WO2011120183A2 - Transportable system for generating and injecting oxygen in situ for fish cages in the sea - Google Patents

Transportable system for generating and injecting oxygen in situ for fish cages in the sea Download PDF

Info

Publication number
WO2011120183A2
WO2011120183A2 PCT/CL2011/000019 CL2011000019W WO2011120183A2 WO 2011120183 A2 WO2011120183 A2 WO 2011120183A2 CL 2011000019 W CL2011000019 W CL 2011000019W WO 2011120183 A2 WO2011120183 A2 WO 2011120183A2
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
generating
pressure
air
sea
Prior art date
Application number
PCT/CL2011/000019
Other languages
Spanish (es)
French (fr)
Other versions
WO2011120183A3 (en
Inventor
Rodrigo LAZARRAGA MUÑOZ
Original Assignee
Oxzo S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oxzo S.A. filed Critical Oxzo S.A.
Priority to GB1216791.2A priority Critical patent/GB2491085B/en
Priority to CA2793288A priority patent/CA2793288C/en
Publication of WO2011120183A2 publication Critical patent/WO2011120183A2/en
Publication of WO2011120183A3 publication Critical patent/WO2011120183A3/en
Priority to NO20121042A priority patent/NO341634B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • A01K63/042Introducing gases into the water, e.g. aerators, air pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F7/00Aeration of stretches of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Definitions

