WO2011122422A1 - Plasma processing apparatus, and dielectric window - Google Patents

Plasma processing apparatus, and dielectric window Download PDF

Info

Publication number
WO2011122422A1
WO2011122422A1 PCT/JP2011/057037 JP2011057037W WO2011122422A1 WO 2011122422 A1 WO2011122422 A1 WO 2011122422A1 JP 2011057037 W JP2011057037 W JP 2011057037W WO 2011122422 A1 WO2011122422 A1 WO 2011122422A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric window
plasma processing
microwave
processing apparatus
dielectric
Prior art date
Application number
PCT/JP2011/057037
Other languages
French (fr)
Japanese (ja)
Inventor
清隆 石橋
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2011122422A1 publication Critical patent/WO2011122422A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32238Windows

Definitions

  • the present invention relates to a plasma processing apparatus and a dielectric window, and more particularly to a plasma processing apparatus using a microwave as a plasma source and a dielectric window used in such a plasma processing apparatus.
  • FIG. 12 is a schematic cross-sectional view showing a conventional plasma processing apparatus 100.
  • FIG. 13 is an enlarged view of a region indicated by XIII in FIG. 12 and 13, the vertical direction of the paper surface is the vertical direction of the apparatus.
  • a plasma processing apparatus 100 includes a processing container 101 that performs plasma processing on a substrate to be processed therein, and a disk-shaped dielectric window 102 that transmits microwaves into the processing container 101.
  • the processing container 101 is configured to include a bottom portion 108 located on the lower side and a cylindrical side wall 109 extending upward from the outer peripheral portion of the bottom portion 108.
  • the microwave When the microwave is radiated to the dielectric window 102, it propagates in the dielectric window 102 in the radial direction from the center side toward the outer diameter side. Further, the microwave propagated from the center side toward the outer diameter side is reflected by the side surface 102c of the dielectric window 102 and the wall surface 110a of the side wall 109 facing the side surface 102c of the dielectric window 102 and is centered from the outer diameter side. Propagates radially toward the side.
  • the microwave traveling from the center side to the outer diameter side and the microwave traveling from the outer diameter side to the center side overlap, and a standing wave is formed in the dielectric window 102.
  • Patent Document 1 techniques for adjusting a standing wave formed in a dielectric window are disclosed in WO03 / 105544A1 (Patent Document 1) and JP-A-2001-223171 (Patent Document 2).
  • the dielectric window is provided with a reflecting member for reflecting the microwave propagating in the dielectric window.
  • the reflecting member is provided in a region on the inner diameter side of the dielectric window, specifically, a region on the inner diameter side from the inner wall surface of the side wall. Thereby, the position where the microwave is reflected by the reflecting member and the standing wave is formed is set as a region on the outer diameter side of the dielectric window.
  • an electromagnetic wave absorber is provided between the dielectric window and the processing container. As a result, the microwave is absorbed to suppress the reflection of the microwave, and the formation of the standing wave itself is suppressed.
  • a support portion 110 that is recessed downward from the upper end portion is provided so as to support the dielectric window 102.
  • the dielectric window 102 is supported by the support portion 110 such that the outer diameter side of the lower surface 102 b of the dielectric window 102 is placed on the support portion 110.
  • a standing wave formed in the dielectric window 102 is considered. First, in the region of the dielectric window 102 that is not placed on the support portion 110, that is, in the region 103 on the inner diameter side of the inner wall surface 109b of the side wall 109, plasma is generated below it. Then, since energy is absorbed by the plasma, the strength of the formed standing wave is weakened, and the formed electromagnetic field is relatively weak.
  • FIG. 14 is a view showing a part of the plasma processing apparatus 100 shown in FIG. 12 and showing a strong electromagnetic field region in the dielectric window 102.
  • the strong electromagnetic field 111 formed in the outer diameter side region of the dielectric window 102 is shown as an image.
  • the hatching of the dielectric window 102 is omitted from the viewpoint of easy understanding.
  • Patent Document 1 the technique disclosed in Patent Document 1 is insufficient to solve the above-described problem.
  • the microwave is absorbed to suppress the reflection of the microwave and the formation of the standing wave itself is suppressed, so that plasma is hardly generated in the processing container. There is a fear. Moreover, it is necessary to provide an electromagnetic wave absorber in the apparatus, and there is a possibility that the assembly of the apparatus becomes complicated.
  • An object of the present invention is to reduce the influence of a standing wave formed in a dielectric window and generate a plasma appropriately, and the dielectric window used in such a plasma processing apparatus Is to provide.
  • the plasma processing apparatus has an opening on the upper side, a bottom portion disposed on the lower side, and a cylindrical side wall extending from the outer side of the bottom portion toward the upper side.
  • a processing container that performs plasma processing on a processing substrate, a gas supply unit that supplies a plasma processing gas into the processing container, a holding base that is disposed in the processing container and holds a substrate to be processed, and plasma excitation
  • a microwave generator for generating microwaves for use, and a dielectric window placed on the upper end of the side wall so as to cover the opening of the processing container to seal the processing container and allow microwaves to pass through the processing container
  • Wavelength changing means for changing the wavelength of the microwave propagating in the radial direction in the dielectric window in a region on the outer diameter side of the inner wall surface of the side
  • Such a plasma processing apparatus includes wavelength changing means for changing the wavelength of the microwave propagating in the radial direction in the dielectric window in a region on the outer diameter side of the inner wall surface of the side wall of the dielectric window.
  • the wavelength changing means changes the wavelength of the microwave in a region on the outer diameter side of the inner wall surface of the side wall in the dielectric window.
  • the dielectric window has an inner wall surface of the side wall and the dielectric window caused by the formation of strong standing waves in the outer diameter side region of the inner wall surface of the side wall. Focusing on problems such as erosion in the vicinity of the contact point with the lower surface, by adjusting the position where a strong standing wave is formed by providing wavelength changing means, the above-described problems are solved. .
  • the wavelength changing means is a concave portion recessed inward from at least one of the upper side, the lower side, and the side surface of the dielectric window, and the dielectric wall is formed with the wall surface forming the concave portion as a boundary. Change the wavelength of the microwave that propagates radially in the body window. By doing so, the wavelength of the microwave can be changed with a simple configuration.
  • a plurality of wavelength changing means are provided in the circumferential direction, and as one embodiment, the plurality of wavelength changing means are provided so that the radial distance from the center of the dielectric window is the same. Yes.
  • the radial position where the standing wave is formed can be made uniform in the circumferential direction.
  • the center of the dielectric window may be displaced from the center of the cylindrical side wall, the radial length from the center through which the microwave is propagated to the side wall However, they are different at the circumferential positions. As a result, the strength of the standing wave may be different at the circumferential position.
  • the deviations that occur when assembling the plasma processing apparatus are different among the apparatuses. Therefore, the strength of the standing wave at the circumferential position may be different between devices. Even in such a case, by providing a plurality of wavelength changing means so that the radial distance from the center of the dielectric window is the same, the radial position where the standing wave is formed is made uniform in the circumferential direction. can do.
  • the plurality of wavelength changing means are equally arranged in the circumferential direction.
  • the circumferential direction position where a standing wave is formed can be made uniform in the circumferential direction.
  • the plurality of wavelength changing means are provided so as to have rotational symmetry about the radial center of the dielectric window.
  • the wavelength changing means is provided within a half length of the microwave wavelength from the side surface of the dielectric window.
  • the wavelength of the microwave can be appropriately changed by the wavelength changing means.
  • a member having a dielectric constant different from that of the dielectric window is provided in the inner region of the recess. By doing so, the wavelength of the microwave can be changed efficiently.
  • a metal member is provided in the inner region of the recess.
  • the metal member is grounded.
  • the metal member is provided so that the radial position of the metal member can be changed.
  • the present invention relates to a dielectric window.
  • the dielectric window has an opening on the upper side, a bottom portion disposed on the lower side, and a cylindrical side wall extending from the outer side of the bottom portion toward the upper side, and plasma processing is performed on the substrate to be processed therein.
  • the processing container is placed on the upper end of the side wall so as to cover the opening of the processing container to seal the processing container, and the microwave is transmitted into the processing container.
  • the dielectric window has a recess that changes the wavelength of the microwave that propagates radially in the dielectric window in a region on the outer diameter side of the inner wall surface of the side wall when placed on the upper end of the side wall.
  • the plurality of recesses are provided at positions within half the length of the microwave wavelength from the side surface of the dielectric window.
  • the plurality of recesses are equally arranged in the circumferential direction.
  • Such a dielectric window includes a recess for changing the wavelength of the microwave propagating in the radial direction in the dielectric window in a region on the outer diameter side of the inner wall surface of the side wall.
  • the recess changes the wavelength of the microwave in a region on the outer diameter side of the inner wall surface of the side wall in the dielectric window.
  • the plasma processing apparatus includes wavelength changing means for changing the wavelength of the microwave propagating in the radial direction in the dielectric window in a region on the outer diameter side of the inner wall surface of the side wall of the dielectric window.
  • the wavelength changing means changes the wavelength of the microwave in a region on the outer diameter side of the inner wall surface of the side wall in the dielectric window.
  • the dielectric window according to the present invention includes a recess for changing the wavelength of the microwave propagating in the radial direction in the dielectric window in a region on the outer diameter side from the inner wall surface of the side wall.
  • the recess changes the wavelength of the microwave in a region on the outer diameter side of the inner wall surface of the side wall in the dielectric window.
  • FIG. 1 It is a schematic sectional drawing which shows an example of the plasma processing apparatus which concerns on one Embodiment of this invention. It is a figure which shows a slot antenna board. It is the figure which expanded a part of plasma processing apparatus shown in FIG. It is the figure which looked at the dielectric material window shown in FIG. 1 from the upper direction. It is the figure which expanded a part of plasma processing apparatus shown in FIG. It is the figure which expanded a part of plasma processing apparatus shown in FIG. 1, Comprising: It is a figure which shows the strong electromagnetic field area
  • FIG. 1 is a schematic sectional view showing an example of a plasma processing apparatus 11 according to an embodiment of the present invention.
  • FIG. 2 is a view showing the slot antenna plate 18.
  • the plasma processing apparatus 11 is open on the upper side, in which a processing container 12 that performs plasma processing on the substrate W to be processed, a gas for plasma excitation in the processing container 12, and A gas supply unit 13 that supplies a gas for plasma processing, a holding base 14 that is disposed in the processing container 12 and holds the substrate W to be processed, and is disposed outside the processing container 12 for plasma excitation.
  • a microwave generator 15 that generates a microwave; a dielectric window 16 that is disposed so as to cover the opening of the processing container 12 to seal the processing container 12 and transmits the microwave into the processing container 12;
  • a slot hole 17 is provided.
  • the slot antenna plate 18 is disposed above the dielectric window 16 and radiates microwaves to the dielectric window 16.
  • a dielectric plate 19 that is disposed above the na plate 18 and propagates the microwave in the radial direction; a microwave supply means 20 that supplies the microwave generated by the microwave generator 15 into the processing vessel 12; And a control unit (not shown) for controlling the entire plasma processing apparatus 11.
  • the processing container 12 includes a bottom portion 21 located at the lower portion of the holding table 14 and a side wall 22 extending upward from the outer peripheral portion of the bottom portion 21.
  • An exhaust port 23 for exhaust is provided on the radial center side of the bottom portion 21.
  • the upper side of the processing container 12 is open, and is provided by a dielectric window 16 disposed on the upper side of the processing container 12 and an O-ring 24 as a seal member interposed between the dielectric window 16 and the processing container 12.
  • the processing container 12 is configured to be sealable.
  • the side wall 22 has a cylindrical shape and includes a cylindrical portion 22a extending upward from the outer peripheral portion of the bottom portion 21 and a dielectric window support member 10 positioned above the cylindrical portion 22a.
  • the dielectric window support member 10 is provided so as to be placed on the cylindrical portion 22a.
  • a seal member is provided between the cylindrical portion 22a and the dielectric window support member 10.
  • the inner wall surface 55 of the dielectric window support member 10 and the inner wall surface 51 of the cylindrical portion 22a are provided so as to be straightly connected in the vertical direction. That is, a step is not formed between the inner wall surface 55 of the dielectric window support member 10 and the inner wall surface 51 of the cylindrical portion 22a, and is provided flush.
  • the material of the dielectric window support member 10 is a metal.
  • the material for the dielectric window support member 10 include aluminum.
  • a support portion 52 that is recessed downward from the upper end portion is provided on the inner diameter side of the upper end portion of the dielectric window support member 10 so as to support the dielectric window 16.
  • the support portion 52 is provided in an annular shape and supports the dielectric window 16. That is, the dielectric window 16 is placed on the support portion 52 that is the inner diameter side of the upper end portion of the dielectric window support member 10.
  • a part of the gas supply unit 13 described above is provided so as to be embedded in the cylindrical portion 22 a and supplies gas into the processing container 12 from the outside of the processing container 12.
  • the slot antenna plate 18 has a thin plate shape and a disc shape.
  • the slot antenna plate 18 is provided with a plurality of slot holes 17 penetrating in the plate thickness direction. As shown in FIG. 2, the plurality of slot holes 17 are provided such that a pair of slot holes 17 are orthogonal to each other in a substantially letter C shape, and the pair of slot holes 17 have a predetermined interval in the circumferential direction. Open and provided. Also in the radial direction, a plurality of pairs of slot holes 17 are provided at predetermined intervals. In this embodiment, a plurality of pairs of slot holes 17 are provided so as to have rotational symmetry.
  • the rotation axis in this case is an eight rotation axis, and the same shape is obtained when the slot antenna plate 18 is rotated 45 degrees about the radial center 28.
  • the dielectric plate 19 has a flat disk shape. In the center of the dielectric plate 19, an opening for arranging an inner conductor 32 provided in a coaxial waveguide 31 described later is provided.
  • the radial center 64 of the dielectric window 16, the radial center 28 of the slot antenna plate 18, and the radial center of the dielectric plate 19, Manufactured to match each other.
  • the propagation degree of the microwave in the circumferential direction is made the same, and the plasma generated in the lower side of the dielectric window 16 is uniform in the circumferential direction.
  • the radial center 28 of the slot antenna plate 18 is used as a reference.
  • the microwave supply means 20 includes an inner conductor 32 having a substantially round bar shape whose one end 35 is connected to the center 28 of the slot antenna plate 18, and an outer diameter of the inner conductor 32 by opening a radial gap 34 with the inner conductor 32.
  • a coaxial waveguide 31 including a substantially cylindrical outer conductor 33 provided on the side is provided. That is, the coaxial waveguide 31 is configured by combining the inner conductor 32 and the outer conductor 33 so that the outer peripheral surface 36 of the inner conductor 32 and the inner peripheral surface 37 of the outer conductor 33 face each other. The inner conductor 32 and the outer conductor 33 are combined so that the radial center of the inner conductor 32 coincides with the radial center of the outer conductor 33.
  • the microwave supply means 20 includes a waveguide 39 whose one end 38 is connected to the microwave generator 15 and a mode converter 40 for converting the mode of the microwave.
  • the waveguide 39 is provided so as to extend in the horizontal direction, specifically, in the left-right direction in FIG.
  • a waveguide having a circular cross section or a rectangular cross section is used as the waveguide 39.
  • the microwave generated in the microwave generator 15 is propagated into the processing container 12 through the waveguide 39 and the coaxial waveguide 31.
  • microwaves of TE mode which is generated by the microwave generator 15 propagates in the left direction in the drawing showing the the waveguide 39 by the arrow A 1 in FIG. 1, the mode converter 40 is converted into a TEM mode The Then, the microwave is converted into a TEM mode propagates through the coaxial waveguide 31 to the paper surface under the direction indicated by arrow A 2 in Fig. Specifically, the microwave propagates between the inner conductor 32 and the outer conductor 33 where the gap 34 is formed, and between the inner conductor 32 and the inner diameter side end portion 47 of the cooling plate 43 described later.
  • the microwave propagated through the coaxial waveguide 31 propagates in the radial direction in the dielectric plate 19 and is radiated to the dielectric window 16 from a plurality of slot holes 17 provided in the slot antenna plate 18.
  • the microwave transmitted through the dielectric window 16 generates an electric field immediately below the dielectric window 16 and generates plasma in the processing container 12.
  • the plasma processing apparatus 11 is disposed on the upper side of the dielectric window support member 10 and is disposed on the upper side of the dielectric window pressing ring 41 and the dielectric window pressing ring 41 for pressing the dielectric window 16 from the upper side.
  • An antenna holder 42 that holds the slot antenna plate 18 and the like from above, a cooling plate 43 that is disposed above the dielectric plate 19 and cools the dielectric plate 19 and the like, and between the antenna holder 42 and the cooling plate 43.
  • An electromagnetic shielding elastic body 44 that shields an electromagnetic field inside and outside the processing container 12, a center fixing plate 46 that fixes the center of the slot antenna plate 18, and an outer peripheral portion of the cooling plate 43.
  • the dielectric window pressing ring 41 has a cylindrical shape and is provided so as to contact the upper end surface of the dielectric window support member 10.
  • the dielectric window pressing ring 41 is provided so that the inner diameter side surface 61 of the dielectric window pressing ring 41 is positioned on the inner diameter side of the side surface 62 of the dielectric window 16. As a result, the dielectric window 16 is pressed from the upper side at the inner diameter side end portion 66 of the dielectric window pressing ring 41.
  • FIG. 3 is an enlarged view of a part of the plasma processing apparatus 11 shown in FIG.
  • FIG. 4 is a view of the dielectric window 16 shown in FIG. 1 as viewed from above.
  • the details of the dielectric window 16 will be described with reference to FIGS.
  • the dielectric window 16 has a disk shape, and the lower surface 25 of the dielectric window 16 is flat.
  • the dielectric window 16 is supported by the support portion 52 such that the outer diameter side of the lower surface 25 of the dielectric window 16 is placed on the support portion 52. Further, the dielectric window 16 is provided with a radial gap 54 between the wall surface 53 of the dielectric window support member 10 facing the side surface 62 of the dielectric window 16.
  • the material of the dielectric window 16 is a dielectric. Specific materials for the dielectric window 16 include quartz and alumina. For example, in an apparatus that processes a substrate to be processed such as a wafer having a diameter of 300 mm, the diameter of the dielectric window 16 is set to 500 mm.
  • the upper surface 58 of the dielectric window 16 is recessed at the center in the radial direction so as to reduce the plate thickness from the upper surface 58 of the dielectric window 16 so as to receive the center fixing plate 46.
  • a central recess 49 is provided.
  • the outer diameter side end portion is recessed so as to reduce the plate thickness from the upper surface 58 of the dielectric window 16 so as to receive the outer peripheral fixing ring 45.
  • a dielectric window upper end surface 59 is provided.
  • the dielectric window 16 is provided with a recess as a wavelength changing means for changing the wavelength of the microwave propagating in the radial direction in the dielectric window 16.
  • the recess is a dielectric window recess 63 having a shape that is recessed straight downward from the dielectric window upper end surface 59.
