WO2011120307A1 - 电泳显示器及其驱动方法 - Google Patents

电泳显示器及其驱动方法 Download PDF

Info

Publication number
WO2011120307A1
WO2011120307A1 PCT/CN2010/078989 CN2010078989W WO2011120307A1 WO 2011120307 A1 WO2011120307 A1 WO 2011120307A1 CN 2010078989 W CN2010078989 W CN 2010078989W WO 2011120307 A1 WO2011120307 A1 WO 2011120307A1
Authority
WO
WIPO (PCT)
Prior art keywords
gradation
gray level
extreme
gray
pixel point
Prior art date
Application number
PCT/CN2010/078989
Other languages
English (en)
French (fr)
Inventor
林永强
刘祖良
苏升
廖建明
Original Assignee
广州奥熠电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州奥熠电子科技有限公司 filed Critical 广州奥熠电子科技有限公司
Priority to JP2013501599A priority Critical patent/JP5607231B2/ja
Priority to US13/638,704 priority patent/US9318059B2/en
Priority to EP10848765.3A priority patent/EP2555181B1/en
Publication of WO2011120307A1 publication Critical patent/WO2011120307A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0204Compensation of DC component across the pixels in flat panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/16Determination of a pixel data signal depending on the signal applied in the previous frame

Definitions

  • the present invention relates to the field of displays, and in particular, to an electrophoretic display and a driving method thereof.
  • Electrophoretic display is an early development of the paper-based display technology. It uses a colored charged ball to move in a liquid environment by applying an electric field to display different colors. When the electric field is removed, the display will maintain the displayed picture for a steady state display.
  • Electronic paper is usually dominated by electrophoretic displays, and has been widely used in many fields due to its close proximity to ordinary paper, such as high contrast, wide viewing angle, low energy consumption, and high reading comfort.
  • Electrophoretic displays have been able to display black and white or even colored patterns, and there are multiple intermediate gray levels between black and white, such as light black, dark gray, gray, etc., by controlling each pixel on the display to the corresponding gray level. Display a complete picture.
  • the corresponding gray value is displayed by adding a driving voltage control pixel according to the converted final gray value by means of a look-up table.
  • a driving voltage control pixel According to the converted final gray value by means of a look-up table.
  • the electro-optic display has historical dependence, there is a residual voltage and the like, so Direct query table driven method is difficult to achieve precise control of gray scale, resulting in certain errors.
  • the technical problem to be solved by the present invention is to provide an electrophoretic display and a driving method thereof, which can control gray scale changes more accurately and maintain DC balance.
  • the present invention provides a method of driving an electrophoretic display, comprising: Setting a pixel point corresponding to each pixel electrode in the electrophoretic display; Determining a driving waveform of the electrophoretic display according to a starting gray level and a ending gray level of the pixel, applying a display signal of the driving waveform to the pixel electrode, and controlling a pixel point that needs to change a gray value; A gradation driving step, each driving step corresponds to a gradation changing direction, and the ending gradation is a gradual change gradation in the corresponding gradation changing direction in the last driving step.
  • the above method may further include: determining a driving waveform of the electrophoretic display according to a starting gray level and a ending gray level of the pixel point, and applying a display signal of the driving waveform to the pixel electrode, and controlling needs
  • the pixel points that change the gray value are specifically divided into the following steps: Driving the starting gray level of the pixel point to an extreme gray level according to the DC balancing mode; Determining a grayscale change direction according to the extreme gray level and the end gray level of the pixel point; determining whether the end gray level is a gently changing gray level in the gray level change direction; If yes, drive from the extreme gray scale to the end gray scale; If not, the extreme gray scale is driven from the extreme gray scale and then driven from the other extreme gray scale to the end gray scale.
  • the above method may further include: determining a driving waveform of the electrophoretic display according to a starting gray level and a ending gray level of the pixel point, and applying a display signal of the driving waveform to the pixel electrode, and controlling needs
  • the pixel points that change the gray value are specifically divided into the following steps: Determining a first gradation change direction directly driven according to a starting gradation and an ending gradation of the pixel point; Determining whether the direct drive satisfies the DC balance mode; If the DC balance is satisfied, it is further determined whether the termination gradation is a gradual change gradation in the first gradation change direction; If yes, drive from the starting grayscale to the ending grayscale; If the DC balance is not satisfied, or it is determined that the termination gradation is not the gradual change gradation in the first gradation change direction, the initial gradation is driven to an extreme gradation according to the DC balance mode; Determining a second gray level change direction according to an extreme gray level and a final gray level
  • the above method may further include that the satisfying the DC balance mode means that the pixel point has approached from one extreme optical state to another extreme optical state during the grayscale change of the pixel point.
  • the grayscale reverse change is not allowed until the other extreme optical state is reached.
  • the present invention also provides an electrophoretic display comprising: a processing unit and a drive control circuit, wherein The processing unit is configured to set a pixel corresponding to each pixel electrode in the electrophoretic display, and control the driving control circuit to turn on the TFT connected to the pixel electrode corresponding to the pixel point that needs to change the gray value, and Controlling, by the conductive TFT, the driving control circuit to apply a driving waveform determined according to a starting gray level and a ending gray level of the pixel point to the pixel electrode, and controlling a pixel point that needs to change a gray value, including at least one a gray-scale driving step, each driving step corresponding to a gray-scale changing direction, wherein the ending gray level in the gray-light changing direction corresponding to the last driving step is a gently changing gray level;
  • the driving control circuit is configured to connect to the TFT, receive a control signal sent by the processing unit, and refresh the TFT display screen.
  • the electrophoretic display may further include: the processing unit determining, by the pixel electrode, the driving waveform according to a starting gray level and a ending gray level of the pixel point, and controlling a pixel point that needs to change a gray value, specifically Refers to:
  • the processing unit drives the initial gray level of the pixel point to an extreme gray level according to a DC balance mode;
  • the processing unit determines a grayscale change direction according to the extreme gray level and the end gray level of the pixel point; and determines whether the end gray level is a gently changing gray level in the gray level change direction; If yes, drive from the extreme gray scale to the end gray scale; If not, the extreme gray scale is driven from the extreme gray scale and then driven from the other extreme gray scale to the end gray scale.
  • the electrophoretic display may further include: the processing unit determining, by the pixel electrode, the driving waveform according to a starting gray level and a ending gray level of the pixel point, and controlling a pixel point that needs to change a gray value, specifically Refers to: The processing unit determines a first gradation change direction directly driven according to a starting gradation and an ending gradation of the pixel point; The processing unit determines whether the direct drive satisfies a DC balance mode; If the DC balance is satisfied, it is further determined whether the termination gradation is a gradual change gradation in the first gradation change direction; If yes, drive from the starting grayscale to the ending grayscale; If the DC balance is not satisfied, or it is determined that the termination gradation is not the gradual change gradation in the first gradation change direction, the initial gradation is driven to an extreme gradation according to the DC balance mode; The processing unit determines a second grayscale change direction according to an extreme gray level and a final gray level of the pixel point
  • the above electrophoretic display may further include that the processing unit satisfies the DC balance mode, wherein the processing unit determines that the pixel point has been from an extreme optical state during controlling the gray level change of the pixel point. Approaching to the other extreme optical state, the grayscale reverse change is not allowed until the other extreme optical state is reached.
  • the electrophoretic display and the driving method thereof of the present invention can realize more precise gray level change control while maintaining the DC balance while refreshing the picture.
  • FIG. 1 is a characteristic diagram of an electronic ink used in an electrophoretic display of the present invention.
  • 2 is a flow chart of a gradation driving scheme in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of gray scale changes in the gray scale driving scheme shown in FIG. 2.
  • FIG. 4 is a flow chart of a gradation driving scheme in a second embodiment of the present invention.
  • FIG. 5 is a schematic diagram of gray scale changes in the gray scale driving scheme shown in FIG. 4.
  • FIG. Fig. 6 is a structural diagram of an electrophoretic display according to an embodiment of the present invention.
  • electrophoretic display media suspensions and display particles included in microcavities (including microcapsules, microcups, etc.) in an electrophoretic display are called electrophoretic display media. Different electrophoretic display media have different characteristics. Electrophoretic display media have the following classifications: two different colors each with positive and negative charge particles, a transparent suspension; one color charged particle and another color suspension; one color charged particle and another color neutral Particles, a transparent suspension.
  • the characteristics of the electrophoretic display medium used in the present invention are as shown in FIG. 1. It is assumed that one pixel of the electrophoretic display can achieve a total of eight gray levels, wherein 7 and 0 are respectively white and black in the extreme optical state, and 1-6 are respectively Each gray scale located between black and white, for example, 1 is dark gray, 6 is light white, and the like.
  • the characteristics of the electrophoretic display medium of the electrophoretic display of the present invention are: when a driving pulse is applied when the gray level changes from white to black, the change of the gray level with time follows the first curve A1, and the gray level is applied when the gray level changes from black to white. At the time of the pulse, the curve of the gradation with time follows the second curve A2.
  • the gradation variation range higher than the predetermined gradation value L is large, the gradation variation amplitude lower than the predetermined gradation value L tends to be gentle, and in the curve A2, lower than the predetermined gradation value.
  • the gradation variation of L is large, and the gradation change higher than the predetermined gradation value L tends to be gentle.
  • the gray level change follows the first curve A1, and since both L1 and L2 are higher than the gray level L, if one pulse is directly controlled from L1
  • the change to L2 as shown by the curve A1, in the change of L1-L2, the variation of the gradation is large, that is, a plurality of gradation values may be changed in a short time, so that the final gradation value L2 cannot be accurately controlled.
  • the second curve A2 is followed. Since L3 and L4 are both lower than the predetermined gray value L, as shown by the curve A2, the final gray value cannot be accurately controlled. L4.
  • the current gray value is L1 and the final gray value is L2, it is not directly driven from L1 to L2, but the last pulse is from black (0) to gray value L2, thereby Therefore, when driving to the vicinity of L2, the gradation change has been relatively flat, and even if the pulse time is slightly deviated, it does not cause too much error of the gradation value.
  • the driving method of the present invention comprises: 1) defining two gray-scale changing directions, and defining a gently changing gray level and a fast changing gray level in each gray-scale changing direction; 2) determining a gray color according to the starting gray level and the ending gray level a gradation driving scheme, the gradation driving step includes at least one gradation driving step, each driving step corresponding to a gradation changing direction, and the ending gradation is a gradual change gradation in the gradation changing direction corresponding to the last driving step .
  • the gradation driving scheme includes the steps of: driving the initial gradation to an extreme gradation according to the DC balance mode (S201); determining the gradation according to the extreme gradation and the ending gradation a direction of change (S202); determining whether the end gradation is a gradual change gradation in the gradation change direction (S203); if so, driving from the extreme gradation to the end gradation (S204); if not, then The extreme gray scale is driven from the extreme gray scale, and then driven from the other extreme gray scale to the end gray scale (S205).
  • all of the present inventions satisfying the DC balance mode and reducing the error accumulation means that, during the gray level change, if it has approached from one extreme optical state to the other extreme optical state, before reaching the other extreme optical state , grayscale reverse changes are not allowed.
  • FIG. 3 Please refer to FIG. 3 together for a schematic diagram of the gray scale change in the gray scale driving scheme shown in FIG. 2 .
  • the gradation changing process under the gradation driving scheme will be described with reference to FIG.
  • the gradation 5 when driving from gradation 5 to gradation 6, the gradation 5 is first driven to the extreme optical state 7 (ie, step 104), which satisfies the DC balance; the electrophoretic display medium as described above It can be seen that if the gradation 6 is directly driven from the optical state 7 to the termination gradation 6, the gradation 6 is terminated as a non-gradually varying gradation, and therefore, the extreme gradation 7 needs to be driven to the other extreme gradation 0 (ie, step 106). And then drive from another extreme grayscale 0 to terminate grayscale 6 (ie, step 108).
  • the gradation value of 3, as described above from the characteristics of the electrophoretic display medium, is such that the termination gradation is a gradual change gradation, and therefore, it can be directly driven from the extreme optical state 7 to the termination gradation 3 (ie, step 112).
  • the gray level 3 is driven to the extreme optical state 0 (ie, step 114) to satisfy the DC balance; as described above, the electrophoretic display medium characteristics are known. If driving directly from optical state 0 to When the gray scale 1 is terminated, the gray scale 1 is terminated as a non-gradual change gray scale, and therefore, it is required to drive from the extreme optical state 0 to the other extreme optical state 7 (ie, step 116), and then drive from the extreme optical state 7 to the end gray scale. 1 (ie step 118).
  • the above-described gradation driving scheme follows the principle of the driving method of the present invention, which satisfies both the DC balance and the more precise gradation control.
  • the gradation driving scheme includes the steps of: determining a first gradation change direction directly driven according to the initial gradation and the ending gradation (S301); determining whether the direct drive satisfies the DC balance (S302); If the DC balance is satisfied, it is further determined whether the termination gradation is a gradual change gradation in the first gradation change direction (S303); if so, from the start gradation drive to the termination gradation (S304); If the DC balance is not satisfied, or it is determined in step S303 that the termination gradation is not the gradual change gradation in the first gradation change direction, the initial gradation is driven to an extreme gray according to the DC balance mode.
  • FIG. 5 is a schematic diagram of the gray scale change in the gray scale driving scheme shown in FIG. 4 .
  • the gradation changing process under the gradation driving scheme will be described with reference to FIG.
  • the gray scale 6 when driving from the gradation 5 to the gradation 6, if the direct driving from the gradation 5 to the gradation 6 is to satisfy the DC balance, and the characteristics of the electrophoretic display medium are known, it is directly driven from the gradation 5 to The gray scale 6 also satisfies the gray scale 6 as a gently varying gray scale, and therefore, the gray scale 5 can be directly driven to the gray scale 6 (ie, step 210).
  • the difference between the first embodiment and the gradation driving scheme in the second embodiment is that the first embodiment always drives to an extreme optical state in accordance with the DC balancing mode, and then judges to drive from the extreme optical state to the termination. In the case of gradation, whether the gradation is in a gradual change region; in the second embodiment, it is first determined whether the gradation from the initial gradation to the termination gradation satisfies the DC balance, and then it is determined whether the gradation is gradual. Change area.
  • the electrophoretic display 100 includes a common electrode layer 10, an electrophoretic layer 20, a plurality of pixel electrodes 30, and a TFT (Thin Film Transistor, thin film transistor 40, drive control circuit 50, and processing unit 60.
  • the electrophoretic layer 20 is located between the common electrode layer 10 and the plurality of pixel electrodes 30 and electrically connected thereto.
  • 40 is located between the plurality of pixel electrodes 30 and the drive control circuit 50.
  • the drive control circuit 50 is also connected to the processing unit 60, and turns on the corresponding TFT 40 under the control of the processing unit 60, and turns on the TFT.
  • a drive waveform is applied to the corresponding pixel electrode 30 of 40.
  • the electrophoretic display 100 further includes a substrate 70 for carrying the common electrode layer 10, the electrophoretic layer 20, a plurality of pixel electrodes 30, and a TFT 40.
  • the processing unit 60 is configured to receive the display signal and control the refresh of the display screen according to the display signal. Specifically, the processing unit 60 determines, according to the display signal, the pixel point that needs to change the gradation, and the ending gradation of the pixel point that needs to change the gradation (ie, the gradation required to be changed), and controls the driving control circuit. 50 drives the pixel that needs to change the gradation to the end gradation.
  • each pixel electrode 30 corresponds to a pixel point
  • the processing unit 60 controls the driving control circuit 50 to turn on the corresponding TFT according to the current gray value and the ending gray value of each pixel point.
  • the control unit 60 controls the current gray value of each pixel point and the gray value to be changed according to the driving method of the present invention. That is, the processing unit 60 defines two gray-scale changing directions in advance, and defines a gently changing gray level and a fast changing gray level in each gray-scale changing direction. After receiving the display signal, the processing unit determines the pixel point required to change the gray value, and then controls the driving control circuit 50 to control the TFT connected to the pixel electrode 30 corresponding to the pixel point for which the gray value needs to be changed.
  • the processing unit 40 determines a grayscale driving scheme according to the initial grayscale and the ending grayscale, the grayscale driving scheme includes at least one gray The driving step, each driving step corresponds to a gray-scale changing direction, and the ending gray level is a gently changing gray level in the gray-scale changing direction corresponding to the last driving step.
  • the gradation driving scheme includes the gradation driving scheme in the first embodiment of the present invention and the gradation driving scheme in the second embodiment.
  • electrophoretic display and the driving method thereof of the present invention it is possible to more precisely control the pixel point change to the desired gray level and to satisfy the DC balance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Description

电泳显示器及其驱动方法
技术领域
本发明涉及显示器领域,特别涉及一种电泳显示器及其驱动方法。
背景技术
电泳显示器是类纸式显示器较早发展的显示技术,是利用有颜色的带电球,借由外加电场,在液态环境中移动,呈现不同颜色的显示效果。而在电场撤除时,该显示器将保持所显示的画面,从而实现稳态显示。
电子纸通常以电泳显示器为主,由于其与普通的纸张十分接近、即具有高对比、广视角度、低能耗以及阅读的高舒适性等性能,已经逐渐应用于很多领域。
电泳显示器已经能显示黑白甚至彩色的图案,而在黑与白之间还具有多个中间灰度,例如浅黑、暗灰、灰等,从而通过控制显示屏上各个像素到相应的灰度而显示一幅完整的画面。
目前,一般通过查询表的方式直接根据所转变的最终灰度值加一驱动电压控制像素显示相应的灰度值,然而由于电光显示器具有历史依赖性,即会有残留电压等的影响,因此通过直接查询表驱动的方式很难实现灰度的精准控制,造成一定误差。
此外,灰度控制过程中,如果某一像素长期不能回到极端光学状态(即黑或白),则误差会越来越大,另外,在对灰度控制加驱动电压时,有必要保持DC(直流)平衡,即施加在像素上的电压能量之和从一个预定时期来看是为零的,否则会损坏电极以及显示介质。
有鉴于此,有必要提供一种驱动电泳显示器的技术方案,以解决上述问题。
发明内容
本发明所要解决的技术问题是提供一种电泳显示器及其驱动方法,能够较精准的控制灰度变化,又能保持DC平衡。
为了解决上述问题,本发明提供了一种驱动电泳显示器的方法,包括:
设置所述电泳显示器中每一像素电极对应一像素点;
根据所述像素点的起始灰度及终止灰度确定所述电泳显示器的驱动波形,对所述像素电极施加所述驱动波形的显示信号,控制需要变化灰度值的像素点;其中包括至少一灰度驱动步骤,每一驱动步骤对应一灰度变化方向,在最后的驱动步骤中所对应的灰度变化方向中该终止灰度为平缓变化灰度。
进一步地,上述方法还可包括,所述根据所述像素点的起始灰度及终止灰度确定所述电泳显示器的驱动波形,对所述像素电极施加所述驱动波形的显示信号,控制需要变化灰度值的像素点,具体分为以下步骤:
依满足DC平衡方式,将所述像素点的起始灰度驱动到一极端灰度;
根据所述像素点的极端灰度及终止灰度确定灰度变化方向;判断该终止灰度是否为该灰度变化方向中的平缓变化灰度;
如果是,则从该极端灰度驱动到终止灰度;
如果否,则从该极端灰度驱动到另一极端灰度,然后从另一极端灰度驱动到终止灰度。
进一步地,上述方法还可包括,所述根据所述像素点的起始灰度及终止灰度确定所述电泳显示器的驱动波形,对所述像素电极施加所述驱动波形的显示信号,控制需要变化灰度值的像素点,具体分为以下步骤:
根据所述像素点的起始灰度及终止灰度确定直接驱动的第一灰度变化方向;
判断该直接驱动是否满足DC平衡方式;
如果满足DC平衡,则继续判断该终止灰度是否为该第一灰度变化方向中的平缓变化灰度;
如果是,则从该起始灰度驱动到终止灰度;
如果不满足DC平衡,或者判断该终止灰度不为该第一灰度变化方向中的平缓变化灰度,则依满足DC平衡方式,将该起始灰度驱动到一极端灰度;
根据所述像素点的极端灰度及终止灰度确定第二灰度变化方向;
确定第二灰度变化方向后,判断该终止灰度是否为该第二灰度变化方向中的平缓变化灰度;
如果是,则从该极端灰度驱动到终止灰度;
如果否,则从该极端灰度驱动到另一极端灰度,再从另一极端灰度驱动到终止灰度。
进一步地,上述方法还可包括,所述该满足DC平衡方式是指:在所述像素点的灰度变化过程中,如果所述像素点已经从一个极端光学状态向另一个极端光学状态趋近,在到达该另一个极端光学状态之前,不允许灰度反向变化。
本发明还提供了一种电泳显示器,包括:处理单元和驱动控制电路,其中,
所述处理单元,用于设置所述电泳显示器中每一像素电极对应一像素点,控制所述驱动控制电路导通该所需要变化灰度值的像素点对应的像素电极所连接的TFT,并控制所述驱动控制电路通过该导通的TFT对该像素电极施加根据所述像素点的起始灰度及终止灰度确定的驱动波形,控制需要变化灰度值的像素点,其中包括至少一灰度驱动步骤,每一驱动步骤对应一灰度变化方向,在最后的驱动步骤中所对应的灰度变化方向中该终止灰度为平缓变化灰度;
所述驱动控制电路,用于连接TFT,接收所述处理单元发送的控制信号,刷新TFT显示画面。
进一步地,上述电泳显示器还可包括,所述处理单元对所述像素电极根据所述像素点的起始灰度及终止灰度确定所述驱动波形,控制需要变化灰度值的像素点,具体是指:
所述处理单元依满足DC平衡方式,将所述像素点的起始灰度驱动到一极端灰度;
所述处理单元根据所述像素点的极端灰度及终止灰度确定灰度变化方向;判断该终止灰度是否为该灰度变化方向中的平缓变化灰度;
如果是,则从该极端灰度驱动到终止灰度;
如果否,则从该极端灰度驱动到另一极端灰度,然后从另一极端灰度驱动到终止灰度。
进一步地,上述电泳显示器还可包括,所述处理单元对所述像素电极根据所述像素点的起始灰度及终止灰度确定所述驱动波形,控制需要变化灰度值的像素点,具体是指:
所述处理单元根据所述像素点的起始灰度及终止灰度确定直接驱动的第一灰度变化方向;
所述处理单元判断该直接驱动是否满足DC平衡方式;
如果满足DC平衡,则继续判断该终止灰度是否为该第一灰度变化方向中的平缓变化灰度;
如果是,则从该起始灰度驱动到终止灰度;
如果不满足DC平衡,或者判断该终止灰度不为该第一灰度变化方向中的平缓变化灰度,则依满足DC平衡方式,将该起始灰度驱动到一极端灰度;
所述处理单元根据所述像素点的极端灰度及终止灰度确定第二灰度变化方向;
所述处理单元确定第二灰度变化方向后,判断该终止灰度是否为该第二灰度变化方向中的平缓变化灰度;
如果是,则从该极端灰度驱动到终止灰度;
如果否,则从该极端灰度驱动到另一极端灰度,再从另一极端灰度驱动到终止灰度。
进一步地,上述电泳显示器还可包括,所述处理单元满足DC平衡方式是指:所述处理单元在控制所述像素点的灰度变化过程中,判断如果所述像素点已经从一个极端光学状态向另一个极端光学状态趋近,在到达该另一个极端光学状态之前,不允许灰度反向变化。
与现有技术相比,应用本发明,通过本发明的电泳显示器及其驱动方法,能够在刷新画面时,实现较精准的灰度变化控制,又能保持DC平衡。
附图说明
图1为本发明电泳显示器所采用的电子墨水的特性曲线图。
图2为本发明一实施方式中灰度驱动方案的流程图。
图3为图2所示灰度驱动方案下的灰度变化示意图。
图4为本发明第二实施方式中灰度驱动方案的流程图。
图5为图4所示灰度驱动方案下的灰度变化示意图。
图6为本发明一实施方式中的电泳显示器的结构图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步说明。
请参阅图1。一般来说电泳显示器中微腔(包括微胶囊、微杯等)所包括的悬浮液以及显示粒子叫做电泳显示媒体。不同的电泳显示媒体有着不同的特性。电泳显示媒体有以下分类:两种不同颜色各带正负电荷粒子,透明的悬浮液;一种颜色带电荷粒子和另一颜色的悬浮液;一种颜色带电荷粒子和另一颜色的中性粒子,透明的悬浮液。
本发明采用的电泳显示媒体特性如图1所示,设该电泳显示器的一个像素总共能够实现8个灰度等级,其中7和0分别为极端光学状态中的白和黑,1-6分别为位于黑和白中间的各个灰度,例如1为深灰、6为浅白等。本发明电泳显示器的电泳显示媒体的特性为:当灰度等级从白到黑变化而施加驱动脉冲时,灰度随时间的变化遵循第一曲线A1,当灰度等级从黑到白变化而施加脉冲时,灰度随着时间变化的曲线遵循第二曲线A2。其中,在曲线A1中,高于预定灰度值L的灰度变化幅度很大,低于预定灰度值L的灰度变化幅度趋于平缓,而在曲线A2中,低于预定灰度值L的灰度变化幅度很大,高于预定灰度值L的灰度变化趋于平缓。
由于上述的电泳显示媒体的特性,如果灰度等级从L1变化到L2,灰度变化遵循的是第一曲线A1,由于L1以及L2均高于灰度等级L,如果直接用一个脉冲从L1控制变化到L2,如曲线A1所示,在L1-L2变化中,灰度的变化幅度很大,即在一个短时间内可能变化多个灰度值,从而无法精确控制到最终灰度值L2。同理,如果灰度等级从L3变化到L4,遵循的是第二曲线A2,由于L3、L4均低于预定灰度值L,则如曲线A2所示,同样无法精确控制到最终灰度值L4。
如图1所示,如果当前灰度值为L1,最终灰度值为L2,则不直接从L1驱动到L2,而是保证最后一个脉冲是从黑(0)趋向于灰度值L2,从而使得在驱动到L2附近时,灰度变化已经比较平缓,即使脉冲时间有点偏差,也不会引起灰度值的太大误差。
然而,仅仅通过以上的改进是不够的,因为虽然减小了灰度误差,但灰度误差逐渐累计也会变得很大,此外还要兼顾DC平衡。
由于本发明电泳显示器采用的电泳显示媒体的特性以及上面所述的问题,设计出一种驱动方法以解决上述问题。本发明的驱动方法包括:1)定义两种灰度变化方向,且定义每一灰度变化方向下平缓变化灰度及快速变化灰度;2)根据起始灰度及终止灰度确定一灰度驱动方案,该灰度驱动方案包括至少一个灰度驱动步骤,每一驱动步骤对应一灰度变化方向,在该最后驱动步骤所对应的灰度变化方向中该终止灰度为平缓变化灰度。
请参阅图2,为本发明第一实施方式中灰度驱动方案的流程图。在本发明第一实施方式中,灰度驱动方案包括步骤:依满足DC平衡方式,将该起始灰度驱动到一极端灰度(S201);根据该极端灰度及终止灰度确定灰度变化方向(S202);判断该终止灰度是否为该灰度变化方向中的平缓变化灰度(S203);如果是,则从该极端灰度驱动到终止灰度(S204);如果否,则从该极端灰度驱动到另一极端灰度,然后从另一极端灰度驱动到终止灰度(S205)。其中,本发明所有涉及的满足DC平衡方式以及减少误差累计是指:在灰度变化过程中,如果已经从一个极端光学状态向另一个极端光学状态趋近,在到达该另一个极端光学状态之前,不允许灰度反向变化。
请一并参阅图3,为图2所示灰度驱动方案下的灰度变化示意图。为了进一步说明本发明第一实施方式中的灰度驱动方案,结合图3说明在该灰度驱动方案下的灰度变化过程。
如图3所示,在从灰度5驱动到灰度6时,先将灰度5驱动到极端光学状态7(即步骤104),这是满足DC平衡的;如前所述的电泳显示媒体特性可知,如果直接从光学状态7驱动到终止灰度6,则终止灰度6为非平缓变化灰度,因此,需要将该极端灰度7驱动到另一极端灰度0(即步骤106),再从另一极端灰度0驱动到终止灰度6(即步骤108)。
从起始灰度6驱动到终止灰度3时,同理,先从灰度6驱动到极端光学状态7(即步骤110),满足DC平衡;驱动到7后,如果直接从7驱动到终止灰度值3,由前述的电泳显示媒体特性可知,终止灰度为平缓变化灰度,因此,可直接从极端光学状态7驱动到终止灰度3(即步骤112)。
从起始灰度3变化到终止灰度1时,同理,先从灰度3驱动到极端光学状态0(即步骤114),满足DC平衡的;如前所述的电泳显示媒体特性可知,如果直接从光学状态0驱动到 终止灰度1,则终止灰度1为非平缓变化灰度,因此,需要从极端光学状态0驱动到另一极端光学状态7(即步骤116),再从极端光学状态7驱动到终止灰度1(即步骤118)。从而,通过上述的灰度驱动方案,遵循了本发明驱动方法的原则,既满足DC平衡,又能保证较精准的灰度控制。
请参阅图4,为本发明第二实施方式中灰度驱动方案的流程图。在第二实施方式中,该灰度驱动方案包括步骤:根据起始灰度及终止灰度确定直接驱动的第一灰度变化方向(S301);判断该直接驱动是否满足DC平衡(S302);如果满足DC平衡,则继续判断该终止灰度是否为该第一灰度变化方向中的平缓变化灰度(S303);如果是,则从该起始灰度驱动到终止灰度(S304);如果不满足DC平衡,或者在步骤S303中判断该终止灰度不为该第一灰度变化方向中的平缓变化灰度,则依满足DC平衡方式,将该起始灰度驱动到一极端灰度(S305);然后根据该极端灰度及终止灰度确定第二灰度变化方向(S306);确定第二灰度变化方向后,判断该终止灰度是否为该第二灰度变化方向中的平缓变化灰度(S307);如果是,则从该极端灰度驱动到终止灰度(S308);如果否,则从该极端灰度驱动到另一极端灰度,再从另一极端灰度驱动到终止灰度(S309)。
请一并参阅图5,为图4所示灰度驱动方案下的灰度变化示意图。同理,为了进一步说明本发明第二实施方式中的灰度驱动方案,结合图5说明在该灰度驱动方案下的灰度变化过程。
如图5所示,在从灰度5驱动到灰度6时,如果直接从灰度5驱动到灰度6是满足DC平衡的,且有电泳显示媒体特性可知,直接从灰度5驱动到灰度6也满足灰度6为一个平缓变化灰度,因此,可直接将灰度5驱动到灰度6(即步骤210)。
从起始灰度6驱动到终止灰度4时,如果直接从6驱动到终止灰度值4,将不能满足DC平衡,因此需要先从灰度6驱动到极端光学状态7(即步骤212),而如果从极端光学状态7驱动到终止灰度值4,由前述的电泳显示媒体特性可知,终止灰度为非平缓变化灰度,因此,需要先从极端光学状态7驱动到另一极端光学状态0(即步骤214),然后从极端光学状态0驱动到终止灰度4(即步骤216)。
从起始灰度4变化到终止灰度1时,同理,如果直接从灰度4驱动到终止灰度1,将不能满足DC平衡,因此,需要先从灰度4驱动到极端光学状态7(即步骤218);如前所述的电泳显示媒体特性可知,如果直接从光学状态7驱动到终止灰度1,则终止灰度1为平缓变化灰度,因此,可从极端光学状态7直接驱动到终止灰度1(即步骤220)。
本发明第一实施方式与第二实施方式中的灰度驱动方案的区别在于:第一实施方式总是依满足DC平衡方式先驱动到一极端光学状态,再判断从该极端光学状态驱动到终止灰度时,该终止灰度是否处于平缓变化区域;而在第二实施方式中则是先判断从起始灰度驱动到终止灰度是否满足DC平衡,然后再判断该终止灰度是否处于平缓变化区域。
请参阅图6,为本发明一实施方式中的电泳显示器的结构图。该电泳显示器100包括公共电极层10、电泳层20、若干像素电极30、TFT(Thin Film Transistor,薄膜晶体管)40、驱动控制电路50以及处理单元60。其中该电泳层20位于公共电极层10以及若干像素电极30之间并分别与之电连接,该TFT 40位于该若干像素电极30以及驱动控制电路50之间。该驱动控制电路50还与处理单元60连接,在处理单元60的控制下导通相应的TFT40,并对该导通TFT 40对应的像素电极30施加驱动波形。该电泳显示器100还包括基板70用于承载该公共电极层10、电泳层20、若干像素电极30、以及TFT 40。
该处理单元60用于接收显示信号并根据显示信号控制显示画面的刷新。具体的,该处理单元60并根据显示信号确定需要变化灰度的像素点,以及该些需要变化灰度的像素点的终止灰度(即所需要变化到的灰度),并控制驱动控制电路50驱动该所需要变化灰度的像素至该终止灰度。在本实施方式中,每一像素电极30对应一像素点,处理单元60根据每一像素点当前的灰度值以及终止灰度值控制驱动控制电路50导通相应的TFT 40并施加相应的驱动波形至该像素电极30,使得该像素电极30与公共电极层10之间形成一个或多个不同的电势差驱动电泳层显示所需要的灰度。显然,如果刷新画面时,某一像素点的灰度值不需要改变,则不需要对其进行灰度变化控制。
其中,该处理单元60根据每一像素点当前的灰度值以及所需要变化到的灰度值的控制是根据本发明前述的驱动方法进行控制。即处理单元60预先定义两种灰度变化方向,且定义每一灰度变化方向下平缓变化灰度及快速变化灰度。当60处理单元接收到显示信号后,确定所需要改变灰度值的像素点,然后控制驱动控制电路50控制所需要改变灰度值的像素点对应的像素电极30所连接的TFT 40导通,并施加相应的驱动波形至该像素电极30,其中该驱动波形满足条件:处理单元根据起始灰度及终止灰度确定一灰度驱动方案,该灰度驱动方案包括至少一个灰度驱动步骤,每一驱动步骤对应一灰度变化方向,在该最后驱动步骤所对应的灰度变化方向中该终止灰度为平缓变化灰度。
该灰度驱动方案包括前述的本发明第一实施方式中的灰度驱动方案以及第二实施方式中的灰度驱动方案。
通过本发明的电泳显示器及其驱动方法,可较精准地控制像素点变化至所需要的灰度并能满足DC平衡。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (8)

  1. 一种驱动电泳显示器的方法,其特征在于,包括:
    设置所述电泳显示器中每一像素电极对应一像素点;
    根据所述像素点的起始灰度及终止灰度确定所述电泳显示器的驱动波形,对所述像素电极施加所述驱动波形的显示信号,控制需要变化灰度值的像素点;其中包括至少一灰度驱动步骤,每一驱动步骤对应一灰度变化方向,在最后的驱动步骤中所对应的灰度变化方向中该终止灰度为平缓变化灰度。
  2. 如权利要求1所述的方法,其特征在于,
    所述根据所述像素点的起始灰度及终止灰度确定所述电泳显示器的驱动波形,对所述像素电极施加所述驱动波形的显示信号,控制需要变化灰度值的像素点,具体分为以下步骤:
    依满足DC平衡方式,将所述像素点的起始灰度驱动到一极端灰度;
    根据所述像素点的极端灰度及终止灰度确定灰度变化方向;判断该终止灰度是否为该灰度变化方向中的平缓变化灰度;
    如果是,则从该极端灰度驱动到终止灰度;
    如果否,则从该极端灰度驱动到另一极端灰度,然后从另一极端灰度驱动到终止灰度。
  3. 如权利要求1所述的方法,其特征在于,
    所述根据所述像素点的起始灰度及终止灰度确定所述电泳显示器的驱动波形,对所述像素电极施加所述驱动波形的显示信号,控制需要变化灰度值的像素点,具体分为以下步骤:
    根据所述像素点的起始灰度及终止灰度确定直接驱动的第一灰度变化方向;
    判断该直接驱动是否满足DC平衡方式;
    如果满足DC平衡,则继续判断该终止灰度是否为该第一灰度变化方向中的平缓变化灰度;
    如果是,则从该起始灰度驱动到终止灰度;
    如果不满足DC平衡,或者判断该终止灰度不为该第一灰度变化方向中的平缓变化灰度,则依满足DC平衡方式,将该起始灰度驱动到一极端灰度;
    根据所述像素点的极端灰度及终止灰度确定第二灰度变化方向;
    确定第二灰度变化方向后,判断该终止灰度是否为该第二灰度变化方向中的平缓变化灰度;
    如果是,则从该极端灰度驱动到终止灰度;
    如果否,则从该极端灰度驱动到另一极端灰度,再从另一极端灰度驱动到终止灰度。
  4. 如权利要求2或3所述的方法,其特征在于,
    所述该满足DC平衡方式是指:在所述像素点的灰度变化过程中,如果所述像素点已经从一个极端光学状态向另一个极端光学状态趋近,在到达该另一个极端光学状态之前,不允许灰度反向变化。
  5. 一种电泳显示器,其特征在于,
    包括:处理单元和驱动控制电路,其中,
    所述处理单元,用于设置所述电泳显示器中每一像素电极对应一像素点,控制所述驱动控制电路导通该所需要变化灰度值的像素点对应的像素电极所连接的TFT,并控制所述驱动控制电路通过该导通的TFT对该像素电极施加根据所述像素点的起始灰度及终止灰度确定的驱动波形,控制需要变化灰度值的像素点,其中包括至少一灰度驱动步骤,每一驱动步骤对应一灰度变化方向,在最后的驱动步骤中所对应的灰度变化方向中该终止灰度为平缓变化灰度;
    所述驱动控制电路,用于连接TFT,接收所述处理单元发送的控制信号,刷新TFT显示画面。
  6. 如权利要求5所述的电泳显示器,其特征在于,
    所述处理单元对所述像素电极根据所述像素点的起始灰度及终止灰度确定所述驱动波形,控制需要变化灰度值的像素点,具体是指:
    所述处理单元依满足DC平衡方式,将所述像素点的起始灰度驱动到一极端灰度;
    所述处理单元根据所述像素点的极端灰度及终止灰度确定灰度变化方向;判断该终止灰度是否为该灰度变化方向中的平缓变化灰度;
    如果是,则从该极端灰度驱动到终止灰度;
    如果否,则从该极端灰度驱动到另一极端灰度,然后从另一极端灰度驱动到终止灰度。
  7. 如权利要求5所述的电泳显示器,其特征在于,
    所述处理单元对所述像素电极根据所述像素点的起始灰度及终止灰度确定所述驱动波形,控制需要变化灰度值的像素点,具体是指:
    所述处理单元根据所述像素点的起始灰度及终止灰度确定直接驱动的第一灰度变化方向;
    所述处理单元判断该直接驱动是否满足DC平衡方式;
    如果满足DC平衡,则继续判断该终止灰度是否为该第一灰度变化方向中的平缓变化灰度;
    如果是,则从该起始灰度驱动到终止灰度;
    如果不满足DC平衡,或者判断该终止灰度不为该第一灰度变化方向中的平缓变化灰度,则依满足DC平衡方式,将该起始灰度驱动到一极端灰度;
    所述处理单元根据所述像素点的极端灰度及终止灰度确定第二灰度变化方向;
    所述处理单元确定第二灰度变化方向后,判断该终止灰度是否为该第二灰度变化方向中的平缓变化灰度;
    如果是,则从该极端灰度驱动到终止灰度;
    如果否,则从该极端灰度驱动到另一极端灰度,再从另一极端灰度驱动到终止灰度。
  8. 如权利要求6或7所述的电泳显示器,其特征在于,
    所述处理单元满足DC平衡方式是指:所述处理单元在控制所述像素点的灰度变化过程中,判断如果所述像素点已经从一个极端光学状态向另一个极端光学状态趋近,在到达该另一个极端光学状态之前,不允许灰度反向变化。
PCT/CN2010/078989 2010-04-01 2010-11-23 电泳显示器及其驱动方法 WO2011120307A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013501599A JP5607231B2 (ja) 2010-04-01 2010-11-23 電気泳動ディスプレイ及びその駆動方法
US13/638,704 US9318059B2 (en) 2010-04-01 2010-11-23 Electrophoretic display and drive method thereof
EP10848765.3A EP2555181B1 (en) 2010-04-01 2010-11-23 Electrophoretic display and drive method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010141549.4 2010-04-01
CN2010101415494A CN102214443B (zh) 2010-04-01 2010-04-01 电泳显示器及其驱动方法

Publications (1)

Publication Number Publication Date
WO2011120307A1 true WO2011120307A1 (zh) 2011-10-06

Family

ID=44711336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078989 WO2011120307A1 (zh) 2010-04-01 2010-11-23 电泳显示器及其驱动方法

Country Status (5)

Country Link
US (1) US9318059B2 (zh)
EP (1) EP2555181B1 (zh)
JP (1) JP5607231B2 (zh)
CN (1) CN102214443B (zh)
WO (1) WO2011120307A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107393486A (zh) * 2017-08-16 2017-11-24 华南师范大学 一种减弱电泳电子纸边缘现象的方法及系统
CN115424588A (zh) * 2022-10-11 2022-12-02 广州文石信息科技有限公司 文字显示边缘处理方法、装置、终端设备和存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103778890A (zh) * 2012-10-22 2014-05-07 苏州宝翼信息科技有限公司 一种处理电子纸屏驱动波形的方法
JP6186769B2 (ja) * 2013-03-13 2017-08-30 セイコーエプソン株式会社 電気光学装置の駆動方法、電気光学装置の駆動装置、電気光学装置、及び電子機器
JP2015057637A (ja) * 2013-08-09 2015-03-26 セイコーエプソン株式会社 集積回路、表示装置、電子機器および表示制御方法
CN115410535A (zh) * 2017-03-09 2022-11-29 伊英克公司 提供用于彩色电泳显示器的直流平衡更新序列的驱动器
CN108847190B (zh) * 2018-07-10 2020-11-03 福州大学 一种电润湿电子纸显示器的驱动方法
CN109545154B (zh) * 2019-01-26 2020-11-24 福州大学 一种保持电润湿电子纸直流平衡的驱动方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1589462A (zh) * 2001-11-20 2005-03-02 伊英克公司 驱动双稳态电光显示器的方法
WO2007135594A1 (en) * 2006-05-16 2007-11-29 Koninklijke Philips Electronics N.V. Electrophoretic display devices
CN101364381A (zh) * 2007-08-09 2009-02-11 元太科技工业股份有限公司 主动式电泳显示器驱动方法
WO2009021358A1 (fr) * 2007-08-14 2009-02-19 Prime View International Co., Ltd. Procédé de commande d'afficheur électrophorétique à initiative

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7012600B2 (en) * 1999-04-30 2006-03-14 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
WO2004003650A1 (en) * 2002-07-01 2004-01-08 Koninklijke Philips Electronics N.V. Electrophoretic display panel
JP2007501439A (ja) * 2003-05-22 2007-01-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 電気泳動ディスプレイ及び駆動方法
WO2005006296A1 (en) * 2003-07-11 2005-01-20 Koninklijke Philips Electronics, N.V. Driving scheme for a bi-stable display with improved greyscale accuracy
KR20060079842A (ko) * 2003-08-22 2006-07-06 코닌클리케 필립스 일렉트로닉스 엔.브이. 전기 영동 디스플레이 패널
EP1671305A1 (en) * 2003-09-30 2006-06-21 Koninklijke Philips Electronics N.V. Reset pulse driving for reducing flicker in an electrophoretic display having intermediate optical states
TW200539103A (en) * 2004-02-11 2005-12-01 Koninkl Philips Electronics Nv Electrophoretic display with reduced image retention using rail-stabilized driving
CN100489941C (zh) * 2004-07-27 2009-05-20 皇家飞利浦电子股份有限公司 电泳显示装置中改进的滚动显示功能
WO2006031347A2 (en) * 2004-08-13 2006-03-23 E Ink Corporation Methods and apparatus for driving electro-optic displays

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1589462A (zh) * 2001-11-20 2005-03-02 伊英克公司 驱动双稳态电光显示器的方法
WO2007135594A1 (en) * 2006-05-16 2007-11-29 Koninklijke Philips Electronics N.V. Electrophoretic display devices
CN101364381A (zh) * 2007-08-09 2009-02-11 元太科技工业股份有限公司 主动式电泳显示器驱动方法
WO2009021358A1 (fr) * 2007-08-14 2009-02-19 Prime View International Co., Ltd. Procédé de commande d'afficheur électrophorétique à initiative

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2555181A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107393486A (zh) * 2017-08-16 2017-11-24 华南师范大学 一种减弱电泳电子纸边缘现象的方法及系统
CN107393486B (zh) * 2017-08-16 2020-01-31 华南师范大学 一种减弱电泳电子纸边缘现象的方法及系统
CN115424588A (zh) * 2022-10-11 2022-12-02 广州文石信息科技有限公司 文字显示边缘处理方法、装置、终端设备和存储介质

Also Published As

Publication number Publication date
US20130135363A1 (en) 2013-05-30
CN102214443B (zh) 2013-10-02
JP2013524264A (ja) 2013-06-17
EP2555181A4 (en) 2013-06-12
US9318059B2 (en) 2016-04-19
EP2555181A1 (en) 2013-02-06
CN102214443A (zh) 2011-10-12
JP5607231B2 (ja) 2014-10-15
EP2555181B1 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
WO2011120307A1 (zh) 电泳显示器及其驱动方法
US8624831B2 (en) Electrophoretic display device and method of driving same
US6590552B1 (en) Method of driving liquid crystal display device
US5289174A (en) Liquid crystal display device
JP3367492B2 (ja) アクティブマトリクス型液晶表示装置
JPH0522434B2 (zh)
US8786531B2 (en) Pixel circuit and display device
US20090066636A1 (en) Electro-optic display device and method of driving the same
JPH06289817A (ja) 表示装置の駆動方法及び駆動回路
US20080224992A1 (en) Electrophoretic display and method of driving the same
US20040263701A1 (en) Electrophoretic display apparatus
JP5035888B2 (ja) 液晶表示装置及び液晶表示装置の駆動方法
US6344842B1 (en) Liquid crystal display device and a driving method therefor
KR101213945B1 (ko) 액정표시장치 및 그의 구동 방법
JP2014235187A (ja) 液晶表示装置および液晶表示装置の駆動方法
JPH05119742A (ja) 液晶パネル駆動方法
JPS628130A (ja) 液晶電気光学装置の駆動方法
JP3332106B2 (ja) 液晶表示装置
JP2002358052A (ja) 液晶表示装置
JPH0772456A (ja) 液晶表示装置の調整方法
US12057083B2 (en) Display device
JP2002202493A (ja) 液晶表示装置
JP3454567B2 (ja) 液晶表示装置の駆動方法
JP3586962B2 (ja) 液晶表示パネルの駆動方法と液晶表示装置
JP2009069626A (ja) 液晶表示装置およびその駆動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848765

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013501599

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010848765

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13638704

Country of ref document: US