  • the present invention aims to improve the productive yields in the fish cycle, more specifically to a portable oxygen generation and injection system at industrial levels for fish cages in the sea, oriented mainly to the aquaculture industry, collection centers, among others.
  • Oxygen from seawater is derived mostly from the air, so it is accompanied by the gases that normally make up this mixture. Since oxygen is more soluble in water than nitrogen, it is found in a greater proportion than in air. The volume of oxygen in seawater is approximately 25 to 30 times less than the volume of the same element in the air.
  • the oxygen dissolves in the water by simple absorption, which is accentuated by the swell that removes the water and puts new layers in contact with the air, which favors the diffusion process. Therefore the oxygenation of water is directly related to the agitation of the sea. Also the richness of oxygen is related to salinity, the greater the salinity corresponds to a smaller amount of oxygen.
  • Oxygen is the fundamental element for life, required by fish and plants to carry out vital processes such as the oxidation of proteins, Carbohydrates and fats. This allows the disintegration of these substances to generate a consequent release of energy used for the vital functions of beings. If the oxygen level is not enough for the ecosystem, the plants will split the fructose and glucose into carbon dioxide and alcohol, that is, in a short time, their cells will die.
  • Oxygen, food and water are three fundamental parameters in fish farming.
  • the availability of O 2 in water has a direct effect on crop yield.
  • Trends towards high fish densities will result in adequate concentrations of O 2 dissolved in the water necessary for the development of the fish.
  • the injection of O 2 has as main objective to increase the level of dissolved oxygen in the fish culture ponds. Its concentration will determine, in most of the times, the production yield.
  • the greatest benefits are reflected in the increase in the rate of feed conversion, providing more efficient use of food, improving fish growth and giving them greater resistance to pathogenic organisms, reducing stress and mortality and optimizing use of facilities reaching higher densities.
  • an oxygen generation and injection system which is mounted on a pontoon comprising a shed, which inside contains diesel accumulation means, means to compress air, means to dry the air, filter media, generation means of electricity, oxygen generating means, accumulation means: high pressure designed to contain oxygen, and special high pressure compressor means for the air, which work in synchronized form by means of an internal control system that allows to make decisions of how much to produce, store and inject oxygen.
  • Patent document US 4,906,359, of the COX JR BERTHOLD V holder entitled "Solar activated water aeration station” which describes a water aeration station for injecting air at a certain depth.
  • This station It includes a floating platform and solar panels, which are to power an engine and a pump, and it also has means to provide an appropriate inclination to maximize solar energy.
  • solar panel systems have a natural limitation that prevents them from scaling the design to an industrial scale. A conservative calculation would indicate that for the requirement of solar panels for a system such as that of the present invention it would be of the order of 2,000 m 2 of panels with hundreds of batteries. The batteries are not considered in both cases and only feed during daylight hours. In addition, this system, like the previous one, is only to produce air that is injected into the water.
  • JP 56073528 of the holder MIYAKE TAKAMURA, entitled "Oxygen supply device used in fish farm or the like", which describes an oxygen injection system through cylindrical diffusers comprising a plurality of narrow holes. However, oxygen is connected to an air compressor and an oxygen generation system mounted on a pontoon is not described.
  • the oxygenation and oxygen injection system of the present invention differs from what exists in the market for its ability to generate OD in situ, also has the characteristic of injecting continuously without having major logistical problems in industrial quantities.
  • Figure 1 shows a block diagram of the system of the present invention.
  • Figure 2 shows a plan view of the system of the present invention with all the equipment comprising the system and a distribution mode.
  • Figure 3 shows a diagram of the arrangement of the present invention regarding the distribution of connection of fish cages in the sea.
  • the on-site oxygen generation and injection system (100) is arranged on a floating platform, called a pontoon, with side walls and roof, to house inside the system (100) of the present invention.
  • This pontoon has a buoyancy of at least 50 tons and is capable of being towed in the open sea.
  • the oxygen generation and injection system (100) which generates oxygen at 93-95% purity, comprises an electricity generating and distribution system, which provides electrical power to the components of this oxygen generating system, where The latter basically comprises pressurized air generating means, pressurized oxygen generating means, high pressure oxygen compression and accumulation means and control means of the oxygen generation system.
  • the electricity generator and distributor comprises means of accumulating fuel, preferably diesel, from storage tanks (302) located inside the pontoon that allows the operation of the oxygen generation and injection system (100) for extended periods of time.
  • This storage tank (302) considers at least 15,000 liters of capacity, level meter and a pump (s) to deliver the diesel to the generator sets.
  • the electricity distribution system considers a force board (201) and switching board (202) to distribute the energy produced by the generation system to the oxygen production line.
  • the electronic system contains the protections and distribution system for handling and switching on all control electronics.
  • it includes a battery bank (203) and UPS (204) with the ability to keep the electronic control systems running for 24 hours and with an optimal and regulated level of voltage and frequency.
  • the pressurized air generating means essentially comprise compressor means (102), which in a preferred embodiment is a reciprocal compressor that generates an air flow at a pressure of about 620.5-792.9 KPa (90-115 psi ); drying means (103), which by cooling extract the water that may come in the compressed air; filter media (104), which in a preferred embodiment, comprise 2 filters and a centrifugal trap that remove the suspended particles, the drops of oil that can be dragged from the compressor and finally the drops of water that leave the compressor as a complement to the dryer action; and air accumulator means (105) that serve to act as a buffer of the pressure fluctuations that occur, since the oxygen generation process has an air consumption that is not stable over time.
  • compressor means (102) which in a preferred embodiment is a reciprocal compressor that generates an air flow at a pressure of about 620.5-792.9 KPa (90-115 psi ); drying means (103), which by cooling extract the water that may come in the compressed air
  • filter media (104) which
  • Pressure oxygen generating means essentially comprise a system called “Pressure Swing Adsorption Generator” (106) and a low pressure oxygen accumulator (107).
  • the system “Generator by Pressure Swing Adsorption” (106) takes air under pressure and passes it to a molecular sieve bed containing a specific adsorbent for nitrogen, so that at the exit of said bed there is an enriched flow of oxygen at 93-95%.
  • the air passage of the latter closes and the second bed is filled with a process identical to the first.
  • the first bed then begins to drop the nitrogen adsorbed by the substrate into the atmosphere. This process is controlled by an internal PLC of the equipment.
  • the high pressure oxygen compression and accumulation means essentially comprise an oxygen piston compressor (108) and a high oxygen pressure accumulator (109).
  • the oxygen piston compressor (108) does not use oil in its compression, which a part of the oxygen produced produces
  • the control means of the oxygen generation system comprises a manual equipment panel (205), a PLC (206), means for receiving dissolved oxygen signals (207), a computer (208) with HMI, software (209) and control algorithms (210) and a manual valve board (211).
  • the manual equipment panel (205) allows individual and manual operation of each of the system equipment by means of an ignition keypad. It also considers visual power indicators, emergency buttons and electric phase indicators.
  • the PLC (206) stores the control algorithms and operates automatically constantly making decisions based on measurements of dissolved oxygen sensors and equipment status to determine whether the equipment should be turned on or off, valve etc.
  • the reception of dissolved oxygen signals is received wirelessly, which are measured by oxygenation sensors, which in a preferred embodiment, the sensors are optical.
  • the computer (208) with HMI serves as an interface for the user showing in a graphic form all the relevant information on the status of the equipment, such as on or off, open or closed valves, oxygen levels in the water, oxygen flow etc. .
  • This can modify operating parameters that influence the decision taken by the control system or rightly operate the system manually through the computer system. Having the necessary connectivity (internet), this interface can operate remotely (not needing to be on the pontoon) making it possible to operate and monitor from anywhere.
  • the software (209) and control algorithms (210) are stored in the PLC (206), developed exclusively for this application according to the needs and best practices established in the field.
  • These algorithms include by way of example: PID control of dissolved oxygen levels in the cage; Smart battery charging routine; Consider equipment departure times that optimize the life of said equipment; Time frequency decision making in line with the process to be controlled and the equipment to be used; Intelligent use of the oxygen accumulation system such as using it as a buffer to optimize energy use, use it in case of mechanical emergency, use it in case of over consumption by fish biomass.
  • the system considers the proportional error, the accumulated error and the slope of the system to determine whether or not to oxygenate a cage (3) and for how long.
  • the system (100) then adds the amount of oxygen that needs to be delivered to the cages (3) and determines if it corresponds where to turn on one or more generation lines, that is, turn on the solenoid valve to oxygenate said particular cage (3). This decision is made for all cages (3). Subsequently, the system will determine based on how many valves will be on and for how long if: oxygenate the cages from the accumulation tanks (109), if the consumption is lower and the tanks are full; light one, two, three or all oxygen generation lines; Turn on the oxygen compressors.
  • the manual valve board (211) allows you to manually control the on or off of the valves that provide oxygen to the fish.
  • the system includes sensors such as a mass flow meter for delivered oxygen, as well as control valves for delivering oxygen to fish cages.
  • the oxygen injection system to the cages is made by pipes that carry oxygen to fish cages and then with micro hoses: water being introduced at about 10 meters deep.
  • the oxygenation system (100) is designed so that it can operate autonomously. Its main function is to always keep the oxygen or Set Point (SP) levels at optimal, a situation that depends on the customer who determines what is the minimum level of operation in reference to the oxygen to be supplied. In the same way, the system user is the one who monitors the system.
  • SP Set Point
  • the process basically begins with the measurements of the oxygen sensors, which are located at strategic points within the module.
  • These sensors can be of optical or galvanic technology that sense the level of dissolved oxygen in the water and transform it into a 4- 20 mA signal that is delivered to the system of the present invention by means of a wireless or cable signal.
  • the SP levels were programmed at 7 PPM (parts per million)
  • the measurement of the oxygen sensor is low than that specified in the SP, then the oxygenation system should be turned on, an example would be if the sensor measured 6.5 PPM.
  • the signals emitted by the oxygen sensors are received by the PLC (206) of the oxygenation system of the present invention and it verifies that there is a value lower than the SP to start switching on the equipment sequentially, starting with the group ignition generator (101), then the ignition of air dryers (103), then the ignition of the air compressors (102), then the ignition of the oxygen generator (106) and finally, as long as there is capacity in the ponds of accumulation (109), the ignition of the high pressure accumulator for oxygen (109), to fill or refill said accumulation tanks (109).
  • the oxygen produced can be sent to the accumulation ponds (109) or you can directly take a feed matrix to the cages.
  • the feeding matrix supplied by the accumulation ponds (109) and the production of O2 in situ
  • there is a totalizer in charge of recording the oxygen consumption that is being delivered to the cages (3).
  • Each feed matrix (4) is controlled by means of a selenoid valve, which, when switched on, allows oxygen to pass when the levels are below the SP and it operates controlled by means of the PLC (206).
  • This equipment is able to discriminate, based on the measurements of the sensors, to which cage (3), which forms a module, feeds with oxygen independently from the cage module (2) to which it belongs.
  • the oxygen that is transported by means of the feeding matrix (4) is connected to the cage module (2) by means of a distribution box (5), which derives the oxygen to the cages (3) by means of distribution lines to finally deliver it through microperforated hoses.
  • the oxygen passes through the solenoid valve, it is directed to the cage (3) in question, by means of high-pressure hoses, which make up the feed matrix (4), upon reaching the cages (3), the oxygen It can be supplied to the water by means of different forms, among them we can find oxygenation by means of ceramic diffusers or microperforated hoses. At this point the oxygen comes out by means of very small and uniform bubbles, which guarantees a highly efficient oxygenation, this allows the levels to be raised in a case of 6.5 to 7 PPM and by measuring the sensor the measurement of the temperature is taken again. so that the PLC (206) makes the decision, in this way the process begins again. The system stays on until it reaches the SP level.
  • the system (100) of the present invention is designed so that it is always filling or refilling the high pressure oxygen storage tanks (109), so that when the system detects the lack of oxygen in one or more cages, First it does is use the oxygen from the accumulation ponds (109) until it reaches a certain level (it is used approximately 20% of the oxygen without turning on the equipment), or it uses the constant of the PID controller when there is some difference in the types of errors or times, on the other hand that oxygen is also used to solve any eventuality with the levels of Low oxygen, that is to say it can be used in parallel to the production of oxygen or it can be kept in reserves and used manually without the need to turn on the equipment.
  • the system is designed so that it operates to power the UPS (203) and in this way the system power is maintained constantly, that is, it is designed to start only the generator in the event that the OD levels are over the SP so that sufficient energy is always maintained to energize the equipment and components. It also has the feature of operating remotely.
  • the system is designed so that every certain amount of hours is turned on to recharge the batteries of the UPS (203), the battery charge! It does not take more than 2 hours and allows the system (100) to be energized for at least 17 hours.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Husbandry (AREA)
  • Water Supply & Treatment (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

The invention relates to a transportable system for generating oxygen in situ and injecting industrial levels of oxygen for fish cages in the sea, said system comprising a floating pontoon-like platform having a floatability of at least 50 tons and able to be towed in the open sea, in which said system generating 93-95% purity oxygen is contained. Said transportable system also comprises a system that generates and distributes electricity, providing electrical energy to the components of the oxygen-generating system which, in turn, essentially comprises means for generating pressurised air, means for generating pressurised oxygen, means for compressing and accumulating high-pressure oxygen, and means for controlling the oxygen-generating system.

Description

SISTEMA PORTÁTIL DE GENERACIÓN E INYECCIÓN DE OXÍGENO IN SITU PARA JAULAS DE PECES EN EL MAR  PORTABLE OXYGEN GENERATION AND INJECTION SYSTEM IN SITU FOR FISH CAGES AT SEA
CAMPO DE APLICACIÓN DE LA INVENCIÓN FIELD OF APPLICATION OF THE INVENTION
La presente invención pretende mejorar los rendimientos productivos en el ciclo de los peces, más específicamente a un sistema portátil de generación e inyección de oxígeno en niveles industriales para jaulas de peces en el mar, orientado principalmente a la industria acuícola, centros de acopio, entre otros. The present invention aims to improve the productive yields in the fish cycle, more specifically to a portable oxygen generation and injection system at industrial levels for fish cages in the sea, oriented mainly to the aquaculture industry, collection centers, among others.
DESCRIPCIÓN DEL ARTE PREVIO DESCRIPTION OF PRIOR ART
El oxígeno del agua de mar se deriva en su mayor parte del aire, por lo que va acompañado de los gases que integran normalmente dicha mezcla. Como el oxígeno es más soluble en el agua que el nitrógeno, se encuentra en mayor proporción que en el aire. El volumen del oxígeno en el agua de mar es aproximadamente de 25 a 30 veces inferior al volumen del mismo elemento en el aire. Oxygen from seawater is derived mostly from the air, so it is accompanied by the gases that normally make up this mixture. Since oxygen is more soluble in water than nitrogen, it is found in a greater proportion than in air. The volume of oxygen in seawater is approximately 25 to 30 times less than the volume of the same element in the air.
El oxígeno se disuelve en el agua por simple absorción, la que se acentúa por el oleaje que remueve el agua y pone nuevas capas en contacto con el aire, lo que favorece el proceso de difusión. Por lo tanto la oxigenación del agua está en directa relación con la agitación del mar. También la riqueza del oxígeno está relacionada con la salinidad, a mayor salinidad corresponde menor cantidad de oxígeno. The oxygen dissolves in the water by simple absorption, which is accentuated by the swell that removes the water and puts new layers in contact with the air, which favors the diffusion process. Therefore the oxygenation of water is directly related to the agitation of the sea. Also the richness of oxygen is related to salinity, the greater the salinity corresponds to a smaller amount of oxygen.
Otro factor que influye en la absorción del oxígeno por el agua es la temperatura. Por esta causa en los mares abiertos la riqueza del oxígeno decrece desde los polos al ecuador Another factor that influences the absorption of oxygen by water is temperature. For this reason in the open seas the oxygen richness decreases from the poles to the equator
El oxígeno es el elemento fundamental para la vida, requerido por peces y plantas para llevar a cabo procesos vitales como la oxidación de las proteínas, hidratos de carbono y grasas. Esto permite que la desintegración de dichas sustancias genere una consecuente liberación de energía empleada para las funciones vitales de los seres. Si el nivel de oxígeno no es suficiente para el ecosistema, las plantas desdoblarán la fructosa y la glucosa en anhídrido carbónico y alcohol, o sea que en poco tiempo, sus células morirán. Oxygen is the fundamental element for life, required by fish and plants to carry out vital processes such as the oxidation of proteins, Carbohydrates and fats. This allows the disintegration of these substances to generate a consequent release of energy used for the vital functions of beings. If the oxygen level is not enough for the ecosystem, the plants will split the fructose and glucose into carbon dioxide and alcohol, that is, in a short time, their cells will die.
Siempre que el ecosistema demande más oxígeno del que el intercambio superficial pueda aportar, se necesita aportar oxígeno por medios externos o artificiales. Whenever the ecosystem demands more oxygen than the surface exchange can provide, it is necessary to provide oxygen by external or artificial means.
El oxígeno, alimentación y el agua son tres parámetros fundamentales en la piscicultura. En particular, la disponibilidad de O2 en el agua tiene un efecto directo en el rendimiento de los cultivos. Las tendencias hacia altas densidades de peces resultarán en concentraciones adecuadas de O2 disuelto en el agua necesarias para el desarrollo de los peces. La inyección de O2 tiene como objetivo principal incrementar el nivel de oxígeno disuelto en los estanques de cultivo de peces. Su concentración determinará, en la mayoría de las veces, el rendimiento de la producción. Los mayores beneficios se ven reflejados en el aumento de la tasa de conversión alimenticia, brindando un uso más eficiente del alimento, mejora el crecimiento de los peces y les brinda una mayor resistencia ante organismos patógenos, reduce el stress y la mortalidad y optimiza el uso de las instalaciones alcanzando mayores densidades. Oxygen, food and water are three fundamental parameters in fish farming. In particular, the availability of O 2 in water has a direct effect on crop yield. Trends towards high fish densities will result in adequate concentrations of O 2 dissolved in the water necessary for the development of the fish. The injection of O 2 has as main objective to increase the level of dissolved oxygen in the fish culture ponds. Its concentration will determine, in most of the times, the production yield. The greatest benefits are reflected in the increase in the rate of feed conversion, providing more efficient use of food, improving fish growth and giving them greater resistance to pathogenic organisms, reducing stress and mortality and optimizing use of facilities reaching higher densities.
Todo lo anterior, fuerza a disponer de sistemas generadores de oxígeno capaces de inyectar dicho gas en el agua de mar para optimizar la crianza de peces, como los salmones, por ejemplo. Es sabido que durante el ciclo productivo de los peces existe alta mortalidad asociada a bajas de oxígeno, especialmente durante el verano debido a diferentes factores como los blooms de algas, corrientes anóxicas, biomasa de la jaula, etc. muchos de estos problemas son indetectables debido a que las bajas ocurren durante la noche. All of the above, forces to have oxygen generating systems capable of injecting said gas into seawater to optimize the breeding of fish, such as salmon, for example. It is known that during the fish production cycle there is high mortality associated with low oxygen, especially during the summer due to different factors such as algae blooms, anoxic currents, cage biomass, etc. Many of these problems are undetectable because the casualties occur at night.
Actualmente una baja de OD (demanda de oxígeno por sus siglas en inglés), se evidencia como eventos puntuales, ya que no se utilizan sistemas de monitoreo constante y en línea de OD en las jaulas de cultivo, y se solucionan, estos eventos puntuales, trasladando cilindros o termos contenedores de oxígeno, que desde el punto de vista logístico es poco operacional cuando los centros se encuentran muy alejados, además, la cantidad de 02 a ser trasladado no es una cantidad industrial que pueda solucionar problemas a gran escala. Currently, a drop in OD (oxygen demand) is evidenced as specific events, since constant and online OD monitoring systems are not used in the culture cages, and these specific events are solved, moving cylinders or thermos containers of oxygen, which from the logistic point of view is little operational when the centers are very far apart, in addition, the amount of 0 2 to be transferred is not an industrial quantity that can solve problems on a large scale.
Una solución alternativa se puede encontrar en los documentos de patentes como el documento FR 2735463, del titular SPIE CITRA ILE DE FRANCE, titulado "Independent or semi-independent water oxygenation system", que describe un pontón con compresores de aire que alimentan unos difusores micro cerámicos que están suspendidos en el agua por cables. Sin embargo, este documento es un sistema para producir aire que inyectan al agua. Aquí hay claramente una diferencia sustantativa ya que al inyectar aire que tiene 20% de oxígeno y no un flujo de oxígeno al 93%, además solo posee contenedores de aire y no un sistema de generación de oxígeno como en el caso de la presente invención, donde se provee un sistema de generación e inyección de oxígeno que está montado sobre un pontón que comprende un galpón, que en su interior contiene medios de acumulación de diesel, medios para comprimir aire, medios para secar el aire, medios filtradores, medios de generación de electricidad, medios generadores de oxígeno, medios de acumulación: de alta presión diseñado para contener el oxígeno, y medios compresores de alta presión especiales para el aire, que funcionan en forma sincronizada por medio de un sistema de control interno que permite tomar decisiones de cuanto producir, almacenar e inyectar oxígeno. El documento de patente ¡ US 4,906,359, del titular COX JR BERTHOLD V, titulado "Solar activated water aeration station" que describe una estación de aireación de agua para inyectar aire a una determinada profundidad. Esta estación incluye una plataforma flotante y paneles solares, los cuales están para dar energía a un motor y una bomba, además, tiene medios para proporcionar una inclinación apropiada para aprovechar al máximo la energía solar. Sin embargo, los sistemas de paneles solares tienen una limitación natural que les impide escalar el diseño a una escala industrial. Un cálculo conservador indicaría que para el requerimiento de paneles solares para un sistema como el de la presente invención sería del orden de 2.000 m2 de paneles con cientos de baterías. Las baterías no están consideras en ambos caso y solo alimentan en horas diurnas. Además, este sistema, como el anterior, es solo para producir aire que inyectan al agua. An alternative solution can be found in patent documents such as document FR 