WO2011118127A1 - マグネシウム系材料の処理方法およびマグネシウム合金部材 - Google Patents

マグネシウム系材料の処理方法およびマグネシウム合金部材 Download PDF

Info

Publication number
WO2011118127A1
WO2011118127A1 PCT/JP2011/000955 JP2011000955W WO2011118127A1 WO 2011118127 A1 WO2011118127 A1 WO 2011118127A1 JP 2011000955 W JP2011000955 W JP 2011000955W WO 2011118127 A1 WO2011118127 A1 WO 2011118127A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
stress
magnesium alloy
twin
mass
Prior art date
Application number
PCT/JP2011/000955
Other languages
English (en)
French (fr)
Inventor
佳浩 中垣
尚 杉江
元治 谷澤
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2011118127A1 publication Critical patent/WO2011118127A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Definitions

  • the present invention relates to a magnesium-based material and a treatment performed to improve the characteristics thereof.
  • Magnesium alloys that are lighter than aluminum alloys are being widely used as aircraft materials and vehicle materials from the viewpoint of weight reduction.
  • magnesium alloys are not sufficient in strength and heat resistance depending on applications, and therefore further improvement in characteristics is required.
  • Pure magnesium is also known to have excellent vibration damping ability (damping performance).
  • vibration damping ability Damping performance.
  • Technical problems caused by vibrations exist in any field and lead to noise. Therefore, measures for reducing vibrations are important not only for maintaining functions but also in terms of living comfort.
  • T6 tempering symbol heat treatment
  • a Mg-5Al-8Zn-0.6Ca-0.3Mn alloy casting (unit: mass%) is kept at 380 ° C. for 24 hours and then air-cooled, followed by 150 ° C. Then, an artificial aging treatment is performed in which the product is held for 5.5 hours and then allowed to cool to improve the yield strength and hardness.
  • the heat treatment as described above requires a long time, so it is difficult to say that it is efficient. Furthermore, since heat treatment at a high temperature is required, it cannot be used for members mass-produced by die casting. In general, the strength is improved by heat treatment only for a magnesium alloy having a composition capable of obtaining age hardening. Therefore, versatility is bad. On the other hand, long-time processing is not required for hot working. However, since rolling or forging is used as a processing method, it is difficult to apply to a material that is already close to the final shape of the product. Further, in these heat treatments and hot workings, vibration damping properties are not considered.
  • an object of the present invention is to provide a treatment method capable of improving both the mechanical strength and vibration damping properties of a magnesium-based material.
  • dislocations there are many arrangement disturbances, that is, dislocations.
  • the strength of the metal material is related to the ease of movement of this dislocation. That is, a material in which the position of dislocations is difficult to move is not easily deformed and has high strength.
  • the presence of dislocations is also involved in the damping properties of the metal material. The energy given from the outside is consumed after being converted into dislocation motion and generated energy. This internal friction mechanism develops vibration damping properties. That is, if the position of the dislocation is easy to move or the dislocation is easy to be generated, the vibration damping property is excellent.
  • This mechanism is called a dislocation type vibration damping mechanism, and is a type of dislocation that is contrary to the dislocation that affects the strength improvement described above. Therefore, the present inventors have focused on the fact that dislocations having different properties must coexist in the magnesium-based material in order to achieve both strength and vibration damping properties. The inventors have completed various inventions described below.
  • the method for treating a magnesium-based material according to the present invention is a stress relaxation type treatment in which stress is applied to a material to be treated made of magnesium or a magnesium alloy at a treatment temperature of 150 ° C. or more and 230 ° C. or less to plastically deform and subsequently creep. It has the process.
  • the magnesium-based material to which the treatment method of the present invention is applied is not limited to a magnesium alloy having a specific composition, but can be applied to various magnesium alloys, and a desired effect can be obtained even with pure magnesium. It is done.
  • the processing method of the present invention since it can be processed at a relatively low temperature of 150 to 230 ° C., it is energy efficient. And since it does not require time and energy for temperature rise to processing temperature and cooling after processing, it is energy saving. Further, when a material containing many defects such as a cast hole (for example, a die-cast member) is heat-treated at a high temperature, the occurrence of blisters becomes a problem. Furthermore, in the processing method of the present invention, the stress is relieved by first plastically deforming and subsequently creeping. Therefore, it is sufficient that a minimum stress necessary for plastic deformation is applied at the maximum, and no further stress is required, so that a large stress is not required over the entire process. Moreover, since it does not require a long time from plastic deformation to creep, it can be processed in a short time.
  • the magnesium alloy member of the present invention comprises magnesium (Mg) as a main component and a magnesium alloy containing a solute element that age-precipitates as an alloy element.
  • a mother phase a twin phase consisting of a plurality of twins that are twinned with the parent phase and extending in at least one direction, and a plate-like shape extending continuously from the mother phase to the twin phase And having a metal structure including a plurality of Mg crystal grains containing precipitates.
  • the magnesium alloy member of the present invention has a twinning structure, in addition to the above-mentioned dislocation type damping mechanism, a vibration damping mechanism in which vibration energy applied from the outside is consumed by friction at the twin interface is used. High vibration control. Furthermore, the presence of the plate-like precipitates shows not only high mechanical properties but also high creep resistance. The plate-like precipitate extends continuously without interruption at the twin interface from the parent phase to the twin phase, thereby preventing the twin deformation and the deformation due to the bottom slip. In particular, it is preferable that the plate-like precipitates extend along the hexagonal column surfaces constituting the twin structure because the effect of strengthening the magnesium alloy by precipitation is high.
  • the method for treating a magnesium-based material of the present invention it is possible to improve both mechanical properties (for example, high temperature proof stress) and vibration damping properties.
  • the magnesium-based material treated by the treatment method of the present invention and the magnesium alloy member of the present invention exhibit high strength comparable to that of a magnesium alloy subjected to conventional heat treatment (T6 heat treatment, etc.), and are equivalent to or equivalent to pure magnesium.
  • T6 heat treatment, etc. conventional heat treatment
  • the above vibration control is shown.
  • FIG. 1 schematically shows an example of a method for treating a magnesium-based material of the present invention.
  • FIG. 2 is a graph showing the stress history in the stress relaxation processing step in the magnesium-based material processing method of the present invention.
  • FIG. 3 is a schematic diagram of a hexagonal close-packed structure.
  • FIG. 4 is a graph showing the temperature dependence of the critical shear stress of bottom slip (dotted line) and non-bottom slip (solid line).
  • FIG. 5 is a diagram showing the deformation mechanism of pure magnesium (Harold J.Frost, M.F.Ashby “Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics”, Pergamon Pr, (1982/10)).
  • FIG. 1 schematically shows an example of a method for treating a magnesium-based material of the present invention.
  • FIG. 2 is a graph showing the stress history in the stress relaxation processing step in the magnesium-based material processing method of the present invention.
  • FIG. 3 is a schematic diagram of a hexagonal
  • FIG. 6 is an explanatory diagram of a method for calculating the initial stress ⁇ 0 applied to the magnesium-based material in the magnesium-based material processing method of the present invention.
  • FIG. 7 is a schematic diagram of the metal structure of the magnesium alloy member of the present invention, and is an Mg crystal grain included in the metal structure and a partially enlarged view thereof.
  • FIG. 8 schematically shows a method for treating a magnesium-based material of the example.
  • FIG. 9 is a stress strain curve of an Mg-3 mass% Al-3 mass% Ca-0.2 mass% Mn alloy at 180 ° C., the alloy before treatment, and the stress relaxation treatment by the treatment method of the present invention. An alloy subjected to the heat treatment and an alloy subjected to the conventional heat treatment are respectively shown.
  • FIG. 7 is a schematic diagram of the metal structure of the magnesium alloy member of the present invention, and is an Mg crystal grain included in the metal structure and a partially enlarged view thereof.
  • FIG. 8 schematically shows a method for treating a magnesium-based
  • FIG. 10 is a graph showing 0.2% proof stress at 180 ° C. of magnesium-based materials subjected to various treatments.
  • FIG. 11 is a crystal orientation mapping showing the crystal orientation of an Mg-3 mass% Al-3 mass% Ca-0.2 mass% Mn alloy that has been subjected to stress relaxation processing by the treatment method of the present invention.
  • FIG. 12 is a crystal orientation mapping displaying the crystal orientation of the Mg-9 mass% Al-1 mass% Zn alloy subjected to stress relaxation processing by the treatment method of the present invention.
  • FIG. 13 is a crystal orientation mapping displaying the crystal orientation of the Mg-3 mass% Al alloy subjected to stress relaxation processing by the processing method of the present invention.
  • FIG. 11 is a crystal orientation mapping showing the crystal orientation of an Mg-3 mass% Al-3 mass% Ca-0.2 mass% Mn alloy that has been subjected to stress relaxation processing by the treatment method of the present invention.
  • FIG. 12 is a crystal orientation mapping displaying the crystal orientation of the Mg-9 mass% Al-1 mass% Zn alloy subject
  • FIG. 14 is a crystal orientation mapping displaying the crystal orientation of pure magnesium subjected to stress relaxation processing by the processing method of the present invention.
  • FIG. 15 is a structural photograph of a Mg-3 mass% Al-3 mass% Ca-0.2 mass% Mn alloy subjected to stress relaxation treatment by the treatment method of the present invention, observed with a transmission electron microscope.
  • FIG. 16 is an observation result of a metal structure of an Mg-3 mass% Al-3 mass% Ca-0.2 mass% Mn alloy subjected to stress relaxation processing by the treatment method of the present invention.
  • FIG. 17 is an observation result of a metal structure of a comparative test piece which is an Mg-3 mass% Al-3 mass% Ca-0.2 mass% Mn alloy which is only subjected to heat treatment without applying stress.
  • FIG. 18 is a structural photograph of a Mg-3 mass% Al-3 mass% Ca-0.2 mass% Mn alloy subjected to stress relaxation treatment by the treatment method of the present invention, observed with a transmission electron microscope.
  • FIG. 19 is an electron diffraction pattern of the tissue photograph shown in FIG.
  • the numerical range “x to y” described in this specification includes the lower limit x and the upper limit y.
  • the numerical range can be configured by arbitrarily combining these upper limit value and lower limit value and the numerical values listed in the examples.
  • the processing method of the magnesium-type material of this invention is applied with respect to magnesium or a magnesium alloy. That is, the magnesium-based material is pure magnesium or a magnesium alloy. As described above, pure magnesium has excellent vibration damping properties.
  • the treatment method of the present invention it is possible to improve mechanical properties, particularly high-temperature proof stress, while further improving the vibration damping property of magnesium.
  • Magnesium alloys improve the mechanical strength of pure magnesium by suppressing the movement of transition by adding alloying elements. Therefore, the magnesium alloy is inferior in vibration damping performance compared to pure magnesium, but by applying the treatment method of the present invention, the vibration damping performance is improved while further improving the mechanical properties of the magnesium alloy, particularly the high temperature proof stress. It is improved to the same level or higher than magnesium.
  • the magnesium alloy includes magnesium as a main component (Mg: 85% by mass or more, preferably 90% by mass or more when the whole is 100% by mass), various alloy elements, inevitable impurities, and / or modification. It consists of elements.
  • alloy elements include aluminum (Al), calcium (Ca), zinc (Zn), zirconium (Zr), silicon (Si), manganese (Mn), strontium (Sr), nickel (Ni), and the like.
  • Al aluminum
  • Ca zinc
  • Si silicon
  • Mn manganese
  • strontium Sr
  • Ni nickel
  • Mg—Al, Mg—Zn, Mg—Zr, Mg—Al—Zn, Mg—Al—Mn, Mg—Al—Si, Mg—Zn—Zr, Mg— Examples include Al—Ca.
  • the Mg—Ni system is not an alloy that can achieve the above-mentioned age hardening, but by applying the treatment method of the present invention, it is possible to improve not only mechanical properties but also vibration damping properties. it can.
  • an Mg—Al—Ca alloy when the whole is 100% by mass, 1 to 5% by mass, further 2 to 4% by mass of Al, and 1 to 5% by mass or 2 to 4% by mass are obtained.
  • the balance is made of Mg and inevitable impurities.
  • the Mg—Al—Ca alloy may contain 0.5% by mass or less, further 0.3% by mass or less of Mn.
  • common magnesium alloys such as AZ31, AZ61, and AZ91 represented by ASTM specification, may be used.
  • a magnesium alloy obtained by further adding an alloy element to these alloys may be used.
  • the material to be processed made of the magnesium-based material described above may be subjected to a solution treatment prior to the stress relaxation processing step described below. By performing the solution treatment, further improvement in mechanical properties is expected. In addition, what is necessary is just to select a solution treatment suitably according to the kind of magnesium-type material which comprises a to-be-processed material.
  • the stress relaxation type treatment step is a step of applying stress to the magnesium-based material to cause plastic deformation and subsequently creep.
  • the treatment temperature is set to 150 to 230 ° C.
  • the processing method of the magnesium-type material of this invention is typically shown in FIG. Moreover, the stress change with respect to processing time is shown in FIG.
