WO2011120358A1 - 中继通信网络的信息传输方法及系统 - Google Patents

中继通信网络的信息传输方法及系统 Download PDF

Info

Publication number
WO2011120358A1
WO2011120358A1 PCT/CN2011/070926 CN2011070926W WO2011120358A1 WO 2011120358 A1 WO2011120358 A1 WO 2011120358A1 CN 2011070926 W CN2011070926 W CN 2011070926W WO 2011120358 A1 WO2011120358 A1 WO 2011120358A1
Authority
WO
WIPO (PCT)
Prior art keywords
tunnel
gre
signaling
transmission
asn
Prior art date
Application number
PCT/CN2011/070926
Other languages
English (en)
French (fr)
Inventor
陈玉芹
冯成燕
宋建全
郭松
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US13/638,947 priority Critical patent/US9219537B2/en
Priority to EP11761932.0A priority patent/EP2547169A4/en
Publication of WO2011120358A1 publication Critical patent/WO2011120358A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • H04W84/22Self-organising networks, e.g. ad-hoc networks or sensor networks with access to wired networks

Definitions

  • the present invention relates to the field of communications, and in particular to an information transmission method and system for a relay communication network.
  • 1 is a schematic diagram of a wireless relay communication network architecture according to the related art.
  • a multi-hop relay base station Multi-hop Relay Base Station, referred to as One or more relay stations (RSs) are arranged between the BS and the mobile terminal (MS).
  • the RS relays the signals of the BS and the MS to achieve extended coverage and increase.
  • the purpose of the system capacity is a multi-hop relay base station.
  • the relay station can be divided into a layer two relay station supporting only the air interface side functional block and a layer three relay station supporting the access network side function block. Since the Layer 2 relay station only supports the last two layers in the network protocol architecture (ie, physical (PHY) layer and Media Access Control (MAC) layer), the relay station is directly or indirectly connected to the base station. Base station control. For the Access Service Network Gateway (ASN GW), the Layer 2 relay station does not exist. In addition to supporting the PHY and MAC layers, the Layer 3 relay station also supports the interface with the ASN GW. Therefore, for the ASN GW, the Layer 3 relay station is visible.
  • ASN GW Access Service Network Gateway
  • IEEE 802.16m is an evolved air interface standard based on IEEE 802.16e System Profile Rell.O, which provides full backward compatibility with System Profile Rell.O.
  • ABS Advanced Base Station
  • ARS Advanced Relay Station
  • Advanced MS Advanced MS
  • AMS Advanced Mobile. Terminal
  • the IEEE 802.16m differs from the IEEE 802.16e air interface addressing method.
  • the connection identifier is used to identify the service flow between the MS and the BS.
  • the ten-party data unit (Media) Access Control Protocol data unit referred to as The overhead in the MAC PDU is divided into two parts: a 12-bit Site Identifier (STID) and a 4-bit Flow Identifier (FID).
  • the overhead in the MAC PDU is divided into two parts: a 12-bit Site Identifier (STID) and a 4-bit Flow Identifier (FID).
  • the STID passes the mask.
  • the Mask Cyclic Redundancy Code (MCRC) is carried in the resource mapping unit (Advanced MAP, A-MAP for short), and the FID is carried in the MAC PDU.
  • GRE Generic Routing Encapsulation
  • IP Internet Protocol
  • CS Internet Protocol convergence sub-layer
  • GRE Generic Routing Encapsulation
  • the GRE encapsulation format mainly includes the following Field: Differentiated Service Code Point (DSCP), which is used to indicate the Quality of Service (QoS) level of the payload.
  • DSCP Differentiated Service Code Point
  • Source/Destination IP address indicating the endpoint of the GRE tunnel, for example: BS/ASN GW IP address.
  • GRE key GRE Key
  • the GRE encapsulation format can also include the following: IP Ver, IP HLEN, IP Datagram Total Length, IP Identification, IP Fragment Offset, IP Time to Live, IP Protocol, IP Header Checksum, GRE Payload Protocol Type, etc., are not described here.
  • IP Ver IP Ver
  • IP HLEN IP Datagram Total Length
  • IP Identification IP Identification
  • IP Fragment Offset IP Time to Live
  • IP Protocol IP Header Checksum
  • GRE Payload Protocol Type etc.
  • the BS and the ASN GW respectively perform mapping between the uplink and downlink connections and the GRE tunnel in IEEE802.16e, where the connection has a corresponding relationship with the GRE key.
  • Layer 2 relays have lower requirements on the function of the relay station when implemented, but have higher functional requirements for the base station. Considering that the link between the base station and the relay station (relay link) needs to be completely different from the previous transmission
  • the signaling and data transmission methods in the IEEE802.16e technology are not conducive to the use of existing software in the implementation of the product, and bring great difficulty to the Interoperability Test (IOT).
  • the Layer 3 relay makes the relay station visible at the ASN GW and can be directly controlled by the ASN GW.
  • the base station functions as a data and signaling relay between the relay station and the ASN GW.
  • the relay station can reuse the software of the base station in the existing IEEE802.16e without special software development for the relay station. This will speed up the product development of the relay station and ensure that it can enter the market as soon as possible.
  • the information transmission method of the relay transmission network in the related art cannot be applied to the layer three relay station, and the layer three relay transmission cannot be performed.
  • an information transmission method for a relay communication network including: establishing a first tunnel and a second tunnel, where the first tunnel is a tunnel between the access network gateway ASN GW and the base station BS
  • the second tunnel is a tunnel between the BS and the relay station RS; signaling and/or data transmission between the ASN GW and the RS is performed through the first tunnel and the second tunnel.
  • the signaling and/or data transmission between the ASN GW and the RS through the first tunnel and the second tunnel includes: in case the transmission is a downlink transmission, the ASN GW sends the downlink signaling and/or data to the first tunnel to The BS and the BS mapping relationship forward the downlink signaling and/or data to the RS through the second tunnel; in the case that the transmission is the uplink transmission, the RS sends the uplink signaling and/or data to the BS through the second tunnel, and the BS according to the mapping The relationship forwards the uplink signaling and/or data to the ASN GW through the first tunnel.
  • the mapping relationship is a mapping relationship between the first tunnel and the second tunnel.
  • the first tunnel and the second tunnel encapsulate the GRE tunnel for the general routing.
  • data transmission between the ASN GW and the RS through the first tunnel and the second tunnel includes: the RS encapsulates the uplink data into a second GRE/IP encapsulation packet, and the second
  • the GRE/IP encapsulation package is further encapsulated into a relay medium access control protocol data unit.
  • the PDU is sent to the BS; the BS parses the Relay MAC PDU to obtain the second GRE/IP encapsulation packet, and determines the first tunnel according to the mapping relationship and the information of the second tunnel obtained by parsing the second GRE/IP encapsulation header.
  • the information, and repackaging the payload into the first GRE/IP encapsulation packet is sent to the ASN GW through the first tunnel.
  • the data transmission between the ASN GW and the RS through the first tunnel and the second tunnel includes: the ASN GW encapsulates the downlink data into the first GRE/IP encapsulation packet and sends the packet to the BS through the first tunnel;
  • the mapping information and the information of the first tunnel obtained by parsing the first GRE/IP encapsulation header determine the information of the second tunnel, repackage the payload into the second GRE/IP encapsulation packet, and further encapsulate the second GRE/IP encapsulation packet.
  • the method further includes: the RS parses the Relay MAC PDU to obtain the second GRE/IP encapsulation packet, and parses the second GRE/IP.
  • the encapsulated packet obtains downlink data, and encapsulates the downlink data into a MAC PDU and sends it to the mobile terminal MS.
  • the method further includes: the BS determining whether the destination MS of the downlink data is an MS under the jurisdiction of the BS or an RS under the jurisdiction of the BS.
  • the MS under MS is encapsulated into a MAC PDU and sent to the destination MS. If it is the MS under the jurisdiction of the BS, the subsequent processing is continued.
  • One of the RS and the BS repackages the second GRE/IP encapsulation packet into a Relay MAC PDU and then maps it to the air interface connection service flow with the corresponding quality of service level and sends it to the other party.
  • the information of the first tunnel and the information of the second tunnel include a GRE key.
  • the first tunnel and the second tunnel are UDP/IP tunnels.
  • signaling transmission between the ASN GW and the RS through the first tunnel and the second tunnel includes: the RS encapsulates the uplink signaling into a second UDP/IP encapsulation packet, and the second UDP/ The IP encapsulation packet is further encapsulated into a Relay MAC PDU and sent to the BS.
  • the BS parses the Relay MAC PDU to obtain a second UDP/IP encapsulation packet, and determines the information according to the mapping relationship and the information of the second tunnel obtained by parsing the second UDP/IP encapsulation packet header.
  • the signaling transmission between the ASN GW and the RS through the first tunnel and the second tunnel includes: the ASN GW encapsulates the downlink signaling into the first UDP/IP encapsulation packet and sends the packet to the first tunnel to the first tunnel.
  • the information of the first tunnel determines the information of the second tunnel, repackages the payload into a second UDP/IP encapsulation packet, and further encapsulates the second UDP/IP encapsulation packet into a Relay MAC PDU for transmission to the RS.
  • the method further includes: the RS parses the Relay MAC PDU to obtain the second UDP/IP encapsulation packet, and parses the second UDP/ The IP encapsulation packet obtains the downlink signaling, generates the air interface side message format of the downlink signaling, and encapsulates the downlink signaling with the air interface side message format into a MAC PDU and sends the message to the MS.
  • One of the RS and the BS repackages the second UDP/IP encapsulation packet into a Relay MAC PDU and then maps it to the air interface management connection service flow with the corresponding quality of service level and sends it to the other party.
  • the GRE/IP encapsulation package and/or the UDP/IP encapsulation package are compressed packaged packages, wherein the compression process includes header compression.
  • header compression includes one of the following methods: The static parameters are fully compressed according to the compression protocol, the GRE key of the GRE part is reserved, and the bytes occupied by the sequence number field are compressed; The GRE/IP encapsulation header is compressed by the compression protocol of the dynamic parametric compression; the IP header in the GRE/IP encapsulation header is discarded, and the GRE header in the GRE/IP encapsulation header is compressed.
  • the establishing the first tunnel and the second tunnel includes: the ASN GW establishes the first tunnel, and the BS establishes the second tunnel; in the case of uplink data transmission, establishing the first tunnel and the second tunnel includes: In a tunnel, the RS establishes a second tunnel.
  • the second tunnel is a multi-segment tunnel from the BS via one or more intermediate RSs to the RS.
  • Performing signaling and/or data transmission between the ASN GW and the RS through the first tunnel and the second tunnel includes: performing signaling and/or data transmission between the ASN GW and the BS through the first tunnel; according to the multi-segment tunnel
  • the mapping relationship between adjacent tunnels performs signaling and/or data transmission of the BS via one or more intermediate RSs to the RS through the second tunnel.
  • the downlink signaling and/or data transmission between the ASN GW and the RS through the first tunnel and the second tunnel includes: the ASN GW sends downlink signaling and/or data to the BS through the first tunnel; and the BS identifies the STID according to the station identifier of the RS. The addressing is performed.
  • an information transmission method for a relay communication network including: establishing a first tunnel, where the first tunnel is a tunnel between an ASN GW and a BS; and the ASN GW is performed by using the first tunnel Signaling transmission between the BS and the BS, and signaling transmission between the BS and the RS through the air interface.
  • the signaling transmission between the BS and the RS through the air interface includes: the RS sends the uplink signaling bearer to the BS on the air interface side message, where the uplink signaling includes one of the following: The R6 interface message generated by the signaling message, the R6 port message generated by the RS; the signaling transmission between the ASN GW and the BS through the first tunnel includes: the BS encapsulates the uplink signaling parsed from the air interface side message into UDP/ The IP encapsulation packet is sent to the ASN GW.
  • the signaling transmission between the ASN GW and the BS through the first tunnel includes: the ASN GW encapsulates the downlink signaling into a UDP/IP encapsulation packet and sends the packet to the BS through the first tunnel;
  • the signaling transmission between the BS and the RS includes: the BS parses the UDP/IP encapsulation packet to obtain downlink signaling, and sends the payload bearer to the RS on the air interface side message.
  • One of the RS and the BS maps the air interface side message to the air interface connection service stream having the corresponding monthly service quality level and transmits it to the other party.
  • an information transmission system for a relay communication network including: an ASN GW, configured to establish a first tunnel, and send signaling and/or data to the BS through the first tunnel, where The first tunnel is a tunnel between the ASN GW and the BS; the BS is configured to establish a second tunnel, and send signaling and/or data to the RS through the second tunnel, where the second tunnel is a tunnel between the BS and the RS RS is set to receive signaling and/or data from the BS through the second tunnel.
  • an information transmission system for a relay communication network including: an RS, configured to establish a second tunnel, and send signaling and/or data to the BS through the second tunnel, where The second tunnel is a tunnel between the BS and the RS; the BS is configured to establish a first tunnel, and send signaling and/or data to the ASN GW through the first tunnel, where the first tunnel is a tunnel between the ASN GW and the BS.
  • the ASN GW is arranged to receive signaling and/or data from the BS through the first tunnel.
  • the transmission tunnel is established between the access network gateway and the base station and between the base station and the relay station, and the information transmission between the access network gateway and the relay station is performed through the established tunnel.
  • the problem that the layer three relay transmission cannot be performed in the related art is solved, and the signaling and/or data transmission in the layer three relay is realized.
  • FIG. 1 is a schematic diagram of a wireless relay communication network architecture according to the related art
  • FIG. 2 is a schematic diagram of an IP CS-based GRE encapsulation format according to the related art
  • FIG. 3 is an IP CS-based connection according to the related art.
  • FIG. 4 is a flowchart of an information transmission method of a relay communication network according to an embodiment of the present invention
  • FIG. 5 is a data plane protocol stack architecture of a layer three relay station according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of data transmission in a layer three relay network according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a network topology structure of data transmission in a layer three relay network according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of a control plane protocol stack architecture for a layer three relay station according to an embodiment of the present invention
  • FIG. 10 is a relay for signaling transmission between an ARS and an ABS according to an embodiment of the present invention
  • FIG. 11 is a block diagram showing the structure of an information transmission system of a relay communication network according to an embodiment of the present invention
  • FIG. 12 is a flowchart of an information transmission method of a relay communication network according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for transmitting information of a relay communication network according to an embodiment of the present invention.
  • the method includes: Step S402 Establishing a first tunnel and a second tunnel, where the first tunnel is a tunnel between the access network gateway ASN GW and the base station BS, and the second tunnel is a tunnel between the BS and the relay station RS; Step S404, passing the first tunnel Signaling and/or data transmission between the ASN GW and the RS is performed with the second tunnel.
  • the relay station is a layer three relay station, and provides a process for the relay communication network to perform signaling and/or data transmission, and the layer three relay can be realized through the flow.
  • the foregoing base station, relay station and mobile terminal respectively include BS, RS and MS in IEEE802.16e, and ABS, ARS and AMS in 802.16m.
  • the step S402 may include: the ASN GW establishes the first tunnel, and the BS establishes the second tunnel.
  • the step S402 may include: the BS establishes the first tunnel, and the RS establishes the second tunnel. tunnel.
  • the first tunnel may be a wired bearer
  • the second tunnel may be a radio bearer.
  • the signaling and/or data transmission between the ASN GW and the RS through the first tunnel and the second tunnel includes:
  • the ASN GW sends downlink signaling and/or data to the BS through the first tunnel, and the BS mapping relationship forwards the downlink signaling and/or data to the RS through the second tunnel;
  • the RS sends the uplink signaling and/or data to the BS through the second tunnel, and the BS forwards the uplink signaling and/or data to the ASN GW through the first tunnel according to the mapping relationship; It is a mapping relationship between the first tunnel and the second tunnel.
  • the first tunnel and the second tunnel encapsulate the GRE tunnel as a general route; in the case of signaling transmission, the first tunnel and the second tunnel are UDP/IP tunnels.
  • the first tunnel and the second tunnel encapsulate the GRE tunnel as a general-purpose route, and the information of the first tunnel and the information of the second tunnel may be GRE keys, but are not limited thereto.
  • the established GRE tunnel may include: a GRE tunnel established for each service flow of the mobile terminal according to its granularity; or a GRE tunnel established for each advanced mobile terminal; or a GRE tunnel established for each ARS.
  • the first tunnel and the second tunnel have a mapping relationship, and the mapping relationship information is saved at the base station. It should be noted that the foregoing mapping relationship may be a corresponding relationship or a corresponding relationship.
  • the step S404 may include: Step S4041: The RS encapsulates the uplink data into a second GRE/IP encapsulation packet, and further encapsulates the second GRE/IP encapsulation packet into a relay medium access control protocol.
  • a data unit (Relay MAC PDU, or a relay MAC PDU) is sent to the BS.
  • the information of the second tunnel determines the information of the first tunnel, and repackages the payload into a first GRE/IP encapsulation packet and sends it to the ASN GW through the first tunnel.
  • the second GRE/IP encapsulation packet is further encapsulated into a relay medium access control protocol data unit.
  • the MAC PDU is sent to the BS through the second tunnel.
  • the method may include: the RS re-encapsulating the second GRE/IP encapsulation packet into a relay MAC address.
  • the PDU is then mapped to the air interface with the corresponding quality of service level and sent to the BS.
  • Step 1 The relay station receives the MAC PDU from the mobile terminal, parses the received MAC PDU, and encapsulates the payload into a GRE/IP packet ( That is, the second GRE/IP encapsulation packet, and the GRE/IP packet is processed and encapsulated into a Relay MAC PDU and sent to the base station; preferably, the GRE/IP packet carries the information of the second tunnel.
  • a GRE/IP packet That is, the second GRE/IP encapsulation packet, and the GRE/IP packet is processed and encapsulated into a Relay MAC PDU and sent to the base station; preferably, the GRE/IP packet carries the information of the second tunnel.
  • Step 2 The base station parses the received Relay MAC PDU, and further parses the GRE/IP encapsulation data to obtain the GRE key information, and the base station obtains the GRE tunnel between the corresponding base station and the access network gateway by using the stored GRE tunnel mapping relationship (ie, , the first tunnel) corresponding GRE key, and re-encapsulate the payload of the received GRE/IP encapsulation packet (ie, the second GRE/IP encapsulation packet) and the GRE key corresponding to the second tunnel into a GRE/IP encapsulation Packet (ie, the first GRE/IP encapsulation package;).
  • the base station parses the received Relay MAC PDU, and further parses the GRE/IP encapsulation data to obtain the GRE key information, and the base station obtains the GRE tunnel between the corresponding base station and the access network gateway by using the stored GRE tunnel mapping relationship (ie, , the first tunnel) corresponding GRE key, and re-encapsul
  • Step 3 The base station sends the encapsulated GRE/IP encapsulation packet (that is, the first GRE/IP encapsulation packet) to the access network gateway through the first tunnel.
  • the process in which the relay station encapsulates the GRE/IP packet into the Relay MAC PDU and sends the signal to the base station includes: establishing one or more air interface connection service flows for data transmission with different quality of service levels between the relay station and the base station; When the GRE encapsulation data is mapped to the air interface connection service flow, the GRE tunnel data with different quality of service levels (that is, the GRE/IP encapsulated data after the header compression processing with different DSCP values) is connected through the corresponding air interface. The traffic is sent to the base station.
  • the correspondence between the GRE tunnel and the air interface bearer (ie, the trunk air interface) connecting the service flow between the relay station and the base station may be a corresponding or a many-to-one relationship; that is, the service flow of the mobile terminal and There is a corresponding or many-to-one mapping relationship between the trunk air interface connection service flows.
  • the QoS level of the GRE tunnel is represented by a differential monthly code point DSCP value.
  • the header compression processing manner may include one of the following methods: compressing and cutting, completely compressing the static parameters, retaining the GRE key of the GRE part, and compressing the bytes occupied by the sequence number field; using for dynamic parametric compression
  • the compression protocol compresses the GRE/IP encapsulation header; discards the IP header in the GRE/IP encapsulation header, and compresses the GRE header in the GRE/IP encapsulation header.
  • the step S404 may include: Step S4043: The ASN GW encapsulates the downlink data into the first GRE/IP encapsulation packet and sends the packet to the BS through the first tunnel.
  • Step S4044 the BS records the mapping relationship and the parsing
  • the information of the first tunnel obtained by the first GRE/IP encapsulation header determines information of the second tunnel, repackages the payload into a second GRE/IP encapsulation packet, and further encapsulates the second GRE/IP encapsulation packet into a Relay MAC PDU. Send to RS.
  • the method may further include: RS parsing 1 ⁇ 1&1 ⁇ ?01; obtaining a second 011£/1?
  • the method may further include: determining, by the BS, whether the destination MS of the downlink data is an MS under the jurisdiction of the BS or an MS under the RS under the jurisdiction of the BS, if the BS is The MS under its jurisdiction encapsulates the downlink data into a MAC PDU and sends it to the destination MS. If it is the MS under the jurisdiction of the BS, it continues the subsequent processing.
  • the second GRE/IP encapsulation packet is further encapsulated into a relay MAC PDU, and the second GRE/IP encapsulation packet is re-encapsulated into a Relay MAC PDU and mapped to have corresponding services.
  • the quality level air interface is sent to the RS on the service flow.
  • Step 1 The access network gateway receives the data from the external node, performs the GRE/IP encapsulation and sends the data to the base station through the first tunnel;
  • Step 2 The base station parses the received GRE/IP encapsulation data, obtains GRE key information (which can be obtained from the GRE/IP header), and obtains a GRE tunnel between the corresponding base station and the relay station by using the stored GRE tunnel mapping relationship (ie, , the second tunnel) corresponding GRE key, and re-encapsulate the payload of the received GRE/IP encapsulation packet (ie, the first GRE/IP encapsulation packet) and the GRE key corresponding to the second tunnel into the corresponding GRE/IP Package package.
  • Step 3 The base station sends the encapsulated GRE/IP data (that is, the second GRE/IP encapsulation packet) to the relay station in a relay MAC PDU (Relay MAC PDU) format through the second tunnel.
  • the base station may send the re-encapsulated data to the relay station in a relay MAC PDU format on the relay connection, and the relay connection may be identified by a Relay CID, a Tunnel CID, a Relay FID, or the like.
  • Step 4 After receiving the Relay MAC PDU, the RS parses the GRE/IP encapsulation packet (that is, the second GRE/IP encapsulation packet), and parses the GRE/IP encapsulation packet to obtain corresponding data (that is, the GRE/IP encapsulation).
  • the access network gateway sends the GRE/IP encapsulated data to the base station, and the access network gateway belongs to the mobile terminal under the control of the base station (including the mobile station under the jurisdiction of the base station) The data of the terminal is encapsulated into a GRE/IP packet and sent to the base station.
  • the base station is receiving After the data, the GRE/IP encapsulation packet is parsed, and the data belonging to the mobile terminal under the relay station is encapsulated into a GRE/IP packet, and sent to the relay station in the format of the Relay MAC PDU; the data belonging to the mobile terminal under the jurisdiction is no longer performed.
  • the GRE/IP is encapsulated and sent directly to the mobile terminal in the format of a MAC PDU. That is, before the information of the second tunnel and the downlink data are encapsulated into the second GRE/IP encapsulation packet, the BS may first determine whether the destination MS of the downlink data is the MS under the jurisdiction of the BS or the MS under the RS under the jurisdiction of the BS.
  • the process of the base station transmitting the encapsulated GRE/IP data in the relay MAC PDU format to the relay station through the second tunnel includes: establishing one or more monthly quality levels of the data transmission between the base station and the relay station for data transmission
  • the air interface connects the service flow; when the base station maps the GRE encapsulation data to the air interface connection service flow, the GRE encapsulation data with different quality of service levels (that is, the GRE/IP encapsulation after the header compression processing with different DSCP values) After the data is sent to the relay station through the corresponding air interface connection service flow.
  • the correspondence between the GRE tunnel and the air interface (that is, the trunk air interface) connected to the service flow between the base station and the relay station may be a corresponding or a many-to-one mapping relationship; that is, a service of the mobile terminal There is a one-to-one or many-to-one mapping relationship between the flow and the relay service flow.
  • the QoS level of the GRE tunnel can be represented by a differential monthly service code point DSCP value.
  • the header compression processing performed by the foregoing second GRE/IP encapsulation packet may include, but is not limited to, one of the following processes: completely compressing the static parameter according to the compression protocol, retaining the GRE key of the GRE part, and using the word occupied by the sequence number field The section is compressed; the GRE/IP encapsulation header is compressed using a compression protocol suitable for dynamic parametric compression; the IP header in the GRE/IP encapsulation header is discarded, and the GRE header in the GRE/IP encapsulation header is compressed.
  • the first tunnel and the second tunnel are UDP/IP tunnels, the first tunnel between the access network gateway and the base station, and the second tunnel between the base station and the relay station There may be a corresponding mapping relationship, which is stored at the base station.
  • the step S404 may include: Step S4045: The RS encapsulates the uplink signaling into a second UDP/IP encapsulation packet, and further encapsulates the second UDP/IP encapsulation packet into a Relay MAC PDU.
  • the second tunnel is sent to the BS;
  • Step S4046 The BS parses the Relay MAC PDU to obtain a second UDP/IP encapsulation packet, and determines the information of the first tunnel according to the mapping relationship and the information of the second tunnel obtained by parsing the second UDP/IP encapsulation header, and re-stores the payload.
  • the first UDP/IP encapsulation packet is encapsulated and sent to the ASN GW through the first tunnel.
  • further encapsulating the second UDP/IP encapsulation packet into the relay MAC PDU to be sent to the BS by using the second tunnel may include: the RS re-encapsulating the second UDP/IP encapsulation packet into the relay MAC PDU and mapping to the corresponding service The quality level of the air interface management connection traffic is sent to the BS.
  • Step 1 The relay station performs UDP/IP encapsulation of the R6 message and the second tunnel information (obtains a second UDP/IP encapsulation packet;), to Relay
  • the format of the MAC PDU is sent to the base station through the second tunnel, and specifically, is sent to the base station through the second tunnel on the air interface management connection.
  • the information of the second tunnel may be encapsulated in a header of a UDP/IP encapsulation packet
  • the second UDP/IP encapsulation packet may be a specially processed encapsulation packet, for example, subjected to header compression processing, including payload header compression. PHS or robust head compression ROHC, etc.
  • Step 2 After receiving the Relay MAC PDU from the relay station, the base station parses it, and further parses the UDP/IP encapsulation header of the signaling to obtain the second tunnel information, and according to the mapping between the two tunnels stored. The relationship obtains the information of the first tunnel, and encapsulates the information of the payload and the first tunnel into a UDP/IP packet (ie, the first UDP/IP encapsulation packet); Step 3, the base station encapsulates the UDP/IP packet (ie, the first A UDP/IP encapsulation packet is sent to the access network gateway.
  • the first UDP/IP encapsulation packet may be subjected to header compression processing.
  • the process in which the relay station sends the UDP/IP encapsulation packet to the base station in the format of the relay MAC PDU includes: Step 11: Establish one or more quality of service levels different between the relay station and the base station for signaling The air interface of the transmission manages the connection service flow; Step 4 gathers 12, and when the relay station maps the UDP/IP encapsulation packet to the air interface management connection, the UDP/IP encapsulation packet with different quality of service levels is sent to the corresponding air interface management connection to the corresponding air interface management connection.
  • Step 11 Establish one or more quality of service levels different between the relay station and the base station for signaling The air interface of the transmission manages the connection service flow;
  • Step 4 gathers 12, and when the relay station maps the UDP/IP encapsulation packet to the air interface management connection, the UDP/IP encapsulation packet with different quality of service levels is sent to the corresponding air interface management connection to the corresponding air interface management connection.
  • Base station
  • the correspondence between the UDP/IP tunnel and the air interface bearer (ie, the air interface management connection) between the relay station and the base station may be a corresponding or a many-to-one relationship.
  • the step S404 may include: Step S4047: The ASN GW encapsulates the downlink signaling into the first UDP/IP encapsulation packet and sends the packet to the BS through the first tunnel.
  • Step S4048 the BS according to the mapping relationship and Parsing the information of the first tunnel obtained by the first UDP/IP encapsulation header to determine the information of the second tunnel, repackaging the payload into a second UDP/IP encapsulation packet, and further encapsulating the second UDP/IP encapsulation packet into a Relay MAC
  • the PDU is sent to the RS.
  • the method may further include: the RS parses the Relay MAC PDU to obtain the second UDP/IP encapsulation packet, and parses the second UDP/IP encapsulation packet.
  • the downlink signaling generates the air interface side message format of the downlink signaling, and encapsulates the downlink signaling with the air interface side message format into a MAC PDU and sends the message to the MS.
  • the second UDP/IP encapsulation packet is further encapsulated into a relay MAC PDU and sent to the RS through the second tunnel.
  • the method may include: the BS re-encapsulates the second UDP/IP encapsulation packet into a relay MAC PDU and then maps to the corresponding service. The quality level of the air interface management connection traffic is sent to the RS.
  • Step 1 The access network gateway encapsulates the signaling message and the information of the first tunnel into a UDP/IP encapsulation packet (ie, the first UDP/IP The encapsulated packet is sent to the base station. Specifically, the information of the first tunnel may be located in a package header of the UDP/IP encapsulation packet.
  • Step 2 The base station receives the UDP/IP encapsulation packet from the access network gateway, obtains UDP/IP tunnel information (that is, the information of the first tunnel), and obtains according to the mapping relationship between the stored two tunnels.
  • the information of the second tunnel encapsulates the information of the payload and the second tunnel into a UDP/IP packet (ie, a second UDP/IP encapsulation packet), and sends the information to the relay station through the second tunnel in a format of a relay MAC PDU.
  • the second UDP/IP encapsulation packet may be subjected to compression processing, for example, header compression processing, including payload header compression PHS or robust header. Compress ROHC and so on.
  • Step 3 After receiving the Relay MAC PDU, the relay station parses the relay MAC PDU to obtain a second UDP/IP encapsulation packet, parses the second UDP/IP encapsulation packet to obtain a downlink signaling message (which may be an R6 message), and generates an air interface side.
  • the message format is encapsulated into a MAC PDU and sent to the MS.
  • the base station sends the UDP/IP encapsulation packet to the relay station in the format of the relay MAC PDU.
  • the method includes: establishing, by the base station and the relay station, one or more air interface management connection services for signaling transmission with different quality of service levels.
  • the base station maps the UDP/IP encapsulation packet to the air interface management connection
  • the UDP/IP encapsulation packet with different quality of service levels is sent to the relay station through the corresponding air interface management connection.
  • the correspondence between the UDP/IP tunnel and the air interface bearer (ie, the air interface management connection) between the base station and the relay station may be a corresponding or a many-to-one relationship.
  • the GRE/IP encapsulation package including the first GRE/IP encapsulation package and the second GRE/IP encapsulation package
  • the UDP/IP encapsulation package including the first A UDP/IP and a second UDP/IP are compressed packets.
  • the compression processing can be header compression, but not limited to jt.
  • header compression can be used.
  • the above (1) data transmission and (2) signaling transmission processes are based on the two-mega relay network scenario of the access network gateway->base station->relay station (destination relay station, ie, the final relay station to be transmitted), and The above method is still applicable to the case where there is one or more intermediate relay stations between the base station and the above relay station (ie, a multi-mega relay network, and data forwarding is performed between the base station and the mobile terminal through multiple relay stations (more than one), And the information transmission method between the access network gateway and the base station is the same as in the two-mega relay network.
  • the second tunnel can be understood as a multi-segment tunnel from the BS to the RS via one or more intermediate RSs.
  • a GRE/IP or UDP/IP tunnel is established between two adjacent nodes (base stations and relay stations), and the source IP address and the destination IP address are both nodes of the tunnel.
  • the service flow 7 of the mobile terminal is carried on different tunnels and is identified by the information of the tunnel.
  • the establishment of the relay service flow may be between two adjacent nodes, or between the base station and the destination relay station. According to the different methods of establishing the business flow, the specific transmission process is slightly different.
  • the service flow of the mobile terminal and the relay service flow have a corresponding relationship according to the service flow quality level parameter (QoS), that is, the GRE tunnel and The relay service flows have a corresponding relationship according to the service flow quality level parameter (QoS).
  • QoS service flow quality level parameter
  • a node has a mapping relationship with the GRE tunnel between the upper node and the lower node.
  • QoS service flow quality level parameter
  • the service flow of the mobile terminal and the relay service flow have a correspondence relationship according to the service flow quality level parameter (QoS), that is, each segment of the GRE tunnel Corresponding relationship with the traffic flow quality parameter (QoS) between the relay service flow and the relay service flow.
  • the GRE tunnel between the node and the upper node has a mapping relationship with the GRE tunnel between the lower nodes.
  • the above relay service flow may be jointly addressed by the STID of the relay station and the service flow connection FID.
  • the step S404 may specifically include: Step 1: Perform signaling and/or data transmission between the ASN GW and the BS by using the first tunnel; the step is substantially the same as the foregoing steps, except that the mapping relationship is the first tunnel and the second The mapping relationship between the first tunnels in the tunnel, and the relay stations of the intermediate relay station and the target are essentially relay stations. Therefore, the transmission means and the transport packet format are the same.
  • Step 2 Perform signaling and/or data transmission of the BS to the destination RS via the one or more intermediate RSs according to the mapping relationship between the adjacent tunnels in the multi-segment tunnel.
  • step S404 may specifically include: Step 1: The ASN GW sends downlink data and/or signaling to the BS through the first tunnel, and the step is substantially the same as the foregoing step 4.
  • Step 2 The BS performs addressing according to the station identifier STID of the RS.
  • FIG. 12 is a flowchart of a method for transmitting information of a relay communication network according to an embodiment of the present invention. As shown in FIG.
  • the method includes: 4 ⁇ S 1202, establishing a first tunnel, where the first tunnel is a tunnel between the ASN GW and the BS; Step S1204: Perform signaling transmission between the ASN GW and the BS through the first tunnel, and perform signaling transmission between the BS and the RS through the air interface.
  • the step S1204 may include: the RS sends the uplink signaling bearer to the BS on the air interface side message, where the uplink signaling includes one of the following: The R6 interface message generated by the signaling message, and the R6 interface message generated by the RS; the BS encapsulates the uplink signaling that is parsed from the air interface side message into a UDP/IP encapsulation packet and sends the packet to the ASN GW.
  • the uplink signaling transmission process in this embodiment may include the following steps: Step 1: The RS carries the uplink signaling (or signaling message) of the R6 interface on the air interface side message and sends the message to the BS.
  • the uplink signaling of the R6 interface includes one of the following: an R6 interface message generated by a signaling message from the MS, and an R6 port message generated by the RS.
  • the RS may map the air interface side message to the service stream with the corresponding quality of service level and send it to the BS.
  • the step S1204 may include: the ASN GW encapsulates the downlink signaling into a UDP/IP encapsulation packet and sends the packet to the BS through the first tunnel; the BS parses the UDP/IP encapsulation packet to obtain downlink signaling, and the net The bearer is sent to the RS on the air interface side message.
  • the downlink signaling transmission process in this embodiment may include the following steps: Step 1: The ASN GW encapsulates the downlink signaling (or signaling message) of the R6 interface into a UDP/IP encapsulation packet and sends the packet to the UDP/IP encapsulation packet.
  • Step 2 The BS parses the UDP/IP encapsulation packet to obtain downlink signaling (load of UDP/IP encapsulation;), and carries the downlink signaling on the air interface side message (that is, encapsulated into an air interface side message format) and sends it to the RS. .
  • the BS may map the air interface side message to the RS with the corresponding monthly service quality level.
  • the method in this embodiment can also be applied in a multi-hop relay, that is to say, the BS and the RS perform signaling transmission via the air interface via one or more intermediate RSs.
  • 5 is a schematic diagram of a data plane protocol stack architecture of a layer three relay station according to an embodiment of the present invention, and FIG.
  • Example 1 In the downlink data transmission, the basic process of data transmission in the relay communication network includes: Step 1: The ASN GW establishes a GRE tunnel between the ASN GW and the ABS, and the addresses of the two ends of the GRE tunnel are ASN GW and ABS respectively. IP address; ABS establishes a GRE tunnel between ABS and ARS.
  • the addresses of the two ends of the tunnel are the IP addresses of ABS and ARS respectively.
  • the data transmission between the ASN GW and the ABS is a wired bearer, and the data transmission between the ABS and the ARS is a radio bearer.
  • the AMS service flow connection is carried on the GRE tunnel, and different service flow connections correspond to different GRE keys (equivalent to corresponding different tunnels).
  • Step 2 After receiving the IP packet from the external node (for example, other ASN GW or core network), the ASN GW classifies the data of the AMSs belonging to the ABS according to a certain principle, for example, a destination IP address.
  • Step 3 After receiving the foregoing data, the ABS reads the GRE key in the GRE encapsulation header, and according to the mapping relationship between the stored GRE tunnels at both ends, the load in the received GRE encapsulation packet is between the base station and the relay station.
  • the GRE key of the GRE tunnel is re-encapsulated and processed and mapped to the corresponding air interface trunk connection and sent to the ARS in the format of the Relay MAC PDU.
  • the method includes: In the wireless relay network defined by IEEE802.16m, a plurality of unidirectional QoS classes with different QoS levels for data transmission are established between the ARS and the ABS. In step 3, when the ABS maps the GRE encapsulation packet to the air interface service flow, the GRE packet with different QoS levels is adopted through the Differentiated Services Codepoint (DSCP) field in the GRE encapsulation header. Map to different traffic flows and send them to ARS.
  • DSCP Differentiated Services Codepoint
  • the QoS level of the service flow between the ARS and the ABS and the value of the DSCP field in the GRE packet may be a corresponding relationship, or may be a one-to-many or many-to-one correspondence.
  • Example 2 The downlink data transmission method will be specifically described below with reference to FIG. 6. Step 1: The ASN GW establishes a GRE tunnel between the ASN GW and the ABS; the ABS establishes a GRE tunnel between the ABS and the ARS. Each service flow connection of the AMS has a corresponding mapping relationship with the GRE key on the two GRE tunnels. The mapping relationship between the two GRE tunnels is stored at the ABS.
  • one or more relay service flow connections for data transmission are established between the ABS and the ARS, and a mapping relationship is established between the AMSs service flow and the relay service flow connection according to the QoS level parameter.
  • the DSCP value on the GRE/IP encapsulation between the ABS and the ARS is also mapped to the relay service flow according to the QoS class parameter. Therefore, the AMSs service flow, the relay service flow between the ABS and the ARS, and the GRE/IP encapsulation between the ABS and the ARS have a mapping relationship according to the QoS level parameter.
  • Step 2 After receiving the IP packet, the ASN GW obtains the destination AMS information by parsing the destination IP address in the IP header, and then mapping the IP packet to the corresponding GRE tunnel, setting the GRE key and the DSCP value for the ASN GW. GRE/IP encapsulation. The ASN GW sends the GRE/IP encapsulation packet to the ABS through the wired bearer on the GRE tunnel.
  • Step 3 After receiving the GRE/IP encapsulation packet, the ABS parses the GRE key. According to the mapping relationship between the two GRE tunnels stored, the GRE key between the ABS and the ARS is re-encapsulated. It is then mapped to the relay traffic between the corresponding ABS and ARS according to its DSCP value.
  • the ABS performs header compression on the GRE/IP encapsulation packet, and encapsulates the compressed GRE/IP encapsulation packet as a payload into a Relay MAC PDU to be sent to the ARS on the relay service flow.
  • Step 4 The ARS is connected to the Relay MAC PDU sent by the ABS.
  • the GRE/IP header is parsed to obtain the GRE key, and the GMS key is used to obtain the AMS service corresponding to the encapsulation packet.
  • Stream connection information is used to obtain the AMS service corresponding to the encapsulation packet.
  • the payload (SDU) is re-encapsulated into the MAC PDU format defined in IEEE802.16m and sent to the AMS on the AMS air interface service flow connection.
  • Example 3 For the uplink data transmission, the basic process is similar to the downlink data transmission. The detailed process includes: Step 1: The relay station establishes a GRE tunnel with the base station, and the base station establishes a GRE tunnel with the access network gateway. The two tunnels have a corresponding mapping relationship, and the mapping relationship is stored at the base station.
  • Step 2 After receiving the data from the mobile terminal, the relay station maps the service flow of the mobile terminal to the uplink GRE tunnel, that is, performs GRE/IP encapsulation and header compression on the payload in the MAC PDU, and encapsulates the packet into a relay.
  • the MAC PDU is then sent to the base station on the trunk air interface traffic flow connection between the relay station and the base station.
  • the mobile terminal service flow has a many-to-one or one-to-one mapping relationship with the relay air interface traffic flow between the relay station and the base station.
  • Step 3 After receiving the Relay MAC PDU, the base station parses the Relay MAC header; obtains the GRE/IP encapsulation packet in the payload and parses the GRE header to obtain the GRE key information; the base station receives the received two-stage GRE tunnel mapping relationship.
  • the GRE/IP encapsulation packet is re-encapsulated into a GRE/IP encapsulation packet of the GRE tunnel between the corresponding base station and the access gateway; the base station sends the re-encapsulated GRE/IP encapsulation packet to the access network gateway.
  • Example 4 A relay network can be extended to a multi-mega relay, that is, a mobile terminal accesses a base station through multiple (greater than one) relay stations.
  • the implementation of multi-mega relay is similar to that of two-megabit relay.
  • the GRE tunnel is still hop by hop. In other words, the source IP address and destination IP address in the GRE/IP encapsulation header should be in each hop.
  • the base station/intermediate relay station and destination There are two methods for data transmission between relay stations.
  • ABS uses the STID of the destination ARS for addressing, and the intermediate ARS learns that the destination ARS is its own subordinate ARS through the path information, and then receives the header compressed GRE/ The IP packet is forwarded.
  • Method 2 The ABS establishes an end-to-end air interface tunnel between the destination ARSs, and the tunnel information includes end-to-end routing information.
  • the intermediate ARS forwards the header-compressed GRE/IP packets according to the routing information of the air interface tunnel. After the header-compressed GRE/IP packet arrives at the destination ARS, the header is compressed. Then, the payload is mapped to the corresponding AMS service flow connection and sent to the AMS in the format of a MAC PDU.
  • the compression method includes: Method 1: Consider that the IP encapsulation part in the GRE/IP encapsulation header and the payload protocol type of the GRE encapsulation part are static parameters, which can be completely compressed according to the compression protocol; and the GRE encapsulation part
  • the GRE key, Sequence Number two fields are dynamic parameters. According to their functions, the GRE key needs to be completely reserved.
  • the 4-byte Sequence Number field can be compressed into a shorter byte, for example, 1 byte.
  • Method 2 Compress the GRE/IP encapsulation header using a compression protocol such as ROHC for dynamic parametric compression. After compression, the static parameters are completely compressed, the GRE key is reserved, and the Sequence Number can be compressed to a shorter 2 ⁇ 4 bits. However, this compression method requires an ACK channel to respond.
  • Method 3 Considering that the IP header part of the GRE/IP encapsulation header has no substantial effect on the air interface link between the ABS and the ARS, the IP header part may be discarded, and the GRE header part is compressed. The method in Method 1 or Method 2 can still be used for the compression of the GRE header portion. In order to complete the data transmission of the above data plane, FIG.
  • the signaling transmission method includes: Step 1: Establish two UDP/IP tunnels for signaling transmission, where two endpoints of a tunnel are an access network gateway and a base station, and two endpoints of the other tunnel are respectively a base station and checkpoint. The mapping relationship between the two UDP/IP tunnels is stored at the base station.
  • Step 2 According to whether the signaling of the transmission is downlink signaling or uplink signaling, the following steps 2-1 or 4 are gathered: 2-2: Step 2-1: In the downlink signaling transmission, the base station obtains UDP/IP tunnel information by parsing the UDP/IP encapsulation header, and re-encapsulates the load into UDP/IP according to the correspondence between the two tunnels stored. The base station performs header compression processing on the re-encapsulated UDP/IP packet and then transmits it to the relay station on the air interface management connection in the format of the relay MAC PDU.
  • Step 2-2 In the uplink signaling transmission, the relay station performs UDP/IP encapsulation on the R6 message for header compression processing and sends the R6 message to the base station in the format of the Relay MAC PDU on the air interface management connection; the base station receives the UDP/IP encapsulation header after receiving Obtaining UDP/IP tunnel information; the base station repackages the load into a UDP/IP packet according to the correspondence between the two tunnels stored; the base station performs header compression processing on the re-encapsulated UDP/IP packet and then sends the packet to the access Network gateway.
  • FIG. 10 is an ARS according to an embodiment of the present invention.
  • FIG. 11 is a structural block diagram of an information transmission system of a relay communication network according to an embodiment of the present invention. As shown in FIG. 11, the method includes:
  • the ASN GW 1102 is configured to establish a first tunnel, and send signaling and/or data to the BS 1104 through the first tunnel, where the first tunnel is a tunnel between the ASN GW 1102 and the BS 1104;
  • BS 1104 connected to the ASN GW 1102, configured to establish a second tunnel, and send signaling and/or data to the RS 1106 through the second tunnel, where the second tunnel is a tunnel between the BS 1104 and the RS 1106;
  • FIG. 11 is a structural block diagram of an information transmission system of a relay communication network according to an embodiment of the present invention. As shown in FIG. 11, the method includes:
  • the RS 1106, configured to establish a second tunnel, and send signaling and/or data to the BS 1104 through the second tunnel, where the second tunnel is a tunnel between the BS 1104 and the RS 1106;
  • the BS 1104 is connected to the RS 1106, and is configured to establish a first tunnel, and send signaling and/or data to the ASN GW 1102 through the first tunnel, where the first tunnel is a tunnel between the ASN GW 1102 and the BS 1104;
  • the ASN GW 1102, coupled to the BS 1104, is arranged to receive signaling and/or data from the BS 1104 through the first tunnel.
  • the system is used to implement the information transmission method of the foregoing relay communication network, and the specific implementation method thereof has been described in detail in the method embodiment, and is not described herein.
  • the present invention implements data and/or signaling transmission by establishing a tunnel between ASN GW base stations and base stations and relay stations, and solves the problem that Layer 3 relay cannot be implemented in related technologies. Then, the layer three relay is realized.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any particular combination of hardware and software.
  • the above description is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

中继通信网络的信息传输方法及系统 技术领域 本发明涉及通信领域, 具体而言, 涉及一种中继通信网络的信息传输方 法及系统。 背景技术 图 1是根据相关技术的无线中继通信网络架构的示意图, 如图 1所示, 在多跳无线中继系统中, 支持多跳中继的基站( Multi-hop Relay Base Station , 简称为 BS )和移动终端 ( Mobile Station, 简称为 MS )之间设置有一个或多 个中继站 ( Relay Station, 简称为 RS ), RS对 BS和 MS的信号进行中继传 输, 以达到扩展覆盖范围和增加系统容量的目的。 基于中继站所支持的数据转发机制以及中继站对下属站的控制能力, 可 以将中继站分为仅支持空口侧功能块的层二中继站和支持接入网侧功能块的 层三中继站。 由于层二中继站仅支持网络协议架构中的最氐两层 (即, 物理 ( PHY ) 层和媒体接入控制 (Media Access Control, 简称为 MAC ) 层), 中 继站直接或间接地与基站相连, 受基站控制。 对接入网网关 ( Access Service Network Gateway, 简称为 ASN GW ) 来说层二中继站并不存在。 而层三中 继站除了支持 PHY和 MAC两层之外, 还支持与 ASN GW之间的接口, 因 此对 ASN GW来说, 层三中继站是可见的。 在一些标准协议 (例如, 电气和 802.16m ) 中, 又将层三中继站称作分布式控制中继站。 IEEE802.16m是基 于 IEEE802.16e System Profile Rell.O的演进的空口标准, 其能够对 System Profile Rell.O提供完全的后向兼容。 为了区别 IEEE802.16e中的 BS、 RS和 MS , IEEE802.16m中的基站、中继站和用户终端称为先进基站( Advanced BS , 简称为 ABS )、 先进中继站 (Advanced RS , 简称为 ARS ) 和先进移动终端 ( Advanced MS , 简称为 AMS )„
IEEE802.16m与 IEEE802.16e的空中接口寻址方法有所不同。 在
IEEE802.16e中, MS和 BS之间使用连接标识 ( Connection Identifier, 简称 为 CID )对业务流进行标识; 而在 IEEE802.16m中, 为了减少 CID字段在媒 体接入控制十办议数据单元 ( Media Access Control Protocol data unit , 简称为 MAC PDU ) 中的开销, 将其分成两部分, 分别为 12bits的站点标识(Station Identifier, 简称为 STID ) 和 4bits的流标识 ( Flow Identifier, 简称为 FID )„ 在数据传输时, STID通过掩码循环冗余校验( Mask Cyclic Redundancy Code, 简称为 MCRC ) 故掩码携带于资源指示演进的资源映射单元 (Advanced MAP, 简称为 A-MAP ) 中, 而 FID携带于 MAC PDU中。
IEEE802.16e通信协议中, BS和 ASN GW之间通过 R6口进行通信。 在 R6口上, 数据面传输使用通用路由封装( Generic Routing Encapsulation, 简 称为 GRE )封装。 图 2是根据相关技术的基于互联网协议( Internet Protocol, 简称为 IP ) 汇聚子层 ( convergence sub-layer, 简称为 CS ) 的 GRE封装格式 的示意图, 如图 2所示, GRE封装格式主要包含如下字段: 差分服务代码点 ( Differentiated Service Code Point, 简称为 DSCP ), 用 来表示净荷的月艮务质量 (Quality of Service, 简称为 QoS ) 等级。 源 /目标 IP ( Source/Destination IP )地址, 指示 GRE隧道的端点, 例如: BS/ASN GW IP地址。 GRE密钥 ( GRE Key ), 由特定节点进行分配; 在通常情况下, 连接和
GRE key间有——对应关系。 序号 ( Sequence Number ), 用来保证传输过程中数据传输的同步及连续 性。 如图 2所示, GRE封装格式还可以包括以下内容: IP Ver, IP HLEN, IP数据包总长度 ( IP Datagram Total Length ), IP标识( IP Identification ), IP 片段偏移 ( IP Fragment Offset ), IP生存期 ( IP Time to Live ), IP协议 ( IP Protocol ), IP头校 -险和 (IP Header Checksum ), GRE净荷十办议类型 (GRE Payload Protocol Type ) 等, 在此不 赘述。 图 3是根据相关技术的基于 IP CS的接入网数据路径的示意图, 图 3示 出了以 IP CS的 GRE封装为基础的接入网中数据路径的功能实现方法。 BS 和 ASN GW分别进行 IEEE802.16e中上行和下行连接与 GRE隧道之间的映 射, 其中, 连接与 GRE key具有——对应关系。 层二中继在实现时对中继站的功能要求较低,但对基站的功能要求较高。 考虑到在基站和中继站之间链路(中继链路) 上需要设计完全不同于以往传 统技术 IEEE802.16e中的信令及数据传输方法, 因此, 在产品实现时不利于 使用已有的软件, 且为互操作测试 (Interoperability Test, 简称为 IOT ) 带来 了较大的难度。 而层三中继使得中继站在 ASN GW处为可见的, 可以直接由 ASN GW对其进行控制。 基站起到在中继站和 ASN GW之间进行数据和信 令转发的功能。 在层三中继中, 由于中继站和基站的功能大体上相似, 仅有 功能强弱的区别, 因此, 中继站可以重复利用已有的 IEEE802.16e中基站的 软件而不需要为中继站专门进行软件开发,从而可以加快中继站的产品开发, 并且保证能够尽快进入市场。 然而, 相关技术中的中继传输网络的信息传输方法无法适用于层三中继 站, 导致无法进行层三中继传输。 发明内容 本发明的目的在于提供一种中继通信网络的信息传输方法及系统, 以解 决上述问题。 根据本发明的一个方面, 提供了一种中继通信网络的信息传输方法, 包 括: 建立第一隧道和第二隧道, 其中, 第一隧道为接入网网关 ASN GW与基 站 BS之间的隧道, 第二隧道为 BS与中继站 RS之间的隧道; 通过第一隧道 和第二隧道进行 ASN GW和 RS之间的信令和 /或数据传输。 通过第一隧道和第二隧道进行 ASN GW和 RS之间的信令和 /或数据传输 包括: 在传输为下行传输的情况下, ASN GW通过第一隧道将下行信令和 / 或数据发送至 BS , BS 居映射关系通过第二隧道转发下行信令和 /或数据到 RS; 在传输为上行传输的情况下, RS通过第二隧道将上行信令和 /或数据发 送至 BS , BS根据映射关系通过第一隧道转发上行信令和 /或数据到 ASN GW; 其中, 映射关系为第一隧道和第二隧道之间的映射关系。 在传输为数据传输的情况下, 第一隧道和第二隧道为通用路由封装 GRE 隧道。 在上行数据传输情况下, 通过第一隧道和第二隧道进行 ASN GW和 RS 之间的数据传输包括: RS将上行数据封装成第二 GRE/IP封装包, 并将第二
GRE/IP封装包进一步封装成中继媒体接入控制协议数据单元 Relay MAC
PDU发送至 BS; BS解析 Relay MAC PDU得到第二 GRE/IP封装包, 根据 映射关系和解析第二 GRE/IP封装包头得到的第二隧道的信息确定第一隧道 的信息, 并将净荷重新封装成第一 GRE/IP封装包通过第一隧道发送至 ASN GW。 在下行数据传输情况下, 通过第一隧道和第二隧道进行 ASN GW和 RS 之间的数据传输包括: ASN GW将下行数据封装成第一 GRE/IP封装包通过 第一隧道发送至 BS; BS 居映射关系和解析第一 GRE/IP封装包头得到的 第一隧道的信息确定第二隧道的信息, 将净荷重新封装成第二 GRE/IP封装 包, 并将第二 GRE/IP封装包进一步封装成 Relay MAC PDU发送至 RS。 在下行数据传输情况下, 将第二 GRE/IP封装包封装成 Relay MAC PDU 发送至 RS之后, 该方法还包括: RS解析 Relay MAC PDU获得第二 GRE/IP 封装包, 解析第二 GRE/IP封装包获得下行数据, 并将下行数据封装成 MAC PDU发送至移动终端 MS。 在下行数据传输情况下,将第二 GRE/IP封装包进一步封装成 Relay MAC PDU发送至 RS之前, 该方法还包括: BS确定下行数据的目的 MS是 BS所 辖的 MS还是 BS所辖的 RS下的 MS , 若是 BS所辖的 MS , 则将下行数据 封装成 MAC PDU发送至目的 MS , 若是 BS所辖的 RS所辖的 MS , 则继续 后续处理。
RS和 BS中的一方将第二 GRE/IP封装包重新封装成 Relay MAC PDU 之后映射到具有相应服务质量等级的空口连接业务流上发送至另一方。 第一隧道的信息和第二隧道的信息包括 GRE key。 在传输为信令传输的情况下, 第一隧道和第二隧道为 UDP/IP隧道。 在上行信令传输情况下, 通过第一隧道和第二隧道进行 ASN GW和 RS 之间的信令传输包括: RS将上行信令封装成第二 UDP/IP封装包, 并将第二 UDP/IP封装包进一步封装成 Relay MAC PDU发送至 BS; BS解析 Relay MAC PDU得到第二 UDP/IP封装包, 才艮据映射关系和解析第二 UDP/IP封装包头 得到的第二隧道的信息确定第一隧道的信息, 并将净荷重新封装成第一 UDP/IP封装包通过第一隧道发送至 ASN GW。 在下行信令传输情况下, 通过第一隧道和第二隧道进行 ASN GW和 RS 之间的信令传输包括: ASN GW将下行信令封装成第一 UDP/IP封装包通过 第一隧道发送至 BS; BS 居映射关系和解析第一 UDP/IP封装包头得到的 第一隧道的信息确定第二隧道的信息, 将净荷重新封装成第二 UDP/IP封装 包, 并将第二 UDP/IP封装包进一步封装成 Relay MAC PDU发送至 RS。 在下行信令传输情况下, 将第二 UDP/IP封装包封装成 Relay MAC PDU 发送至 RS之后, 该方法还包括: RS解析 Relay MAC PDU获得第二 UDP/IP 封装包, 解析第二 UDP/IP封装包获得下行信令, 将下行信令生成空口侧消 息格式, 并将具有空口侧消息格式的下行信令封装成 MAC PDU发送至 MS。
RS和 BS中的一方将第二 UDP/IP封装包重新封装成 Relay MAC PDU 之后映射到具有相应 艮务质量等级的空口管理连接业务流上发送至另一方。
GRE/IP封装包和 /或 UDP/IP封装包为经过压缩处理的封装包, 其中, 压 缩处理包括头压缩。 在 GRE/IP封装包的情况下, 头压缩包括以下方式之一: 才艮据压缩协议 完全压缩静态参量, 保留 GRE部分的 GRE密钥, 并将序号字段所占用的字 节进行压缩; 使用适用于动态参量压缩的压缩协议对 GRE/IP封装头进行压 缩; 将 GRE/IP封装头中的 IP头丢弃, 并对 GRE/IP封装头中的 GRE头进行 压缩。 在下行数据传输情况下, 建立第一隧道和第二隧道包括: ASN GW建立 第一隧道, BS建立第二隧道; 在上行数据传输情况下, 建立第一隧道和第二 隧道包括: BS建立第一隧道, RS建立第二隧道。 第二隧道为从 BS经由一个或多个中间 RS到 RS的多段隧道。 通过第一隧道和第二隧道进行 ASN GW和 RS之间的信令和 /或数据传输 包括: 通过第一隧道进行 ASN GW和 BS之间的信令和 /或数据传输; 根据多 段隧道中的相邻隧道之间的映射关系通过第二隧道进行 BS经由一个或多个 中间 RS到 RS的信令和 /或数据传输。 通过第一隧道和第二隧道进行 ASN GW和 RS之间的下行信令和 /或数据 传输包括: ASN GW通过第一隧道向 BS发送下行信令和 /或数据; BS根据 RS的站点标识 STID进行寻址, 中间 RS根据 STID确定 RS为中间 RS的下 属 RS的情况下, 对下行信令和 /或数据进行转发, 直至下行信令和 /或数据到 达 RS。 根据本发明的另一个方面, 提供了一种中继通信网络的信息传输方法, 包括: 建立第一隧道, 其中, 第一隧道为 ASN GW与 BS之间的隧道; 通过 第一隧道进行 ASN GW和 BS之间的信令传输,通过空中接口进行 BS与 RS 之间的信令传输。 在上行信令传输情况下,通过空中接口进行 BS与 RS之间的信令传输包 括: RS将上行信令承载在空口侧消息上发送至 BS , 其中, 上行信令包括以 下之一: 来自 MS的信令消息生成的 R6口消息, RS生成的 R6口消息; 通 过第一隧道进行 ASN GW和 BS之间的信令传输包括: BS将从空口侧消息 解析出来的上行信令封装成 UDP/IP封装包发送至 ASN GW。 在下行信令传输情况下, 通过第一隧道进行 ASN GW和 BS之间的信令 传输包括: ASN GW将下行信令封装成 UDP/IP封装包通过第一隧道发送至 BS; 通过空中接口进行 BS与 RS之间的信令传输包括: BS解析 UDP/IP封 装包得到下行信令, 并将净荷承载在空口侧消息上发送至 RS。
RS和 BS中的一方将空口侧消息映射到具有相应月艮务质量等级的空口连 接业务流上发送至另一方。
BS和 RS之间通过空中接口经由一个或多个中间 RS进行信令传输。 根据本发明的又一个方面, 提供了一种中继通信网络的信息传输系统, 包括: ASN GW, 设置为建立第一隧道, 并通过第一隧道向 BS发送信令和 / 或数据, 其中, 第一隧道为 ASN GW与 BS之间的隧道; BS , 设置为建立第 二隧道, 并通过第二隧道向 RS发送信令和 /或数据, 其中, 第二隧道为 BS 与 RS之间的隧道; RS ,设置为通过第二隧道接收来自 BS的信令和 /或数据。 根据本发明的再一个方面, 提供了一种中继通信网络的信息传输系统, 包括: RS ,设置为建立第二隧道, 并通过第二隧道向 BS发送信令和 /或数据, 其中, 第二隧道为 BS与 RS之间的隧道; BS , 设置为建立第一隧道, 并通 过第一隧道向 ASN GW发送信令和 /或数据, 其中, 第一隧道为 ASN GW与 BS之间的隧道; ASN GW,设置为通过第一隧道接收来自 BS的信令和 /或数 据。 通过本发明, 釆用在接入网网关和基站之间以及在基站和中继站之间分 别建立传输隧道,通过建立的隧道进行接入网网关和中继站之间的信息传输, 解决了相关技术中无法进行层三中继传输的问题, 实现了层三中继中信令和 / 或数据的传输。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1是根据相关技术的无线中继通信网络架构的示意图; 图 2是根据相关技术的基于 IP CS的 GRE封装格式的示意图; 图 3是根据相关技术的基于 IP CS的接入网数据路径的示意图; 图 4是根据本发明实施例的中继通信网络的信息传输方法的流程图; 图 5是^ f艮据本发明实施例的层三中继站的数据面协议栈架构的示意图; 图 6是根据本发明实施例的层三中继网络中数据传输的示意图; 图 7是才艮据本发明实施例的层三中继网络中数据传输的网络拓朴结构示 意图; 图 8是根据本发明实施例的 ARS与 ABS之间用于数据传输的 Relay
MAC PDU封装格式; 图 9是才艮据本发明实施例的为层三中继站的控制面协议栈架构的示意 图; 图 10是根据本发明实施例的 ARS与 ABS之间用于信令传输的 Relay MAC PDU 装格式的示意图; 图 11是根据本发明实施例的中继通信网络的信息传输系统的结构框图; 图 12是根据本发明实施例的中继通信网络的信息传输方法的流程图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 本发明实施例提供了一种中继通信网络的信息传输方法, 图 4是根据本 发明实施例的中继通信网络的信息传输方法的流程图, 如图 4所示, 该方法 包括: 步骤 S402, 建立第一隧道和第二隧道, 其中, 第一隧道为接入网网关 ASN GW与基站 BS之间的隧道, 第二隧道为 BS与中继站 RS之间的隧道; 步骤 S404,通过第一隧道和第二隧道进行 ASN GW和 RS之间的信令和 /或数据传输。 上述方法可以应用于中继站为层三中继站的情况, 提供了中继通信网络 进行信令和 /或数据传输的流程, 通过该流程即可实现层三中继。 需要说明的 是, 上述的基站、 中继站和移动终端分别包括 IEEE802.16e中的 BS、 RS和 MS , 以及 ΙΕΕΕ802.16m中的 ABS、 ARS和 AMS。 优选地, 在下行数据传输情况下, 步骤 S402可以包括: ASN GW建立 第一隧道, BS建立第二隧道; 在上行数据传输情况下, 步骤 S402可以包括: BS建立第一隧道, RS建立第二隧道。 具体地, 第一隧道可以为有线承载, 第二隧道可以为无线承载。 优选地, 通过第一隧道和第二隧道进行 ASN GW和 RS之间的信令和 / 或数据传输包括:
1、 在下行传输的情况下, ASN GW通过第一隧道将下行信令和 /或数据 发送至 BS , BS 居映射关系通过第二隧道转发下行信令和 /或数据到 RS;
2、 在上行传输的情况下, RS通过第二隧道将上行信令和 /或数据发送至 BS , BS根据映射关系通过第一隧道转发上行信令和 /或数据到 ASN GW; 上述的映射关系为第一隧道和第二隧道之间的映射关系。 优选地, 在数据传输的情况下, 第一隧道和第二隧道为通用路由封装 GRE隧道; 在信令传输的情况下, 第一隧道和第二隧道为 UDP/IP隧道。 以下分别说明上行信令和 /或数据以及下行信令和 /或数据的传输情况下 的步骤 S404的具体处理过程。
(一 )数据的传输 在数据传输的情况下, 第一隧道和第二隧道为通用路由封装 GRE隧道 , 且第一隧道的信息和第二隧道的信息可以为 GRE key, 但不限于此。 建立的 GRE隧道的根据其粒度不同可以包括:为移动终端的每个业务流建立的 GRE 隧道; 或者, 为每个先进移动终端建立的 GRE隧道; 或者, 为每个 ARS建 立的 GRE隧道。 上述的第一隧道和第二隧道之间具有映射关系, 该映射关 系信息在基站处保存。 需要说明的是, 上述映射关系可以是——对应的关系, 也可以不是 对应的关系。 上行数据传输 对于上行数据的传输, 步骤 S404可以包括: 步骤 S4041 , RS将上行数据封装成第二 GRE/IP封装包,并将第二 GRE/IP 封装包进一步封装成中继媒体接入控制协议数据单元( Relay MAC PDU, 或 称中继 MAC PDU )发送至 BS; 步骤 S4042 , BS解析 Relay MAC PDU得到第二 GRE/IP封装包, 才艮据 映射关系和解析第二 GRE/IP封装包头得到的第二隧道的信息确定第一隧道 的信息, 并将净荷重新封装成第一 GRE/IP封装包通过第一隧道发送至 ASN GW。 优选地, 将第二 GRE/IP封装包进一步封装成中继媒体接入控制协议数 据单元 MAC PDU通过第二隧道发送至 BS可以包括: RS将第二 GRE/IP封 装包重新封装成中继 MAC PDU之后映射到具有相应 艮务质量等级的空口连 接业务流上发送至 BS。 在实际应用中, 可以釆用以下具体步骤进行上行数据的传输: 步骤 1 ,中继站接收到来自移动终端的 MAC PDU,对接收到的 MAC PDU 进行解析之后, 将净荷封装成 GRE/IP包 (即, 第二 GRE/IP封装包), 并将 GRE/IP包处理后封装成 Relay MAC PDU并发送给基站;优选地,该 GRE/IP 包中携带有第二隧道的信息。 步骤 2, 基站解析接收到的 Relay MAC PDU, 并进一步解析 GRE/IP封 装数据, 获得 GRE key信息, 基站通过所存储的 GRE隧道映射关系获得相 应的基站与接入网网关之间 GRE隧道(即, 第一隧道)对应的 GRE key, 并 将所接收到的 GRE/IP封装包(即, 第二 GRE/IP封装包)的净荷和第二隧道 对应的 GRE key重新封装成 GRE/IP封装包 (即, 第一 GRE/IP封装包;)。 步骤 3 , 基站将封装后的 GRE/IP封装包 (即, 第一 GRE/IP封装包)通 过第一隧道发送给接入网网关。 优选地, 中继站将 GRE/IP包封装成 Relay MAC PDU并发送给基站的过 程具体包括: 中继站和基站之间建立一或多条服务质量等级不同的用于数据 传输的空口连接业务流; 中继站在将 GRE封装数据映射到空口连接业务流 上时, 将具有不同服务质量等级的 GRE隧道数据 (即, 具有不同 DSCP值 的经过头压缩处理后的 GRE/IP封装后的数据) 通过相应的空口连接业务流 发送给基站。 进一步的, 中继站与基站之间 GRE隧道与空口承载 (即, 中 继空口) 连接业务流之间的对应关系可以为——对应或者多对一的关系; 也 就是说, 移动终端的业务流与中继空口连接业务流之间具有——对应或者多 对一的映射关系。 进一步的, GRE隧道的 QoS等级由差分月艮务代码点 DSCP 值表示。 具体地, 头压缩处理方式可以包括以下方式之一: 居压缩切、议完全压 缩静态参量, 保留 GRE部分的 GRE密钥, 并将序号字段所占用的字节进行 压缩; 使用适用于动态参量压缩的压缩协议对 GRE/IP封装头进行压缩; 将 GRE/IP封装头中的 IP头丢弃, 并对 GRE/IP封装头中的 GRE头进行压缩。 下行数据传输 对于下行数据的传输, 步骤 S404可以包括: 步骤 S4043 , ASN GW将下行数据封装成第一 GRE/IP封装包通过第一 隧道发送至 BS; 步骤 S4044, BS才艮据映射关系和解析第一 GRE/IP封装包头得到的第一 隧道的信息确定第二隧道的信息, 将净荷重新封装成第二 GRE/IP封装包, 并将第二 GRE/IP封装包进一步封装成 Relay MAC PDU发送至 RS。 将第二 GRE/IP封装包封装成 Relay MAC PDU通过第二隧道发送至 RS 之后, 还可以包括: RS解析 1^1& 1^ ?01;获得第二011£/1?封装包, 解 析第二 GRE/IP封装包获得下行数据 , 并将下行数据封装成 MAC PDU发送 至移动终端 MS。 将第二 GRE/IP封装包进一步封装成 Relay MAC PDU发送至 RS之前, 该方法还可以包括: BS确定下行数据的目的 MS是 BS所辖的 MS还是 BS 所辖的 RS下的 MS , 若是 BS所辖的 MS , 则将下行数据封装成 MAC PDU 发送至目的 MS , 若是 BS所辖的 RS所辖的 MS , 则继续后续处理。 优选地, 将第二 GRE/IP封装包进一步封装成中继 MAC PDU通过第二 隧道发送至 RS可以包括: BS将第二 GRE/IP封装包重新封装成 Relay MAC PDU之后映射到具有相应 艮务质量等级的空口连接业务流上发送至 RS。 在实际应用中, 可以釆用以下具体步骤进行下行数据的传输: 步骤 1 , 接入网网关接收来自外部节点的数据, 将该数据进行 GRE/IP 封装并通过第一隧道发送给基站; 步骤 2,基站解析所接收到的 GRE/IP封装数据, 获得 GRE key信息(可 以从 GRE/IP头中获取该信息), 通过所存储的 GRE隧道映射关系获得相应 的基站与中继站之间 GRE隧道(即, 第二隧道)对应的 GRE key, 并将所接 收到 GRE/IP封装包 (即, 第一 GRE/IP封装包) 的净荷和第二隧道对应的 GRE key重新封装成相应的 GRE/IP封装包。 步骤 3 , 基站将封装后的 GRE/IP数据 (即, 第二 GRE/IP封装包) 以中 继 MAC PDU ( Relay MAC PDU )格式通过第二隧道发送给中继站。 优选地, 基站可以将重新封装后的数据以中继 MAC PDU格式在中继连接上发送给中 继站, 上述中继连接可以由 Relay CID, Tunnel CID, Relay FID等进行标识。 步骤 4, RS接收到 Relay MAC PDU之后, 对其进行解析获得 GRE/IP 封装包(即,第二 GRE/IP封装包),解析该 GRE/IP封装包获得相应数据(即, GRE/IP封装包的净荷 ), 并将该数据封装成 MAC PDU发送至 MS。 优选地, 接入网网关将 GRE/IP封装后的数据发送给基站的过程中, 接 入网网关将接收到的数据中隶属于该基站所辖移动终端 (包括隶属于基站所 辖中继站的移动终端) 的数据封装成 GRE/IP包发送给基站。 基站在接收到 该数据之后, 解析 GRE/IP封装包, 将隶属于中继站所辖移动终端的数据封 装成 GRE/IP包, 以 Relay MAC PDU的格式发送给中继站; 将隶属于所辖移 动终端的数据不再进行 GRE/IP封装, 而直接以 MAC PDU的格式发送给移 动终端。 也就是说, 将第二隧道的信息和下行数据封装成第二 GRE/IP封装 包之前, BS可以先确定下行数据的目的 MS是 BS所辖的 MS还是 BS所辖 的 RS下的 MS ,若是 BS所辖的 RS下的 MS ,则将下行数据封装成 MAC PDU 发送至目的 MS , 若是 BS所辖的 MS , 则继续后续处理。 优选地, 基站将封装后的 GRE/IP数据以中继 MAC PDU格式通过第二 隧道发送给中继站的过程包括: 基站和中继站之间建立一或多条月艮务质量等 级不同的用于数据传输的空口连接业务流; 基站在将 GRE封装数据映射到 空口连接业务流上时, 将具有不同 艮务质量等级的 GRE封装数据 (即, 具 有不同 DSCP值的经过头压缩处理后的 GRE/IP封装后的数据) 通过相应的 空口连接业务流发送给中继站。 进一步的, 基站与中继站之间 GRE隧道与 空口^载 (即, 中继空口) 连接业务流之间的对应关系可以为——对应或者 多对一的映射关系; 也就是说, 移动终端的业务流与中继业务流之间具有一 一对应或者多对一的映射关系。 进一步的, GRE隧道的 QoS等级可以由差 分月艮务代码点 DSCP值所表示。 具体地, 上述第二 GRE/IP封装包经过的头压缩处理可以包括但不限于 以下处理之一: 根据压缩协议完全压缩静态参量, 保留 GRE部分的 GRE密 钥, 并将序号字段所占用的字节进行压缩; 使用适用于动态参量压缩的压缩 协议对 GRE/IP封装头进行压缩; 将 GRE/IP封装头中的 IP头丢弃, 并对 GRE/IP封装头中的 GRE头进行压缩。
(二 )信令的传输 在信令传输的情况下, 第一隧道和第二隧道为 UDP/IP隧道, 接入网网 关与基站之间的第一隧道和基站与中继站之间的第二隧道可以具有——对应 的映射关系, 该映射关系存储在基站处。 上行信令传输 对于上行信令的传输, 步骤 S404可以包括: 步骤 S4045 , RS将上行信令封装成第二 UDP/IP封装包 ,并将第二 UDP/IP 封装包进一步封装成 Relay MAC PDU通过第二隧道发送至 BS; 步骤 S4046 , BS解析 Relay MAC PDU得到第二 UDP/IP封装包, 才艮据 映射关系和解析第二 UDP/IP封装包头得到的第二隧道的信息确定第一隧道 的信息, 并将净荷重新封装成第一 UDP/IP封装包通过第一隧道发送至 ASN GW。 优选地, 将第二 UDP/IP封装包进一步封装成中继 MAC PDU通过第二 隧道发送至 BS可以包括: RS将第二 UDP/IP封装包重新封装成中继 MAC PDU之后映射到具有相应服务质量等级的空口管理连接业务流上发送至 BS。 在实际应用中, 可以釆用以下具体步骤进行上行信令的传输: 步骤 1 , 中继站将 R6消息和第二隧道的信息进行 UDP/IP封装(获得第 二 UDP/IP封装包;), 以 Relay MAC PDU的格式通过第二隧道发送给基站, 具体地, 通过第二隧道在空口管理连接上发送至该基站。 优选地, 上述第二 隧道的信息可以封装在 UDP/IP封装包的头部,上述第二 UDP/IP封装包可以 为经过特殊处理的封装包, 例如经过头压缩处理, 包括净荷帧头压缩 PHS或 鲁棒性头压缩 ROHC等。 步骤 2,基站接收到来自中继站的 Relay MAC PDU之后,对其进行解析, 并进一步解析信令的 UDP/IP封装头, 获得上述第二隧道信息, 并根据所存 储的两段隧道之间的映射关系得到第一隧道的信息, 将净荷和第一隧道的信 息封装为 UDP/IP包 (即, 第一 UDP/IP封装包); 步骤 3 , 基站将封装的 UDP/IP包 (即, 第一 UDP/IP封装包)发送给接 入网网关。 优选地, 该第一 UDP/IP封装包可以经过头压缩处理。 优选地, 步骤 1中, 中继站将 UDP/IP封装包以中继 MAC PDU的格式 发送给基站的过程包括: 步骤 11 , 中继站和基站之间建立一或多条服务质量等级不同的用于信令 传输的空口管理连接业务流; 步 4聚 12, 中继站在将 UDP/IP封装包映射到空口管理连接上时, 将具有 不同 艮务质量等级的 UDP/IP封装包通过相应的空口管理连接发送给基站。 具体地, 中继站和基站之间 UDP/IP隧道与空口承载 (即, 空口管理连 接 ) 之间的对应关系可以为——对应或者多对一的关系。 下行信令传输 对于下行信令的传输, 步骤 S404可以包括: 步骤 S4047, ASN GW将下行信令封装成第一 UDP/IP封装包通过第一 隧道发送至 BS; 步骤 S4048, BS根据映射关系和解析第一 UDP/IP封装包头得到的第一 隧道的信息确定第二隧道的信息, 将净荷重新封装成第二 UDP/IP封装包, 并将第二 UDP/IP封装包进一步封装成 Relay MAC PDU发送至 RS。 优选地,将第二 UDP/IP封装包封装成 Relay MAC PDU发送至 RS之后, 该方法还可以包括: RS解析 Relay MAC PDU获得第二 UDP/IP封装包, 解 析第二 UDP/IP封装包获得下行信令, 将下行信令生成空口侧消息格式, 并 将具有空口侧消息格式的下行信令封装成 MAC PDU发送至 MS。 优选地, 将第二 UDP/IP封装包进一步封装成中继 MAC PDU通过第二 隧道发送至 RS可以包括: BS将第二 UDP/IP封装包重新封装成中继 MAC PDU之后映射到具有相应服务质量等级的空口管理连接业务流上发送至 RS。 在实际应用中, 可以釆用以下具体步骤进行下行信令的传输: 步骤 1 ,接入网网关将信令消息和第一隧道的信息封装成 UDP/IP封装包 (即, 第一 UDP/IP封装包)发送至基站, 具体地, 上述第一隧道的信息可 以位于 UDP/IP封装包的封装头。 步骤 2 , 基站在接收到来自接入网网关的 UDP/IP封装包, 获得 UDP/IP 隧道信息(即, 第一隧道的信息), 并根据所存储的两段隧道之间的映射关系 获得, 第二隧道的信息, 将净荷和第二隧道的信息封装为 UDP/IP包 (即, 第二 UDP/IP封装包), 并以中继 MAC PDU的格式通过第二隧道发送给中继 站, 具体地, 可以通过第二隧道在空口管理连接上发送给中继站, 优选地, 上述第二 UDP/IP封装包可以经过压缩处理, 例如, 头压缩处理, 包括净荷 帧头压缩 PHS或鲁棒性头压缩 ROHC等。 步骤 3 , 中继站接收到 Relay MAC PDU之后, 解析中继 MAC PDU获得 第二 UDP/IP封装包, 解析第二 UDP/IP封装包获得下行信令消息 (可以为 R6消息), 将其生成空口侧消息格式并封装成 MAC PDU发送至 MS。 优选地, 步骤 2中基站将 UDP/IP封装包以中继 MAC PDU的格式发送 给中继站包括: 基站和中继站之间建立一或多条服务质量等级不同的用于信 令传输的空口管理连接业务流; 基站在将 UDP/IP封装包映射到空口管理连 接上时, 将具有不同服务质量等级的 UDP/IP封装包通过相应的空口管理连 接发送中继站。 进一步的, 基站与中继站之间 UDP/IP隧道与空口承载(即, 空口管理连接 )之间的对应关系可以为——对应或者多对一的关系。 以上的 (一)数据传输和(二)信令传输中, GRE/IP封装包(包括第一 GRE/IP封装包和第二 GRE/IP封装包)和/或 UDP/IP封装包(包括第一 UDP/IP 和第二 UDP/IP )为经过压缩处理的封装包, 具体地, 这种压缩处理可以为头 压缩, 但不限于 jt 在 GRE/IP 装包的情况下, 头压缩可以釆用以下方式 之一: 根据压缩协议完全压缩静态参量, 保留 GRE部分的 GRE密钥, 并将 序号字段所占用的字节进行压缩; 使用适用于动态参量压缩的压缩协议对 GRE/IP封装头进行压缩; 将 GRE/IP封装头中的 IP头丢弃, 并对 GRE/IP封 装头中的 GRE头进行压缩。 以上的 (一) 数据传输和 (二)信令传输的过程均基于接入网网关- >基 站- >中继站 (目的中继站, 即, 要发送的最终的中继站) 的两兆中继网络场 景, 而对于基站到上述中继站之间具有一个或多个中间中继站 (即, 多 兆中 继网络, 基站和移动终端之间通过多个中继站 (大于 1个) 进行数据转发) 的情况, 上述方法仍然适用, 且接入网网关与基站之间的信息传输方法与两 兆中继网络中相同。 此时, 第二隧道可以理解为从 BS经由一个或多个中间 RS到 RS的多段 隧道。 与两跳中继通信网络相同, 两个相邻节点 (基站、 中继站) 之间建立 GRE/IP或 UDP/IP隧道, 其源 IP地址和目的 IP地址为隧道两端节点。 移动 终端的业务流 7 载在不同的隧道上, 由隧道的信息标识。 在空口传输上, 中 继业务流的建立可以在两个相邻节点之间,也可以在基站和目的中继站之间。 才艮据业务流建立方法的不同, 其具体的传输过程略有不同。 在中继业务流建立在两个相邻节点之间的情况下, 移动终端的业务流与 中继业务流之间依据业务流质量等级参量( QoS )具有对应关系, 也就是说, GRE隧道与中继业务流之间依据业务流质量等级参量( QoS )具有对应关系。 并且某个节点与上层节点和下层节点之间的 GRE隧道之间具有映射关系。 在中继业务流建立在基站和目的中继站之间的情况下, 移动终端的业务 流与中继业务流之间依据业务流质量等级参量 ( QoS ) 具有对应关系, 也就 是说, 每段 GRE隧道与中继业务流之间依据业务流质量等级参量( QoS )具 有对应关系。 并且某个节点与上层节点之间的 GRE隧道和下层节点之间的 GRE隧道具有映射关系。 具体地, 以上中继业务流可以以中继站的 STID和业务流连接 FID联合 进行寻址。 步骤 S404具体可以包括: 步骤 1 , 通过第一隧道进行 ASN GW和 BS之间的信令和 /或数据传输; 该步骤与前述的步骤大体相同, 区别仅在于映射关系是第一隧道和第二隧道 中的第一段隧道之间的映射关系, 而中间中继站和目标的中继站实质上均为 中继站, 因此, 釆取的传输手段和传输的包格式是相同的。 步骤 2 , 根据多段隧道中的相邻隧道之间的映射关系通过第二隧道进行 BS经由一个或多个中间 RS到目的 RS的信令和 /或数据传输。 需要说明的是, 在下行传输的情况下, 按照步骤 1->步骤 2的顺序进行 处理, 在上行传输的情况下, 按照步骤 2->步骤 1的顺序进行处理。 在下行数据和 /或信令传输的情况下, 步骤 S404可以具体包括: 步骤 1 , ASN GW通过第一隧道向 BS发送下行数据和 /或信令, 该步骤 与前述的步 4聚大体相同。 步骤 2, BS根据 RS的站点标识 STID进行寻址, 中间 RS根据 STID确 定 RS为中间 RS的下属 RS的情况下,对下行信令和 /或数据进行转发, 直至 下行信令和 /或数据到达 RS。 本发明实施例还提供了一种中继通信网络的信息传输方法, 图 12是根 据本发明实施例的中继通信网络的信息传输方法的流程图, 如图 12所示, 该方法包括: 步 4聚 S 1202, 建立第一隧道, 其中, 第一隧道为 ASN GW与 BS之间的 隧道; 步骤 S 1204, 通过第一隧道进行 ASN GW和 BS之间的信令传输, 通过 空中接口进行 BS与 RS之间的信令传输。 在上行信令传输情况下, 步骤 S 1204可以包括: 所述 RS将所述上行信 令承载在空口侧消息上发送至所述 BS , 其中, 所述上行信令包括以下之一: 来自 MS的信令消息生成的 R6口消息, 所述 RS生成的 R6口消息; 所述 BS 将从所述空口侧消息解析出来的所述上行信令封装成 UDP/IP封装包发送至 所述 ASN GW。 在实际应用中, 该实施例中的上行信令传输过程可以包括以下步 4聚: 步骤 1 , RS将 R6口的上行信令 (或称信令消息)承载在空口侧消息上 发送至 BS , 其中, R6口的上行信令包括以下之一: 来自 MS的信令消息生 成的 R6口消息, RS生成的 R6口消息。 具体地, RS可以将空口侧消息映射 到具有相应 艮务质量等级的业务流上发送至 BS。 步骤 2, BS将从空口侧消息解析出来的上行信令 (空口侧消息的负荷) 封装成 UDP/IP封装包发送至 ASN GW。 在下行信令传输情况下, 步骤 S 1204可以包括: ASN GW将下行信令封 装成 UDP/IP封装包通过第一隧道发送至 BS; BS解析 UDP/IP封装包得到下 行信令, 并将净荷承载在空口侧消息上发送至 RS。 在实际应用中, 该实施例中的下行信令传输过程可以包括以下步 4聚: 步骤 1 , ASN GW将 R6口的下行信令 (或称信令消息)封装成 UDP/IP 封装包发送至 BS; 步骤 2, BS解析 UDP/IP封装包得到下行信令 ( UDP/IP封装的负荷;), 并将下行信令承载在空口侧消息上(即,封装成空口侧消息格式)发送至 RS。 具体地, BS可以将空口侧消息映射到具有相应月艮务质量等级的业务流上发送 至 RS。 相应地, 该实施例中的方法也可以应用在多跳中继中, 也就是说, BS 和 RS之间通过空中接口经由一个或多个中间 RS进行信令传输。 图 5是^ f艮据本发明实施例的层三中继站的数据面协议栈架构的示意图, 图 6是根据本发明实施例的层三中继网络中数据传输的示意图, 图 7是根据 本发明实施例的层三中继网络中数据传输的网络拓朴结构示意图。 以下参考 图 5至图 7结合实例对本发明的实现过程进行详细描述。 实例 1 下行数据传输时, 中继通信网络中的数据传输的基本流程包括: 步骤一, ASN GW建立 ASN GW与 ABS之间的 GRE隧道, 该 GRE隧 道的两端地址分别为 ASN GW和 ABS的 IP地址; ABS建立 ABS与 ARS 之间的 GRE隧道, 该隧道的两端地址分别为 ABS和 ARS的 IP地址。 其中, ASN GW与 ABS之间数据传输为有线承载, ABS与 ARS之间数据传输为无 线承载。 两段隧道之间具有——对应的映射关系, 该映射信息存储在 ABS 处。 在建立 GRE隧道之后, AMS业务流连接 载在 GRE隧道上, 不同的业 务流连接对应不同的 GRE key (相当于对应不同的隧道)。 步骤二, ASN GW在接收到来自外部节点 (例如, 其他 ASN GW或者 核心网) 的 IP包之后, 分类器依据一定的原则, 例如, 目的地 IP地址, 将 隶属于上述 ABS的 AMSs的数据,以及隶属于上述 ABS所害 ARSs的 AMSs 的数据进行 GRE封装,通过 ASN GW与 ABS之间的有线承载将数据发送给 ABS。 步骤三, ABS在接收到上述数据之后, 读取 GRE封装头中的 GRE key, 依据所存储的两端 GRE隧道的映射关系, 将所接收到的 GRE封装包中的负 荷以基站与中继站之间 GRE隧道的 GRE key重新封装, 经过处理后映射到 相应的空口中继连接上以 Relay MAC PDU的格式发送给该 ARS。 在下行数据传输过程中, 为了保证端到端的 QoS , 需要对无线链路承载 和有线链路 载进行关联。 详细来说, 包括: 在 IEEE802.16m定义的无线中 继网络中, ARS和 ABS之间建立多条单向的 QoS等级不同的用于数据传输 的空口业务流。 在步骤三中, ABS在将 GRE封装包映射到空口业务流上时, 通过 GRE封装头中的差分月艮务代码点( Differentiated Services Codepoint, 简 称为 DSCP ) 字段, 将具有不同 QoS等级的 GRE包映射到不同的业务流上 发送给 ARS。 其中, ARS与 ABS间业务流的 QoS等级与 GRE包中 DSCP 字段的取值可以是——对应的关系, 也可以是一对多或多对一的对应关系。 实例 2 下面以图 6为参考, 对下行数据传输方法进行具体描述。 步骤一, ASN GW建立一条 ASN GW与 ABS之间的 GRE隧道; ABS 建立一条 ABS与 ARS之间的 GRE隧道。 其中, AMS的每个业务流连接与 两段 GRE隧道上的 GRE key分别具有 对应的映射关系。 两段 GRE隧道 之间的映射关系存储在 ABS处。 另外, ABS与 ARS之间建立一条或多条用于数据传输的中继业务流连 接, AMSs的业务流与中继业务流连接之间才艮据 QoS等级参量建立映射关系。 另夕卜, ABS与 ARS之间 GRE/IP封装上的 DSCP值同样与中继业务流之间根 据 QoS等级参量存在映射关系。 由此可以得到 AMSs业务流、 ABS与 ARS 之间中继业务流、 ABS与 ARS之间 GRE/IP封装均根据 QoS等级参量具有 映射关系。 步骤二, ASN GW在接收到 IP包之后,通过解析 IP头中的目的 IP地址, 获得目的 AMS信息, 然后, 将该 IP包映射到相应的 GRE隧道上, 为其设 置 GRE key, DSCP值并进行 GRE/IP封装。 ASN GW将 GRE/IP封装包通过 GRE隧道上的有线承载发送给 ABS。 步骤三, ABS在接收到上述 GRE/IP封装包之后, 解析其 GRE key。 按 照所存储的两段 GRE隧道之间的——映射关系, 重新以 ABS与 ARS之间 GRE key对其进行封装。然后按照其 DSCP值将其映射到相应的 ABS与 ARS 之间的中继业务流上。 为了降氐无线空口链路的资源开销, ABS将 GRE/IP 封装包进行头压缩,并将压缩后的 GRE/IP封装包作为净荷封装成 Relay MAC PDU在中继业务流上发送给 ARS。 步 4聚四, ARS在接) 到 ABS发送的 Relay MAC PDU之后, 对 GRE/IP 封装包进行解头压缩后, 解析 GRE/IP头得到 GRE key, 通过 GRE key获得 该封装包对应的 AMS业务流连接信息。 ARS解 GRE/IP封装后将净荷( SDU ) 重新封装为 IEEE802.16m中定义的 MAC PDU格式在 AMS空口业务流连接 上发送给 AMS。 实例 3 对上行数据传输来说, 其基本流程与下行数据传输相似,详细流程包括: 步骤一, 中继站建立与基站之间的 GRE隧道, 基站建立与接入网网关 之间的 GRE隧道。 其中, 两段隧道之间具有——对应的映射关系, 该映射 关系存储在基站处。 在建立 GRE隧道之后, 移动终端的业务流在中继站和 基站, 基站和接入网网关之间传输时 载在上述 GRE隧道上, 不同的业务 流连接对应不同的 GRE key。 步骤二, 中继站接收到来自移动终端的数据之后, 将移动终端的业务流 映射到上行的 GRE隧道上, 即对 MAC PDU中的净荷进行 GRE/IP封装和头 压缩, 并将其封装成 Relay MAC PDU之后在中继站与基站之间的中继空口 链路业务流连接上发送给基站。 其中, 移动终端业务流与中继站和基站之间 的中继空口链路业务流具有多对一或者一对一的映射关系。 也就是说, 移动 终端业务流、 GRE隧道与中继空口链路业务流三者之间具有某种映射关系。 步骤三, 基站接收到 Relay MAC PDU之后, 解析其 Relay MAC头; 获 得负荷中的 GRE/IP封装包并解析 GRE头获得 GRE key信息;基站通过所存 储的两段 GRE隧道映射关系将所接收到的 GRE/IP封装包重新封装成相应的 基站与接入网关之间 GRE隧道的 GRE/IP封装包; 基站将重新封装后的 GRE/IP封装包发送给接入网网关。 实例 4 中继网络可以扩展为多 兆中继, 即, 移动终端通过多个 (大于 1个) 中 继站接入基站。 多 兆中继的实现方法与两兆中继相似, GRE隧道仍然为每兆 中继 ( hop by hop )„ 也就是说, GRE/IP封装头中的源 IP和目的 IP地址应该 为每跳中继的两端节点地址。 其中, 每个中间节点处存储有自身与上层节点 之间 GRE隧道和自身与下层节点之间 GRE隧道的映射关系。 在空口链路传输上,基站 /中间中继站和目的中继站之间的数据传输有两 种方法。 方法一, ABS使用目的 ARS的 STID进行寻址, 中间 ARS通过路径信 息得知该目的 ARS为自己下属 ARS ,则对接收到的经过头压缩的 GRE/IP包 进行转发。 方法二, ABS在目的 ARS之间建立端到端的空口隧道, 隧道信息中包 含端到端的路由信息。 中间 ARS根据空口隧道的路由信息将经过头压缩的 GRE/IP包转发。 经过头压缩的 GRE/IP包到达目的 ARS后, 进行解头压缩, 然后, 将净荷映射到相应的 AMS业务流连接上以 MAC PDU的格式发送给 AMS。 实例 5 在上下行数据面传输的过程中, 为了节省 ARS与 ABS之间空口链路的 资源开销, 需要对 GRE/IP封装头进行头压缩。 压缩方法包括: 方法一: 考虑到 GRE/IP封装头中的 IP封装部分、 GRE封装部分的 payload protocol type (净荷协议类型) 为静态参量, 可以才艮据压缩协议完全 压缩; 而 GRE封装部分的 GRE key, Sequence Number两个字段为动态参量, 根据其作用不同, GRE key需完全保留, 4字节的 Sequence Number字段可 以压缩为一个较短的字节, 例如 1个字节。 方法二: 使用适用于动态参量压缩的 ROHC等压缩协议对 GRE/IP封装 头进行压缩。经过压缩之后,静态参量完全被压缩掉, GRE key保留, Sequence Number可以压缩为较短的 2〜4个比特。 但是, 该压缩方法需要 ACK信道进 行响应。 方法三: 考虑到 GRE/IP封装头中的 IP头部分在 ABS到 ARS之间空口 链路上没有实质作用, 可以将 IP头部分丢弃, 对 GRE头部分进行压缩。 其 中, 对 GRE头部分的压缩仍然可以使用方法一或方法二中的方法。 为了完成上述数据面的数据传输, 图 8是才艮据本发明实施例的 ARS与 ABS之间用于数据传输的 Relay MAC PDU封装格式, 釆用如图 8所示的格 式进行数据的传输。 实例 6 在控制面上, 信令的传输方法与数据传输方法相似。 图 9是根据本发明 实施例的为层三中继站的控制面协议栈架构的示意图。 信令传输方法包括: 步骤 1 , 建立用于信令传输的两段 UDP/IP隧道, 其中一段隧道的两个端 点分别为接入网网关与基站, 另一端隧道的两个端点分别为基站与中继站。 两段 UDP/IP隧道的映射关系存储在基站处。 步骤 2, 根据传输的信令是下行信令还是上行信令, 包括以下步骤 2-1 或步 4聚 2-2: 步骤 2-1 ,在下行信令传输中,基站通过解析 UDP/IP封装头,获得 UDP/IP 隧道信息, 并根据所存储的两段隧道之间的对应关系, 将负荷重新封装为 UDP/IP包; 基站将重新封装的 UDP/IP包进行头压缩处理之后以中继 MAC PDU的格式在空口管理连接上发送给中继站。 步骤 2-2 , 在上行信令传输中, 中继站将 R6消息进行 UDP/IP封装进行 头压缩处理并以 Relay MAC PDU的格式在空口管理连接上发送给基站; 基 站接收之后解析 UDP/IP封装头, 获得 UDP/IP隧道信息; 基站根据所存储的 两段隧道之间的对应关系, 将负荷重新封装为 UDP/IP包; 基站将重新封装 的 UDP/IP包进行头压缩处理之后发送给接入网网关。 为了完成上述控制面的消息传输, 图 10是才艮据本发明实施例的 ARS与
ABS之间用于信令传输的 Relay MAC PDU封装格式的示意图,根据图 10所 示的格式进行信令的传输。 根据本发明的实施例, 提供了一种中继通信网络的信息传输系统, 图 11 是根据本发明实施例的中继通信网络的信息传输系统的结构框图, 如图 11 所示, 包括:
ASN GW 1102 , 设置为建立第一隧道, 并通过第一隧道向 BS 1104发送 信令和 /或数据, 其中, 第一隧道为 ASN GW 1102与 BS 1104之间的隧道;
BS 1104, 连接于 ASN GW 1102 , 设置为建立第二隧道, 并通过第二隧 道向 RS 1106发送信令和 /或数据, 其中, 第二隧道为 BS 1104与 RS 1106之 间的隧道;
RS 1106, 连接于 BS 1104, 设置为通过第二隧道接收来自 BS 1104的信 令和 /或数据。 根据本发明的实施例, 提供了一种中继通信网络的信息传输系统, 图 11 是根据本发明实施例的中继通信网络的信息传输系统的结构框图, 如图 11 所示, 包括:
RS 1106, 设置为建立第二隧道, 并通过第二隧道向 BS 1104发送信令和 /或数据, 其中, 第二隧道为 BS 1104与 RS 1106之间的隧道; BS 1104, 连接于 RS 1106, 设置为建立第一隧道, 并通过第一隧道向 ASN GW 1102发送信令和 /或数据, 其中, 第一隧道为 ASN GW 1102与 BS 1104之间的隧道;
ASN GW 1102, 连接于 BS 1104,设置为通过第一隧道接收来自 BS 1104 的信令和 /或数据。 需要说明的是, 该系统用于实现上述的中继通信网络的信息传输方法, 其具体的实现方法在方法实施例中已经进行过详细说明, 在此不再赞述。 综上所述, 通过本发明, 釆用 ASN GW基站之间, 基站和中继站之间建 立隧道的方式实现了数据和 /或信令的传输,解决了相关技术中无法实现层三 中继的问题, 进而达到了实现了层三中继。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并 且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或者 将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作 成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件 结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种中继通信网络的信息传输方法, 包括:
建立第一隧道和第二隧道,其中,所述第一隧道为接入网网关 ASN GW与基站 BS之间的隧道, 所述第二隧道为所述 BS与中继站 RS之 间的隧道;
通过所述第一隧道和所述第二隧道进行所述 ASN GW和所述 RS 之间的信令和 /或数据传输。
2. 居权利要求 1所述的方法, 其中, 通过所述第一隧道和所述第二隧 道进行所述 ASN GW和所述 RS之间的信令和 /或数据传输包括:
在所述传输为下行传输的情况下, 所述 ASN GW通过所述第一隧 道将下行信令和 /或数据发送至所述 BS ,所述 BS根据映射关系通过所 述第二隧道转发所述下行信令和 /或数据到所述 RS;
在所述传输为上行传输的情况下, 所述 RS通过所述第二隧道将 上行信令和 /或数据发送至所述 BS ,所述 BS根据所述映射关系通过所 述第一隧道转发所述上行信令和 /或数据到所述 ASN GW;
其中, 所述映射关系为所述第一隧道和所述第二隧道之间的映射 关系。
3. 根据权利要求 2所述的方法, 其中, 在所述传输为数据传输的情况下, 所述第一隧道和所述第二隧道为通用路由封装 GRE隧道。
4. 根据权利要求 3所述的方法, 其中, 在上行数据传输情况下, 通过所 述第一隧道和所述第二隧道进行所述 ASN GW和所述 RS之间的数据 传输包括:
所述 RS将所述上行数据封装成第二 GRE/IP封装包, 并将所述第 二 GRE/IP封装包进一步封装成中继媒体接入控制协议数据单元 Relay MAC PDU发送至所述 BS;
所述 BS解析所述 Relay MAC PDU得到所述第二 GRE/IP封装包, 才艮据所述映射关系和解析所述第二 GRE/IP封装包头得到的所述第二 隧道的信息确定所述第一隧道的信息, 并将净荷重新封装成第一 GRE/IP封装包通过所述第一隧道发送至所述 ASN GW。
5. 根据权利要求 3所述的方法, 其中, 在下行数据传输情况下, 通过所 述第一隧道和所述第二隧道进行所述 ASN GW和所述 RS之间的数据 传输包括:
所述 ASN GW将所述下行数据封装成第一 GRE/IP封装包通过所 述第一隧道发送至所述 BS;
所述 BS才艮据所述映射关系和解析所述第一 GRE/IP封装包头得到 的所述第一隧道的信息确定所述第二隧道的信息, 将净荷重新封装成 第二 GRE/IP封装包,并将所述第二 GRE/IP封装包进一步封装成 Relay MAC PDU发送至所述 RS。
6. 根据权利要求 5所述的方法, 其中, 在下行数据传输情况下, 将所述 第二 GRE/IP封装包封装成 Relay MAC PDU发送至所述 RS之后, 所 述方法还包括:
所述 RS解析所述 Relay MAC PDU获得第二 GRE/IP封装包, 解 析所述第二 GRE/IP封装包获得所述下行数据,并将所述下行数据封装 成 MAC PDU发送至移动终端 MS。
7. 根据权利要求 5所述的方法, 其中, 在下行数据传输情况下, 将所述 第二 GRE/IP封装包进一步封装成 Relay MAC PDU发送至所述 RS之 前, 所述方法还包括:
所述 BS确定所述下行数据的目的 MS是所述 BS所辖的 MS还是 所述 BS所辖的 RS下的 MS , 若是所述 BS所辖的 MS , 则将所述下行 数据封装成 MAC PDU发送至所述目的 MS , 若是所述 BS所辖的 RS 所辖的 MS , 则继续后续处理。
8. 根据权利要求 4或 5所述的方法, 其中, 所述 RS和所述 BS中的一方 将所述第二 GRE/IP封装包重新封装成所述 Relay MAC PDU之后映射 到具有相应 艮务质量等级的空口连接业务流上发送至另一方。
9. 根据权利要求 4或 5所述的方法, 其中, 所述第一隧道的信息和所述 第二隧道的信息包括 GRE key。
10. 根据权利要求 2所述的方法, 其中, 在所述传输为信令传输的情况下, 所述第一隧道和所述第二隧道为 UDP/IP隧道。
11. 根据权利要求 10所述的方法, 其中, 在上行信令传输情况下, 通过所 述第一隧道和所述第二隧道进行所述 ASN GW和所述 RS之间的信令 传输包括:
所述 RS将所述上行信令封装成第二 UDP/IP封装包, 并将所述第 二 UDP/IP封装包进一步封装成 Relay MAC PDU发送至所述 BS; 所述 BS解析所述 Relay MAC PDU得到所述第二 UDP/IP封装包, 才艮据所述映射关系和解析所述第二 UDP/IP封装包头得到的所述第二 隧道的信息确定所述第一隧道的信息, 并将净荷重新封装成第一 UDP/IP 装包通过所述第一隧道发送至所述 ASN GW。
12. 根据权利要求 10所述的方法, 其中, 在下行信令传输情况下, 通过所 述第一隧道和所述第二隧道进行所述 ASN GW和所述 RS之间的信令 传输包括:
所述 ASN GW将所述下行信令封装成第一 UDP/IP封装包通过所 述第一隧道发送至所述 BS;
所述 BS才艮据所述映射关系和解析所述第一 UDP/IP封装包头得到 的所述第一隧道的信息确定所述第二隧道的信息, 将净荷重新封装成 第二 UDP/IP封装包,并将所述第二 UDP/IP封装包进一步封装成 Relay MAC PDU发送至所述 RS。
13. 根据权利要求 12所述的方法, 其中, 在下行信令传输情况下, 将所述 第二 UDP/IP封装包封装成 Relay MAC PDU发送至所述 RS之后, 所 述方法还包括:
所述 RS解析所述 Relay MAC PDU获得所述第二 UDP/IP封装包, 解析所述第二 UDP/IP封装包获得所述下行信令,将所述下行信令生成 空口侧消息格式, 并将具有所述空口侧消息格式的所述下行信令封装 成 MAC PDU发送至 MS。
14. 根据权利要求 11或 12所述的方法, 其中, 所述 RS和所述 BS中的一 方将所述第二 UDP/IP封装包重新封装成所述 Relay MAC PDU之后映 射到具有相应 艮务质量等级的空口管理连接业务流上发送至另一方。
15. 根据权利要求 4、 5、 11和 12中任一项所述的方法,其中,所述 GRE/IP 封装包和 /或所述 UDP/IP封装包为经过压缩处理的封装包, 其中, 所 述压缩处理包括头压缩。
16. 根据权利要求 15所述的方法, 其中, 在 GRE/IP封装包的情况下, 所 述头压缩包括以下方式之一:
才艮据压缩协议完全压缩静态参量, 保留 GRE部分的 GRE密钥, 并将序号字段所占用的字节进行压缩;
使用适用于动态参量压缩的压缩协议对 GRE/IP封装头进行压缩; 将 GRE/IP封装头中的 IP头丢弃, 并对 GRE/IP封装头中的 GRE 头进行压缩。
17. 才艮据权利要求 1所述的方法, 其中,
在下行数据传输情况下 ,建立所述第一隧道和所述第二隧道包括: 所述 ASN GW建立所述第一隧道, 所述 BS建立所述第二隧道;
在上行数据传输情况下 ,建立所述第一隧道和所述第二隧道包括: 所述 BS建立所述第一隧道, 所述 RS建立所述第二隧道。
18. 根据权利要求 1所述的方法, 其中, 所述第二隧道为从所述 BS经由 一个或多个中间 RS到所述 RS的多段隧道。
19. 居权利要求 18所述的方法, 其中, 通过所述第一隧道和所述第二隧 道进行所述 ASN GW和所述 RS之间的信令和 /或数据传输包括:
通过所述第一隧道进行所述 ASN GW和所述 BS之间的信令和 / 或数据传输;
根据所述多段隧道中的相邻隧道之间的映射关系通过所述第二隧 道进行所述 BS经由所述一个或多个中间 RS到所述 RS的信令和 /或数 据传输。
20. 居权利要求 18所述的方法, 其中, 通过所述第一隧道和所述第二隧 道进行所述 ASN GW和所述 RS之间的下行信令和 /或数据传输包括: 所述 ASN GW通过第一隧道向所述 BS发送下行信令和 /或数据; 所述 BS才艮据所述 RS的站点标识 STID进行寻址, 所述中间 RS 才艮据所述 STID确定所述 RS为所述中间 RS的下属 RS的情况下, 对 所述下行信令和 /或数据进行转发,直至所述下行信令和 /或数据到达所 述 RS。
21. 一种中继通信网络的信息传输方法, 包括:
建立第一隧道, 其中, 所述第一隧道为 ASN GW与 BS之间的隧 道;
通过所述第一隧道进行所述 ASN GW和所述 BS之间的信令传输, 通过空中接口进行所述 BS与 RS之间的信令传输。
22. 根据权利要求 21所述的方法, 其中, 在上行信令传输情况下,
通过空中接口进行所述 BS与 RS之间的信令传输包括: 所述 RS 将所述上行信令承载在空口侧消息上发送至所述 BS , 其中, 所述上行 信令包括以下之一: 来自 MS的信令消息生成的 R6口消息, 所述 RS 生成的 R6口消息;
通过所述第一隧道进行所述 ASN GW和所述 BS之间的信令传输 包括: 所述 BS将从所述空口侧消息解析出来的所述上行信令封装成 UDP/IP封装包发送至所述 ASN GW。
23. 根据权利要求 21所述的方法, 其中, 在下行信令传输情况下,
通过所述第一隧道进行所述 ASN GW和所述 BS之间的信令传输 包括: 所述 ASN GW将所述下行信令封装成 UDP/IP封装包通过所述 第一隧道发送至所述 BS;
通过空中接口进行所述 BS与 RS之间的信令传输包括: 所述 BS 解析所述 UDP/IP封装包得到所述下行信令,并将净荷 载在空口侧消 息上发送至所述 RS。
24. 根据权利要求 22或 23所述的方法, 其中, 所述 RS和所述 BS中的一 方将所述空口侧消息映射到具有相应 艮务质量等级的空口连接业务流 上发送至另一方。
25. 才艮据权利要求 21所述的方法, 其中, 所述 BS和所述 RS之间通过所 述空中接口经由一个或多个中间 RS进行所述信令传输。
26. 一种中继通信网络的信息传输系统, 包括:
ASN GW,设置为建立第一隧道, 并通过所述第一隧道向 BS发送 信令和 /或数据, 其中, 所述第一隧道为 ASN GW与 BS之间的隧道; 所述 BS , 设置为建立第二隧道, 并通过所述第二隧道向所述 RS 发送所述信令和 /或数据, 其中, 所述第二隧道为所述 BS与 RS之间 的隧道;
所述 RS , 设置为通过所述第二隧道接收来自所述 BS的所述信令 和 /或数据。
27. 一种中继通信网络的信息传输系统, 包括:
RS , 设置为建立第二隧道, 并通过所述第二隧道向 BS发送信令 和 /或数据, 其中, 所述第二隧道为所述 BS与所述 RS之间的隧道; 所述 BS ,设置为建立第一隧道, 并通过所述第一隧道向 ASN GW 发送所述信令和 /或数据, 其中, 所述第一隧道为 ASN GW与所述 BS 之间的隧道;
所述 ASN GW, 设置为通过所述第一隧道接收来自所述 BS的所 述信令和 /或数据。
PCT/CN2011/070926 2010-04-02 2011-02-11 中继通信网络的信息传输方法及系统 WO2011120358A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/638,947 US9219537B2 (en) 2010-04-02 2011-02-11 Method and system for transmitting information in relay communication network
EP11761932.0A EP2547169A4 (en) 2010-04-02 2011-02-11 Method and system for transmitting information in relay communication network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010157487.6A CN102215476B (zh) 2010-04-02 2010-04-02 中继通信网络的信息传输方法及系统
CN201010157487.6 2010-04-02

Publications (1)

Publication Number Publication Date
WO2011120358A1 true WO2011120358A1 (zh) 2011-10-06

Family

ID=44711351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070926 WO2011120358A1 (zh) 2010-04-02 2011-02-11 中继通信网络的信息传输方法及系统

Country Status (4)

Country Link
US (1) US9219537B2 (zh)
EP (1) EP2547169A4 (zh)
CN (1) CN102215476B (zh)
WO (1) WO2011120358A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
US10524691B2 (en) 2007-11-26 2020-01-07 C. R. Bard, Inc. Needle assembly including an aligned magnetic element

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8231872B2 (en) 2005-04-25 2012-07-31 The Trustees Of Dartmouth College Regulatory T cell mediator proteins and uses thereof
EP2961176B1 (en) * 2014-06-23 2017-01-11 Harman Becker Automotive Systems GmbH Correcting errors in a digital media transport stream
CN104168582B (zh) * 2014-08-08 2017-12-26 京信通信系统(中国)有限公司 一种微小区基站系统、相关设备及数据处理方法
US9900911B2 (en) 2015-05-15 2018-02-20 Mediatek Inc. QoS provisioning for LTE-WLAN aggregation
US10205660B2 (en) * 2015-06-03 2019-02-12 Avago Technologies International Sales Pte. Limited Apparatus and method for packet header compression
US10200110B2 (en) * 2016-06-30 2019-02-05 Ge Aviation Systems Llc Aviation protocol conversion
US10484517B2 (en) * 2017-02-10 2019-11-19 Qualcomm Incorporated Quality of service support for layer 2 based device-to-device relay
US11582027B1 (en) * 2019-06-28 2023-02-14 Amazon Technologies, Inc. Secure communication with individual edge devices of remote networks that use local security credentials
TWI746083B (zh) * 2020-07-24 2021-11-11 聯陽半導體股份有限公司 訊號中繼系統

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101001194A (zh) * 2006-06-28 2007-07-18 华为技术有限公司 一种建立数据隧道的方法
US20080108326A1 (en) * 2006-11-07 2008-05-08 Samsung Electronics Co., Ltd. Handover method in a wireless communication system
CN101257705A (zh) * 2007-03-02 2008-09-03 华为技术有限公司 移动台入网方法、无线通信系统、移动中继站及基站
CN101262269A (zh) * 2007-03-05 2008-09-10 华为技术有限公司 一种群节点切换方法、通信系统及移动中继站
CN101431394A (zh) * 2007-11-05 2009-05-13 中兴通讯股份有限公司 下行隧道混合自动重传请求方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512754B2 (en) * 1997-10-14 2003-01-28 Lucent Technologies Inc. Point-to-point protocol encapsulation in ethernet frame
FI114276B (fi) * 2002-01-11 2004-09-15 Nokia Corp Verkkovierailun järjestäminen
US7453850B2 (en) * 2002-12-20 2008-11-18 Alcatel Lucent Apparatus, and associated method, for facilitating bi-directional routing of data in a packet radio communication system
EP1599959B1 (en) * 2003-02-24 2008-04-30 Telefonaktiebolaget LM Ericsson (publ) Method and system for performing fast checksum operations in a gprs communication system utilising tunnelling
US7986915B1 (en) * 2006-02-24 2011-07-26 Nortel Networks Limited Method and system for a wireless multi-hop relay network
EP1850531B1 (en) * 2006-04-26 2013-06-12 Alcatel Lucent Method and architecture for interworking of standardised networks
US8159983B2 (en) * 2006-11-06 2012-04-17 Mitsubishi Electric Research Laboratories, Inc. Communicating packets in a wireless multi-user multi-hop relay networks
US20080281978A1 (en) * 2007-05-10 2008-11-13 Motorola, Inc. Methods for utilizing multiple tunnels within a communication network
US8340029B2 (en) * 2007-07-06 2012-12-25 Zte (Usa) Inc. Resource allocation in wireless multi-hop relay networks
US8984105B2 (en) * 2008-05-27 2015-03-17 Qualcomm Incorporated FMC architecture for CDMA network
WO2009146383A1 (en) * 2008-05-28 2009-12-03 Harris Stratex Networks Operating Corporation Systems and methods for data path control in a wireless network
US8116252B2 (en) * 2008-05-29 2012-02-14 Qualcomm Incorporated Fixed mobile convergence (FMC) architectures
US8468426B2 (en) * 2008-07-02 2013-06-18 Apple Inc. Multimedia-aware quality-of-service and error correction provisioning
EP2164289A1 (en) * 2008-09-12 2010-03-17 Nokia Siemens Networks OY Method for changing radio channels, composed network and access router
WO2010049296A1 (en) * 2008-10-29 2010-05-06 Nokia Siemens Networks Oy Addressing scheme for a relay network system
US8259637B2 (en) * 2009-01-06 2012-09-04 Texas Instruments Incorporated In-band backhaul for wireless relays in wireless networks
US20100260109A1 (en) * 2009-04-10 2010-10-14 Qualcomm Incorporated Optimized inter-access point packet routing for ip relay nodes
KR101580153B1 (ko) * 2009-09-24 2016-01-04 삼성전자주식회사 광대역 무선통신 시스템에서 다중 홉 중계 통신을 위한 장치 및 방법
US20110134826A1 (en) * 2009-12-04 2011-06-09 Xiangying Yang Relay data path architecture for a wireless network
US9473986B2 (en) * 2011-04-13 2016-10-18 Interdigital Patent Holdings, Inc. Methods, systems and apparatus for managing and/or enforcing policies for managing internet protocol (“IP”) traffic among multiple accesses of a network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101001194A (zh) * 2006-06-28 2007-07-18 华为技术有限公司 一种建立数据隧道的方法
US20080108326A1 (en) * 2006-11-07 2008-05-08 Samsung Electronics Co., Ltd. Handover method in a wireless communication system
CN101257705A (zh) * 2007-03-02 2008-09-03 华为技术有限公司 移动台入网方法、无线通信系统、移动中继站及基站
CN101262269A (zh) * 2007-03-05 2008-09-10 华为技术有限公司 一种群节点切换方法、通信系统及移动中继站
CN101431394A (zh) * 2007-11-05 2009-05-13 中兴通讯股份有限公司 下行隧道混合自动重传请求方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2547169A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10524691B2 (en) 2007-11-26 2020-01-07 C. R. Bard, Inc. Needle assembly including an aligned magnetic element
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping

Also Published As

Publication number Publication date
CN102215476B (zh) 2016-03-30
US9219537B2 (en) 2015-12-22
EP2547169A4 (en) 2017-07-12
US20130077557A1 (en) 2013-03-28
EP2547169A1 (en) 2013-01-16
CN102215476A (zh) 2011-10-12

Similar Documents

Publication Publication Date Title
US11510131B2 (en) Configuration method, data transmission method, and apparatus
WO2011120358A1 (zh) 中继通信网络的信息传输方法及系统
CN107006022B (zh) 用户装置、存储装置以及lwa pdu路由方法及装置
RU2508611C2 (ru) Идентификация однонаправленного радиоканала для транзитного автосоединения и ретрансляции в расширенном lte
CN109005562B (zh) 传输数据的方法、装置和系统
WO2016173076A1 (zh) 一种数据中转传输方法、系统和具备中继功能的ue
WO2011018002A1 (zh) 一种传输承载的中继方法、装置和通信系统
CN110365609B (zh) 一种数据包分段方法、及装置
TWI795659B (zh) 在通信系統中經由控制平面使用指定之有效負荷容器類型進行使用者資料傳送
US20120155375A1 (en) Method and Apparatus for Header Compression in Network Relay Scenario
WO2016173078A1 (zh) 一种数据中转传输方法、系统和具备中继功能的ue
CN113271176B (zh) 网络编码方法和通信装置
WO2019183919A1 (zh) 融合组网的方法和装置
WO2010121416A1 (zh) 中继链路中处理数据的方法、中继节点和系统
WO2014117517A1 (zh) 多制式网络融合的方法、设备及系统
CN116744247A (zh) 无线通信系统、移动站和无线通信装置
WO2021026939A1 (zh) 以太帧头的压缩、解压方法和装置
WO2007028339A1 (fr) Procede et systeme de gestion d'un flux de service par une station distante relais
WO2011012040A1 (zh) R-mac pdu封装方法、传输方法、系统及装置
WO2013155981A1 (zh) 数据分流的方法和装置
WO2015010487A1 (zh) 分流数据传输方法、传输设备、系统以及用户终端
WO2020164557A1 (zh) 一种通信方法及相关装置
CN102065471B (zh) 中继通信网络中的传输方法及系统
WO2015003348A1 (zh) Gre隧道实现方法、接入点和网关
WO2020082948A1 (zh) 一种数据传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11761932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13638947

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011761932

Country of ref document: EP