WO2011118531A1 - 酸化タングステン光触媒体及び酸化タングステン光触媒体の製造方法 - Google Patents

酸化タングステン光触媒体及び酸化タングステン光触媒体の製造方法 Download PDF

Info

Publication number
WO2011118531A1
WO2011118531A1 PCT/JP2011/056592 JP2011056592W WO2011118531A1 WO 2011118531 A1 WO2011118531 A1 WO 2011118531A1 JP 2011056592 W JP2011056592 W JP 2011056592W WO 2011118531 A1 WO2011118531 A1 WO 2011118531A1
Authority
WO
WIPO (PCT)
Prior art keywords
tungsten oxide
thin film
promoter
oxide thin
oxide photocatalyst
Prior art date
Application number
PCT/JP2011/056592
Other languages
English (en)
French (fr)
Inventor
芳典 岩淵
薫 杉江
秀史 小坪
有三 重里
亜紀代 村田
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2011118531A1 publication Critical patent/WO2011118531A1/ja

Links

Images

Classifications

    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J35/393
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Definitions

  • the present invention relates to a tungsten oxide photocatalyst of tungsten oxide having a photocatalytic function, and a method for producing a tungsten oxide photocatalyst.
  • Tungsten oxide is an excellent photocatalytic material, and it has various functions such as deodorization, water purification, antifouling, self-cleaning (self-cleaning), antibacterial, antiviral, antifungal, sterilization, etc. due to its organic substance decomposition function and super hydrophilicity. Application to various fields has been attempted. In particular, crystalline tungsten oxide is expected to be used not only outdoors but also indoors because it has visible light responsiveness that shows catalytic activity with visible light.
  • Patent Document 1 a photocatalyst in which platinum particles are supported on the surface of tungsten oxide particles is disclosed. It is known that visible light responsiveness can be further enhanced by supporting a promoter such as platinum on tungsten oxide.
  • the tungsten oxide photocatalyst disclosed in Patent Document 1 is in the form of particles, in practical use, it can be considered that the tungsten oxide photocatalyst is dispersed in an organic solvent such as water or alcohol to form a coating liquid and then applied to a substrate. In order to apply to the substrate, an inorganic or organic binder is used as necessary.
  • the tungsten oxide photocatalyst disclosed in Patent Document 1 is used by being dispersed in water, an organic solvent, a binder, a paint, an adhesive, or the like. Therefore, in a use environment, the tungsten oxide photocatalyst is mixed with other particles and compounds having no photocatalytic function. In such a state, the original function as the photocatalyst of the tungsten oxide photocatalyst may not be exhibited. That is, there is room for improvement in terms of application without impairing the photocatalytic function of the tungsten oxide photocatalyst.
  • an object of the present invention is to provide a tungsten oxide photocatalyst capable of exhibiting a photocatalytic function at a high level in a use environment and a method for producing the tungsten oxide photocatalyst.
  • a feature of the present invention is that it has a tungsten oxide thin film formed by gas flow sputtering and a particulate promoter, and the promoter is supported on the surface of the tungsten oxide thin film.
  • the gist of the present invention is a tungsten oxide photocatalyst.
  • the promoter is supported on the surface of the tungsten oxide thin film, whereby the charge separation on the surface of the tungsten oxide thin film is promoted and the photocatalytic activity is enhanced.
  • the tungsten oxide photocatalyst is a thin film, it can be directly formed on a substrate such as metal. Therefore, unlike conventional cases where tungsten oxide photocatalysts are dispersed in water, organic solvents, binders, paints, adhesives, etc. and applied to the substrate surface, the tungsten oxide photocatalyst is used in the usage environment.
  • the photocatalyst body and other particles or compounds having no photocatalytic function are not mixed. Therefore, the photocatalytic function can be exhibited at a high level in the use environment.
  • the ratio of the area where the promoter covers the surface of the tungsten oxide thin film to the surface area of the tungsten oxide thin film may be 40% to 80%.
  • the promoter may contain at least one of the metals represented by the element symbols Pt, Pd, Rh, Au, Ru, Cu, Ir, Ni, and Ag.
  • the promoter may be the element symbol Pt.
  • a tungsten oxide thin film is formed by gas flow sputtering, and the surface of the formed tungsten oxide thin film is subjected to pressure conditions of 2 pa to 15 Pa. And a process for producing a tungsten oxide photocatalyst having a step of supporting a promoter by vacuum deposition.
  • the pressure condition in the step of supporting the promoter may be 5 Pa to 10 Pa.
  • the promoter may contain at least one of the metals represented by the element symbols Pt, Pd, Rh, Au, Ru, Cu, Ir, Ni, and Ag.
  • the promoter may be the element symbol Pt.
  • tungsten oxide photocatalyst capable of exhibiting a photocatalytic function at a high level in a use environment, and a method for producing a tungsten oxide photocatalyst.
  • FIG. 1 is a cross-sectional view illustrating the structure of a tungsten oxide photocatalyst according to an embodiment of the present invention.
  • FIG. 2A is a schematic diagram showing a schematic configuration of a gas flow sputtering apparatus suitable for carrying out the present invention, and
  • FIG. 2B shows a target and back plate configuration of FIG. 2A. It is a perspective view.
  • FIG. 3 is a flowchart illustrating a method for producing a tungsten oxide photocatalyst body according to an embodiment of the present invention.
  • Embodiments of a tungsten oxide photocatalyst and a method for producing a tungsten oxide photocatalyst according to the present invention will be described. Specifically, (1) the structure of a tungsten oxide photocatalyst, (2) a method for producing a tungsten oxide photocatalyst, (2-1) film formation of a tungsten oxide thin film, (2-2) sputtering of a cocatalyst, (3) Actions and effects, (4) Other embodiments will be described.
  • FIG. 1 is a cross-sectional view illustrating the structure of a tungsten oxide photocatalyst body shown as an embodiment of the present invention.
  • the tungsten oxide photocatalyst body 100 includes a base material 101, a tungsten oxide thin film 102 formed on the surface of the base material 101, and a particulate promoter 103.
  • a heat resistant substrate can be used as the substrate 101.
  • a glass plate, a metal plate, a metal foil, a ceramic plate, etc. are mentioned.
  • the metal of the metal plate and the metal foil include Al, Cu, Au, Fe, Ni and the like, or alloys containing these (for example, SUS).