  • a stress ⁇ 0 (initial stress) is applied to the material to be processed made of the magnesium-based material as described above at a predetermined temperature to cause plastic deformation.
  • ⁇ 0 is a compressive stress
  • L ⁇ L 0 is satisfied, but a tensile stress may be applied.
  • the stress may be applied not only in the normal direction but also in the tangential direction. Therefore, the applied stress may be a shear stress.
  • the initial stress ⁇ 0 is relaxed, so the stress history in this step is as shown in FIG.
  • bottom slip and non-bottom slip combine to form a complex dislocation and twin structure in the magnesium-based material.
  • Magnesium and many magnesium alloys have a close-packed hexagonal structure (hcp) shown in FIG.
  • the hcp metal is likely to be deformed by bottom sliding (sliding direction is ⁇ 11-20>) with the ⁇ 0001 ⁇ plane of the bottom surface, which is the closest packed surface, as the sliding surface.
  • Non-bottom slip that occurs on the column surface or conical surface can occur at room temperature, but requires much greater shear stress than bottom slip. Therefore, the deformation at room temperature is mostly due to bottom slip.
  • FIG. 4 is a graph showing the temperature dependence of the critical shear stress of bottom slip and non-bottom slip. It is known that bottom sliding with a ⁇ 0001 ⁇ plane as a sliding surface occurs with a smaller shearing force than non-bottom sliding with another surface as a sliding surface, and non-bottom sliding is more likely to occur by increasing the temperature. It has been. In particular, when the temperature is high (150 to 230 ° C.), the critical shear force for non-bottom slip becomes about one-half that of room temperature (see the region indicated by the dots in FIG. 4). Dislocations that are easy to move due to basal slip are related to strength and vibration control, but by applying this processing method, the effects of non-bottom slip are introduced appropriately and complex dislocations and twin structures are formed. It is considered that both strength and vibration damping can be achieved.
  • the twin structure can be confirmed by observing the magnesium-based material to which the present processing method is applied with an electron microscope or the like.
  • a band-shaped band-type twin structure can be confirmed in the parent phase of the magnesium-based material.
  • the twin structure often found in general magnesium-based materials is not a twin that can be a starting point of fracture and improve vibration damping. This is because a general twin structure has a step at the twin interface, and it is said that the step is the starting point and easily breaks.
  • the band-type twin formed by this processing method such a step is not seen, and it is difficult to think that it easily becomes a fracture starting point.
  • the formation of twins that can be involved in the generation of cracks has been confirmed in the later stage of plastic deformation of the magnesium-based material.
  • the band-type twin structure confirmed by applying this treatment method is formed without creeping after the initial plastic deformation, that is, without the late plastic deformation that forms the conventional twin. Is done. Therefore, it is predicted that the band-type twin structure works differently from the conventional twin structure, that is, it may contribute to the improvement of the strength and damping properties of the magnesium-based material.
  • the temperature and stress that change the deformation mode of the magnesium-based material from the plastic region to the creep region can be estimated from the deformation mechanism region diagram.
  • Specific conditions desirable for this processing method can be defined as follows.
  • the treatment temperature is preferably 150 to 230 ° C., more preferably 160 to 200 ° C., and more preferably 170 to 190 ° C. at which the critical shear force of non-bottom slip becomes about a half at room temperature. It is only necessary that the temperature of the material to be processed be kept in this range during the period from plastic deformation to creep.
  • the stress applied to the material to be processed may follow the stress history shown in FIG.
  • a desirable range of the initial stress ⁇ 0 is, for example, a true stress-true strain curve at a treatment temperature of a stress relaxation type treatment step of a test piece made of the same magnesium-based material as the material to be treated. It can be defined from ( ⁇ - ⁇ curve).
  • ⁇ - ⁇ curve a method for analyzing the ⁇ - ⁇ curve for obtaining ⁇ 0 will be described.
  • FIG. 6 is an explanatory diagram of a method for defining the stress ⁇ 0 applied in the present processing method.
  • the top graph is a typical ⁇ - ⁇ curve of a magnesium-based material.
  • the second graph is a (d ⁇ / d ⁇ ) - ⁇ curve showing (d ⁇ / d ⁇ ) with respect to ⁇ obtained by differentiating the ⁇ - ⁇ curve with true strain ( ⁇ ).
  • Third graph (bottom) of the second floor and differential processing with true strain of sigma-epsilon curve (epsilon) shows relative (d 2 sigma / d? 2) of the epsilon (d 2 sigma / d? 2) - ⁇ curve.
  • What is required to define the stress ⁇ 0 is a curve from the start of the test to full plastic deformation.
  • the (d ⁇ / d ⁇ ) value corresponds to the deformation resistance.
  • the deformation resistance corresponds to an elastic modulus during elastic deformation and a work hardening rate during plastic deformation.
  • the initial stress ⁇ 0 for obtaining the target metal structure by the present processing method is included in a range satisfying (d 2 ⁇ / d ⁇ 2 ) ⁇ 0.
  • the initial stress ⁇ 0 given by the present processing method is preferably in the following range.
  • the initial stress ⁇ 0 applied to the material to be processed in the stress relaxation processing step is a value obtained by performing second-order differential processing with ⁇ on the true stress ( ⁇ ) -true strain ( ⁇ ) curve of the magnesium-based material before processing (d 2 ⁇ / It is preferable that the stress is a stress that gives a negative value of d ⁇ 2 ), that is, the stress that the strain exceeds ⁇ ⁇ and less than ⁇ ⁇ , and exceeds ⁇ ⁇ and less than ⁇ ⁇ (FIG. 6). More preferably, (d 2 ⁇ / d ⁇ 2 ) is not less than the stress at which the minimum value is obtained, that is, not less than ⁇ ⁇ ′ (FIG. 6).
  • the following initial stress sigma alpha is non basal sliding is not introduced, it is not preferable because the increase of the strength and vibration-damping properties is not sufficiently obtained.
  • the stress is less than ⁇ ⁇ ′, a phenomenon of shape recovery, that is, a so-called pseudo-elasticity phenomenon may occur when the stress is removed even when plastic deformation starts, which is not preferable.
  • the initial stress is greater than or equal to ⁇ ⁇ , the magnesium-based material is greatly deformed and the subsequent stress relaxation effect cannot be obtained satisfactorily.
  • the true stress-true strain curve used to determine ⁇ 0 described above may be obtained from a test piece having at least the same composition as the material to be treated. There is no significant difference in the test method even if the true stress-true strain curve is obtained from a general tensile test or compression test as defined in JIS.
  • a true stress-true strain curve is obtained by a test in which stress is applied in the same direction as the stress applied in the stress relaxation processing step. It is preferable to obtain.
  • the stress ( ⁇ 0 ) applied in the stress relaxation processing step is the true stress ( ⁇ ) ⁇ true strain ( ⁇ ) obtained by applying stress to the test piece having the same composition as the material to be processed at the processing temperature. It can be said that it is preferable that the stress is in a range in which the value (d 2 ⁇ / d ⁇ 2 ) obtained by second-order differentiation of the curve with ⁇ is a negative value. Further, it is preferable to apply a stress equal to or greater than the stress at which (d 2 ⁇ / d ⁇ 2 ) takes a minimum value.
  • the material to be processed is not greatly plastically deformed.
  • the strain expressed as a percentage of (L 0 -L ′) / L 0 falls within about 5%. Even if it is 4% or less, or even 3% or less, the effect of improving the strength and vibration damping properties can be obtained.
  • the method for applying stress is not particularly limited, and may be appropriately selected according to the shape of the material to be processed.
  • the simplest method is to apply stress in a state in which the material to be processed is sandwiched between jigs according to the shape. If it is the method of giving stress with a jig, it is easy to control the direction of stress. Further, a method of applying stress by air pressure or hydraulic pressure may be used. In that case, the strain displacement may be maintained by controlling the pressure.
  • air pressure or hydraulic pressure for example, a cylinder may be manufactured, and a material to be processed may be compressed or held (a piston of the cylinder may be fixed) in the cylinder.
  • the material to be treated to which a predetermined stress is applied may be stress relieved in order to creep. That is, after the stress applied to the workpiece reaches the target maximum value ( ⁇ 0 ), the stress may be relaxed. At this time, the stress applied to the material to be processed may be reduced to forcibly reduce the stress. Alternatively, if the strain displacement given by applying the initial stress to the material to be processed is kept constant, the stress is naturally relaxed by creep.
  • the stress relaxation processing process may be performed until the deformation mode of the magnesium-based material reaches the steady creep region. Although depending on the size of the material to be processed, it takes about 1 hour until the initial stress decreases and the stress applied to the material to be processed becomes substantially constant with respect to time. Therefore, the treatment time is preferably 50 minutes or longer, more preferably 1 hour or longer. However, even if it exceeds 5 hours, further increase in strength and improvement in vibration damping properties cannot be expected.
  • the processing time is the time from the start of applying the initial stress ⁇ 0 to the magnesium-based material until the stress applied during creep is released.
  • the material to be processed only needs to be maintained at a predetermined temperature for a predetermined processing time.
  • the cooling method is not particularly limited. However, in order to prevent the influence of material shrinkage during cooling due to unintentional overcooling and age hardening at 100 to 180 ° C., ⁇ 0.3 to 2 ° C./second, or ⁇ 0.5 to ⁇ 1.5. It is preferable to cool at a rate of ° C / second.
  • the treatment method of the present invention is preferably applied to the final process for producing various members made of a magnesium-based material.
  • the material to be treated is preferably a magnesium-based casting made of a magnesium-based material
  • the stress relaxation processing step is preferably a step for treating at least a part of the magnesium-based casting. What is necessary is just to process at least the part which needs high intensity
  • the processing method of the present invention applies stress to the material to be processed up to the plastic region, but does not cause a significant change in shape, so there is no need to greatly change the design of the casting. In addition, if it is the processing method of this invention, an effect will be acquired by the process of comparatively low temperature. Therefore, the present invention can also be applied to products that have internal defects and cast holes, such as die-cast products, and to which conventional heat treatment is difficult to apply.
  • magnesium-based members examples include automotive housings, compressor housings, engine blocks, engine covers, etc., bolt receiving surfaces formed on those members, contact parts with other components, or washers used there. .
  • it since it is a non-magnetic material, it can be expected to be used as a vibration reducing member for electronic and precision equipment that originally dislikes magnetism.
  • Such a magnesium-based member is considered to have both a mechanical strength and a vibration damping property by having a characteristic metal structure.
  • a metal containing Mg crystal grains containing lens-type twin structures crossing each other (described later), which is not found in normal heat treatment Organization can be seen.
  • the magnesium alloy member will be described in detail below.
  • the magnesium alloy member of the present invention is composed of a magnesium alloy containing Mg as a main component and containing a solute element that age-precipitates as an alloy element.
  • the magnesium alloy member of the present invention has a metal structure including a plurality of Mg crystal grains containing a parent phase, a twin phase, and a plate-like precipitate. The metal structure will be specifically described with reference to FIG.
  • FIG. 7 is a schematic diagram for explaining the metal structure of the magnesium alloy member of the present invention.
  • the vertical hatch indicates the parent phase
  • the horizontal hatch indicates the twin phase.
  • a desirable form in the magnesium alloy member of the present invention is a crystal structure in which the hatch direction is substantially parallel to the hexagonal bottom surface.
  • the twin phase is formed in Mg crystal grains (in the parent phase) and has a twin relationship with the parent phase.
  • the twin phase is composed of a plurality of twins extending in at least one direction. Twins are structures related to damping properties.
  • the phase phase is particularly preferably composed of twins extending in a plurality of directions. That is, the twin phase preferably has a crossed twin structure in which a plurality of twins intersect. This is because crystallographic anisotropy greatly affects the anisotropy of material properties.
  • Twins can be broadly classified into lens types and band types according to their shapes. The lens-type twin structure is more likely to locally concentrate stress at the sharp end than the band-type twin structure. Therefore, from the viewpoint of strength, the twin phase preferably has a band-shaped band-type twin structure.
  • the twin phase is considered to be a twin crystal having ⁇ 10-12 ⁇ as a twin plane, which is often seen when a tensile stress is applied to the hexagonal bottom, but other metastable twins. A crystal interface is also conceivable. Therefore, the twins contained in the Mg crystal grains extend in one or more types and further in two or more types.
  • the (10-12) plane is shown in FIG.
  • the plate-like precipitate continuously extends from the matrix phase to the twin phase.
  • the Mg crystal grains are effectively strengthened, leading to an increase in strength of the magnesium alloy member.
  • Plate-like precipitates extend continuously from the parent phase to the twin phase, so they can extend along the hexagonal column surfaces that make up the twin phase most susceptible to external stress. There is sex. It is known that the precipitates along the hexagonal column face effectively contribute to strengthening of the magnesium-based material because it prevents the bottom slip with the smallest critical shear stress. Therefore, the Mg crystal grains preferably include a plate-like precipitate extending along the hexagonal column face in the twin phase.
  • the plate-like precipitates extend along the direction of the stress applied in the stress relaxation processing step.
  • the twin phase is considered to have been formed with plastic deformation at a relatively early stage of the stress relaxation treatment process (for example, (I) in FIG. 2).
  • the plate-like precipitate has a unique structure formed by the processing method of the present invention, and is considered to be formed by creep after plastic deformation (for example, (II) in FIG. 2).
  • both the twin phase and the plate-like precipitate are composed of a twin structure having a twin relation with the parent phase.
  • the width of the twin phase is in the micron order and the thickness of the plate-like precipitate is in the nano order, the former can be distinguished from the macro twin and the latter from the micro twin.
  • the Mg crystal grains are preferably 10 ⁇ m or more, and the introduction of the above-mentioned unique structure formed by the treatment method of the present invention at 20 ⁇ m or more was confirmed.
  • Particularly preferred are coarse Mg crystal grains composed of a plurality of domains and having an average particle diameter of 100 ⁇ m or more, and the above-mentioned specific structure is often observed in the crystal grains having an average particle diameter of up to several millimeters.
  • the particle diameter is the maximum diameter of the Mg crystal grains, and a specific measurement method and an average particle diameter calculation method are as described later.
  • twins shown in FIG. 7 are merely examples, and it is not necessary for all twins to cross each other, and a plurality of twins may be arranged substantially in parallel. That is, twins may extend only in one direction as a whole in Mg crystal grains, and even if they extend in two or more directions, they are partially arranged so as not to cross each other. It only has to be.
  • the crystal orientation relationship between the hexagonal bottom surface of the parent phase and the hexagonal crystal bottom surface of the twin phase does not need to be 90 °, and is preferably 82 ° to 90 °, more preferably 85 ° to 87 °.
  • Mg crystal grains included in the magnesium alloy member contain the above metal structure, and the ratio is 50% or less in terms of the number ratio of Mg crystal grains. May be. These Mg crystal grains are preferably aligned in the direction of plate-like precipitates.
  • the magnesium alloy member of the present invention is made of a magnesium alloy containing Mg as a main component and containing a solute element that is aged as an alloy element.
  • the solute element include aluminum (Al), calcium (Ca), zinc (Zn), nickel (Ni), manganese (Mn), yttrium (Y), and gadolinium (Gd). It is good to include the above.
  • Ca and Ni alone are not aging-precipitated, so it is preferable to add them together with one or more selected from Al, Zn, Mn, Y and Gd.
  • a particularly preferable alloy composition for the magnesium alloy member of the present invention is 1 to 5% by mass of Al, 1 to 5% by mass of Ca, 1% by mass or less of Mn, and the balance when the total is 100% by mass.
  • Mg—Al—Ca—Mn alloy comprising Mg and a modifying element and / or inevitable impurities.
  • a more preferable Al content is 2 to 4% by mass, further 3 to 3.5% by mass, a more preferable Ca content is 1 to 3% by mass, further 2 to 2.5% by mass, and a more preferable Mn content is 0.8. 05 to 0.5% by mass, and further 0.1 to 0.3% by mass.
  • the treatment temperature is preferably 150 to 230 ° C. and the initial stress ( ⁇ 0 ) is preferably 70 to 125 MPa. Particularly preferably, the treatment temperature is 170 to 220 ° C., further 175 to 185 ° C., and the initial stress ( ⁇ 0 ) is 80 to 120 MPa, further 90 to 110 MPa.
  • the treatment temperature is preferably 170 to 190 ° C., more preferably 175 to 185 ° C., and the initial stress is preferably 80 to 150 MPa, more preferably 110 to 130 MPa.
  • the magnesium alloy member of the present invention can be easily obtained by the processing method of the present invention already described in detail, but other methods may be adopted as long as a metal structure similar to the metal structure described above can be obtained. Good.
  • a cast material having a columnar shape ( ⁇ 10 mm ⁇ 10 mm: this height is L 0 ) made of four different magnesium-based materials was prepared.
  • the cast materials were pure Mg, Mg-3Al alloy, Mg-9Al-1Zn alloy (AZ91), and Mg-3Al-3Ca-0.2Mn alloy (AXM330), respectively.
  • the Mg-3Al alloy contains Al and Mn, the Al content is 3.4% by mass, and the Mn content is 0.12% by mass.
  • Met. AZ91 contained Al, Zn, and Mn. The Al content was 9.1% by mass, the Zn content was 0.8% by mass, and the Mn content was 0.1% by mass.
  • AXM330 contained Al, Ca, and Mn, Al content was 3.2 mass%, Ca content was 2.3 mass%, and Mn content was 0.2 mass%.
  • a compression test was performed using the cast material as a test piece.
  • stress was applied in an atmosphere of 180 ° C. or 220 ° C. using a tensile compression tester autograph manufactured by Shimadzu Corporation to obtain a true stress-true strain curve ( ⁇ - ⁇ curve).
  • ⁇ - ⁇ curve was analyzed by the above procedure, and ⁇ ⁇ , ⁇ ⁇ ′, and ⁇ ⁇ described above were calculated for each test piece.
  • the distance between the two stainless steel plates P1 and P2 was kept constant (ie, L). That is, the strain displacement (L 0 -L) due to plastic deformation caused by the initially applied stress (initial stress) was maintained. For this reason, while maintaining the strain displacement, the applied stress gradually decreased to below the initial stress.
  • the cast material was removed from the stainless steel plate and allowed to stand at room temperature (20 ° C.) for air cooling.
  • the cooling rates at this time are as follows: air cooling from 150 ° C .: ⁇ 0.87 ° C./second, air cooling from 180 ° C .: ⁇ 1.09 ° C./second, air cooling from 220 ° C .: ⁇ 1.38 ° C./second there were. This process is called “stress relaxation process”.
  • Samples # 11 to # 18, # 21, # 22, # 31, # 32, and # 41 to # 45 were prepared by the above procedure.
  • the processing conditions (holding time, processing temperature and initial stress) are shown in Tables 1 and 2.
  • the initial stress was selected to be within the range of ⁇ ⁇ to ⁇ ⁇ based on the value calculated based on the compression test ( ⁇ - ⁇ curve) performed first.
  • the stress at the end was the stress applied to the sample when a predetermined holding time had elapsed.
  • the height (referred to as L ′) of the sample after air cooling was measured, and the rolling reduction was determined as a percentage of (L 0 ⁇ L ′) / L 0 .
  • Each sample was prepared for evaluation at room temperature and for evaluation at 180 ° C.
  • Sample piece # C1 was prepared by subjecting a cast material made of AXM330 to T6 heat treatment (solution treatment: 500 ° C. for 20 hours, aging treatment: 200 ° C. for 5 hours).
  • Sample # C2 was produced by keeping the initial stress constant at the end of heat treatment (60 minutes after the start of treatment) by narrowing the distance between the two stainless steel plates sandwiching the cast material of AXM330 at 180 ° C. did. That is, # C2 was always deformed in the plastic region. This heat treatment is referred to as “stress fixed processing”.
  • FIG. 9 is a stress strain curve of Samples # 11, # C1, and # 10 obtained by a compression test at 180 ° C. The 0.2% proof stress was calculated from the stress strain curve by the offset method.
  • FIG. 10 is a graph showing the 0.2% proof stress of each sample obtained by a compression test at 180 ° C.
  • the loss factor was measured by the central excitation method.
  • a test piece of 35 mm ⁇ 5 mm ⁇ 1 mm was prepared from each sample and measured using an Ono Sokki loss factor measurement system. The measurement was performed at room temperature in the measurement frequency range of 1 to 10 kHz.
  • the loss factor of pure Mg (# 20) was 0.00173, which was higher than the loss factor of magnesium alloys (# 10, # 30, and # 40). In other words, it was found that the damping performance was lowered by the presence of the alloy element. However, by applying the stress relaxation type treatment, even a sample made of a magnesium alloy showed a vibration damping property equal to or higher than that of a sample made of pure Mg.
  • # C1 subjected to the conventional T6 heat treatment although the proof stress was improved by the heat treatment, the damping performance was greatly reduced as compared with the magnesium alloy (# 10) before the heat treatment.
  • # C2 subjected to the stress-fixing type treatment although the vibration damping was improved as compared with the magnesium alloy (# 10) before the heat treatment, the proof stress at normal temperature was lowered.
  • # C2 and # 11 have the same holding time, processing temperature, and initial stress among the processing conditions, but # C2 is subjected to stress fixation processing and # 11 is subjected to stress relaxation processing. Comparing the two, # 11 subjected to the stress relaxation treatment was superior to # C2 in both mechanical properties and vibration damping properties.
  • the stress relaxation type treatment which is the treatment method of the present invention was able to improve both the mechanical characteristics and the vibration damping properties.
  • this treatment method was applicable to various magnesium-based materials.
  • EBSD electron backscatter diffraction
  • FIGS. 11 to 14 are originally displayed in color for each crystal orientation.
  • the relative angle between the normal vector of the hexagonal bottom surface of the matrix phase of the Mg crystal grain and the normal vector of the hexagonal bottom surface of the twin phase is 82 ° to 90 °. Met.
  • the twin interface was almost straight. This is because the base-slip direction of the Mg crystal generated at low stress, that is, the direction that can be the shearing direction in the band-type twin structure, is also in a relation of a relative angle of 82 ° to 90 ° between the parent phase and the twin phase, It can be considered that an organization that is more difficult to deform is formed. Further, it is considered that the lens type twin structure as seen in the sample # 21 (FIG. 14) is likely to concentrate stress locally on the sharp tip portion, whereas the band type twin structure is relatively stress concentrated. It is considered that the sample # 11 (FIG. 11) and the sample # 41 (FIG. 12) showed higher strength.
  • the stress relaxation test measures a process in which stress when a load is applied to a test piece during a test time up to a predetermined deformation amount decreases with time. Specifically, in an air atmosphere at 180 ° C., a compressive stress of 120 MPa is applied to the test piece, and the compressive stress is adjusted with the passage of time so that the displacement of the test piece is kept constant. It was reduced.
  • Table 3 shows the stress reduction rate of each specimen.
  • the amount of stress reduction from the start of the stress relaxation test to 40 hours later was calculated as a ratio to the stress at the start of the test.
  • FIGS. 16 (1) and (2), and FIGS. 17 (1) and (2) are EBSD crystal orientation mappings, in which (1) is a wide area and (2) is a local region of (1). It is the result of having observed.
  • test piece # 14 many band-shaped band-type twin structures that were not found in the comparative test piece were observed in the matrix phase of the Mg crystal grains.
  • band-type twins extending in two kinds of directions were observed in one Mg crystal grain, and a portion showing a crossed twin structure in which they crossed each other to form a lattice was also observed.
  • the Mg crystal grains were composed of regions (domains) surrounded by the grain boundary compound, and one domain was 30 to 50 ⁇ m. Further, when a plurality of domains have the same crystal orientation, when this is regarded as one crystal grain, the grain diameter of the Mg crystal grain is 300 to 1000 ⁇ m.
  • Mg crystal grains containing a band-type twin structure accounted for 30 to 40% of the total. For example, in FIG. 16 (1), a total of 5 Mg crystal grains were observed, of which 2 (ie 40%) included the twin crystal structure. Further, the Mg crystal grain size was the maximum value of the interval when one particle was sandwiched between two parallel lines, and the number average value was the average particle size.
  • FIGS. 16 (3) and (4), and FIGS. 17 (3) and (4) are a structure photograph and an electron diffraction pattern obtained by TEM observation.
  • (3) is the result of observing the sub-micron region
  • (4) is the result of observing the nano region of (3).
  • FIG. 16 (3) in FIG. 16 (2), a plurality of adjacent twin interfaces are centered on one of the band-type twins having a width of about 3 ⁇ m and having an interval of 5 to 20 ⁇ m. The observation was made in a range where the adjacent parent phase could be accommodated. As a result, a nanoscale plate-like structure (plate-like precipitate) was confirmed with a high overall density of one Mg crystal grain containing a band-type twin structure as a whole.
  • FIG. 16 (4) is a result of observing a plate-like precipitate and a band-type twin adjacent to each other with the plate-like precipitate interposed therebetween, and the plate-like precipitate has a twinning relationship with the band-type twin. I found out.
  • the thickness of the plate-like precipitate was several nm to several tens of nm (about 15 nm in FIG. 16 (4)).
  • the plate-like structure and the object seen in FIG. 17 (3) were locally observed in one Mg crystal grain.
  • FIG. 17 (4) in which the nano region was observed it was found from the structural photograph that the plate-like structure has a twinning relationship with the parent phase, but from the streak of the electron diffraction pattern, it was found that stacking faults exist. From these facts, this plate-like structure is presumed to be twins generated as a result of deformation of the parent phase and not precipitates.
  • FIG. 18 is a drawing for explaining the crystal orientation relationship of the parent phase, twin phase and plate-like precipitate, and the structure photograph is the same as FIG. 16 (3).
  • FIG. 19 is an electron beam diffraction pattern corresponding to the tissue photograph shown in FIG. 18, and the incident direction of the electron beam is ⁇ 11-20>.
  • the relative angle between the normal vector of the hexagonal bottom surface of the parent phase in the Mg crystal grain and the normal vector of the hexagonal bottom surface of the twin phase is 86 ° in ⁇ 11-20>.
  • the hexagonal bottom surface of the parent phase (parent phase Mg (100)) and the hexagonal bottom surface of the twin phase (twinned phase Mg (100)) were almost perpendicular.
  • the arrow a was refracted by 4 ° with respect to the arrow b
  • the arrow b was refracted by 4 ° with respect to the arrow c.
  • the plate-like precipitate was precipitated on the hexagonal bottom surface in the matrix phase and on the hexagonal column surface in the twin phase.
  • the precipitated phase is formed along the hexagonal bottom surface in both the parent phase and the twin phase. Therefore, the plate-like precipitate deposited on the hexagonal column surface is a characteristic structure in the magnesium alloy member of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)

Abstract

 マグネシウム系材料の機械的強度および制振性をともに向上させることが可能な熱処理方法を提供する。 本発明のマグネシウム系材料の熱処理方法は、マグネシウムまたはマグネシウム合金からなる被処理材に対して150~230℃の処理温度で応力を付与して塑性変形させ引き続きクリープさせる応力緩和型処理工程を有することを特徴とする。

Description

マグネシウム系材料の処理方法およびマグネシウム合金部材
 本発明は、マグネシウム系材料およびその特性を向上させるために行う処理に関するものである。
 アルミニウム合金よりさらに軽量なマグネシウム合金は、軽量化の観点から航空機材料や車両材料などとして広く用いられつつある。しかしながら、マグネシウム合金は、用途によっては強度や耐熱性が充分ではないため、さらなる特性の向上が求められている。
 また、純マグネシウムは、優れた振動減衰能(制振性)を有することでも知られている。振動が原因となって発生する技術的な問題は、分野を問わず存在し、騒音の発生にもつながる。そのため、機能維持のみならず生活快適性の面でも、振動を低減する対策は重要である。
 一般に、マグネシウム合金の機械的特性を向上させる方法の一つとして、いわゆるT6(調質記号)の熱処理がある。たとえば、特許文献1では、Mg-5Al-8Zn-0.6Ca-0.3Mn合金鋳物(単位は質量%)を380℃で24時間保持してから空冷する溶体化処理を行い、その後、150℃で5.5時間保持してから放冷する人工時効処理を行って、耐力および硬さを向上させている。
 また、マグネシウム合金からなる素材を熱間加工することで機械的特性を向上させることも行われている。たとえば、引用文献2では、Mg-5Al-1.8Ca-0.2Sr-0.3Mn合金(単位は質量%)からなる素材を400℃にて自由鍛造することで、耐力とクリープ特性を向上させている。
特開2002-266044号公報 特開2007- 70688号公報
 上記のような熱処理は、長時間の処理が必要であるため、効率がよいとは言い難い。さらに、高温での熱処理を要するため、ダイカストにより量産される部材には使用できない。また、一般的に熱処理により強度が向上するのは、時効硬化が得られる組成を有するマグネシウム合金に限られる。そのため、汎用性が悪い。一方、熱間加工であれば、長時間の処理を必要としない。しかし、加工方法として圧延や鍛造を用いるため、既に製品の最終形状に近い素材に対しては、適用することが困難である。さらに、これらの熱処理および熱間加工では、制振性については考慮されていない。
 ところで、純マグネシウムの高い制振性は、マグネシウムの結晶学的底面滑り転位の運動による減衰効果によるものであると報告されている。しかし、この移動し易い転位運動が原因となり、強度が低下するという問題もある。一方、強度を向上させることを目的としてマグネシウムに種々の合金元素を添加するなどして合金化すると、転移の運動が抑制されるために高強度となるが、制振性は劣化する。そのため、強度を向上させつつもマグネシウムが本来有する制振機構を損なうことのない処理方法が望まれている。
 本発明は、上記問題点に鑑み、マグネシウム系材料の機械的強度および制振性をともに向上させることが可能な処理方法を提供することを目的とする。
 また、機械的特性および制振性に優れたマグネシウム合金部材を提供することを目的とする。
 金属材料には、多数の配列の乱れ、すなわち転位が存在する。転位が存在する結晶に対し外力が働くと、結晶滑りが発生して転位の位置が移動する。金属材料の強度は、この転位の移動しやすさと関係がある。すなわち、転位の位置が移動し難い材料は変形し難く高強度である。その一方、転位の存在は、金属材料の制振性にも関与している。外部から与えられたエネルギーは、転位の運動や生成エネルギーに変換され消費される。この内部摩擦機構により制振性が発現する。すなわち、転位の位置が移動しやすい、または転位が生成しやすいと、制振性に優れる。なお、このメカニズムは転位型制振機構と呼ばれ、前述の強度向上に影響する転位と相反するタイプの転位である。そこで、本発明者らは、強度と制振性の両立には、マグネシウム系材料に異なる性質の転位を共存させる必要があることに着目した。そして本発明者らは、以降に述べる種々の発明を完成させるに至った。
 すなわち、本発明のマグネシウム系材料の処理方法は、マグネシウムまたはマグネシウム合金からなる被処理材に対して150℃以上230℃以下の処理温度で応力を付与して塑性変形させ引き続きクリープさせる応力緩和型処理工程を有することを特徴とする。
 本発明の処理方法が適用されるマグネシウム系材料は、特定の組成のマグネシウム合金に限定されるものではなく、種々のマグネシウム合金に適用することができ、純マグネシウムであっても所望の効果が得られる。
 また、150~230℃という比較的低い温度で処理できるため、エネルギー的に効率がよい。そして、処理温度までの昇温および処理後の冷却にも時間やエネルギーを要さないことからも、省エネルギー的である。また、鋳巣のような欠陥を多く含む材料(たとえばダイカスト部材)を高温で熱処理するとブリスターの発生が問題となるが、本処理方法は比較的低温処理であるためブリスターの発生を抑制できる。さらに、本発明の処理方法では、はじめに塑性変形させて引き続きクリープさせることで応力が緩和される。そのため、最大でも塑性変形に必要な最低限の応力が付与されればよく、それ以上の応力は必要ないため、全工程に渡って大きな応力を要しない。また、塑性変形からクリープするまでに長時間を要しないため、短時間で処理できる。
 本発明のマグネシウム合金部材は、マグネシウム(Mg)を主成分とし、合金元素として時効析出する溶質元素を含むマグネシウム合金からなり、
 母相と、該母相と双晶関係にあり少なくとも一種類の方向に延びる複数の双晶からなる双晶相と、該母相から該双晶相に渡って連続的に延在する板状析出物と、を含有する複数のMg結晶粒を含む金属組織を有することを特徴とする。
 本発明のマグネシウム合金部材は、双晶組織を有することで、前述の転位型制振機構に加え、外部から加えられた振動エネルギーが双晶界面における摩擦によって消費される双晶型制振機構により高い制振性を示す。さらに、板状析出物の存在により、高い機械的特性だけでなく高い耐クリープ性をも示す。板状析出物は、母相から双晶相に渡って、双晶界面で途切れることなく連続的に延在することで、双晶変形および底面滑りによる変形を妨げる役割を果たす。特に、板状析出物が双晶組織を構成する六方晶の柱面に沿って延在する場合には、析出によるマグネシウム合金の強化効果が高いため好ましい。
 本発明のマグネシウム系材料の処理方法によれば、機械的特性(たとえば高温での耐力)および制振性をともに向上させることが可能となる。本発明の処理方法により処理されたマグネシウム系材料および本発明のマグネシウム合金部材は、従来の熱処理(T6熱処理など)を施されたマグネシウム合金に匹敵する高強度を示すとともに、純マグネシウムと同等あるいはそれ以上の制振性を示す。
図1は、本発明のマグネシウム系材料の処理方法の一例を模式的に示す。 図2は、本発明のマグネシウム系材料の処理方法において、応力緩和型処理工程における応力履歴を示すグラフである。 図3は、六方最密構造の模式図である。 図4は、底面滑り(点線)と非底面滑り(実線)の臨界剪断応力の温度依存性を示すグラフである。 図5は、純マグネシウムの変形機構領域図(Harold J.Frost, M.F.Ashby“Deformation-Mechanism Maps : The Plasticity and Creep of Metals and Ceramics”,Pergamon Pr, (1982/10))である。 図6は、本発明のマグネシウム系材料の処理方法においてマグネシウム系材料に付与される初期応力σの算出方法の説明図である。 図7は、本発明のマグネシウム合金部材の金属組織の模式図であって、金属組織に含まれるMg結晶粒およびその部分拡大図である。 図8は、実施例のマグネシウム系材料の処理方法を模式的に示す。 図9は、Mg-3質量%Al-3質量%Ca-0.2質量%Mn合金の180℃での応力ひずみ曲線であって、処理前の合金、本発明の処理方法による応力緩和型処理を施した合金、従来の熱処理を施した合金、についてそれぞれ示す。 図10は、種々の処理を施したマグネシウム系材料の180℃での0.2%耐力を示すグラフである。 図11は、本発明の処理方法により応力緩和型処理したMg-3質量%Al-3質量%Ca-0.2質量%Mn合金の結晶方位を表示した結晶方位マッピングである。 図12は、本発明の処理方法により応力緩和型処理したMg-9質量%Al-1質量%Zn合金の結晶方位を表示した結晶方位マッピングである。 図13は、本発明の処理方法により応力緩和型処理したMg-3質量%Al合金の結晶方位を表示した結晶方位マッピングである。 図14は、本発明の処理方法により応力緩和型処理した純マグネシウムの結晶方位を表示した結晶方位マッピングである。 図15は、本発明の処理方法により応力緩和型処理したMg-3質量%Al-3質量%Ca-0.2質量%Mn合金を透過電子顕微鏡で観察した組織写真である。 図16は、本発明の処理方法により応力緩和型処理したMg-3質量%Al-3質量%Ca-0.2質量%Mn合金の金属組織の観察結果である。 図17は、応力を付与せずに熱処理のみ施したMg-3質量%Al-3質量%Ca-0.2質量%Mn合金である比較試験片の金属組織の観察結果である。 図18は、本発明の処理方法により応力緩和型処理したMg-3質量%Al-3質量%Ca-0.2質量%Mn合金を透過電子顕微鏡で観察した組織写真である。 図19は、図18に示した組織写真の電子線回折図形である。
 以下に、本発明のマグネシウム系材料の処理方法を実施するための最良の形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「x~y」は、下限xおよび上限yをその範囲に含む。そして、これらの上限値および下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。
 <マグネシウム系材料の処理方法>
 本発明のマグネシウム系材料の処理方法は、マグネシウムまたはマグネシウム合金に対して適用される。すなわち、マグネシウム系材料とは、純マグネシウムまたはマグネシウム合金である。前述のように、純マグネシウムは、優れた制振性を有する。純マグネシウムに対して本発明の処理方法を適用することで、マグネシウムのもつ制振性をさらに向上させつつ、機械的特性、特に高温耐力を向上させられる。マグネシウム合金は、合金元素の添加により転移の運動を抑制することで、純マグネシウムの機械的強度を向上させている。そのため、マグネシウム合金は、純マグネシウムに比べて制振性に劣るが、本発明の処理方法を適用することで、マグネシウム合金のもつ機械的特性、特に高温耐力をさらに向上させつつ制振性を純マグネシウムと同等もしくはそれ以上に向上させられる。
 ここで、マグネシウム合金は、主成分であるマグネシウム(Mg:全体を100質量%としたとき85質量%以上さらには90質量%以上含むとよい)と、各種合金元素と不可避不純物および/または改質元素とからなる。合金元素としては、アルミニウム(Al)、カルシウム(Ca)、亜鉛(Zn)、ジルコニウム(Zr)、ケイ素(Si)、マンガン(Mn)、ストロンチウム(Sr)、ニッケル(Ni)等が挙げられる。たとえば、Alであれば、マグネシウム合金全体を100質量%としたときに、2~10質量%さらには3~9質量%含まれるとよい。具体的には、Mg-Al系、Mg-Zn系、Mg-Zr系、Mg-Al-Zn系、Mg-Al-Mn系、Mg-Al-Si系、Mg-Zn-Zr系、Mg-Al-Ca系などが挙げられる。これらの合金のうち、Mg-Ni系は、前述の時効硬化が得られる合金ではないが、本発明の処理方法を適用することで、機械的特性のみならず制振性をも向上させることができる。また、Mg-Al-Ca合金であれば、全体を100質量%としたときに、1~5質量%さらには2~4質量%のAlと、1~5質量%さらには2~4質量%のCaと、を含み、残部がMgと不可避不純物とからなるとよい。Mg-Al-Ca合金は、0.5質量%以下さらには0.3質量%以下のMnを含んでもよい。また、ASTM規格で表されるAZ31、AZ61、AZ91などの一般的なマグネシウム合金であってもよい。これらの合金に対してさらに合金元素を添加したマグネシウム合金であってもよい。