2735463, of the owner SPIE CITRA ILE DE FRANCE, entitled "Independent or semi-independent water oxygenation system", which describes a pontoon with air compressors that feed micro diffusers ceramics that are suspended in the water by wires. However, this document is a system to produce air that is injected into the water. Here there is clearly a sustainative difference because when injecting air that has 20% oxygen and not a 93% oxygen flow, it also only has air containers and not an oxygen generation system as in the case of the present invention, where an oxygen generation and injection system is provided which is mounted on a pontoon comprising a shed, which inside contains diesel accumulation means, means to compress air, means to dry the air, filter media, generation means of electricity, oxygen generating means, accumulation means: high pressure designed to contain oxygen, and special high pressure compressor means for the air, which work in synchronized form by means of an internal control system that allows to make decisions of how much to produce, store and inject oxygen. Patent document US 4,906,359, of the COX JR BERTHOLD V holder, entitled "Solar activated water aeration station" which describes a water aeration station for injecting air at a certain depth. This station It includes a floating platform and solar panels, which are to power an engine and a pump, and it also has means to provide an appropriate inclination to maximize solar energy. However, solar panel systems have a natural limitation that prevents them from scaling the design to an industrial scale. A conservative calculation would indicate that for the requirement of solar panels for a system such as that of the present invention it would be of the order of 2,000 m 2 of panels with hundreds of batteries. The batteries are not considered in both cases and only feed during daylight hours. In addition, this system, like the previous one, is only to produce air that is injected into the water.
La patente JP 56073528, del titular MIYAKE TAKAMURA, titulado "Oxygen supply device used in fish farm or the like", que describe un sistema de inyección de oxígeno a través de difusores cilindricos que comprenden una pluralidad de agujeros estrechos. Sin embargo, el oxígeno es conectado a un compresor de aire y no se describe un sistema de generación de oxígeno montado sobre un pontón. JP 56073528, of the holder MIYAKE TAKAMURA, entitled "Oxygen supply device used in fish farm or the like", which describes an oxygen injection system through cylindrical diffusers comprising a plurality of narrow holes. However, oxygen is connected to an air compressor and an oxygen generation system mounted on a pontoon is not described.
I  I
El sistema de oxigenación e inyección de oxígeno de la presente invención, se diferencia de lo existente en el mercado por su capacidad de generación de OD in situ, además posee la característica de inyectar en forma continua sin tener mayores problemas logísticos en cantidades industriales.  The oxygenation and oxygen injection system of the present invention, differs from what exists in the market for its ability to generate OD in situ, also has the characteristic of injecting continuously without having major logistical problems in industrial quantities.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
La figura 1 muestra un esquema en bloques del sistema de la presente invención. Figure 1 shows a block diagram of the system of the present invention.
La figura 2 muestra una vista en planta del sistema de la presente invención con todos los equipos que componen el sistema y una modalidad de distribución. La figura 3 muestra un esquema de la disposición de la presente invención respecto a la distribución de conexión de jaulas de peces en el mar. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN Figure 2 shows a plan view of the system of the present invention with all the equipment comprising the system and a distribution mode. Figure 3 shows a diagram of the arrangement of the present invention regarding the distribution of connection of fish cages in the sea. DETAILED DESCRIPTION OF THE INVENTION
El sistema (100) de generación e inyección de oxígeno in situ, se dispone sobre una plataforma flotante, denominada pontón, con paredes laterales y techo, para albergar en su interior el sistema (100) de la presente invención. Este pontón tiene una flotabilidad de por lo menos 50 toneladas y es capaz de ser remolcado en mar abierto. The on-site oxygen generation and injection system (100) is arranged on a floating platform, called a pontoon, with side walls and roof, to house inside the system (100) of the present invention. This pontoon has a buoyancy of at least 50 tons and is capable of being towed in the open sea.
El sistema (100) de generación e inyección de oxígeno, el cual genera oxígeno al 93 - 95% de pureza, comprende un sistema generador y de distribución de electricidad, el cual provee energía eléctrica a los componentes de este sistema generador de oxígeno, donde este último comprende básicamente medios generadores de aire a presión, medios generadores de oxígeno a presión, medios de compresión y acumulación de oxígeno de alta presión y medios de control del sistema de generación de oxígeno. The oxygen generation and injection system (100), which generates oxygen at 93-95% purity, comprises an electricity generating and distribution system, which provides electrical power to the components of this oxygen generating system, where The latter basically comprises pressurized air generating means, pressurized oxygen generating means, high pressure oxygen compression and accumulation means and control means of the oxygen generation system.
El generador y distribuidor de electricidad comprende medios acumuladores de combustible, preferentemente diesel, proveniente de estanques de almacenamiento (302) ubicados al interior del pontón que permite el funcionamiento del sistema (100) de generación e inyección de oxígeno por períodos extendidos de tiempo. Este estanque de almacenamiento (302) considera por lo menos 15.000 litros de capacidad, medidor de nivel y una(s) bomba(s) para entregar el diesel a los grupos electrógenos. El sistema de distribución de electricidad considera un tablero de fuerza (201 ) y tablero de conmutación (202) para distribuir la energía producida por el sistema de generación a la línea de producción de oxígeno. Mientras que el sistema electrónico contiene las protecciones y sistema de distribución para el manejo y encendido de toda la electrónica de control. Además, comprende un banco de batería (203) y UPS (204) con capacidad para mantener los sistemas electrofónicos de control funcionando por 24 horas y con un nivel óptimo y regulado de voltaje y frecuencia. Los medios generadores de aire a presión, comprenden esencialmente medios compresores (102), que en una realización preferida es un compresor recíproco que genera un flujo de aire a una presión de alrededor de 620,5 - 792,9 KPa (90 - 115 psi); medios secadores (103), los cuales por enfriado extraen el agua que puede venir en el aire comprimido; medios filtrantes (104), que en una realización preferida, comprenden 2 filtros y una trampa centrifuga que eliminan las partículas en suspensión, las gotas de aceite que puede arrastrarse del compresor y finalmente las gotas de agua que salen de) compresor como complemento a la acción del secador; y medios acumuladores (105) de aire que sirven para actuar como amortiguador de las fluctuaciones de presión que se producen, dado que el proceso de generación de oxígeno tiene un consumo de aire que no es estable en el tiempo. The electricity generator and distributor comprises means of accumulating fuel, preferably diesel, from storage tanks (302) located inside the pontoon that allows the operation of the oxygen generation and injection system (100) for extended periods of time. This storage tank (302) considers at least 15,000 liters of capacity, level meter and a pump (s) to deliver the diesel to the generator sets. The electricity distribution system considers a force board (201) and switching board (202) to distribute the energy produced by the generation system to the oxygen production line. While the electronic system contains the protections and distribution system for handling and switching on all control electronics. In addition, it includes a battery bank (203) and UPS (204) with the ability to keep the electronic control systems running for 24 hours and with an optimal and regulated level of voltage and frequency. The pressurized air generating means essentially comprise compressor means (102), which in a preferred embodiment is a reciprocal compressor that generates an air flow at a pressure of about 620.5-792.9 KPa (90-115 psi ); drying means (103), which by cooling extract the water that may come in the compressed air; filter media (104), which in a preferred embodiment, comprise 2 filters and a centrifugal trap that remove the suspended particles, the drops of oil that can be dragged from the compressor and finally the drops of water that leave the compressor as a complement to the dryer action; and air accumulator means (105) that serve to act as a buffer of the pressure fluctuations that occur, since the oxygen generation process has an air consumption that is not stable over time.
