(純度)=〔100-タングステン酸濃度(%)〕×(TEMPOのピーク面積)÷(溶媒成分を除くピーク面積の和)×100
上記結果から、実施例での製法(態様b)では、転化率(反応率)が高く、高収率で純度の高いN-オキシル化合物が得られた。もちろん、触媒を一切使用していないことから、タングステン酸ナトリウムは検出されなかった。なかでも2,2,6,6-テトラメチルピペリジン(TEMP)あるいは2-アザアダマンタンを含む2-プロパノール溶液に35重量%過酸化水素水溶液を複数回に分けて添加した実施例b-1,2,4~7では、特に収率が高く純度の高いTEMPOあるいは2-アザアダマンタン-N-オキシルが得られた。
これに対して、比較例での製法では、収率が低く、触媒であるタングステン酸ナトリウムを除去するために精製工程を経なければならなかった。しかも、精製工程を経由したにも関わらず、タングステン酸ナトリウムが検出され、高純度のものが得られなかった。
上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。さらに、請求の範囲の均等範囲に属する変更は、全て本発明の範囲内である。
本発明の製法により得られたN-オキシル化合物は、例えば、不飽和化合物のラジカル重合禁止剤、有機高分子化合物の光安定剤、耐光剤、レドックス触媒等に用いることができる。
1a,1b 溶液供給装置
2 混合装置
3 微小径反応流路(反応管)
2 混合装置
3 微小径反応流路(反応管)
Claims (7)
- 二級アミンと過酸化水素とを反応させてN-オキシル化合物を製造する方法であって、上記反応を非反応触媒系にて行なうことを特徴とするN-オキシル化合物の製法。
- 上記二級アミンを含む成分(A)と、上記過酸化水素を含む成分(B)とを、微小径反応流路を備えた連続式マイクロ反応装置に投入して上記微小径反応流路内にて反応させる請求項1記載のN-オキシル化合物の製法。
- 上記二級アミンと過酸化水素との反応が、非有機溶媒系にて行なわれる請求項1または2記載のN-オキシル化合物の製法。
- 上記過酸化水素の使用量が、二級アミン1モルに対して1.5~5.0モルである請求項1~3のいずれか一項に記載のN-オキシル化合物の製法。
- 上記二級アミンと過酸化水素との反応が、上記二級アミンを含む溶液に、上記過酸化水素を含む溶液を複数回に分けて添加することにより行なわれる請求項1記載のN-オキシル化合物の製法。
- 上記二級アミンと過酸化水素との反応が、70~100℃の温度雰囲気下にて行なわれる請求項1または5記載のN-オキシル化合物の製法。
- 上記二級アミンと過酸化水素との反応が、水および水との二層形成可能な有機溶媒からなる混合溶媒中にて行なわれる請求項1,2,5または6のいずれか一項に記載のN-オキシル化合物の製法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010087441A JP2011219382A (ja) | 2010-04-06 | 2010-04-06 | N−オキシル化合物の製法 |
JP2010-087441 | 2010-04-06 | ||
JP2010087440A JP2011219381A (ja) | 2010-04-06 | 2010-04-06 | N−オキシル化合物の製法 |
JP2010-087440 | 2010-04-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011125437A1 true WO2011125437A1 (ja) | 2011-10-13 |
Family
ID=44762397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/056173 WO2011125437A1 (ja) | 2010-04-06 | 2011-03-16 | N-オキシル化合物の製法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011125437A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014007144A1 (ja) * | 2012-07-02 | 2014-01-09 | 国立大学法人大阪大学 | 脂環式n-オキシル化合物の製造方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000169447A (ja) * | 1998-12-04 | 2000-06-20 | Hakuto Co Ltd | 4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−1−オンの製造方法 |
JP2003055347A (ja) * | 2001-08-13 | 2003-02-26 | Hakuto Co Ltd | 2,2,6,6−テトラメチルピペリジン−n−オキシル化合物の製造方法 |
JP2005046651A (ja) * | 2003-05-30 | 2005-02-24 | Fuji Photo Film Co Ltd | マイクロリアクターを用いた反応方法 |
JP2005279422A (ja) * | 2004-03-29 | 2005-10-13 | Mitsubishi Chemicals Corp | 酸化反応装置及び酸化反応方法 |
-
2011
- 2011-03-16 WO PCT/JP2011/056173 patent/WO2011125437A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000169447A (ja) * | 1998-12-04 | 2000-06-20 | Hakuto Co Ltd | 4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−1−オンの製造方法 |
JP2003055347A (ja) * | 2001-08-13 | 2003-02-26 | Hakuto Co Ltd | 2,2,6,6−テトラメチルピペリジン−n−オキシル化合物の製造方法 |
JP2005046651A (ja) * | 2003-05-30 | 2005-02-24 | Fuji Photo Film Co Ltd | マイクロリアクターを用いた反応方法 |
JP2005279422A (ja) * | 2004-03-29 | 2005-10-13 | Mitsubishi Chemicals Corp | 酸化反応装置及び酸化反応方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014007144A1 (ja) * | 2012-07-02 | 2014-01-09 | 国立大学法人大阪大学 | 脂環式n-オキシル化合物の製造方法 |
JPWO2014007144A1 (ja) * | 2012-07-02 | 2016-06-02 | 国立大学法人大阪大学 | 脂環式n−オキシル化合物の製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gutmann et al. | Homogeneous liquid-phase oxidation of ethylbenzene to acetophenone in continuous flow mode | |
CN108164417B (zh) | 制备甲基丙烯酸甲酯的方法 | |
EP3782972A1 (en) | Process for preparing fluorobenzene by direct fluorination | |
US8946493B2 (en) | Method for producing pentafluoropropane | |
US8912370B2 (en) | Method for producing hexafluoropropane | |
JP5610597B2 (ja) | マイクロ反応技術によってアルデヒドから脂肪族カルボン酸を製造する方法 | |
WO2011125437A1 (ja) | N-オキシル化合物の製法 | |
JP2010163412A (ja) | カルボニル化合物の製造方法 | |
JP2005314373A (ja) | 酸化反応方法 | |
JP2011219381A (ja) | N−オキシル化合物の製法 | |
US20030055292A1 (en) | Preparation of ketones from aldehydes | |
Yang et al. | Catalytic Oxidation of o-Chlorotoluene with Oxygen to o-Chlorobenzaldehyde in a Microchannel Reactor | |
JP6332285B2 (ja) | カーボネート化合物およびメタクリル酸またはそのエステルの製造方法 | |
CN112679335B (zh) | 一种催化氧化制备脂肪醇聚醚羧酸的系统及方法 | |
RU2703275C2 (ru) | Способ получения (s)-2-ацетилоксипропионовой кислоты и ее производных | |
CN111377795B (zh) | 通过直接氟化制备氟苯的工艺 | |
WO2022160762A1 (en) | New industrial process for manufacturing of perfluoropentane (pfp) | |
WO2015005243A1 (ja) | 不飽和酸エステル又は不飽和酸の製造方法 | |
US20220251007A1 (en) | Industrial Process for Manufacturing of Perfluoropentane (PFP) | |
US11261144B2 (en) | Process for preparing fluorobenzene by direct fluorination | |
CN111348983B (zh) | 氟苯和苯甲酸次氟化物的制备工艺 | |
WO2021036048A1 (en) | Process for preparing fluorobenzene derivatives and benzoic acid hypofluorite derivatives | |
JP2013124232A (ja) | ジプロピレングリコール及び/又はトリプロピレングリコールを製造する方法 | |
CN114341085A (zh) | 工业化合成全氟正戊烷的新工艺 | |
WO2024121714A1 (en) | Process for preparing isopropanol in high yields and with a high degree of purity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11765339 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11765339 Country of ref document: EP Kind code of ref document: A1 |