WO2011118406A1 - 可燃性ガス濃縮方法 - Google Patents

可燃性ガス濃縮方法 Download PDF

Info

Publication number
WO2011118406A1
WO2011118406A1 PCT/JP2011/055655 JP2011055655W WO2011118406A1 WO 2011118406 A1 WO2011118406 A1 WO 2011118406A1 JP 2011055655 W JP2011055655 W JP 2011055655W WO 2011118406 A1 WO2011118406 A1 WO 2011118406A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
adsorption
adsorption tower
path
pressure
Prior art date
Application number
PCT/JP2011/055655
Other languages
English (en)
French (fr)
Inventor
夘瀧高久
小谷保
Original Assignee
大阪瓦斯株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪瓦斯株式会社 filed Critical 大阪瓦斯株式会社
Priority to RU2012145090/05A priority Critical patent/RU2550899C2/ru
Priority to CN201180015342.5A priority patent/CN102821826B/zh
Priority to AU2011230824A priority patent/AU2011230824B2/en
Priority to US13/636,395 priority patent/US8974575B2/en
Publication of WO2011118406A1 publication Critical patent/WO2011118406A1/ja
Priority to UAA201210996A priority patent/UA106650C2/uk

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/053Pressure swing adsorption with storage or buffer vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40007Controlling pressure or temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40035Equalization
    • B01D2259/40037Equalization with two sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/402Further details for adsorption processes and devices using two beds

Definitions

  • the present invention includes an adsorbing tower having a gas inflow portion for supplying a raw material gas, a gas outflow portion for exhausting exhaust gas, and a gas recovery portion for recovering product gas, which are filled with an adsorbent that selectively adsorbs a combustible gas.
  • a pressure equalizing path that connects the adsorption towers, and a pressure equalizing path opening / closing valve that opens and closes the pressure equalizing path is provided in the pressure equalizing path, (1)
  • the present invention relates to a flammable gas concentration method in which a pressure equalizing step is performed in a state where a pressure path opening / closing valve is opened.
  • the combustible gas may explode, and if the combustible gas is contained in the raw material gas or the like in a predetermined concentration range, it may explode.
  • the concentration range where this explosion may occur varies depending on the type of combustible gas, but is generally a range containing about 5 to 20 Vol% of combustible gas. Even in the case of methane gas, there is a possibility of explosion in the same concentration range.
  • the possibility of explosion of the combustible gas is considered to be explosive when the source gas contains oxygen gas at a predetermined concentration in addition to the concentration of the combustible gas.
  • This concentration range is a range in which oxygen gas is contained in an amount of 10 Vol% or more.
  • the concentrated methane gas has a relatively high concentration (methane concentration of about 60 Vol%) and is outside the explosion concentration range.
  • methane gas is contained at a relatively low concentration (methane concentration of 44 Vol% or less) in the off-gas after extracting methane gas to some extent from coal mine gas (methane concentration of about 44 Vol%, oxygen gas concentration of about 12 Vol%).
  • the off gas contains oxygen gas at a predetermined concentration (oxygen gas concentration of about 12 Vol% or more), any concentration of methane gas and oxygen gas may fall within the explosion concentration range. Therefore, there is a problem that the off gas may explode.
  • the raw material gas is usually introduced from the gas inflow portion.
  • the remaining gas after adsorption is caused to flow out from the gas outflow portion provided on the opposite side.
  • the adsorption management in this adsorption process is managed by paying attention to the concentration of the combustible gas in the off-gas released to the outside from the relationship with the explosion limit described above. For example, from the relationship with the amount of adsorbent stored in the adsorption tower, the adsorption time during which the concentration of the combustible gas released as off-gas falls below the explosion limit is obtained in advance.
  • the inside of the adsorption tower after the adsorption step is in a pressurized state by the supplied raw material gas. Further, combustible gas is mainly adsorbed on the adsorbent, and a gas containing a gas (mainly air) other than the combustible gas as an impurity exists in the remaining space in the adsorption tower.
  • the combustible gas adsorbed in the adsorption tower in this way is taken out from the gas recovery path in the desorption process.
  • the gas desorbed from the adsorbent at the initial stage of the desorption process contains a gas other than a combustible gas as an impurity. Therefore, in order to obtain a highly pure combustible gas, it is preferable not to recover this gas as a product gas, but if possible, further purify and take out the combustible gas. Thereby, while improving the purity of product gas, the recovery rate of combustible gas can be raised.
  • the inside of the adsorption tower after the adsorption step is in a high pressure state.
  • the inside of the adsorption tower after the desorption process is in a state where the combustible gas has been completely exhausted, and thus the degree of decompression is extremely high.
  • the adsorption step is next performed in the adsorption tower that has undergone the desorption step, the state in which the flammable gas can be adsorbed while gradually increasing the pressure from the high degree of decompression is prepared, and the flammable gas in the current gas is prepared. It moves to the operation of adsorbing.
  • the adsorption tower (hereinafter referred to as the first one) is completed.
  • the gas desorbed from the adsorbent hereinafter referred to as the initial desorption gas
  • the adsorption tower hereinafter referred to as the second adsorption tower
  • the combustible gas contained in the initial desorption gas can be supplied to the second adsorption tower and used for the subsequent adsorption step.
  • the concentration of combustible gas recovered in the subsequent desorption process can be increased, and in the second adsorption tower, the initial desorption also serves as a pressure increase for shifting to the adsorption process.
  • the combustible gas can be recovered from the gas (so-called pressure equalization step) (see Patent Document 1).
  • the initial desorption gas supplied from the first adsorption tower to the second adsorption tower is the second pressure most reduced from the first adsorption tower pressurized to the maximum. It flows into the adsorption tower. Therefore, at the beginning of the pressure equalization process, the pressurized initial desorbed gas instantaneously flows at high speed into the second adsorption tower.
  • Such a pressure equalization process is a process for refining and concentrating combustible gas, in which product gas is not recovered, so to speak, a process that lowers productivity, so that the maximum effect is achieved in a short time. Is required. Therefore, in the pressure equalization process, there is a strong tendency to transfer the initial desorbed gas in a relatively short time. Therefore, the flow rate of the initial desorption gas supplied from the first adsorption tower to the second adsorption tower is further increased.
  • the flow of the initial desorbed gas that has flowed into the adsorption tower is supplied to the adsorbent in the second adsorption tower, which causes the adsorbent to fluidize, deteriorate, and be pulverized.
  • an object of the present invention is to suppress deterioration and powdering of the adsorbent without extending the time required for the pressure equalization step when concentrating a combustible gas.
  • the characteristic configuration of the present invention for solving the above-described problems includes a gas inflow part for supplying a raw material gas, a gas outflow part for exhausting the exhaust gas, and a gas recovery part for recovering the product gas.
  • An adsorption process in which a raw material gas is supplied from a gas inflow part to the adsorption tower, a combustible gas in the raw material gas is adsorbed by the adsorbent, and a non-adsorbed gas to the adsorbent is caused to flow out from the gas outflow part , (2) alternately performing a desorption step of desorbing the combustible gas adsorbed on the adsorbent from the adsorbent
  • the pressure process is performed.
  • the flow path different from the pressure equalization path is provided at a position facing the connection position of the pressure equalization path of the second adsorption tower.
  • the initial desorption gas that subsequently flows into the second adsorption tower is in a relatively rectified state. It will flow into the second adsorption tower. Therefore, there are few factors that fluidize the adsorbent, and the buffer gas must not be continuously supplied during the pressure equalization step. In the present application, since the buffer gas is introduced only at the start of the pressure equalization step by performing the preliminary pressure equalization step, a small amount of buffer gas needs to be input to the second adsorption tower. Therefore, the subsequent adsorption process is not hindered.
  • the supplied gas is changed in the pressure equalizing step.
  • the gas flowing into the second adsorption tower (hereinafter referred to as initial desorption gas) flows into the second adsorption tower from the opposite direction. That is, the initial desorbed gas in the first adsorption tower in the pressure equalization step flows into the second adsorption tower in a direction opposite to the buffer gas when flowing into the second adsorption tower.
  • the pressure equalizing path is connected to the lower part of the adsorption tower, the gas outflow part is provided in the upper part of the adsorption tower, and a gas supply part for supplying gas from the gas outflow part into the adsorption tower is provided. preferable.
  • a combustible gas concentrating device (hereinafter abbreviated as a PSA device) used in the combustible gas concentrating method of the present invention will be described.
  • PSA device a combustible gas concentrating device used in the combustible gas concentrating method of the present invention. Preferred examples are described below, but these examples are described in order to more specifically illustrate the present invention, and various modifications can be made without departing from the spirit of the present invention. The present invention is not limited to the following description.
  • the PSA apparatus of the present invention includes first and second adsorption towers U1 and U2 filled with adsorbents a1 and a2, respectively, and each gas path connected to each adsorption tower U1 and U2.
  • the control device C is configured to control opening and closing of the on-off valves V1 to V5 provided in L1 to L5.
  • each adsorption tower U1, U2 is provided with the raw material gas supply path L1 which supplies raw material gas to each adsorption tower U1, U2 as a gas path.
  • an off-gas release path L2 for releasing the remaining gas (off gas) to the outside is provided.
  • a product gas recovery path L3 for recovering a product gas, which is a concentrated gas recovered from the first and second adsorption towers U1 and U2, in the product tank T3 is provided.
  • a pressure equalizing path L4 for performing a pressure equalizing process described later is provided between the first and second adsorption towers U1 and U2, and air as a buffer gas is supplied to the off-gas discharge path L2 in the first and second An air supply path L5 for supplying to the two adsorption towers U1 and U2 is joined and connected.
  • the product gas is in a pressurized state (inside of the product tank T3, the combustible gas adsorbed by the adsorbents a1 and a2 from the first and second adsorption towers U1 and U2 by the vacuum pump P3 provided in the recovery path L3. It can be recovered in the product tank T3. And when supplying from this product tank T3 to the 1st, 2nd adsorption towers U1 and U2 via the air supply path L5, the density
  • the source gas in the present application is a gas containing a combustible gas and air, but may be a coal mine gas containing methane gas and air, for example.
  • the flammable gas is not particularly limited as long as it is a flammable gas.
  • methane gas contained in the coal mine gas can be used.
  • the coal mine gas is a gas generated from the coal mine and varies depending on the conditions, but the coal mine gas contains about 20 to 40 Vol% of methane gas and about 60 to 80 Vol% of air (mainly containing nitrogen gas and oxygen gas). include.
  • the raw material gas can be fed into each adsorption tower U1, U2 in the pressure state, for example, mine gas recovered from the mine.
  • the first and second adsorption towers U1 and U2 are configured by filling the adsorbents a1 and a2 into the cylindrical container.
  • the first and second adsorption towers U1 and U2 are respectively provided with a gas inflow portion 1, a gas outflow portion 2, a gas recovery portion 3 and a pressure equalization portion 4, and gas passages L1 to L2 through which gas flows in and out, respectively. L5 etc. are connected.
  • the gas inflow section 1 is connected to a raw material gas supply path L1
  • the gas outflow section 2 is connected to an off-gas discharge path L2 and an air supply path L5
  • the gas recovery section 3 is connected to a product gas recovery path L3.
  • the pressure equalizing section 4 is connected to a pressure equalizing path L4.
  • the source gas supply path L1 is provided with a source gas supply pump P1 and on-off valves V1, V10, V11, and V12.
  • the off-gas release path L2 is provided with on-off valves V2, V20, V21, V22 and a press-in pump P2 for storing off-gas in the off-gas tank T2.
  • On-off valves V31 and V32 and a vacuum pump P3 are provided in the product gas recovery path L3.
  • the pressure equalizing path L4 is provided with a pressure equalizing path opening / closing valve V4.
  • the air supply path L5 is provided with an on-off valve V5 and a buffer gas supply pump P5.
  • the adsorbents a1 and a2 are not particularly limited as long as the flammable gas can be selectively adsorbed, but the adsorbents a1 and a2 have an average pore diameter of 0.45 to 1.5 nm by the MP method, atmospheric pressure and Methane that is at least one selected from the group consisting of activated carbon, zeolite, silica gel, and organometallic complexes (copper fumarate, copper terephthalate, copper cyclohexanedicarboxylate, etc.) having an adsorption amount of methane gas under 298K of 20 Nml / g or more Adsorbents a1 and a2 may be used.