  • the dielectric window recess 63 includes a recess bottom surface 56 that is located on the lower side and serves as a bottom, and a recess wall surface 57 that is located on the upper side of the recess bottom surface 56 and serves as a wall.
  • the concave wall surface 57 has a substantially perfect circle shape when viewed from above.
  • the size of the perfect circle shape is arbitrarily determined by the frequency of the microwave, the size of the dielectric window 16 itself, and the like. For example, when the frequency of the microwave used for processing is 2.45 GHz, the diameter of the recess wall surface 57 is 15 mm.
  • the dielectric window recess 63 is provided such that the outer diameter side end 67 of the recess wall surface 57 is positioned on the outer diameter side of the inner wall surface 55 of the dielectric window support member 10. Specifically, the outer diameter side end portion 67 is provided so as to be located within a half length of the microwave wavelength from the side surface 62 of the dielectric window 16. That is, with reference to FIG. 3, when the side surface 62 of the dielectric window 16 is used as a reference, the dielectric window recess 63 has a distance L 3 from the side surface 62 to the outer diameter side end portion 67.
  • the support member 10 is provided so as to be shorter than the distance L 2 to the inner wall surface 55. Then, the length of half the wavelength of the microwave is longer than L 3.
  • the dielectric window recess 63 is such that the inner diameter side end portion 68 of the recess wall surface 57 is on the inner diameter side of the inner wall surface 55 of the dielectric window support member 10 and the dielectric window upper end surface. It is provided so as to be positioned on the outer diameter side from the inner diameter side end portion 59 of 59. That is, referring to FIG. 3, when the side surface 62 of the dielectric window 16 is used as a reference, the dielectric window recess 63 has a distance L 4 from the side surface 62 to the inner diameter side end portion 68. It is provided so as to be longer than the distance L 2 to the inner wall surface 55 of the member 10.
  • a distance L 2 from the side surface 62 to the inner wall surface 55 of the dielectric window support member 10 is a 20 mm
  • the distance L 3 from the side surface 62 to the outer diameter side end portion 67 is a 10 mm
  • side distance L 4 to the inner diameter side end portion 68 and 62 is 25 mm. That is, the ratio of the distance L 3 from the side surface 62 to the outer diameter side end 67 is 1 ⁇ 2 with respect to the distance L 2 from the side surface 62 to the inner wall surface 55 of the dielectric window support member 10.
  • L 2 : L 3 2: 1.
  • dielectric window recesses 63 are provided at equal intervals in the circumferential direction. Specifically, the dielectric window recesses 63 adjacent in the circumferential direction are provided at an interval of about 45 degrees. That is, referring to FIG. 4, the angle ⁇ formed by the center 63 a of the adjacent dielectric window recess 63 and the center 64 of the dielectric window 16 is set to about 45 degrees.
  • the eight dielectric window recesses 63 have rotational symmetry, and the rotation axis in this case is eight rotation axes. That is, when the dielectric window 16 is rotated 45 degrees about the radial center 64 of the dielectric window 16, the same shape is obtained.
  • the plurality of dielectric window recesses 63 are provided such that the radial distances from the center 64 of the dielectric window 16 are the same. That is, the distance L 5 from the center 64 of the dielectric window 16 to the center 63a of the dielectric window recess 63 are provided so that each is the same.
  • FIG. 5 is an enlarged view of a part of the plasma processing apparatus 11 shown in FIG. In FIG. 5, for ease of understanding, hatching is omitted from some members.
  • the microwaves are supplied from the microwave supply means 20, the microwaves are propagated in the radial direction through the dielectric plate 19 and radiated from the slot holes of the slot antenna plate 18 to the dielectric window 16. .
  • the microwave is radiated into the dielectric window 16, it propagates in the dielectric window 16 in the radial direction from the center side toward the outer diameter side as indicated by an arrow B 1 indicated by a dotted line in FIG. 5.
  • the microwave propagated in the radial direction from the center side toward the outer diameter side reaches the position where the dielectric window recess 63 is provided.
  • air exists in the inner region of the dielectric window recess 63.
  • the dielectric constant of the air is significantly different from the dielectric constant of the dielectric window 16 and is lower than that of the dielectric window 16.
  • the microwave that has reached the position where the dielectric window recess 63 is provided is separated from the arrow B 1 with the recess wall surface 57 of the dielectric window recess 63 as a boundary, as indicated by the arrow B 2 indicated by the solid line in FIG. Propagate toward the outer diameter side at different wavelengths.
  • the microwave propagates toward the outer diameter side at a wavelength longer than the wavelength propagating in the dielectric window 16. That is, the wavelength of the microwave changes long with the recess wall surface 57 of the dielectric window recess 63 as a boundary. If it does so, the part of the belly
  • the propagation wave and the reflected wave overlap each other in the region on the outer diameter side from the inner wall surface 55 of the dielectric window support member 10 with the dielectric plate recess 63 as a boundary. Reduce the risk of standing waves.
  • the dielectric window 16 has a region on the inner diameter side of the inner wall surface 55 of the dielectric window support member 10 and has a strong electromagnetic field.
  • the position to be formed is a region on the inner diameter side of the inner wall surface 55 of the dielectric window support member 10. Referring to FIG. 6, the position where strong electromagnetic field 65 is formed is closer to the inner diameter than FIG.
  • FIG. 6 is an enlarged view of a part of the plasma processing apparatus 11 shown in FIG. 1 and shows a strong electromagnetic field region in the dielectric window 16. In FIG. 6, only the electromagnetic field 65 is shown, but it is naturally formed in a region near the center.
  • the plasma processing apparatus 11 changes the wavelength of the microwave that propagates in the radial direction in the dielectric window 16 in the region on the outer diameter side of the inner wall surface 51 of the side wall 22 in the dielectric window 16. It includes a dielectric window recess 63 as changing means.
  • the wavelength changing unit changes the wavelength of the microwave in a region of the dielectric window 16 on the outer diameter side of the inner wall surface 51 of the side wall 22. Thereby, the position where a strong standing wave is formed in the dielectric window 16 can be changed. Therefore, in the dielectric window 16, it is possible to reduce the possibility that a strong electromagnetic field is formed in a region on the outer diameter side of the inner wall surface 51 of the side wall 22.
  • such a dielectric window 16 includes a dielectric window recess 63 that changes the wavelength of the microwave propagating in the radial direction in the dielectric window 16 in a region on the outer diameter side of the inner wall surface 51 of the side wall 22. .
  • the dielectric window recess 63 changes the wavelength of the microwave in the region on the outer diameter side of the inner wall surface 51 of the side wall 22 in the dielectric window 16.
  • the position where a strong standing wave is formed in the dielectric window 16 can be changed. Therefore, in the dielectric window 16, it is possible to reduce the possibility that a strong electromagnetic field is formed in a region on the outer diameter side of the inner wall surface 51 of the side wall 22.
  • erosion or the like in the vicinity of the contact between the inner wall surface 51 of the side wall 22 and the lower surface 25 of the dielectric window 16 can be prevented.
  • the outer diameter side end portion 67 of the dielectric window recess 63 as the wavelength changing means is provided at a position within half the length of the microwave wavelength from the side surface 62 of the dielectric window 16. It is said. Thereby, when the microwave is reflected from the side surface 62 of the dielectric window 16 and propagates from the outer diameter side toward the center side, the wavelength of the microwave is appropriately changed by the dielectric window recess 63. Can do. Thereby, a possibility that a strong standing wave may be formed in a region on the outer diameter side of the inner wall surface 55 of the dielectric window support member 10 can be reduced.
  • a plurality of dielectric window recesses 63 are provided in the circumferential direction, and a plurality of dielectric window recesses 63 are provided so that the radial distance from the center of the dielectric window 16 is the same, thereby forming a standing wave.
  • the radial position can be made uniform in the circumferential direction. For example, when the plasma processing apparatus 11 is assembled, if there is a case where the center of the dielectric window 16 is displaced from the center of the cylindrical side wall 22, the radial direction from the center through which the microwave is propagated to the side wall 22. The length is different at each circumferential position. As a result, the strength of the standing wave may be different at the circumferential position.
  • the deviations that occur when assembling the plasma processing apparatus 11 are different between the apparatuses. Therefore, the strength of the standing wave at the circumferential position may be different between devices. Even in such a case, by providing the plurality of dielectric window recesses 63 so that the radial distance from the center of the dielectric window 16 is the same, the radial position where the standing wave is formed is set in the circumferential direction. Can be made uniform.
  • FIG. 7 is a view of the dielectric window 83 provided with the dielectric window recess 82 in another embodiment as viewed from above.
  • the concave wall surface 57 of the dielectric window concave portion 63 is provided so that the shape viewed from above is a substantially perfect circle shape.
  • it may be provided in the shape of a long hole extending in the radial direction, may be provided in the shape of a long hole extending in the circumferential direction, or may be provided in an annular shape.
  • you may provide in rectangular shapes, such as square shape.
  • the dielectric window recess 63 has the outer diameter side end portion 67 positioned on the outer diameter side of the inner wall surface 55 of the dielectric window support member 10 and the inner diameter side end portion 68.
  • both the outer diameter side end portion 67 and the inner diameter side end portion 68 are You may provide so that it may be located in the outer diameter side from the inner wall face 55 of the dielectric material window support member 10.
  • the dielectric window recess 63 may be provided so as to include a region on the outer diameter side of the dielectric window 16 from the inner wall surface 55 of the dielectric window support member 10.
  • FIG. 8 is a view showing a dielectric window recess 88 according to still another embodiment, in which both the outer diameter side end 86 and the inner diameter side end 87 of the dielectric window recess 88 are connected to the dielectric window support member 10. It is a figure which shows the case where it provides so that it may be located in the outer-diameter side from the inner wall surface 55 of this. Referring to FIG. 8, with reference to side surface 89 of dielectric window 90, distance L 6 from side surface 89 to outer diameter side end portion 86 and distance L 7 from side surface 89 to inner diameter side end portion 87 are side surfaces. It is provided so as to be shorter than a distance L 8 from 89 to the inner wall surface 55 of the dielectric window support member 10.
  • the dielectric window recess 63 has been described as an example of a shape recessed downward from the dielectric window upper end surface 59.
  • the present invention is not limited to this, and the lower side of the dielectric window 16 is not limited thereto. It may be a shape that is recessed upward from the side surface 25, or may be a shape that is recessed in the radial direction from the side surface 62 of the dielectric window 16 toward the center 64 of the dielectric window 16.
  • FIG. 9 is a diagram showing a dielectric window recess 71 according to still another embodiment, in which the dielectric window recess 71 is formed in a radial direction from the side surface 72 of the dielectric window 70 toward the center 78 of the dielectric window 70. It is a figure which shows the case where it is set as the concave shape.
  • FIG. 10 is a view of the dielectric window 70 shown in FIG. 9 as viewed from above.
  • the dielectric window recess 71 has a shape recessed in the radial direction from the side surface 72 of the dielectric window 70 toward the center side of the dielectric window 70.
  • the dielectric window recess 71 is provided so as to be positioned at the center of the dielectric window 70 in the plate thickness direction.
  • the dielectric window recess 71 includes a recess bottom surface 75 positioned on the inner diameter side and serving as a bottom, and a recess wall surface 80 serving as a wall positioned on the outer diameter side of the recess bottom surface 75.
  • the concave wall surface 80 has a substantially perfect circle shape when viewed from the lateral direction.
  • the dielectric window recess 71 is formed from the upper end 76 to the lower end 77.
  • distance L 14 to is provided so as to be 10 mm. That is, the ratio of the distance L 14 from the upper side end portion 76 to the lower side end portion 77 with respect to the distance L 12 from the dielectric window upper end surface 73 to the lower surface 79 of the dielectric window 70 is 1/3. It is provided to become.
  • the ratio of the distance L 15 from the dielectric window upper end surface 73 to the upper side end portion 76 with respect to the distance L 12 from the dielectric window upper end surface 73 to the lower surface 79 of the dielectric window 70 is 1 /. 3 and is provided so as to be provided such that the ratio of the distance L 16 from the lower side surface 79 of the dielectric window 70 to the lower end portion 77 is 1/3.
  • the dielectric window recess 71 is such that the distance from the side surface 72 of the dielectric window 70 to the bottom surface 75 of the recess is on the inner diameter side of the inner wall surface 55 of the dielectric window support member 10 and the inner diameter of the upper end surface 73 of the dielectric window. It is provided so as to be positioned on the outer diameter side from the side end portion 74. That is, with reference to FIG. 9, when the side surface 72 of the dielectric window 70 is used as a reference, the dielectric window recess 71 has a distance L 11 from the side surface 72 to the recess bottom surface 75. It provided to be longer than the distance L 10 to the inner wall surface 55 of the.
  • the distance L 10 from the side surface 72 to the inner wall surface 55 of the dielectric window support member 10 is a 20 mm
  • the distance L 11 from the side surface 72 to the bottom surface of the recess 75 is 25 mm. That is, the distance L 10 from the side surface 72 to the inner wall surface 55 of the dielectric window support member 10 is set such that the ratio of the distance L 11 from the side surface 72 to the recess bottom surface 75 is 1.25.
  • the diameter 500mm of the dielectric window 70, the ratio of the distance L 11 from the side surface 72 to the bottom surface of the recess 75 is provided so as to be 0.05.
  • dielectric window recesses 71 are provided at equal intervals in the circumferential direction.
  • the eight dielectric window recesses 71 are provided so as to have rotational symmetry.
  • the plurality of dielectric window recesses 71 are provided such that the radial distances from the center 78 of the dielectric window 70 are the same.
  • the distance L 13 from the center 78 of the dielectric window 70 to the bottom surface 75 of the recess is provided to be the same.
  • the wavelength of the microwave can be changed by the dielectric window recess 71, so that the standing wave formed in the dielectric window 70 can be separated from the side wall 22.
  • the inner wall surface 51 can be positioned on the inner diameter side.
  • the dielectric window recess 71 may be provided in the shape of a slot viewed from the lateral direction of the recess wall surface 80 in the shape of a long hole extending in the circumferential direction, or may be provided in an annular shape. Moreover, you may provide in rectangular shapes, such as square shape. Further, the concave bottom surface 75 may be provided on the outer diameter side of the inner wall surface 55 of the dielectric window support member 10.
  • the example in which the wavelength changing unit is the dielectric window concave portion 63 has been described. It is good. By doing so, the microwave can be reflected by the wall surface of the metal member. And the standing wave formed in the dielectric window 16 can be made into the position of an inner diameter side.
  • the metal member may be grounded. Specifically, since the members constituting the processing container 12 such as the dielectric window supporting member 10 and the dielectric window pressing ring 41 are grounded, the dielectric window supporting member 10 and the dielectric window pressing ring 41 such as this.
  • the metal member may be grounded by electrically connecting the metal member. By doing so, the standing wave formed in the dielectric window 16 can be controlled more effectively.
  • FIG. 11 is a diagram illustrating an example of a configuration in which the radial position of the metal member 94 can be changed.
  • dielectric window recess 91 has a shape recessed in the radial direction from side surface 93 of dielectric window 92 toward the center side of dielectric window 92, as shown in FIGS. 9 and 10 described above. It is.
  • a metal member 94 is provided in the inner region of the dielectric window recess 91.
  • the metal member 94 is provided by a drive mechanism 95 so as to be movable in the radial direction.
  • the drive mechanism 95 is inserted into a through-hole 96a that penetrates the dielectric window support member 96 in the radial direction, and is disposed on the outer diameter side of the dielectric window support member 96, a holding portion 95a that holds the metal member 94, And a drive unit 95b that moves the holding unit 95a in a direction toward the inner diameter side or the outer diameter side (arrow C 1 in FIG. 11).
  • the holding portion 95a holds the metal member 94 so that the metal member 94 can move in the radial direction within the dielectric window recess 91.
  • the metal member 94 is provided to extend in the radial direction so as to straddle the outer diameter side end portion of the dielectric window 92 and the dielectric window support member 96.
  • the dielectric window recess 91 is provided so as not to contact the recess wall surface 91a and the recess bottom surface 91b.
  • An electrical contact member 97 that electrically connects the dielectric window support member 96 and the metal member 94 is provided between the dielectric window support member 96 and the metal member 94.
  • the electrical contact member 97 is provided so as to cover the entire circumference of the side surface 94a of the metal member 94. Since the dielectric window support member 96 is grounded, the metal member 94 is also grounded. Thereby, leakage of microwaves and the like can be prevented.
  • the drive unit 95b is driven to move the metal member 94 in the radial direction via the holding unit 95a. For example, when the metal member 94 reaches the radial position where the standing wave state is appropriate, the movement of the metal member 94 is stopped.
  • the metal member 94 can be moved in the radial direction by using the drive mechanism 95 to change the radial position of the metal member 94. Then, the size of the space surrounded by the concave wall surface 91a or the concave bottom surface 91b of the dielectric window concave portion 91 and the metal member 94, that is, the size of the inner region of the dielectric window concave portion 91 can be adjusted. In this case, the state of the standing wave formed in the dielectric window 92 can be controlled in the plasma processing apparatus 11 in accordance with a change in process conditions, a change in plasma excitation state, or the like. As a result, the substrate to be processed W can be processed uniformly.
  • the drive unit 95b of the drive mechanism 95 may be configured to move the metal member 94 in the radial direction by a manual operation by the user, or may be configured to move the metal member 94 in the radial direction by automatic operation by an apparatus. May be.
  • a reflected wave detection means for detecting the reflected wave of the microwave is provided, and feedback such as moving the metal member 94 in the radial direction according to the reflected wave detected by the reflected wave detection means. Control may be performed.
  • the configuration in which the radial position of the metal member 94 can be changed by using the drive mechanism 95 in this way is, for example, as shown in FIG.
  • the through hole 96a that penetrates the dielectric window support member 96 in the radial direction may be provided according to the dielectric window recess 91 to which the drive mechanism 95 is applied.
  • the wavelength changing means may be a member formed so that the dielectric constant is lower than that of the dielectric window 16, specifically, the dielectric constant is lower than that of the dielectric window 16.
  • the wavelength changing unit has been described with respect to the upper surface 58 of the dielectric window 16 and the concave portion recessed inward from the side surface 62 of the dielectric window 16.
  • the present invention is not limited thereto, and the wavelength of the microwave may be changed depending on the space by forming a space inside the dielectric window 16.
  • the side wall 22 is the structure containing the dielectric material window support member 10 and the cylindrical part 22a, Comprising: Although the example comprised from a some member was demonstrated, it does not restrict to this.
  • the dielectric window support member 10 and the cylindrical portion 22a may be integrated.
  • the support portion 52 that is recessed downward from the upper end portion is provided so as to support the dielectric window 16.
  • the upper end portion of the dielectric window support member 10 has a flat shape, and the support portion 52 is not limited to this. The structure which is not provided may be sufficient.
  • the dielectric window 16 may be placed on the inner diameter side of the upper end portion of the dielectric window support member 10. For example, in the upper end portion of the dielectric window support member 10, from the inner diameter side to the outer diameter side. You may comprise so that it may be mounted over a near position.
  • the plasma processing apparatus 11 has been described with respect to an example of a configuration including the dielectric plate 19.
  • the present invention is not limited thereto, and the plasma processing apparatus 11 may be applied to an apparatus having a configuration without a dielectric plate. Can do.
  • the plasma processing apparatus according to the present invention is effectively used when a uniform processing is required within the surface of the substrate to be processed during plasma processing.

