WO2011122096A1 - Patterned media defect inspector device and inspection method for stamper for patterned media employing same - Google Patents

Patterned media defect inspector device and inspection method for stamper for patterned media employing same Download PDF

Info

Publication number
WO2011122096A1
WO2011122096A1 PCT/JP2011/052051 JP2011052051W WO2011122096A1 WO 2011122096 A1 WO2011122096 A1 WO 2011122096A1 JP 2011052051 W JP2011052051 W JP 2011052051W WO 2011122096 A1 WO2011122096 A1 WO 2011122096A1
Authority
WO
WIPO (PCT)
Prior art keywords
stamper
defects
defect
caused
sample
Prior art date
Application number
PCT/JP2011/052051
Other languages
French (fr)
Japanese (ja)
Inventor
聖岳 堀江
優 日下
優 谷中
滋 芹川
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Publication of WO2011122096A1 publication Critical patent/WO2011122096A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/855Coating only part of a support with a magnetic layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping

Definitions

  • the present invention relates to a defect inspection apparatus for patterned media and a technique for monitoring defects and deterioration caused by changes over time in a patterned media stamper using the same.
  • Patterned media which is a medium in which a pattern is formed on the disk surface, is promising as a method capable of greatly improving the recording density as compared with conventional disk media.
  • Patent Document 3 discloses a technique for inspecting a stamper defect that detects an optical disc defect and detects a defect repeatedly generated at the same position as a stamper defect.
  • An object of the present invention is to identify a defect that has repeatedly occurred on a patterned media disk due to deterioration due to a change in stamper over time and a defect that has occurred due to a process failure, and has occurred due to a change in stamper over time.
  • An object of the present invention is to provide a patterned media defect inspection apparatus for detecting defects and a patterned media stamper inspection method using the same.
  • a patterned media defect inspection apparatus for detecting a defect of a stamper for transferring a fine pattern to a resist applied on a sample is applied to the resist applied on the surface.
  • a defect extracting means for extracting a defect from a detection waveform obtained by spectral detection by means of a defect, a defect caused by a stamper at a same position on a plurality of samples among defects extracted by the defect extracting means, and a resist film
  • a defect data processing unit for discriminating defects caused by the process of forming the pattern, and the number of defects caused by the stamper in the defect data processing unit is set in advance. It was constructed and an output unit that notifies the warning when it exceeds the number
  • the present invention provides a patterned media stamper inspection method for detecting defects in a stamper for transferring a fine pattern onto a resist applied on a sample. Irradiating the sample with the stamper's fine pattern transferred to the resist film, irradiating the sample with light, spectrally detecting the reflected light from the sample irradiated with light, and extracting defects from the detected waveform obtained by spectral detection; Among the extracted defects, the defect caused at the same position on a plurality of samples is distinguished from the defect caused by the stamper and the defect caused by the process of forming the resist film pattern, and the number of defects caused by the stamper is determined in advance. A warning is notified when the set number is exceeded.
  • the present invention provides a patterned media stamper inspection method for detecting defects in a stamper for transferring a fine pattern onto a resist applied on a sample. Irradiating the sample with the stamper's fine pattern transferred to the resist film, irradiating the sample with light, spectrally detecting the reflected light from the sample irradiated with light, and extracting defects from the detected waveform obtained by spectral detection; Among the extracted defects, the defect caused by the stamper and the defect caused by the process of forming the resist film pattern are discriminated from the state of change over time of the number of defects generated at the same position on a plurality of samples, The defect occurrence position information is output for the defect caused by the discriminated stamper.
  • a defect caused by deterioration due to a change of a stamper with time and a defect caused by a process failure are identified.
  • a process of forming a pattern of a patterned medium (sample) 1 to be inspected in the present invention will be described with reference to FIG.
  • thin films such as an underlayer 11, an intermediate layer 12, and a recording layer 13 are formed on the substrate 10 (S101).
  • the resist 14 is applied to the substrate on which the multilayer thin film layer is formed, and the resist is exposed to the nanoimprint by irradiating the exposure light in a state where the stamper on which the fine uneven pattern is formed is pressed against the resist on the substrate.
  • Perform S102
  • the shape of the fine pattern of the resist 14 transferred onto the substrate 10 by nanoimprinting is inspected (S103). The substrate that does not pass the inspection is stripped of the resist on the surface and sent to the nanoimprint process of S102 again.
  • the recording layer 13 is etched among the multilayer thin film layers on the board
  • the nonmagnetic film 15 is formed on the substrate 10 and the fine pattern formed on the recording layer 13 is embedded (S105), and the substrate surface is planarized (CMP (Chemical Mechanical Polishing) process).
  • CMP Chemical Mechanical Polishing
  • FIG. 2A shows a state in which a resist film 201 (corresponding to 14 in FIG. 1) is applied on a substrate 203 (corresponding to 10 in FIG. 1) on which a recording layer 202 (corresponding to 13 in FIG. 1) is formed. Then, a state is shown in which the stamper 200 on which a fine pattern to be transferred onto the surface is formed above the substrate 203 is on standby. In FIG. 2, the base layer 11 and the intermediate layer 12 described in FIG. 1 are omitted to simplify the description. Next, as shown in FIG. 2B, the stamper 200 is pressed against the substrate 203 to cause the resist film 201 on the surface to follow the fine pattern formed on the stamper 200. In this state, as shown in FIG.
  • the pattern of the resist 201 formed on the recording layer 202 as shown in FIG. 2D is checked for its pattern, and the resist 201 is formed on the stamper 200 for forming a pattern.
  • the present invention relates to an inspection apparatus for inspecting a fine pattern state and an inspection method thereof.
  • the patterned media inspection apparatus includes a ⁇ stage 141 that mounts and rotates a sample (patterned media) 1 to be inspected, a spectral detection optical system 100, a control unit 120, and the spectral detection optical system 100 in a uniaxial direction. And an input / output means 125 for inputting / outputting data to / from the control unit 120.
  • the spectroscopic detection optical system 100 includes a light source 101 that emits broadband light including deep ultraviolet (DUV) light, a condensing lens 102 that collects light emitted from the light source 101, and an inspection target mounted on the ⁇ stage 141. And a field stop 103 having an opening 1031 for determining a detection field on the patterned medium 1, and a sample 1 to be inspected (the resist 14 pattern formed on the surface in step S102 in FIG. 1).
  • a wavelength selection filter 104 that selects the wavelength of the illumination light, a polarizer 105 that polarizes the illumination light in a specific direction, a half mirror 106 that bends the optical path of the polarized illumination light toward the pattern dodia 1 to be inspected, and illumination.
  • the objective lens 107 for condensing the light on the surface of the patterned medium 1 to be inspected and the light reflected by the surface of the patterned medium 1 are again paired.
  • the reflected light that has been collected by the object lens 107 and transmitted through the half mirror 106 is allowed to pass therethrough, and the aperture 1081 for cutting stray light from the periphery is cut off, and the reflected light that has passed through the aperture 108 is spectrally detected.
  • a spectroscope 109 is provided.
  • the spectroscope 109 is configured by arranging a diffraction grating 110 that diffracts and separates the reflected light that has passed through the aperture 108 and a plurality of detection pixels that detect a spectral waveform diffracted and dispersed by the diffraction grating 110 in a line. And a linear photodetector 111.
  • the control unit 120 receives the spectral waveform signal detected by the linear photodetector 111 of the spectroscope 109, A / D converts it, outputs a digital signal, and the A / D converted signal.
  • a data processing unit 122 that processes and inspects the pattern shape of the patterned medium 1 to be inspected, a database 123 that stores data indicating the relationship between the spectral waveform signal data and the pattern defect shape, and a control unit that controls the whole 124 is provided.
  • the data processing unit 122 and the control unit 124 are connected to an external input / output unit 125 having a display screen 126.
  • the drive unit 130 is set to the inspection start position under the control of the control unit 124, and the ⁇ stage 141 starts high-speed rotation.