  • ceramics include zirconia, alumina, yttria, silicon carbide, silicon nitride, and the like.
  • the tungsten oxide thin film 102 is a thin film formed by gas flow sputtering.
  • the thickness of the tungsten oxide thin film 102 is about 500 nm, but the thickness of the tungsten oxide thin film 102 can be appropriately changed within a range of 100 nm to 5 ⁇ m.
  • the thickness of the tungsten oxide thin film 102 is thinner than 100 nm, the catalytic activity is lowered. Further, when the thickness of the tungsten oxide thin film 102 exceeds 5 ⁇ m, it takes time to form the film. On the other hand, when the thickness of the tungsten oxide thin film 102 exceeds 5 ⁇ m, cracks and peeling easily occur.
  • the promoter 103 is particulate.
  • the diameter of the particles is 1 to 4 nm, and can be about 2 nm on average.
  • the average particle diameter is a value that can be estimated from an electron micrograph such as TEM.
  • the co-catalyst 103 is supported on the surface of the tungsten oxide thin film.
  • the ratio of the area where the promoter 103 covers the surface of the tungsten oxide thin film to the surface area of the tungsten oxide thin film 102 is 40% to 80%.
  • the promoter 103 at least one of the metals represented by the element symbols Pt, Pd, Rh, Au, Ru, Cu, Ir, Ni, and Ag can be used. You may use combining these metals. Among these metals, Pt can be used.
  • FIG. 2A is a schematic diagram showing a schematic configuration of a gas flow sputtering apparatus suitable for carrying out the present invention
  • FIG. 2B is a perspective view showing a configuration of a target and a back plate in FIG. It is.
  • the gas flow sputtering apparatus 1 includes a sputtering gas inlet 11, a power source 12 such as a DC power source, an anode 13, a target 15 serving as a cathode, a substrate 16, and a water-cooled backing plate 14.
  • the gas flow sputtering apparatus 1 introduces a rare gas such as argon into a chamber 20 from a sputtering gas inlet 11 and discharges between an anode 13 connected to a power source 12 such as a DC power source and a target 15 serving as a cathode.
  • the target 15 is sputtered by the generated plasma, and the sputtered particles that have been blown off are transported to the substrate 16 and deposited by a forced flow of a rare gas such as argon.
  • the substrate 16 is supported by a holder 17, and a reactive gas inlet 18 is disposed in the vicinity of the substrate 16. Reactive sputtering can be performed.
  • the gas flow sputtering apparatus 1 is a reactive sputtering apparatus that performs sputtering while introducing oxygen gas using the metal W as a target 15.
  • the target 15 used in the gas flow sputtering apparatus 1 There is no restriction
  • the gas flow sputtering apparatus 1 is preferably performed by separately introducing oxygen gas and argon gas from the viewpoint of high-speed film formation and stable discharge.
  • the length of the target 15 is increased by continuously forming a film while conveying the base material, or by forming the film so that the sheet-like base material is fed from one roll and wound around the other roll.
  • the film formation can be made longer and the film formation efficiency can be easily increased.
  • a heat resistant substrate is used, and for example, a glass plate, a metal plate, a metal foil, a ceramic plate, or the like can be used.
  • a metal of a metal plate and a metal foil Al, Cu, Au, Fe, Ni, etc., or an alloy (for example, SUS) containing these, etc. are mentioned.
  • ceramics include zirconia, alumina, yttria, silicon carbide, silicon nitride, and the like.
  • the heating temperature is preferably 400 to 900 ° C., particularly preferably 500 to 800 ° C. If it is less than 400 ° C., it will not be sufficiently crystallized. When the temperature is higher than 900 ° C., there is a problem that usable substrates are limited and that a heating mechanism with a high cost is required.
  • the thin film formed with the non-heated base material is not heated at the time of film formation and is amorphous in the as-deposited state (the state immediately after film formation without post-baking or other post-treatment on the thin film). It is a thin film.
  • the firing temperature is preferably 400 to 900 ° C, particularly 500 to 800 ° C. If it is less than 400 ° C., it will not be sufficiently crystallized.
  • the temperature is higher than 900 ° C., there are problems that the usable substrate is limited and that a heating mechanism with a high cost is required.
  • an underlayer such as an oxide, nitride, or oxynitride of silicon (Si) may be formed on the base material used for film formation, if necessary.
  • the pressure condition during gas flow sputtering is too high, the film formation rate decreases, and arcing is likely to occur and becomes unstable. If it is too low, the discharge voltage increases and it is difficult to maintain the discharge.
  • the pressure is preferably 10 to 120 Pa.
  • gas flow sputtering conditions such as oxygen gas flow rate and argon gas flow rate, input power, and distance between target substrates
  • the power density is usually 1 to 25 W / cm 2
  • the argon gas flow rate is 0.5 to 30 SLM
  • the oxygen gas flow rate is 5 to 120 sccm
  • the target substrate distance is 5 to 15 cm.
  • These conditions can be adopted. These conditions can be set according to the deposition rate and discharge stability and the photocatalytic activity of the formed tungsten oxide thin film.
  • FIG. 3 is a flowchart for explaining the tungsten oxide photocatalyst manufacturing method according to this embodiment.
  • step S1 a tungsten oxide thin film 102 is formed on the surface of the substrate 101 by gas flow sputtering.
  • step S2 the co-catalyst 103 is deposited on the surface of the formed tungsten oxide thin film 102 by vacuum deposition under a pressure condition of 2 pa to 15 Pa.
  • the pressure condition in step S2 can be set to 5 Pa to 10 Pa.
  • the co-catalyst 103 is a metal atom containing at least one of the metals represented by the element symbols Pt, Pd, Rh, Au, Ru, Cu, Ir, Ni, and Ag.
  • the pressure condition during sputtering is set to 2 Pa to 15 Pa.
  • the pressure condition is preferably set to 5 to 10 Pa.
  • the amount of the cocatalyst 103 supported can be adjusted by the film formation time.
  • the film formation time is short, the effect of supporting the promoter 103 on the surface of the tungsten oxide thin film 102 is low.
  • the film formation time is long, particles of adjacent promoters 103 deposited on the surface of the tungsten oxide thin film 102 are bonded to each other. As a result, a thin film is formed.