Abstract

Disclosed is a plasma processing apparatus (11), which has a bottom (21) disposed on the underside, and a side wall (22) that extends in a cylindrical shape from the outside of the bottom (21) toward the upper side. On the inside of the same are provided a processing container (12) for plasma processing on the unprocessed substrate, and a dielectric window (16), for mounting to the upper edge of the side wall (22) so as to cover the opening of the processing container (12) and seal the processing container (12), and also for transmitting microwaves to the inside of the processing container (12). A dielectric window recess (63) is disposed on the dielectric window (16) as a wavelength adjustment means, for, when mounted to the upper edge of the side wall (22), adjusting the wavelength of the microwaves that are transmitted in a radial direction in the dielectric window (16), in a region farther outward radially than the inner wall surface (51) of the side wall (22).

Description

プラズマ処理装置、および誘電体窓Plasma processing apparatus and dielectric window
 この発明は、プラズマ処理装置、および誘電体窓に関するものであり、特に、プラズマ源としてマイクロ波を用いたプラズマ処理装置、およびこのようなプラズマ処理装置に用いられる誘電体窓に関するものである。 The present invention relates to a plasma processing apparatus and a dielectric window, and more particularly to a plasma processing apparatus using a microwave as a plasma source and a dielectric window used in such a plasma processing apparatus.
 半導体装置を製造する際に、プラズマを用いてエッチングやCVD(Chemical Vapor Deposition)等の処理を行うものがある。このようなプラズマ処理を行う従来のプラズマ処理装置について簡単に説明する。図12は、従来のプラズマ処理装置100について示す概略断面図である。図13は、図12中のXIIIで示す領域を拡大した図である。なお、図12および図13において、紙面の上下方向を装置の上下方向とする。 Some semiconductor devices perform processing such as etching and CVD (Chemical Vapor Deposition) using plasma when manufacturing semiconductor devices. A conventional plasma processing apparatus for performing such plasma processing will be briefly described. FIG. 12 is a schematic cross-sectional view showing a conventional plasma processing apparatus 100. FIG. 13 is an enlarged view of a region indicated by XIII in FIG. 12 and 13, the vertical direction of the paper surface is the vertical direction of the apparatus.
 図12および図13を参照して、プラズマ処理装置100は、その内部で被処理基板にプラズマ処理を行う処理容器101と、処理容器101内にマイクロ波を透過させる円板状の誘電体窓102とを備える。処理容器101は、下部側に位置する底部108と、底部108の外周部から上方向に延びる円筒形状の側壁109とを有する構成である。 Referring to FIGS. 12 and 13, a plasma processing apparatus 100 includes a processing container 101 that performs plasma processing on a substrate to be processed therein, and a disk-shaped dielectric window 102 that transmits microwaves into the processing container 101. With. The processing container 101 is configured to include a bottom portion 108 located on the lower side and a cylindrical side wall 109 extending upward from the outer peripheral portion of the bottom portion 108.
 マイクロ波は、誘電体窓102に放射されると、誘電体窓102内を中心側から外径側に向かって径方向に伝播する。また、中心側から外径側に向かって伝播したマイクロ波は、誘電体窓102の側面102cや、誘電体窓102の側面102cと対向する側壁109の壁面110aで反射して外径側から中心側に向かって径方向に伝播する。ここで、中心側から外径側に向かうマイクロ波と、外径側から中心側に向かうマイクロ波とが重なり合い、誘電体窓102内に定在波が形成される。 When the microwave is radiated to the dielectric window 102, it propagates in the dielectric window 102 in the radial direction from the center side toward the outer diameter side. Further, the microwave propagated from the center side toward the outer diameter side is reflected by the side surface 102c of the dielectric window 102 and the wall surface 110a of the side wall 109 facing the side surface 102c of the dielectric window 102 and is centered from the outer diameter side. Propagates radially toward the side. Here, the microwave traveling from the center side to the outer diameter side and the microwave traveling from the outer diameter side to the center side overlap, and a standing wave is formed in the dielectric window 102.
 ここで、誘電体窓内に形成される定在波を調整する技術が、WO03/105544A1号公報(特許文献1)、および特開2001-223171号公報(特許文献2)に開示されている。 Here, techniques for adjusting a standing wave formed in a dielectric window are disclosed in WO03 / 105544A1 (Patent Document 1) and JP-A-2001-223171 (Patent Document 2).
WO03/105544A1号公報WO03 / 105544A1 publication 特開2001-223171号公報JP 2001-223171 A
 特許文献1によると、誘電体窓において、誘電体窓内を伝播するマイクロ波を反射するための反射部材を設けることとしている。反射部材は、誘電体窓の内径側の領域、具体的には、側壁の内壁面より内径側の領域に設けられている。これにより、マイクロ波を反射部材で反射させて、定在波の形成させる位置を誘電体窓の外径側の領域とすることとしている。 According to Patent Document 1, the dielectric window is provided with a reflecting member for reflecting the microwave propagating in the dielectric window. The reflecting member is provided in a region on the inner diameter side of the dielectric window, specifically, a region on the inner diameter side from the inner wall surface of the side wall. Thereby, the position where the microwave is reflected by the reflecting member and the standing wave is formed is set as a region on the outer diameter side of the dielectric window.
 また、特許文献2によると、誘電体窓と処理容器との間に、電磁波吸収体を設けることとしている。これにより、マイクロ波を吸収してマイクロ波の反射を抑制し、定在波の形成自体を抑制することとしている。 According to Patent Document 2, an electromagnetic wave absorber is provided between the dielectric window and the processing container. As a result, the microwave is absorbed to suppress the reflection of the microwave, and the formation of the standing wave itself is suppressed.
 ここで、図12および図13を再び参照して、側壁109の上端部の内径側には、誘電体窓102を支持するように上端部から下方向に凹んだ支持部110が設けられている。誘電体窓102は、誘電体窓102の下方側の面102bの外径側を支持部110に載置するようにして、支持部110に支持されている。 Here, referring again to FIGS. 12 and 13, on the inner diameter side of the upper end portion of the side wall 109, a support portion 110 that is recessed downward from the upper end portion is provided so as to support the dielectric window 102. . The dielectric window 102 is supported by the support portion 110 such that the outer diameter side of the lower surface 102 b of the dielectric window 102 is placed on the support portion 110.
 ここで、誘電体窓102内に形成される定在波について考える。まず、誘電体窓102のうち、支持部110に載置されていない領域、すなわち、側壁109の内壁面109bより内径側の領域103においては、その下方にプラズマが生成される。そうすると、プラズマにエネルギーを吸収されるため、形成される定在波の強度は弱くなり、形成される電磁界は比較的弱くなる。 Here, a standing wave formed in the dielectric window 102 is considered. First, in the region of the dielectric window 102 that is not placed on the support portion 110, that is, in the region 103 on the inner diameter side of the inner wall surface 109b of the side wall 109, plasma is generated below it. Then, since energy is absorbed by the plasma, the strength of the formed standing wave is weakened, and the formed electromagnetic field is relatively weak.
 一方、誘電体窓102のうち、支持部110に載置されている領域、すなわち、側壁109の内壁面109bより外径側の領域104においては、その下方に支持部110が位置するため、下方にプラズマは生成されない。そうすると、プラズマにエネルギーを吸収されることがないため、形成される定在波の強度は強くなり、形成される電磁界は比較的強くなる。図14は、図12に示すプラズマ処理装置100の一部を示した図であって、誘電体窓102内の強電磁界領域を示す図である。図14を参照して、誘電体窓102の外径側の領域において、形成される強い電磁界111をイメージで示している。なお、図14においては、理解の容易の観点から、誘電体窓102のハッチングを省略して図示している。 On the other hand, in the region of the dielectric window 102 that is placed on the support portion 110, that is, in the region 104 on the outer diameter side of the inner wall surface 109 b of the side wall 109, the support portion 110 is positioned below the lower portion. No plasma is generated. Then, since energy is not absorbed by the plasma, the strength of the standing wave formed is increased, and the formed electromagnetic field is relatively increased. FIG. 14 is a view showing a part of the plasma processing apparatus 100 shown in FIG. 12 and showing a strong electromagnetic field region in the dielectric window 102. Referring to FIG. 14, the strong electromagnetic field 111 formed in the outer diameter side region of the dielectric window 102 is shown as an image. In FIG. 14, the hatching of the dielectric window 102 is omitted from the viewpoint of easy understanding.
 そうすると、処理容器101内のうち、図13中に示す側壁109の内壁面109bと誘電体窓102の下方側の面102bとの接点Pの近傍では、プラズマ密度が高くなる。その結果、接点Pの近傍では、プラズマによる侵食や反応生成物の付着が生じてしまう。 Then, in the processing vessel 101, in the vicinity of the contact P between the inner wall surface 109b of the side wall 109 and the lower surface 102b of the dielectric window 102 shown in FIG. As a result, in the vicinity of the contact P, erosion due to plasma and adhesion of reaction products occur.
 ここで、特許文献1に開示の技術では、上記した問題を解決するには不十分である。 Here, the technique disclosed in Patent Document 1 is insufficient to solve the above-described problem.
 また、特許文献2に開示の技術では、マイクロ波を吸収してマイクロ波の反射を抑制し、定在波の形成自体を抑制しているため、処理容器内にプラズマが生成されにくくなってしまう虞がある。また、装置に電磁波吸収体を設ける必要があり、装置の組み立て等が煩雑になってしまう虞もある。 Further, in the technique disclosed in Patent Document 2, the microwave is absorbed to suppress the reflection of the microwave and the formation of the standing wave itself is suppressed, so that plasma is hardly generated in the processing container. There is a fear. Moreover, it is necessary to provide an electromagnetic wave absorber in the apparatus, and there is a possibility that the assembly of the apparatus becomes complicated.
 この発明の目的は、誘電体窓内に形成される定在波の影響を緩和して、適切にプラズマを生成することができるプラズマ処理装置、およびこのようなプラズマ処理装置に用いられる誘電体窓を提供することである。 An object of the present invention is to reduce the influence of a standing wave formed in a dielectric window and generate a plasma appropriately, and the dielectric window used in such a plasma processing apparatus Is to provide.
 この発明に係るプラズマ処理装置は、上部側が開口しており、下部側に配置される底部と、底部の外方側から上部側に向かって延びる円筒形状の側壁とを有し、その内部で被処理基板にプラズマ処理を行う処理容器と、処理容器内にプラズマ処理用のガスを供給するガス供給部と、処理容器内に配置され、その上に被処理基板を保持する保持台と、プラズマ励起用のマイクロ波を発生させるマイクロ波発生器と、処理容器の開口を覆うようにして側壁の上端部に載置されて処理容器を密封すると共に、マイクロ波を処理容器内へ透過させる誘電体窓と、複数のスロット孔が設けられており、誘電体窓の上方側に配置され、マイクロ波を誘電体窓に放射するためのスロットアンテナ板と、マイクロ波発生器により発生させたマイクロ波を誘電体窓に供給するマイクロ波供給手段とを備える。誘電体窓には、側壁の上端部に載置された際に、側壁の内壁面より外径側の領域において、誘電体窓内を径方向に伝播するマイクロ波の波長を変更する波長変更手段が設けられている。 The plasma processing apparatus according to the present invention has an opening on the upper side, a bottom portion disposed on the lower side, and a cylindrical side wall extending from the outer side of the bottom portion toward the upper side. A processing container that performs plasma processing on a processing substrate, a gas supply unit that supplies a plasma processing gas into the processing container, a holding base that is disposed in the processing container and holds a substrate to be processed, and plasma excitation A microwave generator for generating microwaves for use, and a dielectric window placed on the upper end of the side wall so as to cover the opening of the processing container to seal the processing container and allow microwaves to pass through the processing container A plurality of slot holes, which are disposed above the dielectric window, and a slot antenna plate for radiating the microwave to the dielectric window; and the microwave generated by the microwave generator And a microwave supply means for supplying to the window. Wavelength changing means for changing the wavelength of the microwave propagating in the radial direction in the dielectric window in a region on the outer diameter side of the inner wall surface of the side wall when the dielectric window is placed on the upper end of the side wall Is provided.
 このようなプラズマ処理装置は、誘電体窓のうち、側壁の内壁面より外径側の領域において、誘電体窓内を径方向に伝播するマイクロ波の波長を変更する波長変更手段を含む。波長変更手段は、誘電体窓のうち、側壁の内壁面より外径側の領域において、マイクロ波の波長を変更する。これにより、誘電体窓において、強い定在波の形成される位置を変更することができる。したがって、誘電体窓のうち、側壁の内壁面より外径側の領域において、強い電磁界が形成される虞を低減することができる。そうすると、側壁の内壁面と誘電体窓の下方側の面との接点近傍における侵食等を防止することができる。その結果、誘電体窓内に形成される定在波の影響を緩和して、適切にプラズマを生成することができる。すなわち、本願発明の発明者は、誘電体窓のうち、側壁の内壁面の外径側の領域において、強い定在波が形成されることに起因して生ずる側壁の内壁面と誘電体窓の下方側の面との接点近傍における侵食等の課題に着目し、波長変更手段を設けることによって、強い定在波の形成される位置を調整することにより、上記した課題の解決を図るものである。 Such a plasma processing apparatus includes wavelength changing means for changing the wavelength of the microwave propagating in the radial direction in the dielectric window in a region on the outer diameter side of the inner wall surface of the side wall of the dielectric window. The wavelength changing means changes the wavelength of the microwave in a region on the outer diameter side of the inner wall surface of the side wall in the dielectric window. Thereby, the position where a strong standing wave is formed can be changed in the dielectric window. Therefore, it is possible to reduce the possibility that a strong electromagnetic field is formed in a region of the dielectric window on the outer diameter side of the inner wall surface of the side wall. As a result, erosion or the like in the vicinity of the contact between the inner wall surface of the side wall and the lower surface of the dielectric window can be prevented. As a result, the influence of the standing wave formed in the dielectric window can be mitigated, and plasma can be generated appropriately. In other words, the inventor of the invention of the present application has found that the dielectric window has an inner wall surface of the side wall and the dielectric window caused by the formation of strong standing waves in the outer diameter side region of the inner wall surface of the side wall. Focusing on problems such as erosion in the vicinity of the contact point with the lower surface, by adjusting the position where a strong standing wave is formed by providing wavelength changing means, the above-described problems are solved. .
 好ましくは、波長変更手段は、誘電体窓の上方側、下方側、および側面のうちの少なくともいずれか一方の面から内方側に凹む凹部であって、凹部を構成する壁面を境界として、誘電体窓内を径方向に伝播するマイクロ波の波長を変更する。こうすることにより、簡易な構成で、マイクロ波の波長を変更することができる。 Preferably, the wavelength changing means is a concave portion recessed inward from at least one of the upper side, the lower side, and the side surface of the dielectric window, and the dielectric wall is formed with the wall surface forming the concave portion as a boundary. Change the wavelength of the microwave that propagates radially in the body window. By doing so, the wavelength of the microwave can be changed with a simple configuration.
 好ましくは、波長変更手段は、周方向に複数設けられており、一実施形態として、複数の波長変更手段は、誘電体窓の中心からの径方向の距離がそれぞれ同じになるように設けられている。こうすることにより、定在波の形成される径方向位置を周方向に均一にすることができる。そうすると、例えば、プラズマ処理装置の組み立ての際に、誘電体窓の中心が円筒形状の側壁の中心とのずれを生じる場合があると、マイクロ波の伝播される中心から側壁までの径方向長さが、周方向位置において各々異なってしまう。その結果、周方向位置において定在波の強度が各々異なってしまう場合がある。特に、プラズマ処理装置の組み立ての際に生じるずれは、装置間において各々異なる。したがって、装置間で周方向位置における定在波の強度が各々異なる場合がある。このような場合においても、複数の波長変更手段を誘電体窓の中心からの径方向の距離が同じになるように設けることにより、定在波の形成される径方向位置を周方向に均一にすることができる。 Preferably, a plurality of wavelength changing means are provided in the circumferential direction, and as one embodiment, the plurality of wavelength changing means are provided so that the radial distance from the center of the dielectric window is the same. Yes. By doing so, the radial position where the standing wave is formed can be made uniform in the circumferential direction. Then, for example, when the plasma processing apparatus is assembled, if the center of the dielectric window may be displaced from the center of the cylindrical side wall, the radial length from the center through which the microwave is propagated to the side wall However, they are different at the circumferential positions. As a result, the strength of the standing wave may be different at the circumferential position. In particular, the deviations that occur when assembling the plasma processing apparatus are different among the apparatuses. Therefore, the strength of the standing wave at the circumferential position may be different between devices. Even in such a case, by providing a plurality of wavelength changing means so that the radial distance from the center of the dielectric window is the same, the radial position where the standing wave is formed is made uniform in the circumferential direction. can do.
 他の実施形態として、複数の波長変更手段は、周方向に等配されている。これにより、定在波の形成される周方向位置を周方向に均一にすることができる。 As another embodiment, the plurality of wavelength changing means are equally arranged in the circumferential direction. Thereby, the circumferential direction position where a standing wave is formed can be made uniform in the circumferential direction.
 さらに他の実施形態として、複数の波長変更手段は、誘電体窓の径方向の中心を中心とした回転対称性を有するように設けられている。 In yet another embodiment, the plurality of wavelength changing means are provided so as to have rotational symmetry about the radial center of the dielectric window.
 さらに好ましくは、波長変更手段は、誘電体窓の側面から、マイクロ波の波長の半分の長さ以内の位置に設けられている。こうすることにより、誘電体窓の側面で反射したマイクロ波が外径側から中心側に向かって伝播する際に、波長変更手段によって適切にマイクロ波の波長を変更することができる。 More preferably, the wavelength changing means is provided within a half length of the microwave wavelength from the side surface of the dielectric window. Thus, when the microwave reflected from the side surface of the dielectric window propagates from the outer diameter side toward the center side, the wavelength of the microwave can be appropriately changed by the wavelength changing means.
 さらに好ましくは、凹部の内部領域には、誘電体窓と異なる誘電率を有する部材が設けられている。こうすることにより、効率的にマイクロ波の波長を変更することができる。 More preferably, a member having a dielectric constant different from that of the dielectric window is provided in the inner region of the recess. By doing so, the wavelength of the microwave can be changed efficiently.
 一実施形態として、凹部の内部領域には、金属部材が設けられている。 As an embodiment, a metal member is provided in the inner region of the recess.
 好ましくは、金属部材は、接地されている。 Preferably, the metal member is grounded.
 さらに好ましくは、金属部材は、金属部材の径方向位置が変更可能に設けられている。 More preferably, the metal member is provided so that the radial position of the metal member can be changed.
 この発明の他の局面においては、誘電体窓に関する。誘電体窓は、上部側が開口しており、下部側に配置される底部、および底部の外方側から上部側に向かって延びる円筒形状の側壁を有し、その内部で被処理基板にプラズマ処理を行う処理容器において、処理容器の開口を覆うようにして側壁の上端部に載置されて処理容器を密封すると共に、マイクロ波を処理容器内へ透過させる。そして、誘電体窓には、側壁の上端部に載置された際に、側壁の内壁面より外径側の領域において、誘電体窓内を径方向に伝播するマイクロ波の波長を変更する凹部が複数設けられている。複数の凹部は、誘電体窓の側面から、マイクロ波の波長の半分の長さ以内の位置に設けられている。複数の凹部は、周方向に等配されている。 In another aspect of the present invention, the present invention relates to a dielectric window. The dielectric window has an opening on the upper side, a bottom portion disposed on the lower side, and a cylindrical side wall extending from the outer side of the bottom portion toward the upper side, and plasma processing is performed on the substrate to be processed therein. In the processing container, the processing container is placed on the upper end of the side wall so as to cover the opening of the processing container to seal the processing container, and the microwave is transmitted into the processing container. The dielectric window has a recess that changes the wavelength of the microwave that propagates radially in the dielectric window in a region on the outer diameter side of the inner wall surface of the side wall when placed on the upper end of the side wall. Are provided. The plurality of recesses are provided at positions within half the length of the microwave wavelength from the side surface of the dielectric window. The plurality of recesses are equally arranged in the circumferential direction.
 このような誘電体窓は、側壁の内壁面より外径側の領域において、誘電体窓内を径方向に伝播するマイクロ波の波長を変更する凹部を含む。凹部は、誘電体窓のうち、側壁の内壁面より外径側の領域において、マイクロ波の波長を変更する。これにより、誘電体窓において、強い定在波の形成される位置を変更することができる。したがって、誘電体窓のうち、側壁の内壁面より外径側の領域において、強い電磁界が形成される虞を低減することができる。そうすると、側壁の内壁面と誘電体窓の下方側の面との接点近傍における侵食等を防止することができる。 Such a dielectric window includes a recess for changing the wavelength of the microwave propagating in the radial direction in the dielectric window in a region on the outer diameter side of the inner wall surface of the side wall. The recess changes the wavelength of the microwave in a region on the outer diameter side of the inner wall surface of the side wall in the dielectric window. Thereby, the position where a strong standing wave is formed can be changed in the dielectric window. Therefore, it is possible to reduce the possibility that a strong electromagnetic field is formed in a region of the dielectric window on the outer diameter side of the inner wall surface of the side wall. As a result, erosion or the like in the vicinity of the contact between the inner wall surface of the side wall and the lower surface of the dielectric window can be prevented.