Los medios generadores de oxígeno a presión comprenden esencialmente un sistema denominado "Generator por Pressure Swing Adsorption" (106) y un acumulador de oxígeno en baja presión (107). El sistema "Generator por Pressure Swing Adsorption" (106), toma aire a presión y lo pasa a una cama de tamiz molecular que contiene un adsorbente especifico para el nitrógeno, por lo que a la salida de dicha cama hay un flujo enriquecido de oxígeno al 93 - 95%. Al saturarse la primera cama se cierra el paso de aire de ésta y se empieza a llenar la segunda cama con un proceso idéntico al primero. La primera cama luego empieza a botar el nitrógeno adsorbido por el sustrato a la atmosfera. Este proceso es controlado por un PLC interno del equipo. Mientras que, a la salida de la generación de oxígeno, existe un acumulador (o estanques) de oxígeno a baja presión, con el propósito de amortiguar la presión de la salida del proceso y así garantizar la pureza del proceso. Estos estanques operan en un rango de alrededor de 344,7 - 413,7 KPa (50 - 60 psi). Pressure oxygen generating means essentially comprise a system called "Pressure Swing Adsorption Generator" (106) and a low pressure oxygen accumulator (107). The system "Generator by Pressure Swing Adsorption" (106), takes air under pressure and passes it to a molecular sieve bed containing a specific adsorbent for nitrogen, so that at the exit of said bed there is an enriched flow of oxygen at 93-95%. When the first bed is saturated, the air passage of the latter closes and the second bed is filled with a process identical to the first. The first bed then begins to drop the nitrogen adsorbed by the substrate into the atmosphere. This process is controlled by an internal PLC of the equipment. While, at the exit of the oxygen generation, there is a low pressure oxygen accumulator (or tanks), with the purpose of damping the pressure of the process exit and thus guaranteeing the purity of the process. These ponds operate in a range of around 344.7-413.7 KPa (50-60 psi).
Los medios de compresión y acumulación de oxígeno de alta presión comprenden esencialmente un compresor de pistón de oxígeno (108) y un acumulador de alta presión de oxígeno (109). El compresor de pistón de oxígeno (108) no utiliza aceite en su compresión, que una parte del oxígeno producido lo The high pressure oxygen compression and accumulation means essentially comprise an oxygen piston compressor (108) and a high oxygen pressure accumulator (109). The oxygen piston compressor (108) does not use oil in its compression, which a part of the oxygen produced produces
I comprime para almacenar en el acumulador de alta presión (109). El acumulador de alta presión de oxígeno (109) almacena grandes cantidades de oxígeno en forma gaseosa lo que evita perdidas por evaporación. Los medios de control del sistema de generación de oxígeno comprende un tablero manual de equipos (205), un PLC (206), medios de recepción de señales de oxígeno disuelto (207), un computador (208) con HMI, software (209) y algoritmos de control (210) y un tablero manual de válvulas (211 ). El tablero manual de equipos (205) permite accionar en forma individual y manual cada uno de los equipos del sistema mediante una botonera de encendido. Considera además indicadores visuales de encendido, botones de emergencia e indicadores de fases eléctricas. El PLC (206) almacena los algoritmos de control y opera en forma automática constantemente tomando decisiones en bases a las mediciones de los sensores de oxigeno disuelto y estados de los equipos para determinar si se debe encender o apagar los equipos, válvula etc. La recepción de las señales de oxígeno disuelto se recibe por forma inalámbrica, las cuales son medidas por sensores de oxigenación, que en una realización preferida, los sensores son ópticos. I compress to store in the high pressure accumulator (109). The high oxygen pressure accumulator (109) stores large amounts of oxygen in a gaseous form which prevents evaporation losses. The control means of the oxygen generation system comprises a manual equipment panel (205), a PLC (206), means for receiving dissolved oxygen signals (207), a computer (208) with HMI, software (209) and control algorithms (210) and a manual valve board (211). The manual equipment panel (205) allows individual and manual operation of each of the system equipment by means of an ignition keypad. It also considers visual power indicators, emergency buttons and electric phase indicators. The PLC (206) stores the control algorithms and operates automatically constantly making decisions based on measurements of dissolved oxygen sensors and equipment status to determine whether the equipment should be turned on or off, valve etc. The reception of dissolved oxygen signals is received wirelessly, which are measured by oxygenation sensors, which in a preferred embodiment, the sensors are optical.
El computador (208) con HMI sirve de interfaz para el usuario mostrando en una forma gráfica toda la información relevante del estado de los equipos, tales como encendido o apagado, válvulas abiertas o cerradas, niveles de oxígeno en el agua, flujo de oxígeno etc. Este puede modificar parámetros de operación que influyen en la decisión adoptada por el sistema de control o derechamente operar el sistema en forma manual a través del sistema de computación. De contar con la necesaria conectividad (internet), esta interfaz puede operar en forma remota (no necesitando estar en el pontón) logrando que se pueda operar y monitorear desde cualquier lugar. The computer (208) with HMI serves as an interface for the user showing in a graphic form all the relevant information on the status of the equipment, such as on or off, open or closed valves, oxygen levels in the water, oxygen flow etc. . This can modify operating parameters that influence the decision taken by the control system or rightly operate the system manually through the computer system. Having the necessary connectivity (internet), this interface can operate remotely (not needing to be on the pontoon) making it possible to operate and monitor from anywhere.
El software (209) y algoritmos de control (210) están almacenados en el PLC (206), desarrollados exclusivamente para esta aplicación de acuerdo a las necesidades y mejores prácticas establecidas en terreno. Estos algoritmos incluyen a modo de ejemplo: Control PID de los niveles de oxígeno disuelto en la jaula; Rutina de carga de baterías inteligente; Considerar tiempos de partidas de equipos que optimicen la vida útil de dichos equipos; Toma de decisiones en frecuencia de tiempo en línea con el proceso a controlar y los equipos a utilizar; Uso inteligente del sistema de acumulación de oxigeno tales como usarlo como buffer para optimizar uso energético, usarlo en caso de emergencia mecánica, usarlo en caso de sobre consumo por parte de la biomasa de peces. The software (209) and control algorithms (210) are stored in the PLC (206), developed exclusively for this application according to the needs and best practices established in the field. These algorithms include by way of example: PID control of dissolved oxygen levels in the cage; Smart battery charging routine; Consider equipment departure times that optimize the life of said equipment; Time frequency decision making in line with the process to be controlled and the equipment to be used; Intelligent use of the oxygen accumulation system such as using it as a buffer to optimize energy use, use it in case of mechanical emergency, use it in case of over consumption by fish biomass.
Dependiendo de las constante del controlador PID asignadas el sistema considera el error proporcional, el acumulado y la pendiente del sistema para determinar si corresponde oxigenar o no una jaula (3) y por cuánto tiempo. El sistema (100) luego suma la cantidad de oxigeno que se necesita entregar a las jaulas (3) y determina si correspónde encender uno o más líneas de generación, es decir, encender la válvula solenoide para oxigenar dicha jaula (3) en particular. Esta decisión se toma para todas las jaulas (3). Posteriormente el sistema determinar en función de cuantas válvulas estarán encendidas y por cuánto tiempo si: oxigenar las jaulas desde los estanques de acumulación (109), si el consumo es menor y los estanques están llenos; encender una, dos, tres o todas las líneas de generación de oxigeno; encender los compresores de oxigeno. Depending on the PID controller constants assigned, the system considers the proportional error, the accumulated error and the slope of the system to determine whether or not to oxygenate a cage (3) and for how long. The system (100) then adds the amount of oxygen that needs to be delivered to the cages (3) and determines if it corresponds where to turn on one or more generation lines, that is, turn on the solenoid valve to oxygenate said particular cage (3). This decision is made for all cages (3). Subsequently, the system will determine based on how many valves will be on and for how long if: oxygenate the cages from the accumulation tanks (109), if the consumption is lower and the tanks are full; light one, two, three or all oxygen generation lines; Turn on the oxygen compressors.
El tablero manual de válvulas (211 ) permite controlar en forma manual el encendido o apagado de las válvulas que proveen de oxígeno a los peces. The manual valve board (211) allows you to manually control the on or off of the valves that provide oxygen to the fish.
Además, el sistema comprende sensores como flujómetro másico de medición de oxígeno entregado, así como de válvulas de control para entrega de oxígeno a las jaulas de peces. El sistema de inyección de oxígeno a las jaulas se realiza mediante cañerías que transportan el oxígeno a las jaulas de peces y de ahí con mangueras microperforadas,: que se introducen al agua a aproximadamente 10 metros de profundidad. Actualmente existen en el mercado sistemas de oxigenación por medio de mangueras o difusores cerámicos. El sistema (100) de oxigenación está diseñado, de manera que pueda operar en forma autónoma. Su función principal consiste en mantener siempre los niveles oxígeno o Set Point (SP) en óptimos, situación que dependiendo del cliente que determina cuál es el nivel mínimo de operación en referencia al oxígeno a suministrar. De la misma forma, el usuario del sistema es aquél que monitorea el sistema. In addition, the system includes sensors such as a mass flow meter for delivered oxygen, as well as control valves for delivering oxygen to fish cages. The oxygen injection system to the cages is made by pipes that carry oxygen to fish cages and then with micro hoses: water being introduced at about 10 meters deep. Currently, there are oxygenation systems on the market through ceramic hoses or diffusers. The oxygenation system (100) is designed so that it can operate autonomously. Its main function is to always keep the oxygen or Set Point (SP) levels at optimal, a situation that depends on the customer who determines what is the minimum level of operation in reference to the oxygen to be supplied. In the same way, the system user is the one who monitors the system.
Para la generación in situ de oxígeno en forma automática, el proceso comienza básicamente con las mediciones de los sensores de oxígeno, los cuales se encuentran en puntos estratégicos dentro del módulo. Estos sensores pueden ser de tecnología óptica o galvánica que sensan el nivel de oxigeno disuelto en el agua y lo transforman en una señal 4- 20 mA que es entregada al sistema de la presente invención por medio de una señal inalámbrica o por cable. Por ejemplo, si los niveles de SP se programaron en 7 PPM (partes por millón), significa que cualquier medición mayor del sensor de oxígeno mantienen el sistema apagado como podría ser un caso de 7,5 PPM (no es necesario en este caso inyectar oxigeno), en caso contrario, si la medición del sensor de oxígeno está bajo a lo especificado en el SP, entonces el sistema de oxigenación debe encenderse, caso ejemplificador sería si el sensor midiera 6,5 PPM. For the on-site generation of oxygen automatically, the process basically begins with the measurements of the oxygen sensors, which are located at strategic points within the module. These sensors can be of optical or galvanic technology that sense the level of dissolved oxygen in the water and transform it into a 4- 20 mA signal that is delivered to the system of the present invention by means of a wireless or cable signal. For example, if the SP levels were programmed at 7 PPM (parts per million), it means that any larger measurement of the oxygen sensor keeps the system off as could be a case of 7.5 PPM (in this case it is not necessary to inject oxygen), otherwise, if the measurement of the oxygen sensor is low than that specified in the SP, then the oxygenation system should be turned on, an example would be if the sensor measured 6.5 PPM.
Las señales emitidas por los sensores de oxígenos son recepcionadas por el PLC (206) del sistema de oxigenación de la presente invención y éste comprueba que existe un valor menor al SP para comenzar a encender los equipos en forma secuencial, comenzando con el encendido de grupo electrógeno (101 ), luego el encendido de secadores de aire (103), posteriormente el encendido de los compresores de aire (102), luego el encendido de generador de oxígeno (106) y por último, siempre y cuando existe capacidad en los estanques de acumulación (109), el encendido del acumulador de alta presión para oxigeno (109), para llenar o rellenar dichos estanques de acumulación (109). The signals emitted by the oxygen sensors are received by the PLC (206) of the oxygenation system of the present invention and it verifies that there is a value lower than the SP to start switching on the equipment sequentially, starting with the group ignition generator (101), then the ignition of air dryers (103), then the ignition of the air compressors (102), then the ignition of the oxygen generator (106) and finally, as long as there is capacity in the ponds of accumulation (109), the ignition of the high pressure accumulator for oxygen (109), to fill or refill said accumulation tanks (109).
Una vez encendido todos los equipos, el oxígeno producido puede ser enviado a los estanques de acumulación (109) o puede tomar directamente una matriz de alimentación hacia las jaulas. En la matriz de alimentación (abastecida por los estanques de acumulación (109) y la producción de O2 ¡n situ), se encuentra un totalizador, encargado de registrar el consumo de oxígeno que se está entregando a las jaulas (3). Cada matriz de alimentación (4) está controlada por medio de una válvula selenoide, la que al encenderse, permite el paso de oxígeno cuando los niveles están bajo al SP y éste opera controlado por medio del PLC (206). Este equipo es capaz de discriminar, en base a las mediciones de los sensores, a cual jaula (3), que conforma un módulo, alimenta con oxígeno en forma independiente respecto al módulo de jaulas (2) a la cual pertenece. Once all equipment is turned on, the oxygen produced can be sent to the accumulation ponds (109) or you can directly take a feed matrix to the cages. In the feeding matrix (supplied by the accumulation ponds (109) and the production of O2 in situ), there is a totalizer, in charge of recording the oxygen consumption that is being delivered to the cages (3). Each feed matrix (4) is controlled by means of a selenoid valve, which, when switched on, allows oxygen to pass when the levels are below the SP and it operates controlled by means of the PLC (206). This equipment is able to discriminate, based on the measurements of the sensors, to which cage (3), which forms a module, feeds with oxygen independently from the cage module (2) to which it belongs.
Luego el oxígeno que es transportado por medio de la matriz de alimentación (4) se conecta al módulo de jaulas (2) por medio de una caja de distribución (5), la cual deriva el oxigeno hacia las jaulas (3) por medio de líneas de distribución para entregarlo finalmente por medio de las mangueras microperforadas. Then the oxygen that is transported by means of the feeding matrix (4) is connected to the cage module (2) by means of a distribution box (5), which derives the oxygen to the cages (3) by means of distribution lines to finally deliver it through microperforated hoses.
Una vez que el oxígeno pasa por la válvula solenoide se dirige hasta la jaula (3) en cuestión, por medio de mangueras de alta presión, que conforman la matriz de alimentación (4), al llegar a las jaulas (3), el oxígeno puede ser suministrado al agua por medio de diferentes formas, entre ellas podemos encontrar la oxigenación por medio de difusores cerámicos o mangueras microperforadas. En este punto el oxígeno sale por medio de burbujas pequeñísimas y uniforme, lo que garantiza una oxigenación altamente eficiente, esto permite subir los niveles en un caso de 6,5 a 7 PPM y por medido del sensor se vuelve nuevamente a tomar la medición de modo que el PLC (206) tome la decisión, de esta forma comienza nuevamente el proceso. El sistema se mantiene encendido hasta llegar al nivel de SP. Once the oxygen passes through the solenoid valve, it is directed to the cage (3) in question, by means of high-pressure hoses, which make up the feed matrix (4), upon reaching the cages (3), the oxygen It can be supplied to the water by means of different forms, among them we can find oxygenation by means of ceramic diffusers or microperforated hoses. At this point the oxygen comes out by means of very small and uniform bubbles, which guarantees a highly efficient oxygenation, this allows the levels to be raised in a case of 6.5 to 7 PPM and by measuring the sensor the measurement of the temperature is taken again. so that the PLC (206) makes the decision, in this way the process begins again. The system stays on until it reaches the SP level.
El sistema (100) de la presente invención, está diseñado de modo que siempre está llenando o rellenando los estanque acumuladores de alta presión de oxigeno (109), de modo que el sistema cuando detecta la falta de oxigeno en una o varias jaulas, lo primero que hace es utilizar el oxigeno de los estanques de acumulación (109) hasta que llega a un nivel determinado (se utiliza aproximadamente el 20% del oxigeno sin necesidad de encender los equipos), o bien utiliza las constante del controlador PID cuando existe alguna diferencia de los tipos de errores o tiempos, por otra parte ese oxigeno también se utiliza para solucionar cualquier eventualidad con los niveles de oxigeno bajo, es decir se puede utilizar paralelamente a la producción de oxigeno o se puede tener de reservas y utilizar en forma manual sin la necesidad de encender los equipos. The system (100) of the present invention is designed so that it is always filling or refilling the high pressure oxygen storage tanks (109), so that when the system detects the lack of oxygen in one or more cages, First it does is use the oxygen from the accumulation ponds (109) until it reaches a certain level (it is used approximately 20% of the oxygen without turning on the equipment), or it uses the constant of the PID controller when there is some difference in the types of errors or times, on the other hand that oxygen is also used to solve any eventuality with the levels of Low oxygen, that is to say it can be used in parallel to the production of oxygen or it can be kept in reserves and used manually without the need to turn on the equipment.
Adicionalmente el sistema está diseñado de modo que opera para alimentar a la UPS (203) y de este modo se mantiene la alimentación del sistema en forma constante, es decir, está diseñado para encender solo el generador en el caso que los niveles de OD estén sobre el SP de modo que siempre se mantiene la energía suficiente para energizar los equipos y componentes. Además posee la característica de operar en forma remota. Además, el sistema está diseñado de modo que cada cierta cantidad de horas se encienda para recargar las baterías de la UPS (203), la carga de batería! no lleva más de 2 horas y permite energizar el sistema (100) de por lo menos 17 hrs. Additionally, the system is designed so that it operates to power the UPS (203) and in this way the system power is maintained constantly, that is, it is designed to start only the generator in the event that the OD levels are over the SP so that sufficient energy is always maintained to energize the equipment and components. It also has the feature of operating remotely. In addition, the system is designed so that every certain amount of hours is turned on to recharge the batteries of the UPS (203), the battery charge! It does not take more than 2 hours and allows the system (100) to be energized for at least 17 hours.

Claims

REIVINDICACIONES
1. Sistema portátil de generación de oxígeno in situ e inyección de oxígeno en niveles industriales para jaulas de peces en el mar, que comprende una plataforma flotante, tipo pontón, con una flotabilidad de por lo menos 50 toneladas y es capaz de ser remolcado en mar abierto, donde en su interior posee este sistema que genera oxígeno al 93 - 95% de pureza, y comprende un sistema generador y de distribución de electricidad, el cual provee energía eléctrica a los componentes de este sistema generador de oxígeno, donde este último comprende básicamente medios generadores de aire a presión, medios generadores de oxígeno a presión, medios de compresión y acumulación de oxígeno de alta presión y medios de control del sistema de generación de oxígeno. 1. Portable system for the generation of oxygen in situ and oxygen injection at industrial levels for fish cages in the sea, comprising a floating platform, pontoon type, with a buoyancy of at least 50 tons and is capable of being towed in Open sea, where inside it has this system that generates oxygen at 93 - 95% purity, and comprises a generator and electricity distribution system, which provides electrical energy to the components of this oxygen generating system, where the latter It basically comprises pressurized air generating means, pressurized oxygen generating means, high pressure oxygen compression and accumulation means and control means of the oxygen generation system.
2. El sistema portátil de la reivindicación 1 , donde el sistema generador y distribuidor de electricidad comprende medios acumuladores de combustible, preferentemente diesel, proveniente de estanques de almacenamiento ubicados al interior del pontón que permite el funcionamiento del sistema de generación e inyección de oxígeno in situ por períodos extendidos de tiempo. 2. The portable system of claim 1, wherein the electricity generating and distributing system comprises fuel accumulating means, preferably diesel, from storage ponds located inside the pontoon that allows the operation of the oxygen generation and injection system in situ for extended periods of time.
3. El sistema portátil de la reivindicación 1 , donde los medios generadores de aire a presión, comprenden esencialmente medios compresores, que en una realización preferida es un compresor recíproco que genera un flujo de aire a una presión de alrededor de 620,5 - 792,9 KPa (90 - 1 15 psi); medios secadores, los cuales por enfriado extraen el agua que puede venir en el aire comprimido; medios filtrantes, que en una realización preferida, comprenden 2 filtros y una trampa centrifuga que eliminan las partículas en suspensión, las gotas de aceite que puede arrastrarse del compresor y finalmente las gotas de agua que salen del compresor como complemento a la acción del secador; y medios acumuladores de aire que sirven para actuar como amortiguador de las fluctuaciones de presión que se producen, dado que el proceso de generación de oxígeno tiene un consumo de aire que no es estable en el tiempo. El sistema portátil de la reivindicación 1 , donde los medios generadores de oxígeno a presión comprenden esencialmente un sistema denominado "Generator por Pressure Swing Adsorption", que toma aire a presión y lo pasa a una cama de tamiz molecular que contiene un adsorbente especifico para el nitrógeno, por lo que a la salida de dicha cama hay un flujo enriquecido de oxígeno al 93 - 95%, y un acumulador de oxígeno en baja presión. 3. The portable system of claim 1, wherein the pressurized air generating means essentially comprises compressing means, which in a preferred embodiment is a reciprocating compressor that generates an air flow at a pressure of about 620.5-792 , 9 KPa (90-115 psi); drying means, which by cooling extract the water that may come in the compressed air; filter media, which in a preferred embodiment, comprise 2 filters and a centrifugal trap that remove the particles in suspension, the drops of oil that can be dragged from the compressor and finally the drops of water that leave the compressor as a complement to the action of the dryer; and air accumulating means that serve to act as a buffer of the pressure fluctuations that occur, since the oxygen generation process has an air consumption that is not stable over time. The portable system of claim 1, wherein the pressure oxygen generating means essentially comprise a system called "Pressure Swing Adsorption Generator", which takes air under pressure and passes it to a molecular sieve bed containing a specific adsorbent for the nitrogen, so that at the exit of said bed there is an enriched flow of oxygen at 93-95%, and a low pressure oxygen accumulator.
El sistema portátil de la reivindicación 1 , donde los medios de compresión y acumulación de oxígeno de alta presión comprenden esencialmente un compresor de pistón de oxígeno y un acumulador de alta presión de oxígeno que almacena grandes cantidades de oxígeno en forma gaseosa lo que evita perdidas por evaporación. The portable system of claim 1, wherein the high pressure oxygen compression and accumulation means essentially comprise an oxygen piston compressor and a high oxygen pressure accumulator that stores large amounts of oxygen in gaseous form which prevents losses by evaporation.
El sistema portátil de la reivindicación 1 , donde los medios de control del sistema de generación de oxígeno comprende un tablero manual de equipos, un PLC, medios de recepción de señales de oxígeno disuelto, un computador con HMI, un programa computacional con algoritmos de control y un tablero manual de válvulas. The portable system of claim 1, wherein the means for controlling the oxygen generation system comprises a manual equipment panel, a PLC, means for receiving dissolved oxygen signals, a computer with HMI, a computer program with control algorithms and a manual valve board.
PCT/CL2011/000019 2010-03-30 2011-03-24 Transportable system for generating and injecting oxygen in situ for fish cages in the sea WO2011120183A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB1216791.2A GB2491085B (en) 2010-03-30 2011-03-24 Portable onsite oyygen generation and injection system for fish cages in the sea
CA2793288A CA2793288C (en) 2010-03-30 2011-03-24 Transportable system for generating and injecting oxygen in situ for fish cages in the sea
NO20121042A NO341634B1 (en) 2010-03-30 2012-09-17 Transportable system for generating and injecting oxygen in situ for fish cages in the sea

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL300-2010 2010-03-30
CL2010000300A CL2010000300A1 (en) 2010-03-30 2010-03-30 Portable system for generating oxygen for fish cages in the sea comprising a ponton, an oxygen generating system with 93-95% purity with air and oxygen generators under pressure, means for understanding and accumulating oxygen at high pressure and a electricity generation and distribution system to generate oxygen.

Publications (2)

Publication Number Publication Date
WO2011120183A2 true WO2011120183A2 (en) 2011-10-06
WO2011120183A3 WO2011120183A3 (en) 2011-11-17

Family

ID=44712666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2011/000019 WO2011120183A2 (en) 2010-03-30 2011-03-24 Transportable system for generating and injecting oxygen in situ for fish cages in the sea

Country Status (5)

Country Link
CA (1) CA2793288C (en)
CL (1) CL2010000300A1 (en)
GB (1) GB2491085B (en)
NO (1) NO341634B1 (en)
WO (1) WO2011120183A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111072175A (en) * 2018-10-19 2020-04-28 长鑫存储技术有限公司 Semiconductor equipment waste water circulation processing system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014145661A1 (en) * 2013-03-15 2014-09-18 Pentair Water Pool And Spa, Inc. Dissolved oxygen control system for aquaculture
EP4410412A1 (en) * 2021-09-30 2024-08-07 Oxzo S.A. A mobile system for the in-situ generation of oxygen and compressed air with no build-up thereof, which increases the concentration of dissolved oxygen in the cages as required

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1428529A (en) * 1972-07-03 1976-03-17 Messerschmitt Boelkow Blohm Apparatus for osygenating water
US4587064A (en) * 1983-11-09 1986-05-06 Albert Blum Aeration apparatus for large waters
US4664680A (en) * 1986-04-07 1987-05-12 Atec Inc. Method and system for enriching oxygen content of water
EP0238774A2 (en) * 1986-03-25 1987-09-30 DOMKE GMBH & CO. KG Apparatus for water oxygenation
GB2236103A (en) * 1989-09-22 1991-03-27 Thames Water Plc Oxygenation of rivers
JPH067056A (en) * 1992-06-24 1994-01-18 Mitsubishi Heavy Ind Ltd Aeration apparatus for marine aquiculture crawl
CN101602550A (en) * 2009-07-17 2009-12-16 同济大学 The submerged type bubble-free high-efficiency oxygenated water body restoration system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607056A (en) * 1983-06-25 1985-01-14 Tomoyuki Aoki Manufacture of flexible thin battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1428529A (en) * 1972-07-03 1976-03-17 Messerschmitt Boelkow Blohm Apparatus for osygenating water
US4587064A (en) * 1983-11-09 1986-05-06 Albert Blum Aeration apparatus for large waters
EP0238774A2 (en) * 1986-03-25 1987-09-30 DOMKE GMBH & CO. KG Apparatus for water oxygenation
US4664680A (en) * 1986-04-07 1987-05-12 Atec Inc. Method and system for enriching oxygen content of water
GB2236103A (en) * 1989-09-22 1991-03-27 Thames Water Plc Oxygenation of rivers
JPH067056A (en) * 1992-06-24 1994-01-18 Mitsubishi Heavy Ind Ltd Aeration apparatus for marine aquiculture crawl
CN101602550A (en) * 2009-07-17 2009-12-16 同济大学 The submerged type bubble-free high-efficiency oxygenated water body restoration system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111072175A (en) * 2018-10-19 2020-04-28 长鑫存储技术有限公司 Semiconductor equipment waste water circulation processing system

Also Published As

Publication number Publication date
NO341634B1 (en) 2017-12-18
GB201216791D0 (en) 2012-11-07
GB2491085B (en) 2013-11-27
CL2010000300A1 (en) 2010-07-09
CA2793288C (en) 2016-05-03
WO2011120183A3 (en) 2011-11-17
CA2793288A1 (en) 2011-10-06
NO20121042A1 (en) 2012-10-18
GB2491085A (en) 2012-11-21

Similar Documents

Publication Publication Date Title
ES2908328T3 (en) Method and device for the reversible adsorption of carbon dioxide
US6676837B2 (en) Solar aeration system
CN110167343B (en) System and method for offshore and onshore aquaculture using floating enclosed controlled aquaculture and consolidation facilities
US6200530B1 (en) Method of sequestering carbon dioxide with spiral fertilization
EP0803190A3 (en) Hydroponic culture apparatus
ES2275059T3 (en) DECENTRALIZED SYSTEM FOR SUPPLY OF OXYGEN FOR PISCICULTURE.
JPWO2018229940A1 (en) Anesthesia maintenance system for fish and shellfish, anesthesia maintenance method and delivery method
WO2011120183A2 (en) Transportable system for generating and injecting oxygen in situ for fish cages in the sea
CN108552097B (en) Anti-wave closed type deep-sea net cage convenient to move, consign and capable of generating power through wave energy
CN102975821B (en) Enclosed type circulation live keeping ship
CN202364680U (en) Constant-temperature circulating-water aquatic product transportation container
JP4687961B2 (en) Floating water purification system
CN203807243U (en) Artificial biological floating island carrier
KR101689293B1 (en) a nano bubble generator for cultibation of abalones
CN102745650B (en) Gas-liquid separation oxygen-making device and submersible vehicle adopting same
CN207125156U (en) Water treatment facilities and its system based on shellfish culture
WO2002068345A1 (en) Oxygen-enriched water purifying plant
JP2000334488A (en) Device and method for water purification
EP4410412A1 (en) A mobile system for the in-situ generation of oxygen and compressed air with no build-up thereof, which increases the concentration of dissolved oxygen in the cages as required
NZ515563A (en) Sequestering carbon dioxide in deep open ocean by applying fertilizer comprising an iron chelator
CN205879906U (en) Field experiment device of portable nutrients in sea water enrichment culture
WO2023131931A1 (en) Self-contained system for generating and supplying oxygen, associated method and use
US4335680A (en) System for method for production of marine food using submerged platforms
CN204206910U (en) Ship reef group structure
WO2021030920A1 (en) System and method for the transport of biomass

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2793288

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 1216791

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20110324

WWE Wipo information: entry into national phase

Ref document number: 1216791.2

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11761898

Country of ref document: EP

Kind code of ref document: A2