  • the average pore diameter is preferably 0.45 to 1.0 nm, more preferably 0.5 to 0.95 nm, and the methane adsorption amount is preferably 25 Nml / g or more.
  • such activated carbon is a carbonaceous material obtained by pulverizing coconut shell or coconut shell charcoal that has been completely carbonized in nitrogen gas at 600 ° C. to a particle size of 1 to 3 mm, and a batch having an inner diameter of 50 mm. It is obtained by activating at 860 ° C. in an atmosphere of 10 to 15% by volume of steam, 15 to 20% by volume of carbon dioxide, and the balance being nitrogen using a fluid flow activation furnace.
  • adsorbents a1 and a2 capable of selectively adsorbing methane gas at atmospheric pressure and 298K as the adsorbents a1 and a2
  • methane gas can be sufficiently absorbed at atmospheric pressure and 298K. Can be adsorbed.
  • the methane adsorption performance at low pressure is reduced, and the methane concentration of methane gas after concentration is reduced, and the adsorption performance
  • the amount of adsorbents a1 and a2 needs to be increased, and the apparatus becomes larger.
  • the upper limit of the methane adsorption amount is not particularly limited, but the methane adsorption amount of the adsorbents a1 and a2 obtained at present is about 40 Nml / g or less.
  • the average pore diameter in the MP method when the average pore diameter in the MP method is smaller than 0.45 nm, the adsorption amount of oxygen gas and nitrogen gas increases, the methane concentration in the methane gas after concentration decreases, or the average pore diameter becomes the methane molecular diameter. The adsorption speed becomes slower and the methane adsorption performance decreases or no adsorption occurs.
  • the average pore diameter in the MP method is larger than 1.5 nm, the methane adsorption performance at low pressure (especially about atmospheric pressure) will be reduced, and the methane concentration of the concentrated methane gas will be reduced and the adsorption performance will be maintained. In order to achieve this, the amount of adsorbents a1 and a2 needs to be increased, which increases the size of the apparatus.
  • adsorbents a1 and a2 that are at least one of them are preferable.
  • the methane adsorbents a1 and a2 may have a pore volume of 1.0 nm or less of an average pore diameter in the HK method of 50% or more of the total pore volume, preferably 70% or more, More preferably, 80% or more is good.
  • the pore volume having an average pore diameter of 1.0 nm or less capable of selectively adsorbing methane gas accounts for 50% or more of the total pore volume, it is under atmospheric pressure (about 0.1 MPa).
  • the methane gas can be adsorbed sufficiently even under atmospheric pressure by increasing the adsorbable amount of methane gas.
  • the pore volume having an average pore diameter of 0.4 nm to 1.0 nm, which is a measurable range, may be 50% or more of the total pore volume. More preferably, the methane adsorbents a1 and a2 have a pore volume with an average pore diameter of 0.45 nm to 1.0 nm of 50% or more of the total pore volume.
  • the nitrogen adsorption amount under a relative pressure of 0.013 corresponding to an average pore diameter of 1.0 nm by the HK method is the total pore volume. It is good that it is 50% or more of the nitrogen adsorption amount under the relative pressure 0.99 corresponding to the above, preferably 70% or more, more preferably 80% or more.
  • the adsorption amount at a relative pressure of 0.99 indicates the total pore volume
  • the adsorption amount at a relative pressure of 0.013 indicates a pore volume of 1.0 nm or less
  • the ratio of the respective values is 1 as described above. This indicates that the ratio of pores of 0.0 nm or less is large. As a result, even when a mixed gas of methane gas and air is used as a raw material gas, the methane gas can be easily and efficiently concentrated near atmospheric pressure.
  • a combustible gas concentration method in each of the adsorption towers U1 and U2 will be described with reference to FIGS.
  • the first adsorption tower U1 will be described as an example, and the corresponding gas passages L1 to L5 and on-off valves V1 to V5 are used for the second adsorption tower U2, and the same operation can be performed. This is omitted as it is clear.
  • valves V1 to V5 and the gas flow paths L1 to L5 are shown in black and bold lines, and the valves V1 to V5 not related to the closed state or the process and the gas flow path L1 in the gas flow state are shown.
  • ⁇ L5 is outlined and shown with thin lines.
  • ⁇ Adsorption process> In this adsorption step, as shown in FIG. 2A, the raw material gas is guided to the first adsorption tower U1, and the remaining gas is released to the outside with the combustible gas adsorbed on the adsorbent a1.
  • the on-off valves V1, V11 in the source gas supply path L1 and the on-off valves V2, V21 in the off-gas discharge path L2 are opened, the on-off valve V10 in the source gas supply path L1, the on-off valve V20 in the off-gas discharge path L2, and the product gas.
  • the on-off valve V31 in the recovery path L3 and the pressure equalizing path on-off valve V4 in the pressure equalizing path L4 are closed.
  • the flammable gas is adsorbed by the adsorbent a1, and the remaining impurity gas can be discharged as off-gas.
  • This adsorption process is performed for 120 seconds.
  • the desorption process is performed in the second adsorption tower U2.
  • the combustible gas is adsorbed by the adsorbent a1, and the impurity gas is concentrated in the remaining space.
  • the impurity gas is mixed into the product gas, and the impurity gas adsorbed on the adsorbent a1 tends to desorb preferentially over the combustible gas.
  • the impurity gas contained in the gas initially desorbed from the material a1 is also mixed into the product gas.
  • the first and second adsorption towers U1 and U2 are in communication with each other to allow gas to flow between the adsorption towers U1 and U2. And equalize pressure between the two. That is, the pressure equalizing step can be executed by opening the pressure equalizing path opening / closing valve V4 of the pressure equalizing path L4 and closing all the other opening / closing valves V11, V21, V31.
  • the impurity gas adsorbed by the adsorbent a1 is almost desorbed inside the first adsorption tower U1, and is discharged to the second adsorption tower U2 as the initial desorption gas together with the impurity gas existing in the remaining space. Will be. Further, the internal pressure of the first adsorption tower U1 is reduced to some extent, and becomes suitable for the desorption process. This pressure equalization process is performed for 20 seconds.
  • a preliminary pressure equalization process and a main pressure equalization process are performed as pressure equalization processes.
  • the pressure equalizing step in the second adsorption tower is performed prior to the main pressure equalizing step, in which a preliminary pressure equalizing step is performed in which air is supplied as a buffer gas through the gas discharge passage L2.
  • a main pressure equalization process is performed in which the buffer gas is stopped from flowing and pressure is equalized (see FIG. 2C).
  • the adsorbed combustible gas is evacuated through the recovery path L3 from the adsorbent a1 stored in the adsorption tower U1. to recover.
  • the vacuum pump P3 provided in the product gas recovery path L3 is operated to open only the on-off valve V31 in the product gas recovery path L3 and close the remaining on-off valves V11, V21, V4.
  • Desorption process can be performed. By executing such evacuation, methane adsorbed on the adsorbent a can be recovered in the product tank T3. This desorption process is performed for 140 seconds.
  • the pressurization step (FIG. 2 (d)) and the adsorption step (FIG. 3 (e)) are sequentially performed.
  • Preliminary pressure equalization process Although the inside of the first adsorption tower U1 that has undergone the desorption process is in a high pressure reduction state, it is necessary to return to a pressure state suitable for performing the adsorption process next. Therefore, the first and second adsorption towers U1 and U2 are brought into a communication state, gas is allowed to flow between both adsorption towers U1 and U2, and pressure equalization is performed between the two.
  • the mixed gas of the impurity gas and the combustible gas in the second adsorption tower U2 is caused to flow into the first adsorption tower U1, the re-recovery of the combustible gas derived from the second adsorption tower U2, and the first adsorption tower.
  • Boost U1 the mixed gas of the impurity gas and the combustible gas in the second adsorption tower U2 is caused to flow into the first adsorption tower U1, the re-recovery of the combustible gas derived from the second adsorption tower U2, and the first adsorption tower.
  • the difference between the internal pressure of the first adsorption tower U1 immediately after the completion of the desorption process and the internal pressure of the second adsorption tower U1 immediately after the completion of the adsorption process is high.
  • the gas flows into the first adsorption tower U1 at a high speed.
  • the adsorbent a1 may be fluidized, deteriorated, and powdered due to the gas flow speed and disturbance. Therefore, prior to the pressure equalization step, a preliminary pressure equalization step is performed at the start of the pressure equalization step.
  • the initial desorbed gas from the second adsorption tower U2 is received through the pressure equalizing path, and the air as the buffer gas is increased from the gas outflow portion 2. Inflow at the same time at atmospheric pressure. That is, the on-off valves V20 and V21 in the gas outflow portion 2, the on-off valve V5 of the air supply path L5 are opened, the on-off valve V11 of the source gas supply path L1, the on-off valve V2 of the off-gas discharge path L2, and the product gas recovery path L3.
  • the on-off valve V31 is closed, air is supplied from the buffer gas supply pump P5 through the air supply path L5, and the pressure equalizing path on-off valve V4 of the pressure equalizing path L4 is opened, so that the initial from the second adsorption tower U2 Accept desorption gas and perform pressure equalization.
  • the vertical pressure difference of the first adsorption tower U1 supplies the buffer gas.
  • the vertical pressure difference of the first adsorption tower U1 supplies the buffer gas.
  • the pressure equalization process is started in parallel with the preliminary pressure equalization process.
  • the first and second adsorption towers U1 and U2 are in communication, and only gas flow between the adsorption towers U1 and U2 is allowed. Perform pressure equalization in between. That is, the main pressure equalizing step can be executed by opening the pressure equalizing path opening / closing valve V4 of the pressure equalizing path L4 and closing all the other opening / closing valves V11, V21, V31. At this time, the pressure equalizing step is also performed in the second adsorption tower U2.
  • the preliminary pressure equalizing step and the main pressure equalizing step in the first adsorption tower U1 are performed for about 20 seconds in the second adsorption tower U2, whereas the preliminary pressure equalizing step is 2 seconds and the main pressure equalizing step. Perform as 18 seconds.
  • the pressurizing step as shown in FIG. 3 (h), air is press-fitted into the first adsorption tower U1 from the air supply unit 5 to increase the pressure in the first adsorption tower U1 to about atmospheric pressure. That is, the on-off valves V21, V20, V5 are opened and the other on-off valves V11, V31, V4 are closed to increase the pressure in the first adsorption tower U1.
  • This boosting step is performed for 20 seconds.
  • a 320 second time cycle is repeated including an adsorption step of 120 seconds, a pressure equalization step of 20 seconds, a desorption step of 140 seconds, a preliminary pressure equalization step of 2 seconds, a main pressure equalization step of 18 seconds, and a pressure increase step of 20 seconds.
  • the configuration includes an adsorption step of 120 seconds, a pressure equalization step of 20 seconds, a desorption step of 140 seconds, a preliminary pressure equalization step of 2 seconds, a main pressure equalization step of 18 seconds, and a pressure increase step of 20 seconds.
  • the time cycle was alternately performed in the two columns, but each step can be performed alternately or sequentially in the multiple columns.
  • the pressure increasing process is performed as a preliminary process of the adsorption process, it is not essential in the present invention and is applicable to any apparatus system in which the pressure equalizing process is performed while the adsorption process and the desorption process are alternately performed. be able to.
  • the gas used in the pre-pressure equalizing process and the pressure increasing process contributes to improving the product purity if it is a product gas, and contributes to improving the product yield if it is air or the like.
  • it can also be performed by off-gas stored in the off-gas tank T2, semi-finished gas, raw material gas, or the like.
  • the gas when supplying gas from the product tank T3 or the off-gas tank T2, there is also an advantage that the gas can be supplied using the internal pressure of the tanks T2 and T3, which leads to reduction in power of the pump P2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

 可燃性ガスの濃縮を行う際に、均圧工程に要する時間を延長せずに、吸着材の劣化、粉化を抑制するために、均圧路L4で接続された第一吸着塔U1における吸着工程の後で、かつ第二吸着塔U2における脱着工程の後に、均圧路L4に設けた均圧路開閉弁V4を開成した状態で均圧工程を行う。

Description

可燃性ガス濃縮方法
 本発明は、原料ガスを供給するガス流入部、排ガスを流出するガス流出部、製品ガスを回収するガス回収部を備え、内部に可燃性ガスを選択的に吸着する吸着材を充填した吸着塔を複数備え、前記吸着塔間を接続する均圧路を設けるとともに、前記均圧路に、均圧路を開閉する均圧路開閉弁を設け、
(1)ガス流入部から前記吸着塔へ原料ガスを供給し、原料ガス中の可燃性ガスを前記吸着材に吸着させるとともに、前記ガス流出部から前記吸着材に対する非吸着ガスを流出させる吸着工程、
(2)前記吸着材に吸着した可燃性ガスを前記吸着材から脱着させて、前記ガス回収部より外部に取り出す脱着工程、を交互に実行するとともに、
(3)前記均圧路で接続された一対の吸着塔間で、一方の吸着塔における前記吸着工程の後で、かつ他方の吸着塔における前記脱着工程の後に、前記均圧路に設けた均圧路開閉弁を開成した状態で均圧工程を行う可燃性ガス濃縮方法に関する。
 一般に可燃性ガスは爆発する可能性が存在し、原料ガス等に可燃性ガスが所定の濃度範囲で含まれている場合に爆発する可能性があるものとされている。この爆発する可能性のある濃度範囲は、可燃性ガスの種類によって異なるが、一般的には、可燃性ガスが5~20Vol%程度含まれる範囲とされている。そして、メタンガスの場合でも、同様の濃度範囲で爆発の可能性があるものとされている。
 また、可燃性ガスの爆発の可能性は、可燃性ガスの濃度に加え、原料ガス等に酸素ガスが所定の濃度で含まれる場合に爆発する可能性があるものとされている。この濃度範囲は、酸素ガスが10Vol%以上含まれる範囲とされている。
 したがって、可燃性ガスを含有するガスを取り扱う際には、上記可燃性ガスおよび酸素ガスの濃度範囲に充分な配慮をする必要がある。特に、可燃性ガス若しくは酸素ガスが爆発する可能性がある濃度範囲付近にあるガスである場合には、当該可燃性ガス若しくは酸素ガスの濃度を調整して、上記濃度範囲に入らないようにすることが重要である。
 ここで、濃縮後のメタンガスは比較的高濃度(メタン濃度60Vol%程度)であり爆発濃度範囲外となっている。しかし、炭鉱ガス(メタン濃度44Vol%程度、酸素ガス濃度12Vol%程度)からメタンガスをある程度取り出した後のオフガスには、メタンガスが比較的低濃度(メタン濃度44Vol%以下)で含まれている。さらに、前記オフガスには、酸素ガスも所定濃度(酸素ガス濃度12Vol%程度以上)含まれているため、メタンガス及び酸素ガスの何れの濃度も爆発濃度範囲内に入る可能性がある。従って、当該オフガスが爆発するおそれが生じ問題である。
 さて、可燃性ガスを選択的に吸着する吸着材が収納された吸着塔を適宜使用して濃縮を行う場合、通常、吸着工程では、ガス流入部から原料ガスを流入させ、ガス流入部とは反対側に設けられているガス流出部から吸着後の残余のガスを流出させる。この吸着工程における吸着管理は、先に説明した爆発限界との関係から、外部に放出されるオフガスにおける可燃性ガスの濃度に注目して管理することとなる。例えば、吸着塔内に収納される吸着材の量との関係から、オフガスとして放出される可燃性ガスの濃度が爆発限界以下に収まる吸着時間を予め求めておく。この吸着時間を上限として吸着を行わせることで、良好な操業を維持することとなる。ここで、吸着工程を経た吸着塔内部は、供給される原料ガスによって、加圧された状態にある。また、吸着材には主に可燃性ガスが吸着され、吸着塔内の残余の空間には不純物として可燃性ガス以外のガス(主に空気)を含んだガスが存在することになる。
 また、このように吸着塔で吸着された可燃性ガスは、脱着工程でガス回収路より取り出されることになる。しかし、脱着工程初期に前記吸着材から脱着されるガスは、不純物として可燃性ガス以外のガスを含んでいる。そのため、純度の高い可燃性ガスを得るためには、このガスを製品ガスとしては回収せず、できれば、さらに精製して、可燃性ガスを取り出することが好ましい。これにより製品ガスの純度を高めるとともに、可燃性ガスの回収率を高めることができる。
 さて、各吸着塔内の圧力変動について考えると、吸着工程を終えた吸着塔内は高圧状態にある。一方、脱着工程を終えた吸着塔内は可燃性ガスを排出しきった状態となっているので、きわめて減圧度の高い状態になっている。また、脱着工程を経た吸着塔において次に吸着工程を行う場合には、上記減圧度の高い状態から徐々に圧力を高めつつ可燃性ガスを吸着可能な状態を整え、現ガス中の可燃性ガスを吸着する動作に移行することになる。
 そこで、吸着塔間を接続する均圧路を設けるとともに、前記均圧路に、均圧路を開閉する均圧路開閉弁を設けてあれば、前記吸着工程を終えた吸着塔(以下第一吸着塔とする)が、脱着工程をはじめる際に、吸着材から脱着するガス(以下初期脱離ガスと称する)を、吸着工程を始める吸着塔(以下第二吸着塔とする)に供給することができる。すると、前記初期脱離ガス中に含まれる可燃性ガスを、第二吸着塔に供給して、後続の吸着工程に供することができる。そのため、前記第一吸着塔では、後続の脱着工程において回収される可燃性ガス濃度を高めることができるとともに、前記第2吸着塔では、吸着工程に移行するための昇圧も兼ねて前記初期脱離ガスから可燃性ガスを回収する(いわゆる均圧工程をする)ことができる(特許文献1参照)。
日本国特開2009-220004号公報
 ところで、このような均圧工程を行うにあたって、前記第一吸着塔から第二吸着塔に供給される初期脱離ガスは、最大限加圧された第一吸着塔から、最も減圧された第二吸着塔に流入する。そのため、均圧工程初期には加圧された初期脱離ガスが瞬間的に高速で、前記第2吸着塔に流入することになる。このような均圧工程は、可燃性ガスの精製、濃縮のプロセスとしては、製品ガスの回収が行われていない、いわば生産性を低下させる工程となるので、短時間で最大の効果をあげることが求められる。そのため、均圧工程においては、比較的短時間で、初期脱離ガスを移送する傾向が強い。従って、尚更前記第一吸着塔から第二吸着塔に供給される初期脱離ガスの流速を高めることとなっている。
 そのため、吸着塔に流入した初期脱離ガスの流れが、前記第二吸着塔内の吸着材に供給されることになり、前記吸着材が流動化して劣化、粉化する原因となる。
 これを防止するために、前記均圧路を細くするなどの抵抗を設けることにより、前記均圧路を通過する初期脱離ガスの流速を制限することも考えられる。しかし、均圧路のガス流速を低下させると、均圧工程に要する時間が長くなるため、製品ガスの生産性が低下するとして、好ましくないと考えられている。
 本発明の目的は、上記実情に鑑み、可燃性ガスの濃縮を行う際に、均圧工程に要する時間を延長せずに、前記吸着材の劣化、粉化を抑制する事にある。
〔構成1〕
 上記課題を解決するための本発明の特徴構成は、原料ガスを供給するガス流入部、排ガスを流出するガス流出部、製品ガスを回収するガス回収部を備え、内部に可燃性ガスを選択的に吸着する吸着材を充填した吸着塔を複数備え、前記吸着塔間を接続する均圧路を設けるとともに、前記均圧路に、均圧路を開閉する均圧路開閉弁を設け、
(1)ガス流入部から前記吸着塔へ原料ガスを供給し、原料ガス中の可燃性ガスを前記吸着材に吸着させるとともに、前記ガス流出部から前記吸着材に対する非吸着ガスを流出させる吸着工程、
(2)前記吸着材に吸着した可燃性ガスを前記吸着材から脱着させて、前記ガス回収部より外部に取り出す脱着工程、を交互に実行するとともに、
(3)前記均圧路で接続された一対の吸着塔間で、一方の吸着塔(以下第一吸着塔という)における前記吸着工程の後で、かつ他方の吸着塔(以下第二吸着塔という)における前記脱着工程の後に、前記均圧路に設けた均圧路開閉弁を開成した状態で均圧工程を行う可燃性ガス濃縮方法であって、
 前記第二吸着塔における均圧工程の開始時に、前記第二吸着塔に前記均圧路の接続位置とは異なる位置から前記第二吸着塔にガス(以下緩衝ガスと称する)を供給する予備均圧工程を行う点にある。
 尚、前記均圧路と別の流路は、前記第二吸着塔の前記均圧路の接続位置に対向する位置に設けることが好ましい。
〔作用効果1〕
 つまり、上記構成によれば、吸着前記均圧路で接続された第一、第二吸着塔間で、第一吸着塔における前記吸着工程の後で、かつ第二吸着塔における前記脱着工程の後に、前記均圧路に設けた均圧路開閉弁を開成した状態で均圧工程を行う(第一吸着塔における均圧工程にあわせて第二吸着塔で均圧工程の初期に予備均圧工程を行う)ことができ、効率よく可燃性ガス濃縮を行うことができる。
 また、第二吸着塔では、均圧工程の開始時の初期脱離ガスの急激な流入が抑制されると、その後第二吸着塔に流入する初期脱離ガスは、比較的整流された状態で前記第二吸着塔に流入することになる。そのため、前記吸着材を流動化される要因は少なく、均圧工程の期間中にわたって前記緩衝ガスを供給し続けなければならない状況とはならない。また、本願では予備均圧工程の実行により、前記緩衝ガスの流入は、均圧工程の開始時に限って行われるので、緩衝ガスの第二吸着塔への投入は少量ですむ。従って、その後の吸着工程を阻害することがない。
 ここで、前記第二吸着塔の前記均圧路の接続位置に対向する位置から前記第二吸着塔にガス供給する予備均圧工程を行うと、供給されるガスは、前記均圧工程で第二吸着塔に流入するガス(以下初期脱離ガスという)とは逆方向から前記第二吸着塔に流入することになる。
 即ち、前記均圧工程で前記第一吸着塔における初期脱離ガスは、前記第二吸着塔に流入する際に、前記緩衝ガスと対向する方向で前記第二吸着塔に流入することになる。すると、前記初期脱離ガスの流れと、前記緩衝ガスとの流れは、互いに打ち消しあって、前記第二吸着塔に流入する初期脱離ガスの流速は、減速される。そのため、前記初期脱離ガスの流れが、前記吸着材に高速で衝突し、乱流を起こしつつ、前記吸着材を流動化して劣化、粉化を促進するという現象が緩和される。
 したがって、吸着材が劣化、粉化する要因を抑制することができたので、前記吸着材の長寿命化、可燃性ガス濃縮装置の安定運転に寄与することができた。
〔構成2〕
 尚、前記均圧路を、前記吸着塔下部に接続するとともに、前記ガス流出部を前記吸着塔上部に設け、前記ガス流出部から前記吸着塔内へガスを供給するガス供給部を設けることが好ましい。
〔作用効果2〕
 すなわち、均圧路と、前記ガス供給部とは、対向する位置に設けることにより互いの流れが相殺されて、吸着材を流動化して劣化、粉化を促進するという現象を緩和する。これに加えて、均圧路とガス供給路とを、吸着塔の上下両側に分配配置すると、前記初期脱離ガスと前記緩衝ガスとが直接的に衝突して、前記吸着塔内に乱流を形成するような状況は発生しにくく、尚一層前記吸着材を流動化する要因を排除することができる。
可燃性ガス濃縮装置の概略図 可燃性ガス濃縮方法の各工程(a)~(d)を示す構成図 可燃性ガス濃縮方法の各工程(e)~(h)を示す構成図 可燃性ガス濃縮方法のタイムサイクルを示す工程図
 以下に、本発明の可燃性ガス濃縮方法に用いる可燃性ガス濃縮装置(以下PSA装置と略称する)を説明する。尚、以下に好適な実施例を記すが、これら実施例はそれぞれ、本発明をより具体的に例示するために記載されたものであって、本発明の趣旨を逸脱しない範囲において種々変更が可能であり、本発明は、以下の記載に限定されるものではない。
 本発明のPSA装置は、図1に示すように、内部に吸着材a1、a2が夫々充填された第一、第二吸着塔U1、U2を備え、各吸着塔U1、U2に繋がる各ガス路L1~L5に設けられる開閉弁V1~V5等を開閉制御する制御装置Cを備えて構成されている。そして、各吸着塔U1、U2には、ガス路として、各吸着塔U1、U2に原料ガスを供給する原料ガス供給路L1を備えている。また、前記原料ガス供給路L1からガスが供給される状態で吸着材a1、a2での可燃性ガスの吸着を終えた後、残余のガス(オフガス)を外部に放出するオフガス放出路L2とを備えている。さらに、第一、第二吸着塔U1、U2から回収される濃縮ガスである製品ガスを製品タンクT3に回収するための製品ガス回収路L3が備えられている。また、第一、第二吸着塔U1、U2間には後述の均圧工程を行うための均圧路L4を設け、前記オフガス放出路L2には、緩衝ガスとしての空気を前記第一、第二吸着塔U1、U2に供給するためのエア供給路L5を合流接続して設けてある。
 製品ガスは回収路L3に備えられる真空ポンプP3が働くことにより、第一、第二吸着塔U1、U2から吸着材a1、a2に吸着された可燃性ガスを加圧状態(製品タンクT3内は正圧となる)で製品タンクT3に回収可能となっている。そして、この製品タンクT3からエア供給路L5を介して第一、第二吸着塔U1、U2へ供給する場合、供給される製品ガスの可燃性ガスの濃度は高いものとなる。
<原料ガス>
 本願における原料ガスは、可燃性ガスと空気とを含むガスであるが、例えばメタンガスと空気とを含む炭鉱ガスとすることもできる。また、可燃性ガスとしては、可燃性の気体であれば特に制限されないが、例えば炭鉱ガスに含まれるメタンガスとすることもできる。なお、炭鉱ガスとは炭鉱から発生するガスであり、条件により異なるが、炭鉱ガス中には、メタンガス20~40Vol%程度、空気(主として窒素ガス、酸素ガスが含まれる)60~80Vol%程度が含まれている。
 前記原料ガスは、例えば鉱山から回収される鉱山ガスをその圧力状態で、各吸着塔U1、U2内に送り込み可能となっている。
<吸着塔>
 前記第一、第二吸着塔U1、U2は、筒状容器内部に吸着材a1、a2を充填して構成されている。この第一、第二吸着塔U1、U2には、それぞれ、ガス流入部1、ガス流出部2、ガス回収部3、均圧部4を設けて、それぞれにガス流入、流出させるガス路L1~L5等を接続して構成される。
 さらに具体的には、前記ガス流入部1には、原料ガス供給路L1、ガス流出部2にはオフガス放出路L2およびエア供給路L5、ガス回収部3には製品ガス回収路L3が接続され、前記均圧部4には均圧路L4が接続される。
 また、原料ガス供給路L1には、原料ガスの供給ポンプP1および開閉弁V1、V10、V11、V12が設けられる。オフガス放出路L2には、開閉弁V2、V20、V21、V22およびオフガスタンクT2にオフガスを貯留するための圧入ポンプP2が設けられる。製品ガス回収路L3には、開閉弁V31、V32および真空ポンプP3が設けられる。また、前記均圧路L4には、均圧路開閉弁V4を設けてある。さらに、エア供給路L5には、開閉弁V5を設けてあるとともに緩衝ガス供給ポンプP5を設けてある。
<吸着材>
 吸着材a1、a2は、可燃性ガスを選択的に吸着できれば、特に制限されないが、吸着材a1、a2として、MP法による平均細孔直径が0.45~1.5nmで、かつ大気圧および298K下におけるメタンガス吸着量が20Nml/g以上である活性炭、ゼオライト、シリカゲルおよび有機金属錯体(フマル酸銅、テレフタル酸銅、シクロヘキサンジカルボン酸銅など)からなる群から選択される少なくとも一つであるメタンの吸着材a1、a2を用いるとよい。なお、上記平均細孔直径として好ましくは、0.45~1.0nm、より好ましくは、0.5~0.95nmがよく、また、上記メタン吸着量が好ましくは、25Nml/g以上がよい。例えば、このような活性炭は、椰子殻または椰子殻炭を窒素ガス中において600℃で完全に炭化した炭化物を粒径1~3mmの大きさに破砕したものを炭素質材料とし、内径50mmのバッチ式流動賦活炉を用いて、水蒸気10~15Vol%、二酸化炭素15~20Vol%および残余が窒素である雰囲気下において、860℃で賦活することにより得られる。
 このように、吸着材a1、a2として大気圧及び298K下においてメタンガスを選択的に吸着できる吸着材a1、a2を用いることで、当該吸着材a1、a2に大気圧及び298K下でも充分にメタンガスを吸着することができる。
 すなわち、大気圧および298K下におけるメタン吸着量が20Nml/gより低いと、低圧(特に大気圧程度)でのメタン吸着性能が低下して、濃縮後のメタンガスのメタン濃度が低下するとともに、吸着性能を維持するには、吸着材a1、a2の増量が必要となり装置が大型化する。なお、上記メタン吸着量の上限は特に制限されないが、現状で得られる吸着材a1、a2のメタン吸着量は40Nml/g以下程度である。
 また、MP法における平均細孔直径が0.45nmより小さいと、酸素ガス、窒素ガスの吸着量が増え、濃縮後におけるメタンガス中のメタン濃度が低下したり、平均細孔直径がメタン分子径に近くなり吸着速度が遅くなってメタン吸着性能が低下したり、吸着しなくなる。一方、MP法における平均細孔直径が1.5nmより大きいと、低圧(特に大気圧程度)でのメタン吸着性能が低下して、濃縮後のメタンガスのメタン濃度が低下するとともに、吸着性能を維持するには、吸着材a1、a2の増量が必要となり装置が大型化する。
 したがって、MP法による平均細孔直径が0.45~1.5nmで、かつ大気圧および298K下におけるメタンガス吸着量が20Nml/g以上である活性炭、ゼオライト、シリカゲルおよび有機金属錯体からなる群から選択される少なくとも一つである吸着材a1、a2が良い。
 さらに、上記メタンの吸着材a1、a2が、HK法における平均細孔直径の1.0nm以下の細孔容積が、全細孔容積の50%以上であるとよく、好ましくは、70%以上、より好ましくは、80%以上がよい。この場合、メタンガスを選択的に吸着することができる平均細孔直径が1.0nm以下である細孔容積が全細孔容積の50%以上を占めているため、大気圧下(0.1MPa程度)におけるメタンガスの吸着可能量を増大させて、大気圧下であっても充分にメタンガスを吸着することができる。なお、実質的には、計測できる範囲である平均細孔直径が0.4nm以上1.0nm以下の細孔容積が、全細孔容積の50%以上であればよい。また、より好ましくは、平均細孔直径が0.45nm以上1.0nm以下の細孔容積が、全細孔容積の50%以上であることがメタンの吸着材a1、a2として好ましい。
 一方、上記吸着材a1、a2が、77K下での窒素吸着量において、HK法による1.0nmの平均細孔直径に対応する相対圧0.013下での窒素吸着量が、全細孔容積に対応する相対圧0.99下での窒素吸着量の50%以上であるとよく、好ましくは、70%以上、より好ましくは、80%以上がよい。この場合、相対圧0.99における吸着量は全細孔容積を、相対圧0.013における吸着量は1.0nm以下の細孔容積を示し、それぞれの値の比は上記と同じように1.0nm以下の細孔の割合が多いことを示している。その結果として、メタンガスと空気との混合ガスを原料ガスとする場合も、大気圧付近でのメタンガスの濃縮を容易にかつ、効率よく行なうことができる。
<可燃性ガス濃縮方法>
 以下、各吸着塔U1、U2における可燃性ガス濃縮方法について、図2~3を用いて説明する。尚、吸着塔U1、U2としては、第一吸着塔U1を例に説明し、第二吸着塔U2についても対応するガス路L1~L5、開閉弁V1~V5が用いられ、同様の動作が行えることは明らかであるものとして省略する。尚、各図中、開状態の弁V1~V5およびガス流通状態のガス路L1~L5を黒塗り、太線で示し、閉状態または工程に無関係な弁V1~V5およびガス流通状態のガス路L1~L5を白抜き、細線で示している。
<吸着工程>
 この吸着工程では、図2(a)に示すように、原料ガスを第一吸着塔U1に導き、可燃性ガスを吸着材a1に吸着させた状態で、残余のガスを外部に放出する。このとき、原料ガス供給路L1における開閉弁V1、V11、オフガス放出路L2における開閉弁V2、V21を開とし、原料ガス供給路L1における開閉弁V10、オフガス放出路L2における開閉弁V20、製品ガス回収路L3における開閉弁V31、均圧路L4における均圧路開閉弁V4を閉とする。
 これにより、第一吸着塔U1内には、吸着材a1に可燃性ガスが吸着され、残余の不純物ガスをオフガスとして排出することができる。この吸着工程は120秒間行われる。
 尚、このとき、第二吸着塔U2では、脱着工程を行っている。
<均圧工程>
 吸着状態の第一吸着塔U1内は、吸着材a1に可燃性ガスが吸着され、残余の空間に不純物ガスが濃縮されて存在する状態になっている。この状態で脱着工程を行うと、前記不純物ガスが製品ガスに混入するとともに、吸着材a1に吸着してしまった不純物ガスは、可燃性ガスよりも優先的に脱離する傾向にあるから、吸着材a1から初期に脱着されるガス中に含まれる不純物ガスも製品ガス中に混入してしまうことになる。
 そこで、この均圧工程では、図2(b)、(c)に示すように、第一、第二吸着塔U1、U2を連通状態として、両吸着塔U1、U2間でガスの流通を許容し、両者間の均圧を実施する。つまり、均圧工程では、均圧路L4の均圧路開閉弁V4を開とし、他の開閉弁V11、V21、V31を全て閉とすることで実行できる。
 これにより、第一吸着塔U1の内部は吸着材a1に吸着された不純物ガスがほとんど脱着されて、残余の空間に存在していた不純物ガスとともに、初期脱離ガスとして第二吸着塔U2に排出されることになる。また、前記第一吸着塔U1の内圧は、ある程度減少されて、脱着工程に適したものとなる。この均圧工程は20秒間行われる。
 尚、このとき第二吸着塔U2では、均圧工程として予備均圧工程と主均圧工程が行われる。第二吸着塔における均圧工程は図2(b)に示すように、主均圧工程に先立ち、ガス放出路L2より緩衝ガスとしての空気を流入させながら均圧を行う予備均圧工程を行ったのち、前記緩衝ガスの流入を止めて均圧を行う主均圧工程を行う(図2(c)参照)。
<脱着工程>
 この脱着工程では、図2(d)、図3(e)に示すように、吸着塔U1内に収納される吸着材a1から、吸着された可燃性ガスを回収路L3を経て真空引きして回収する。このとき、前記製品ガス回収路L3に備えられる真空ポンプP3を働かせて、製品ガス回収路L3における開閉弁V31のみを開とし、残余の開閉弁V11、V21、V4を閉とすることで、この脱着工程を実施できる。このような真空引きを実行することで、吸着材aに吸着されたメタンを製品タンクT3内に回収できる。この脱着工程は140秒間行われる。
 尚、このとき、第二吸着塔U2では、昇圧工程(図2(d))、吸着工程(図3(e))が順に行われる。
<予備均圧工程>
 脱着工程を経た第一吸着塔U1内は高い減圧状態にあるが、次に吸着工程を行わせるのに適した圧力状態に戻す必要がある。そこで、第一、第二吸着塔U1、U2を連通状態として、両吸着塔U1、U2間でガスの流通を許容し、両者間の均圧を実施する。これにより、第二吸着塔U2内の不純物ガスと可燃性ガスとの混合ガスを前記第一吸着塔U1に流入させ、第二吸着塔U2由来の可燃性ガスの再回収と、第一吸着塔U1の昇圧を行う。
 しかし、脱着工程を終えた直後の第一吸着塔U1の内圧と、吸着工程を終えた直後の第二吸着塔U1の内圧との差は高く、そのまま均圧工程を行えば、前記初期脱離ガスが、第一吸着塔U1に高速で流入することになる。すると、そのガスの流れの速度、乱れにより、吸着材a1が流動化し、劣化、粉化するおそれがある。そこで、均圧工程に先行して、均圧工程の開始時に予備均圧工程を行う。
 予備均圧工程においては、図3(f)に示すように、均圧路を介して第二吸着塔U2からの初期脱離ガスを受け入れつつ、ガス流出部2から緩衝ガスとしての空気を大気圧にて同時に流入させる。即ち、ガス流出部2における開閉弁V20、V21、エア供給路L5の開閉弁V5を開状態、原料ガス供給路L1の開閉弁V11、オフガス放出路L2の開閉弁V2、製品ガス回収路L3の開閉弁V31を閉にして、緩衝ガス供給ポンプP5からエア供給路L5を介して空気を供給するとともに、均圧路L4の均圧路開閉弁V4を開とし、第二吸着塔U2からの初期脱離ガスを受け入れ、均圧を行う。
 ここで、前記均圧路から前記第一吸着塔U1に初期脱離ガスを供給し、前記ガス流出部2から緩衝ガスを供給すると、第一吸着塔U1の上下圧力差が、緩衝ガスを供給しない場合40kPaであったものが、15kPa以下とすることができ、前記第一吸着塔に充填された吸着材は流動化していないことが目視確認できた。
 尚、第二吸着塔U2では、予備均圧工程に並行して均圧工程が開始される。
<主均圧工程>
 予備均圧工程を経ると、前記第一吸着塔U1に流入する初期脱離ガスは整流されるので、緩衝ガスの流入を止めても、吸着材の流動化が抑制された状態になる。そこで、前記予備均圧工程を経た第一吸着塔U1は、主均圧工程に移行させられる。
 この主均圧工程では、図3(g)に示すように、第一、第二吸着塔U1、U2を連通状態として、両吸着塔U1、U2間でのガスの流通のみを許容し、両者間の均圧を実施する。つまり、主均圧工程は、均圧路L4の均圧路開閉弁V4を開とし、他の開閉弁V11、V21、V31を全て閉とすることで実行できる。また、このとき、第二吸着塔U2においても均圧工程が実施される。
 尚、第一吸着塔U1における予備均圧工程および主均圧工程は、第二吸着塔U2における均圧工程が約20秒行われるのに対して、予備均圧工程2秒、主均圧工程18秒として行う。
<昇圧工程>
 脱着工程後の第一吸着塔U1で次に吸着工程を行った際に、前記吸着材が有効に可燃性ガスを吸着し始める圧力は、大気圧程度であるが、初期脱離ガス中の可燃性ガス濃度が十分高くなるまでの期間だけの前記均圧工程では、十分な圧力上昇を見こめない。そこで、均圧工程による昇圧とは別途、第一吸着塔U1にガス供給して圧力を上昇させる昇圧工程を行う。
 昇圧工程では、図3(h)に示すように、空気を前記エア供給部5から前記第一吸着塔U1に圧入して、前記第一吸着塔U1内を大気圧程度にまで昇圧する。つまり、開閉弁V21、V20、V5を開状態とし、他の開閉弁V11、V31、V4を閉状態として第一吸着塔U1内を昇圧する。この昇圧工程は、20秒行われる。
 昇圧工程を経た第一吸着塔U1では、再度吸着工程が行われ、各工程が図4に示されるタイムサイクルが行われる。即ち、吸着工程120秒、均圧工程20秒、脱着工程140秒、均圧工程としての予備均圧工程2秒、主均圧工程18秒、昇圧工程20秒の320秒のタイムサイクルが繰り返される構成とする。
 〔別実施例〕
 前の実施例では2塔で交互にタイムサイクルを行ったが、さらに多数塔で交互あるいは順次各工程を行うことができる。また、昇圧工程は吸着工程の予備的な工程として行ったが、本発明では必須ではなく、吸着工程、脱着工程が交互に行われる間に均圧工程の行われる装置系であれば、適用することができる。
 また、予備均圧工程、昇圧工程で用いられるガスは、製品ガスとすれば、製品純度の向上に寄与するし、空気等とすれば、製品収率の向上に寄与するのでいずれを用いても良く、他に、オフガスタンクT2に貯留されるオフガスや、半製品ガス、原料ガス等によって行うこともできる。尚、製品タンクT3やオフガスタンクT2からガスを供給する場合、タンクT2、T3の内圧を利用してガス供給ができる利点もあり、ポンプP2の動力軽減につながる。
 本発明によれば、吸着材の劣化、粉化を抑制しつつ、効率良く運転することができる可燃性ガス濃縮装置を提供することができる。
U1 第一吸着塔
U2 第二吸着塔
a1、a2 メタン吸着材
L1 原料ガス供給路
L2 オフガス放出路
L3 製品ガス回収路
L4 均圧路
V4 均圧路開閉弁
L5 エア供給路
T3 製品タンク
P3 真空ポンプ

Claims (2)

  1.  原料ガスを供給するガス流入部、排ガスを流出するガス流出部、製品ガスを回収するガス回収部を備え、内部に可燃性ガスを選択的に吸着する吸着材を充填した吸着塔を複数備え、前記吸着塔間を接続する均圧路を設けるとともに、前記均圧路に、均圧路を開閉する均圧路開閉弁を設け、
     ガス流入部から前記吸着塔へ原料ガスを供給し、原料ガス中の可燃性ガスを前記吸着材に吸着させるとともに、前記ガス流出部から前記吸着材に対する非吸着ガスを流出させる吸着工程、
     前記吸着材に吸着した可燃性ガスを前記吸着材から脱着させて、前記ガス回収部より外部に取り出す脱着工程、
    を交互に実行するとともに、
     前記均圧路で接続された一対の吸着塔間で、一方の吸着塔における前記吸着工程の後で、かつ他方の吸着塔における前記脱着工程の後に、前記均圧路に設けた均圧路開閉弁を開成した状態で均圧工程を行う
    可燃性ガス濃縮方法であって、
     前記他方の吸着塔における均圧工程の開始時に、前記他方の吸着塔に前記均圧路の接続位置とは異なる位置から前記他方の吸着塔にガスを供給する予備均圧工程を行う可燃性ガス濃縮方法。
  2.  前記均圧路を、前記吸着塔下部に接続するとともに、前記ガス流出部を前記吸着塔上部に設け、前記ガス流出部から前記吸着塔内へガスを供給するガス供給部を設けた請求項1に記載の可燃性ガス濃縮方法。
PCT/JP2011/055655 2010-03-24 2011-03-10 可燃性ガス濃縮方法 WO2011118406A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2012145090/05A RU2550899C2 (ru) 2010-03-24 2011-03-10 Способ обогащения горючего газа
CN201180015342.5A CN102821826B (zh) 2010-03-24 2011-03-10 可燃性气体浓缩方法
AU2011230824A AU2011230824B2 (en) 2010-03-24 2011-03-10 Method of Enriching Combustible Gas
US13/636,395 US8974575B2 (en) 2010-03-24 2011-03-10 Method of enriching combustible gas
UAA201210996A UA106650C2 (uk) 2010-03-24 2011-10-03 Спосіб збагачення пального газу

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-068744 2010-03-24
JP2010068744A JP5537208B2 (ja) 2010-03-24 2010-03-24 可燃性ガス濃縮方法

Publications (1)

Publication Number Publication Date
WO2011118406A1 true WO2011118406A1 (ja) 2011-09-29

Family

ID=44672967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055655 WO2011118406A1 (ja) 2010-03-24 2011-03-10 可燃性ガス濃縮方法

Country Status (8)

Country Link
US (1) US8974575B2 (ja)
JP (1) JP5537208B2 (ja)
CN (1) CN102821826B (ja)
AU (1) AU2011230824B2 (ja)
PL (1) PL220637B1 (ja)
RU (1) RU2550899C2 (ja)
UA (1) UA106650C2 (ja)
WO (1) WO2011118406A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136645A1 (ja) * 2013-03-04 2014-09-12 大阪瓦斯株式会社 メタンガス濃縮方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2010072C2 (en) * 2012-12-28 2014-07-03 Green Vision Holding B V Method and device for separating a gas mixture by means of pressure swing adsorption.
CN106413851B (zh) * 2014-06-27 2019-12-10 大阪瓦斯株式会社 气体浓缩方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01288313A (ja) * 1988-05-12 1989-11-20 Yutaka Noguchi 気体分離方法
JPH08173746A (ja) * 1994-12-27 1996-07-09 Nippon Sanso Kk 圧力変動吸着分離方法
JP2001187309A (ja) * 1999-11-03 2001-07-10 Praxair Technol Inc 水素製造のための圧力変動吸着法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4077780A (en) * 1976-10-20 1978-03-07 Union Carbide Corporation Recovery of hydrogen and nitrogen from ammonia plant purge gas
PT79586B (en) * 1983-12-07 1986-10-15 Calgon Carbon Corp Process for separating a feed stream gas mixture using pressure swing adsorption
US4816039A (en) * 1986-02-24 1989-03-28 The Boc Group, Inc. PSA multicomponent separation utilizing tank equalization
US5234472A (en) * 1987-11-16 1993-08-10 The Boc Group Plc Separation of gas mixtures including hydrogen
US4948391A (en) 1988-05-12 1990-08-14 Vacuum Optics Corporation Of Japan Pressure swing adsorption process for gas separation
US4857083A (en) * 1988-10-25 1989-08-15 Air Products And Chemicals, Inc. Vacuum swing adsorption process with vacuum aided internal rinse
PL163229B1 (pl) 1990-09-27 1994-02-28 Inst Ciezkiej Syntezy Orga Sposób selektywnej adsorpcji zmiennoclśnlenlowej
US5174796A (en) * 1991-10-09 1992-12-29 Uop Process for the purification of natural gas
US5704964A (en) 1994-12-27 1998-01-06 Nippon Sanso Corporation Pressure swing adsorption process
PL318330A1 (en) 1997-02-03 1998-08-17 Inst Ciezkiej Syntezy Orga Method of carrying on a variable-pressure adsorption process
US6113672A (en) * 1999-01-21 2000-09-05 The Boc Group, Inc. Multiple equalization pressure swing adsorption process
US6527831B2 (en) * 2000-12-29 2003-03-04 Praxair Technology, Inc. Argon purification process
JP3899282B2 (ja) 2002-04-15 2007-03-28 大陽日酸株式会社 ガス分離方法
PL211551B3 (pl) 2004-06-15 2012-05-31 Wysocki Michał Instalacja do oczyszczania gazów odlotowych, system mineralizacji materiałów (54) zawierających związki organiczne i sposób mineralizacji materiałów zawierających związki organiczne
RU2252063C1 (ru) * 2004-06-28 2005-05-20 Закрытое Акционерное Общество Научно-Производственная Компания "Интергаз" Способ очистки газовых смесей от диоксида углерода (варианты) и устройство для очистки газовых смесей от диоксида углерода (варианты)
US7491260B2 (en) * 2005-06-23 2009-02-17 Air Products And Chemicals, Inc. Valve operation diagnostic method for pressure swing adsorption systems
AU2007315541B8 (en) 2006-10-31 2011-10-27 Osaka Gas Co., Ltd. Flammable gas concentration device and flammable gas concentration method
JP2009220004A (ja) 2008-03-14 2009-10-01 Osaka Gas Co Ltd 可燃性ガスの濃縮方法および可燃性ガスの濃縮システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01288313A (ja) * 1988-05-12 1989-11-20 Yutaka Noguchi 気体分離方法
JPH08173746A (ja) * 1994-12-27 1996-07-09 Nippon Sanso Kk 圧力変動吸着分離方法
JP2001187309A (ja) * 1999-11-03 2001-07-10 Praxair Technol Inc 水素製造のための圧力変動吸着法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136645A1 (ja) * 2013-03-04 2014-09-12 大阪瓦斯株式会社 メタンガス濃縮方法
JP2014169383A (ja) * 2013-03-04 2014-09-18 Osaka Gas Co Ltd メタンガス濃縮方法
AU2014227178B2 (en) * 2013-03-04 2017-10-19 Osaka Gas Co., Ltd. Methane gas concentration method
US9944575B2 (en) 2013-03-04 2018-04-17 Osaka Gas Co., Ltd. Methane gas concentration method

Also Published As

Publication number Publication date
AU2011230824A1 (en) 2012-10-04
PL220637B1 (pl) 2015-11-30
CN102821826A (zh) 2012-12-12
US20130125466A1 (en) 2013-05-23
JP5537208B2 (ja) 2014-07-02
PL402400A1 (pl) 2013-07-22
RU2012145090A (ru) 2014-04-27
RU2550899C2 (ru) 2015-05-20
US8974575B2 (en) 2015-03-10
AU2011230824B2 (en) 2015-04-09
JP2011201969A (ja) 2011-10-13
CN102821826B (zh) 2015-07-08
UA106650C2 (uk) 2014-09-25

Similar Documents

Publication Publication Date Title
US9403118B2 (en) Nitrogen-enriched gas manufacturing method, gas separation method and nitrogen-enriched gas manufacturing apparatus
US9944575B2 (en) Methane gas concentration method
US8945278B2 (en) Method and apparatus for concentrating ozone gas
CN101869797B (zh) 一种从空气中提取高纯度氮气的方法与装置
WO2015008837A1 (ja) 圧力変動吸着式水素製造方法
EP3597592B1 (en) Pressure swing adsorption hydrogen manufacturing apparatus
US10124287B2 (en) Gas concentration method
JP5537208B2 (ja) 可燃性ガス濃縮方法
JP2017148715A (ja) 圧力変動吸着式水素製造装置およびその運転方法
WO2020105242A1 (ja) ガス分離装置及びガス分離方法
JP6502921B2 (ja) 目的ガスの精製方法
JP4673440B1 (ja) 目的ガスの分離回収方法
JP6515045B2 (ja) 窒素ガスの製造方法および装置
US11471819B2 (en) Gas refining apparatus, gas refining method, propene manufacturing apparatus, and propane manufacturing apparatus
JP2009220004A (ja) 可燃性ガスの濃縮方法および可燃性ガスの濃縮システム
KR20230106782A (ko) 주 가스 및 불순물을 포함하는 원료 가스로부터 불순물의 효율적인 분리를 위한 psa 시스템, 및 이의 운전 방법
KR20180122450A (ko) 오존 가스의 농축 방법, 및 오존 가스의 농축 장치
JP2010075778A (ja) 圧力スイング吸着装置
JP2018177567A (ja) 水素ガス精製装置、及び水素ガス精製装置の運転方法
US12097463B2 (en) Gas stream purification by adsorption with pre-regeneration in a closed loop
JP6027769B2 (ja) 混合ガスの分離装置および方法
CN110550606A (zh) 非稳态下由含氢气体制备高纯氢气的装置及方法
JP2009220003A (ja) 可燃性ガスの濃縮方法および可燃性ガスの濃縮システム
JPH0461685B2 (ja)
JP2005118717A (ja) ガスの分離回収方法および圧力スイング吸着式ガス分離回収システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180015342.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759213

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011230824

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: P.402400

Country of ref document: PL

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: A201210996

Country of ref document: UA

ENP Entry into the national phase

Ref document number: 2011230824

Country of ref document: AU

Date of ref document: 20110310

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012145090

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 13636395

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11759213

Country of ref document: EP

Kind code of ref document: A1