 この発明に係るプラズマ処理装置は、誘電体窓のうち、側壁の内壁面より外径側の領域において、誘電体窓内を径方向に伝播するマイクロ波の波長を変更する波長変更手段を含む。波長変更手段は、誘電体窓のうち、側壁の内壁面より外径側の領域において、マイクロ波の波長を変更する。これにより、誘電体窓において、強い定在波の形成される位置を変更することができる。したがって、誘電体窓のうち、側壁の内壁面より外径側の領域において、強い電磁界が形成される虞を低減することができる。そうすると、側壁の内壁面と誘電体窓の下方側の面との接点近傍における侵食等を防止することができる。その結果、誘電体窓内に形成される定在波の影響を緩和して、適切にプラズマを生成することができる。 The plasma processing apparatus according to the present invention includes wavelength changing means for changing the wavelength of the microwave propagating in the radial direction in the dielectric window in a region on the outer diameter side of the inner wall surface of the side wall of the dielectric window. The wavelength changing means changes the wavelength of the microwave in a region on the outer diameter side of the inner wall surface of the side wall in the dielectric window. Thereby, the position where a strong standing wave is formed can be changed in the dielectric window. Therefore, it is possible to reduce the possibility that a strong electromagnetic field is formed in a region of the dielectric window on the outer diameter side of the inner wall surface of the side wall. As a result, erosion or the like in the vicinity of the contact between the inner wall surface of the side wall and the lower surface of the dielectric window can be prevented. As a result, the influence of the standing wave formed in the dielectric window can be mitigated, and plasma can be generated appropriately.
 この発明に係る誘電体窓は、側壁の内壁面より外径側の領域において、誘電体窓内を径方向に伝播するマイクロ波の波長を変更する凹部を含む。凹部は、誘電体窓のうち、側壁の内壁面より外径側の領域において、マイクロ波の波長を変更する。これにより、誘電体窓において、強い定在波の形成される位置を変更することができる。したがって、誘電体窓のうち、側壁の内壁面より外径側の領域において、強い電磁界が形成される虞を低減することができる。そうすると、側壁の内壁面と誘電体窓の下方側の面との接点近傍における侵食等を防止することができる。 The dielectric window according to the present invention includes a recess for changing the wavelength of the microwave propagating in the radial direction in the dielectric window in a region on the outer diameter side from the inner wall surface of the side wall. The recess changes the wavelength of the microwave in a region on the outer diameter side of the inner wall surface of the side wall in the dielectric window. Thereby, the position where a strong standing wave is formed can be changed in the dielectric window. Therefore, it is possible to reduce the possibility that a strong electromagnetic field is formed in a region of the dielectric window on the outer diameter side of the inner wall surface of the side wall. As a result, erosion or the like in the vicinity of the contact between the inner wall surface of the side wall and the lower surface of the dielectric window can be prevented.
この発明の一実施形態に係るプラズマ処理装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the plasma processing apparatus which concerns on one Embodiment of this invention. スロットアンテナ板を示す図である。It is a figure which shows a slot antenna board. 図1に示すプラズマ処理装置の一部を拡大した図である。It is the figure which expanded a part of plasma processing apparatus shown in FIG. 図1に示す誘電体窓を上方向から見た図である。It is the figure which looked at the dielectric material window shown in FIG. 1 from the upper direction. 図1に示すプラズマ処理装置の一部を拡大した図である。It is the figure which expanded a part of plasma processing apparatus shown in FIG. 図1に示すプラズマ処理装置の一部を拡大した図であって、誘電体窓内の強電磁界領域を示す図である。It is the figure which expanded a part of plasma processing apparatus shown in FIG. 1, Comprising: It is a figure which shows the strong electromagnetic field area | region in a dielectric material window. 他の実施形態における誘電体窓凹部を設けた誘電体窓を上方向から見た図である。It is the figure which looked at the dielectric window which provided the dielectric window recessed part in other embodiment from the upper direction. さらに他の実施形態における誘電体窓凹部を示す図である。It is a figure which shows the dielectric material window recessed part in other embodiment. さらに他の実施形態における誘電体窓凹部を示す図である。It is a figure which shows the dielectric material window recessed part in other embodiment. 図9に示す誘電体窓を上方向から見た図である。It is the figure which looked at the dielectric material window shown in FIG. 9 from the upper direction. 金属部材の径方向位置を変更可能とした構成の一例を示す図である。It is a figure which shows an example of the structure which made changeable the radial direction position of a metal member. 従来のプラズマ処理装置について示す概略断面図である。It is a schematic sectional drawing shown about the conventional plasma processing apparatus. 図12中のXIIIで示す領域を拡大した図である。It is the figure which expanded the area | region shown by XIII in FIG. 図12に示すプラズマ処理装置の一部を示した図であって、誘電体窓内の強電磁界領域を示す図である。It is the figure which showed a part of plasma processing apparatus shown in FIG. 12, Comprising: It is a figure which shows the strong electromagnetic field area | region in a dielectric material window.
 以下、図面を参照して、この発明の一実施形態に係るプラズマ処理装置について説明する。図1は、この発明の一実施形態に係るプラズマ処理装置11の一例を示す概略断面図である。図2は、スロットアンテナ板18を示す図である。 Hereinafter, a plasma processing apparatus according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic sectional view showing an example of a plasma processing apparatus 11 according to an embodiment of the present invention. FIG. 2 is a view showing the slot antenna plate 18.
 まず、図1を参照して、プラズマ処理装置11は、上部側が開口しており、その内部において被処理基板Wにプラズマ処理を行う処理容器12と、処理容器12内にプラズマ励起用のガスおよびプラズマ処理用のガスを供給するガス供給部13と、処理容器12内に配置され、その上に被処理基板Wを保持する保持台14と、処理容器12の外部に配置され、プラズマ励起用のマイクロ波を発生させるマイクロ波発生器15と、処理容器12の開口を覆うように配置されて処理容器12を密封すると共に、マイクロ波を処理容器12内へ透過させる誘電体窓16と、複数のスロット孔17が設けられており、誘電体窓16の上方側に配置され、マイクロ波を誘電体窓16に放射するための薄板状のスロットアンテナ板18と、スロットアンテナ板18の上方側に配置され、マイクロ波を径方向に伝播する誘電体板19と、マイクロ波発生器15により発生させたマイクロ波を処理容器12内に供給するマイクロ波供給手段20と、プラズマ処理装置11全体を制御する制御部(図示せず)とを備える。 First, referring to FIG. 1, the plasma processing apparatus 11 is open on the upper side, in which a processing container 12 that performs plasma processing on the substrate W to be processed, a gas for plasma excitation in the processing container 12, and A gas supply unit 13 that supplies a gas for plasma processing, a holding base 14 that is disposed in the processing container 12 and holds the substrate W to be processed, and is disposed outside the processing container 12 for plasma excitation. A microwave generator 15 that generates a microwave; a dielectric window 16 that is disposed so as to cover the opening of the processing container 12 to seal the processing container 12 and transmits the microwave into the processing container 12; A slot hole 17 is provided. The slot antenna plate 18 is disposed above the dielectric window 16 and radiates microwaves to the dielectric window 16. A dielectric plate 19 that is disposed above the na plate 18 and propagates the microwave in the radial direction; a microwave supply means 20 that supplies the microwave generated by the microwave generator 15 into the processing vessel 12; And a control unit (not shown) for controlling the entire plasma processing apparatus 11.
 処理容器12は、保持台14の下部に位置する底部21と、底部21の外周部から上方向に延びる側壁22とを含む構成である。底部21の径方向中央側には、排気用の排気口23が設けられている。処理容器12の上部側は開口しており、処理容器12の上部側に配置される誘電体窓16、および誘電体窓16と処理容器12との間に介在するシール部材としてのOリング24によって、処理容器12は、密封可能に構成されている。 The processing container 12 includes a bottom portion 21 located at the lower portion of the holding table 14 and a side wall 22 extending upward from the outer peripheral portion of the bottom portion 21. An exhaust port 23 for exhaust is provided on the radial center side of the bottom portion 21. The upper side of the processing container 12 is open, and is provided by a dielectric window 16 disposed on the upper side of the processing container 12 and an O-ring 24 as a seal member interposed between the dielectric window 16 and the processing container 12. The processing container 12 is configured to be sealable.
 側壁22は、円筒形状であって、底部21の外周部から上方向に延びる円筒部22aと、円筒部22aの上方側に位置する誘電体窓支持部材10とを含む構成である。誘電体窓支持部材10は、円筒部22aに載置するようにして設けられている。なお、図示はしないが、円筒部22aと誘電体窓支持部材10との間には、シール部材が設けられている。そして、誘電体窓支持部材10の内壁面55と円筒部22aの内壁面51とが上下方向に真っ直ぐに連なるようにして設けられている。すなわち、誘電体窓支持部材10の内壁面55と円筒部22aの内壁面51との間には、段差が形成されていない構成であって、面一に設けられている。誘電体窓支持部材10の材質は、金属である。誘電体窓支持部材10の具体的な材質として、アルミニウム等が挙げられる。また、この実施形態においては、誘電体窓支持部材10の上端部の内径側には、誘電体窓16を支持するように上端部から下方向に凹んだ支持部52が設けられている。支持部52は、環状に設けられており、誘電体窓16を支持する。すなわち、誘電体窓16は、誘電体窓支持部材10の上端部の内径側である支持部52に載置されている。なお、上記したガス供給部13の一部は、円筒部22aに埋め込まれるようにして設けられており、処理容器12の外部から処理容器12内へガスを供給する。 The side wall 22 has a cylindrical shape and includes a cylindrical portion 22a extending upward from the outer peripheral portion of the bottom portion 21 and a dielectric window support member 10 positioned above the cylindrical portion 22a. The dielectric window support member 10 is provided so as to be placed on the cylindrical portion 22a. Although not shown, a seal member is provided between the cylindrical portion 22a and the dielectric window support member 10. The inner wall surface 55 of the dielectric window support member 10 and the inner wall surface 51 of the cylindrical portion 22a are provided so as to be straightly connected in the vertical direction. That is, a step is not formed between the inner wall surface 55 of the dielectric window support member 10 and the inner wall surface 51 of the cylindrical portion 22a, and is provided flush. The material of the dielectric window support member 10 is a metal. Specific examples of the material for the dielectric window support member 10 include aluminum. Further, in this embodiment, a support portion 52 that is recessed downward from the upper end portion is provided on the inner diameter side of the upper end portion of the dielectric window support member 10 so as to support the dielectric window 16. The support portion 52 is provided in an annular shape and supports the dielectric window 16. That is, the dielectric window 16 is placed on the support portion 52 that is the inner diameter side of the upper end portion of the dielectric window support member 10. Note that a part of the gas supply unit 13 described above is provided so as to be embedded in the cylindrical portion 22 a and supplies gas into the processing container 12 from the outside of the processing container 12.
 スロットアンテナ板18は、薄板状であって、円板状である。スロットアンテナ板18には、板厚方向に貫通する複数のスロット孔17が設けられている。複数のスロット孔17は、図2に示すように、一対のスロット孔17が略ハの字状に直交するように設けられており、一対を成したスロット孔17が周方向に所定の間隔を開けて設けられている。また、径方向においても、複数の一対のスロット孔17が所定の間隔を開けて設けられている。なお、この実施形態においては、複数の一対のスロット孔17が回転対称性を有するように設けられている。この場合の回転軸は、8回転軸であり、スロットアンテナ板18の径方向の中心28を中心として45度回転させた場合に、同じ形状となる。 The slot antenna plate 18 has a thin plate shape and a disc shape. The slot antenna plate 18 is provided with a plurality of slot holes 17 penetrating in the plate thickness direction. As shown in FIG. 2, the plurality of slot holes 17 are provided such that a pair of slot holes 17 are orthogonal to each other in a substantially letter C shape, and the pair of slot holes 17 have a predetermined interval in the circumferential direction. Open and provided. Also in the radial direction, a plurality of pairs of slot holes 17 are provided at predetermined intervals. In this embodiment, a plurality of pairs of slot holes 17 are provided so as to have rotational symmetry. The rotation axis in this case is an eight rotation axis, and the same shape is obtained when the slot antenna plate 18 is rotated 45 degrees about the radial center 28.
 誘電体板19は、平板円板状である。誘電体板19の中央には、後述する同軸導波管31に備えられる内導体32を配置させるための開口が設けられている。 The dielectric plate 19 has a flat disk shape. In the center of the dielectric plate 19, an opening for arranging an inner conductor 32 provided in a coaxial waveguide 31 described later is provided.
 ここで、プラズマ処理装置11を製造する際には、誘電体窓16の径方向の中心64と、スロットアンテナ板18の径方向の中心28と、誘電体板19の径方向の中心とを、それぞれ一致するように製造される。こうすることにより、中心側から外径側に向かって伝播されるマイクロ波において、周方向におけるマイクロ波の伝播度合いを同じにして、誘電体窓16の下方側に生じさせるプラズマの周方向における均一性を確保するようにしている。なお、ここでは、スロットアンテナ板18の径方向の中心28を基準とする。 Here, when manufacturing the plasma processing apparatus 11, the radial center 64 of the dielectric window 16, the radial center 28 of the slot antenna plate 18, and the radial center of the dielectric plate 19, Manufactured to match each other. In this way, in the microwave propagated from the center side toward the outer diameter side, the propagation degree of the microwave in the circumferential direction is made the same, and the plasma generated in the lower side of the dielectric window 16 is uniform in the circumferential direction. We are trying to ensure sex. Here, the radial center 28 of the slot antenna plate 18 is used as a reference.
 マイクロ波供給手段20は、一方端部35がスロットアンテナ板18の中心28に接続される略丸棒状の内導体32、および内導体32と径方向のすき間34を開けて内導体32の外径側に設けられる略円筒状の外導体33を含む同軸導波管31を備える。すなわち、内導体32の外周面36と外導体33の内周面37とが対向するように内導体32と外導体33とを組み合わせて、同軸導波管31が構成されている。内導体32および外導体33は、内導体32の径方向の中心と外導体33の径方向の中心とを一致させるようにして組み合わされる。 The microwave supply means 20 includes an inner conductor 32 having a substantially round bar shape whose one end 35 is connected to the center 28 of the slot antenna plate 18, and an outer diameter of the inner conductor 32 by opening a radial gap 34 with the inner conductor 32. A coaxial waveguide 31 including a substantially cylindrical outer conductor 33 provided on the side is provided. That is, the coaxial waveguide 31 is configured by combining the inner conductor 32 and the outer conductor 33 so that the outer peripheral surface 36 of the inner conductor 32 and the inner peripheral surface 37 of the outer conductor 33 face each other. The inner conductor 32 and the outer conductor 33 are combined so that the radial center of the inner conductor 32 coincides with the radial center of the outer conductor 33.
 また、マイクロ波供給手段20は、マイクロ波発生器15に一方端部38が接続される導波管39と、マイクロ波のモードを変換するモード変換器40とを含む。導波管39は、横方向、具体的には、図1中の紙面左右方向に延びるように設けられている。なお、導波管39としては、断面が円形状のものや断面が矩形状のものが使用される。 Further, the microwave supply means 20 includes a waveguide 39 whose one end 38 is connected to the microwave generator 15 and a mode converter 40 for converting the mode of the microwave. The waveguide 39 is provided so as to extend in the horizontal direction, specifically, in the left-right direction in FIG. As the waveguide 39, a waveguide having a circular cross section or a rectangular cross section is used.
 マイクロ波発生器15において発生させたマイクロ波は、導波管39および同軸導波管31を介して、処理容器12内に伝播される。マイクロ波発生器15において発生させるマイクロ波の周波数としては、例えば、2.45GHzが選択される。 The microwave generated in the microwave generator 15 is propagated into the processing container 12 through the waveguide 39 and the coaxial waveguide 31. As the frequency of the microwave generated by the microwave generator 15, for example, 2.45 GHz is selected.
 例えば、マイクロ波発生器15で発生させたTEモードのマイクロ波は、導波管39内を図1中の矢印Aで示す紙面左方向に伝播し、モード変換器40によりTEMモードへ変換される。そして、TEMモードへ変換されたマイクロ波は、同軸導波管31内を図1中の矢印Aで示す紙面下方向へ伝播する。具体的には、すき間34が形成される内導体32と外導体33との間、および内導体32と後述する冷却板43の内径側端部47との間において、マイクロ波は伝播する。同軸導波管31を伝播したマイクロ波は、誘電体板19内を径方向に伝播し、スロットアンテナ板18に設けられた複数のスロット孔17から誘電体窓16に放射される。誘電体窓16を透過したマイクロ波は、誘電体窓16の直下に電界を生じさせ、処理容器12内にプラズマを生成させる。 For example, microwaves of TE mode which is generated by the microwave generator 15 propagates in the left direction in the drawing showing the the waveguide 39 by the arrow A 1 in FIG. 1, the mode converter 40 is converted into a TEM mode The Then, the microwave is converted into a TEM mode propagates through the coaxial waveguide 31 to the paper surface under the direction indicated by arrow A 2 in Fig. Specifically, the microwave propagates between the inner conductor 32 and the outer conductor 33 where the gap 34 is formed, and between the inner conductor 32 and the inner diameter side end portion 47 of the cooling plate 43 described later. The microwave propagated through the coaxial waveguide 31 propagates in the radial direction in the dielectric plate 19 and is radiated to the dielectric window 16 from a plurality of slot holes 17 provided in the slot antenna plate 18. The microwave transmitted through the dielectric window 16 generates an electric field immediately below the dielectric window 16 and generates plasma in the processing container 12.
 さらにプラズマ処理装置11は、誘電体窓支持部材10の上方側に配置され、誘電体窓16を上方側から押さえる誘電体窓押さえリング41と、誘電体窓押さえリング41の上方側に配置され、スロットアンテナ板18等を上方側から押さえるアンテナ押さえ42と、誘電体板19の上方側に配置され、誘電体板19等を冷却する冷却板43と、アンテナ押さえ42と冷却板43との間に介在するように配置され、処理容器12内外で電磁界を遮蔽する電磁遮蔽弾力体44と、スロットアンテナ板18の中心を固定する中心固定板46と、冷却板43の外周部分に設けられ、誘電体窓16側にリング状に突出し、誘電体板19を径方向に位置決めする誘電体板位置決め部48と、誘電体板位置決め部48が設けられた径方向の位置において、スロットアンテナ板18を固定する外周固定リング45とを備える。 Further, the plasma processing apparatus 11 is disposed on the upper side of the dielectric window support member 10 and is disposed on the upper side of the dielectric window pressing ring 41 and the dielectric window pressing ring 41 for pressing the dielectric window 16 from the upper side. An antenna holder 42 that holds the slot antenna plate 18 and the like from above, a cooling plate 43 that is disposed above the dielectric plate 19 and cools the dielectric plate 19 and the like, and between the antenna holder 42 and the cooling plate 43. An electromagnetic shielding elastic body 44 that shields an electromagnetic field inside and outside the processing container 12, a center fixing plate 46 that fixes the center of the slot antenna plate 18, and an outer peripheral portion of the cooling plate 43. At the radial position where the dielectric plate positioning portion 48 that projects in the shape of a ring on the body window 16 side and positions the dielectric plate 19 in the radial direction, and the dielectric plate positioning portion 48 is provided. And a periphery fixing ring 45 for fixing the slot antenna plate 18.
 誘電体窓押さえリング41は、円筒形状であって、誘電体窓支持部材10の上端面に当接するようにして設けられている。また、誘電体窓押さえリング41は、誘電体窓押さえリング41の内径側側面61が誘電体窓16の側面62より内径側に位置するようにして設けられている。これにより、誘電体窓押さえリング41の内径側端部66において、誘電体窓16を上方側から押さえることとしている。 The dielectric window pressing ring 41 has a cylindrical shape and is provided so as to contact the upper end surface of the dielectric window support member 10. The dielectric window pressing ring 41 is provided so that the inner diameter side surface 61 of the dielectric window pressing ring 41 is positioned on the inner diameter side of the side surface 62 of the dielectric window 16. As a result, the dielectric window 16 is pressed from the upper side at the inner diameter side end portion 66 of the dielectric window pressing ring 41.
 図3は、図1に示すプラズマ処理装置11の一部を拡大した図である。図4は、図1に示す誘電体窓16を上方向から見た図である。図1~図4を参照して、誘電体窓16の詳細について説明する。誘電体窓16は、円板状であって、誘電体窓16の下方側の面25は、平らである。誘電体窓16は、誘電体窓16の下方側の面25の外径側を支持部52に載置するようにして、支持部52に支持されている。また、誘電体窓16は、誘電体窓16の側面62と対向する誘電体窓支持部材10の壁面53と径方向のすき間54を開けて設けられている。誘電体窓16の材質は、誘電体である。誘電体窓16の具体的な材質として、石英やアルミナ等が挙げられる。また、例えば、直径が300mmのウェハ等の被処理基板を処理する装置では、誘電体窓16の直径は、500mmに設定される。 FIG. 3 is an enlarged view of a part of the plasma processing apparatus 11 shown in FIG. FIG. 4 is a view of the dielectric window 16 shown in FIG. 1 as viewed from above. The details of the dielectric window 16 will be described with reference to FIGS. The dielectric window 16 has a disk shape, and the lower surface 25 of the dielectric window 16 is flat. The dielectric window 16 is supported by the support portion 52 such that the outer diameter side of the lower surface 25 of the dielectric window 16 is placed on the support portion 52. Further, the dielectric window 16 is provided with a radial gap 54 between the wall surface 53 of the dielectric window support member 10 facing the side surface 62 of the dielectric window 16. The material of the dielectric window 16 is a dielectric. Specific materials for the dielectric window 16 include quartz and alumina. For example, in an apparatus that processes a substrate to be processed such as a wafer having a diameter of 300 mm, the diameter of the dielectric window 16 is set to 500 mm.
 また、誘電体窓16の上方側の面58のうち、径方向の中央には、中心固定板46を受け入れるように、誘電体窓16の上方側の面58から板厚を減ずるように凹んだ中央凹部49が設けられている。また、誘電体窓16の上方側の面58のうち、外径側端部には、外周固定リング45を受け入れるように、誘電体窓16の上方側の面58から板厚を減ずるように凹んだ誘電体窓上端面59が設けられている。 Further, the upper surface 58 of the dielectric window 16 is recessed at the center in the radial direction so as to reduce the plate thickness from the upper surface 58 of the dielectric window 16 so as to receive the center fixing plate 46. A central recess 49 is provided. Further, of the upper surface 58 of the dielectric window 16, the outer diameter side end portion is recessed so as to reduce the plate thickness from the upper surface 58 of the dielectric window 16 so as to receive the outer peripheral fixing ring 45. A dielectric window upper end surface 59 is provided.
 ここで、誘電体窓16には、誘電体窓16内を径方向に伝播するマイクロ波の波長を変更する波長変更手段としての凹部が設けられている。この実施形態においては、凹部は、誘電体窓上端面59から下方向に真っ直ぐに凹んだ形状の誘電体窓凹部63である。 Here, the dielectric window 16 is provided with a recess as a wavelength changing means for changing the wavelength of the microwave propagating in the radial direction in the dielectric window 16. In this embodiment, the recess is a dielectric window recess 63 having a shape that is recessed straight downward from the dielectric window upper end surface 59.
 誘電体窓凹部63は、下部側に位置して底部となる凹部底面56、および凹部底面56の上部側に位置して壁部となる凹部壁面57から構成されている。そして、凹部壁面57は、上方向から見た形状が略真円形状である。また、その真円形状の大きさは、マイクロ波の周波数や、誘電体窓16自体の大きさ等によって任意に定められる。例えば、処理に用いられるマイクロ波の周波数が2.45GHzである場合には、凹部壁面57の直径は、15mmである。 The dielectric window recess 63 includes a recess bottom surface 56 that is located on the lower side and serves as a bottom, and a recess wall surface 57 that is located on the upper side of the recess bottom surface 56 and serves as a wall. The concave wall surface 57 has a substantially perfect circle shape when viewed from above. The size of the perfect circle shape is arbitrarily determined by the frequency of the microwave, the size of the dielectric window 16 itself, and the like. For example, when the frequency of the microwave used for processing is 2.45 GHz, the diameter of the recess wall surface 57 is 15 mm.
 誘電体窓凹部63は、例えば、誘電体窓上端面59から誘電体窓16の下方側の面25までの距離Lが25mmである場合には、誘電体窓上端面59から凹部底面56までの距離Lは15mmとなるように設けられている。すなわち、誘電体窓上端面59から誘電体窓16の下方側の面25までの距離Lに対して、誘電体窓上端面59から凹部底面56までの距離Lの比率が0.6となるように設けられており、L:L=5:3となるように設けられている。 Dielectric window recess 63, for example, if the distance L 1 from the dielectric window upper surface 59 to the surface 25 of the lower side of the dielectric window 16 is 25mm, until the recess bottom surface 56 of the dielectric window upper surface 59 The distance L 0 is 15 mm. That is, the ratio of the distance L 0 from the dielectric window upper end surface 59 to the recess bottom surface 56 is 0.6 with respect to the distance L 1 from the dielectric window upper end surface 59 to the lower surface 25 of the dielectric window 16. It is provided so that L 1 : L 0 = 5: 3.
 また、誘電体窓凹部63は、凹部壁面57のうちの外径側端部67が、誘電体窓支持部材10の内壁面55より外径側に位置するように設けられている。具体的には、外径側端部67が、誘電体窓16の側面62からマイクロ波の波長の半分の長さ以内に位置するように設けられている。すなわち、図3を参照して、誘電体窓16の側面62を基準とすると、誘電体窓凹部63は、側面62から外径側端部67までの距離Lが、側面62から誘電体窓支持部材10の内壁面55までの距離Lより短くなるように設けられている。そして、マイクロ波の波長の半分の長さは、Lより長い。また、この実施形態においては、誘電体窓凹部63は、凹部壁面57のうちの内径側端部68が、誘電体窓支持部材10の内壁面55より内径側であって、誘電体窓上端面59の内径側端部69より外径側に位置するように設けられている。すなわち、図3を参照して、誘電体窓16の側面62を基準とすると、誘電体窓凹部63は、側面62から内径側端部68までの距離Lが、側面62から誘電体窓支持部材10の内壁面55までの距離Lより長くなるように設けられている。ここで、例えば、側面62から誘電体窓支持部材10の内壁面55までの距離Lは20mmであって、側面62から外径側端部67までの距離Lは10mmであって、側面62から内径側端部68までの距離Lは25mmである。すなわち、側面62から誘電体窓支持部材10の内壁面55までの距離Lに対して、側面62から外径側端部67までの距離Lの比率が1/2となるように設けられており、L:L=2:1となるように設けられている。 The dielectric window recess 63 is provided such that the outer diameter side end 67 of the recess wall surface 57 is positioned on the outer diameter side of the inner wall surface 55 of the dielectric window support member 10. Specifically, the outer diameter side end portion 67 is provided so as to be located within a half length of the microwave wavelength from the side surface 62 of the dielectric window 16. That is, with reference to FIG. 3, when the side surface 62 of the dielectric window 16 is used as a reference, the dielectric window recess 63 has a distance L 3 from the side surface 62 to the outer diameter side end portion 67. The support member 10 is provided so as to be shorter than the distance L 2 to the inner wall surface 55. Then, the length of half the wavelength of the microwave is longer than L 3. Further, in this embodiment, the dielectric window recess 63 is such that the inner diameter side end portion 68 of the recess wall surface 57 is on the inner diameter side of the inner wall surface 55 of the dielectric window support member 10 and the dielectric window upper end surface. It is provided so as to be positioned on the outer diameter side from the inner diameter side end portion 59 of 59. That is, referring to FIG. 3, when the side surface 62 of the dielectric window 16 is used as a reference, the dielectric window recess 63 has a distance L 4 from the side surface 62 to the inner diameter side end portion 68. It is provided so as to be longer than the distance L 2 to the inner wall surface 55 of the member 10. Here, for example, a distance L 2 from the side surface 62 to the inner wall surface 55 of the dielectric window support member 10 is a 20 mm, the distance L 3 from the side surface 62 to the outer diameter side end portion 67 is a 10 mm, side distance L 4 to the inner diameter side end portion 68 and 62 is 25 mm. That is, the ratio of the distance L 3 from the side surface 62 to the outer diameter side end 67 is ½ with respect to the distance L 2 from the side surface 62 to the inner wall surface 55 of the dielectric window support member 10. And L 2 : L 3 = 2: 1.
 また、誘電体窓凹部63は、周方向に等間隔を開けて8個設けられている。具体的には、周方向において隣り合う誘電体窓凹部63同士は、約45度の間隔を開けて設けられている。すなわち、図4を参照して、隣り合う誘電体窓凹部63の中心63aと誘電体窓16の中心64との成す角θが、約45度となるように設けられている。この8個の誘電体窓凹部63は、回転対称性を有し、この場合の回転軸は、8回転軸である。すなわち、誘電体窓16を、誘電体窓16の径方向の中心64を中心として45度回転させた場合に、同じ形状となる。また、複数の誘電体窓凹部63は、誘電体窓16の中心64からの径方向の距離がそれぞれ同じになるように設けられている。すなわち、誘電体窓16の中心64から誘電体窓凹部63の中心63aまでの距離Lが、それぞれ同じになるように設けられている。 In addition, eight dielectric window recesses 63 are provided at equal intervals in the circumferential direction. Specifically, the dielectric window recesses 63 adjacent in the circumferential direction are provided at an interval of about 45 degrees. That is, referring to FIG. 4, the angle θ formed by the center 63 a of the adjacent dielectric window recess 63 and the center 64 of the dielectric window 16 is set to about 45 degrees. The eight dielectric window recesses 63 have rotational symmetry, and the rotation axis in this case is eight rotation axes. That is, when the dielectric window 16 is rotated 45 degrees about the radial center 64 of the dielectric window 16, the same shape is obtained. The plurality of dielectric window recesses 63 are provided such that the radial distances from the center 64 of the dielectric window 16 are the same. That is, the distance L 5 from the center 64 of the dielectric window 16 to the center 63a of the dielectric window recess 63 are provided so that each is the same.
 ここで、誘電体窓凹部63の作用について説明する。図5は、図1に示すプラズマ処理装置11の一部を拡大した図である。なお、図5においては、理解の容易の観点から、一部の部材において、ハッチングを省略して図示している。図5を参照して、マイクロ波は、マイクロ波供給手段20から供給されると、誘電体板19を径方向に伝播されて、スロットアンテナ板18のスロット孔から誘電体窓16に放射される。マイクロ波は、誘電体窓16内に放射されると、図5中の点線で示す矢印Bのように誘電体窓16内を中心側から外径側に向かって径方向に伝播する。そして、中心側から外径側に向かって径方向に伝播したマイクロ波は、誘電体窓凹部63が設けられた位置に到達する。ここで、誘電体窓凹部63の内部領域には、空気が存在する。この空気の誘電率は、誘電体窓16の誘電率と大きく異なるものであって、誘電体窓16より低い。そうすると、誘電体窓凹部63が設けられた位置に到達したマイクロ波は、図5中の実線で示す矢印Bのように、誘電体窓凹部63の凹部壁面57を境界として、矢印Bとは異なる波長で外径側に向かって伝播する。具体的には、マイクロ波は、誘電体窓16内を伝播する波長よりも長い波長で外径側に向かって伝播する。すなわち、マイクロ波は、誘電体窓凹部63の凹部壁面57を境界として、波長が長く変化する。そうすると、誘電体窓凹部63の凹部壁面57を境界として、マイクロ波の強度の強い箇所であるマイクロ波の腹の部分が少なくなる。また、マイクロ波の一部は、図5中の実線で示す矢印Bのように、誘電体窓凹部63の凹部壁面57で、中心側に向かって反射する。このようにして、誘電体窓16のうち、誘電体板凹部63を境界として、誘電体窓支持部材10の内壁面55より外径側の領域では、伝播波と反射波とが重なりあった強い定在波が形成される虞を低減する。また、誘電体窓16内に強い定在波が形成された場合であっても、誘電体窓16のうち、誘電体窓支持部材10の内壁面55より内径側の領域とし、強い電磁界の形成される位置を、誘電体窓支持部材10の内壁面55より内径側の領域とする。図6を参照して、強い電磁界65の形成される位置は、従来を図示した図14よりも内径側となっている。なお、図6は、図1に示すプラズマ処理装置11の一部を拡大した図であって、誘電体窓16内の強電磁界領域を示す図である。なお、図6においては、電磁界65のみを示しているが、中心に近い領域等にも当然形成される。 Here, the operation of the dielectric window recess 63 will be described. FIG. 5 is an enlarged view of a part of the plasma processing apparatus 11 shown in FIG. In FIG. 5, for ease of understanding, hatching is omitted from some members. Referring to FIG. 5, when microwaves are supplied from the microwave supply means 20, the microwaves are propagated in the radial direction through the dielectric plate 19 and radiated from the slot holes of the slot antenna plate 18 to the dielectric window 16. . When the microwave is radiated into the dielectric window 16, it propagates in the dielectric window 16 in the radial direction from the center side toward the outer diameter side as indicated by an arrow B 1 indicated by a dotted line in FIG. 5. The microwave propagated in the radial direction from the center side toward the outer diameter side reaches the position where the dielectric window recess 63 is provided. Here, air exists in the inner region of the dielectric window recess 63. The dielectric constant of the air is significantly different from the dielectric constant of the dielectric window 16 and is lower than that of the dielectric window 16. Then, the microwave that has reached the position where the dielectric window recess 63 is provided is separated from the arrow B 1 with the recess wall surface 57 of the dielectric window recess 63 as a boundary, as indicated by the arrow B 2 indicated by the solid line in FIG. Propagate toward the outer diameter side at different wavelengths. Specifically, the microwave propagates toward the outer diameter side at a wavelength longer than the wavelength propagating in the dielectric window 16. That is, the wavelength of the microwave changes long with the recess wall surface 57 of the dielectric window recess 63 as a boundary. If it does so, the part of the belly | groove of the microwave which is a location with the strong microwave intensity | strength will decrease with the recessed part wall surface 57 of the dielectric material window recessed part 63 as a boundary. Also, some of the microwaves, such as the arrow B 3 shown by a solid line in FIG. 5, in the recess wall 57 of the dielectric window recess 63, reflected toward the center side. In this way, in the dielectric window 16, the propagation wave and the reflected wave overlap each other in the region on the outer diameter side from the inner wall surface 55 of the dielectric window support member 10 with the dielectric plate recess 63 as a boundary. Reduce the risk of standing waves. Even when a strong standing wave is formed in the dielectric window 16, the dielectric window 16 has a region on the inner diameter side of the inner wall surface 55 of the dielectric window support member 10 and has a strong electromagnetic field. The position to be formed is a region on the inner diameter side of the inner wall surface 55 of the dielectric window support member 10. Referring to FIG. 6, the position where strong electromagnetic field 65 is formed is closer to the inner diameter than FIG. FIG. 6 is an enlarged view of a part of the plasma processing apparatus 11 shown in FIG. 1 and shows a strong electromagnetic field region in the dielectric window 16. In FIG. 6, only the electromagnetic field 65 is shown, but it is naturally formed in a region near the center.
 このように、プラズマ処理装置11は、誘電体窓16のうち、側壁22の内壁面51より外径側の領域において、誘電体窓16内を径方向に伝播するマイクロ波の波長を変更する波長変更手段としての誘電体窓凹部63を含む。波長変更手段は、誘電体窓16のうち、側壁22の内壁面51より外径側の領域において、マイクロ波の波長を変更する。これにより、誘電体窓16において、強い定在波の形成される位置を変更することができる。したがって、誘電体窓16のうち、側壁22の内壁面51より外径側の領域において、強い電磁界が形成される虞を低減することができる。そうすると、側壁22の内壁面51と誘電体窓16の下方側の面25との接点近傍における侵食等を防止することができる。その結果、誘電体窓16内に形成される定在波の影響を緩和して、適切にプラズマを生成することができる。 As described above, the plasma processing apparatus 11 changes the wavelength of the microwave that propagates in the radial direction in the dielectric window 16 in the region on the outer diameter side of the inner wall surface 51 of the side wall 22 in the dielectric window 16. It includes a dielectric window recess 63 as changing means. The wavelength changing unit changes the wavelength of the microwave in a region of the dielectric window 16 on the outer diameter side of the inner wall surface 51 of the side wall 22. Thereby, the position where a strong standing wave is formed in the dielectric window 16 can be changed. Therefore, in the dielectric window 16, it is possible to reduce the possibility that a strong electromagnetic field is formed in a region on the outer diameter side of the inner wall surface 51 of the side wall 22. As a result, erosion or the like in the vicinity of the contact between the inner wall surface 51 of the side wall 22 and the lower surface 25 of the dielectric window 16 can be prevented. As a result, the influence of the standing wave formed in the dielectric window 16 can be mitigated, and plasma can be generated appropriately.
 また、このような誘電体窓16は、側壁22の内壁面51より外径側の領域において、誘電体窓16内を径方向に伝播するマイクロ波の波長を変更する誘電体窓凹部63を含む。誘電体窓凹部63は、誘電体窓16のうち、側壁22の内壁面51より外径側の領域において、マイクロ波の波長を変更する。これにより、誘電体窓16において、強い定在波の形成される位置を変更することができる。したがって、誘電体窓16のうち、側壁22の内壁面51より外径側の領域において、強い電磁界が形成される虞を低減することができる。そうすると、側壁22の内壁面51と誘電体窓16の下方側の面25との接点近傍における侵食等を防止することができる。 Further, such a dielectric window 16 includes a dielectric window recess 63 that changes the wavelength of the microwave propagating in the radial direction in the dielectric window 16 in a region on the outer diameter side of the inner wall surface 51 of the side wall 22. . The dielectric window recess 63 changes the wavelength of the microwave in the region on the outer diameter side of the inner wall surface 51 of the side wall 22 in the dielectric window 16. Thereby, the position where a strong standing wave is formed in the dielectric window 16 can be changed. Therefore, in the dielectric window 16, it is possible to reduce the possibility that a strong electromagnetic field is formed in a region on the outer diameter side of the inner wall surface 51 of the side wall 22. As a result, erosion or the like in the vicinity of the contact between the inner wall surface 51 of the side wall 22 and the lower surface 25 of the dielectric window 16 can be prevented.
 また、この実施形態においては、波長変更手段としての誘電体窓凹部63の外径側端部67を、誘電体窓16の側面62からマイクロ波の波長の半分の長さ以内の位置に設けることとしている。これにより、マイクロ波が、誘電体窓16の側面62で反射することにより、外径側から中心側に向かって伝播する場合に、誘電体窓凹部63によって適切にマイクロ波の波長を変更することができる。これにより、誘電体窓支持部材10の内壁面55より外径側の領域に、強い定在波が形成される虞を低減することができる。 Further, in this embodiment, the outer diameter side end portion 67 of the dielectric window recess 63 as the wavelength changing means is provided at a position within half the length of the microwave wavelength from the side surface 62 of the dielectric window 16. It is said. Thereby, when the microwave is reflected from the side surface 62 of the dielectric window 16 and propagates from the outer diameter side toward the center side, the wavelength of the microwave is appropriately changed by the dielectric window recess 63. Can do. Thereby, a possibility that a strong standing wave may be formed in a region on the outer diameter side of the inner wall surface 55 of the dielectric window support member 10 can be reduced.
 また、誘電体窓凹部63を、周方向に複数設け、複数の誘電体窓凹部63を誘電体窓16の中心からの径方向の距離が同じになるように設けることにより、定在波の形成される径方向位置を周方向に均一にすることができる。例えば、プラズマ処理装置11の組み立ての際に、誘電体窓16の中心が円筒形状の側壁22の中心とのずれを生じる場合があると、マイクロ波の伝播される中心から側壁22までの径方向長さが、周方向位置において各々異なってしまう。その結果、周方向位置において定在波の強度が各々異なってしまう場合がある。特に、プラズマ処理装置11の組み立ての際に生じるずれは、装置間において各々異なる。したがって、装置間で周方向位置における定在波の強度が各々異なる場合がある。このような場合においても、複数の誘電体窓凹部63を誘電体窓16の中心からの径方向の距離が同じになるように設けることにより、定在波の形成される径方向位置を周方向に均一にすることができる。 Also, a plurality of dielectric window recesses 63 are provided in the circumferential direction, and a plurality of dielectric window recesses 63 are provided so that the radial distance from the center of the dielectric window 16 is the same, thereby forming a standing wave. The radial position can be made uniform in the circumferential direction. For example, when the plasma processing apparatus 11 is assembled, if there is a case where the center of the dielectric window 16 is displaced from the center of the cylindrical side wall 22, the radial direction from the center through which the microwave is propagated to the side wall 22. The length is different at each circumferential position. As a result, the strength of the standing wave may be different at the circumferential position. In particular, the deviations that occur when assembling the plasma processing apparatus 11 are different between the apparatuses. Therefore, the strength of the standing wave at the circumferential position may be different between devices. Even in such a case, by providing the plurality of dielectric window recesses 63 so that the radial distance from the center of the dielectric window 16 is the same, the radial position where the standing wave is formed is set in the circumferential direction. Can be made uniform.
 なお、上記の実施の形態においては、誘電体窓凹部63は、周方向に等間隔を開けて8個設けられている例について説明したが、これに限ることなく、スロット孔17の回転対称性の次数の公倍数であることが望ましく、例えば、図7に示すように、24個設けてもよい。また、周方向にマイクロ波の波長の半分の長さより小さい間隔を開けて複数設けてもよい。なお、図7は、他の実施形態における誘電体窓凹部82を設けた誘電体窓83を上方向から見た図である。 In the above-described embodiment, the example in which the eight dielectric window recesses 63 are provided at equal intervals in the circumferential direction has been described, but the rotational symmetry of the slot hole 17 is not limited thereto. Is preferably a common multiple of the order of, for example, 24 may be provided as shown in FIG. Alternatively, a plurality of gaps may be provided in the circumferential direction with an interval smaller than half the length of the microwave wavelength. FIG. 7 is a view of the dielectric window 83 provided with the dielectric window recess 82 in another embodiment as viewed from above.
 また、上記の実施の形態においては、誘電体窓凹部63の凹部壁面57は、上方向から見た形状が略真円形状であるように設けられている例について説明したが、これに限ることなく、径方向に延びるような長穴状に設けてもよいし、周方向に延びるような長穴状に設けてもよいし、環状に設けてもよい。また、四角形状等の矩形状に設けてもよい。 In the above embodiment, the example has been described in which the concave wall surface 57 of the dielectric window concave portion 63 is provided so that the shape viewed from above is a substantially perfect circle shape. Instead, it may be provided in the shape of a long hole extending in the radial direction, may be provided in the shape of a long hole extending in the circumferential direction, or may be provided in an annular shape. Moreover, you may provide in rectangular shapes, such as square shape.
 また、上記の実施の形態においては、誘電体窓凹部63は、外径側端部67が、誘電体窓支持部材10の内壁面55より外径側に位置し、内径側端部68が、誘電体窓支持部材10の内壁面55より内径側に位置するように設けられている例について説明したが、これに限ることなく、外径側端部67および内径側端部68の両方を、誘電体窓支持部材10の内壁面55より外径側に位置するように設けてもよい。すなわち、誘電体窓凹部63が、誘電体窓16のうち、誘電体窓支持部材10の内壁面55より外径側の領域を含むようにして設けられればよい。図8は、さらに他の実施形態における誘電体窓凹部88を示す図であって、誘電体窓凹部88の外径側端部86および内径側端部87の両方を、誘電体窓支持部材10の内壁面55より外径側に位置するように設けた場合を示す図である。図8を参照して、誘電体窓90の側面89を基準とすると、側面89から外径側端部86までの距離Lおよび側面89から内径側端部87までの距離Lが、側面89から誘電体窓支持部材10の内壁面55までの距離Lより短くなるように設けられている。 In the above-described embodiment, the dielectric window recess 63 has the outer diameter side end portion 67 positioned on the outer diameter side of the inner wall surface 55 of the dielectric window support member 10 and the inner diameter side end portion 68. Although the example provided so as to be located on the inner diameter side from the inner wall surface 55 of the dielectric window support member 10 has been described, without being limited thereto, both the outer diameter side end portion 67 and the inner diameter side end portion 68 are You may provide so that it may be located in the outer diameter side from the inner wall face 55 of the dielectric material window support member 10. FIG. That is, the dielectric window recess 63 may be provided so as to include a region on the outer diameter side of the dielectric window 16 from the inner wall surface 55 of the dielectric window support member 10. FIG. 8 is a view showing a dielectric window recess 88 according to still another embodiment, in which both the outer diameter side end 86 and the inner diameter side end 87 of the dielectric window recess 88 are connected to the dielectric window support member 10. It is a figure which shows the case where it provides so that it may be located in the outer-diameter side from the inner wall surface 55 of this. Referring to FIG. 8, with reference to side surface 89 of dielectric window 90, distance L 6 from side surface 89 to outer diameter side end portion 86 and distance L 7 from side surface 89 to inner diameter side end portion 87 are side surfaces. It is provided so as to be shorter than a distance L 8 from 89 to the inner wall surface 55 of the dielectric window support member 10.