 以上説明したマグネシウム系材料からなる被処理材は、次に説明する応力緩和型処理工程に先立ち、溶体化処理が施されてもよい。溶体化処理を施すことで、機械的特性のさらなる向上が見込まれる。なお、溶体化処理は、被処理材を構成するマグネシウム系材料の種類に応じて、適宜選択すればよい。
 本発明において、応力緩和型処理工程は、マグネシウム系材料に対して、応力を付与して塑性変形させ引き続きクリープさせる工程である。このとき、処理温度を150~230℃にして行う。本発明のマグネシウム系材料の処理方法を図1に模式的に示す。また、処理時間に対する応力変化を図2に示す。
 応力緩和型処理工程では、はじめに、上記のようなマグネシウム系材料からなる被処理材に対して所定の温度で応力σ(初期応力)を付与して塑性変形させる。このとき、図1に示すようにσが圧縮応力であればL<Lとなるが、引張応力を付与してもよい。付与される応力の方向に特に限定はないため、法線方向だけでなく接線方向にも応力を付与してもよい。したがって、付与される応力は、剪断応力であってもよい。クリープの結果、初期応力σは緩和されるため、本工程における応力履歴は図2に示すようになる。
 なお、一般的なマグネシウム系材料の変形は、微視的な応力降伏現象をともなう擬弾性変形を経て、弾性変形から塑性変形へと移る。つまり、擬弾性変形が純粋な弾性変形中に起き、その後、純粋な塑性変形へと移る。本明細書における初期応力σは、擬弾性領域における応力降伏分も含めた最終応力で定義される。つまり、塑性変形量|L-L|は、擬弾性変形および塑性変形の合計の変形量を表す。
 図2の(I)の範囲では、応力が付与され塑性変形する時に底面滑りと非底面滑りが組み合わさり、マグネシウム系材料に複雑な転位および双晶組織を形成していると考えられる。マグネシウムおよび多くのマグネシウム合金は、図3に示す最密六方構造(hcp)をとる。hcp金属では、最密面である底面の{0001}面を滑り面とした、底面滑り(滑り方向は<11-20>)による変形が発生しやすい。柱面で発生したり錐面で発生したりする非底面滑りは室温でも起こりうるが、底面滑りよりも遙かに大きな剪断応力が必要となる。そのため、室温における変形は、ほとんど底面滑りによる。図4は、底面滑りと非底面滑りの臨界剪断応力の温度依存性を示すグラフである。{0001}面を滑り面とする底面滑りは、他の面を滑り面とする非底面滑りよりも小さい剪断力で発生し、非底面滑りは温度を高くすることで発生しやすくなることが知られている。特に、温度が高くなると(150~230℃)では、非底面滑りの臨界剪断力は室温の2分の1程度となる(図4に点で示す領域を参照)。底面滑りが関係した動きやすい転位は強度および制振性に関与するが、本処理方法を適用することで、非底面滑りの影響が適度に導入され複雑な転位および双晶組織が形成されるため、強度と制振性とが両立できると考えられる。
 また、図2の(II)の範囲では、拡散クリープにより拡散が促進される。高温応力場環境下でクリープする材料は、変形抵抗として有効に働く結晶、欠陥、転位の構造、組織および配向を構成し、かつそれ以外の欠陥、溶質元素および残留応力による内部ひずみは除去される。その結果、塑性変形による加工硬化が付与されつつも、内部摩擦として働く転位が運動しやすい環境ができ、強度低下を抑えつつ制振性を改善することが可能となると考えられる。
 なお、本処理方法が適用されたマグネシウム系材料を電子顕微鏡などで観察することで、双晶組織を確認することができる。特に、本処理方法により高強度化され制振性が向上したマグネシウム系材料を観察すると、マグネシウム系材料の母相に帯状のバンド型双晶組織が確認できる。一般的なマグネシウム系材料によく見られる双晶組織は、破壊の起点となり得るとともに制振性を向上させる双晶ではないと言われている。一般的な双晶組織は、双晶界面に段差が発生し、その段差が起点となり容易に破壊に至ると言われているからである。しかし、本処理方法で形成されたバンド型双晶では、そのような段差が見られず、容易に破壊起点になるとは考えにくい。また、亀裂発生に関与しうる双晶は、本来マグネシウム系材料の塑性変形の後期にその形成が確認されている。一方、本処理方法を適用することで確認されるバンド型双晶組織は、初期の塑性変形に引き続きクリープさせる、つまり従来の双晶が形成されるような後期の塑性変形をさせなくても形成される。そのため、バンド型双晶組織は、従来の双晶組織とは異なるはたらき、すなわちマグネシウム系材料の強度と制振性の向上に寄与している可能性が予測される。
 応力緩和型処理工程の条件は、変形機構領域図(図5)を参照する。マグネシウム系材料の変形モードを塑性領域からクリープ領域へと変化させる温度および応力を変形機構領域図から推測できる。本処理方法に望ましい具体的な条件は、以下のように規定することができる。
 処理温度は、前述の通り、非底面滑りの臨界剪断力が室温での2分の1程度となる150~230℃が望ましく、さらに望ましくは160~200℃さらには170~190℃である。塑性変形からクリープまでの間、被処理材の温度がこの範囲に保たれていればよい。
 被処理材に付与される応力は、図2に示す応力履歴に従えばよい。初期応力σ(処理中に付与される最大応力)の望ましい範囲は、たとえば、被処理材と同じマグネシウム系材料からなる試験片の、応力緩和型処理工程の処理温度における真応力-真歪曲線(σ-ε曲線)から規定することができる。以下に、σを得るためのσ-ε曲線の解析方法を説明する。
 図6は、本処理方法において付与される応力σを規定する方法の説明図である。一番上のグラフは、マグネシウム系材料の代表的なσ-ε曲線である。二つ目のグラフは、σ-ε曲線を真歪(ε)で微分処理した(dσ/dε)をεに対して示す(dσ/dε)-ε曲線である。三つ目(一番下)のグラフは、σ-ε曲線を真歪(ε)で2階微分処理した(dσ/dε)をεに対して示す(dσ/dε)-ε曲線である。応力σを規定するのに必要なのは、試験開始から完全塑性変形に至るまでの曲線である。
 (dσ/dε)値は、変形抵抗に相当する。変形抵抗は、弾性変形中は弾性率、塑性変形中は加工硬化率、に相当するが、マグネシウム系材料は前述のように擬弾性変形機構をとるため、両者の境界を見極めることが難しい。そこで、(dσ/dε)-ε曲線において(dσ/dε)>0から(dσ/dε)<0へ変化する点(すなわち(dσ/dε)=0で図6のグラフ中εα)に着目する。εαでは、マグネシウム系材料の内部で微視的な応力降伏現象が起きていることを示唆している。その後変形が進むと、(dσ/dε)<0から(dσ/dε)→0へ収束する。(dσ/dε)→0へ収束した後は、(dσ/dε)も0に収束し、ほとんど加工硬化が期待できない。本発明では、(dσ/dε)が0に収束した状態を、十分に塑性変形した状態と判断する。また、(dσ/dε)<0の範囲では、極小値(dσ/dε)minを与える以上の歪εを与えると、(dσ/dε)値は小幅な増減を繰り返しつつ増加する。これは、マグネシウム系材料中の双晶およびそれに準ずる結晶組織の形成に起因する変形抵抗の変化を示唆していると考えられる。したがって、本処理方法で目的とする金属組織を得られる初期応力σは、(dσ/dε)<0を満たす範囲に含まれる。また、(dσ/dε)→0における十分に塑性変形した状態以上の変形は本処理方法では過剰変形となり、塑性変形後のクリープによる応力緩和効果が良好に得られない。以上の解析より、本処理方法で与える初期応力σは、次の範囲であるのが好ましい。
 応力緩和型処理工程で被処理材に与える初期応力σは、処理前のマグネシウム系材料の真応力(σ)-真歪(ε)曲線をεで2階微分処理した値(dσ/dε)が負の値となる歪を与える応力、すなわち、歪がεαを超えεβ未満の歪が与える応力、σαを超えσβ未満(図6)であるのが好ましい。さらに好ましくは、(dσ/dε)が最小値をとる応力以上、すなわちσα’以上(図6)である。初期応力がσα以下では、非底面滑りが導入されず、強度および制振性の向上が十分に得られないため好ましくない。また、応力がσα’未満であると、塑性変形に入っても応力を除去すると形状回復する現象、いわゆる擬弾性現象が起こる場合があるため、好ましくない。初期応力がσβ以上では、マグネシウム系材料が大変形して後の応力緩和の効果が良好に得られない。
 なお、σβを与えるεβの算出において実際のデータから厳密に(dσ/dε)=0を満たすεβを求めることは困難であるが、(dσ/dε)=0を漸近線としたオフセット法からεβを求めても問題ない。
 以上説明したσを決定するのに用いられる真応力-真歪曲線は、少なくとも被処理材と同じ組成をもつ試験片から得られればよい。試験方法についても、JISに規定されるような一般的な引張試験または圧縮試験から真応力-真歪曲線を得ても大きな違いはない。特に、被処理材と同じ組成からなる同じ形状のマグネシウム系材料を試験片として用い、応力緩和型処理工程にて付与される応力と同じ方向に応力を付与する試験により真応力-真歪曲線を得るのが好ましい。
 つまり、応力緩和型処理工程で付与される応力(σ)は、被処理材と同じ組成である試験片に対して処理温度において応力を与えて得た真応力(σ)-真歪(ε)曲線をεで2階微分処理した値(dσ/dε)が負の値となる範囲の応力であるのが好ましいと言える。さらには、(dσ/dε)が最小値をとる応力以上を付与する工程であるのが好ましい。
 なお、上記の範囲の初期応力であれば、被処理材は大きく塑性変形しない。たとえば、図1を用いて説明すれば、(L-L’)/Lの百分率で表されるひずみが5%前後に収まる。4%以下さらには3%以下であっても、強度および制振性の向上効果は得られる。
 応力を付与する方法に特に限定はなく、被処理材の形状に応じて適宜選定すればよい。被処理材を、その形状に応じた治具で挟み込んだ状態で応力を付与する方法が、最も簡便である。冶具により応力を付与する方法であれば、応力の方向制御がしやすい。また、空気圧または油圧により応力を付与する方法であってもよい。その場合、圧力を制御することで歪変位を維持してもよい。空気圧または油圧を用いる場合には、たとえば、シリンダーを作製し、そのシリンダーの中で被処理材を圧縮または保持(シリンダーのピストンを固定)してもよい。
 所定の応力が付与された被処理材は、クリープさせるために応力緩和させるとよい。すなわち、被処理材に付与される応力が目標の最大値(σ)に達した後、応力を緩和させればよい。この際、被処理材に対して付与する応力を低減させて強制的に応力を緩和させてもよい。あるいは、被処理材に対して初期応力の付与により与えられた歪変位を一定に維持すれば、クリープにより自ずと応力緩和する。
 応力緩和型処理工程は、マグネシウム系材料の変形モードが定常クリープ領域に達するまで行えばよい。被処理材の大きさにもよるが、初期応力が低下して被処理材にかかる応力が時間に対してほぼ一定となるまで1時間程度である。そのため、処理時間は、50分以上さらには1時間以上が好ましい。ただし、5時間を超えてもさらなる高強度化および制振性の向上は見込めない。なお、処理時間とは、マグネシウム系材料に初期応力σを付与し始めてから、クリープ時に付与されている応力を開放するまでの時間である。被処理材は、所定の処理時間の間、所定の温度に維持されていればよい。
 さらに、応力が開放された状態で被処理材を冷却する冷却工程を有するとよい。応力緩和型処理工程における処理温度が230℃以下で比較的低温であるため、冷却方法に特に限定はない。ただし、意図しない過冷却による冷却時の材料収縮の影響や100~180℃における時効硬化を与えないようにするため、-0.3~2℃/秒さらには-0.5~-1.5℃/秒の速度で冷却するのが好ましい。
 本発明のマグネシウム系材料の処理方法を用いて、マグネシウム系部材を製造することが可能となる。つまり、マグネシウム系材料からなる各種部材を作製する最終工程に本発明の処理方法を適用するとよい。たとえば、被処理材はマグネシウム系材料からなるマグネシウム系鋳物であるのが好ましく、応力緩和型処理工程はマグネシウム系鋳物の少なくとも一部を処理する工程であるとよい。製品の最終形状に近いマグネシウム系鋳物に対し、高強度化または制振性の付与が必要な部分を少なくとも処理すればよい。
 本発明の処理方法は、被処理材に対して塑性領域まで応力を付与するが大きな形状変化を伴わない程度であるため、鋳物の設計を大きく変更する必要もない。なお、本発明の処理方法であれば比較的低温の処理で効果が得られる。そのため、ダイカスト製品のように内部欠陥や鋳巣を有するため従来熱処理の適用が困難な製品へも、本発明を適用できる。
 マグネシウム系部材としては、自動車部品向けとして、コンプレッサのハウジング、エンジンブロック、エンジンカバー等と、それらの部材に形成されたボルト受け面や他部品との接触部位、またはそこで用いられるワッシャなどが挙げられる。また非磁性材料であることから、本来磁性を嫌う電子・精密機器用の振動低減部材への活用も期待できる。
 このようなマグネシウム系部材は、特徴的な金属組織を有することで、機械的強度と制振性とを両立できるものと考えられる。たとえば、純マグネシウム製の部材であれば、本発明の処理方法を施した後には、通常の熱処理では見られない、互いに交差したレンズ型双晶組織(後述)を含有するMg結晶粒を含む金属組織が見られる。マグネシウム合金部材については、以下に詳説する。
 <マグネシウム合金部材>
 本発明のマグネシウム合金部材は、Mgを主成分とし、合金元素として時効析出する溶質元素を含むマグネシウム合金からなる。本発明のマグネシウム合金部材は、母相、双晶相および板状析出物を含有する複数のMg結晶粒を含む金属組織を有する。金属組織について、図7を用いて具体的に説明する。
 図7は、本発明のマグネシウム合金部材の金属組織を説明する模式図である。図7のMg結晶粒において、縦方向のハッチは母相、横方向のハッチは双晶相、をそれぞれ示す。本発明のマグネシウム合金部材において望ましい形態は、ハッチの方向が六方晶系底面にほぼ平行な結晶構造である。
 双晶相は、Mg結晶粒(母相中)に形成されており、母相と双晶関係にある。そして、双晶相は、少なくとも一種類の方向に延びる複数の双晶からなる。双晶は、制振性に関連する構造である。相晶相は、特に、複数の方向に延びる双晶からなるとよい。つまり、双晶相は、複数の双晶が交差した交差状双晶組織を有するのが好ましい。これは、結晶学的な異方性が、材料物性の異方性にも大きく影響するためである。また、双晶は、その形状からレンズ型とバンド型とに大別できる。レンズ型双晶組織は、バンド型双晶組織に比べて、先鋭の端部に局所的に応力集中しやすい。そのため、強度の観点から、双晶相は、帯状のバンド型双晶組織を有するのが好ましい。
 なお、双晶相は、六方晶底面に対して引張応力が付与された場合によく見られる{10-12}を双晶面とする双晶であると考えられるが、他の準安定な双晶界面も考えられる。したがって、Mg結晶粒に含まれる双晶は、一種類以上さらには二種類以上の方向に延びる。なお、(10-12)面を図3に示す。
 板状析出物は、母相から双晶相に渡って連続的に延在する。双晶界面で途切れることなく板状析出物が延在することで、Mg結晶粒が効果的に強化され、マグネシウム合金部材の高強度化に繋がる。
 板状析出物は、母相から双晶相に渡って連続的に延在するので、外部からの応力に最も影響されやすい双晶相を構成する六方晶の柱面に沿って延在する可能性がある。六方晶の柱面に沿った析出物は、臨界剪断応力が最も小さい底面滑りを妨げるため、マグネシウム系材料の強化に効果的に寄与することが知られている。そのため、Mg結晶粒は、双晶相において六方晶の柱面に沿って延在する板状析出物を含むとよい。
 また、静的な破壊が発生するより十分小さいがクリープ変形が発生する程度の応力が、マグネシウム系材料にはたらく場合を考える。このような場合、一般に、双晶組織の変形領域では、応力集中および双晶界面における歪の不一致が、破壊の起点になると言われている。しかし、図7に示すように、双晶相において六方晶底面と双晶界面とが交差する関係にあれば、双晶相で発生する底面滑りが双晶界面における滑り現象に発展するほど大きくならない。その結果、クリープ変形が抑制されるため、双晶相における六方晶底面と双晶界面とは、交差する関係にあるのが好ましい。さらに、双晶相の六方晶底面と双晶相で延在する板状析出物とがほぼ直角の関係にあれば、底面滑りが抑制され、クリープ変形も抑制されるため好ましい。
 ところで、本発明のマグネシウム合金部材が本発明の処理方法を経て作製されると、板状析出物は、応力緩和処理工程で付与された応力の向きに沿って延在する。双晶相は、応力緩和処理工程の比較的初期の段階(例えば図2の(I))に、塑性変形に伴い形成されたものと考えられる。一方、板状析出物は、本発明の処理方法により形成された特有の構造であり、塑性変形後のクリープ(例えば図2の(II))にて形成されたものと考えられる。
 なお、双晶相も板状析出物も、いずれも母相に対して双晶関係にある双晶組織からなる。ただし、双晶相の幅がミクロンオーダーに対して、板状析出物の厚さがナノオーダーであることから、前者をマクロ双晶、後者をミクロ双晶と区別することができる。
 Mg結晶粒の大きさに特に限定はないが、双晶相および板状析出物を含むことから、ある程度大きいことが望まれる。たとえば、平均粒径で表すのであれば、Mg結晶粒は10μm以上が好ましく、20μm以上で本発明の処理方法により形成される上記の特有な組織の導入を確認した。特に好ましくは、複数のドメインからなり平均粒径が100μm以上の粗大なMg結晶粒であり、平均粒径が数mm程度までの結晶粒内で上記の特有な組織がよく観察される。なお、粒径は、Mg結晶粒の最大径であって、具体的な測定方法および平均粒径の算出方法は後述の通りである。
 なお、図7に示したMg結晶粒は一例であって、全ての双晶が交差して存在する必要はなく、複数の双晶が略平行に配列していてもよい。つまり双晶は、Mg結晶粒において全体的に一種類の方向のみに延在してもよいし、二種類以上の方向に延在する場合であっても互いに交差しないように部分的に配列されていればよい。母相の六方晶底面と双晶相の六方晶底面との結晶方位関係も90°である必要はなく、82°~90°さらには85°~87°が好ましい。また、マグネシウム合金部材に含まれるMg結晶粒のうち、少なくとも一部のMg結晶粒に上記の金属組織が含まれていればよく、その割合は、Mg結晶粒の個数比で5割以下であってもよい。これらのMg結晶粒は、板状析出物の向きが揃っているとよい。
 本発明のマグネシウム合金部材は、Mgを主成分とし、合金元素として時効析出する溶質元素を含むマグネシウム合金からなる。溶質元素としては、アルミニウム(Al)、カルシウム(Ca)、亜鉛(Zn)、ニッケル(Ni)、マンガン(Mn)、イットリウム(Y)およびガドリニウム(Gd)、等が挙げられ、これらのうちの一種以上を含むとよい。ただし、CaおよびNiは、単独では時効析出しないため、Al、Zn、Mn、YおよびGdから選ばれる一種以上とともに添加されるとよい。
 本発明のマグネシウム合金部材として特に好ましい合金組成は、全体を100質量%としたときに、1~5質量%のAlと、1~5質量%のCaと、1質量%以下のMnと、残部がMgと改質元素および/または不可避不純物からなるMg-Al-Ca-Mn系合金である。さらに好ましいAl含有量は2~4質量%さらには3~3.5質量%、さらに好ましいCa含有量は1~3質量%さらには2~2.5質量%、さらに好ましいMn含有量は0.05~0.5質量%さらには0.1~0.3質量%、である。
 マグネシウム合金からなる被処理材に対して、機械的特性および制振性の向上を目的として、本発明の処理方法を施して、本発明のマグネシウム合金部材を得る場合には、応力緩和処理工程において、処理温度を150~230℃、初期応力(σ)を70~125MPaとするとよい。特に好ましくは、処理温度:170~220℃さらには175~185℃、初期応力(σ):80~120MPaさらには90~110MPaである。特に、耐クリープ性に優れたマグネシウム合金部材を得るには、処理温度を170~190℃さらには175~185℃、初期応力を80~150MPaさらには110~130MPaとするとよい。
 なお、本発明のマグネシウム合金部材は、既に詳説した本発明の処理方法により容易に得られるが、以上説明した金属組織と同様な金属組織が得られるのであれば、他の方法を採用してもよい。
 以上、本発明のマグネシウム系材料の処理方法および本発明のマグネシウム合金部材の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
 以下に、本発明のマグネシウム系材料の処理方法および本発明のマグネシウム合金部材の実施例を挙げて、本発明を具体的に説明する。
 <試験片の作製>
 4種類の異なるマグネシウム系材料からなる円柱形状(φ10mm×10mm:この高さをLとする)の鋳造材を準備した。鋳造材はそれぞれ、純Mg、Mg-3Al合金、Mg-9Al-1Zn合金(AZ91)、Mg-3Al-3Ca-0.2Mn合金(AXM330)であった。
 なお、これらの合金の組成を蛍光X線分析装置を用いて分析した結果、Mg-3Al合金はAlおよびMnを含み、Al含有量は3.4質量%、Mn含有量は0.12質量%であった。AZ91はAl、ZnおよびMnを含み、Al含有量は9.1質量%、Zn含有量は0.8質量%、Mn含有量は0.1質量%であった。AXM330はAl、CaおよびMnを含み、Al含有量は3.2質量%、Ca含有量は2.3質量%、Mn含有量は0.2質量%であった。
 はじめに、初期応力を規定するために、上記の鋳造材を試験片として用い、圧縮試験を行った。圧縮試験は、180℃または220℃の大気中で島津製作所製引張圧縮試験機オートグラフを用いて応力を付与し、真応力-真歪曲線(σ-ε曲線)を得た。得られたσ-ε曲線を上記の手順により解析して、既に説明したσα、σα’およびσβを、それぞれの試験片について算出した。
 これらの鋳造材を被処理材として用い、以下の手順により処理を行い、評価試験用の試料を作製した。処理の手順を、図8を用いて説明する。はじめに円柱形状の鋳造材Sを、所定の処理温度(180℃または220℃)に加熱したステンレス鋼板P1およびP2で挟持し、所定の温度の大気中で島津製作所製引張圧縮試験機オートグラフを用いて所定の初期応力を付与した。この状態で所定の時間(60分または300分)になるまで保持した。応力を付与する前は、2枚のステンレス鋼板P1およびP2の間隔はL(mm)であったが、応力が付与されることでL(mm)となり、鋳造材は圧縮された(L<L)。処理中は、この2枚のステンレス鋼板P1およびP2の間隔を一定(すなわちL)に保った。つまり、はじめに付与した応力(初期応力)により塑性変形したことによる歪変位(L-L)を維持した。そのため、歪変位を維持している間に、付与される応力は徐々に低下し、初期応力以下となった。所定時間が経過した後、鋳造材をステンレス鋼板から取り外し、室温(20℃)に放置することで空冷した。このときの冷却速度は、150℃からの空冷:-0.87℃/秒、180℃からの空冷:-1.09℃/秒、220℃からの空冷:-1.38℃/秒、であった。なお、この処理を「応力緩和型処理」と呼ぶ。
 以上の手順で、#11~#18、#21、#22、#31、#32および#41~#45の試料を作製した。処理条件(保持時間、処理温度および初期応力)を表1および表2に示す。初期応力は、それぞれ、はじめに行った圧縮試験(σ-ε曲線)に基づいて算出した値より、σα~σβの範囲内になるように選定した。終了時の応力は、所定の保持時間が経過した時点で試料に付与されている応力とした。また、空冷後の試料の高さ(L’とする)を測定し、(L-L’)/Lの百分率で圧下率を求めた。なお、各試料は、室温での評価用と180℃での評価用の二つずつ作製した。
 また、比較のために、従来の方法により熱処理を行った試料を作製した。試料片#C1は、AXM330からなる鋳造材にT6の熱処理(溶体化処理:500℃20時間、時効処理:200℃5時間)をして作製した。試料#C2は、180℃においてAXM330からなる鋳造材を挟持する2枚のステンレス鋼板の間隔を狭くしていくことで初期応力を熱処理終了(処理開始から60分後)まで一定に保つ方法で作製した。つまり#C2は、常に塑性領域で変形させた。なお、この熱処理を「応力固定型処理」と呼ぶ。
 <機械的特性および制振性の評価>
 上記の手順で作製した各試料について、比例限、耐力、弾性率および損失係数の測定を行った。測定は、室温と180℃の二種類行った。室温での結果を表1に、180℃での結果を表2に、それぞれ示す。なお、比較のために、処理を施さなかった鋳放し(AsCast)の試料#10、#20、#30および#40についても同様の測定を行った。結果を表1および表2に示す。
  <圧縮試験>
 上記の処理後あるいは鋳放し状態の試料をそれぞれ試験片として用い、室温または180℃にて、島津製作所製引張圧縮試験機オートグラフを用いて圧縮試験を実施した。180℃にて測定する場合には、試験室を付属の雰囲気炉によって予め180℃で2時間以上保持した。その後、試験片を試験室に投入し試験片温度が180℃で安定するまでの間約15分待機した後、圧縮試験を行った。いずれの温度においても、圧縮速度を1mm/分とした。なお、図9は、180℃での圧縮試験により得られた試料#11、#C1および#10の応力ひずみ曲線である。0.2%耐力は、応力ひずみ曲線からオフセット法により算出した。また、図10は、180℃での圧縮試験により得られた各試料の0.2%耐力を示すグラフである。
  <損失係数の測定>
 各試料に対し、中央加振法による損失係数の測定を行った。損失係数の測定には、それぞれの試料から35mm×5mm×1mmの試験片を作製し、小野測器製損失係数測定システムを用いて測定した。測定は、測定周波数1~10kHzの範囲で、室温で行った。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1、表2および図10より、いずれのマグネシウム系材料からなる試料であっても、応力緩和型処理により高温での機械的特性が向上することがわかった。特に、合金元素としてAl等を含むマグネシウム合金では、耐力の向上が顕著であった。また、AXM330については、応力緩和型処理により、従来のT6の熱処理と同等あるいはそれ以上に高温での機械的特性の向上が見られた。
 また、処理前のマグネシウム系材料では、純Mg(#20)の損失係数は0.00173であり、マグネシウム合金(#10,#30および#40)の損失係数よりも高い値であった。つまり、合金元素の存在で、制振性が低下したことがわかった。しかし、応力緩和型処理を施したことで、マグネシウム合金からなる試料であっても純Mgからなる試料と同等あるいはそれ以上の制振性を示した。
 一方、従来のT6の熱処理を施した#C1では、熱処理前のマグネシウム合金(#10)と比較して、熱処理により耐力の向上は見られたものの、制振性は大きく低下した。応力固定型処理を施した#C2では、熱処理前のマグネシウム合金(#10)と比較して、制振性の向上は見られたものの、常温での耐力は低下した。また、#C2と#11とは、処理条件のうち保持時間、処理温度および初期応力が同じであるが、#C2は応力固定型処理、#11は応力緩和型処理が施された。両者を比較すると、応力緩和型処理が施された#11は、機械的特性および制振性のいずれにおいても、#C2よりも優れていた。
 つまり、本発明の処理方法である応力緩和型処理は、機械的特性も制振性も向上させることが可能であった。また、この処理方法は、種々のマグネシウム系材料に適用することができた。
 <組織観察>
 応力緩和型処理を施された試料#11、#21、#31および#41を、電子後方散乱回折(EBSDあるいはEBSPとも呼ぶ)により観察した。EBSDは、多結晶材料の結晶方位とその分布状態を測定する装置である。解析には、走査型電子顕微鏡(SEM)本体:日本電子株式会社製JSM-6490LAと、EBSD解析システム:TSL社(TexSEMLaboratories,Inc.)製HighSpeedEBSDDetectorおよびOIM自動解析システムと、からなるSEM/EBSD装置を用いた。前処理として、クロスセクションポリッシャー:日本電子株式会社製SM―09010を用いたArイオンビームによる研磨を試料の観察面に施した。前処理した試料から上記のSEM/EBSD装置で得られた結晶方位マッピングを図11~図14に示す。なお、結晶方位マッピングは、所定の面から所定の範囲(本測定では±2°)の角度のみを同一のカラーで表示したものである。すなわち、図11~図14は、本来、結晶方位別にカラー表示されている。
 いずれの試料にも、Mg母相内に双晶組織が観察された。これらの双晶組織は、処理の比較的初期の段階に塑性変形にともない形成されたものと考えられ、T6の熱処理では形成されない組織である。特に高い耐力を示した試料#11(図11)および試料#41(図12)では、帯状のバンド型双晶組織が多く見られた。また、応力緩和型処理を施された試料のMg結晶粒は比較的大きく、機械的特性の向上を目的とした熱間加工を施したマグネシウム合金のように結晶粒が微細化されたものとは異なる金属組織であった。
 なお、Mg母相内の双晶界面では、Mg結晶粒の母相の六方晶系底面の法線ベクトルと双晶相の六方晶系底面の法線ベクトルとの相対角度が82°~90°であった。双晶界面はほぼ直線であった。これは、低応力で発生するMg結晶の底面滑り方向、すなわちバンド型双晶組織において剪断方向となり得る方向も同様に、母相と双晶相とで相対角度82°~90°の関係となり、より変形しにくい組織が形成されていると考えることができる。さらに、試料#21(図14)に見られるようなレンズ型双晶組織は先鋭の先端部分へ局所的に応力集中しやすいと考えられるのに対し、バンド型双晶組織は比較的応力集中しにくいと考えられ、試料#11(図11)および試料#41(図12)ではより高強度を示したものと考えられる。
 また、試料#11が有するバンド型双晶組織について、透過型電子顕微鏡(TEM)観察を行った。TEM観察は、薄片状に加工した試料に対し、日立製作所製H-1250STを用いて行った。結果を図15に示す。図15の右図は、左図の双晶部分をさらに詳しく観察した結果を示す。バンド型双晶組織内部には、特定の結晶方位に整列した特異なナノ組織(長周期積層ナノ構造)が観察された。具体的には、一方向の縞が約10nmの広い間隔であるのを確認した。
 すなわち、本発明の処理方法により、マグネシウム系材料に特異な組織が導入され、この組織により機械的特性と制振性とが両立すると考えられる。
  <応力緩和試験>
 表1に示した試験片#10、#C1、#16、#40および#42のそれぞれの試験片について、応力緩和試験を行い、マグネシウム合金の高温でのクリープ特性を調べた。応力緩和試験は、試験片に試験時間中、所定の変形量まで荷重を加えたときの応力が、時間とともに減少する過程を測定する。具体的には、180℃の大気雰囲気中において、試験片に120MPaの圧縮応力を負荷し、そのときの試験片の変位が一定に保たれるように、時間の経過に併せてその圧縮応力を低減させていった。
 表3に、それぞれの試験片の応力減少率を示した。応力減少率は、応力緩和試験の開始から40時間後までの応力の減少量を、試験開始時の応力に対する割合として算出した。
Figure JPOXMLDOC01-appb-T000003
 表3より、本発明の処理方法である応力緩和型処理を施すことで、耐クリープ性が向上することがわかった。特に、#C1と#16の結果から、本発明の処理方法は、T6の熱処理を上回る高い耐クリープ性をマグネシウム合金材料に付与できることがわかった。
 <試験片#14の組織観察>
 機械的特性および制振性に優れ、さらには高い耐クリープ性を示す試験片#14について、EBSDおよびTEMを用い上記と同様にしてその金属組織を詳細に観察した。結果を図16、図18および図19に示した。なお、図16に示した上下方向の矢印は、応力緩和型処理で付与された応力の方向を示しており、図16の各観察結果は、すべて応力の付与方向に対して同じ向きになるように揃えた。
 比較のため、応力緩和させずに熱処理、つまり熱処理中に応力を付与しない他は、試験片#14と同様の手順で作製した比較試験片についても、その金属組織を詳細に観察した。結果を図17に示した。
 図16(1)および(2)、図17(1)および(2)は、EBSDの結晶方位マッピングであって、それぞれの図において(1)は広範囲、(2)は(1)の局所領域を観察した結果である。
 試験片#14では、Mg結晶粒の母相中に、比較試験片では見られなかった帯状のバンド型双晶組織が多く見られた。また、ひとつのMg結晶粒に二種類の方向に延在するバンド型双晶が見られ、それらが互いに交差して格子を組んだ交差状双晶組織を示す部分も観察された。なお、広範囲の観察を異なる箇所で複数回行った結果、Mg結晶粒は、粒界化合物に囲まれる領域(ドメイン)から構成され、1つのドメインは30~50μmであった。また、複数のドメインが同一の結晶方位を有する場合、これを1つの結晶粒と見なすと、そのMg結晶粒の粒径は300~1000μmであった。バンド型双晶組織を含むMg結晶粒の個数は全体の3~4割を占めることがわかった。たとえば、図16(1)には、全部で5つのMg結晶粒が観察されたが、そのうち双晶組織を含む結晶粒は2つ(つまり4割)であった。また、Mg結晶粒の粒径は、ひとつの粒子を平行な二本の線で挟んだときの間隔の最大値とし、数平均値を平均粒径とした。
 図16(3)および(4)、図17(3)および(4)は、TEM観察により得られた組織写真および電子線回折図形である。それぞれの図において(3)はサブミクロン領域、(4)は(3)のナノ領域を観察した結果である。図16(3)については、図16(2)において複数の隣接する双晶界面が5~20μm間隔であった幅約3μmのバンド型双晶のうちのひとつを中心に、その双晶を挟んで隣接する母相が収まる範囲で観察した。その結果、ナノスケールの板状構造体(板状析出物)を、全体にバンド型双晶組織を含む1つのMg結晶粒の全体的に高密度で確認できた。これらの板状析出物は、応力緩和型処理において応力が付与される方向に沿って延在していた。また、これらの板状析出物は、互いに平行に50~200nmの間隔で整列した。そして、バンド型双晶の双晶界面で途切れることなく、母相から双晶相に渡って連続的に延在することがわかった。さらに、図16(4)は、板状析出物と板状析出物を挟んで隣接するバンド型双晶とを観察した結果であり、板状析出物は、バンド型双晶と双晶関係にあることがわかった。そして、板状析出物の厚さは、数nm~数十nm(図16(4)では約15nm)であった。また、図示しないが、板状析出物と板状析出物を挟んで隣接する母相とを観察した結果、板状析出物は、母相とも双晶関係にあることがわかった。
 一方、比較試験片では、図17(3)に見られた板状構造体とおぼしきものは、ひとつのMg結晶粒において局所的に観察された。ナノ領域を観察した図17(4)によれば、板状構造体は、組織写真より母相と双晶関係にあるが、電子線回折図形のストリークから積層欠陥が存在することがわかった。これらのことから、この板状構造体は、母相が変形した結果として発生した双晶であって、析出物ではないと推測される。
 なお、図示しないが、試験片#14について図16に示す以外の他のMg結晶粒を観察した場合にも、応力方向に沿って板状析出物が延在していることを確認した。また、図16(3)で観察された板状析出物が棒状でないことは、図16と同じ位置で電子線の入射方向を傾けてTEM観察を行うことで確認した。
 図18は、母相、双晶相および板状析出物の結晶方位関係を説明する図面であって、組織写真は図16(3)と同一である。また、図19は、図18に示した組織写真に対応する電子線回折図形であって、電子線を入射方向は<11-20>とした。
 図18から、Mg結晶粒内の母相の六方晶系底面の法線ベクトルと双晶相の六方晶系底面の法線ベクトルとの相対角度は、<11-20>において86°であることがわかった。つまり、母相の六方晶系底面(母相Mg(100))と双晶相の六方晶系底面(双晶相Mg(100))とは、ほぼ垂直であった。板状析出物は、矢印a、bおよびcで示すように、双晶界面で途切れることなく、母相から双晶相、さらには双晶相から母相に渡って連続的に延在した。このとき、矢印aは矢印bに対して4°屈折し、矢印bは矢印cに対して4°屈折した。その結果、板状析出物は、母相においては六方晶系底面に、双晶相においては六方晶系柱面に、析出したと言える。一般に、析出相は、母相においても双晶相においても、六方晶系底面に沿って形成される。そのため、六方晶系柱面に析出した板状析出物は、本発明のマグネシウム合金部材における特徴的な組織である。
 したがって、以上詳説した金属組織を有することが、マグネシウム合金において機械的特性および制振性を高いレベルで両立する、さらには高い耐クリープ性を示すことに繋がることがわかった。以上の組織観察では、#14の試験片を用いたが、#11~#18はもちろん、時効析出する溶質元素を含むMg-3AlおよびAZ91に応力緩和型処理を施した各試験片についても、母相、双晶相および板状析出物を含む同様の金属組織が観察されるものと推測できる。