  • the patterned medium 1 rotated at a high speed by the rotation of the stage 141, the drive unit 130 is moved in one direction (radial direction of the patterned medium 1) at a constant speed.
  • the light source 101 emits broadband (multi-wavelength) illumination light (for example, a wavelength of 200 to 800 nm) including deep ultraviolet (DUV) light.
  • an Xe lamp, a halogen lamp, a deuterium lamp, a mercury lamp, or the like can be used.
  • the light emitted from the light source 101 is condensed at the position of the opening 1031 of the field stop 103 by the condenser lens 102.
  • the image of the light condensed on the opening 1031 of the field stop 103 is formed on the surface of the patterned medium 1 to be inspected by the objective lens 106.
  • the wavelength of the illumination light that has passed through the field stop 103 is selected by the wavelength selection filter 104, and the light having the selected wavelength is used to measure the shape of the pattern formed on the patterned medium 1 by the polarization optical element 105.
  • a part of the half mirror 106 is reflected in the direction of the objective lens 107, passes through the objective lens 107, and is irradiated onto the patterned medium 1.
  • the reflected light from the patterned medium 1 on which the image of the opening 1031 of the field stop 103 is projected again enters the objective lens 107, and part of the light passes through the half mirror 106 and reaches the stop 108.
  • an image of the reflected light from the patterned medium 1 that has passed through the objective lens 107 is formed at the position of the opening 1081 of the diaphragm 108.
  • Have different spectral waveforms, and the diffracted light separated by the linear photodetector 111 in which a plurality of detection elements are arranged is separated and detected by the respective detection elements.
  • the spectral waveform detection signal detected by the linear photodetector 111 is input to the spectral waveform processing unit 121 of the control unit 120 and A / D converted to obtain a digitized spectral waveform signal.
  • the digitized spectral waveform signal is sent to the data processing unit 122 for processing, and the shape of the pattern formed on the patterned medium 1 to be inspected is inspected.
  • spectral waveform signal data of a standard sample having a normal concavo-convex pattern and a known pattern shape is acquired (S601) and stored in the database unit 123 (S602).
  • an uneven pattern shape as shown in FIG. 4, the height of the pattern of the resist 201 (14) formed on the magnetic film layer 202 (13) is analyzed by electromagnetic wave analysis.
  • the spectral waveform signal when the pattern width, the thickness of the base, etc.) are changed and stored in the database unit 123, and the spectral waveform signal data corresponding to the limit value of the uneven pattern shape change is determined. It is registered in the database unit 123 (S603).
  • the horizontal axis indicates the channel (ch) number of the linear photodetector 110 corresponding to the detection wavelength, and the channel number corresponds to the detection wavelength. The larger the number, the longer the detection wavelength. Is shown.
  • the shape of the concavo-convex pattern for example, how the spectral waveform data changes depending on whether the pattern height changes or the pattern width changes. That is, the spectral waveform data varies depending on the cause of the defect in the uneven pattern shape.
  • the relationship between the cause of the irregular pattern shape defect and the characteristic of the spectral waveform data is registered in the database unit 123 in advance, and the spectral waveform data obtained by inspecting the sample to be inspected is stored in the database unit.
  • the distribution characteristics of the wavelength band exceeding the allowable value are obtained by comparing with the spectral waveform data of the standard sample registered in 123, and the cause of the irregular pattern shape defect registered in the database unit 123 and the spectral waveform data
  • the defect of the pattern shape of the sample to be inspected can be detected from the information on the relationship with the characteristics, and the type of the defect can be specified.
  • the inspection target sample having a resist pattern formed on the surface is inspected by the inspection apparatus of FIG. 3 to obtain spectral waveform data (S604), and the spectral waveform data of the inspection target sample is stored in the database unit 123. (S605)
  • the defect is detected by the method described above (S606), and the spectral waveform data of the detected defect is stored together with the position information of the defect (S607). .
  • the configuration in which the spectroscopic detection optical system 100 is moved in one direction by the drive unit 130 while rotating the ⁇ table 140 is shown.
  • the ⁇ table 140 is moved in one axis direction.
  • the entire surface of the disk may be inspected by placing it on a movable table and moving it in one axial direction while rotating the ⁇ table 140 with the spectroscopic detection optical system 100 fixed.
  • the cause of a defect that repeatedly occurs at the same location on a plurality of substrates to be sequentially processed is generally caused by a process of forming a fine pattern.
  • the case may be due to deterioration due to aging of the stamper for nanoimprinting.
  • defects due to the process occur suddenly in a relatively short time, but defects due to deterioration due to the aging of the stamper gradually increase with time.
  • the method described below will increase the number of defects in the pattern formed on the disk, thereby causing defects due to the process and deterioration due to changes over time of the stamper.
  • a stamper failure was detected by identifying the failure caused.
  • the sample 1 to be inspected to which a fine pattern is transferred by the stamper 200, is set on the ⁇ table 140 of the inspection apparatus in FIG. 3, and the alignment mark formed on the sample 1 is spectrally detected while the ⁇ table 140 is rotated.
  • Data obtained by detecting with the optical system 100 and processing the detection signal by the spectral waveform processing unit 121 and the data processing unit 122, information on the rotation angle of the ⁇ table 140 and position information on the drive unit 130 at that time Store it (S701).
  • the entire surface of the sample 1 is inspected by the inspection apparatus of FIG. 3, the processing from S604 to S607 in FIG. 6 is executed to detect defects, and the spectral waveform data of the detected defects and the rotation angle of the ⁇ table 140 are detected. And the position information of the drive unit 130 are obtained (S702) and stored.
  • the position information of the detected defect and its spectral waveform data are compared with the inspection data (defect positional information and its spectral waveform data) of another substrate that has been previously inspected and stored, and the alignment mark is It is checked whether or not there is the same type of defect at the same position on the substrate when it is used as a reference (S703).
  • S703 it is determined whether or not the size or number of defects of the same type determined to exist at the same coordinate exceeds a preset warning setting value (S704). As a result, if the size or number of detected defects does not exceed the preset warning setting value, there is no problem in the process, and the stamper being used can be used normally. If there is a next disk without doing anything, the next disk is inspected (S709).
  • a defect map 801 indicating the position of the generated defect and stamper information 803 are displayed on the screen 800 (126) of the input / output means 125 as shown in FIG.
  • a stamper abnormality signal is output to a nanoimprint apparatus (not shown) that performs the nanoimprint process (S102) shown in FIG. 1 (S707).
  • the defect map 801 On the screen 800 (126), as the above-described defect map 801, the position on the sample 1 where the defect corresponding to the stamper defect is detected is detected and associated with the alignment mark position 802 for each defect type.
  • an area 804 for displaying the current state of the stamper and an area 805 for displaying the type of defect detected are provided.
  • the time from the detection of exceeding the warning set value in S704 to the detection of exceeding the abnormal setting value in S705 is shorter than the preset time (the number of processed samples 1) ( In the case where the number of defects is small, it means that a large number of defects have occurred in a short time, and a process abnormality warning is issued from the input / output unit 125 that an abnormality has occurred in the process (S708).
  • the size or number of defects detected at the same location on the disk is checked in two stages, that is, a warning setting value and an abnormal setting value, repeated defects caused by process defects and stamper It is possible to identify and detect repetitive defects that have occurred due to deterioration due to aging, and to detect deterioration due to aging of the stamper at an early stage, thereby preventing a large number of defects due to stampers. became.
  • the present invention is applied to a defect inspection apparatus for a patterned medium, which is a magnetic recording medium, and an apparatus for monitoring defects and deterioration caused by changes over time of a patterned medium stamper.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

Disclosed is a method for inspection for a stamper for patterned media, which detects problems with a stamper for transferring a finely detailed pattern to photoresist coated upon a sample, in order to classify defects occurring repeatedly in patterned media discs into defects arising from deteriorations from changes over time in the stamper and defects arising from process problems, and to detect defects arising from changes over time in the stamper. The finely detailed pattern of the stamper is transferred upon the photoresist film coated upon the obverse face of the sample, and light is projected thereupon. The reflected light from the sample whereupon the light is projected is spectrally detected, defects are extracted from a detection waveform obtained by the spectral detection, and a discrimination is made, concerning defects occurring in the same location upon a plurality of samples from among the extracted defects, between the defects caused by the stamper and the defects caused by the process of forming the photoresist film pattern. When the number of defects caused by the stamper exceeds a preset number, an alert is issued.

Description

パターンドメディアの欠陥検査装置及びそれを用いたパターンドメディア用スタンパの検査方法Patterned media defect inspection apparatus and patterned media stamper inspection method using the same
 本発明は、パターンドメディアの欠陥検査装置及びそれを用いてパターンドメディア用スタンパの経時変化により発生する不良および劣化をモニタリングする技術に関するものである。 The present invention relates to a defect inspection apparatus for patterned media and a technique for monitoring defects and deterioration caused by changes over time in a patterned media stamper using the same.
 近年、コンピュータに用いられる記録媒体であるハードディスクは大容量化が進んでいる。記録情報の大容量化には1枚のディスク内に記録する密度の向上が不可欠である。従来のディスク媒体に比較して大幅に記録密度を向上可能な方式としてディスク表面にパターンを形成させた媒体であるパターンドメディアが有望視されている。 In recent years, the capacity of hard disks, which are recording media used in computers, has been increasing. In order to increase the capacity of recorded information, it is indispensable to improve the density of recording on one disc. Patterned media, which is a medium in which a pattern is formed on the disk surface, is promising as a method capable of greatly improving the recording density as compared with conventional disk media.
 パターンドメディアの検査に関しては、特許文献1および2に開示されているように、分光検査により微細なパターンの欠陥を検査することが知られている。また、スタンパの欠陥検出技術として、光ディスクの欠陥を検出して同じ位置に繰り返し発生する欠陥をスタンパの欠陥として検出するスタンパの欠陥を検査する技術が特許文献3に記載されている。 Regarding the inspection of patterned media, as disclosed in Patent Documents 1 and 2, it is known to inspect fine pattern defects by spectroscopic inspection. As a stamper defect detection technique, Patent Document 3 discloses a technique for inspecting a stamper defect that detects an optical disc defect and detects a defect repeatedly generated at the same position as a stamper defect.
特開2009-257993号公報JP 2009-257993 A 特開2009-150832号公報JP 2009-150832 A 特開平05-072143号公報JP 05-072143 A
 パターンドメディアディスクのパターン形成工程で使用するスタンパに問題が発生した場合、同一箇所に連続して欠陥が転写され、不良ディスクとなってしまう。特許文献1および2に開示されている技術では、スタンパにより発生した欠陥と、製造工程が原因になって発生した欠陥とを識別することが難しい。 When a problem occurs in the stamper used in the pattern formation process of the patterned media disk, the defect is continuously transferred to the same location, resulting in a defective disk. In the techniques disclosed in Patent Documents 1 and 2, it is difficult to distinguish between a defect caused by a stamper and a defect caused by a manufacturing process.
 一方、特許文献3に開示されている技術では、同じ位置に繰り返し発生する欠陥をスタンパの欠陥としており、プロセスの不良により発生した繰り返し欠陥と、スタンパの劣化により発生した繰り返し欠陥とを識別することについては、配慮されていなかった。 On the other hand, in the technique disclosed in Patent Document 3, a defect that repeatedly occurs at the same position is used as a stamper defect, and a repeated defect caused by a process failure and a repeated defect caused by a stamper deterioration are identified. Was not considered.
 本発明の目的は、パターンドメディアディスク上に繰り返し発生した欠陥をスタンパの経時的変化による劣化により発生した欠陥と、プロセスの不良により発生した欠陥とを識別して、スタンパの経時変化により発生した欠陥を検出するパターンドメディアの欠陥検査装置及びそれを用いてパターンドメディア用スタンパの検査方法を提供することにある。 An object of the present invention is to identify a defect that has repeatedly occurred on a patterned media disk due to deterioration due to a change in stamper over time and a defect that has occurred due to a process failure, and has occurred due to a change in stamper over time. An object of the present invention is to provide a patterned media defect inspection apparatus for detecting defects and a patterned media stamper inspection method using the same.
 上記した目的を達成するために、本発明では、試料上に塗布されたレジストに微細なパターンを転写するためのスタンパの不良を検出するパターンドメディアの欠陥検査装置を、表面に塗布されたレジスト膜にスタンパの微細なパターンが転写された試料に光を照射する照明光学系と、照明光学系により光が照射された試料からの反射光を分光検出する分光検出光学系と、分光検出光学系により分光検出して得られた検出波形から欠陥を抽出する欠陥抽出手段と、欠陥抽出手段により抽出した欠陥のうち複数の試料上の同じ位置に発生した欠陥についてスタンパに起因する欠陥と、レジスト膜のパターンを形成するプロセスに起因する欠陥とを弁別する欠陥データ処理部と、欠陥データ処理部で前記スタンパに起因する欠陥の個数が予め設定した個数を超えたときに警告を通知する出力部とを備えて構成した。 In order to achieve the above-described object, in the present invention, a patterned media defect inspection apparatus for detecting a defect of a stamper for transferring a fine pattern to a resist applied on a sample is applied to the resist applied on the surface. An illumination optical system for irradiating a sample with a fine stamper pattern transferred onto the film, a spectroscopic detection optical system for spectrally detecting reflected light from the sample irradiated with light by the illumination optical system, and a spectroscopic detection optical system A defect extracting means for extracting a defect from a detection waveform obtained by spectral detection by means of a defect, a defect caused by a stamper at a same position on a plurality of samples among defects extracted by the defect extracting means, and a resist film A defect data processing unit for discriminating defects caused by the process of forming the pattern, and the number of defects caused by the stamper in the defect data processing unit is set in advance. It was constructed and an output unit that notifies the warning when it exceeds the number.
 また、上記した目的を達成するために、本発明では、試料上に塗布されたレジストに微細なパターンを転写するためのスタンパの不良を検出するパターンドメディア用スタンパの検査方法において、表面に塗布されたレジスト膜にスタンパの微細なパターンが転写された試料に光を照射し、光が照射された試料からの反射光を分光検出し、分光検出して得た検出波形から欠陥を抽出し、抽出した欠陥のうち複数の試料上の同じ位置に発生した欠陥についてスタンパに起因する欠陥と、レジスト膜のパターンを形成するプロセスに起因する欠陥とを弁別し、スタンパに起因する欠陥の個数が予め設定した個数を超えたときに警告を通知するようにした。 In order to achieve the above-described object, the present invention provides a patterned media stamper inspection method for detecting defects in a stamper for transferring a fine pattern onto a resist applied on a sample. Irradiating the sample with the stamper's fine pattern transferred to the resist film, irradiating the sample with light, spectrally detecting the reflected light from the sample irradiated with light, and extracting defects from the detected waveform obtained by spectral detection; Among the extracted defects, the defect caused at the same position on a plurality of samples is distinguished from the defect caused by the stamper and the defect caused by the process of forming the resist film pattern, and the number of defects caused by the stamper is determined in advance. A warning is notified when the set number is exceeded.
 また、上記した目的を達成するために、本発明では、試料上に塗布されたレジストに微細なパターンを転写するためのスタンパの不良を検出するパターンドメディア用スタンパの検査方法において、表面に塗布されたレジスト膜にスタンパの微細なパターンが転写された試料に光を照射し、光が照射された試料からの反射光を分光検出し、分光検出して得た検出波形から欠陥を抽出し、抽出した欠陥のうち複数の試料上の同じ位置に発生した欠陥の数の経時的な変化の状態からスタンパに起因する欠陥と、レジスト膜のパターンを形成するプロセスに起因する欠陥とを弁別し、弁別したスタンパに起因する欠陥について該欠陥の発生位置情報を出力するようにした。 In order to achieve the above-described object, the present invention provides a patterned media stamper inspection method for detecting defects in a stamper for transferring a fine pattern onto a resist applied on a sample. Irradiating the sample with the stamper's fine pattern transferred to the resist film, irradiating the sample with light, spectrally detecting the reflected light from the sample irradiated with light, and extracting defects from the detected waveform obtained by spectral detection; Among the extracted defects, the defect caused by the stamper and the defect caused by the process of forming the resist film pattern are discriminated from the state of change over time of the number of defects generated at the same position on a plurality of samples, The defect occurrence position information is output for the defect caused by the discriminated stamper.
 本発明によれば、複数のパターンドメディアディスク上の同じ箇所に繰り返し発生した欠陥について、スタンパの経時的変化による劣化により発生した欠陥と、プロセスの不良により発生した欠陥とを識別して、スタンパの経時変化により発生した欠陥を検出してスタンパの寿命や不良の発生を警告または不良として早期検出することにより、スタンパ起因による欠陥の大量発生を未然に防ぐことが可能となった。 According to the present invention, for a defect repeatedly generated at the same location on a plurality of patterned media discs, a defect caused by deterioration due to a change of a stamper with time and a defect caused by a process failure are identified. By detecting defects that have occurred due to changes over time and detecting the occurrence of a stamper life or failure early as a warning or failure, it has become possible to prevent the occurrence of a large number of defects due to the stamper.
ディスクリートメディアのパターン形成工程を示す図である。It is a figure which shows the pattern formation process of a discrete medium. ナノインプリントプロセスを示す工程図である。It is process drawing which shows a nanoimprint process. パターンドメディア検査装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of a patterned media inspection apparatus. 磁性膜層上に形成されたレジストパターンの断面図である。It is sectional drawing of the resist pattern formed on the magnetic film layer. 分光波長検出チャンネルごとの検出出力を示すグラフである。It is a graph which shows the detection output for every spectral wavelength detection channel. 分光波形データから欠陥を検出する手順を示すフロー図である。It is a flowchart which shows the procedure which detects a defect from spectral waveform data. スタンパの異常とプロセスの異常とを識別する処理の流れを示すフロー図である。It is a flowchart which shows the flow of the process which identifies the abnormality of a stamper and the abnormality of a process. スタンパ異常の検出結果を表示する画面の正面図である。It is a front view of the screen which displays the detection result of a stamper abnormality.
 まず、本発明で検査対象とするパターンドメディア(試料)1のパターンを形成する工程について、図1を用いて説明する。先ず、基板10上に下地層11、中間層12、記録層13などの薄膜を多層形成する(S101)。次に、多層の薄膜層が形成された基板にレジスト14を塗布し、微細な凹凸パターンが形成されたスタンパを基板上のレジストに押し付けた状態で露光光を照射しレジストを露光してナノインプリントを行う(S102)。次に、ナノインプリントにより基板10上に転写されたレジスト14の微細パターンの形状を検査する(S103)。検査で合格しなかった基板は、表面のレジストが剥離されて再度S102のナノインプリントの工程に送られる。 First, a process of forming a pattern of a patterned medium (sample) 1 to be inspected in the present invention will be described with reference to FIG. First, thin films such as an underlayer 11, an intermediate layer 12, and a recording layer 13 are formed on the substrate 10 (S101). Next, the resist 14 is applied to the substrate on which the multilayer thin film layer is formed, and the resist is exposed to the nanoimprint by irradiating the exposure light in a state where the stamper on which the fine uneven pattern is formed is pressed against the resist on the substrate. Perform (S102). Next, the shape of the fine pattern of the resist 14 transferred onto the substrate 10 by nanoimprinting is inspected (S103). The substrate that does not pass the inspection is stripped of the resist on the surface and sent to the nanoimprint process of S102 again.
 この検査で合格した基板について、ナノインプリントで形成されたレジスト14のパターンをマスクとして基板10上の多層の薄膜層のうち記録層13をエッチングし、レジストを除去して微細パターンを形成する(S104)。次に、基板10上に非磁性膜15を形成して記録層13に形成した微細パターンに非磁性膜15を埋め込み(S105)、基板表面を平坦化加工(CMP(Chemical Mechanical Polishing)加工)して記録層13に形成した微細パターンの部分を残して基板10上に形成した非磁性膜を除去し(S106)、基板10の表面に保護膜16を形成して(S107)一連の工程を終了する。 About the board | substrate which passed this test | inspection, the recording layer 13 is etched among the multilayer thin film layers on the board | substrate 10 using the pattern of the resist 14 formed by nanoimprint as a mask, a resist is removed, and a fine pattern is formed (S104). . Next, the nonmagnetic film 15 is formed on the substrate 10 and the fine pattern formed on the recording layer 13 is embedded (S105), and the substrate surface is planarized (CMP (Chemical Mechanical Polishing) process). Then, the nonmagnetic film formed on the substrate 10 is removed leaving the fine pattern portion formed on the recording layer 13 (S106), and the protective film 16 is formed on the surface of the substrate 10 (S107). To do.
 次に、図1に示した工程のうち、ナノインプリントにより基板10上に形成されたれじすと14の微細パターンを検査する検査工程(S103)について、図2を用いて詳細に説明する。 Next, the inspection step (S103) for inspecting the fine pattern 14 when it is formed on the substrate 10 by nanoimprinting among the steps shown in FIG. 1 will be described in detail with reference to FIG.
 図2(a)は、記録層202(図1の13に相当)が形成された基板203(図1の10に相当)上にレジスト膜201(図1の14に相当)が塗布された状態で、基板203の上方に表面に転写するための微細なパターンが形成されたスタンパ200が待機している状態を示す。図2においては、説明を簡単にするために、図1で説明した下地層11と中間層12とを省略して図示してある。つぎに、図2(b)に示すようにスタンパ200を基板203に押し付けて表面のレジスト膜201をスタンパ200に形成された微細なパターンに倣わせる。この状態で図2(c)に示すようにスタンパ200の裏側から露光光を照射してスタンパ200を押し付けられた状態のレジスト201を露光する。レジストが露光されて硬化した後、スタンパ200をレジスト201から剥離すると、記録層202の上には、図2(d)に示すようなレジストのパターンが形成される。 2A shows a state in which a resist film 201 (corresponding to 14 in FIG. 1) is applied on a substrate 203 (corresponding to 10 in FIG. 1) on which a recording layer 202 (corresponding to 13 in FIG. 1) is formed. Then, a state is shown in which the stamper 200 on which a fine pattern to be transferred onto the surface is formed above the substrate 203 is on standby. In FIG. 2, the base layer 11 and the intermediate layer 12 described in FIG. 1 are omitted to simplify the description. Next, as shown in FIG. 2B, the stamper 200 is pressed against the substrate 203 to cause the resist film 201 on the surface to follow the fine pattern formed on the stamper 200. In this state, as shown in FIG. 2C, exposure light is irradiated from the back side of the stamper 200 to expose the resist 201 in a state where the stamper 200 is pressed. When the stamper 200 is peeled from the resist 201 after the resist is exposed and cured, a resist pattern as shown in FIG. 2D is formed on the recording layer 202.
 本発明では、この図2(d)に示すような記録層202の上に形成されたレジスト201のパターの出来具合をチェックして、レジスト201のパターンを形成するためのスタンパ200に形成された微細なパターンの状態を検査するための検査装置とその検査方法に関するものである。 In the present invention, the pattern of the resist 201 formed on the recording layer 202 as shown in FIG. 2D is checked for its pattern, and the resist 201 is formed on the stamper 200 for forming a pattern. The present invention relates to an inspection apparatus for inspecting a fine pattern state and an inspection method thereof.
 次に、本発明に係るパターンドメディア検査装置について図3を用いて説明する。 Next, the patterned media inspection apparatus according to the present invention will be described with reference to FIG.
 本発明に係るパターンドメディア検査装置は、被検査対象の試料(パターンドメディア)1を搭載し回転するθステージ141と、分光検出光学系100、制御ユニット120、分光検出光学系100を一軸方向へ駆動する駆動ユニット130、及び制御ユニット120へのデータの入出力を行う入出力手段125とを備えて構成されている。 The patterned media inspection apparatus according to the present invention includes a θ stage 141 that mounts and rotates a sample (patterned media) 1 to be inspected, a spectral detection optical system 100, a control unit 120, and the spectral detection optical system 100 in a uniaxial direction. And an input / output means 125 for inputting / outputting data to / from the control unit 120.
 分光検出光学系100は、遠紫外(DUV)光を含む広帯域の光を発射する光源101、光源101から発射された光を集光する集光レンズ102、θステージ141に搭載されている検査対象であるパターンドメディア1上の検出視野を決める開口部1031を有する視野絞り103、検査対象である試料1(図1でS102のステップで表面にレジスト14のパターンが形成されたもの)に適するように照明光の波長を選択する波長選択フィルタ104、照明光を特定方向に偏光させる偏光子105、偏光された照明光の光路を検査対象であるパターンドディア1の側に折り曲げるハーフミラー106、照明光を検査対象であるパターンドメディア1の表面に集光させる対物レンズ107、パターンドメディア1の表面で反射されて再び対物レンズ107で集光されハーフミラー106を透過した反射光を通過させて周辺からの迷光をカットするための開口部1081を有する絞り108、及び絞り108を通過した反射光を分光して検出する分光器109を備えて構成されている。分光器109は、絞り108を通過した反射光を回折させて分光する回折格子110と、回折格子110で回折して分光された分光波形を検出する複数の検出画素を一列に配置して構成されたリニア光検出器111とを備えている。 The spectroscopic detection optical system 100 includes a light source 101 that emits broadband light including deep ultraviolet (DUV) light, a condensing lens 102 that collects light emitted from the light source 101, and an inspection target mounted on the θ stage 141. And a field stop 103 having an opening 1031 for determining a detection field on the patterned medium 1, and a sample 1 to be inspected (the resist 14 pattern formed on the surface in step S102 in FIG. 1). A wavelength selection filter 104 that selects the wavelength of the illumination light, a polarizer 105 that polarizes the illumination light in a specific direction, a half mirror 106 that bends the optical path of the polarized illumination light toward the pattern dodia 1 to be inspected, and illumination. The objective lens 107 for condensing the light on the surface of the patterned medium 1 to be inspected and the light reflected by the surface of the patterned medium 1 are again paired. The reflected light that has been collected by the object lens 107 and transmitted through the half mirror 106 is allowed to pass therethrough, and the aperture 1081 for cutting stray light from the periphery is cut off, and the reflected light that has passed through the aperture 108 is spectrally detected. A spectroscope 109 is provided. The spectroscope 109 is configured by arranging a diffraction grating 110 that diffracts and separates the reflected light that has passed through the aperture 108 and a plurality of detection pixels that detect a spectral waveform diffracted and dispersed by the diffraction grating 110 in a line. And a linear photodetector 111.
 制御ユニット120は、分光器109のリニア光検出器111で検出された分光波形信号を入力してA/D変換しデジタル信号を出力する分光波形処理部121と、A/D変換された信号を処理して検査対象であるパターンドメディア1のパターン形状を検査するデータ処理部122、分光波形信号データとパターン欠陥形状との関係を示すデータを記憶しておくデータベース123、全体を制御する制御部124を備えている。データ処理部122及び制御部124は、表示画面126を備えた外部の入出力手段125と接続されている。 The control unit 120 receives the spectral waveform signal detected by the linear photodetector 111 of the spectroscope 109, A / D converts it, outputs a digital signal, and the A / D converted signal. A data processing unit 122 that processes and inspects the pattern shape of the patterned medium 1 to be inspected, a database 123 that stores data indicating the relationship between the spectral waveform signal data and the pattern defect shape, and a control unit that controls the whole 124 is provided. The data processing unit 122 and the control unit 124 are connected to an external input / output unit 125 having a display screen 126.
 次に、図2に示した構成を有するパターンドメディア検査装置でパターンドメディア1に形成されたパターン形状の検査を行う方法について説明する。 Next, a method for inspecting the pattern shape formed on the patterned media 1 with the patterned media inspection apparatus having the configuration shown in FIG. 2 will be described.
 まず、制御部124で制御して駆動ユニット130を検査開始位置にセットし、θステージ141の高速回転を開始する。ステージ141の回転によりパターンドメディア1を高速に回転させた状態で、駆動ユニット130を一定の速度で一方向(パターンドメディア1の半径方向)に移動させる。この状態で光源101からは、遠紫外(DUV)光を含む広帯域(多波長)の照明光(例えば、波長が200~800nm)が発射される。光源101としては、Xeランプ、ハロゲンランプ、重水素ランプ、水銀ランプなどを用いることができる。 First, the drive unit 130 is set to the inspection start position under the control of the control unit 124, and the θ stage 141 starts high-speed rotation. With the patterned medium 1 rotated at a high speed by the rotation of the stage 141, the drive unit 130 is moved in one direction (radial direction of the patterned medium 1) at a constant speed. In this state, the light source 101 emits broadband (multi-wavelength) illumination light (for example, a wavelength of 200 to 800 nm) including deep ultraviolet (DUV) light. As the light source 101, an Xe lamp, a halogen lamp, a deuterium lamp, a mercury lamp, or the like can be used.
 光源101から発射された光は、集光レンズ102により視野絞り103の開口部1031の位置に集光される。この視野絞り103の開口部1031に集光された光の像は、対物レンズ106により検査対象であるパターンドメディア1の表面に結像される。また、視野絞り103を通過した照明光は波長選択フィルタ104により検査に適した波長が選択され、選択された波長の光は偏光光学要素105によりパターンドメディア1に形成されたパターンの形状計測を高感度に行えるような偏光状態に調整された後、ハーフミラー106で一部が対物レンズ107の方向に反射されて対物レンズ107を透過してパターンドメディア1に照射される。 The light emitted from the light source 101 is condensed at the position of the opening 1031 of the field stop 103 by the condenser lens 102. The image of the light condensed on the opening 1031 of the field stop 103 is formed on the surface of the patterned medium 1 to be inspected by the objective lens 106. The wavelength of the illumination light that has passed through the field stop 103 is selected by the wavelength selection filter 104, and the light having the selected wavelength is used to measure the shape of the pattern formed on the patterned medium 1 by the polarization optical element 105. After being adjusted to a polarization state that can be performed with high sensitivity, a part of the half mirror 106 is reflected in the direction of the objective lens 107, passes through the objective lens 107, and is irradiated onto the patterned medium 1.
 視野絞り103の開口部1031の像が投影されたパターンドメディア1からの反射光は、再び対物レンズ107に入射してその一部がハーフミラー106を透過して絞り108に達する。ここで絞り108の位置を調整することにより、対物レンズ107を透過したパターンドメディア1からの反射光の像が絞り108の開口部1081の位置に結像される。絞り108の開口部1081の大きさをパターンドメディア1上の検出視野(視野絞り103の開口部1031の像が投影された領域)の大きさに合わせることにより(必ずしも同じ大きさである必要はなく、検出視野の大きさより小さくても良い)、迷光や絞り108上に結像しない光を遮断することができる。 The reflected light from the patterned medium 1 on which the image of the opening 1031 of the field stop 103 is projected again enters the objective lens 107, and part of the light passes through the half mirror 106 and reaches the stop 108. Here, by adjusting the position of the diaphragm 108, an image of the reflected light from the patterned medium 1 that has passed through the objective lens 107 is formed at the position of the opening 1081 of the diaphragm 108. By matching the size of the aperture 1081 of the aperture 108 to the size of the detection field of view on the patterned medium 1 (the region on which the image of the aperture 1031 of the field aperture 103 is projected) (they need not necessarily be the same size). And may be smaller than the size of the detection visual field), stray light and light that does not form an image on the stop 108 can be blocked.
 絞り108の開口部1081を通過したパターンドメディア1上の検出視野からの反射光(正反射光)は、分光光学系109の回折格子110に到達し、回折格子110で波長に応じて回折角が異なる分光波形となり、複数の検出素子が配列されたリニア光検出器111で分光された回折光がそれぞれの検出素子で分離されて検出される。リニア光検出器111で検出された分光波形検出信号は制御ユニット120の分光波形処理部121に入力してA/D変換され、デジタル化した分光波形信号が得られる。このデジタル化した分光波形信号はデータ処理部122へ送られて処理され、検査対象であるパターンドメディア1上に形成されたパターンの形状が検査される。 Reflected light (regularly reflected light) from the detection visual field on the patterned medium 1 that has passed through the aperture 1081 of the stop 108 reaches the diffraction grating 110 of the spectroscopic optical system 109, and the diffraction angle of the diffraction grating 110 depends on the wavelength. Have different spectral waveforms, and the diffracted light separated by the linear photodetector 111 in which a plurality of detection elements are arranged is separated and detected by the respective detection elements. The spectral waveform detection signal detected by the linear photodetector 111 is input to the spectral waveform processing unit 121 of the control unit 120 and A / D converted to obtain a digitized spectral waveform signal. The digitized spectral waveform signal is sent to the data processing unit 122 for processing, and the shape of the pattern formed on the patterned medium 1 to be inspected is inspected.
 次に、制御ユニット120で実行するパターン形状の検査方法について図6を用いて説明する。まず、予め正常な凹凸パターンを有してパターン形状が既知の標準試料の分光波形信号データを取得し(S601),データベース部123に記憶しておく(S602)。次に、この標準試料の分光波形信号データに基づいて電磁波解析により凹凸パターン形状(図4に示すような、磁性膜層202(13)の上に形成されたレジスト201(14)のパターンの高さ、パターンの幅、下地の厚さなど)が変化した場合の分光波形信号を求めてデータベース部123に記憶しておくとともに、凹凸パターン形状変化の限界値に対応する分光波形信号データを決めてデータベース部123に登録しておく(S603)。 Next, a pattern shape inspection method executed by the control unit 120 will be described with reference to FIG. First, spectral waveform signal data of a standard sample having a normal concavo-convex pattern and a known pattern shape is acquired (S601) and stored in the database unit 123 (S602). Next, based on the spectral waveform signal data of the standard sample, an uneven pattern shape (as shown in FIG. 4, the height of the pattern of the resist 201 (14) formed on the magnetic film layer 202 (13) is analyzed by electromagnetic wave analysis. The spectral waveform signal when the pattern width, the thickness of the base, etc.) are changed and stored in the database unit 123, and the spectral waveform signal data corresponding to the limit value of the uneven pattern shape change is determined. It is registered in the database unit 123 (S603).
 即ち、図5の分光波長に対応する各検出チャンネルごとの検出出力を示すグラフに示すように、正常な凹凸パターンを計測して得られた分光波形データ502と、この分光波形データ502に基づいて電磁波解析により求めた許容される凹凸パターンの形状変化の限界に対応する分光波形データ503および504をデータベース部123に登録しておく。なお、図5において横軸は検出波長に対応するリニア光検出器110のチャンネル(ch)番号を示しており、チャンネルの番号は検出波長に対応しており、番号が大きくなるほど検出波長が長いことを示している。 That is, as shown in the graph showing the detection output for each detection channel corresponding to the spectral wavelength of FIG. 5, based on the spectral waveform data 502 obtained by measuring the normal uneven pattern, and the spectral waveform data 502 Spectral waveform data 503 and 504 corresponding to the limit of the allowable shape change of the uneven pattern obtained by the electromagnetic wave analysis is registered in the database unit 123. In FIG. 5, the horizontal axis indicates the channel (ch) number of the linear photodetector 110 corresponding to the detection wavelength, and the channel number corresponds to the detection wavelength. The larger the number, the longer the detection wavelength. Is shown.
 凹凸パターンの形状で、例えばパターンの高さが変化した場合とパターンの幅が変化した場合とで、分光波形データの変化の仕方が異なる。即ち、凹凸パターン形状の不良の原因に応じて分光波形データが異なる。この特性を利用して、予め凹凸パターン形状の不良の原因と分光波形データの特性との関係をデータベース部123に登録しておき、検査対象試料を検査して得られた分光波形データをデータベース部123に登録しておいた標準試料の分光波形データと比較して許容値を超える波長帯域の分布特性を求め、データベース部123に登録しておいた凹凸パターン形状の不良の原因と分光波形データの特性との関係の情報から検査対象試料のパターン形状の欠陥を検出し、その欠陥の種類を特定することができる。 The shape of the concavo-convex pattern, for example, how the spectral waveform data changes depending on whether the pattern height changes or the pattern width changes. That is, the spectral waveform data varies depending on the cause of the defect in the uneven pattern shape. Using this characteristic, the relationship between the cause of the irregular pattern shape defect and the characteristic of the spectral waveform data is registered in the database unit 123 in advance, and the spectral waveform data obtained by inspecting the sample to be inspected is stored in the database unit. The distribution characteristics of the wavelength band exceeding the allowable value are obtained by comparing with the spectral waveform data of the standard sample registered in 123, and the cause of the irregular pattern shape defect registered in the database unit 123 and the spectral waveform data The defect of the pattern shape of the sample to be inspected can be detected from the information on the relationship with the characteristics, and the type of the defect can be specified.
 そこで、表面にレジストパターンが形成された検査対象試料を図3の検査装置で検査して分光波形データを取得し(S604),この検査対象試料の分光波形データをデータベース部123に記憶しておいた標準試料の分光波形データと比較して(S605)先に述べたような方法で欠陥を検出し(S606)、検出した欠陥の分光波形データを欠陥の位置情報と共に記憶しておく(S607)。 Therefore, the inspection target sample having a resist pattern formed on the surface is inspected by the inspection apparatus of FIG. 3 to obtain spectral waveform data (S604), and the spectral waveform data of the inspection target sample is stored in the database unit 123. (S605) The defect is detected by the method described above (S606), and the spectral waveform data of the detected defect is stored together with the position information of the defect (S607). .
 なお、図3に示したパターンドメディア検査装置においては、θテーブル140を回転させながら分光検出光学系100を駆動ユニット130で一方向に移動させる構成を示したが、θテーブル140を一軸方向に移動可能なテーブルに載置して、分光検出光学系100を固定した状態でθテーブル140を回転させながら一軸方向に移動させてディスクの全面を検査するようにしても良い。 In the patterned media inspection apparatus shown in FIG. 3, the configuration in which the spectroscopic detection optical system 100 is moved in one direction by the drive unit 130 while rotating the θ table 140 is shown. However, the θ table 140 is moved in one axis direction. The entire surface of the disk may be inspected by placing it on a movable table and moving it in one axial direction while rotating the θ table 140 with the spectroscopic detection optical system 100 fixed.
 このような欠陥検出方法を用いて、スタンパ200に形成された微細なパターンの状態をモニタリングする方法について、図7を用いて説明する。 A method for monitoring the state of a fine pattern formed on the stamper 200 using such a defect detection method will be described with reference to FIG.
 ナノインプリント技術を用いて基板上に微細なパターンを転写する場合に、順次処理する複数の基板上の同じ箇所に繰り返して発生する不良の原因としては、一般に、微細なパターンを形成するプロセスに起因する場合とナノインプリント用のスタンパの経時変化による劣化に起因する場合とが考えられる。この場合、プロセスに起因する不良は比較的短時間に突発的に発生するが、スタンパの経時変化による劣化に起因する不良は時間的に徐々に増加する。本実施例においては、この特性の違いを利用して、以下に説明するような方法でディスク上に形成されたパターンの不良の増加の仕方からプロセスに起因する不良とスタンパの経時変化による劣化に起因する不良とを識別してスタンパの不良を検知するようにした。 When transferring a fine pattern onto a substrate using nanoimprint technology, the cause of a defect that repeatedly occurs at the same location on a plurality of substrates to be sequentially processed is generally caused by a process of forming a fine pattern. The case may be due to deterioration due to aging of the stamper for nanoimprinting. In this case, defects due to the process occur suddenly in a relatively short time, but defects due to deterioration due to the aging of the stamper gradually increase with time. In the present embodiment, by utilizing this difference in characteristics, the method described below will increase the number of defects in the pattern formed on the disk, thereby causing defects due to the process and deterioration due to changes over time of the stamper. A stamper failure was detected by identifying the failure caused.
 まず、スタンパ200により微細なパターンが転写された検査対象の試料1を図3の検査装置のθテーブル140にセットしてθテーブル140を回転させながら試料1上に形成されたアライメントマークを分光検出光学系100で検出し、検出信号を分光波形処理部121とデータ処理部122で処理して得られたデータと、そのときのθテーブル140の回転角の情報と駆動ユニット130の位置情報とを記憶しておく(S701)。 First, the sample 1 to be inspected, to which a fine pattern is transferred by the stamper 200, is set on the θ table 140 of the inspection apparatus in FIG. 3, and the alignment mark formed on the sample 1 is spectrally detected while the θ table 140 is rotated. Data obtained by detecting with the optical system 100 and processing the detection signal by the spectral waveform processing unit 121 and the data processing unit 122, information on the rotation angle of the θ table 140 and position information on the drive unit 130 at that time Store it (S701).
 次に、試料1の全面を図3の検査装置で検査して、図6のS604からS607までの処理を実行して欠陥を検出し、検出した欠陥の分光波形データとθテーブル140の回転角の情報と駆動ユニット130の位置情報とを得て(S702)記憶しておく。 Next, the entire surface of the sample 1 is inspected by the inspection apparatus of FIG. 3, the processing from S604 to S607 in FIG. 6 is executed to detect defects, and the spectral waveform data of the detected defects and the rotation angle of the θ table 140 are detected. And the position information of the drive unit 130 are obtained (S702) and stored.
 次に、検出した欠陥の位置情報とその分光波形データとを先に検査して記憶してある別の基板の検査データ(欠陥の位置情報とその分光波形データ)と比較して、アライメントマークを基準としたときに基板上の同じ位置に同じ種類の欠陥があるか否かをチェックする(S703)。 Next, the position information of the detected defect and its spectral waveform data are compared with the inspection data (defect positional information and its spectral waveform data) of another substrate that has been previously inspected and stored, and the alignment mark is It is checked whether or not there is the same type of defect at the same position on the substrate when it is used as a reference (S703).
 次に、S703でチェックした結果、同一座標に存在すると判断された同じ種類の欠陥のサイズまたは個数が予め設定しておいた警告設定値を超えているか否かを判断する(S704)。その結果、検出された欠陥のサイズまたは個数が予め設定しておいた警告設定値を超えていない場合には、プロセスの問題はなく、且つ、使用しているスタンパは正常に使用できるものとして特に何もせずに、次のディスクが有る場合には次のディスクを検査する(S709)。 Next, as a result of checking in S703, it is determined whether or not the size or number of defects of the same type determined to exist at the same coordinate exceeds a preset warning setting value (S704). As a result, if the size or number of detected defects does not exceed the preset warning setting value, there is no problem in the process, and the stamper being used can be used normally. If there is a next disk without doing anything, the next disk is inspected (S709).
 一方、欠陥のサイズまたは個数が予め設定しておいた警告設定値を超えている場合には、その欠陥のサイズまたは個数が予め設定しておいた異常設定値を超えているか否かを判断する(S705)。その結果、欠陥のサイズまたは個数が予め設定しておいた異常設定値を超えていると判断した場合には、S704で警告設定値超えを検出してからS705で異常設定値超えを検出するまでの時間(試料1の処理枚数)をチェックし(S706)、予め設定した時間(試料1の処理枚数)よりも長い(多い)場合には、経時変化により徐々に劣化したスタンパの寿命を検出したとして入出力部125からスタンパ異常の信号を出力し、図8に示すように入出力手段125の画面800(126)上に、発生した欠陥の位置を示す欠陥マップ801やスタンパの情報803を表示すると共に、図1に示したナノインプリント工程(S102)を実施するナノインプリント装置(図示せず)にスタンパ異常信号を出力する(S707)。なお、画面800(126)上には、上記した欠陥マップ801として、スタンパの欠陥に対応する欠陥が検出された試料1上の位置を検出されて欠陥の種類ごとにアライメントマーク位置802と対応付けて表示する。また、スタンパの情報803のほかに、スタンパの現在の状態を表示する領域804と、検出される欠陥の種類を表示する領域805を有している。 On the other hand, when the defect size or number exceeds a preset warning setting value, it is determined whether or not the defect size or number exceeds a preset abnormality setting value. (S705). As a result, if it is determined that the defect size or number exceeds the preset abnormal setting value, the warning setting value exceeding is detected in S704 and the abnormality setting value exceeding is detected in S705. (S706), and if it is longer (larger) than the preset time (number of processed samples 1), the life of the stamper gradually deteriorated due to the change with time is detected. As shown in FIG. 8, a defect map 801 indicating the position of the generated defect and stamper information 803 are displayed on the screen 800 (126) of the input / output means 125 as shown in FIG. At the same time, a stamper abnormality signal is output to a nanoimprint apparatus (not shown) that performs the nanoimprint process (S102) shown in FIG. 1 (S707). On the screen 800 (126), as the above-described defect map 801, the position on the sample 1 where the defect corresponding to the stamper defect is detected is detected and associated with the alignment mark position 802 for each defect type. To display. In addition to the stamper information 803, an area 804 for displaying the current state of the stamper and an area 805 for displaying the type of defect detected are provided.
 一方、S704で警告設定値超えを検出してからS705で異常設定値超えを検出するまでの時間(試料1の処理枚数)が予め設定した時間(試料1の処理枚数)と比較して短い(少ない)場合には多数の不良が短時間に発生したことになり、プロセスに異常が発生したとして入出力部125からプロセス異常警告を発する(S708)。 On the other hand, the time from the detection of exceeding the warning set value in S704 to the detection of exceeding the abnormal setting value in S705 (the number of processed samples 1) is shorter than the preset time (the number of processed samples 1) ( In the case where the number of defects is small, it means that a large number of defects have occurred in a short time, and a process abnormality warning is issued from the input / output unit 125 that an abnormality has occurred in the process (S708).
 S705で欠陥のサイズまたは個数が予め設定しておいた異常設定値を超えていないと判断した場合には、同一箇所に欠陥が発生していることを知らせる警告を出力して(S710)終了する。 If it is determined in S705 that the size or number of defects does not exceed the preset abnormality set value, a warning notifying that a defect has occurred in the same location is output (S710), and the process ends. .
 本実施例によれば、ディスク上の同じ箇所で検出した欠陥のサイズまたは個数を警告設定値と異常設定値との二段階でチェックするようにしたので、プロセス不良により発生した繰り返し欠陥とスタンパの経時変化による劣化により発生した繰り返し欠陥とを識別して検出することが可能になり、スタンパの経時変化による劣化を早期に検知して、スタンパ起因による欠陥の大量発生を未然に防ぐことが可能になった。 According to the present embodiment, since the size or number of defects detected at the same location on the disk is checked in two stages, that is, a warning setting value and an abnormal setting value, repeated defects caused by process defects and stamper It is possible to identify and detect repetitive defects that have occurred due to deterioration due to aging, and to detect deterioration due to aging of the stamper at an early stage, thereby preventing a large number of defects due to stampers. became.
 本発明は、磁気記録媒体であるパターンドメディアの欠陥検査装置及びそれを用いてパターンドメディア用スタンパの経時変化により発生する不良および劣化をモニタリングする装置に適用される。 The present invention is applied to a defect inspection apparatus for a patterned medium, which is a magnetic recording medium, and an apparatus for monitoring defects and deterioration caused by changes over time of a patterned medium stamper.
1・・・パターンドメディア  100・・・分光検出光学系  101・・・光源  102・・・集光レンズ  103・・・絞り  104・・・波長選択フィルタ  105・・・偏光フィルタ  106・・・ハーフミラー  107・・・対物レンズ 108・・・絞り   109・・・分光光学系  110・・・回折格子  111 ・・・リニア光検出器  120・・・制御ユニット  121・・・分光波形処理部  122・・・データ処理部  123・・・データベース部  124・・・制御部  125・・・入出力部  130・・・駆動ユニット  140・・・θテーブル。 DESCRIPTION OF SYMBOLS 1 ... Patterned medium 100 ... Spectral detection optical system 101 ... Light source 102 ... Condensing lens 103 ... Aperture 104 ... Wavelength selection filter 105 ... Polarization filter 106 ... Half Mirror 107 ... Objective lens 108 ... Aperture 109 ... Spectral optical system 110 ... Diffraction grating 111 ... Linear photodetector 120 ... Control unit 121 ... Spectral waveform processing unit 122 ... Data processing unit 123 ... database unit 124 ... control unit 125 ... input / output unit 130 ... drive unit 140 ... θ table.

Claims (10)

  1.  試料上に塗布されたレジストに微細なパターンを転写するためのスタンパの不良を検出する装置であって、
     表面に塗布されたレジスト膜にスタンパの微細なパターンが転写された試料に光を照射する照明光学系と、
     該照明光学系により光が照射された試料からの反射光を分光検出する分光検出光学系と、
    該分光検出光学系により分光検出して得られた検出波形から欠陥を抽出する欠陥抽出手段と、
     該欠陥抽出手段により抽出した欠陥のうち複数の試料上の同じ位置に発生した欠陥について前記スタンパに起因する欠陥と、前記レジスト膜のパターンを形成するプロセスに起因する欠陥とを弁別する欠陥データ処理部と、
     該欠陥データ処理部で前記スタンパに起因する欠陥の個数が予め設定した個数を超えたときに警告を通知する出力部と
    を備えたことを特徴とするパターンドメディアの欠陥検査装置。
    An apparatus for detecting a defect of a stamper for transferring a fine pattern to a resist applied on a sample,
    An illumination optical system for irradiating light onto a sample in which a fine pattern of a stamper is transferred to a resist film coated on the surface;
    A spectroscopic detection optical system for spectroscopically detecting reflected light from a sample irradiated with light by the illumination optical system;
    Defect extraction means for extracting defects from the detection waveform obtained by spectral detection by the spectral detection optical system;
    Defect data processing for discriminating defects caused by the stamper and defects caused by the process of forming the resist film pattern from defects extracted by the defect extraction means at the same position on a plurality of samples And
    An apparatus for inspecting a defect of a patterned media, comprising: an output unit for notifying a warning when the number of defects caused by the stamper exceeds a preset number in the defect data processing unit.
  2.  前記欠陥データ処理部は、前記分光検出光学系により分光検出して得られた検出波形から繰り返して試料上の同じ位置に発生する欠陥のうち前記スタンパに起因する欠陥と前記レジスト膜のパターンを形成するプロセスに起因する欠陥とを弁別することを、前記試料上の同一座標に発生する欠陥の数が第一の閾値を超えてから第二の閾値を越えるまでの時間を予め設定した時間と比較して、前記第一の閾値を超えてから第二の閾値を越えるまでの時間が前記予め設定した時間よりも長い場合には前記スタンパに起因する欠陥と判定することを特徴とする請求項1記載のパターンドメディアの欠陥検査装置。 The defect data processing unit forms a pattern of the resist film and a defect caused by the stamper among defects generated at the same position on the sample repeatedly from a detection waveform obtained by spectral detection by the spectral detection optical system. Discriminating from defects caused by the process to compare the time from when the number of defects occurring at the same coordinate on the sample exceeds the first threshold to the second threshold with a preset time Then, if the time from exceeding the first threshold to exceeding the second threshold is longer than the preset time, it is determined that the defect is caused by the stamper. Defect inspection equipment for patterned media as described.
  3.  前記出力部が通知する警告が、スタンパの交換時期を知らせるものであることを特徴とする請求項1記載のパターンドメディアの欠陥検査装置。 2. The patterned media defect inspection apparatus according to claim 1, wherein the warning notified by the output unit notifies a stamper replacement time.
  4.  前記出力部は表示画面を有し、前記警告を通知するとともに、前記スタンパに起因する欠陥の発生位置を示す情報を前記画面上に表示することを特徴とする請求項1記載のパターンドメディアの欠陥検査装置。 The patterned medium according to claim 1, wherein the output unit has a display screen, notifies the warning, and displays information indicating a position where a defect caused by the stamper is generated on the screen. Defect inspection equipment.
  5.  試料上に塗布されたレジストに微細なパターンを転写するためのスタンパの不良を検出する方法であって、
     表面に塗布されたレジスト膜にスタンパの微細なパターンが転写された試料に光を照射し、
     該光が照射された試料からの反射光を分光検出し、
     前記分光検出して得た検出波形から欠陥を抽出し、
     該抽出した欠陥のうち複数の試料上の同じ位置に発生した欠陥について前記スタンパに起因する欠陥と、前記レジスト膜のパターンを形成するプロセスに起因する欠陥とを弁別し、
     前記スタンパに起因する欠陥の個数が予め設定した個数を超えたときに警告を通知すること
    を特徴とするパターンドメディア用スタンパの検査方法。
    A method for detecting a defect of a stamper for transferring a fine pattern to a resist applied on a sample,
    Irradiate the sample with a fine stamper pattern transferred to the resist film applied on the surface,
    Spectrally detect reflected light from the sample irradiated with the light,
    Extract defects from the detected waveform obtained by the spectral detection,
    Distinguishing defects caused by the stamper from defects extracted at the same position on a plurality of samples from the extracted defects and defects caused by a process of forming a pattern of the resist film,
    An inspection method for a stamper for patterned media, wherein a warning is notified when the number of defects caused by the stamper exceeds a preset number.
  6.  前記分光検出して得た検出波形から複数の試料上の同じ位置に発生する欠陥のうち前記スタンパに起因する欠陥と前記レジスト膜のパターンを形成するプロセスに起因する欠陥とを弁別することを、前記複数の試料上の同じ位置に発生する欠陥の数が第一の閾値を超えてから第二の閾値を越えるまでの時間を予め設定した時間と比較して、前記第一の閾値を超えてから第二の閾値を越えるまでの時間が前記予め設定した時間よりも長い場合には前記スタンパに起因する欠陥と判定することを特徴とする請求項5記載のパターンドメディア用スタンパの検査方法。 Distinguishing defects caused by the stamper from defects generated at the same position on a plurality of samples from the detection waveform obtained by the spectral detection, and defects caused by the process of forming the resist film pattern, When the number of defects occurring at the same position on the plurality of specimens exceeds the first threshold and exceeds the second threshold, the time until the second threshold is exceeded exceeds the first threshold. 6. The method for inspecting a patterned media stamper according to claim 5, wherein a defect caused by the stamper is determined when the time from when the second threshold is exceeded is longer than the preset time.
  7.  前記通知する警告が、スタンパの交換時期を知らせるものであることを特徴とする請求項5記載のパターンドメディア用スタンパの検査方法。 6. The patterned media stamper inspection method according to claim 5, wherein the warning to be notified notifies a stamper replacement time.
  8.  警告を通知するとともに、前記スタンパに起因する欠陥の発生位置を示す情報を画面上に表示することを特徴とする請求項5記載のパターンドメディア用スタンパの検査方法。 6. The patterned media stamper inspection method according to claim 5, wherein a warning is notified and information indicating a position of occurrence of a defect caused by the stamper is displayed on a screen.
  9.  試料上に塗布されたレジストに微細なパターンを転写するためのスタンパの不良を検出する方法であって、
     表面に塗布されたレジスト膜にスタンパの微細なパターンが転写された試料に光を照射し、
     該光が照射された試料からの反射光を分光検出し、
     前記分光検出して得た検出波形から欠陥を抽出し、
     該抽出した欠陥のうち複数の試料上の同じ位置に発生した欠陥の数の経時的な変化の状態から前記スタンパに起因する欠陥と、前記レジスト膜のパターンを形成するプロセスに起因する欠陥とを弁別し、
     該弁別したスタンパに起因する欠陥について該欠陥の発生位置情報を出力する
    ことを特徴とするパターンドメディア用スタンパの検査方法。
    A method for detecting a defect of a stamper for transferring a fine pattern to a resist applied on a sample,
    Irradiate the sample with a fine stamper pattern transferred to the resist film applied on the surface,
    Spectrally detect reflected light from the sample irradiated with the light,
    Extract defects from the detected waveform obtained by the spectral detection,
    Among the extracted defects, a defect caused by the stamper from a state of change over time of the number of defects generated at the same position on a plurality of samples, and a defect caused by a process of forming a pattern of the resist film Discriminate,
    A method for inspecting a stamper for patterned media, wherein the defect occurrence position information is output for a defect caused by the discriminated stamper.
  10.  前記弁別したスタンパに起因する欠陥に基づいて、前記スタンパの交換時期を知らせ情報を出力することを特徴とする請求項9記載のパターンドメディア用スタンパの検査方法。 10. The method for inspecting a stamper for a patterned media according to claim 9, wherein information on the replacement timing of the stamper is notified and information is output based on a defect caused by the discriminated stamper.
PCT/JP2011/052051 2010-03-30 2011-02-01 Patterned media defect inspector device and inspection method for stamper for patterned media employing same WO2011122096A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010078494A JP2011210327A (en) 2010-03-30 2010-03-30 Apparatus for inspecting defect of patterned media and method of inspecting stamper for patterned media using the same
JP2010-078494 2010-03-30

Publications (1)

Publication Number Publication Date
WO2011122096A1 true WO2011122096A1 (en) 2011-10-06

Family

ID=44711849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052051 WO2011122096A1 (en) 2010-03-30 2011-02-01 Patterned media defect inspector device and inspection method for stamper for patterned media employing same

Country Status (2)

Country Link
JP (1) JP2011210327A (en)
WO (1) WO2011122096A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015026671A (en) * 2013-07-25 2015-02-05 大日本印刷株式会社 Defect analysis method, method of manufacturing irregular pattern structure and imprint system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130143002A1 (en) * 2011-12-05 2013-06-06 Seagate Technology Llc Method and system for optical callibration discs
JP6354384B2 (en) * 2014-06-27 2018-07-11 三菱ケミカル株式会社 Mold inspection method and mold manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0572143A (en) * 1991-09-10 1993-03-23 Nikon Corp Inspection of defect of stamper
JPH05217217A (en) * 1992-02-04 1993-08-27 Toppan Printing Co Ltd Method and apparatus for inspecting appearance of optical recording disk
JPH0628721A (en) * 1992-07-10 1994-02-04 Ricoh Co Ltd Stamper defect inspection device
JPH095249A (en) * 1995-06-19 1997-01-10 Asahi Optical Co Ltd Apparatus for inspecting optical member
JPH0963178A (en) * 1995-08-29 1997-03-07 Toray Ind Inc Inspecting device of optical recording medium, method thereof and manufacturing method
JP2001184636A (en) * 1999-12-22 2001-07-06 Fuji Electric Co Ltd Method for predicting generation of abnormality in master by transfer media measurement
JP2003006846A (en) * 2001-06-19 2003-01-10 Sony Corp Defect detection method and defect detection apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0572143A (en) * 1991-09-10 1993-03-23 Nikon Corp Inspection of defect of stamper
JPH05217217A (en) * 1992-02-04 1993-08-27 Toppan Printing Co Ltd Method and apparatus for inspecting appearance of optical recording disk
JPH0628721A (en) * 1992-07-10 1994-02-04 Ricoh Co Ltd Stamper defect inspection device
JPH095249A (en) * 1995-06-19 1997-01-10 Asahi Optical Co Ltd Apparatus for inspecting optical member
JPH0963178A (en) * 1995-08-29 1997-03-07 Toray Ind Inc Inspecting device of optical recording medium, method thereof and manufacturing method
JP2001184636A (en) * 1999-12-22 2001-07-06 Fuji Electric Co Ltd Method for predicting generation of abnormality in master by transfer media measurement
JP2003006846A (en) * 2001-06-19 2003-01-10 Sony Corp Defect detection method and defect detection apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015026671A (en) * 2013-07-25 2015-02-05 大日本印刷株式会社 Defect analysis method, method of manufacturing irregular pattern structure and imprint system

Also Published As

Publication number Publication date
JP2011210327A (en) 2011-10-20

Similar Documents

Publication Publication Date Title
JP4940122B2 (en) Method and apparatus for inspecting patterns on hard disk media
JP5175605B2 (en) Pattern shape inspection method
JP5337458B2 (en) Pattern shape inspection method and apparatus
US20110272096A1 (en) Pattern shape inspection instrument and pattern shape inspection method, instrument for inspecting stamper for patterned media and method of inspecting stamper for patterned media, and patterned media disk manufacturing line
US10048595B2 (en) Process control using non-zero order diffraction
JP2007133985A (en) Magnetic recording/optical recording disk inspection apparatus
US20120224176A1 (en) Parallel Acquisition Of Spectra For Diffraction Based Overlay
TWI728197B (en) Process module(s) integrated into a metrology and/or inspection tool
JP5337578B2 (en) DEFECT DETERMINATION METHOD FOR MICRO-CONTRACT PATTERN AND DEFECT DETERMINATION METHOD FOR PATTERNED MEDIA
WO2011122096A1 (en) Patterned media defect inspector device and inspection method for stamper for patterned media employing same
JP2012073073A (en) Method and apparatus for inspecting defect of pattern shape
JP5576135B2 (en) Pattern inspection method and apparatus
JP5255986B2 (en) Patterned media inspection method and inspection apparatus
JP5548151B2 (en) Pattern shape inspection method and apparatus
JP2011185900A (en) Inspection method and device for the same
WO2011108293A1 (en) Hard disk media inspection device and inspection method
JP5308406B2 (en) Patterned media inspection apparatus and patterned media stamper inspection method
Chow et al. Low-cost automatic visual inspection system for media in hard disk drive mass production
JP2002243652A (en) Method and apparatus for specifying dust, and method for specifying dust source
TWI786360B (en) Metrology method
JP2011237255A (en) Device and method for detecting pattern profile, and production line for patterned media disk
JP2024511008A (en) Dice cleaning system and method
CN118140136A (en) Method and system for target monitoring of semiconductor measurement quality

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762337

Country of ref document: EP

Kind code of ref document: A1