 また、上記の実施の形態においては、誘電体窓凹部63は、誘電体窓上端面59から下方向に凹んだ形状である例について説明したが、これに限ることなく、誘電体窓16の下方側の面25から上方向に凹んだ形状であってもよいし、誘電体窓16の側面62から誘電体窓16の中心64に向かって径方向に凹んだ形状であってもよい。図9は、さらに他の実施形態における誘電体窓凹部71を示す図であって、誘電体窓凹部71を、誘電体窓70の側面72から誘電体窓70の中心78に向かって径方向に凹んだ形状とした場合を示す図である。図10は、図9に示す誘電体窓70を上方向から見た図である。 In the above embodiment, the dielectric window recess 63 has been described as an example of a shape recessed downward from the dielectric window upper end surface 59. However, the present invention is not limited to this, and the lower side of the dielectric window 16 is not limited thereto. It may be a shape that is recessed upward from the side surface 25, or may be a shape that is recessed in the radial direction from the side surface 62 of the dielectric window 16 toward the center 64 of the dielectric window 16. FIG. 9 is a diagram showing a dielectric window recess 71 according to still another embodiment, in which the dielectric window recess 71 is formed in a radial direction from the side surface 72 of the dielectric window 70 toward the center 78 of the dielectric window 70. It is a figure which shows the case where it is set as the concave shape. FIG. 10 is a view of the dielectric window 70 shown in FIG. 9 as viewed from above.
 図9および図10を参照して、誘電体窓凹部71は、誘電体窓70の側面72から誘電体窓70の中心側に向かって径方向に凹んだ形状である。誘電体窓凹部71は、誘電体窓70の板厚方向中央部に位置するように設けられている。誘電体窓凹部71は、内径側に位置して底部となる凹部底面75、および凹部底面75より外径側に位置して壁部となる凹部壁面80から構成されている。そして、凹部壁面80は、横方向から見た形状が略真円形状である。 9 and 10, the dielectric window recess 71 has a shape recessed in the radial direction from the side surface 72 of the dielectric window 70 toward the center side of the dielectric window 70. The dielectric window recess 71 is provided so as to be positioned at the center of the dielectric window 70 in the plate thickness direction. The dielectric window recess 71 includes a recess bottom surface 75 positioned on the inner diameter side and serving as a bottom, and a recess wall surface 80 serving as a wall positioned on the outer diameter side of the recess bottom surface 75. The concave wall surface 80 has a substantially perfect circle shape when viewed from the lateral direction.
 誘電体窓凹部71は、例えば、誘電体窓上端面73から誘電体窓70の下方側の面79までの距離L12が30mmである場合には、上方側端部76から下方側端部77までの距離L14は10mmとなるように設けられている。すなわち、誘電体窓上端面73から誘電体窓70の下方側の面79までの距離L12に対して、上方側端部76から下方側端部77までの距離L14の比率が1/3となるように設けられている。また、誘電体窓上端面73から誘電体窓70の下方側の面79までの距離L12に対して、誘電体窓上端面73から上方側端部76までの距離L15の比率が1/3となるように設けられており、誘電体窓70の下方側の面79から下方側端部77までの距離L16の比率が1/3となるように設けられている。 For example, when the distance L 12 from the dielectric window upper end surface 73 to the lower surface 79 of the dielectric window 70 is 30 mm, the dielectric window recess 71 is formed from the upper end 76 to the lower end 77. distance L 14 to is provided so as to be 10 mm. That is, the ratio of the distance L 14 from the upper side end portion 76 to the lower side end portion 77 with respect to the distance L 12 from the dielectric window upper end surface 73 to the lower surface 79 of the dielectric window 70 is 1/3. It is provided to become. Further, the ratio of the distance L 15 from the dielectric window upper end surface 73 to the upper side end portion 76 with respect to the distance L 12 from the dielectric window upper end surface 73 to the lower surface 79 of the dielectric window 70 is 1 /. 3 and is provided so as to be provided such that the ratio of the distance L 16 from the lower side surface 79 of the dielectric window 70 to the lower end portion 77 is 1/3.
 また、誘電体窓凹部71は、誘電体窓70の側面72から凹部底面75までの距離が、誘電体窓支持部材10の内壁面55より内径側であって、誘電体窓上端面73の内径側端部74より外径側に位置するように設けられている。すなわち、図9を参照して、誘電体窓70の側面72を基準とすると、誘電体窓凹部71は、側面72から凹部底面75までの距離L11が、側面62から誘電体窓支持部材10の内壁面55までの距離L10より長くなるように設けられている。ここで、例えば、側面72から誘電体窓支持部材10の内壁面55までの距離L10は20mmであって、側面72から凹部底面75までの距離L11は25mmである。すなわち、側面72から誘電体窓支持部材10の内壁面55までの距離L10に対して、側面72から凹部底面75までの距離L11の比率が1.25となるように設けられている。また、誘電体窓70の直径500mmに対して、側面72から凹部底面75までの距離L11の比率が0.05となるように設けられている。 The dielectric window recess 71 is such that the distance from the side surface 72 of the dielectric window 70 to the bottom surface 75 of the recess is on the inner diameter side of the inner wall surface 55 of the dielectric window support member 10 and the inner diameter of the upper end surface 73 of the dielectric window. It is provided so as to be positioned on the outer diameter side from the side end portion 74. That is, with reference to FIG. 9, when the side surface 72 of the dielectric window 70 is used as a reference, the dielectric window recess 71 has a distance L 11 from the side surface 72 to the recess bottom surface 75. It provided to be longer than the distance L 10 to the inner wall surface 55 of the. Here, for example, the distance L 10 from the side surface 72 to the inner wall surface 55 of the dielectric window support member 10 is a 20 mm, the distance L 11 from the side surface 72 to the bottom surface of the recess 75 is 25 mm. That is, the distance L 10 from the side surface 72 to the inner wall surface 55 of the dielectric window support member 10 is set such that the ratio of the distance L 11 from the side surface 72 to the recess bottom surface 75 is 1.25. Further, the diameter 500mm of the dielectric window 70, the ratio of the distance L 11 from the side surface 72 to the bottom surface of the recess 75 is provided so as to be 0.05.
 また、誘電体窓凹部71は、周方向に等間隔を開けて8個設けられている。この8個の誘電体窓凹部71は、回転対称性を有するように設けられている。また、複数の誘電体窓凹部71は、誘電体窓70の中心78からの径方向の距離がそれぞれ同じになるように設けられている。例えば、誘電体窓70の中心78から凹部底面75までの距離L13が、それぞれ同じになるように設けられている。 Further, eight dielectric window recesses 71 are provided at equal intervals in the circumferential direction. The eight dielectric window recesses 71 are provided so as to have rotational symmetry. The plurality of dielectric window recesses 71 are provided such that the radial distances from the center 78 of the dielectric window 70 are the same. For example, the distance L 13 from the center 78 of the dielectric window 70 to the bottom surface 75 of the recess is provided to be the same.
 このように、誘電体窓凹部71を設けた場合においても、誘電体窓凹部71によりマイクロ波の波長を変更することができるため、誘電体窓70内において形成される定在波を、側壁22の内壁面51より内径側の位置とすることができる。 As described above, even when the dielectric window recess 71 is provided, the wavelength of the microwave can be changed by the dielectric window recess 71, so that the standing wave formed in the dielectric window 70 can be separated from the side wall 22. The inner wall surface 51 can be positioned on the inner diameter side.
 なお、誘電体窓凹部71は、凹部壁面80の横方向から見た形状を、周方向に延びるような長穴状に設けてもよいし、環状に設けてもよい。また、四角形状等の矩形状に設けてもよい。また、凹部底面75を誘電体窓支持部材10の内壁面55より外径側に位置するように設けてもよい。 It should be noted that the dielectric window recess 71 may be provided in the shape of a slot viewed from the lateral direction of the recess wall surface 80 in the shape of a long hole extending in the circumferential direction, or may be provided in an annular shape. Moreover, you may provide in rectangular shapes, such as square shape. Further, the concave bottom surface 75 may be provided on the outer diameter side of the inner wall surface 55 of the dielectric window support member 10.
 また、上記の実施の形態においては、波長変更手段は、誘電体窓凹部63である例について説明したが、これに限ることなく、誘電体窓凹部63の内部領域に、例えば金属部材を埋め込む構成としてもよい。こうすることにより、マイクロ波を金属部材の壁面で反射させることができる。そして、誘電体窓16内において形成される定在波を、内径側の位置とすることができる。 Further, in the above-described embodiment, the example in which the wavelength changing unit is the dielectric window concave portion 63 has been described. It is good. By doing so, the microwave can be reflected by the wall surface of the metal member. And the standing wave formed in the dielectric window 16 can be made into the position of an inner diameter side.
 また、この場合、金属部材を接地してもよい。具体的には、誘電体窓支持部材10や誘電体窓押さえリング41等の処理容器12を構成する部材は接地されているため、このような誘電体窓支持部材10や誘電体窓押さえリング41に金属部材を電気的に接続することにより、金属部材を接地してもよい。こうすることにより、誘電体窓16内において形成される定在波をより効果的に制御することができる。 In this case, the metal member may be grounded. Specifically, since the members constituting the processing container 12 such as the dielectric window supporting member 10 and the dielectric window pressing ring 41 are grounded, the dielectric window supporting member 10 and the dielectric window pressing ring 41 such as this. The metal member may be grounded by electrically connecting the metal member. By doing so, the standing wave formed in the dielectric window 16 can be controlled more effectively.
 また、金属部材の径方向位置を変更可能な構成としてもよい。図11は、金属部材94の径方向位置を変更可能とした構成の一例を示す図である。図11を参照して、誘電体窓凹部91は、上記した図9および図10に示すように、誘電体窓92の側面93から誘電体窓92の中心側に向かって径方向に凹んだ形状である。誘電体窓凹部91の内部領域には、金属部材94が設けられている。そして、この金属部材94は、駆動機構95によって、径方向に移動可能に設けられている。 Moreover, it is good also as a structure which can change the radial direction position of a metal member. FIG. 11 is a diagram illustrating an example of a configuration in which the radial position of the metal member 94 can be changed. Referring to FIG. 11, dielectric window recess 91 has a shape recessed in the radial direction from side surface 93 of dielectric window 92 toward the center side of dielectric window 92, as shown in FIGS. 9 and 10 described above. It is. A metal member 94 is provided in the inner region of the dielectric window recess 91. The metal member 94 is provided by a drive mechanism 95 so as to be movable in the radial direction.
 駆動機構95は、誘電体窓支持部材96を径方向に貫通する貫通孔96aに挿入されて、金属部材94を保持する保持部95aと、誘電体窓支持部材96の外径側に配置され、保持部95aを内径側または外径側に向かう方向(図11中の矢印C)に移動させる駆動部95bとを含む。保持部95aは、金属部材94が誘電体窓凹部91内で径方向に移動可能なように金属部材94を保持する。 The drive mechanism 95 is inserted into a through-hole 96a that penetrates the dielectric window support member 96 in the radial direction, and is disposed on the outer diameter side of the dielectric window support member 96, a holding portion 95a that holds the metal member 94, And a drive unit 95b that moves the holding unit 95a in a direction toward the inner diameter side or the outer diameter side (arrow C 1 in FIG. 11). The holding portion 95a holds the metal member 94 so that the metal member 94 can move in the radial direction within the dielectric window recess 91.
 金属部材94は、誘電体窓92の外径側端部と誘電体窓支持部材96とに跨るように径方向に延びて設けられている。この実施形態においては、誘電体窓凹部91の凹部壁面91aや凹部底面91bと当接しないように設けられている。そして、誘電体窓支持部材96と金属部材94との間には、誘電体窓支持部材96と金属部材94とを電気的に接続する電気コンタクト部材97が設けられている。電気コンタクト部材97は、金属部材94の側面94aの全周を覆うようにして設けられており、誘電体窓支持部材96が接地されているため、金属部材94も接地されることとなる。これにより、マイクロ波の漏洩等を防止することができる。 The metal member 94 is provided to extend in the radial direction so as to straddle the outer diameter side end portion of the dielectric window 92 and the dielectric window support member 96. In this embodiment, the dielectric window recess 91 is provided so as not to contact the recess wall surface 91a and the recess bottom surface 91b. An electrical contact member 97 that electrically connects the dielectric window support member 96 and the metal member 94 is provided between the dielectric window support member 96 and the metal member 94. The electrical contact member 97 is provided so as to cover the entire circumference of the side surface 94a of the metal member 94. Since the dielectric window support member 96 is grounded, the metal member 94 is also grounded. Thereby, leakage of microwaves and the like can be prevented.
 ここで、金属部材94の径方向位置を変更する場合には、駆動部95bを駆動して、保持部95aを介して金属部材94を径方向に移動する。そして、例えば定在波の状態が適切になった径方向位置まで金属部材94が到達すると、金属部材94の移動を停止する。 Here, when the radial position of the metal member 94 is changed, the drive unit 95b is driven to move the metal member 94 in the radial direction via the holding unit 95a. For example, when the metal member 94 reaches the radial position where the standing wave state is appropriate, the movement of the metal member 94 is stopped.
 こうすることにより、駆動機構95を用いて、金属部材94を径方向に移動させて、金属部材94の径方向位置を変更することができる。そうすると、誘電体窓凹部91の凹部壁面91aや凹部底面91bと金属部材94とで囲まれる空間の大きさ、すなわち、誘電体窓凹部91の内部領域の大きさを調節することができる。この場合、プラズマ処理装置11においてプロセス条件の変更やプラズマ励起状態の変化等に応じて、誘電体窓92内において形成される定在波の状態を制御することができる。その結果、被処理基板Wを均一に処理することができる。 By doing so, the metal member 94 can be moved in the radial direction by using the drive mechanism 95 to change the radial position of the metal member 94. Then, the size of the space surrounded by the concave wall surface 91a or the concave bottom surface 91b of the dielectric window concave portion 91 and the metal member 94, that is, the size of the inner region of the dielectric window concave portion 91 can be adjusted. In this case, the state of the standing wave formed in the dielectric window 92 can be controlled in the plasma processing apparatus 11 in accordance with a change in process conditions, a change in plasma excitation state, or the like. As a result, the substrate to be processed W can be processed uniformly.
 なお、駆動機構95の駆動部95bは、ユーザによる手動操作によって金属部材94を径方向に移動させる構成であってもよいし、機器による自動操作によって金属部材94を径方向に移動させる構成であってもよい。そして、自動操作を行う際には、マイクロ波の反射波を検出する反射波検出手段を設け、反射波検出手段により検出した反射波に応じて、金属部材94を径方向に移動させる等のフィードバック制御を行ってもよい。 The drive unit 95b of the drive mechanism 95 may be configured to move the metal member 94 in the radial direction by a manual operation by the user, or may be configured to move the metal member 94 in the radial direction by automatic operation by an apparatus. May be. When automatic operation is performed, a reflected wave detection means for detecting the reflected wave of the microwave is provided, and feedback such as moving the metal member 94 in the radial direction according to the reflected wave detected by the reflected wave detection means. Control may be performed.
 また、このように駆動機構95を用いて、金属部材94の径方向位置を変更可能とする構成は、例えば、上記した図10に示すように、誘電体窓凹部91を周方向に等間隔を開けて8個設けた場合、8個全てに適用してもよいし、8個のうちの一部に適用してもよい。なお、この場合、誘電体窓支持部材96を径方向に貫通する貫通孔96aについても、駆動機構95を適用した誘電体窓凹部91に応じて設ける構成としてよい。 In addition, the configuration in which the radial position of the metal member 94 can be changed by using the drive mechanism 95 in this way is, for example, as shown in FIG. When eight are opened, they may be applied to all eight or a part of the eight. In this case, the through hole 96a that penetrates the dielectric window support member 96 in the radial direction may be provided according to the dielectric window recess 91 to which the drive mechanism 95 is applied.
 また、波長変更手段は、誘電率が誘電体窓16と異なるように、具体的には、誘電率が誘電体窓16より低くなるように形成された部材としてもよい。 Also, the wavelength changing means may be a member formed so that the dielectric constant is lower than that of the dielectric window 16, specifically, the dielectric constant is lower than that of the dielectric window 16.
 また、上記の実施の形態においては、波長変更手段は、誘電体窓16の上方側の面58や、誘電体窓16の側面62から内方側に凹んだ凹部である例について説明したが、これに限ることなく、誘電体窓16の内部に空間を形成することにより、空間によってマイクロ波の波長を変更させてもよい。 In the above-described embodiment, the wavelength changing unit has been described with respect to the upper surface 58 of the dielectric window 16 and the concave portion recessed inward from the side surface 62 of the dielectric window 16. However, the present invention is not limited thereto, and the wavelength of the microwave may be changed depending on the space by forming a space inside the dielectric window 16.
 また、上記の実施の形態においては、側壁22は、誘電体窓支持部材10と円筒部22aとを含む構成であって、複数の部材から構成される例について説明したが、これに限ることなく、誘電体窓支持部材10と円筒部22aとが一体となった構成であってもよい。 Moreover, in said embodiment, although the side wall 22 is the structure containing the dielectric material window support member 10 and the cylindrical part 22a, Comprising: Although the example comprised from a some member was demonstrated, it does not restrict to this. The dielectric window support member 10 and the cylindrical portion 22a may be integrated.
 また、上記の実施の形態においては、誘電体窓支持部材10の上端部の内径側には、誘電体窓16を支持するように上端部から下方向に凹んだ支持部52が設けられており、誘電体窓16は、支持部52に載置されている例について説明したが、これに限ることなく、誘電体窓支持部材10の上端部は、平らな形状であって、支持部52が設けられていない構成であってもよい。この場合、誘電体窓16は、誘電体窓支持部材10の上端部の内径側に載置されてもよいし、例えば、誘電体窓支持部材10の上端部において、内径側から外径側に近い位置に亘って載置されるように構成してもよい。 Further, in the above embodiment, on the inner diameter side of the upper end portion of the dielectric window support member 10, the support portion 52 that is recessed downward from the upper end portion is provided so as to support the dielectric window 16. Although the example in which the dielectric window 16 is placed on the support portion 52 has been described, the upper end portion of the dielectric window support member 10 has a flat shape, and the support portion 52 is not limited to this. The structure which is not provided may be sufficient. In this case, the dielectric window 16 may be placed on the inner diameter side of the upper end portion of the dielectric window support member 10. For example, in the upper end portion of the dielectric window support member 10, from the inner diameter side to the outer diameter side. You may comprise so that it may be mounted over a near position.
 また、上記の実施の形態においては、プラズマ処理装置11は、誘電体板19を備える構成の例について説明したが、これに限ることなく、誘電体板を備えない構成の装置にも適用することができる。 In the above-described embodiment, the plasma processing apparatus 11 has been described with respect to an example of a configuration including the dielectric plate 19. However, the present invention is not limited thereto, and the plasma processing apparatus 11 may be applied to an apparatus having a configuration without a dielectric plate. Can do.
 以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示された実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。 As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to the thing of embodiment shown in figure. Various modifications and variations can be made to the illustrated embodiment within the same range or equivalent range as the present invention.
 この発明に係るプラズマ処理装置は、プラズマ処理する際に、被処理基板の面内において均一な処理が要求される場合に、有効に利用される。 The plasma processing apparatus according to the present invention is effectively used when a uniform processing is required within the surface of the substrate to be processed during plasma processing.
 10,96 誘電体窓支持部材、11 プラズマ処理装置、12 処理容器、13 ガス供給部、14 保持台、15 マイクロ波発生器、16,70,83,90,92 誘電体窓、17 スロット孔、18 スロットアンテナ板、19 誘電体板、20 マイクロ波供給手段、21 底部、22 側壁、22a 円筒部、23 排気口、24 Oリング、25,58,79 面、28,63a,64,78 中心、31 同軸導波管、32 内導体、33 外導体、34,54 すき間、36 外周面、37 内周面、35,38,47,66,67,68,69,74,76,77,86,87 端部、39 導波管、40 モード変換器、41 誘電体窓押さえリング、42 アンテナ押さえ、43 冷却板、44 電磁遮断弾力体、45 外周固定リング、46 中心固定板、48 誘電体板位置決め部、49 中央凹部、51,55 内壁面、52 支持部、53 壁面、56,75,91b 凹部底面、57,80,91a 凹部壁面、59,73 誘電体窓上端面、62,72,89,93,94a 側面、63,71,82,88,91 誘電体窓凹部、65 電磁界、94 金属部材、95 駆動機構、95a 保持部、95b 駆動部、96a 貫通孔、97 電気コンタクト部材。 10, 96 dielectric window support member, 11 plasma processing apparatus, 12 processing vessel, 13 gas supply unit, 14 holding base, 15 microwave generator, 16, 70, 83, 90, 92 dielectric window, 17 slot hole, 18 slot antenna plate, 19 dielectric plate, 20 microwave supply means, 21 bottom part, 22 side wall, 22a cylindrical part, 23 exhaust port, 24 O-ring, 25, 58, 79 face, 28, 63a, 64, 78 center, 31 coaxial waveguide, 32 inner conductor, 33 outer conductor, 34, 54 gap, 36 outer peripheral surface, 37 inner peripheral surface, 35, 38, 47, 66, 67, 68, 69, 74, 76, 77, 86, 87 end, 39 waveguide, 40 mode converter, 41 dielectric window pressing ring, 42 antenna pressing, 43 cooling plate, 44 electromagnetic shielding elasticity , 45 outer periphery fixing ring, 46 center fixing plate, 48 dielectric plate positioning portion, 49 central recess, 51, 55 inner wall surface, 52 support portion, 53 wall surface, 56, 75, 91b recess bottom surface, 57, 80, 91a recess wall surface 59, 73 Dielectric window upper end surface, 62, 72, 89, 93, 94a side surface, 63, 71, 82, 88, 91 Dielectric window recess, 65 electromagnetic field, 94 metal member, 95 drive mechanism, 95a holding part 95b driving part, 96a through hole, 97 electrical contact member.

Claims (12)

  1. 上部側が開口しており、下部側に配置される底部と、前記底部の外方側から上部側に向かって延びる円筒形状の側壁とを有し、その内部で被処理基板にプラズマ処理を行う処理容器と、
     前記処理容器内にプラズマ処理用のガスを供給するガス供給部と、
     前記処理容器内に配置され、その上に前記被処理基板を保持する保持台と、
     プラズマ励起用のマイクロ波を発生させるマイクロ波発生器と、
     前記処理容器の開口を覆うようにして前記側壁の上端部に載置されて前記処理容器を密封すると共に、マイクロ波を前記処理容器内へ透過させる誘電体窓と、
     複数のスロット孔が設けられており、前記誘電体窓の上方側に配置され、マイクロ波を前記誘電体窓に放射するためのスロットアンテナ板と、
     前記マイクロ波発生器により発生させたマイクロ波を前記誘電体窓に供給するマイクロ波供給手段とを備えるプラズマ処理装置であって、
     前記誘電体窓には、前記側壁の上端部に載置された際に、前記側壁の内壁面より外径側の領域において、前記誘電体窓内を径方向に伝播するマイクロ波の波長を変更する波長変更手段が設けられている、プラズマ処理装置。
    A process having an opening on the upper side, a bottom part disposed on the lower side, and a cylindrical side wall extending from the outer side of the bottom part toward the upper side, and performing plasma processing on the substrate to be processed therein A container,
    A gas supply unit for supplying a plasma processing gas into the processing container;
    A holding table disposed in the processing container and holding the substrate to be processed thereon;
    A microwave generator for generating microwaves for plasma excitation;
    A dielectric window that is placed on the upper end of the side wall so as to cover the opening of the processing container to seal the processing container, and allows microwaves to pass through the processing container;
    A plurality of slot holes, disposed on the upper side of the dielectric window, and a slot antenna plate for radiating microwaves to the dielectric window;
    A plasma processing apparatus comprising: a microwave supply means for supplying a microwave generated by the microwave generator to the dielectric window;
    When the dielectric window is placed on the upper end of the side wall, the wavelength of the microwave propagating in the radial direction in the dielectric window is changed in a region on the outer diameter side of the inner wall surface of the side wall. A plasma processing apparatus provided with wavelength changing means.
  2. 前記波長変更手段は、前記誘電体窓の上方側、下方側、および側面のうちの少なくともいずれか一方の面から内方側に凹む凹部であって、前記凹部を構成する壁面を境界として、前記誘電体窓内を径方向に伝播するマイクロ波の波長を変更する、請求項1に記載のプラズマ処理装置。 The wavelength changing means is a recess that is recessed inward from at least one of the upper side, the lower side, and the side surface of the dielectric window, with the wall surface constituting the recess as a boundary, The plasma processing apparatus according to claim 1, wherein the wavelength of the microwave propagating in the radial direction in the dielectric window is changed.
  3. 前記波長変更手段は、周方向に複数設けられている、請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein a plurality of wavelength changing units are provided in a circumferential direction.
  4. 前記複数の波長変更手段は、前記誘電体窓の中心からの径方向の距離がそれぞれ同じになるように設けられている、請求項3に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 3, wherein the plurality of wavelength changing units are provided so that radial distances from a center of the dielectric window are the same.
  5. 前記複数の波長変更手段は、周方向に等配されている、請求項3に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 3, wherein the plurality of wavelength changing units are equally arranged in a circumferential direction.
  6. 前記複数の波長変更手段は、前記誘電体窓の径方向の中心を中心とした回転対称性を有するように設けられている、請求項3に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 3, wherein the plurality of wavelength changing units are provided so as to have rotational symmetry about a radial center of the dielectric window.
  7. 前記波長変更手段は、前記誘電体窓の側面から、マイクロ波の波長の半分の長さ以内の位置に設けられている、請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the wavelength changing unit is provided at a position within a half length of a wavelength of the microwave from a side surface of the dielectric window.
  8. 前記凹部の内部領域には、前記誘電体窓と異なる誘電率を有する部材が設けられている、請求項2に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 2, wherein a member having a dielectric constant different from that of the dielectric window is provided in an inner region of the recess.
  9. 前記凹部の内部領域には、金属部材が設けられている、請求項2に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 2, wherein a metal member is provided in an inner region of the recess.
  10. 前記金属部材は、接地されている、請求項9に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 9, wherein the metal member is grounded.
  11. 前記金属部材は、前記金属部材の径方向位置が変更可能に設けられている、請求項9に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 9, wherein the metal member is provided so that a radial position of the metal member can be changed.
  12. 上部側が開口しており、下部側に配置される底部、および前記底部の外方側から上部側に向かって延びる円筒形状の側壁を有し、その内部で被処理基板にプラズマ処理を行う処理容器において、前記処理容器の開口を覆うようにして前記側壁の上端部に載置されて前記処理容器を密封すると共に、マイクロ波を前記処理容器内へ透過させる誘電体窓であって、
     前記誘電体窓には、前記側壁の上端部に載置された際に、前記側壁の内壁面より外径側の領域において、前記誘電体窓内を径方向に伝播するマイクロ波の波長を変更する凹部が複数設けられており、
     前記複数の凹部は、前記誘電体窓の側面から、マイクロ波の波長の半分の長さ以内の位置に設けられており、
     前記複数の凹部は、周方向に等配されている、誘電体窓。
    A processing container having an opening on the upper side, a bottom portion disposed on the lower side, and a cylindrical side wall extending from the outer side of the bottom portion toward the upper side, and performing plasma processing on the substrate to be processed therein A dielectric window that is placed on the upper end of the side wall so as to cover the opening of the processing container and seals the processing container, and transmits microwaves into the processing container,
    When the dielectric window is placed on the upper end of the side wall, the wavelength of the microwave propagating in the radial direction in the dielectric window is changed in a region on the outer diameter side of the inner wall surface of the side wall. A plurality of recesses are provided,
    The plurality of recesses are provided at a position within half the length of the microwave wavelength from the side surface of the dielectric window,
    The plurality of recesses are dielectric windows arranged equally in the circumferential direction.
PCT/JP2011/057037 2010-03-30 2011-03-23 Plasma processing apparatus, and dielectric window WO2011122422A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-077792 2010-03-30
JP2010077792 2010-03-30

Publications (1)

Publication Number Publication Date
WO2011122422A1 true WO2011122422A1 (en) 2011-10-06

Family

ID=44712132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057037 WO2011122422A1 (en) 2010-03-30 2011-03-23 Plasma processing apparatus, and dielectric window

Country Status (2)

Country Link
TW (1) TW201210412A (en)
WO (1) WO2011122422A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6479550B2 (en) * 2015-04-22 2019-03-06 東京エレクトロン株式会社 Plasma processing equipment
US10370763B2 (en) 2016-04-18 2019-08-06 Tokyo Electron Limited Plasma processing apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195842A (en) * 1998-10-20 2000-07-14 Sumitomo Metal Ind Ltd Plasma processing device
JP2000349068A (en) * 1999-06-02 2000-12-15 Sumitomo Metal Ind Ltd Plasma processing apparatus
JP2004014262A (en) * 2002-06-06 2004-01-15 Tokyo Electron Ltd Plasma processing device
JP2004186303A (en) * 2002-12-02 2004-07-02 Tokyo Electron Ltd Plasma processing device
JP2007188722A (en) * 2006-01-12 2007-07-26 Tokyo Electron Ltd Plasma treatment device
JP2007220700A (en) * 2006-02-14 2007-08-30 Shibaura Mechatronics Corp Microwave transparent window, microwave plasma generator and microwave plasma processing appaaratus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195842A (en) * 1998-10-20 2000-07-14 Sumitomo Metal Ind Ltd Plasma processing device
JP2000349068A (en) * 1999-06-02 2000-12-15 Sumitomo Metal Ind Ltd Plasma processing apparatus
JP2004014262A (en) * 2002-06-06 2004-01-15 Tokyo Electron Ltd Plasma processing device
JP2004186303A (en) * 2002-12-02 2004-07-02 Tokyo Electron Ltd Plasma processing device
JP2007188722A (en) * 2006-01-12 2007-07-26 Tokyo Electron Ltd Plasma treatment device
JP2007220700A (en) * 2006-02-14 2007-08-30 Shibaura Mechatronics Corp Microwave transparent window, microwave plasma generator and microwave plasma processing appaaratus

Also Published As

Publication number Publication date
TW201210412A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP7030840B2 (en) Plasma processing tool using modular microwave source
JP4563729B2 (en) Plasma processing equipment
WO2003105544A1 (en) Plasma processing device
KR20140061558A (en) Dielectric window for plasma treatment device, and plasma treatment device
JP2010258461A (en) Plasma processing apparatus and top plate for plasma processing apparatus
JP2013191593A (en) Plasma processing apparatus
JP4910396B2 (en) Plasma processing equipment
WO2011058921A1 (en) Plasma processing apparatus and microwave transmitter
JP2018006718A (en) Microwave plasma processing device
JP6501493B2 (en) Plasma processing system
KR101114848B1 (en) plasma processing apparatus and plasma processing method
WO2011122422A1 (en) Plasma processing apparatus, and dielectric window
TW201944859A (en) Phased array modular high-frequency source
JP2011249503A (en) Plasma processing device, and gas supply member supporting device
KR102489747B1 (en) Plasma processing apparatus
WO2016104205A1 (en) Plasma processing device and plasma processing method
KR102175080B1 (en) Apparatus and method for treating substrate
JP2009224455A5 (en)
KR101570170B1 (en) Apparatus for treating substrate
KR102107310B1 (en) Plasma processing apparatus
JP2016091603A (en) Microwave plasma processing device
KR20210104756A (en) Plasma treatment apparatus and plasma treatment method
KR102278075B1 (en) Dielectric plate and substrate processing apparatus using the same
JP2018006257A (en) Microwave plasma processing device
KR102489748B1 (en) Plasma processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP