WO2011122049A9 - 焦点情報決定方法および装置並びに環境音速取得方法および装置 - Google Patents

焦点情報決定方法および装置並びに環境音速取得方法および装置 Download PDF

Info

Publication number
WO2011122049A9
WO2011122049A9 PCT/JP2011/001968 JP2011001968W WO2011122049A9 WO 2011122049 A9 WO2011122049 A9 WO 2011122049A9 JP 2011001968 W JP2011001968 W JP 2011001968W WO 2011122049 A9 WO2011122049 A9 WO 2011122049A9
Authority
WO
WIPO (PCT)
Prior art keywords
focus
sound speed
transmission
environmental sound
information determination
Prior art date
Application number
PCT/JP2011/001968
Other languages
English (en)
French (fr)
Other versions
WO2011122049A1 (ja
Inventor
勝山公人
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201180017570.6A priority Critical patent/CN102834060B/zh
Priority to EP11762290.2A priority patent/EP2554121A4/en
Priority to US13/638,524 priority patent/US9310472B2/en
Publication of WO2011122049A1 publication Critical patent/WO2011122049A1/ja
Publication of WO2011122049A9 publication Critical patent/WO2011122049A9/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52046Techniques for image enhancement involving transmitter or receiver
    • G01S7/52049Techniques for image enhancement involving transmitter or receiver using correction of medium-induced phase aberration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/34Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
    • G10K11/341Circuits therefor
    • G10K11/346Circuits therefor using phase variation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52074Composite displays, e.g. split-screen displays; Combination of multiple images or of images and alphanumeric tabular information

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus, and in particular, a focus information determination method and apparatus for determining an actual focal position of an ultrasonic wave transmitted from an ultrasonic probe, or an effective range in which the focal position exists, and
  • the present invention relates to an environmental sound speed acquisition method and apparatus.
  • each ultrasonic wave transmitted from each element of the ultrasonic probe is transmitted when the ultrasonic wave is transmitted from the ultrasonic probe. So-called transmission focus for setting the transmission delay time is performed for the reception signal, and when receiving the received signal, so-called reception focus for setting the reception delay time for each reception signal received by each element is performed. Yes.
  • the environmental sound speed of the subject is not uniform but varies depending on the organization, and when the assumed sound speed and the environmental sound speed are different, the image quality deteriorates.
  • the cause of image quality degradation is the transmission delay time of the transmission focus or the reception delay time of the reception focus with respect to the transmission delay for appropriately forming the transmission focus on the target or the reception time of each element of the ultrasonic wave reflected from the target. This is because they are different.
  • the environmental sound velocity referred to in the present application is the sound velocity determined based on the distance from the target to each element and the reception time of each element when ultrasonic waves are transmitted to a predetermined target. .
  • Patent Document 1 proposes the following method. First, an ultrasonic wave delayed so as to converge at a focal point T at a standard set sound speed from an opening having a predetermined width centered on a predetermined opening center is transmitted.
  • the reflected wave from the subject is received by all the elements of the ultrasonic probe, the reception focus is performed on the focal point P1 and the focal point P2 at different set sound speeds for the signal, and the set sound speeds corresponding to the respective focus points.
  • Each beam profile is generated.
  • the beam profile having the narrowest half width is selected from the beam profiles of the respective focal points, and the set sound speed corresponding to the beam profile is estimated as the environmental sound speed of the part of the subject.
  • the transmission focal point T is a depth focused at a standard set sound speed
  • the transmission focal depth is different from T. In that case, the distance between the point of interest and the transmission focal point is increased, and the environmental sound speed accuracy deteriorates, which may not be obtained.
  • the transmission wavefront is as shown in FIG. 11 in the vicinity of the focal point, but a reflection wavefront that is the same as the transmission wavefront is formed by reflection from an infinite number of scattering points at each depth, resulting in the required environmental sound speed.
  • An error will occur.
  • the environmental sound speed increases in a region shallower than the transmission focal point and decreases in a deep region.
  • FIG. 12 is a graph showing the environmental sound speed with respect to the depth when the above-described environmental sound speed error occurs.
  • a method of changing not only the reception focus but also the set sound speed of the transmission focus with respect to the point of interest can be considered, but the ultrasonic wave is changed each time the set sound speed of the transmission focus is changed. If the transmission is performed, a large number of transmissions are required, and it takes too much time to acquire the environmental sound speed, leading to a decrease in processing efficiency and a decrease in diagnosis efficiency.
  • the present invention has been made in view of the above problems, and a transmission focus focus information determination method and apparatus and an environmental sound speed capable of obtaining an environmental sound speed satisfactorily without causing deterioration in processing efficiency and diagnostic efficiency. It is an object to provide an acquisition method and apparatus.
  • an ultrasonic wave is transmitted into a subject, and a plurality of elements that receive a reflected wave reflected from the subject by the transmission and output a reception signal are arranged.
  • each element of the ultrasonic probe is driven based on a predetermined transmission delay time to transmit an ultrasonic wave focused on a predetermined transmission focus position, and the ultrasonic wave to the transmission focus position is transmitted.
  • the actual focus position by the ultrasonic wave transmission to the transmission focus position or the focus effective range including the actual focus position is determined. It is characterized by doing.
  • the received sound corresponding to the transmission focus position is subjected to reception focus processing using reception delay times calculated based on a plurality of set sound velocities, to thereby set sound speed.
  • a line image signal extending in the depth direction of each subject is acquired, a temporary environment sound speed distribution in the depth direction of the subject is acquired based on the line image signal for each set sound speed, and the acquired temporary environment sound speed is acquired Based on the distribution of the focal point, the focal position or the focal effective range can be determined.
  • the depth that minimizes the variation in the distribution of the environmental sound speed can be acquired as the actual focal position.
  • ultrasonic waves that are focused on a plurality of transmission focus positions are transmitted, and the actual focal position of each transmission focus position is determined based on a reception signal obtained by transmitting ultrasonic waves to each transmission focus position. You may make it do.
  • the environmental sound speed acquisition method of the present invention acquires the environmental sound speed of an arbitrary point of interest in the subject based on the focus position determined by the focus information determination method or the focus effective range including the focus position.
  • the environmental sound speed acquisition method of the present invention is based on a reception signal acquired by transmitting an ultrasonic wave to a transmission focus position corresponding to each of a plurality of actual focus positions determined by the focus information determination method.
  • the environmental sound speed of an arbitrary point of interest in the subject is acquired.
  • the environmental sound speed acquisition method of the present invention acquires the environmental sound speed of an arbitrary point of interest in the subject based on the focus position determined by the focus information determination method or the focus effective range including the focus position.
  • the acquisition method is characterized in that the range in the depth direction of the line image signal used when acquiring the temporary environmental sound speed is narrower than the range in the depth direction used when acquiring the environmental sound speed.
  • the focus information determination device of the present invention is arranged with a plurality of elements that transmit an ultrasonic wave into the subject and receive a reflected wave reflected from the subject by the transmission and output a reception signal.
  • An ultrasonic probe a transmission control unit that drives each element of the ultrasonic probe based on a predetermined transmission delay time and transmits an ultrasonic wave focused on the predetermined transmission focus position, and a transmission focus position. Based on the received signal received by each element according to the reflected wave reflected by the ultrasonic wave transmission, the actual focal position by the ultrasonic wave transmission to the transmission focus position or the focus including the actual focal position And a focus information determination unit that determines an effective range.
  • the received sound corresponding to the transmission focus position is subjected to reception focus processing using reception delay times calculated based on a plurality of set sound speeds, thereby setting the sound speed to be set.
  • a reception control unit that acquires a line image signal extending in the depth direction of the subject for each object, and the focus information determination unit determines the provisional environmental sound speed in the depth direction of the subject based on the line image signal for each set sound speed.
  • the distribution can be acquired, and the focus position or the focus effective range can be determined based on the acquired distribution of the temporary environmental sound speed.
  • the focus information determination unit can determine the focus position or the focus effective area based on the variation in the distribution of the temporary environmental sound speed.
  • the focus information determination unit can acquire the depth at which the variation in the temporary environment sound speed distribution is minimized as the actual focus position.
  • the transmission control unit performs transmission of ultrasonic waves that are focused on a plurality of transmission focus positions, and the focus information determination unit determines whether the focus information determination unit is based on a reception signal by transmission of ultrasonic waves to each transmission focus position.
  • the actual focal position of each transmission focus position can be determined.
  • the environmental sound velocity acquisition apparatus is based on the above-described focus information determination apparatus and an actual focus position determined by the focus information determination apparatus or a focus effective range including the actual focus position.
  • An environmental speed acquisition unit that acquires the environmental sound speed is provided.
  • the environmental sound velocity acquisition apparatus is a reception acquired by transmitting ultrasonic waves to the focus information determination device and a transmission focus position corresponding to each of a plurality of actual focus positions determined by the focus information determination device.
  • An environmental speed acquisition unit is provided that acquires the environmental sound speed at an arbitrary point of interest in the subject based on the signal.
  • the environmental sound velocity acquisition apparatus is based on the above-described focus information determination apparatus and an actual focus position determined by the focus information determination apparatus or a focus effective range including the actual focus position.
  • An environmental sound speed acquisition unit that acquires the environmental sound speed, and the environmental sound speed acquisition unit acquires the environmental sound speed in the depth direction range of the line image signal that is used when the temporary information sound speed is acquired by the focus information determination unit. It is characterized in that it is narrower than the range in the depth direction used when performing.
  • the environmental sound speed acquisition device of the present invention it is possible to further provide a point-of-interest input unit that receives an input of designation of any point of interest.
  • reception control unit that generates an ultrasonic image signal using the reception delay time calculated based on the environmental sound speed acquired by the environmental speed acquisition unit.
  • each element of the ultrasonic probe is driven based on a predetermined transmission delay time to focus on a plurality of transmission focus positions.
  • a sound wave is transmitted for each transmission focus position.
  • the transmission focus position corresponding to a range including an arbitrary point of interest in the subject Based on the received signal corresponding to the transmission of the ultrasonic wave, the ambient sound velocity at the point of interest can be obtained with high accuracy.
  • the block diagram which shows schematic structure of one Embodiment of the ultrasonic diagnosing device of this invention The flowchart for demonstrating the effective range determination method in one Embodiment of the ultrasound diagnosing device of this invention Diagram for explaining the line used to determine the effective range Explanatory diagram for explaining the effective range determination method Explanatory diagram for explaining the effective range determination method Diagram showing the distribution of environmental sound speed in the depth direction for each transmission focus position
  • the figure which shows the standard deviation of distribution of environmental sound speed for every transmission focus position The figure which shows typically the effective range determined by one Embodiment of the ultrasound diagnosing device of this invention
  • the figure for demonstrating distance r1, r2 of the reception focus f and its effective range The figure for demonstrating an example of the acquisition method of environmental sound speed Diagram showing the relationship between transmission focus and ambient sound speed
  • FIG. 1 is a block diagram showing a schematic configuration of the ultrasonic diagnostic apparatus of the present embodiment.
  • the ultrasonic diagnostic apparatus 1 includes an ultrasonic probe 10, a reception signal processing unit 12, a transmission control unit 14, a scanning control unit 16, a reception control unit 18, an image generation unit 20, and a focus.
  • An information determination unit 22, an environmental sound speed acquisition unit 24, a display image generation unit 26, a monitor 28, and an input unit 30 are provided.
  • the ultrasonic probe 10 transmits ultrasonic waves toward a diagnosis site in the body of a subject and receives ultrasonic waves reflected in the body.
  • the ultrasonic probe 10 of the present embodiment includes a plurality of ultrasonic transducers constituting a one-dimensional ultrasonic transducer array, and each ultrasonic transducer is a vibration in which electrodes are formed at both ends of a piezoelectric element such as PZT, for example. Consists of children.
  • This electrode is connected to the reception signal processing unit 12 and the transmission control unit 14 by a signal line. A voltage corresponding to the drive pulse voltage signal output from the transmission control unit 14 is applied to this electrode, and the vibrator generates ultrasonic waves in response to this voltage application.
  • the vibrator generates an electrical signal when receiving the reflected ultrasonic wave, and outputs the electrical signal to the received signal processing unit 12 as a received signal.
  • the transmission control unit 14 outputs a drive pulse voltage signal to each ultrasonic transducer of the ultrasonic probe 10 based on the transmission delay time output from the scanning control unit 16, and an ultrasonic wave corresponding to the transmission delay time. Is transmitted from the transducer of each ultrasonic transducer to transmit ultrasonic waves that converge at a predetermined focal point from the ultrasonic probe 10.
  • the reception signal processing unit 12 includes a plurality of amplifiers and a plurality of A / D converters provided corresponding to the respective ultrasonic transducers of the ultrasonic probe 10.
  • the reception signal output from each ultrasonic transducer is amplified by an amplifier, and the analog reception signal output from the amplifier is converted into a digital signal reception signal by an A / D converter, and the digital reception signal is received. It is output to the control unit 18.
  • the reception control unit 18 performs reception focus processing on a plurality of reception signals output from the plurality of ultrasonic transducers of the ultrasonic probe 10 based on a predetermined reception delay time, thereby reducing the focus of the ultrasonic echo.
  • the embedded phasing addition signal is output.
  • the reception delay time is set based on the speed of sound in the subject, and the setting method will be described in detail later.
  • the scanning control unit 16 outputs transmission delay time and reception delay time to the transmission control unit 14 and the reception control unit 18 to control transmission focus processing and reception focus processing.
  • the image generation unit 20 generates an ultrasonic image signal representing tomographic image information related to the tissue in the subject based on the phasing addition signal output from the reception control unit 18.
  • the focus information determination unit 22 focuses on a predetermined transmission focus position and based on the received signal acquired according to the ultrasonic wave transmitted from the ultrasonic probe 10, the actual focus position or the actual focus position. Is used to determine the effective range including. A method for determining the focal position or the effective range including the focal position will be described in detail later.
  • the ambient sound speed acquisition unit 24 acquires a focal point in the vicinity or an effective region where the target point exists for an arbitrary point of interest in the subject, and superimposes the transmission focus position corresponding to the focal point or effective region.
  • the ambient sound speed at the point of interest is acquired based on the received signal corresponding to the transmission of the sound wave. The method for acquiring the environmental sound speed will be described in detail later.
  • the display image generation unit 26 generates a display control signal based on the ultrasonic image signal output from the image generation unit 20, and outputs the display control signal to the monitor 28.
  • the monitor 28 displays an ultrasonic image of the subject based on the input display control signal, or displays the environmental sound speed of an arbitrary point of interest acquired by the environmental sound speed acquisition unit 24 as a numerical value. .
  • the input unit 30 receives inputs such as various shooting conditions and instructions from the operator, and is configured by a pointing device such as a keyboard or a mouse.
  • the operation of the ultrasonic diagnostic apparatus of this embodiment will be described.
  • the ultrasonic diagnostic apparatus according to the present embodiment when an operator designates an arbitrary point of interest while displaying an ultrasonic image in the subject, the environmental sound speed for the point of interest is acquired and displayed.
  • the operation of displaying an ultrasound image in the subject will be described.
  • a drive pulse voltage signal is output from the transmission control unit 14 to each ultrasonic transducer of the ultrasonic probe 10.
  • different transmission delay times are set for the respective driving pulse voltage signals so that the ultrasonic waves transmitted from the respective ultrasonic transducers converge on a predetermined focal point.
  • the transmission delay time used at this time is a value calculated based on an assumed set sound speed that is set in advance assuming the environmental sound speed in the subject.
  • the transducer of each ultrasonic transducer of the ultrasonic probe 10 receives the drive pulse voltage signal described above and mechanically vibrates, thereby generating an ultrasonic wave and transmitting it to the subject.
  • the ultrasonic waves transmitted from each ultrasonic transducer propagate through the subject and are reflected one after another at the discontinuous surface of the acoustic impedance in the middle, and the echo due to this reflection is detected by each ultrasonic transducer.
  • the vibrator vibrates. This vibration generates a weak electric signal from the transducer of each ultrasonic transducer, and this electric signal is output to the reception signal processing unit 12 as a reception signal.
  • the reception signal processing unit 12 the reception signal output from each ultrasonic transducer is amplified by an amplifier, and the amplified analog signal is converted into a digital signal reception signal by an A / D converter and received by the reception control unit. 18 is output.
  • reception control unit 18 a reception focus process is performed on the plurality of reception signals output from the plurality of ultrasonic transducers based on a predetermined reception delay time output from the scanning control unit 16, and the phasing addition signal is obtained. Is generated.
  • the reception delay time output from the scanning control unit 16 is a value calculated based on an assumed set sound speed set in advance assuming the environmental sound speed in the subject, and the phasing addition signal is the subject. The signal is set so as to be in a predetermined focal point.
  • a phasing addition signal for each focus in the imaging range within the subject is acquired by the reception control unit 18, and the phasing addition signal is an image.
  • the data are sequentially output to the generation unit 20.
  • the image generation unit 20 sequentially stores the input phasing addition signal, generates an ultrasonic image signal representing the tomographic image information of the subject, and the ultrasonic image signal is output to the display image generation unit 26.
  • a display control signal is generated based on the input ultrasonic image signal, and the display control signal is output to the monitor 28.
  • the monitor 28 displays an ultrasonic image of the subject based on the input display control signal.
  • a predetermined point of interest in the ultrasonic image displayed on the monitor 28 is designated by the operator using the input unit 30.
  • the input signal is received by the input unit 30 to indicate that the operator wants to display the environmental speed of the point of interest, the process shown in the flowchart of FIG. 2 is performed.
  • the transmission focus of the ultrasonic wave transmitted from the ultrasonic probe 10 is set to a preset number.
  • No. 1 is set to the position No.
  • a drive pulse voltage signal based on the transmission delay time corresponding to the position of 1 is output from the transmission control unit 14, and ultrasonic waves are transmitted from each ultrasonic transducer of the ultrasonic probe 10 (S10).
  • the transmission delay time is a value calculated based on an assumed set sound speed that is set in advance assuming the environmental sound speed in the subject.
  • the transmission focus noisy is No. 1-No. 8 is set in advance in the scanning control unit 16.
  • 1 12 mm
  • no. 2 16 mm
  • no. 3 20 mm
  • no. 4 24 mm
  • no. 5 28 mm
  • no. 6 32 mm
  • no. 7 36 mm
  • the reception control unit 18 sets a preset sound speed No. 1 is applied to the received signal using the reception delay time calculated based on the line No. 1 phasing addition signal is calculated and output to the image generation unit 20 (S14).
  • No. is set as the set sound speed Nok for calculating the reception delay time.
  • 1-No. 251 is preset in the scanning control unit 16, specifically, the set sound speed No. 251 is set.
  • 1-No. 251 is 1400 m / s to 1650 m / s, and each set sound speed is set at an interval of 1 m / s. Then, the scanning control unit 16 calculates a reception delay time based on the set sound speed and outputs it to the reception control unit 18.
  • the line Noj is a line No. with respect to a line having a width of ⁇ 8 centering on the ultrasonic transducer 10a at the predetermined opening center C of the ultrasonic probe 10, respectively.
  • 1-No. 17 is assigned.
  • the reception control unit 18 sets the reception delay time to the set sound speed No. 2 is changed to the reception delay time calculated based on 2 (S16, S18). Then, the reception focus process is performed on the received signal using the changed reception delay time, and the line No. 1 phasing addition signal is calculated and output to the image generation unit 20 (S14).
  • the reception control unit 18 repeats S14 to S18 to perform line No. 1, each of the phasing addition signals subjected to reception focus processing using the reception delay time based on the set sound speed of 1400 m / s to 1650 m / s is acquired, and further envelope detection is performed and output to the image generation unit 20 .
  • the image generation unit 20 uses the line No.
  • the line image signal corresponding to the set sound speed of 1400 m / s to 1650 m / s corresponding to 1 is acquired.
  • the reception control unit 18 sets the line for reception focus processing to the line number. Change to 2 (S20). And the changed line No. 2, by repeating the processes of S14 to S18, the image generation unit 20 causes the line No. A line image signal for each set sound speed of 1400 m / s to 1650 m / s corresponding to 2 is acquired.
  • An ultrasonic image signal composed of the line image signals 1 to No. 17 is generated for each set sound speed of 1400 m / s to 1650 m / s, and is acquired by the image generation unit 20.
  • the image generation unit 20 outputs an ultrasonic image signal for each set sound speed of 1400 m / s to 1650 m / s to the focus information determination unit 22. Then, the focus information determination unit 22 calculates the temporary environmental sound speed of the subject for each unit depth based on the inputted ultrasonic image signal for each set sound speed (S24).
  • a distribution of image intensity for each line having a predetermined unit depth (indicated by a dotted square) as shown on the left side of FIG. 4 is acquired.
  • the added value ⁇ a (k) of the image intensities is calculated.
  • the unit depth is, for example, 20 ⁇ m to 50 ⁇ m. This unit depth is a range narrower than the depth used when obtaining the environmental sound speed described later.
  • the temporary environmental sound speed can be obtained in a short time.
  • the distribution of the added value ⁇ a (k) for each set sound speed from 1400 m / s to 1650 m / s is acquired, and the maximum value among the added values ⁇ a (k) is obtained.
  • the set sound speed corresponding to the maximum value is acquired as the temporary environmental sound speed of the subject.
  • the depth is sequentially changed, and by performing the same processing as described above, the temporary environmental sound speed for each unit depth is acquired, and the transmission focus No. as shown at the top of FIG.
  • the distribution of the temporary environmental sound speed corresponding to 1 is acquired.
  • the temporary environmental sound speed for each unit depth is acquired and the variation of the temporary environmental sound speed with respect to the depth is measured.
  • a predetermined calculation window is sequentially scanned in the depth direction, and the standard deviation of the temporary environment sound speed in the calculation window is sequentially acquired.
  • the depth F1 when the standard deviation of the temporary environmental sound speed in the depth direction shown in FIG. 1 is acquired as the focal position of the actual ultrasonic wave corresponding to 1 (S26).
  • the transmission focus of the ultrasonic wave transmitted from the ultrasonic probe 10 is set to No. No. 1
  • the position is changed to position 2 (S28, S30).
  • the processing from S12 to S26 is performed in the same manner as described above to set the transmission focus No.
  • An actual ultrasonic focal position F2 corresponding to 2 is acquired (S26).
  • the focus information determination unit 22 determines an effective area corresponding to each transmission focus based on the actual ultrasonic focus positions F1 to F8 acquired as described above. Specifically, as shown in FIG. 8, the midpoints C1 to C7 of the focal positions F1 to F8 are acquired, and the area between the midpoints is determined as an effective area. That is, the midpoint C1-C2 is set to the transmission focus No. 2 and the midpoint C2-C3 is set to the transmission focus No. R1. 3 and the midpoint C3-C4 is set to the transmission focus No. R2. 4 is set to the effective range R3, and C4-C5 between the midpoints is set to the transmission focus No.
  • the effective range R4 corresponding to 5 is set, and C5-C6 between the midpoints is set to the transmission focus No. 6 is set to the effective range R5, and the midpoint C6-C7 is set to the transmission focus No. 7 is determined as an effective range R6 corresponding to 7.
  • the effective range R0 shown in FIG. 8 is a range obtained by doubling the depth between the focal position F1 and the midpoint C1
  • the effective range R7 is a depth between the focal position F8 and the midpoint C7. The range is determined by doubling the size.
  • the focus information determination unit 22 outputs the focus position or effective range information determined as described above to the environmental sound speed acquisition unit 24.
  • the environmental sound speed acquisition unit 24 acquires the environmental sound speed of the subject at the point of interest specified by the operator based on the input focus position or effective range information. Specifically, for example, when the point of interest designated by the operator is a point existing in the depth of the effective range R2, the transmission focus No.
  • the ultrasonic image signal of each set sound speed acquired at the time of 3 is acquired, the image intensity distribution of a predetermined line width and depth width is acquired around the above-mentioned point of interest for each set sound speed, and the added value is maximized.
  • the set sound speed is acquired as the environmental sound speed at the point of interest.
  • the predetermined depth width is, for example, 3 mm to 4 mm.
  • the information on the environmental sound speed acquired by the environmental sound speed acquisition unit 24 is output to the display image generation unit 26, and the display image generation unit 26 generates a display control signal representing the numerical value of the input environmental sound speed, and monitors 28. Output to.
  • the monitor 28 displays the numerical value of the environmental sound speed at the point of interest based on the input display control signal.
  • the point of interest specified by the operator is the line number. 1 to Line No. If it is within the range of 17, the ultrasonic image signal of each set sound velocity already acquired as described above is acquired, and in the same manner as described above, the environment of the point of interest is based on the ultrasonic image signal. Although it can be acquired as the speed of sound, the point of interest is the line No. 1 to Line No. If it is not within the range of 17, the ambient sound velocity at the point of interest is acquired as follows.
  • the environmental sound speed acquisition unit 24 transmits the transmission focus No. 3, the reception signal corresponding to each ultrasonic transducer acquired by the reception control unit 18 is read out.
  • the ambient sound speed acquisition unit 24 performs reception focus processing on the read signal received, focusing on a point within the target range of 17 lines ⁇ depth of 3 mm to 4 mm with the target point as the center, An ultrasonic image signal is generated. Then, the environmental sound speed acquisition unit 24 performs the above reception focus processing using the reception delay time based on each set sound speed of 1400 m / s to 1650 m / s, and generates an ultrasonic image signal in the target range for each set sound speed. .
  • the environmental sound speed acquisition unit 24 acquires the added value of the ultrasonic image signal in the target range for each set sound speed, and acquires the maximum set sound speed among the added values for each set sound speed as the environmental sound speed of the target point. .
  • each received signal acquired at the transmission focus corresponding to each effective area is read, and the attention of each effective area is read.
  • a reception focus process at each set sound velocity is performed with a point within the range as a focus, and an ultrasonic image signal within the range of interest in each effective range is generated. Then, the ultrasonic image signals within the focus range of each effective range are added, and the maximum set sound speed among the added values for each set sound speed is acquired as the ambient sound speed of the focus point.
  • the environmental sound speed is acquired using the addition value of the ultrasonic image signal in the target range for each set sound speed, but the index value for acquiring the environmental sound speed is not limited to the addition value.
  • the spatial frequency spectrum of the ultrasonic image signal in the range of interest for each set sound speed may be acquired, and the environmental sound speed may be acquired based on the half width.
  • a known index value based on the image intensity or the spatial frequency spectrum can be used.
  • the actual focus position with respect to the transmission focus position is acquired.
  • the present invention is not limited to this. It may be acquired and then the actual focal position for each transmission focus position may be acquired. As described above, the error due to the movement of the subject can be reduced by continuously acquiring the reception signals at the respective transmission focus positions in a short time.
  • the designation of the point of interest by the operator is received during the display of the ultrasonic image in the subject, and the focal position or the effective range is determined from the point in time when the point of interest is received.
  • the environmental sound speed is acquired based on the focal position or the effective area
  • the focal position or the effective area is determined in advance before the ultrasonic image diagnosis, and the focal position or the effective area is determined.
  • a reception signal corresponding to the effective range may be stored in advance, and the ambient sound speed may be acquired based on these preset contents.
  • the method for determining the focal position or effective range and the method for acquiring the environmental sound speed are the same as described above.
  • the ambient sound speed of the point of interest is acquired based on the focus position or the effective range determined by the focus information determination unit 22 and the ambient sound speed is displayed as numerical information.
  • the environmental sound speed is acquired based on the focal position or the effective range determined by the focal point information determination unit 22 for each target point set in large numbers corresponding to each coordinate of the ultrasonic image.
  • An ultrasonic image may be generated by performing a reception focus process that focuses on each coordinate corresponding to each point of interest based on the speed of sound.
  • the reception signal to be subjected to reception focus is obtained at the time of transmission focus corresponding to the effective range to which the focus belongs.
  • Discontinuity is caused by switching. For example, even if the focal point is near the transmission focal point as shown in FIG. 11, when the environmental sound speed changes due to interference, the above-described discontinuity at the boundary is significant.
  • Sound wave images may be generated and combined by weighting, for example, according to the distance between the reception focal point and two transmission focal points sandwiching it, or the distance between the reception focal point and the effective range.
  • the boundary between the effective area R2 to which the reception focus f belongs and the adjacent effective area R1 and the reception focus f And the distance r2 between the reception focal point f and the boundary between the effective range R2 to which the reception focal point f belongs and the effective range R3 adjacent thereto can be used.
  • the method for setting the distance between the reception focal point and the effective area is not limited to the above.
  • a transition boundary for example, a position such as 0.8 times the effective area
  • the distance between the transition boundary and the reception focal point may be the distance between the reception focal point and the effective area.
  • the method for acquiring the environmental sound speed is not limited to the method of the above-described embodiment.
  • the high-accuracy environmental sound speed can be acquired as follows.
  • the environmental sound speed may be obtained by calculating and comparing the index values obtained by adding the index values of the respective depths within the range of interest for each set sound speed.
  • the distance between the depth and the effective area is the same as the concept of the distance between the reception focus and the effective area shown in FIG.
  • the index values V1, V2, V3,... can be calculated based on the following formula, for example.
  • V ⁇ V (n) + f (r1) ⁇ V (n ⁇ 1) + f (r2) ⁇ V (n + 1) ⁇ / (1 + f (r1) + f (r2))
  • f (r1) and f (r2) are functions that take values of 1 or less that approach 0 when r1 and r2 increase.
  • the actual focal position of each transmission focus is known, it is calculated from the ultrasonic image generated from the reception signal acquired at the time of the transmission focus that forms the transmission focus that sandwiches the point of interest.
  • the amount to be combined here is not limited to the index value, but may be the received signal itself, or the temporary environmental sound speed for each unit depth shown in FIG. 6 calculated in the description of the above embodiment.
  • the temporary environment sound speed obtained based on the ultrasonic image signal having a predetermined line width and depth width centered on the point of interest may be used instead of the temporary environment sound speed for each unit depth.
  • the point of interest is a transmission focus No. n and transmission focus No.
  • the transmission focus No. received signal and transmission focus No. Using the received signal at the time of n + 1, an ultrasonic image having a predetermined line width and depth width centered on the point of interest is generated for each set sound speed. Then, for example, by setting the set sound speed of the ultrasonic image in which the added value of the pixel values is the maximum among the ultrasonic images for each set sound speed, the transmission focus No. is set. n and the temporary environmental sound velocity and transmission focus No. The temporary environmental sound speed corresponding to n + 1 is obtained, and the point of interest and the transmission focus No. n and the point of interest and the transmission focus No. Depending on the distance to n + 1, the actual environmental sound speed may be acquired by adding each temporary environmental sound speed by weighting or the like.
  • the environmental sound speed may be acquired by the following method.
  • Each transmission focus is performed so as to form a focus at a preset position of the subject under a preset hypothetical sound speed. Therefore, the actual environmental sound speed of the subject can be acquired from the deviation between the preset position and the actual focal position.
  • the transmission delay time is set in advance assuming that the assumed sound speed and the focal position are 1540 m / s and 20 mm.
  • the actual environmental sound speed of the subject is higher than 1540 m / s, the actual focal position formed by the transmission delay time becomes shallower than 20 mm.
  • the reception time of the reflected wave from the actual focal position is a time obtained by dividing the reciprocating distance to the actual focal position by the actual environmental sound speed, the position converted based on the actual sound speed 1540 m / s. Becomes shallower than the actual focal position.
  • the actual environmental sound speed of the subject is faster than 1540 m / s, the actual focal position becomes shallower than 20 mm, and the position on the ultrasonic image generated from the received signal becomes even shallower.
  • the actual environmental sound speed of the subject is slower than 1540 m / s, the actual focal position becomes deeper than 20 mm, and the position on the ultrasonic image generated from the received signal becomes deeper.
  • the actual environmental sound speed can be acquired from the deviation between the preset focal position and the actual focal position.
  • the actual focal position on the ultrasonic image generated from the reception signal of the reflected wave from the focal point formed by driving each element of the transmission delay time set with the environmental sound speed and the focal position as 1540 m / s and 30 mm is 27 mm. If it is, the actual environmental sound speed can be acquired as follows.
  • the depth of focus is converted into ultrasonic propagation time. Specifically, since the focal position is 27 mm on the ultrasonic image generated at the assumed sound velocity of 1540 m / s, it is converted into the propagation time [s] at 27 [mm] / 1540000 [mm / s].
  • the transmission delay for forming the transmission focus at a position of 30 mm at 1540 m / s is uniquely determined.
  • the ultrasonic propagation time from the focal point to each element is obtained. Specifically, the ultrasonic propagation time from the focal point to each element is acquired based on the ultrasonic propagation time obtained above and the transmission delay of each element.
  • a hypothetical environmental sound speed is set, a provisional ultrasonic propagation time from the focal point to each element is acquired based on the hypothetical environmental sound speed, and the provisional ultrasonic propagation time and the focal point obtained above to each element are obtained.
  • the assumed environmental sound speed that minimizes the error from the ultrasonic propagation time is acquired as the true environmental sound speed.
  • Approx. 1620 m / s can be acquired as the actual environmental sound speed by the procedure described above. In this method, only the actual environmental sound speed at the actual focal position can be acquired. However, for any target point, the actual environmental sound speed at a nearby actual focal position can be assigned or interpolated. .

Abstract

【課題】処理効率や診断効率の低下を招くことなく、高精度に環境音速を取得する。 【解決手段】超音波プローブの各素子を所定の送信遅延時間に基づいて駆動して所定送信フォーカス位置に焦点が合わせられた超音波の送波を行い、その送信フォーカス位置への超音波の送波により反射された反射波に応じて各素子によって受信された受信信号に基づいて、上記送信フォーカス位置への超音波の送波による実際の焦点位置またはその焦点位置を含む有効域を決定する。

Description

焦点情報決定方法および装置並びに環境音速取得方法および装置
 本発明は、超音波診断装置に関するものであり、特に、超音波プローブから送波された超音波の実際の焦点位置、またはその焦点位置が存在する有効域を決定する焦点情報決定方法および装置並びに環境音速取得方法および装置に関するものである。
 従来、超音波を用いて被検者の断層画像を取得して医療診断に供する超音波診断装置が提案されている。このような超音波診断装置においては、超音波画像の方位分解能を向上させるために、超音波プローブから超音波を送波する際には、超音波プローブの各素子から送波される各超音波に対して送信遅延時間を設定するいわゆる送信フォーカスが行われ、受信信号を取得する際には、各素子によって受信された各受信信号に対して受信遅延時間を設定するいわゆる受信フォーカスが行われている。
 そして、このような送信フォーカスおよび受信フォーカスを行う際には、対象となる診断部位の代表的な音速を仮定し、その仮定音速に基づいて上述した送信遅延時間および受信遅延時間が設定される。
 しかしながら、被検者の環境音速は一様ではなく組織によって異なり、仮定音速と環境音速が異なると画質が劣化するという問題が生じる。
 ここで、画質劣化の原因は、対象に送信焦点を適切に形成する送信遅延または対象から反射された超音波の各素子受信時刻に対して、送信フォーカスの送信遅延時間または受信フォーカスの受信遅延時間が異なるからである。
 なお、本願で言う環境音速とは、所定の対象に対して超音波を送信したときに、その対象から各素子までの距離と各素子の受信時刻とに基づいて決定される音速のことである。
 そして、従来、この環境音速と仮定音速とを一致させ、画質劣化を防ぐ試みがなされてきた。
 たとえば、特許文献1においては以下のような方法が提案されている。まず、所定の開口中心を中心とした所定幅の開口から標準的な設定音速で焦点Tに収束するように遅延させた超音波を送波する。
 そして、被検体からの反射波を超音波プローブの全素子で受信し、その信号に対して異なる設定音速で焦点P1と焦点P2とについてそれぞれ受信フォーカスを実施し、その各焦点に対応する設定音速毎のビームプロファイルを生成する。
 そして、各焦点のビームプロファイルにおいて、最も半値幅が狭いビームプロファイルが選択され、そのビームプロファイルに対応する設定音速が被検体のその部位の環境音速と推定される。
特開2007-7045号公報
 しかしながら、特許文献1に記載の方法において、受信焦点P1、P2を環境音速を求める着目点と見ると、各着目点と送信焦点Tとの深さは異なっている。着目点がT近傍であれば良好な精度で環境音速は求まることもあるが、その距離が離れると環境音速の精度が劣化してしまう。特に、スペックルの場合には着目店の周囲からの干渉によって著しく精度が劣化し、環境音速を求めることができない場合もある。
 また、特許文献1に記載の方法において、送信焦点Tは標準的な設定音速で集束する深さであることから、環境音速と設定音速が異なる場合には送信焦点の深さがTと異なり、その場合、着目点と送信焦点との距離が離れ、環境音速精度が劣化し、求められない事もある。
 また、着目点が送信焦点Tの近傍であったとしても、干渉によって正確な環境音速を求められない場合がある。すなわち、送信波面は、焦点近傍において図11のようになるが、各深さにおいて無数の散乱点による反射により疑似的に送信波面と同一の反射波面が形成され、その結果、求められる環境音速に誤差を生じてしまう。具体的には、図11に示すように、送信焦点より浅い領域においては環境音速が速くなり、深い領域においては遅くなってしまう。図12は、上述したような環境音速の誤差が生じる場合における深さに対する環境音速をグラフに示したものである。
 このような問題を解決するために、着目点に対して受信フォーカスだけでなく、送信フォーカスの設定音速も変化させる方法が考えられるが、送信フォーカスの設定音速を変化させてその都度、超音波を送波するようにしたのでは膨大な送信回数が必要となり、環境音速を取得するまでに時間がかかり過ぎて処理効率の低下や診断効率の低下を招くことになる。
 本発明は、上記の問題に鑑みてなされたものであり、処理効率や診断効率の低下を招くことなく、良好に環境音速を取得することができる送信フォーカスの焦点情報決定方法および装置並びに環境音速取得方法および装置を提供することを目的とする。
 本発明の焦点情報決定方法は、被検体内に超音波を送波するとともに、該送波によって被検体から反射された反射波を受信して受信信号を出力する複数の素子が配列された超音波プローブを用い、超音波プローブの各素子を所定の送信遅延時間に基づいて駆動して所定の送信フォーカス位置に焦点が合わせられた超音波の送波を行い、送信フォーカス位置への超音波の送波により反射された反射波に応じて各素子によって受信された受信信号に基づいて、送信フォーカス位置への超音波の送波による実際の焦点位置または実際の焦点位置を含む焦点有効域を決定することを特徴とする。
 また、上記本発明の焦点情報決定方法においては、送信フォーカス位置に対応する受信信号に対して、複数の設定音速に基づいて算出された受信遅延時間を用いて受信フォーカス処理を施すことによって設定音速毎の被検体の深さ方向に延びるライン画像信号を取得し、設定音速毎のライン画像信号に基づいて被検体の深さ方向についての仮環境音速の分布を取得し、その取得した仮環境音速の分布に基づいて、焦点位置または焦点有効域を決定することができる。
 また、環境音速の分布のバラつきに基づいて、焦点位置または焦点有効域を決定することができる。
 また、環境音速の分布のバラつきが最小となる深さを実際の焦点位置として取得することができる。
 また、複数の送信フォーカス位置に焦点が合わせられた超音波の送波を行い、各送信フォーカス位置への超音波の送波による受信信号に基づいて、各送信フォーカス位置の実際の焦点位置を決定するようにしてもよい。
 また、本発明の環境音速取得方法は、上記焦点情報決定方法により決定された焦点位置または焦点位置を含む焦点有効域に基づいて、被検体内の任意の着目点の環境音速を取得することを特徴とする。
 また、本発明の環境音速取得方法は、上記焦点情報決定方法により決定された複数の実際の焦点位置のそれぞれに対応する送信フォーカス位置への超音波の送波により取得された受信信号に基づいて、被検体内の任意の着目点の環境音速を取得することを特徴とする。
 また、本発明の環境音速取得方法は、上記焦点情報決定方法により決定された焦点位置または焦点位置を含む焦点有効域に基づいて、被検体内の任意の着目点の環境音速を取得する環境音速取得方法であって、仮環境音速を取得する際に用いるライン画像信号の深さ方向の範囲の方が環境音速を取得する際に用いる深さ方向の範囲よりも狭いことを特徴とする。
 また、本発明の焦点情報決定装置は、被検体内に超音波を送波するとともに、その送波によって被検体から反射された反射波を受信して受信信号を出力する複数の素子が配列された超音波プローブと、超音波プローブの各素子を所定の送信遅延時間に基づいて駆動して所定送信フォーカス位置に焦点が合わせられた超音波の送波を行う送信制御部と、送信フォーカス位置への超音波の送波により反射された反射波に応じて各素子によって受信された受信信号に基づいて、送信フォーカス位置への超音波の送波による実際の焦点位置または実際の焦点位置を含む焦点有効域を決定する焦点情報決定部とを備えたことを特徴とする。
 また、上記本発明の焦点情報決定装置においては、送信フォーカス位置に対応する受信信号に対して、複数の設定音速に基づいて算出された受信遅延時間を用いて受信フォーカス処理を施すことによって設定音速毎の被検体の深さ方向に延びるライン画像信号を取得する受信制御部を設け、焦点情報決定部を、設定音速毎のライン画像信号に基づいて被検体の深さ方向についての仮環境音速の分布を取得し、その取得した仮環境音速の分布に基づいて、焦点位置または焦点有効域を決定するものとすることができる。
 また、焦点情報決定部を、仮環境音速の分布のバラつきに基づいて、焦点位置または焦点有効域を決定するものとすることができる。
 また、焦点情報決定部を、仮環境音速の分布のバラつきが最小となる深さを実際の焦点位置として取得するものとすることができる。
 また、送信制御部を、複数の送信フォーカス位置に焦点が合わせられた超音波の送波を行うものとし、焦点情報決定部を、各送信フォーカス位置への超音波の送波による受信信号に基づいて、各送信フォーカス位置の実際の焦点位置を決定するものとできる。
 本発明の環境音速取得装置は、上記焦点情報決定装置と、焦点情報決定装置において決定された実際の焦点位置または実際の焦点位置を含む焦点有効域に基づいて被検体内の任意の着目点の環境音速を取得する環境速度取得部とを備えたことを特徴とする。
 本発明の環境音速取得装置は、上記焦点情報決定装置と、焦点情報決定装置において決定された複数の実際の焦点位置のそれぞれに対応する送信フォーカス位置への超音波の送波により取得された受信信号に基づいて、被検体内の任意の着目点の環境音速を取得する環境速度取得部を備えたことを特徴とする。
 本発明の環境音速取得装置は、上記焦点情報決定装置と、焦点情報決定装置において決定された実際の焦点位置または実際の焦点位置を含む焦点有効域に基づいて被検体内の任意の着目点の環境音速を取得する環境音速取得部とを備え、焦点情報決定部において仮環境音速を取得する際に用いられるライン画像信号の深さ方向の範囲の方が、環境音速取得部において環境音速を取得する際に用いられる深さ方向の範囲よりも狭いことを特徴とする。
 また、上記本発明の環境音速取得装置においては、任意の着目点の指定の入力を受け付ける着目点入力部をさらに設けることができる。
 また、環境速度取得部によって取得された環境音速に基づいて算出された受信遅延時間を用いて超音波画像信号を生成する受信制御部を設けることができる。
 本発明の焦点情報決定方法および装置並びに環境音速取得方法および装置によれば、超音波プローブの各素子を所定の送信遅延時間に基づいて駆動して複数の送信フォーカス位置に焦点が合わせられた超音波の送波を送信フォーカス位置毎について行い、各送信フォーカス位置への超音波の送波により反射された反射波に応じて各素子によって受信された受信信号に基づいて、各送信フォーカス位置への超音波の送波による実際の焦点位置、または実際の焦点位置を含む有効域を送信フォーカス位置毎について決定するようにしたので、被検体内の任意の着目点を含む範囲に対応する送信フォーカス位置への超音波の送波に応じた受信信号に基づいて着目点の環境音速を高精度に取得することができる。
 また、上述したように送信フォーカスの設定音速を変化させてその都度、超音波を送波するような処理を行う必要がないので迅速に環境音速を取得することができる。
本発明の超音波診断装置の一実施形態の概略構成を示すブロック図 本発明の超音波診断装置の一実施形態における有効域決定方法を説明するためのフローチャート 有効域を決定する際に用いられるラインを説明するための図 有効域決定方法を説明するための説明図 有効域決定方法を説明するための説明図 送信フォーカス位置毎の深さ方向についての環境音速の分布を示す図 送信フォーカス位置毎の環境音速の分布の標準偏差を示す図 本発明の超音波診断装置の一実施形態によって決定された有効域を模式的に示す図 受信焦点fとその有効域との距離r1,r2を説明するための図 環境音速の取得方法の一例を説明するための図 送信焦点と環境音速との関係を示す図 深さに対する環境音速の誤差の一例を示す図
 以下、図面を参照して本発明の超音波診断装置の一実施形態について詳細に説明する。
図1は、本実施形態の超音波診断装置の概略構成を示すブロック図である。
 本実施形態の超音波診断装置1は、図1に示すように、超音波プローブ10、受信信号処理部12、送信制御部14、走査制御部16、受信制御部18、画像生成部20、焦点情報決定部22、環境音速取得部24、表示画像生成部26、モニタ28および入力部30を備えている。
 超音波プローブ10は、被検者の体内の診断部位に向けて超音波を送信するとともに体内で反射してきた超音波を受信するものである。本実施形態の超音波プローブ10は、1次元の超音波トランスデューサアレイを構成する複数の超音波トランスデューサを備えており、各超音波トランスデューサは、例えばPZT等の圧電素子の両端に電極を形成した振動子によって構成されている。この電極は信号線によって受信信号処理部12および送信制御部14と接続されている。そして、この電極には、送信制御部14から出力された駆動パルス電圧信号に応じた電圧が印加され、振動子はこの電圧印加に応じて超音波を発生するものである。また、振動子は反射してきた超音波を受信すると電気信号を発生し、この電気信号を受信信号として受信信号処理部12に出力するものである。
 送信制御部14は、走査制御部16から出力された送信遅延時間に基づいて、超音波プローブ10の各超音波トランスデューサに対して駆動パルス電圧信号を出力し、上記送信遅延時間に応じた超音波を各超音波トランスデューサの振動子から送波させることによって、所定の焦点に収束するような超音波を超音波プローブ10から送波させるものである。
 受信信号処理部12は、超音波プローブ10の各超音波トランスデューサに対応して設けられた複数の増幅器および複数のA/D変換器を備えている。各超音波トランスデューサから出力された受信信号は、増幅器において増幅され、増幅器から出力されたアナログの受信信号は、A/D変換器によってデジタル信号の受信信号に変換され、そのデジタルの受信信号は受信制御部18に出力される。
 受信制御部18は、超音波プローブ10の複数の超音波トランスデューサから出力された複数の受信信号に対し、所定の受信遅延時間に基づいて受信フォーカス処理を施すことによって、超音波エコーの焦点が絞りこまれた整相加算信号を出力するものである。上記受信遅延時間は、被検体内の音速に基づいて設定されるものであるが、その設定方法については、後で詳述する。
 走査制御部16は、送信制御部14および受信制御部18に対し、送信遅延時間や受信遅延時間を出力し、送信フォーカス処理および受信フォーカス処理を制御するものである。
 画像生成部20は、受信制御部18から出力された整相加算信号に基づいて、被検体内の組織に関する断層画像情報を表す超音波画像信号を生成するものである。
 焦点情報決定部22は、所定の送信フォーカスの位置に焦点をあわして超音波プローブ10から送波された超音波に応じて取得された受信信号に基づいて、実際の焦点位置または実際の焦点位置を含む有効域を決定するものである。焦点位置または焦点位置を含む有効域の決定方法については後で詳述する。
 環境音速取得部24は、被検体内の任意の着目点に対して、近傍の焦点位置または着目点が存在する有効域を取得し、その焦点位置または有効域に対応する送信フォーカス位置への超音波の送波に応じた受信信号に基づいて着目点の環境音速を取得するものである。
環境音速の取得方法については後で詳述する。
 表示画像生成部26は、画像生成部20から出力された超音波画像信号に基づいて表示制御信号を生成し、その表示制御信号をモニタ28に出力するものである。
 モニタ28は、入力された表示制御信号に基づいて被検体の超音波画像を表示したり、環境音速取得部24において取得された任意の着目点の環境音速を数値として表示したりするものである。
 入力部30は、種々の撮影条件や操作者による指示などの入力を受け付けるものであり、たとえば、キーボードやマウスなどのポインティングデバイスによって構成されるものである。
 次に、本実施形態の超音波診断装置の作用について説明する。本実施形態の超音波診断装置においては、被検体内の超音波画像の表示中に、操作者が任意の着目点を指定するとその着目点についての環境音速を取得して表示するものであるが、まずは、被検体内の超音波画像の表示の作用について説明する。
 まず、走査制御部16から出力された送信遅延時間に応じた制御信号に基づいて、送信制御部14から超音波プローブ10の各超音波トランスデューサに対して、それぞれ駆動パルス電圧信号が出力される。このとき各超音波トランスデューサから送波される超音波が予め設定された焦点に収束するように、各駆動パルス電圧信号に対してそれぞれ異なる送信遅延時間が設定されている。なお、このとき用いられる送信遅延時間は、予め被検体内の環境音速を仮定して設定された仮定設定音速に基づいて算出された値である。
 そして、超音波プローブ10の各超音波トランスデューサの振動子は、上述した駆動パルス電圧信号を受けて機械的に振動し、これにより超音波が発生され、被検体に送波される。
 そして、各超音波トランスデューサから送波された超音波は被検体内を伝播し、その途中にある音響インピーダンスの不連続面で次々と反射し、この反射によるエコーが各超音波トランスデューサによって検出されて振動子が振動する。この振動によって各超音波トランスデューサの振動子から微弱な電気信号が発生し、この電気信号が受信信号として受信信号処理部12に出力される。
 そして、受信信号処理部12において、各超音波トランスデューサから出力された受信信号が増幅器によって増幅され、その増幅されたアナログ信号はA/D変換器によってデジタル信号の受信信号に変換されて受信制御部18に出力される。
 受信制御部18においては、複数の超音波トランスデューサから出力された複数の受信信号に対して走査制御部16から出力された所定の受信遅延時間に基づいて受信フォーカス処理が施されて整相加算信号が生成される。このとき走査制御部16から出力される受信遅延時間は、予め被検体内の環境音速を仮定して設定された仮定設定音速に基づいて算出された値であって、整相加算信号が被検体内の所定の焦点にあった信号となるように設定されたものである。
 そして、走査制御部16から出力される受信遅延時間が制御されることによって、被検体内の撮像範囲の各焦点の整相加算信号が受信制御部18により取得され、その整相加算信号は画像生成部20に順次出力される。
 画像生成部20は、入力された整相加算信号を順次保存し、被検体の断層画像情報を表す超音波画像信号を生成し、その超音波画像信号は表示画像生成部26に出力される。
 そして、表示画像生成部26においては、入力された超音波画像信号に基づいて表示制御信号が生成され、その表示制御信号はモニタ28に出力される。モニタ28は、入力された表示制御信号に基づいて被検体の超音波画像を表示する。
 そして、超音波プローブ10の各超音波トランスデューサからの送波が所定のフレームレートに応じて行われ、上述した作用が繰り返されることによって超音波画像が所定のフレームレートで連続して表示される。
 以上が、本実施形態の超音波診断装置において超音波画像を表示する作用の説明である。
 次に、上述したような被検体内の超音波画像の表示中に、操作者により指定された着目点の環境音速を取得して表示する作用について説明する。
 まず、操作者によりモニタ28において表示された超音波画像内における所定の着目点が操作者により入力部30を用いて指定される。そして、操作者によってその着目点の環境速度を表示したい旨の指示信号が入力部30によって受け付けられると、図2に示すフローチャートの処理が行われる。
 具体的には、まず、超音波プローブ10から送波される超音波の送信フォーカスが、予め設定されたNo.1の位置に設定され、そのNo.1の位置に応じた送信遅延時間に基づく駆動パルス電圧信号が送信制御部14から出力され、超音波プローブ10の各超音波トランスデューサから超音波が送波される(S10)。なお、ここでの送信遅延時間は、予め被検体内の環境音速を仮定して設定された仮定設定音速に基づいて算出された値である。
 また、本実施形態においては、送信フォーカスNoiとして、No.1~No.8が予め走査制御部16に設定されており、具体的には、No.1=12mm、No.2=16mm、No.3=20mm、No.4=24mm、No.5=28mm、No.6=32mm、No.7=36mm、およびNo.8=40mmの深さに設定されている。
 そして、各超音波トランスデューサから送波された超音波の反射によるエコーが各超音波トランスデューサによって検出され、その受信信号が受信信号処理部12に出力され、増幅、A/D変換された後、受信制御部18により取得される(S12)。
 そして、受信制御部18は、予め設定された設定音速No.1に基づいて算出された受信遅延時間を用いて受信フォーカス処理を受信信号に施し、ラインNo.1の整相加算信号を算出し、画像生成部20に出力する(S14)。
 なお、本実施形態においては、受信遅延時間を算出するための設定音速Nokとして、No.1~No.251が予め走査制御部16に設定されており、具体的には、設定音速No.1~No.251は1400m/s~1650m/sであり、各設定音速は1m/s間隔で設定されている。そして、走査制御部16は、この設定音速に基づく受信遅延時間を算出し受信制御部18に出力する。
 また、ラインNojは、図3に示すように、超音波プローブ10の所定の開口中心Cの超音波トランスデューサ10aを中心とした±8ライン幅のラインに対し、それぞれラインNo.1~No.17が割り当てられている。
 次に、受信制御部18は、受信遅延時間を設定音速No.2に基づいて算出された受信遅延時間に変更する(S16,S18)。そして、その変更した受信遅延時間を用いて受信フォーカス処理を受信信号に施し、再びラインNo.1の整相加算信号を算出し、画像生成部20に出力する(S14)。
 そして、受信制御部18は、S14~S18を繰り返して行うことによって、ラインNo.1について、設定音速1400m/s~1650m/sに基づく受信遅延時間を用いて受信フォーカス処理が施された整相加算信号をそれぞれ取得し、さらに包絡線検波を施して画像生成部20に出力する。
 すなわち、画像生成部20は、ラインNo.1に対応する1400m/s~1650m/sの設定音速毎のライン画像信号を取得することになる。
 次に、受信制御部18は、受信フォーカス処理対象のラインをラインNo.2に変更する(S20)。そして、その変更したラインNo.2について、S14~S18の処理を繰り返して行うことによって、画像生成部20は、ラインNo.2に対応する1400m/s~1650m/sの設定音速毎のライン画像信号を取得する。
 そして、ラインNo.3~ラインNo.17についても、S14~S18の処理が繰り返して行われ(S22)、画像生成部20は、ラインNo.3~ラインNo.17に対応する1400m/s~1650m/sの設定音速毎のライン画像信号を取得する。
 このようにして、図4に示すように、ラインNo.1~ラインNo17のライン画像信号からなる超音波画像信号が、1400m/s~1650m/sの設定音速毎について生成され、画像生成部20によって取得される。
 そして、画像生成部20は、1400m/s~1650m/sの設定音速毎の超音波画像信号を焦点情報決定部22に出力する。そして、焦点情報決定部22においては、入力された設定音速毎の超音波画像信号に基づいて、単位深さ毎の被検体の仮環境音速が算出される(S24)。
 具体的には、設定音速毎の超音波画像信号について、図4の左側に示すような、所定の単位深さ(点線四角で示す)のライン毎の画像強度の分布が取得され、そのライン毎の画像強度の加算値Σa(k)が算出される。なお、上記単位深さとしては、例えば20μm~50μmである。この単位深さは、後述する環境音速を求める際に用いる深さよりも狭い範囲である。このように局所的な狭い範囲の画像強度に基づく仮環境音速を用いることによって、他の深さの画像強度の影響を受けない環境音速として、深さに対するその変化を高精度に捉えることができる。また、仮環境音速は短時間で求めることができる。
 そして、図5に示すように、1400m/s~1650m/sの設定音速毎の加算値Σa(k)の分布が取得され、その加算値Σa(k)のうちの最大値が求められ、その最大値に対応する設定音速が被検体の仮環境音速として取得される。
 そして、深さが順次変更され、上記と同様の処理を行うことによって、単位深さ毎の仮環境音速が取得され、図6の一番上に示すような、送信フォーカスNo.1に対応する仮環境音速の深さに対する分布が取得される。
 次に、図6に示すような深さに対する仮環境音速の分布において、単位深さ毎の仮環境音速を取得して深さに対する仮環境音速のバラつきを測定する。具体的には、図6に示す仮環境音速の分布において、たとえば、所定の演算窓を深さ方向に順次走査してその演算窓内の仮環境音速の標準偏差を順次取得する。このようにして深さ方向に対する標準偏差を順次取得することによって、図7に示すような深さ方向に対する標準偏差の分布を取得することができる。なお、図7における一番左のグラフが、送信フォーカスをNo.1=12mmに設定したときの深さ方向に対する仮環境音速の標準偏差の分布である。
 そして、図7に示す深さ方向に対する仮環境音速の標準偏差が最小値のときの深さF1を、送信フォーカスNo.1に対応する実際の超音波の焦点位置として取得する(S26)。
 次に、超音波プローブ10から送波される超音波の送信フォーカスをNo.1からのNo.2の位置に変更する(S28,S30)。そして、S12~S26までの処理を上記と同様にして行って送信フォーカスNo.2に対応する実際の超音波の焦点位置F2を取得する(S26)。
 そして、送信フォーカスNo.3~No.8についてもS12~S26までの処理が上記と同様にして行われ、送信フォーカスNo.3~No.8に対応する実際の超音波の焦点位置F3~F8が取得される。
 そして、焦点情報決定部22は、上述したようにして取得された実際の超音波の焦点位置F1~F8に基づいて、各送信フォーカスに対応する有効域を決定する。具体的には、図8に示すように、焦点位置F1~F8の中点C1~C7を取得し、各中点間を有効域として決定する。すなわち、中点間C1-C2を送信フォーカスNo.2に対応する有効域R1とし、中点間C2-C3を送信フォーカスNo.3に対応する有効域R2とし、中点間C3-C4を送信フォーカスNo.4に対応する有効域R3とし、中点間C4-C5を送信フォーカスNo.5に対応する有効域R4とし、中点間C5-C6を送信フォーカスNo.6に対応する有効域R5とし、中点間C6-C7を送信フォーカスNo.7に対応する有効域R6として決定する。また、図8に示す有効域R0については、焦点位置F1と中点C1との間の深さを2倍した範囲とし、有効域R7については、焦点位置F8と中点C7との間の深さを2倍した範囲として決定する。
 なお、図8においては、全ての有効域の深さが同じに表現されているが、これは説明のために模式的に表現したものであり、実際にはこれらの深さは互いに異なるものとなり得るものである。
 そして、焦点情報決定部22は、上述したようにして決定した焦点位置または有効域の情報を環境音速取得部24に出力する。環境音速取得部24は、入力された焦点位置または有効域の情報に基づいて、操作者によって指定された着目点における被検体の環境音速を取得する。具体的には、たとえば、操作者によって指定された着目点が有効域R2の深さに存在する点である場合には、送信フォーカスNo.3のときに取得した各設定音速の超音波画像信号を取得し、各設定音速に関して上記着目点を中心に所定ライン幅、深さ幅の画像強度分布を取得し、その加算値が最大となる設定音速を着目点の環境音速として取得する。なお、上記所定の深さ幅としては、たとえば、3mm~4mmである。
 また、着目点を中心とした所定深さ幅が、複数の送信フォーカス有効域を跨る場合は、各設定音速に関して各有効域に対応する送信フォーカスNoのときに取得した各有効域の超音波画像信号から、所定深さ幅に入る画像強度分布を加算し、加算値が最大となる設定音速を着目点の環境音速として取得する。
 そして、環境音速取得部24において取得された環境音速の情報は表示画像生成部26に出力され、表示画像生成部26は、入力された環境音速の数値を表す表示制御信号を生成してモニタ28に出力する。モニタ28は、入力された表示制御信号に基づいて、上記着目点の環境音速の数値を表示する。
 なお、操作者によって指定された着目点が、ラインNo.1~ラインNo.17の範囲内にある場合には、上述したようにして既に取得されている各設定音速の超音波画像信号を取得し、上記と同様にして、その超音波画像信号に基づいて着目点の環境音速として取得することができるが、着目点がラインNo.1~ラインNo.17の範囲内にない場合には、以下のようにして着目点の環境音速を取得する。
 まず、たとえば、操作者によって指定された着目点を中心とした着目範囲が有効域R2に属している場合には、環境音速取得部24は、送信フォーカスNo.3のときに受信制御部18によって取得された各超音波トランスデューサに対応する受信信号を読み出す。
 そして、環境音速取得部24は、その読み出した受信信号に対して、着目点を中心として17ライン×深さ3mm~4mmの着目範囲内の点を焦点とする受信フォーカス処理を施し、上記着目範囲内の超音波画像信号を生成する。そして、環境音速取得部24は、1400m/s~1650m/sの各設定音速に基づく受信遅延時間を用いて上記受信フォーカス処理をそれぞれ行い、設定音速毎の着目範囲の超音波画像信号を生成する。
 そして、環境音速取得部24は、設定音速毎の着目範囲の超音波画像信号の加算値を取得し、その設定音速毎の加算値のうち最大となる設定音速を着目点の環境音速として取得する。
 なお、着目点を中心とした着目範囲が、複数の有効域を跨る場合は、各有効域に対応する送信フォーカスのときに取得された各受信信号を読み出し、それらに対して各有効域の着目範囲内の点を焦点として各設定音速の受信フォーカス処理を施し、各有効域の着目範囲内の超音波画像信号を生成する。そして各有効域の着目範囲内の超音波画像信号を加算し、その設定音速毎の加算値のうち最大となる設定音速を着目点の環境音速として取得する。
 また、ここでは、設定音速毎の着目範囲の超音波画像信号の加算値を用いて環境音速を取得するようにしたが、環境音速を取得するための指標値は加算値に限らず、たとえば、設定音速毎の着目範囲の超音波画像信号の空間周波数スペクトルを取得し、その半値幅に基づいて環境音速を取得するようにしてもよい。環境音速を求めるために、画像強度や空間周波数スペクトルに基づく公知の指標値を用いることができる。
 また、上記実施形態の説明においては、送信フォーカス位置を設定する度にその送信フォーカス位置に対する実際の焦点位置を取得するようにしたが、これに限らず、予め各送信フォーカス位置の受信信号を全て取得しておき、その後、各送信フォーカス位置に対する実際の焦点位置を取得するようにしてもよい。このように、各送信フォーカス位置の受信信号を連続的に短時間で取得することで、被検体の動きによる誤差を低減する事ができる。
 また、上記実施形態においては、被検体内の超音波画像の表示中において操作者による着目点の指定を受け付け、その着目点を受け付けた時点から、焦点位置または有効域を決定し、その決定した焦点位置または有効域に基づいて環境音速を取得するようにしたが、これに限らず、たとえば、超音波画像診断の前から、予め焦点位置または有効域を決定しておくとともに、その焦点位置または有効域に対応する受信信号を予め記憶しておき、これらの予め設定された内容に基づいて環境音速を取得するようにしてもよい。なお、焦点位置または有効域の決定方法および環境音速の取得方法については、上記と同様である。
 また、上記実施形態の説明では、焦点情報決定部22によって決定された焦点位置または有効域に基づいて、着目点の環境音速を取得し、その環境音速を数値情報として表示するようにしたが、これに限らず、超音波画像の各座標に対応して多数設定した各着目点に対して、焦点情報決定部22によって決定された焦点位置または有効域に基づいて環境音速を取得し、その環境音速に基いて各着目点に対応する各座標を焦点とする受信フォーカス処理を施して超音波画像を生成するようにしてもよい。
 また、この場合、受信フォーカスを施す受信信号は、その焦点が属する有効域に対応する送信フォーカスのときに取得されたものであることが望ましいが、有効域の境界においては、使用する受信信号を切り替えることによる不連続を生ずる。たとえば、その焦点が、図11に示すような送信焦点近傍であっても干渉によって環境音速が変化してしまう場合には、上述した境界における不連続が顕著である。
 そこで、例えば、各座標に関して、それを挟む送信焦点を形成する2つの送信フォーカスNoのときに取得された2つの受信信号に対して、その座標を焦点とする受信フォーカス処理を施してそれぞれの超音波画像を生成し、それらをその受信焦点とそれを挟む2つの送信焦点との距離または受信焦点と有効域との距離に応じて、たとえば重みづけなどして合成しても良い。
 なお、受信焦点と有効域との距離としては、たとえば、受信焦点fが図9に示す位置にあるときには、受信焦点fが属する有効域R2と隣接する有効域R1との境界と受信焦点fとの距離r1と、受信焦点fが属する有効域R2と隣接する有効域R3との境界と受信焦点fとの距離r2を用いることができる。ただし、受信焦点と有効域との距離の設定方法については、上記に限らず、たとえば、境界の代わりに、境界より内側に遷移境界(たとえば、有効域の0.8倍などの位置)を設け、その遷移境界と受信焦点との距離を受信焦点と有効域との距離にしてもよい。
 環境音速の取得方法については、上述した実施形態の方法に限らず、たとえば各送信フォーカスの実際の焦点位置に基づいて、以下のようにして高精度な環境音速を取得することができる。
 たとえば、着目点に対して、それを挟む送信焦点を形成する2つの送信フォーカスNo.n,No.n+1のときに取得された2つの受信信号に対して、図10に示すように、それぞれ各設定音速に基づく受信フォーカス処理を施して着目点を中心とした着目範囲の超音波画像信号を生成し、それぞれ各深さの単位深さ毎に指標値V1(n),V2(n),V3(n)・・・と、V1(n+1),V2(n+1),V3(n+1)・・・とを算出する。そして、設定音速毎に、各深さの指標値として、2つの超音波画像からそれぞれ求めた各深さの指標値を、その深さと2つの送信焦点との距離、または深さとその有効域との距離に応じて加算した値V1,V2,V3・・・を算出する。そして各深さの指標値を着目範囲で加算した指標値を設定音速毎に算出し比較して環境音速を取得しても良い。
なお、深さとその有効域との距離とは、図9に示した受信焦点とその有効域との距離の考え方と同様である。
 また、深さとその有効域との距離をr1,r2とすると、指標値V1,V2,V3・・・については、たとえば、以下の式に基づいて算出することができる。
V={V(n)+f(r1)×V(n-1)+f(r2)×V(n+1)}/(1+f(r1)+f(r2))
 ただし、f(r1),f(r2)は、r1,r2が大きくなると0に近づく1以下の値をとる関数である。
 このように、各送信フォーカスの実際の焦点位置が分かれば、着目点に対して、それを挟む送信焦点を形成する送信フォーカスの時に取得された受信信号から生成された超音波画像から算出された指標値を合成することにより、高精度な環境音速を取得することができる。ここで合成する量としては指標値に限らず、受信信号そのものでも良いし、もしくは上記実施形態の説明において算出した図6に示す単位深さ毎の仮環境音速でも良い。または、単位深さ毎の仮環境音速ではなく、着目点を中心とした所定ライン幅および深さ幅の超音波画像信号に基づいて求めた仮環境音速を用いるようにしてもよい。たとえば、着目点が、送信フォーカスNo.nと送信フォーカスNo.n+1に挟まれている場合、送信フォーカスNo.nのときの受信信号と送信フォーカスNo.n+1のときの受信信号とを用いて、それぞれ着目点を中心とした所定ライン幅および深さ幅の超音波画像を設定音速毎に生成する。そして、たとえばその設定音速毎の超音波画像のうち画素値の加算値が最大値となる超音波画像の設定音速を仮環境音速とすることによって、送信フォーカスNo.nに対応する仮環境音速と送信フォーカスNo.n+1に対応する仮環境音速とを求め、着目点と送信フォーカスNo.nとの距離および着目点と送信フォーカスNo.n+1との距離に応じて、各仮環境音速に重み付けなどして加算することによって実際の環境音速を取得するようにしてもよい。
 また、以下の方法で環境音速を取得しても良い。
 各送信フォーカスは、予め設定した仮定音速の下では、被検体の予め設定した位置に焦点を形成するように実施されている。従って、予め設定した位置と実際の焦点位置とのずれから、被検体の実際の環境音速を取得する事ができる。
 たとえば、予め仮定音速および焦点位置を1540m/sおよび20mmとして送信遅延時間を設定したとする。被検体の実際の環境音速が1540m/sより速い場合、その送信遅延時間によって形成される実焦点位置は20mmより浅くなる。また、実焦点位置からの反射波の受信時刻は実焦点位置までの往復の距離を実環境音速で割った時刻であるため、本受信時刻から環境音速1540m/sを仮定して換算される位置は実焦点位置より更に浅くなる。このように、被検体の実際の環境音速が1540m/sより速いと、実焦点位置が20mmより浅くなり、その受信信号から生成される超音波画像上の位置が更に浅くなる。
 逆に被検体の実際の環境音速が1540m/sより遅いと、実焦点位置が20mmより深くなり、その受信信号から生成される超音波画像上の位置が更に深くなる。このことを利用して、予め設定した焦点位置と実際の焦点位置とのずれから実際の環境音速を取得する事ができる。たとえば環境音速および焦点位置を1540m/s及び30mmとして設定した送信遅延時間の各素子駆動によって形成された焦点からの反射波の受信信号から生成された超音波画像上の実焦点位置が27mmであった場合には、以下のようにして実際の環境音速を取得することができる。
 まず、焦点の深さを超音波伝播時間に換算する。具体的には、焦点位置は仮定音速1540m/sで生成した超音波画像上の27mmであることから27[mm]/ 1540000[mm/s]で伝播時間[s]に換算する。
 次に、各素子の送信遅延を求める。1540m/sで30mmの位置に送信焦点を形成するための送信遅延は一意に決まる。
 そして、次に、焦点から各素子への超音波伝播時間を求める。具体的には、上記で求めた超音波伝播時間と各素子の送信遅延とに基づいて、焦点から各素子への超音波伝播時間を取得する。
 そして、仮定の環境音速を設定し、その仮定の環境音速に基づいて焦点から各素子への仮超音波伝播時間を取得し、その仮超音波伝播時間と上記で求めた焦点から各素子への超音波伝播時間との誤差が最小となる仮定環境音速を真の環境音速として取得する。
 上述した手順により、実際の環境音速として約1620m/sを取得することができる。本方法では、実際の焦点位置における実際の環境音速のみを取得できるが、任意の着目点に対しては近傍の実焦点位置の実環境音速を割当てる、または補間するなどして取得する事ができる。

Claims (19)

  1.  被検体内に超音波を送波するとともに、該送波によって被検体から反射された反射波を受信して受信信号を出力する複数の素子が配列された超音波プローブを用い、
     該超音波プローブの前記各素子を所定の送信遅延時間に基づいて駆動して所定の送信フォーカス位置に焦点が合わせられた前記超音波の送波を行い、
     前記送信フォーカス位置への超音波の送波により反射された反射波に応じて前記各素子によって受信された受信信号に基づいて、前記送信フォーカス位置への超音波の送波による実際の焦点位置または実際の焦点位置を含む焦点有効域を決定することを特徴とする焦点情報決定方法。
  2.  前記送信フォーカス位置に対応する受信信号に対して、複数の設定音速に基づいて算出された受信遅延時間を用いて受信フォーカス処理を施すことによって前記設定音速毎の前記被検体の深さ方向に延びるライン画像信号を取得し、
     前記設定音速毎のライン画像信号に基づいて前記被検体の深さ方向についての仮環境音速の分布を取得し、
     該取得した仮環境音速の分布に基づいて、前記焦点位置または前記焦点有効域を決定することを特徴とする請求項1記載の焦点情報決定方法。
  3.  前記環境音速の分布のバラつきに基づいて、前記焦点位置または前記焦点有効域を決定することを特徴とする請求項2記載の焦点情報決定方法。
  4.  前記環境音速の分布のバラつきが最小となる深さを前記実際の焦点位置として取得することを特徴とする請求項3記載の焦点情報決定方法。
  5.  複数の前記送信フォーカス位置に焦点が合わせられた前記超音波の送波を行い、
     前記各送信フォーカス位置への超音波の送波による前記受信信号に基づいて、前記各送信フォーカス位置の実際の焦点位置を決定することを特徴とする請求項1から4いずれか1項記載の焦点情報決定方法。
  6.  請求項1から5いずれか1項記載の焦点情報決定方法により決定された前記焦点位置または前記焦点位置を含む焦点有効域に基づいて、前記被検体内の任意の着目点の環境音速を取得することを特徴とする環境音速取得方法。
  7.  請求項5記載の焦点情報決定方法により決定された複数の実際の焦点位置のそれぞれに対応する前記送信フォーカス位置への超音波の送波により取得された受信信号に基づいて、前記被検体内の任意の着目点の環境音速を取得することを特徴とする環境音速取得方法。
  8.  請求項2記載の焦点情報決定方法により決定された前記焦点位置または前記焦点位置を含む焦点有効域に基づいて、前記被検体内の任意の着目点の環境音速を取得する環境音速取得方法であって、
     前記仮環境音速を取得する際に用いる前記ライン画像信号の前記深さ方向の範囲の方が前記環境音速を取得する際に用いる前記深さ方向の範囲よりも狭いことを特徴とする環境音速取得方法。
  9.  被検体内に超音波を送波するとともに、該送波によって被検体から反射された反射波を受信して受信信号を出力する複数の素子が配列された超音波プローブと、
     該超音波プローブの前記各素子を所定の送信遅延時間に基づいて駆動して所定送信フォーカス位置に焦点が合わせられた前記超音波の送波を行う送信制御部と、
     前記送信フォーカス位置への超音波の送波により反射された反射波に応じて前記各素子によって受信された受信信号に基づいて、前記送信フォーカス位置への超音波の送波による実際の焦点位置または実際の焦点位置を含む焦点有効域を決定する焦点情報決定部とを備えたことを特徴とする焦点情報決定装置。
  10.  前記送信フォーカス位置に対応する受信信号に対して、複数の設定音速に基づいて算出された受信遅延時間を用いて受信フォーカス処理を施すことによって前記設定音速毎の前記被検体の深さ方向に延びるライン画像信号を取得する受信制御部を備え、
     前記焦点情報決定部が、前記設定音速毎のライン画像信号に基づいて前記被検体の深さ方向についての仮環境音速の分布を取得し、該取得した仮環境音速の分布に基づいて、前記焦点位置または前記焦点有効域を決定するものであることを特徴とする請求項9記載の焦点情報決定装置。
  11.  前記焦点情報決定部が、前記仮環境音速の分布のバラつきに基づいて、前記焦点位置または前記焦点有効域を決定するものであることを特徴とする請求項10記載の焦点情報決定装置。
  12.  前記焦点情報決定部が、前記仮環境音速の分布のバラつきが最小となる深さを前記実際の焦点位置として取得するものであることを特徴とする請求項11記載の焦点情報決定装置。
  13.  前記送信制御部が、複数の前記送信フォーカス位置に焦点が合わせられた前記超音波の送波を行うものであり、
     前記焦点情報決定部が、前記各送信フォーカス位置への超音波の送波による前記受信信号に基づいて、前記各送信フォーカス位置の実際の焦点位置を決定するものであることを特徴とする請求項9から12いずれか1項記載の焦点情報決定装置。
  14.  請求項9から13いずれか1項記載の焦点情報決定装置と、
     該焦点情報決定装置において決定された前記実際の焦点位置または前記実際の焦点位置を含む焦点有効域に基づいて、前記被検体内の任意の着目点の環境音速を取得する環境速度取得部とを備えたことを特徴とする環境音速取得装置。
  15.  請求項13記載の焦点情報決定装置と、
     該焦点情報決定装置において決定された複数の実際の焦点位置のそれぞれに対応する前記送信フォーカス位置への超音波の送波により取得された受信信号に基づいて、前記被検体内の任意の着目点の環境音速を取得する環境速度取得部を備えたことを特徴とする環境音速取得装置。
  16.  請求項10記載の焦点情報決定装置と、
     該焦点情報決定装置において決定された前記実際の焦点位置または前記実際の焦点位置を含む焦点有効域に基づいて、前記被検体内の任意の着目点の環境音速を取得する環境音速取得部とを備え、
     前記有効域決定部において前記仮環境音速を取得する際に用いられる前記ライン画像信号の前記深さ方向の範囲の方が、前記環境音速取得部において前記環境音速を取得する際に用いられる前記深さ方向の範囲よりも狭いことを特徴とする環境音速取得装置。
  17. [規則91に基づく訂正 22.08.2011] 
     前記任意の着目点の指定の入力を受け付ける着目点入力部をさらに備えたことを特徴とする請求項14から16いずれか1項記載の環境音速取得装置。
  18. [規則91に基づく訂正 22.08.2011] 
     前記環境速度取得部によって取得された環境音速に基づいて算出された受信遅延時間を用いて超音波画像信号を生成する受信制御部を備えたものであることを特徴とする請求項14から16いずれか1項記載の環境音速取得装置。
  19.  被検体内に超音波を送波するとともに、該送波によって被検体から反射された反射波を受信して受信信号を出力する複数の素子が配列された超音波プローブと、
     該超音波プローブの前記各素子を所定の送信遅延時間に基づいて駆動して所定送信フォーカス位置に焦点が合わせられた前記超音波の送波を行う送信制御部と、
     前記送信フォーカス位置への超音波の送波により反射された反射波に応じて前記各素子によって受信された受信信号に基づいて決定された前記送信フォーカス位置への超音波の送波による実際の焦点位置または実際の焦点位置を含む焦点有効域が予め設定された焦点情報設定部とを備えたことを特徴とする焦点情報決定装置。
PCT/JP2011/001968 2010-03-31 2011-03-31 焦点情報決定方法および装置並びに環境音速取得方法および装置 WO2011122049A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180017570.6A CN102834060B (zh) 2010-03-31 2011-03-31 焦点信息确定方法及装置以及环境声速取得方法及装置
EP11762290.2A EP2554121A4 (en) 2010-03-31 2011-03-31 METHOD AND DEVICE FOR DETERMINING FOCUS INFORMATION AND METHOD AND DEVICE FOR DETECTING THE SPEED OF ENVIRONMENTAL LENGTH
US13/638,524 US9310472B2 (en) 2010-03-31 2011-03-31 Focal point information determination method and apparatus, and ambient sound velocity obtaining method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010080595 2010-03-31
JP2010-080595 2010-03-31
JP2011078728A JP5564460B2 (ja) 2010-03-31 2011-03-31 焦点情報決定方法および装置並びに環境音速取得方法および装置
JP2011-078728 2011-03-31

Publications (2)

Publication Number Publication Date
WO2011122049A1 WO2011122049A1 (ja) 2011-10-06
WO2011122049A9 true WO2011122049A9 (ja) 2011-11-17

Family

ID=44711803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001968 WO2011122049A1 (ja) 2010-03-31 2011-03-31 焦点情報決定方法および装置並びに環境音速取得方法および装置

Country Status (5)

Country Link
US (1) US9310472B2 (ja)
EP (1) EP2554121A4 (ja)
JP (1) JP5564460B2 (ja)
CN (1) CN102834060B (ja)
WO (1) WO2011122049A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104349720B (zh) * 2012-05-25 2016-04-27 富士胶片株式会社 超声波信号处理装置和超声波信号处理方法
JP5976399B2 (ja) * 2012-05-25 2016-08-23 富士フイルム株式会社 超音波診断装置およびデータ処理方法
JP6000196B2 (ja) * 2012-09-27 2016-09-28 富士フイルム株式会社 超音波診断装置、音速決定方法およびプログラム
CN105073194B (zh) * 2013-02-28 2018-04-03 爱飞纽医疗机械贸易有限公司 焦点补偿方法和用于焦点补偿的超声波医疗装置
CN103126721A (zh) * 2013-03-05 2013-06-05 飞依诺科技(苏州)有限公司 基于多焦点、多波速的超声复合成像方法及装置
CN103591942B (zh) * 2013-11-07 2014-07-23 国家海洋局第二海洋研究所 基于声速最大偏移的声速剖面快速精简与自动优选方法
KR20150118732A (ko) * 2014-04-15 2015-10-23 삼성전자주식회사 초음파 장치 및 그 제어 방법
CN106154251A (zh) * 2016-06-27 2016-11-23 中国科学院苏州生物医学工程技术研究所 超声波束合成方法、超声成像方法和超声弹性成像方法
CN108042158B (zh) * 2017-12-22 2021-04-13 飞依诺科技(苏州)有限公司 多焦点超声图像拼接方法及其系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064074B2 (ja) * 1983-02-14 1994-01-19 株式会社日立製作所 超音波診断装置およびこれを用いる音速計測方法
JP3642607B2 (ja) * 1995-05-26 2005-04-27 株式会社日立メディコ 超音波断層装置
JP4416256B2 (ja) * 2000-03-10 2010-02-17 株式会社日立メディコ 超音波撮像装置
US6508768B1 (en) * 2000-11-22 2003-01-21 University Of Kansas Medical Center Ultrasonic elasticity imaging
JP4817728B2 (ja) 2005-06-29 2011-11-16 株式会社東芝 超音波診断装置
KR100875203B1 (ko) 2005-12-28 2008-12-19 주식회사 메디슨 초음파 영상의 획득 방법
EP1974672B9 (en) * 2007-03-28 2014-04-16 Kabushiki Kaisha Toshiba Ultrasonic imaging apparatus and ultrasonic velocity optimization method
JP2009101145A (ja) * 2007-10-03 2009-05-14 Fujifilm Corp 超音波診断方法及び装置
EP2044886A1 (en) 2007-10-03 2009-04-08 Fujifilm Corporation Ultrasonic diagnosis method and apparatus
JP5108444B2 (ja) * 2007-10-11 2012-12-26 富士フイルム株式会社 超音波診断方法及び装置
JP2009261520A (ja) 2008-04-23 2009-11-12 Ge Medical Systems Global Technology Co Llc 超音波撮像装置
JP5719098B2 (ja) * 2008-05-26 2015-05-13 富士フイルム株式会社 超音波診断装置
CN102365054B (zh) 2009-07-28 2014-05-28 株式会社东芝 超声波诊断装置及超声波图像处理装置

Also Published As

Publication number Publication date
CN102834060A (zh) 2012-12-19
CN102834060B (zh) 2014-12-24
JP2011224359A (ja) 2011-11-10
US9310472B2 (en) 2016-04-12
JP5564460B2 (ja) 2014-07-30
EP2554121A4 (en) 2014-10-22
EP2554121A1 (en) 2013-02-06
WO2011122049A1 (ja) 2011-10-06
US20130041262A1 (en) 2013-02-14

Similar Documents

Publication Publication Date Title
JP5564460B2 (ja) 焦点情報決定方法および装置並びに環境音速取得方法および装置
US20120259225A1 (en) Ultrasound diagnostic apparatus and ultrasound image producing method
CN106466192B (zh) 超声波诊断装置和多普勒波形图像生成方法
JP2009078124A (ja) 超音波診断装置、並びに、画像処理方法及びプログラム
JP2014140410A (ja) 超音波診断装置、超音波画像生成方法およびプログラム
US8905933B2 (en) Ultrasonic diagnostic apparatus
JP2012170467A (ja) 超音波プローブおよび超音波診断装置
US9354300B2 (en) Ultrasound diagnostic apparatus and ultrasound image producing method
JP5777604B2 (ja) 超音波診断装置、超音波画像生成方法およびプログラム
JP2012010875A (ja) 超音波診断装置及び超音波診断方法
JP5247330B2 (ja) 超音波信号処理装置及び超音波信号処理方法
JP2012192133A (ja) 超音波診断装置および超音波画像生成方法
WO2013153896A1 (ja) 超音波診断装置および超音波画像生成方法
JP5525308B2 (ja) 環境音速取得方法および装置
JP2014064856A (ja) 超音波検査装置、超音波検査装置の信号処理方法およびプログラム
JP5836241B2 (ja) 超音波検査装置、超音波検査装置の信号処理方法およびプログラム
WO2014050739A1 (ja) 超音波診断装置、超音波画像生成方法およびプログラム
JP5247844B2 (ja) 超音波診断装置および超音波画像生成方法
JP2012192075A (ja) 超音波診断装置および超音波画像生成方法
JP5296824B2 (ja) 超音波診断装置
JP5901431B2 (ja) 超音波診断装置、音速導出方法およびプログラム
JP5289482B2 (ja) 超音波プローブおよび超音波診断装置
JP2013244134A (ja) 超音波診断装置および方法
JP2013244132A (ja) 超音波診断装置および方法
JP2013244133A (ja) 超音波診断装置および方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180017570.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762290

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13638524

Country of ref document: US

NENP Non-entry into the national phase in:

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011762290

Country of ref document: EP