Claims (20)

  1.  マグネシウム合金または純マグネシウムからなる被処理材に対して150℃以上230℃以下の処理温度で応力を付与して塑性変形させ引き続きクリープさせる応力緩和型処理工程を有することを特徴とするマグネシウム系材料の処理方法。
  2.  前記応力緩和型処理工程で付与される最大応力は、前記被処理材と同じ組成である試験片に対して前記処理温度において応力を与えて得た真応力(σ)-真歪(ε)曲線をεで2階微分処理した値(dσ/dε)が負の値となる範囲である請求項1記載のマグネシウム系材料の処理方法。
  3.  前記被処理材はマグネシウム合金からなり、前記応力緩和処理工程は、最大応力を80MPa以上120MPa以下にして行う請求項2記載のマグネシウム系材料の処理方法。
  4.  前記応力緩和型処理工程は、前記被処理材に圧縮応力を付与する工程である請求項1記載のマグネシウム系材料の処理方法。
  5.  前記応力緩和型処理工程は、前記被処理材に対して前記最大応力を付与して与えた歪変位を一定に維持して該応力を緩和させる工程である請求項1記載のマグネシウム系材料の処理方法。
  6.  前記応力緩和型処理工程を50分以上5時間以下行う請求項1記載のマグネシウム系材料の処理方法。
  7.  さらに、応力が開放された状態で前記被処理材を冷却する冷却工程を有する請求項1記載のマグネシウム系材料の処理方法。
  8.  前記被処理材は、マグネシウムを主成分とし合金元素としてアルミニウムを含むマグネシウム合金からなる請求項1記載のマグネシウム系材料の処理方法。
  9.  前記マグネシウム合金は、マグネシウムを主成分とし合金元素としてアルミニウムおよびカルシウムを含むマグネシウム合金である請求項8記載のマグネシウム系材料の処理方法。
  10.  前記被処理材は、マグネシウム合金または純マグネシウムからなるマグネシウム系鋳物であって、
     前記応力緩和型処理工程は、前記マグネシウム系鋳物の少なくとも一部を処理する工程である請求項1に記載の処理方法を用いることを特徴とするマグネシウム系部材の製造方法。
  11.  マグネシウム(Mg)を主成分とし、合金元素として時効析出する溶質元素を含むマグネシウム合金からなり、
     母相と、該母相と双晶関係にあり少なくとも一種類の方向に延びる複数の双晶からなる双晶相と、該母相から該双晶相に渡って連続的に延在する板状析出物と、を含有する複数のMg結晶粒を含む金属組織を有することを特徴とするマグネシウム合金部材。
  12.  前記金属組織は、前記板状析出物の延在する方向が揃った2以上のMg結晶粒を含む請求項11記載のマグネシウム合金部材。
  13.  前記双晶相は、複数の双晶が交差した交差状双晶組織を有する請求項11記載のマグネシウム合金部材。
  14.  前記双晶相は、帯状のバンド型双晶組織を有する請求項11記載のマグネシウム合金部材。
  15.  前記板状析出物は、前記双晶相を構成する六方晶の柱面に沿って延在する請求項11記載のマグネシウム合金部材。
  16.  前記溶質元素は、アルミニウム(Al)、亜鉛(Zn)、マンガン(Mn)、イットリウム(Y)およびガドリニウム(Gd)から選ばれる一種以上を含み、必要に応じてカルシウム(Ca)および/またはニッケル(Ni)をさらに含む、請求項11記載のマグネシウム合金部材。
  17.  全体を100質量%としたときに、1質量%以上5質量%以下のAlと、1質量%以上5質量%以下のCaと、0以上1質量%以下のMnと、残部がMgと改質元素および/または不可避不純物からなる請求項16記載のマグネシウム合金部材。
  18.  マグネシウム合金からなる被処理材に対して150℃以上230℃以下の処理温度で応力を付与して塑性変形させ引き続きクリープさせる応力緩和型処理工程を経て得られたことを特徴とする請求項11記載のマグネシウム合金部材。
  19.  前記板状析出物は、前記応力緩和処理工程で付与された応力の向きに沿って延在する請求項18に記載のマグネシウム合金部材。
  20.  前記応力緩和処理工程において、前記最大応力は80MPa以上120MPa以下である請求項18に記載のマグネシウム合金部材。
PCT/JP2011/000955 2010-03-23 2011-02-21 マグネシウム系材料の処理方法およびマグネシウム合金部材 WO2011118127A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-065636 2010-03-23
JP2010065636 2010-03-23

Publications (1)

Publication Number Publication Date
WO2011118127A1 true WO2011118127A1 (ja) 2011-09-29

Family

ID=44672708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000955 WO2011118127A1 (ja) 2010-03-23 2011-02-21 マグネシウム系材料の処理方法およびマグネシウム合金部材

Country Status (1)

Country Link
WO (1) WO2011118127A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104419854A (zh) * 2013-09-02 2015-03-18 丰田自动车株式会社 伪弹性镁合金、伪弹性镁合金部件及其制造方法
CN104818442A (zh) * 2015-05-19 2015-08-05 重庆大学 一种提高Mg-Zn-Y合金的阻尼与力学性能的方法
CN105908035A (zh) * 2016-04-26 2016-08-31 哈尔滨工程大学 一种耐高温高强镁基复合材料及其制备方法
CN114134380A (zh) * 2021-11-30 2022-03-04 重庆大学 高强度高阻尼Mg-Gd-Ni镁合金及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173586A (ja) * 1993-12-17 1995-07-11 Toyota Motor Corp 耐クリープ性Mg合金の製造方法
JP2000167636A (ja) * 1998-12-04 2000-06-20 Nitto Zoki Kk マグネシウム合金材料の圧縮成形方法及び装置
JP2007308780A (ja) * 2006-05-22 2007-11-29 Toyota Motor Corp マグネシウム合金の組織制御方法、組織制御されたマグネシウム合金、及び車両用ホイール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173586A (ja) * 1993-12-17 1995-07-11 Toyota Motor Corp 耐クリープ性Mg合金の製造方法
JP2000167636A (ja) * 1998-12-04 2000-06-20 Nitto Zoki Kk マグネシウム合金材料の圧縮成形方法及び装置
JP2007308780A (ja) * 2006-05-22 2007-11-29 Toyota Motor Corp マグネシウム合金の組織制御方法、組織制御されたマグネシウム合金、及び車両用ホイール

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104419854A (zh) * 2013-09-02 2015-03-18 丰田自动车株式会社 伪弹性镁合金、伪弹性镁合金部件及其制造方法
JP2015063746A (ja) * 2013-09-02 2015-04-09 トヨタ自動車株式会社 擬弾性を示すマグネシウム合金、並びに擬弾性を示すマグネシウム合金部品及びその製造方法
CN104818442A (zh) * 2015-05-19 2015-08-05 重庆大学 一种提高Mg-Zn-Y合金的阻尼与力学性能的方法
CN105908035A (zh) * 2016-04-26 2016-08-31 哈尔滨工程大学 一种耐高温高强镁基复合材料及其制备方法
CN114134380A (zh) * 2021-11-30 2022-03-04 重庆大学 高强度高阻尼Mg-Gd-Ni镁合金及其制备方法

Similar Documents

Publication Publication Date Title
JP5419098B2 (ja) ナノ結晶含有チタン合金およびその製造方法
JP5252583B2 (ja) Mg合金およびその製造方法
KR101405079B1 (ko) 마그네슘 합금
Khan et al. Achieving excellent superplasticity in an ultrafine-grained QE22 alloy at both high strain rate and low-temperature regimes
Lei et al. Enhancement of ductility in high strength Mg-Gd-Y-Zr alloy
Yu et al. Age-hardening and age-softening in nanocrystalline Mg-Gd-Y-Zr alloy
WO2013180122A1 (ja) マグネシウム合金、マグネシウム合金部材並びにその製造方法、マグネシウム合金の使用方法
JP6489576B2 (ja) マグネシウム基合金伸展材の製造方法
JPWO2019013226A1 (ja) マグネシウム基合金展伸材及びその製造方法
WO2011118127A1 (ja) マグネシウム系材料の処理方法およびマグネシウム合金部材
JP2016017183A (ja) マグネシウム基合金展伸材及びその製造方法
Lou et al. Microstructure and deformation mechanism of AZ31 Magnesium alloy under dynamic strain rate
Yan et al. Tailoring phase fractions of T’and η’phases in dual-phase strengthened Al-Zn-Mg-Cu alloy via ageing treatment
Torbati-Sarraf et al. Microstructural properties, thermal stability and superplasticity of a ZK60 Mg alloy processed by high-pressure torsion
Wang et al. Achieving ultrahigh strength in pre-ageing-extruded Mg-Gd-Y-Zn-Mn alloys via ageing treatment
Chen et al. Microstructure and property of stress aged Al–Cu single crystal under various applied stresses
Yamabe-Mitarai et al. Effect of forging temperature on microstructure evolution and tensile properties of Ti-17 alloys
Zhu et al. Microstructure and properties of Mg-12Gd-3Y-0.5 Zr alloys processed by ECAP and extrusion
Watanabe Effect of second-phase precipitates on local elongation in extruded magnesium alloys
Islamgaliev et al. Structure and fatigue properties of the Mg alloy AM60 processed by ECAP
Ball et al. Large strain deformation of Ni3Al+ B: IV. The effect of Zr and Fe additions
Cai et al. Microstructure-properties relationship in two Al-Mg-Si alloys through a combination of extrusion and aging
Umezawa Mechanical Properties of Thermomechanical Treated Hyper-Eutectic Al–Si–(Fe, Mn, Cu) Materials
Trudonoshyn et al. Design of a new casting alloys containing Li or Ti+ Zr and optimization of its heat treatment
PREDELAVE et al. The effect of thermo-mechanical processing on the structure, static mechanical properties and fatigue behaviour of pure Mg

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11758939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11758939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP