JPS607056A - Manufacture of flexible thin battery - Google Patents

Manufacture of flexible thin battery

Info

Publication number
JPS607056A
JPS607056A JP58114925A JP11492583A JPS607056A JP S607056 A JPS607056 A JP S607056A JP 58114925 A JP58114925 A JP 58114925A JP 11492583 A JP11492583 A JP 11492583A JP S607056 A JPS607056 A JP S607056A
Authority
JP
Japan
Prior art keywords
sealing
flexible
battery
ultraviolet
flexible thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58114925A
Other languages
Japanese (ja)
Inventor
Tomoyuki Aoki
青木 朋幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58114925A priority Critical patent/JPS607056A/en
Publication of JPS607056A publication Critical patent/JPS607056A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PURPOSE:To obtain a flexible thin battery having a complete sealing performance and in which no cracks or gaps are caused by folding or the like by performing ultraviolet-ray irradiation treatment on the inner areas of the sealing portions of flexible exterior members before sealing is performed by adhesion or heating. CONSTITUTION:Ultraviolet rays are irradiated on sealing areas 7a and 8a formed on the inner facing surfaces of the sealing portions of flexible exterior members 7 and 8 for a battery. Next, after an adhesive 9 is applied to the sealing areas 7a and 8a, adhesional sealing is performed or fusional sealing is performed through ultraviolet wave welder, high frequency electric field or something similar. After such ultraviolet ray irradiation, any dust or foreign substance does not adhere to the sealing areas 7a and 8a and decreased numbers of minute capillary vessels and gaps are developed thereby enabling liquid leakage to be suppressed. Besides, no liquid leakage is caused even when the battery is folded repeatedly. Accordingly a flexible thin battery having an excellent durability can be obtained.

Description

【発明の詳細な説明】 本発明は外装部材の封止の改良を図つた可撓性薄型電池
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a flexible thin battery with improved sealing of an exterior member.

従来、高分子フイルムで発電要素を被包した電池がペー
パ電池、シートバツテリ等の名称で知られているが、自
在な曲げや変形を繰り返しても電池性能の安定を維持す
るまでには至つておらず、慎重な取扱いが必要であつた
。そこで自在な折り曲げ、湾曲、変形に耐え、より薄く
面積の広い可撓性薄型電池が検討されている。
Conventionally, batteries in which power generating elements are encapsulated in a polymer film are known as paper batteries, sheet batteries, etc., but it has not been possible to maintain stable battery performance even after repeated bending and deformation. Therefore, careful handling was required. Therefore, flexible thin batteries that can withstand flexible bending, curving, and deformation and are thinner and have a wider area are being considered.

しかし、かような可撓性薄型電池の中でも、例えばマン
ガン電池、水銀電池、酸化銀電池、リチウム電池等の多
くの化学系電池では酸性・中性・アルカリ性等の種々の
無機電解液あるいは有機質溶媒に塩を溶解した有機電解
液を発電要素中に含有しているが、可撓性外装部材の封
止工程に際し接着または溶着封止後に微細な毛細管や隙
間が発生し易く、又、完全に密閉封止しても折り曲げや
湾曲を繰り返すうちに前記毛細管や隙間が生じてしまう
等して、漏液や内部シヨート等を引き起こしてしまい、
可撓性を有する薄型電池としての信頼性が今一歩であつ
た。 又、アモルフアスシリコン、硫化カドミウム、セ
レン等を発電要素とした太陽電池、光電池等の物理系電
池においては、さらに光透過度、耐光性、耐熱性に優れ
ていることが可撓性外装部材を選定する際に条件として
加わるが、全ての条件をほぼ満足するものは極めて少な
く、しかもそれらは難接着性であるものがほとんどであ
り、封止は容易なものではなかつた。
However, among such flexible thin batteries, many chemical batteries such as manganese batteries, mercury batteries, silver oxide batteries, and lithium batteries use various inorganic electrolytes or organic solvents such as acidic, neutral, and alkaline. Although the power generating element contains an organic electrolyte in which salt is dissolved in the flexible exterior member, minute capillaries and gaps are likely to occur after adhesion or welding during the sealing process of the flexible exterior member, and it is difficult to completely seal it. Even if it is sealed, as it is repeatedly bent and curved, capillary tubes and gaps will form, causing leakage and internal shortening.
This was a step forward in terms of reliability as a thin, flexible battery. In addition, in physical batteries such as solar cells and photovoltaic cells that use amorphous silicon, cadmium sulfide, selenium, etc. as power generating elements, flexible exterior members are superior in light transmittance, light resistance, and heat resistance. Although these are added as conditions for selection, there are very few that almost satisfy all of the conditions, and most of them are difficult to adhere to, making sealing difficult.

封止強度・密閉性に関する前記問題点は、屋外環境での
使用を主とする該電池にとつて本質的に要望されている
耐湿性、耐熱性等の耐環境性が充分でなく、実用に適す
る品質の向上が希求されていた。
The problem with sealing strength and airtightness is that the environmental resistance such as moisture resistance and heat resistance, which are essentially required for batteries mainly used in outdoor environments, is not sufficient, making them difficult to put into practical use. There was a desire for improved quality.

本発明はかかる実情に鑑みなされたもので、発電要素を
被包してなる可撓性外装部材の封止部内向面にあらかじ
め紫外線照射処理を施し、その後に接着剤または加熱に
より封止し、完全な密閉と折り曲げ、湾曲によつても亀
裂、隙間が生じない接着強度とを有する可撓性薄型電池
を得ることにある。
The present invention has been made in view of the above circumstances, and includes applying ultraviolet irradiation treatment to the inward surface of the sealing portion of a flexible exterior member enclosing a power generation element in advance, and then sealing with adhesive or heating. The object of the present invention is to obtain a flexible thin battery having perfect sealing and adhesive strength that does not cause cracks or gaps even when bent or bent.

以下、本発明を実施例に基ずいて詳細に説明する。Hereinafter, the present invention will be explained in detail based on examples.

(実施例1) 第1図(イ)は本発明により製造された可撓性薄型電池
の一実施例を示す平面図、(ロ)は(イ)のI−II線
部分の縦断面図である。
(Example 1) FIG. 1(a) is a plan view showing an example of a flexible thin battery manufactured according to the present invention, and FIG. 1(b) is a longitudinal cross-sectional view taken along line I-II in (a). be.

1はセパレータであり、電解液保持部材2、陰極活物質
層3及び陽極活物質層4を積層状に重ね挟持する。セパ
レータ1は例えばセルロース・ポリプロピレン等の可撓
性高分子フイルムを用いる。
Reference numeral 1 denotes a separator, which holds an electrolytic solution holding member 2, a cathode active material layer 3, and an anode active material layer 4 in a laminated manner. For the separator 1, a flexible polymer film such as cellulose or polypropylene is used.

電解液保持部材2としては、例えばポリプロピレン、ビ
ニロン等のような耐薬品性に優れた材料を綿状又は布状
に成形加工し、KOH系、NaOH系、NH4Cl系、
ZnCl系等の無機電解液あるいはプロピレンカーボネ
ート、ジメトキシエタン等を主溶媒とした有機電解液を
含浸する。さらに2枚の可撓性外装部材7、8で上下方
向から挟持する。可撓性外装部材7、8の外周部にある
封止する部分の内向面に封止しろ7a,8aを設け、あ
らかじめ紫外線を照射しておく。次に接着剤9をスクリ
ーン印刷等によつて封止しろ7a,8aに塗布し、接着
封止する。なお、接着剤を用いずに超音波ウエルダー(
20〜28KHz、高周波電界(40〜60MHz)、
ヒートシール、インパルスシール等によつて溶着封止し
ても良い。又、2枚の可撓性高分子フイルムを用いて発
電要素を上下方向から挟持する方法に限らず、1枚の可
撓性高分子フイルムを用いて発電要素を被包し、残る開
口部を封止するようにしても良い。可撓性外装部材7,
8としては、例えばポリエチレン、ポリエステル、ポリ
カーボネート、ポリブチレンテレフタレート、ポリイミ
ド等の樹脂材料あるいはスチレンブタジエンゴム、クロ
ロプレンゴム、ニトリルブタジエンゴム、弗素ゴムシリ
コーンゴム等のゴム系材料を用いる。接着剤9としては
、例えばアクリル樹脂、メタクリル樹脂、塩化ビニル樹
脂、エポキシ樹脂、ポリウレタン樹脂、フエノール樹脂
、ポリエステル樹脂、アレキツド樹脂、シリコーン樹脂
等を主とした樹脂系接着剤あるいはブタジエンゴム、ク
ロロプレンゴム、イソプレンゴム、弗素ゴム、シリコー
ンゴム、ウレタンゴム、エチレンプロピレンゴム等を主
としたゴム系接着剤等を用い、又、樹脂系材料とゴム系
材料を混合したり補強剤等の添加剤を混合させて目的と
する任意の可撓性・弾性が得られるよう調製しても良い
。紫外線の照射は、カーボンアーク、キセノン放電灯、
高圧あるいは低圧石英水銀灯、水素放電灯等を用い、5
〜15cmの至近距離から5〜90分間照射する。用い
る紫外線発生装置及び照射条件は、可撓性外装部材の材
質種類、表面状態、封止しろの面積等によつて異なり、
例えばポリエステル系の高分子フイルムでは比較的低波
長域にピークを持つ石英水銀灯または水素放電灯が良好
な封止を促進する等、適時条件を設定する。
The electrolyte holding member 2 is formed by molding a material with excellent chemical resistance such as polypropylene or vinylon into a cotton-like or cloth-like shape, and uses KOH-based, NaOH-based, NH4Cl-based,
It is impregnated with an inorganic electrolyte such as a ZnCl-based electrolyte or an organic electrolyte whose main solvent is propylene carbonate, dimethoxyethane, etc. Furthermore, it is held between two flexible exterior members 7 and 8 from above and below. Sealing margins 7a and 8a are provided on the inward surfaces of the portions to be sealed on the outer peripheries of the flexible exterior members 7 and 8, and are irradiated with ultraviolet rays in advance. Next, an adhesive 9 is applied to the sealing margins 7a and 8a by screen printing or the like to perform adhesive sealing. In addition, an ultrasonic welder (
20-28KHz, high frequency electric field (40-60MHz),
Welding and sealing may be performed by heat sealing, impulse sealing, or the like. In addition to the method of sandwiching the power generation element from above and below using two flexible polymer films, it is also possible to cover the power generation element with one flexible polymer film and fill the remaining opening. It may be sealed. flexible exterior member 7,
As the material 8, for example, a resin material such as polyethylene, polyester, polycarbonate, polybutylene terephthalate, or polyimide, or a rubber material such as styrene butadiene rubber, chloroprene rubber, nitrile butadiene rubber, fluorine rubber or silicone rubber is used. Examples of the adhesive 9 include resin-based adhesives such as acrylic resin, methacrylic resin, vinyl chloride resin, epoxy resin, polyurethane resin, phenol resin, polyester resin, alexithin resin, silicone resin, or butadiene rubber, chloroprene rubber, Rubber adhesives mainly made of isoprene rubber, fluorine rubber, silicone rubber, urethane rubber, ethylene propylene rubber, etc. are used, or resin materials and rubber materials are mixed, or additives such as reinforcing agents are mixed. It may be adjusted to obtain desired flexibility and elasticity. Ultraviolet rays can be irradiated using carbon arc, xenon discharge lamp,
Using high-pressure or low-pressure quartz mercury lamps, hydrogen discharge lamps, etc.,
Irradiate for 5 to 90 minutes from a close distance of ~15 cm. The ultraviolet generator and irradiation conditions used vary depending on the material type, surface condition, sealing area, etc. of the flexible exterior member.
For example, in the case of polyester-based polymer films, appropriate conditions are set, such as using a quartz mercury lamp or hydrogen discharge lamp, which has a peak in a relatively low wavelength range, to promote good sealing.

紫外線照射後の封止しろ7a,8aの表面は大気中に浮
遊している埃や異物が付着しなくなり、封止後の微細な
毛細管や隙が著しく減少し、特に漏液を一層抑制するこ
とが可能となつた。厚さ200μmの各種高分子フイル
ム製外装部材を用意し、2537■のピーク波長を有す
る石英水銀灯を5cmの距離から40分紫外線照射し、
エポキシ樹脂(アラルダイトAW106)100重量部
、ポリアミン(アラルダイトHY956)50重量部か
らなる接着剤A、及びシリコーン樹脂(信越シリコーン
(株)製「RTVX32−405」)からなる接着剤B
を用い、接着部の巾25.4mm、長さ152.4mm
、剥離速度50mm/分、角度180°にて剥離テスト
をした結果を表1に示す。
Dust and foreign matter floating in the atmosphere will no longer adhere to the surfaces of the sealing margins 7a and 8a after irradiation with ultraviolet rays, and minute capillaries and gaps after sealing will be significantly reduced, which will further suppress leakage in particular. became possible. Various types of polymer film exterior members with a thickness of 200 μm were prepared, and a quartz mercury lamp with a peak wavelength of 2537 cm was used to irradiate ultraviolet light for 40 minutes from a distance of 5 cm.
Adhesive A consisting of 100 parts by weight of epoxy resin (Araldite AW106) and 50 parts by weight of polyamine (Araldite HY956), and Adhesive B consisting of silicone resin (“RTVX32-405” manufactured by Shin-Etsu Silicone Co., Ltd.)
The width of the adhesive part is 25.4 mm and the length is 152.4 mm.
Table 1 shows the results of a peel test at a peel rate of 50 mm/min and an angle of 180°.

比較例としては、全く紫外線処理しないものをサンプル
として用いた。
As a comparative example, a sample that was not subjected to any ultraviolet treatment was used.

以上のように製造することにより、長期間保存しても漏
液の発生がなく、折り曲げや変形を繰り返しても漏液せ
ず、発電要素を外的環境から守り、耐久性に優れた信頼
性の高い可撓性薄型電池を提供することが可能となつた
。又、従来、厳しい管理を要していた封止工程は、簡単
な紫外線照射を加えることにより、封止工程全体が簡素
化され、不良率の少ない品質の良い安定な量産を図るこ
とが可能となつた。
By manufacturing as described above, there is no leakage even after long-term storage, no leakage even after repeated bending and deformation, the power generation element is protected from the external environment, and it has excellent durability and reliability. It has now become possible to provide a highly flexible thin battery. In addition, by adding simple ultraviolet irradiation to the sealing process, which conventionally required strict control, the entire sealing process is simplified, making it possible to achieve stable mass production with high quality and low defect rates. Summer.

(実施例2) 第2図(イ)は本発明により製造された可撓性薄型電池
の他の実施例を示す平面図、(ロ)は(イ)のIII−
IV線部分の縦断面図である。
(Example 2) FIG. 2(a) is a plan view showing another example of the flexible thin battery manufactured according to the present invention, and FIG.
It is a longitudinal cross-sectional view of the IV line part.

10は透明な可撓性高分子フイルムであり、特に光透過
度、加工性、耐熱性、耐薬品性に優れたものであれば良
く、例えばポリエチレン、ポリエステル、ポリプロピレ
ン、ポリカーボネート、ポリエーテルエステル、ポリア
セチルアセトネート、ポリメタクリル酸、ポリアクリル
酸、ポリイミド、あるいはこれらの合成材を用意し、均
一な厚さに成形加工する。可撓性高分子フイルム10の
内向面には酸化錫、酸化インジウム、インジウム酸化錫
等の透明導電膜11を真空蒸着又はスパツタリンググロ
ー放電等により密着して設け、その上にP型アモルフア
スシリコン層12を50〜150■程度、ノンドープの
不純物アモルフアスシリコン層13を3000〜500
0■程度、n型アモルフアスシリコン層14を400〜
800■程度、順次プラズマCVD法により積層状に形
成する。さらにステンレス、銅、アルミニウム、金、ニ
ツケル等の金属電極15を蒸着、グロー放電等により形
成し、可撓性高分子フイルム16を重ねて装着する。高
分子フイルムの外周部内向面に設けた封止しろ10a、
16aには、実施例1と同様にあらかじめ紫外線を照射
しておく。
10 is a transparent flexible polymer film, and any film may be used as long as it has excellent light transmittance, processability, heat resistance, and chemical resistance, such as polyethylene, polyester, polypropylene, polycarbonate, polyether ester, polycarbonate, etc. Acetylacetonate, polymethacrylic acid, polyacrylic acid, polyimide, or a synthetic material thereof is prepared and molded to a uniform thickness. A transparent conductive film 11 made of tin oxide, indium oxide, indium tin oxide, or the like is closely attached to the inward surface of the flexible polymer film 10 by vacuum deposition or sputtering glow discharge, and a P-type amorphous film is deposited on the transparent conductive film 11 . The silicon layer 12 has a density of about 50 to 150 cm, and the non-doped impurity amorphous silicon layer 13 has a density of 3000 to 500 cm.
0 ■, the n-type amorphous silicon layer 14 is about 400 ~
Approximately 800 square meters are sequentially formed in a laminated form by the plasma CVD method. Furthermore, a metal electrode 15 made of stainless steel, copper, aluminum, gold, nickel, etc. is formed by vapor deposition, glow discharge, etc., and a flexible polymer film 16 is stacked and attached. A sealing margin 10a provided on the inward surface of the outer periphery of the polymer film;
16a is irradiated with ultraviolet rays in advance as in Example 1.

次に透明な可撓性高分子フイルム10と可撓性高分子フ
イルム16との封止しろ10a、16aに接着剤17を
スクリーン印刷等で塗布し、気密に接着封止する。可撓
性高分子フイルム16は、必らずしも透明である必要は
なく、特に耐熱性、加工性において優れたものであれば
何でも良い。尚、接着剤を用いずに透明な可撓性高分子
フイルム10と可撓性高分子フイルム16とを一体に成
形加工したり、ヒートシールあるいは超音波等による加
熱溶着によつて封止しても良い。透明導電膜11及び金
属電極15の一端を延出するか別部材を接合し、リード
線18、19を外部に突出して設ける。
Next, an adhesive 17 is applied to the sealing margins 10a and 16a between the transparent flexible polymer film 10 and the flexible polymer film 16 by screen printing or the like, and the adhesive is sealed airtightly. The flexible polymer film 16 does not necessarily have to be transparent, and any film may be used as long as it has excellent heat resistance and processability. Note that the transparent flexible polymer film 10 and the flexible polymer film 16 may be integrally molded without using an adhesive, or may be sealed by heat sealing or heat welding using ultrasonic waves or the like. Also good. One ends of the transparent conductive film 11 and the metal electrode 15 are extended or separate members are joined, and lead wires 18 and 19 are provided to protrude to the outside.

以上のように製造することにより、実施例1と同様に、
封止後の毛細管、気泡、隙等の発生がなく、折り曲げや
変形に対する強度を有し、特に高湿度地域、長時間に渡
る太陽光照射、塩分・イオウ分等の腐食性ガス雰囲気の
環境下で使用しても水分・ガスが電池内部へ浸入せず、
又、熱や温度変化による封止部の剥離、破壊がなく、実
用上の耐久性が一段と向上した可撓性薄型太陽電池を提
供することが可能となつた。又、封止工程が容易になり
、封止不良等の不良率が少ない高品質で安価な太陽電池
を量産することが可能となつた。
By manufacturing as described above, as in Example 1,
There are no capillaries, bubbles, gaps, etc. after sealing, and it has strength against bending and deformation, especially in high humidity areas, long periods of sunlight irradiation, and environments with corrosive gases such as salt and sulfur. Water and gas will not enter the battery even when used in
Furthermore, it has become possible to provide a flexible thin solar cell whose sealing portion does not peel or break due to heat or temperature changes, and whose practical durability is further improved. Furthermore, the sealing process has become easier, and it has become possible to mass-produce high-quality, inexpensive solar cells with a low defect rate such as poor sealing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)は本発明により製造された可撓性薄型電池
の一実施例を示す平面図、(ロ)は(イ)のI−II線
部分の縦断面図、第2図(イ)は本発明により製造され
た可撓性薄型電池の他の実施例を示す平面図、(ロ)は
(イ)のIII−IV線部分の縦断面図である。 1・・セパレータ 2・・電解液保持部材3・・陰極活
物質層 4・・陽極活物質層5・・陰極集電体 6・・
陽極集電体 5a,6a・・・リード端子 7,8・・・可撓性外装部材 7a,8a・・・封止しろ 9・・・接着剤 10・・・透明な可撓性高分子フイルム11・・透明導
電膜 12・・P型アモルフアスシリコン層 13・・不純物アモルフアスシリコン層14・・n型ア
モルフアスシリコン層 15・・金属電極 16・・可撓性高分子フイルム 10a,16a・・封止しろ 17・・接着剤 18,19・・リード線 特許出願人 青木朋幸
FIG. 1(a) is a plan view showing an embodiment of a flexible thin battery manufactured according to the present invention, FIG. 1(b) is a vertical cross-sectional view taken along line I-II in FIG. ) is a plan view showing another example of a flexible thin battery manufactured according to the present invention, and (b) is a longitudinal sectional view taken along line III-IV in (a). 1... Separator 2... Electrolyte holding member 3... Cathode active material layer 4... Anode active material layer 5... Cathode current collector 6...
Anode current collectors 5a, 6a...Lead terminals 7, 8...Flexible exterior members 7a, 8a...Sealing margin 9...Adhesive 10...Transparent flexible polymer film 11.. Transparent conductive film 12.. P-type amorphous silicon layer 13.. Impurity amorphous silicon layer 14.. N-type amorphous silicon layer 15.. Metal electrode 16.. Flexible polymer films 10a, 16a.・Sealing margin 17 ・Adhesive 18, 19 ・Lead wire Patent applicant Tomoyuki Aoki

Claims (1)

【特許請求の範囲】[Claims] 電池発電要素を可撓性外装部材で被包してなる可撓性薄
型電池において、該可撓性外装部材の少なくとも封止を
する部分には、あらかじめ該封止部分の内向面に紫外線
照射処理を施し、接着剤を用いた接着工程または加熱に
よる溶着工程により気密に封止することを特徴とする可
撓性薄型電池の製造方法。
In a flexible thin battery formed by enclosing a battery power generating element with a flexible exterior member, at least the portion of the flexible exterior member that is to be sealed is subjected to ultraviolet irradiation treatment on the inward surface of the sealing portion in advance. 1. A method for producing a flexible thin battery, the method comprising applying the following steps and sealing the battery airtightly by a bonding process using an adhesive or a welding process by heating.
JP58114925A 1983-06-25 1983-06-25 Manufacture of flexible thin battery Pending JPS607056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58114925A JPS607056A (en) 1983-06-25 1983-06-25 Manufacture of flexible thin battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58114925A JPS607056A (en) 1983-06-25 1983-06-25 Manufacture of flexible thin battery

Publications (1)

Publication Number Publication Date
JPS607056A true JPS607056A (en) 1985-01-14

Family

ID=14650051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58114925A Pending JPS607056A (en) 1983-06-25 1983-06-25 Manufacture of flexible thin battery

Country Status (1)

Country Link
JP (1) JPS607056A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129008A (en) * 1991-11-01 1993-05-25 Agency Of Ind Science & Technol Battery
JPH05343038A (en) * 1991-03-04 1993-12-24 Agency Of Ind Science & Technol Battery
JPH0762124A (en) * 1993-08-23 1995-03-07 Nagase Chiba Kk Electric battery and electrical or electronic component sealed with resin
US5955217A (en) * 1996-06-19 1999-09-21 U.S. Philips Corporation Thin card including a flat battery and contact means
GB2491085B (en) * 2010-03-30 2013-11-27 Oxzo S A Portable onsite oyygen generation and injection system for fish cages in the sea
JP2016509759A (en) * 2013-02-06 2016-03-31 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ Stretchable electronic system with storage room
US10192830B2 (en) 2013-02-06 2019-01-29 The Board Of Trustees Of The University Of Illinois Self-similar and fractal design for stretchable electronics
US10497633B2 (en) 2013-02-06 2019-12-03 The Board Of Trustees Of The University Of Illinois Stretchable electronic systems with fluid containment
US10840536B2 (en) 2013-02-06 2020-11-17 The Board Of Trustees Of The University Of Illinois Stretchable electronic systems with containment chambers

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05343038A (en) * 1991-03-04 1993-12-24 Agency Of Ind Science & Technol Battery
JPH05129008A (en) * 1991-11-01 1993-05-25 Agency Of Ind Science & Technol Battery
JPH0762124A (en) * 1993-08-23 1995-03-07 Nagase Chiba Kk Electric battery and electrical or electronic component sealed with resin
US5955217A (en) * 1996-06-19 1999-09-21 U.S. Philips Corporation Thin card including a flat battery and contact means
GB2491085B (en) * 2010-03-30 2013-11-27 Oxzo S A Portable onsite oyygen generation and injection system for fish cages in the sea
JP2016509759A (en) * 2013-02-06 2016-03-31 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ Stretchable electronic system with storage room
US10192830B2 (en) 2013-02-06 2019-01-29 The Board Of Trustees Of The University Of Illinois Self-similar and fractal design for stretchable electronics
US10497633B2 (en) 2013-02-06 2019-12-03 The Board Of Trustees Of The University Of Illinois Stretchable electronic systems with fluid containment
US10840536B2 (en) 2013-02-06 2020-11-17 The Board Of Trustees Of The University Of Illinois Stretchable electronic systems with containment chambers

Similar Documents

Publication Publication Date Title
TW484242B (en) Lithium secondary battery comprising individual cells connected with one another, as well as watches, computers and communication equipment provided with such a battery
JP3618802B2 (en) Solar cell module
US20040191422A1 (en) Method for manufacturing solar cell module having a sealing resin layer formed on a metal oxide layer
US6887728B2 (en) Hybrid solid state/electrochemical photoelectrode for hydrogen production
JP5480897B2 (en) Solar cell
JPH0594808A (en) Apparatus and method for packaging lithium battery
JPS607056A (en) Manufacture of flexible thin battery
JP4037618B2 (en) Dye-sensitized solar cell and method for producing the same
CN1319262A (en) Cell and cell inspecting method
WO2013031098A1 (en) Pigment sensitized solar battery and method for manufacturing same
JPS58197655A (en) Battery
JP4161688B2 (en) Wet solar cell
KR100291135B1 (en) Battery electrode plate structure
WO2008074224A1 (en) Flexible photovoltaic cell and manufacturing method of the same
JP2623311B2 (en) Manufacturing method of electrode plate for bipolar battery
JP2008262837A (en) Dye-sensitized solar cell and its manufacturing method
US20060127757A1 (en) Alkaline cell and production method for same
JPH07273361A (en) Structure for terminal lead part of solar battery module
JP2005340167A (en) Manufacturing method of optical electrode substrate of dye-sensitized solar cell, optical electrode substrate of dye-sensitized solar cell, and dye-sensitized solar cell
US20130139879A1 (en) Solar cell
EP2343717A2 (en) Photoelectrochemical module
CN207852836U (en) A kind of novel lithium rechargeable battery
JPS55159560A (en) Flat cell
KR102113499B1 (en) Electrode structure, manufacturing method of the same and secondary battery including the same
KR101671107B1 (en) Dye sensitive solar cell using surface treatment of metal substrate and method of manufacturing the same