  • step S 2 the particulate promoter 103 is supported on the surface of the tungsten oxide thin film 102 by setting the pressure condition to 2 pa to 15 Pa (preferably 5 Pa to 10 Pa).
  • the tungsten oxide photocatalyst 100 includes a tungsten oxide thin film 102 formed by gas flow sputtering and a particulate promoter 103, and the promoter 103 includes tungsten oxide. It is carried on the surface of the thin film 102.
  • the film formation of the tungsten oxide thin film 102 by gas flow sputtering has a very high film formation rate compared to general sputtering. Therefore, it has different characteristics from the conventional tungsten oxide thin film formed by sputtering.
  • the promoter 103 is supported on the surface of the tungsten oxide thin film 102, whereby the charge separation on the surface of the tungsten oxide thin film 102 is promoted and the photocatalytic activity is enhanced.
  • the tungsten oxide photocatalyst body 100 is a thin film, it can be formed directly on the base material 101 such as metal. Therefore, unlike conventional cases where tungsten oxide photocatalysts are dispersed in water, organic solvents, binders, paints, adhesives, etc., and applied to the substrate surface, tungsten oxide is used in the usage environment.
  • the photocatalyst body and other particles or compounds having no photocatalytic function are not mixed. Therefore, the photocatalytic function can be exhibited at a high level in the use environment.
  • the pressure condition at the time of sputtering in step S2 is set to 2 Pa to 15 Pa.
  • the pressure condition is preferably set to 5 to 10 Pa.
  • Sputtering is generally performed under a pressure condition of about 0.5 Pa.
  • the inventors of the present application have set a particulate promoter 103 on the surface of the tungsten oxide thin film 102 when the pressure condition during sputtering is set higher than a general value as described above. It was found that can be supported. It is considered that the catalytic activity is enhanced by promoting the charge separation on the surface of the tungsten oxide thin film 102 by the promoter 103.
  • the co-catalyst 103 (for example, Pt atoms) is 2 nm by setting the pressure condition at the time of sputtering in step S2 to 2 Pa to 15 Pa (5 Pa to 10 Pa). It turned out that it became the particle form of a grade. When the pressure condition exceeds the above range, it is difficult to maintain the discharge, which is not suitable. Further, when the pressure condition is about 0.5 Pa, which is a general numerical value, the promoter 103 (for example, Pt atoms) forms a thin film. Alternatively, the promoter region 103 (for example, Pt atoms) forms island-like film regions that are scattered on the surface of the tungsten oxide thin film 102.
  • the tungsten oxide thin film 102 with respect to the surface area of the tungsten oxide thin film 102 is set by setting the pressure condition at the time of sputtering in step S2 to 2 Pa to 15 Pa (5 Pa to 10 Pa).
  • the area ratio (coating ratio) of the surface covered with the promoter 103 can be 40% to 80%.
  • the conditions under which the catalytic activity of the tungsten oxide photocatalyst 100 can be exhibited most is when both the tungsten oxide thin film 102 and the promoter 103 are exposed to visible light, and the entire surface of the tungsten oxide thin film 102 is covered by the promoter 103. If so, the catalytic activity of the tungsten oxide thin film 102 is impaired.
  • the pressure condition during sputtering in step S2 is set to 2 Pa to 15 Pa (5 Pa to 10 Pa), so that the promoter 103 supported on the tungsten oxide thin film 102 is formed into particles. Therefore, the surface of the tungsten oxide thin film 102 is not unnecessarily shielded, and the photocatalyst characteristics are not impaired. Moreover, the surface area of the co-catalyst 103 can be increased because the co-catalyst 103 is in the form of particles.
  • the promoter 103 preferably has a large work function such as a metal atom represented by the element symbols Pt, Pd, Rh, Au, Ru, Cu, Ir, Ni, and Ag. Among these, Pt is useful because it has the highest activity.
  • steps S1 and S2 may be performed with a time difference in the same chamber. Moreover, you may move to another chamber and perform. Furthermore, in step S2, the co-catalyst 103 may be introduced onto the surface of the tungsten oxide thin film 102 by gas flow sputtering.
  • step S2 of the method for producing a tungsten oxide photocatalyst the case where a so-called dry process in which the promoter 103 is introduced onto the surface of the tungsten oxide thin film 102 by sputtering has been described.
  • a dry process it is not limited to a dry process.
  • Pt atoms are used as the co-catalyst 103
  • a wet process of reducing by immersing in a solution containing a chloroplatinic acid solution or platinum alkoxide can also be used.
  • ⁇ Target Pt target with ⁇ 75 mm ⁇ Atmosphere gas: Ar gas, flow rate 50 sccm -Input power: 100W -Pressure condition: Changed from 0.5 to 8 Pa depending on the comparative example and Examples-Coating rate (controlled by deposition time): 0 to 90% in terms of Pt coating rate [Acetaldehyde Degradation Activity Evaluation Method]
  • the tungsten oxide photocatalyst formed as described above was examined for acetaldehyde decomposition activity. The evaluation results are shown in Table 1.
  • a tungsten oxide thin film formed in an area of 25 cm 2 in vertical projection area on a 5 cm square alkali-free glass substrate is placed in a sealed quartz glass container with a capacity of 400 cc so that the concentration becomes about 60 ppm in the quartz glass container.
  • Acetaldehyde is filled in and placed in a dark place for about 1 hour before irradiation with visible light, and changes in the acetaldehyde concentration are measured to confirm that there is no leakage of contents.
  • a xenon lamp having a central wavelength of 450 nm (“LA-250Xe xenon lamp” manufactured by HAYASHI) was used for visible light irradiation.
  • the light intensity was 1.0 mW / cm 2 .
  • the sample was irradiated with this visible light. 1 ml of the gas phase in the container was extracted with a microsyringe, and the concentration of acetaldehyde was measured from the extracted gas phase using gas chromatography (“GC-14B” manufactured by Shimadzu Corporation).
  • the tungsten oxide photocatalyst according to the present invention has functions such as organic matter decomposability and superhydrophilicity based on excellent photocatalytic activity, and it has deodorization, water purification, antifouling, self cleaning (self purification), antibacterial, It can be applied to uses such as viruses, anti-fungi and sterilization.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

 酸化タングステン光触媒体100は、基材101と、基材101の表面に形成される酸化タングステン薄膜102と、元素記号Pt,Pd,Rh,Au,Ru,Cu,Ir,Ni,Agで表される金属のうち少なくとも1種類から選択される助触媒103とを有する。酸化タングステン薄膜102は、ガスフロースパッタリングにより成膜された薄膜であり、酸化タングステン薄膜の表面には、粒子状の助触媒103が担持されている。

Description

酸化タングステン光触媒体及び酸化タングステン光触媒体の製造方法
 本発明は、光触媒機能を有する酸化タングステンの酸化タングステン光触媒体、及び酸化タングステン光触媒体の製造方法に関する。
 酸化タングステンは、優れた光触媒材料であり、その有機物分解機能や超親水性などの機能により、脱臭、水浄化、防汚、セルフクリーニング(自己浄化)、抗菌、抗ウィルス、抗カビ、殺菌など様々な分野への適用が試みられている。特に、結晶性の酸化タングステンは、可視光により触媒活性を示す可視光応答性を有することから、屋外のみならず屋内での使用についても期待される。
 また、酸化タングステン粒子の表面に白金粒子が担持された光触媒が開示されている(特許文献1参照)。酸化タングステンに白金などの助触媒を担持させることにより、可視光応答性を一層高められることが知られている。
 特許文献1に開示された酸化タングステン光触媒体は、粒子状であるため、実用の際には、水、アルコールなどの有機溶媒に分散させてコーティング液にし、基材に塗布することが考えられる。基材に塗布するため、必要に応じて、無機系又は有機系バインダを用いる。
特開2009-160566号公報(第3頁、図1など)
 上述したように、特許文献1に開示された酸化タングステン光触媒体は、水、有機溶媒、バインダ、塗料、接着剤などに分散して使用される。そのため、使用環境において、酸化タングステン光触媒体と、光触媒機能を持たない他の粒子や化合物とが混在する状態になっている。このような状態では、酸化タングステン光触媒体の光触媒として本来の機能が発揮できない可能性があった。すなわち、酸化タングステン光触媒体の光触媒機能を損なうことなく応用する点では、改善の余地があった。
 そこで、本発明は、使用環境において、光触媒機能を高いレベルで発揮できる酸化タングステン光触媒体及び酸化タングステン光触媒体の製造方法を提供することを目的とする。
 上述した課題を解決するため、本発明の特徴は、ガスフロースパッタリングにより成膜された酸化タングステン薄膜と、粒子状の助触媒とを有し、前記助触媒が前記酸化タングステン薄膜の表面に担持された酸化タングステン光触媒体であることを要旨とする。
 本発明の特徴によれば、酸化タングステン薄膜の表面に助触媒が担持されることにより、酸化タングステン薄膜の表面の電荷分離が促進され、光触媒活性が高められる。本発明の特徴によれば、酸化タングステン光触媒体は、薄膜であるため、例えば、金属などの基材の上に直接形成可能である。このため、従来のように、酸化タングステン光触媒体を、水、有機溶媒、バインダ、塗料、接着剤などに分散したものを基材面に塗布して使用する場合と異なり、使用環境において、酸化タングステン光触媒体と、光触媒機能を持たない他の粒子や化合物とが混在することがない。従って、使用環境において、光触媒機能を高いレベルで発揮できる。
 また、前記酸化タングステン薄膜の表面積に対する前記酸化タングステン薄膜の表面を前記助触媒が覆う面積の比率が40%乃至80%であってもよい。
 また、前記助触媒は、元素記号Pt,Pd,Rh,Au,Ru,Cu,Ir,Ni,Agで表される金属のうち少なくとも1種類を含んでもよい。
 また、前記助触媒は、元素記号Ptであってもよい。
 上述した課題を解決するため、本発明の別の特徴は、ガスフロースパッタリングにより酸化タングステン薄膜を成膜する工程と、成膜された前記酸化タングステン薄膜の表面に、圧力条件2pa~15Paの下で、真空蒸着により助触媒を担持させる工程とを有する酸化タングステン光触媒体製造方法であることを要旨とする。
 また、前記助触媒を担持させる工程における圧力条件は、5Pa~10Paであってもよい。
 また、前記助触媒は、元素記号Pt,Pd,Rh,Au,Ru,Cu,Ir,Ni,Agで表される金属のうち少なくとも1種類を含んでもよい。
 また、前記助触媒は、元素記号Ptであってもよい。
 本発明によれば、使用環境において、光触媒機能を高いレベルで発揮できる酸化タングステン光触媒体、及び酸化タングステン光触媒体の製造方法を提供することができる。
図1は、本発明の実施形態に係る酸化タングステン光触媒体の構造を説明する断面図である。 図2(a)は、本発明の実施に好適なガスフロースパッタリング装置の概略的な構成を示す模式図であり、図2(b)は、図2(a)のターゲット及びバックプレート構成を示す斜視図である。 図3は、本発明の実施形態に係る酸化タングステン光触媒体製造方法を説明するフローチャートである。
 本発明に係る酸化タングステン光触媒体、及び酸化タングステン光触媒体製造方法の実施形態について説明する。具体的には、(1)酸化タングステン光触媒体の構造、(2)酸化タングステン光触媒体製造方法、(2-1)酸化タングステン薄膜の成膜、(2-2)助触媒のスパッタリング、(3)作用・効果、(4)その他の実施形態について説明する。
 (1)酸化タングステン光触媒体の構造
 図1は、本発明の実施形態として示す酸化タングステン光触媒体の構造を説明する断面図である。酸化タングステン光触媒体100は、基材101と、基材101の表面に形成される酸化タングステン薄膜102と、粒子状の助触媒103とを有する。
 基材101としては、耐熱性基材を用いることができる。例えば、ガラス板、金属板、金属箔、又はセラミックス板等が挙げられる。金属板、金属箔の金属としては、Al,Cu,Au,Fe,Ni等、或いはこれらを含む合金(例えばSUS)等が挙げられる。また、セラミックスとしてはジルコニア、アルミナ、イットリア、炭化珪素、窒化珪素等が挙げられる。
 酸化タングステン薄膜102は、ガスフロースパッタリングにより成膜された薄膜である。実施形態では、酸化タングステン薄膜102の厚みは、500nm程度であるが、酸化タングステン薄膜102の厚みは、100nm~5μmの範囲で適宜変更できる。酸化タングステン薄膜102の厚みが100nmよりも薄い場合には、触媒活性が低下する。また、酸化タングステン薄膜102の厚みが5μmを上回る場合には、成膜に時間がかかる。また、酸化タングステン薄膜102の厚みが5μmを上回る場合には、クラックや剥離が生じやすくなる。
 助触媒103は、粒子状である。実施形態では、粒子の直径は、1~4nmであり、平均として2nm程度とすることができる。なお、粒子直径の平均は、TEMなどの電子顕微鏡写真から見積もることのできる値である。助触媒103は、酸化タングステン薄膜の表面に担持されている。酸化タングステン薄膜102の表面積に対する酸化タングステン薄膜の表面を助触媒103が覆う面積の比率は、40%乃至80%である。助触媒103としては、元素記号Pt,Pd,Rh,Au,Ru,Cu,Ir,Ni,Agで表される金属のうち少なくとも1種類を用いることができる。これらの金属を組み合わせて用いてもよい。これらの金属のなかでもPtを使用することができる。
 (2)酸化タングステン光触媒体製造方法
(2-1)酸化タングステン薄膜の成膜
 本発明に係る酸化タングステン光触媒体である酸化タングステン薄膜を製造する酸化タングステン光触媒体製造方法を詳細に説明する。本実施形態では、ガスフロースパッタリングにより酸化タングステン薄膜を成膜した後、酸化タングステン薄膜の表面に助触媒を一般的な物理的蒸着法(スパッタリング)により担持させる。ガスフロースパッタリングによる酸化タングステン薄膜の成膜については、特開2008-106342号公報に開示された方法を採用できる。
 図2(a)は、本発明の実施に好適なガスフロースパッタリング装置の概略構成を示す模式図であり、図2(b)は、図2(a)のターゲット及びバックプレート構成を示す斜視図である。
 ガスフロースパッタリング装置1は、スパッタガス導入口11と、DC電源等の電源12と、アノード13と、カソードとなるターゲット15と、基板16と、水冷バッキングプレート14とを有する。
 ガスフロースパッタリング装置1は、スパッタガス導入口11からチャンバー20内にアルゴン等の希ガス等を導入し、DC電源等の電源12に接続されたアノード13及びカソードとなるターゲット15間での放電で発生したプラズマによりターゲット15をスパッタリングし、弾き飛ばされたスパッタ粒子をアルゴン等の希ガス等の強制流にて基板16まで輸送し堆積させる。なお、図2では、基板16は、ホルダー17に支持されており、基板16の近傍には反応性ガスの導入口18が配置されている。反応性スパッタリングを行うことが可能である。
 ガスフロースパッタリング装置1は、金属Wをターゲット15として、酸素ガスを導入しながらスパッタリングを行う反応性スパッタリング装置である。
 ガスフロースパッタリング装置1において使用されるターゲット15の形状に特に制限はなく、円筒形のターゲットや矩形板状のターゲットなど任意の形状のターゲットを用いることができる。加工費が安いことから、ターゲット15は、矩形板状であることが好ましい。これらを図2のように向かい合わせた方式とすることが好ましい。
 また、ガスフロースパッタリング装置1は、図2に示すように、酸素ガスとアルゴンガスとを別々に導入して行うことが高速成膜及び安定放電の点で好ましい。この方式では、基材を搬送しながら連続的に成膜したり、シート状基材を一方のロールから送り出して他方のロールに巻き取るようにして成膜することにより、ターゲット15の長さを長くすることができ、成膜効率を高めることが容易である。
 基材としては耐熱性基材が用いられ、例えば、ガラス板、金属板、金属箔、又はセラミックス板等を用いることができる。ここで、金属板、金属箔の金属としては、Al,Cu,Au,Fe,Ni等、或いはこれらを含む合金(例えばSUS)等が挙げられる。また、セラミックスとしてはジルコニア、アルミナ、イットリア、炭化珪素、窒化珪素等が挙げられる。
 成膜時に基材加熱を行うことにより、成膜される薄膜が結晶性薄膜になる。ここで、加熱温度は400~900℃であることが好ましく、特に500~800℃であることが好ましい。400℃未満であると十分に結晶化されない。900℃より高いと、使用可能な基板が制限される、加熱機構が高コストなものが必要になる等の問題が生じる。
 成膜時に基材加熱を行わず、非加熱基材で成膜した薄膜は、アズデポジッションの状態(薄膜に対して後焼成などの後処理を施さない、成膜直後の状態)において、アモルファス薄膜である。この非加熱基材で成膜した薄膜を焼成することにより、結晶性薄膜になる。この焼成条件としては、焼成温度が400~900℃特に500~800℃であることが好ましい。400℃未満であると十分に結晶化されない。900℃より高いと、使用可能な基板が制限される、加熱機構が高コストなものが必要になるなどの問題が生じる。なお、成膜に用いる基材には、必要に応じて珪素(Si)の酸化物、窒化物、酸窒化物等の下地層を形成しても良い。
 ガスフロースパッタリング時の圧力条件は、高過ぎると成膜速度が低下し、またアークが起きやすく不安定になり、低過ぎると放電電圧が高くなり、放電維持が困難であることから、5~200Pa、特に10~120Paであることが好ましい。
 その他のガスフロースパッタリング条件、例えば酸素ガス流量やアルゴンガス流量、投入電力、ターゲット基材間距離等は、装置のサイズによって変更が可能である。例えば、図2に示す装置であれば、通常、電力密度:1~25W/cm、アルゴンガス流量:0.5~30SLM、酸素ガス流量:5~120sccm、ターゲット基材間距離:5~15cmといった条件を採用することができる。成膜速度と放電安定性、形成される酸化タングステン薄膜の光触媒活性に応じて、これらの条件は設定可能である。
 (2-2)助触媒のスパッタリング
 図3は、本実施形態に係る酸化タングステン光触媒体製造方法を説明するフローチャートである。ステップS1として、ガスフロースパッタリングにより、基材101の表面に酸化タングステン薄膜102を成膜する。
 続いて、ステップS2として、成膜された酸化タングステン薄膜102の表面に、圧力条件2pa~15Paの下で、真空蒸着により助触媒103を蒸着させる。ステップS2における圧力条件は、5Pa~10Paに設定することもできる。助触媒103は、元素記号Pt,Pd,Rh,Au,Ru,Cu,Ir,Ni,Agで表される金属のうち少なくとも1種類を含む金属原子である。ステップS2において、スパッタリング時の圧力条件は、2Pa~15Paに設定される。ステップS2では、圧力条件は、5~10Paに設定されることが好ましい。
 助触媒103の担持量は、成膜時間により調整可能である。成膜時間が短い場合、助触媒103を酸化タングステン薄膜102の表面に担持させる効果が低く、成膜時間が長い場合、酸化タングステン薄膜102の表面に蒸着した隣り合う助触媒103の粒子同士が結合してしまい、薄膜が形成されてしまう。
 以上のように、ステップS2において、圧力条件を2pa~15Pa(好ましくは、5Pa~10Pa)に設定することにより、粒子状の助触媒103が酸化タングステン薄膜102の表面に担持される。
 (3)作用・効果
 本実施形態に係る酸化タングステン光触媒体100は、ガスフロースパッタリングにより成膜された酸化タングステン薄膜102と、粒子状の助触媒103とを有し、助触媒103は、酸化タングステン薄膜102の表面に担持されている。
 ガスフロースパッタリングによる酸化タングステン薄膜102の成膜は、一般的なスパッタリングに対して、非常に高い成膜速度を有する。そのため、従来の一般的なスパッタリングにより成膜された酸化タングステン薄膜とは異なる特徴を有する。
 本実施形態に係る酸化タングステン光触媒体100によれば、酸化タングステン薄膜102の表面に助触媒103が担持されることにより、酸化タングステン薄膜102の表面の電荷分離が促進され、光触媒活性が高められる。酸化タングステン光触媒体100は、薄膜であるため、例えば、金属などの基材101の上に直接形成可能である。このため、従来のように、酸化タングステン光触媒体を、水、有機溶媒、バインダ、塗料、接着剤などに分散したものを基材面に塗布して使用する場合と異なり、使用環境において、酸化タングステン光触媒体と、光触媒機能を持たない他の粒子や化合物とが混在することがない。従って、使用環境において、光触媒機能を高いレベルで発揮できる。
 また、本実施形態に係る酸化タングステン光触媒体製造方法では、ステップS2におけるスパッタリング時の圧力条件は、2Pa~15Paに設定される。ステップS2では、圧力条件は、5~10Paに設定されることが好ましい。
 スパッタリングは、一般的には、0.5Pa程度の圧力条件で行われる。これに対して、本願発明者らは、鋭意検討の結果、上述のように、スパッタリング時の圧力条件を一般的な値よりも高く設定すると、酸化タングステン薄膜102の表面に粒子状の助触媒103を担持できることを見出した。助触媒103により酸化タングステン薄膜102の表面の電荷分離が促進されることにより、触媒活性が高められると考えられる。
 また、本実施形態に係る酸化タングステン光触媒体製造方法では、ステップS2におけるスパッタリング時の圧力条件が2Pa~15Pa(5Pa~10Pa)に設定されることにより、助触媒103(例えば、Pt原子)が2nm程度の粒子状になることが判った。圧力条件が上記範囲を上回る場合には、放電維持が困難になるため不適である。また、圧力条件が一般的な数値である0.5Pa程度の場合、助触媒103(例えば、Pt原子)が薄膜を形成してしまう。或いは、助触媒103(例えば、Pt原子)が酸化タングステン薄膜102の表面に点在する島状の膜領域を形成してしまう。
 また、本実施形態に係る酸化タングステン光触媒体製造方法では、ステップS2におけるスパッタリング時の圧力条件が2Pa~15Pa(5Pa~10Pa)に設定されることにより、酸化タングステン薄膜102の表面積に対する酸化タングステン薄膜102の表面を助触媒103が覆う面積の比率(被膜率)が40%乃至80%にすることができる。X線光電子分光方(XPS)による表面分析により、被覆率が40~80%のとき、有機化合物を分解する分解活性が高められることが判った。
 酸化タングステン光触媒体100の触媒活性が最も発揮できる条件は、酸化タングステン薄膜102及び助触媒103がともに可視光に対して露出された場合であり、助触媒103によって酸化タングステン薄膜102の全面が覆われていると、酸化タングステン薄膜102の触媒活性が損なわれてしまう。
 本実施形態に係る酸化タングステン光触媒体製造方法では、ステップS2におけるスパッタリング時の圧力条件が2Pa~15Pa(5Pa~10Pa)に設定されることにより、酸化タングステン薄膜102に担持される助触媒103を粒子状にできるため、酸化タングステン薄膜102の表面を不要に遮蔽することなく、光触媒体特性を損なわない。また、助触媒103が粒子状であることにより、助触媒103の表面積も増大できる。
 助触媒103としては、元素記号Pt,Pd,Rh,Au,Ru,Cu,Ir,Ni,Agで表される金属原子などのように、仕事関数が大きいものが好ましい。なかでも、Ptは、活性がもっとも高いため、有用である。
 (4)その他の実施形態
 上述したように、本発明の実施形態を通じて本発明の内容を開示したが、この開示の一部をなす論述及び図面は、本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなる。
 本実施形態に係る酸化タングステン光触媒体製造方法において、ステップS1,S2は、同一チャンバー内で時間差で行われてもよい。また、別のチャンバーに移動させて行ってもよい。更に、ステップS2では、ガスフロースパッタリングにより酸化タングステン薄膜102の表面に助触媒103を導入してもよい。
 本実施形態に係る酸化タングステン光触媒体製造方法のステップS2では、スパッタリングにより酸化タングステン薄膜102の表面に助触媒103を導入する、いわゆるドライプロセスを適用する場合について説明した。しかし、ドライプロセスに限定されない。助触媒103として、例えば、Pt原子を使用する場合には、塩化白金酸溶液、白金アルコキシドを含む溶液に浸漬させて還元させるウェットプロセスを使用することもできる。
 本発明は、ここでは記載していない様々な実施の形態などを含むことは勿論である。したがって、本発明の技術的範囲は、上述の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められる。
 実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は、以下の実施例に限定されない。図2に示すガスフロースパッタ装置を用い、チャンバー内に、基板としてアルカリフリーガラスをセットし、荒引きポンプ(ロータリーポンプ+メカニカルブースターポンプ)で1×10-1Paまで排気した後、以下の条件で酸化タングステン薄膜を成膜した。
 ・ターゲット:80mm×160mm×6mmのタングステンターゲット
 ・カソード形状:平行平板対向型(上記ターゲットを2枚使用、距離30mm)
 ・基板位置:カソード端部と基材間距離105mm
 ・基板加熱温度:600℃
 ・圧力条件:70Pa
 ・酸素ガス(反応性ガス)流量:50sccm
 ・Arガス(強制流)流量:5SLM
 ・投入電力:1.0kW
 ・投入電力密度:3.9W/cm
 ・成膜速度:220nm/min
 ・膜厚:500nm
 次に、DCスパッタ装置を用いて、以下の条件で、酸化タングステン薄膜の表面に助触媒としてPt原子を導入した。
 ・ターゲット:φ75mmのPtターゲット
 ・雰囲気ガス:Arガス、流量50sccm
 ・投入電力:100W
 ・圧力条件:比較例及び実施例に応じて0.5~8Paで変化
 ・被膜率(成膜時間により制御):Pt被膜率換算で0~90%
 [アセトアルデヒドの分解活性評価法]
 以上のようにして形成された酸化タングステン光触媒体について、アセトアルデヒドの分解活性を調べた。評価結果を表1に示す。
 密閉された容積400ccの石英ガラス容器中に5cm角のアルカリフリーガラス基板上に垂直投影面積で25cmの面積に成膜された酸化タングステン薄膜を設置し、石英ガラス容器に濃度約60ppmとなるようにアセトアルデヒドを充填し、可視光を照射する前に1時間ほど暗所に設置し、アセトアルデヒド濃度の変化を計測して内容物の漏れが無いことを確認する。
 その後、可視光を照射し、照射時間に対するアセトアルデヒド濃度の変化を計測した。なお、可視光照射には中心波長450nmのキセノンランプ(HAYASHI社製「LA-250Xeキセノンランプ」)を用いた。光強度は、1.0mW/cmとした。この可視光をサンプルに照射した。容器内の気相をマイクロシリンジで1ml抜き取り、ガスクロマトグラフィー(島津製作所製「GC-14B」)を用いて、抜き取った気相からアセトアルデヒド濃度を計測した。
 それぞれのサンプルについて可視光照射後1時間~4時間後のアセトアルデヒド濃度を測定し、その減少量から光触媒活性を評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 以上の結果から、酸化タングステン薄膜に助触媒を導入しない比較例1、或いは、酸化タングステン光触媒体製造方法において、酸化タングステン薄膜に助触媒を導入するときのスパッタリングの圧力条件が0.5Pa、1.5Paに設定された比較例2,3の酸化タングステン光触媒体では、4時間経過後もアセトアルデヒドが残留していた。
 また、酸化タングステン薄膜に助触媒を導入するときのスパッタリングの圧力条件が8Paに設定され、被覆率が30%,90%に設定された比較例4,5の酸化タングステン光触媒体でも同様に、4時間経過後もアセトアルデヒドが残留していた。
 一方、酸化タングステン薄膜に助触媒を導入するときのスパッタリングの圧力条件が2Pa~8Paに設定され、被覆率が40~80%に設定された実施例1から5の酸化タングステン光触媒体では、4時間経過後にアセトアルデヒドの残留濃度が0ppmとすることができた。なかでも、酸化タングステン薄膜に助触媒を導入するときのスパッタリングの圧力条件が5Paに設定され、被覆率が60%に設定された実施例2の酸化タングステン光触媒体では、3時間経過後には、アセトアルデヒドの残留濃度が0ppmになった。
 なお、日本国特許出願第2010-073130号(2010年3月26日出願)の全内容が、参照により、本願明細書に組み込まれている。
 本発明に係る酸化タングステン光触媒体は、優れた光触媒活性に基づく有機物分解性、超親水性などの機能を有しており、脱臭、水浄化、防汚、セルフクリーニング(自己浄化)、抗菌、抗ウィルス、抗カビ、殺菌などの用途へ適用可能である。

Claims (10)

  1.  スパッタリングにより成膜された酸化タングステン薄膜と、
     粒子状の助触媒とを有し、
     前記助触媒が前記酸化タングステン薄膜の表面に担持された酸化タングステン光触媒体。
  2.  前記酸化タングステン薄膜の表面積に対する前記酸化タングステン薄膜の表面を前記助触媒が覆う面積の比率が40%乃至80%である請求項1に記載の酸化タングステン光触媒体。
  3.  前記助触媒は、元素記号Pt,Pd,Rh,Au,Ru,Cu,Ir,Ni,Agで表される金属のうち少なくとも1種類を含む請求項1又は2に記載の酸化タングステン光触媒体。
  4.  前記助触媒は、元素記号Ptである請求項3に記載の酸化タングステン光触媒体。
  5.  酸化タングステン薄膜は、ガスフロースパッタリングで成膜されることを特徴とする請求項1乃至4の何れか一項に記載の酸化タングステン光触媒体。
  6.  スパッタリングにより酸化タングステン薄膜を成膜する工程と、
     成膜された前記酸化タングステン薄膜の表面に、圧力条件2pa~15Paの下で、真空蒸着により助触媒を担持させる工程と
     を有する酸化タングステン光触媒体製造方法。
  7.  前記助触媒を担持させる工程における圧力条件は、5Pa~10Paである請求項6に記載の酸化タングステン光触媒体製造方法。
  8.  前記助触媒は、元素記号Pt,Pd,Rh,Au,Ru,Cu,Ir,Ni,Agで表される金属のうち少なくとも1種類を含む請求項6又は7に記載の酸化タングステン光触媒体製造方法。
  9.  前記助触媒は、元素記号Ptである請求項8に記載の酸化タングステン光触媒体製造方法。
  10.  酸化タングステン薄膜を成膜する工程は、ガスフロースパッタリングであることを特徴とする請求項6乃至9の何れか一項に記載の酸化タングステン光触媒体製造方法。
PCT/JP2011/056592 2010-03-26 2011-03-18 酸化タングステン光触媒体及び酸化タングステン光触媒体の製造方法 WO2011118531A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-073130 2010-03-26
JP2010073130 2010-03-26

Publications (1)

Publication Number Publication Date
WO2011118531A1 true WO2011118531A1 (ja) 2011-09-29

Family

ID=44673085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056592 WO2011118531A1 (ja) 2010-03-26 2011-03-18 酸化タングステン光触媒体及び酸化タングステン光触媒体の製造方法

Country Status (1)

Country Link
WO (1) WO2011118531A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015522406A (ja) * 2012-05-25 2015-08-06 エルジー・ハウシス・リミテッドLg Hausys,Ltd. 光触媒材、その製造方法及び光触媒装置
CN109735817A (zh) * 2019-02-27 2019-05-10 杜铁路 一种具有催化特性的贵金属/氧化物复合薄膜及制备方法
US10710063B2 (en) * 2013-07-05 2020-07-14 Nitto Denko Corporation Transparent photocatalyst coating and methods of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205103A (ja) * 2000-01-27 2001-07-31 Toyota Central Res & Dev Lab Inc 光触媒体
JP2009280479A (ja) * 2008-04-23 2009-12-03 National Institute Of Advanced Industrial & Technology 樹状物質およびそれを含む構造体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205103A (ja) * 2000-01-27 2001-07-31 Toyota Central Res & Dev Lab Inc 光触媒体
JP2009280479A (ja) * 2008-04-23 2009-12-03 National Institute Of Advanced Industrial & Technology 樹状物質およびそれを含む構造体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. MIYAUCHI: "Photocatalysis and photoinduced hydrophilicity of W03 thin films with underlying Pt nanoparticles.", PHYSICAL CHEMISTRY CHEMICAL PHYSICS, vol. 10, no. ISS.41, 9 September 2008 (2008-09-09), pages 6258 - 6265 *
MASAHIRO MEGURO ET AL.: "Giji Taiyoko Shosha-ka deno Mesoporous W03 Usumaku Hikari Denkyoku Shokubai ni yoru Mizu Bunkai", CSJ: THE CHEMICAL SOCIETY OF JAPAN KOEN YOKOSHU, vol. 90, no. 2, 12 March 2010 (2010-03-12), pages 295 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015522406A (ja) * 2012-05-25 2015-08-06 エルジー・ハウシス・リミテッドLg Hausys,Ltd. 光触媒材、その製造方法及び光触媒装置
US10710063B2 (en) * 2013-07-05 2020-07-14 Nitto Denko Corporation Transparent photocatalyst coating and methods of manufacturing the same
CN109735817A (zh) * 2019-02-27 2019-05-10 杜铁路 一种具有催化特性的贵金属/氧化物复合薄膜及制备方法

Similar Documents

Publication Publication Date Title
Wang et al. The effect of properties of semiconductor oxide thin films on photocatalytic decomposition of dyeing waste water
JP5194427B2 (ja) 光触媒酸化タングステン薄膜
JP5707480B2 (ja) 自動車用室内部材
JP5708805B2 (ja) 親水性部材およびその製造方法
JP6126145B2 (ja) 排ガス浄化触媒及びその製造方法
WO2011118531A1 (ja) 酸化タングステン光触媒体及び酸化タングステン光触媒体の製造方法
CN105793461A (zh) 透明的光催化剂涂层及其制造方法
KR20050067150A (ko) 광촉매 재료와 그 제조방법
JP2015116526A (ja) 光触媒複合体およびその製造方法、並びに光触媒複合体を含む光触媒脱臭システム
WO2013047605A1 (ja) 成膜方法及び成膜装置
JP2000096212A (ja) 光触媒膜被覆部材およびその製造方法
JPWO2003028885A1 (ja) 光触媒体、光触媒体の製造方法及び光触媒体の製造装置
Kim et al. Non-colloidal nanocatalysts fabricated using arc plasma deposition and their application in heterogenous catalysis and photocatalysis
JP5142081B2 (ja) 酸化チタン系光触媒薄膜の製造法
Sirghi Plasma synthesis of photocatalytic TiOx thin films
JP3911355B2 (ja) 光触媒体の作製方法
US20060189132A1 (en) Method for forming porous thin film
JP2008229419A (ja) 光触媒窒素ドープ酸化チタン薄膜及びその成膜方法
JP2015073978A (ja) 光触媒担持体
JPH1071337A (ja) 光触媒体及びその製造方法
JP2001347162A (ja) 酸化チタン薄膜を有する光触媒材
JP2012120967A (ja) 可視光応答型光触媒およびこれを含む親水性部材ならびにこれらの製造方法
JP6161053B2 (ja) 蒸着源および微粒子形成装置
JP2001205105A (ja) 光触媒薄膜
JP2009066497A (ja) 光触媒酸化チタン薄膜及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP