WO2011117922A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2011117922A1
WO2011117922A1 PCT/JP2010/002104 JP2010002104W WO2011117922A1 WO 2011117922 A1 WO2011117922 A1 WO 2011117922A1 JP 2010002104 W JP2010002104 W JP 2010002104W WO 2011117922 A1 WO2011117922 A1 WO 2011117922A1
Authority
WO
WIPO (PCT)
Prior art keywords
operation mode
heat medium
heat
refrigerant
opening
Prior art date
Application number
PCT/JP2010/002104
Other languages
English (en)
French (fr)
Inventor
森本裕之
山下浩司
本村祐治
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to ES10848317T priority Critical patent/ES2785060T3/es
Priority to JP2012506665A priority patent/JP5312681B2/ja
Priority to EP10848317.3A priority patent/EP2551611B1/en
Priority to PCT/JP2010/002104 priority patent/WO2011117922A1/ja
Priority to US13/581,776 priority patent/US9335072B2/en
Publication of WO2011117922A1 publication Critical patent/WO2011117922A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02732Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Definitions

  • the present invention relates to an air conditioner applied to, for example, a building multi air conditioner.
  • a refrigerant is circulated between an outdoor unit that is a heat source unit arranged outside a building and an indoor unit arranged inside a building.
  • the refrigerant coolant thermally radiated and absorbed heat, and air-conditioning object space was cooled or heated with the air heated and cooled.
  • HFC hydrofluorocarbon
  • CO 2 carbon dioxide
  • an air conditioner called a chiller
  • heat or heat is generated by a heat source device arranged outside the building.
  • water, antifreeze, etc. are heated and cooled by a heat exchanger arranged in the outdoor unit, and this is transferred to a fan coil unit, a panel heater, etc., which are indoor units, for cooling or heating (for example, Patent Documents) 1).
  • a waste heat recovery type chiller which is connected to four water pipes between the heat source unit and the indoor unit, supplies cooled and heated water at the same time, and can freely select cooling or heating in the indoor unit (For example, refer to Patent Document 2).
  • Japanese Patent Laying-Open No. 2005-140444 page 4, FIG. 1, etc.
  • JP-A-5-280818 (4th, 5th page, FIG. 1 etc.)
  • Japanese Patent Laid-Open No. 2001-289465 pages 5 to 8, FIG. 1, FIG. 2, etc.
  • JP 2003-343936 A (Page 5, FIG. 1)
  • the present invention has been made in order to solve the above-described problems, and has as its first object to provide an air conditioner that can save energy. Some aspects of the present invention have a second object to provide an air conditioner that can improve safety without circulating the refrigerant to the indoor unit or the vicinity of the indoor unit. Some aspects of the present invention provide an air conditioner that reduces connection piping between an outdoor unit and a branch unit (heat medium converter) or an indoor unit, improves workability, and improves energy efficiency. A third object is to provide an apparatus. Furthermore, a fourth object of some aspects of the present invention is to provide an air conditioner that reduces a large refrigerant noise that occurs when the operation mode is changed.
  • An air conditioner includes a compressor, a first refrigerant flow switching device, a heat source side heat exchanger, a plurality of expansion devices, a refrigerant side flow path of a plurality of heat exchangers between heat media, and a plurality of second refrigerants.
  • a flow path switching device is connected by a refrigerant pipe to circulate a heat source side refrigerant, a refrigerant circulation circuit, a pump, a use side heat exchanger, and a heat medium side flow path of a plurality of heat exchangers between heat mediums.
  • a heat medium circulation circuit that is connected by piping and circulates the heat medium, and in the plurality of heat medium heat exchangers, the heat source side refrigerant and the heat medium exchange heat with each other, A first operation mode that operates in a predetermined state and a second operation mode that operates in a state different from the first operation mode, and when switching the operation from the first operation mode to the second operation mode, The plurality of apertures than the operating state in the first operating mode After controlling any or all of the plurality of expansion devices and controlling any or all of the plurality of second flow path switching devices in a direction to reduce the pressure difference of the heat source side refrigerant before and after installation.
  • the second operation mode is set after elapse of a predetermined time.
  • the piping through which the heat medium circulates can be shortened and the conveyance power can be reduced, so that safety can be improved and energy can be saved.
  • the air conditioner of the present invention even when the heat medium flows out to the outside, only a small amount is required, and safety can be further improved.
  • the air conditioning apparatus of the present invention it is possible to reduce the refrigerant sound that is generated when the operation mode is switched, and to improve comfort.
  • FIG. 1 is a schematic diagram illustrating an installation example of an air conditioner according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating another installation example of the air-conditioning apparatus according to the embodiment of the present invention. Based on FIG.1 and FIG.2, the installation example of an air conditioning apparatus is demonstrated.
  • This air conditioner uses a refrigeration cycle (refrigerant circulation circuit A, heat medium circulation circuit B) that circulates refrigerant (heat source side refrigerant, heat medium) so that each indoor unit can be in the cooling mode or the heating mode as an operation mode. It can be freely selected.
  • refrigerant circulation circuit A, heat medium circulation circuit B that circulates refrigerant (heat source side refrigerant, heat medium) so that each indoor unit can be in the cooling mode or the heating mode as an operation mode. It can be freely selected.
  • refrigerant circulation circuit A, heat medium circulation circuit B that circulates refrigerant (heat source side refrigerant, heat medium) so that each indoor unit can be in the
  • the air conditioner according to the present embodiment includes one outdoor unit 1 that is a heat source unit, a plurality of indoor units 2, and heat that is interposed between the outdoor unit 1 and the indoor unit 2. And a medium converter 3.
  • the heat medium relay unit 3 performs heat exchange between the heat source side refrigerant and the heat medium.
  • the outdoor unit 1 and the heat medium relay unit 3 are connected by a refrigerant pipe 4 that conducts the heat source side refrigerant.
  • the heat medium relay unit 3 and the indoor unit 2 are connected by a pipe (heat medium pipe) 5 that conducts the heat medium.
  • the cold or warm heat generated by the outdoor unit 1 is delivered to the indoor unit 2 via the heat medium converter 3.
  • the air conditioner according to the present embodiment includes a single outdoor unit 1 that is a heat source unit, a plurality of indoor units 2, and a plurality of units interposed between the outdoor unit 1 and the indoor unit 2.
  • the heat medium converter 3 (parent heat medium converter 3a, child heat medium converter 3b) divided into two.
  • the outdoor unit 1 and the parent heat medium converter 3a are connected by a refrigerant pipe 4.
  • the parent heat medium converter 3 a and the child heat medium converter 3 b are connected by a refrigerant pipe 4.
  • the child heat medium converter 3 b and the indoor unit 2 are connected by a pipe 5.
  • the cold or warm heat generated by the outdoor unit 1 is delivered to the indoor unit 2 via the parent heat medium converter 3a and the child heat medium converter 3b.
  • the outdoor unit 1 is usually disposed in an outdoor space 6 that is a space outside a building 9 such as a building (for example, a rooftop), and supplies cold or hot heat to the indoor unit 2 via the heat medium converter 3. It is.
  • the indoor unit 2 is arranged at a position where cooling air or heating air can be supplied to the indoor space 7 that is a space (for example, a living room) inside the building 9, and the cooling air is supplied to the indoor space 7 that is the air-conditioning target space. Alternatively, heating air is supplied.
  • the heat medium relay unit 3 is configured as a separate housing from the outdoor unit 1 and the indoor unit 2 and is configured to be installed at a position different from the outdoor space 6 and the indoor space 7. Is connected to the refrigerant pipe 4 and the pipe 5, respectively, and transmits cold heat or hot heat supplied from the outdoor unit 1 to the indoor unit 2.
  • each unit (outdoor unit 1, indoor unit 2, and heat medium converter 3) is connected using two pipes (refrigerant pipe 4, pipe 5). Therefore, construction is easy.
  • the heat medium converter 3 includes one parent heat medium converter 3 a and two child heat medium converters 3 b (child heat medium converter 3 b (1), derived from the parent heat medium converter 3 a, It can also be divided into a sub-heat medium converter 3b (2)). In this way, a plurality of child heat medium converters 3b can be connected to one parent heat medium converter 3a. In this configuration, there are three refrigerant pipes 4 that connect the parent heat medium converter 3a and the child heat medium converter 3b. Details of this circuit will be described later in detail (see FIG. 4).
  • the heat medium converter 3 is installed in a space such as a ceiling (hereinafter simply referred to as a space 8) that is inside the building 9 but is different from the indoor space 7.
  • the state is shown as an example.
  • the heat medium relay 3 can also be installed in a common space where there is an elevator or the like.
  • 1 and 2 show an example in which the indoor unit 2 is a ceiling cassette type, but the present invention is not limited to this, and the indoor space 7 such as a ceiling embedded type or a ceiling suspended type is shown. Any type of air can be used as long as the air for heating or the air for cooling can be blown out directly or by a duct or the like.
  • the outdoor unit 1 and 2 show an example in which the outdoor unit 1 is installed in the outdoor space 6, but the present invention is not limited to this.
  • the outdoor unit 1 may be installed in an enclosed space such as a machine room with a ventilation opening. If the exhaust heat can be exhausted outside the building 9 by an exhaust duct, the outdoor unit 1 may be installed inside the building 9. It may be installed, or may be installed inside the building 9 when the water-cooled outdoor unit 1 is used. Even if the outdoor unit 1 is installed in such a place, no particular problem occurs.
  • the heat medium converter 3 can also be installed in the vicinity of the outdoor unit 1. However, it should be noted that if the distance from the heat medium converter 3 to the indoor unit 2 is too long, the power for transporting the heat medium becomes considerably large, and the effect of energy saving is diminished. Further, the number of connected outdoor units 1, indoor units 2, and heat medium converters 3 is not limited to the number illustrated in FIGS. 1 and 2, and the air conditioner according to the present embodiment is installed. The number may be determined according to the building 9.
  • FIG. 3 is a schematic circuit configuration diagram showing an example of a circuit configuration of the air-conditioning apparatus (hereinafter referred to as the air-conditioning apparatus 100) according to the present embodiment. Based on FIG. 3, the detailed structure of the air conditioning apparatus 100 is demonstrated.
  • the outdoor unit 1 and the heat medium relay 3 are connected to the refrigerant pipe 4 through the heat exchanger related to heat medium 15 a and the heat exchanger related to heat medium 15 b provided in the heat medium converter 3. Connected with.
  • the heat medium relay unit 3 and the indoor unit 2 are also connected by the pipe 5 via the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b.
  • the refrigerant pipe 4 will be described in detail later.
  • Outdoor unit 1 In the outdoor unit 1, a compressor 10, a first refrigerant flow switching device 11 such as a four-way valve, a heat source side heat exchanger 12, and an accumulator 19 are connected and connected in series through a refrigerant pipe 4. Yes.
  • the outdoor unit 1 is also provided with a first connection pipe 4a, a second connection pipe 4b, a check valve 13a, a check valve 13b, a check valve 13c, and a check valve 13d. Regardless of the operation that the indoor unit 2 requires, heat is provided by providing the first connection pipe 4a, the second connection pipe 4b, the check valve 13a, the check valve 13b, the check valve 13c, and the check valve 13d.
  • the flow of the heat source side refrigerant flowing into the medium converter 3 can be in a certain direction.
  • the compressor 10 sucks the heat source side refrigerant and compresses the heat source side refrigerant to be in a high temperature / high pressure state, and may be configured by, for example, an inverter compressor capable of capacity control.
  • the first refrigerant flow switching device 11 has a flow of the heat source side refrigerant in the heating operation mode (in the heating only operation mode and the heating main operation mode) and in the cooling operation mode (in the all cooling operation mode and the cooling main operation mode). ) To switch the flow of the heat source side refrigerant.
  • the heat source side heat exchanger 12 functions as an evaporator during heating operation, functions as a condenser (or radiator) during cooling operation, and between air supplied from a blower such as a fan (not shown) and the heat source side refrigerant. Heat exchange is performed to evaporate or condense the heat-source-side refrigerant.
  • the accumulator 19 is provided on the suction side of the compressor 10 and stores excess refrigerant due to a difference between the heating operation mode and the cooling operation mode, or excess refrigerant due to a transient change in operation.
  • the check valve 13d is provided in the refrigerant pipe 4 between the heat medium converter 3 and the first refrigerant flow switching device 11, and only in a predetermined direction (direction from the heat medium converter 3 to the outdoor unit 1).
  • the flow of the heat source side refrigerant is allowed.
  • the check valve 13 a is provided in the refrigerant pipe 4 between the heat source side heat exchanger 12 and the heat medium converter 3, and only on a heat source side in a predetermined direction (direction from the outdoor unit 1 to the heat medium converter 3).
  • the refrigerant flow is allowed.
  • the check valve 13b is provided in the first connection pipe 4a, and causes the heat source side refrigerant discharged from the compressor 10 to flow to the heat medium converter 3 during the heating operation.
  • the check valve 13 c is provided in the second connection pipe 4 b and causes the heat source side refrigerant returned from the heat medium relay unit 3 to flow to the suction side of the compressor 10 during the heating operation.
  • the first connection pipe 4a is a refrigerant pipe 4 between the first refrigerant flow switching device 11 and the check valve 13d, and a refrigerant between the check valve 13a and the heat medium relay unit 3.
  • the pipe 4 is connected.
  • the second connection pipe 4b includes a refrigerant pipe 4 between the check valve 13d and the heat medium relay unit 3, and a refrigerant pipe 4 between the heat source side heat exchanger 12 and the check valve 13a.
  • FIG. 3 shows an example in which the first connection pipe 4a, the second connection pipe 4b, the check valve 13a, the check valve 13b, the check valve 13c, and the check valve 13d are provided.
  • the present invention is not limited to this, and these are not necessarily provided.
  • Each indoor unit 2 is equipped with a use side heat exchanger 26.
  • the use side heat exchanger 26 is connected to the heat medium flow control device 25 and the second heat medium flow switching device 23 of the heat medium converter 3 by the pipe 5.
  • the use-side heat exchanger 26 performs heat exchange between air supplied from a blower such as a fan (not shown) and a heat medium, and generates heating air or cooling air to be supplied to the indoor space 7. To do.
  • FIG. 3 shows an example in which four indoor units 2 are connected to the heat medium relay unit 3, and are illustrated as an indoor unit 2a, an indoor unit 2b, an indoor unit 2c, and an indoor unit 2d from the bottom of the page. ing.
  • the use side heat exchanger 26 also uses the use side heat exchanger 26a, the use side heat exchanger 26b, the use side heat exchanger 26c, and the use side heat exchange from the lower side of the drawing. It is shown as a container 26d. 1 and 2, the number of connected indoor units 2 is not limited to four as shown in FIG.
  • the heat medium relay unit 3 includes two heat exchangers 15 between heat mediums, two expansion devices 16, two switchgears (first switchgear and second switchgear) 17, and two second refrigerant flows.
  • the path switching device 18, the two pumps 21, the four first heat medium flow switching devices 22, the four second heat medium flow switching devices 23, and the four heat medium flow control devices 25 are mounted. Has been.
  • the two heat exchangers between heat media 15 function as a condenser (heat radiator) or an evaporator, and heat is generated by the heat source side refrigerant and the heat medium. Exchange is performed, and the cold or warm heat generated in the outdoor unit 1 and stored in the heat source side refrigerant is transmitted to the heat medium.
  • the heat exchanger related to heat medium 15a is provided between the expansion device 16a and the second refrigerant flow switching device 18a in the refrigerant circuit A and serves to cool the heat medium in the cooling / heating mixed operation mode. is there.
  • the heat exchanger related to heat medium 15b is provided between the expansion device 16b and the second refrigerant flow switching device 18b in the refrigerant circuit A, and serves to heat the heat medium in the cooling / heating mixed operation mode. Is.
  • the heat exchanger related to heat medium 15b is provided between the expansion device 16b and the second refrigerant flow switching device 18b in the refrigerant circuit A, and serves to heat the heat medium in the cooling
  • the two expansion devices 16 have functions as pressure reducing valves and expansion valves, and expand the heat source side refrigerant by reducing the pressure.
  • the expansion device 16a is provided on the upstream side of the heat exchanger related to heat medium 15a in the flow of the heat source side refrigerant during the cooling operation.
  • the expansion device 16b is provided on the upstream side of the heat exchanger related to heat medium 15b in the flow of the heat source side refrigerant during the cooling operation.
  • the two expansion devices 16 may be configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
  • the two opening / closing devices 17 are constituted by two-way valves or the like, and open / close the refrigerant pipe 4.
  • the opening / closing device 17a functions as a first opening / closing device and the opening / closing device 17b functions as a second opening / closing device, and the flow of the refrigerant is switched by opening / closing being controlled.
  • the opening / closing device 17a is provided in the refrigerant pipe 4 on the inlet side of the heat source side refrigerant.
  • the opening / closing device 17b is provided in a pipe connecting the refrigerant pipe 4 on the inlet side and the outlet side of the heat source side refrigerant.
  • the two second refrigerant flow switching devices 18 are configured by, for example, a four-way valve or the like, and flow the heat source side refrigerant according to the operation mode. It is to switch.
  • the second refrigerant flow switching device 18a is provided on the downstream side of the heat exchanger related to heat medium 15a in the flow of the heat source side refrigerant during the cooling operation.
  • the second refrigerant flow switching device 18b is provided on the downstream side of the heat exchanger related to heat medium 15b in the flow of the heat source side refrigerant in the cooling only operation mode.
  • the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b are connected to the high-pressure pipe 40a and the low-pressure pipe 40b, and communicate with the high-pressure pipe 40a by turning on / off electricity, You can communicate.
  • the first refrigerant flow switching device 18a when the first refrigerant flow switching device 18a is in the OFF state, the first refrigerant flow switching device 18a is in communication with the low-pressure pipe 40b, and when in the ON state, it is in communication with the high-pressure pipe 40a.
  • the second refrigerant flow switching device 18b when the second refrigerant flow switching device 18b is in the OFF state, the second refrigerant flow switching device 18b is in communication with the high-pressure pipe 40a, and when in the ON state, it is in communication with the low-pressure pipe 40b.
  • the two pumps 21 (pump 21a and pump 21b) circulate a heat medium that conducts through the pipe 5.
  • the pump 21 a is provided in the pipe 5 between the heat exchanger related to heat medium 15 a and the second heat medium flow switching device 23.
  • the pump 21 b is provided in the pipe 5 between the heat exchanger related to heat medium 15 b and the second heat medium flow switching device 23.
  • the two pumps 21 may be configured by, for example, pumps capable of capacity control, and the flow rate thereof may be adjusted depending on the load in the indoor unit 2.
  • the four first heat medium flow switching devices 22 are configured by three-way valves or the like, and switch the heat medium flow channels. Is.
  • the first heat medium flow switching device 22 is provided in a number (here, four) according to the number of indoor units 2 installed. In the first heat medium flow switching device 22, one of the three sides is in the heat exchanger 15a, one of the three is in the heat exchanger 15b, and one of the three is in the heat medium flow rate.
  • Each is connected to the adjusting device 25 and provided on the outlet side of the heat medium flow path of the use side heat exchanger 26. In other words, the first heat medium flow switching device 22 switches the flow path of the heat medium flowing into the indoor unit 2 between the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b.
  • the first heat medium flow switching device 22a, the first heat medium flow switching device 22b, the first heat medium flow switching device 22c, and the first heat medium flow from the lower side of the drawing. This is illustrated as a switching device 22d.
  • the switching of the heat medium flow path includes not only complete switching from one to the other but also partial switching from one to the other.
  • the four second heat medium flow switching devices 23 are configured by three-way valves or the like, and switch the flow path of the heat medium. Is.
  • the number of the second heat medium flow switching devices 23 is set according to the number of installed indoor units 2 (here, four).
  • the heat exchanger is connected to the exchanger 26 and provided on the inlet side of the heat medium flow path of the use side heat exchanger 26. That is, the second heat medium flow switching device 23, together with the first heat medium flow switching device 22, performs heat exchange between the heat medium heat exchanger 15 a and the heat medium between the heat medium flowing into the indoor unit 2. It switches between devices 15b.
  • the second heat medium flow switching device 23a, the second heat medium flow switching device 23b, the second heat medium flow switching device 23c, and the second heat medium flow from the lower side of the drawing. This is illustrated as a switching device 23d.
  • the switching of the heat medium flow path includes not only complete switching from one to the other but also partial switching from one to the other.
  • the four heat medium flow control devices 25 are composed of two-way valves or the like that can control the opening area, and control the flow rate of the heat medium flowing through the pipe 5. To do.
  • the number of the heat medium flow control devices 25 is set according to the number of indoor units 2 installed (four in this case).
  • One of the heat medium flow control devices 25 is connected to the use side heat exchanger 26 and the other is connected to the first heat medium flow switching device 22, and is connected to the outlet side of the heat medium flow channel of the use side heat exchanger 26. Is provided.
  • the heat medium flow control device 25 adjusts the amount of the heat medium flowing into the indoor unit 2 according to the temperature of the heat medium flowing into the indoor unit 2 and the temperature of the heat medium flowing out, so that the optimum heat according to the indoor load is adjusted.
  • the medium amount can be provided to the indoor unit 2.
  • the heat medium flow rate adjustment device 25a, the heat medium flow rate adjustment device 25b, the heat medium flow rate adjustment device 25c, and the heat medium flow rate adjustment device 25d are illustrated from the lower side of the drawing. Further, the heat medium flow control device 25 may be provided on the inlet side of the heat medium flow path of the use side heat exchanger 26. Further, when the indoor unit 2 does not require a load such as stop or thermo OFF, the heat medium supply to the indoor unit 2 can be stopped by fully closing the heat medium flow control device 25.
  • the heat medium relay unit 3 is provided with various detection means (two first temperature sensors 31, four second temperature sensors 34, four third temperature sensors 35, and a pressure sensor 36). Information (temperature information, pressure information) detected by these detection means is sent to a control device (not shown) that performs overall control of the operation of the air conditioner 100, and the driving frequency of the compressor 10 and the fan of the illustration not shown. Rotation speed, switching of the first refrigerant flow switching device 11, driving frequency of the pump 21, switching of the second refrigerant flow switching device 18, switching of the flow path of the heat medium, adjustment of the heat medium flow rate of the indoor unit 2, etc. It will be used for control.
  • the two first temperature sensors 31 are the heat medium flowing out from the heat exchanger related to heat medium 15, that is, the temperature of the heat medium at the outlet of the heat exchanger related to heat medium 15.
  • a thermistor may be used.
  • the first temperature sensor 31a is provided in the pipe 5 on the inlet side of the pump 21a.
  • the first temperature sensor 31b is provided in the pipe 5 on the inlet side of the pump 21b.
  • the four second temperature sensors 34 are provided between the first heat medium flow switching device 22 and the heat medium flow control device 25, and use side heat exchangers.
  • the temperature of the heat medium that has flowed out of the heater 26 is detected, and it may be constituted by a thermistor or the like.
  • the number of the second temperature sensors 34 (four here) according to the number of indoor units 2 installed is provided. In correspondence with the indoor unit 2, the second temperature sensor 34a, the second temperature sensor 34b, the second temperature sensor 34c, and the second temperature sensor 34d are illustrated from the lower side of the drawing.
  • the four third temperature sensors 35 are provided on the inlet side or the outlet side of the heat source side refrigerant of the heat exchanger related to heat medium 15, and the heat exchanger related to heat medium 15
  • the temperature of the heat source side refrigerant flowing into the heat source or the temperature of the heat source side refrigerant flowing out of the heat exchanger related to heat medium 15 is detected, and may be composed of a thermistor or the like.
  • the third temperature sensor 35a is provided between the heat exchanger related to heat medium 15a and the second refrigerant flow switching device 18a.
  • the third temperature sensor 35b is provided between the heat exchanger related to heat medium 15a and the expansion device 16a.
  • the third temperature sensor 35c is provided between the heat exchanger related to heat medium 15b and the second refrigerant flow switching device 18b.
  • the third temperature sensor 35d is provided between the heat exchanger related to heat medium 15b and the expansion device 16b.
  • the pressure sensor 36 is provided between the heat exchanger related to heat medium 15b and the expansion device 16b, and between the heat exchanger related to heat medium 15b and the expansion device 16b. The pressure of the flowing heat source side refrigerant is detected.
  • the control device (not shown) is constituted by a microcomputer or the like, and based on detection information from various detection means and instructions from the remote controller, the driving frequency of the compressor 10 and the rotational speed of the blower (including ON / OFF) , Switching of the first refrigerant flow switching device 11, driving of the pump 21, opening of the expansion device 16, opening / closing of the opening / closing device 17, switching of the second refrigerant flow switching device 18, first heat medium flow switching device 22 Switching, switching of the second heat medium flow switching device 23, driving of the heat medium flow control device 25, etc. are controlled, and each operation mode to be described later is executed.
  • the control device may be provided for each unit, or may be provided in the outdoor unit 1 or the heat medium relay unit 3.
  • the pipe 5 that conducts the heat medium is composed of one that is connected to the heat exchanger related to heat medium 15a and one that is connected to the heat exchanger related to heat medium 15b.
  • the pipe 5 is branched (here, four branches each) according to the number of indoor units 2 connected to the heat medium relay unit 3.
  • the pipe 5 is connected by a first heat medium flow switching device 22 and a second heat medium flow switching device 23.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 By controlling the first heat medium flow switching device 22 and the second heat medium flow switching device 23, the heat medium from the heat exchanger related to heat medium 15a flows into the use-side heat exchanger 26, or the heat medium Whether the heat medium from the intermediate heat exchanger 15b flows into the use side heat exchanger 26 is determined.
  • the refrigerant in the compressor 10 the first refrigerant flow switching device 11, the heat source side heat exchanger 12, the switching device 17, the second refrigerant flow switching device 18, and the heat exchanger related to heat medium 15a.
  • the flow path, the expansion device 16 and the accumulator 19 are connected by the refrigerant pipe 4 to constitute the refrigerant circulation circuit A.
  • the switching device 23 is connected by a pipe 5 to constitute a heat medium circulation circuit B. That is, a plurality of usage-side heat exchangers 26 are connected in parallel to each of the heat exchangers between heat media 15, and the heat medium circulation circuit B has a plurality of systems.
  • the outdoor unit 1 and the heat medium relay unit 3 are connected via the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b provided in the heat medium converter 3.
  • the heat medium relay unit 3 and the indoor unit 2 are also connected via the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b. That is, in the air conditioner 100, the heat source side refrigerant circulating in the refrigerant circuit A and the heat medium circulating in the heat medium circuit B exchange heat in the intermediate heat exchanger 15a and the intermediate heat exchanger 15b. It is like that.
  • FIG. 4 is a schematic circuit configuration diagram showing another example of the circuit configuration of the air-conditioning apparatus (hereinafter referred to as air-conditioning apparatus 100A) according to the embodiment of the present invention.
  • air-conditioning apparatus 100A the circuit configuration of the air conditioner 100 ⁇ / b> A when the heat medium relay unit 3 is divided into a parent heat medium relay unit 3 a and a child heat medium relay unit 3 b will be described.
  • the heat medium relay unit 3 is configured with a parent heat medium relay unit 3 a and a child heat medium relay unit 3 b with separate housings. By configuring in this way, a plurality of child heat medium converters 3b can be connected to one parent heat medium converter 3a as shown in FIG.
  • the main heat exchanger 3a is provided with a gas-liquid separator 14 and an expansion device 16c. Other components are mounted on the child heat medium converter 3b.
  • the gas-liquid separator 14 includes one refrigerant pipe 4 connected to the outdoor unit 1, and two refrigerants connected to the intermediate heat exchanger 15a and the intermediate heat exchanger 15b of the child heat medium converter 3b.
  • the heat source side refrigerant connected to the pipe 4 and supplied from the outdoor unit 1 is separated into a vapor refrigerant and a liquid refrigerant.
  • the expansion device 16c is provided on the downstream side in the flow of the liquid refrigerant in the gas-liquid separator 14, has a function as a pressure reducing valve or an expansion valve, expands the heat source side refrigerant by reducing the pressure, and is mixed with cooling and heating. During operation, the outlet of the expansion device 16c is controlled to a medium pressure.
  • the expansion device 16c may be configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve. With this configuration, a plurality of child heat medium converters 3b can be connected to the parent heat medium converter 3a.
  • the air conditioner 100 can perform a cooling operation or a heating operation in the indoor unit 2 based on an instruction from each indoor unit 2. That is, the air conditioning apparatus 100 can perform the same operation for all the indoor units 2 and can perform different operations for each of the indoor units 2.
  • description is abbreviate
  • the air conditioner 100 also includes the air conditioner 100A.
  • the operation mode executed by the air conditioner 100 includes a cooling only operation mode in which all the driven indoor units 2 execute a cooling operation, and a heating only operation in which all the driven indoor units 2 execute a heating operation.
  • each operation mode is demonstrated with the flow of a heat-source side refrigerant
  • FIG. 5 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the cooling only operation mode.
  • the cooling only operation mode will be described by taking as an example a case where a cooling load is generated only in the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the pipes indicated by the thick lines indicate the pipes through which the refrigerant (heat source side refrigerant and heat medium) flows.
  • the flow direction of the heat source side refrigerant is indicated by solid line arrows
  • the flow direction of the heat medium is indicated by broken line arrows.
  • Table 1 shows operations of the second refrigerant flow switching device 18a, the second refrigerant flow switching device 18b, the opening / closing device 17a, and the opening / closing device 17b in the cooling only operation mode.
  • the first refrigerant flow switching device 11 is switched so that the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed.
  • the heat medium circulates between the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b and the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the operations of the second refrigerant flow switching device 18a, the second refrigerant flow switching device 18b, the opening / closing device 17a, and the opening / closing device 17b are as shown in Table 1.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11. Then, the heat source side heat exchanger 12 condenses and liquefies while radiating heat to the outdoor air, and becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 through the check valve 13a, and flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the high-pressure liquid refrigerant that has flowed into the heat medium relay unit 3 is branched after passing through the opening / closing device 17a and expanded by the expansion device 16a and the expansion device 16b to become a low-temperature / low-pressure two-phase refrigerant.
  • This two-phase refrigerant flows into each of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b acting as an evaporator, and absorbs heat from the heat medium circulating in the heat medium circulation circuit B. It becomes a low-temperature, low-pressure gas refrigerant while cooling.
  • the gas refrigerant flowing out of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b flows out of the heat medium converter 3 via the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b.
  • the refrigerant flows into the outdoor unit 1 again through the refrigerant pipe 4.
  • the refrigerant flowing into the outdoor unit 1 passes through the check valve 13d and is sucked into the compressor 10 again via the first refrigerant flow switching device 11 and the accumulator 19.
  • the opening of the expansion device 16a is such that the superheat (superheat degree) obtained as the difference between the temperature detected by the third temperature sensor 35a and the temperature detected by the third temperature sensor 35b is constant. Be controlled.
  • the opening degree of the expansion device 16b is controlled so that the superheat obtained as the difference between the temperature detected by the third temperature sensor 35c and the temperature detected by the third temperature sensor 35d is constant.
  • the opening / closing device 17a is open and the opening / closing device 17b is closed.
  • the flow of the heat medium in the heat medium circuit B will be described.
  • the cold heat of the heat source side refrigerant is transmitted to the heat medium in both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b, and the cooled heat medium is piped 5 by the pump 21a and the pump 21b.
  • the inside will be allowed to flow.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b.
  • the heat medium absorbs heat from the indoor air in the use side heat exchanger 26a and the use side heat exchanger 26b, thereby cooling the indoor space 7.
  • the heat medium flows out of the use-side heat exchanger 26a and the use-side heat exchanger 26b and flows into the heat medium flow control device 25a and the heat medium flow control device 25b.
  • the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium flowing out from the heat medium flow control device 25a and the heat medium flow control device 25b passes through the first heat medium flow switching device 22a and the first heat medium flow switching device 22b, and the heat exchanger related to heat medium 15a. And flows into the heat exchanger related to heat medium 15b, and is sucked into the pump 21a and the pump 21b again.
  • the heat medium is directed from the second heat medium flow switching device 23 to the first heat medium flow switching device 22 via the heat medium flow control device 25.
  • the air conditioning load required in the indoor space 7 includes the temperature detected by the first temperature sensor 31a, the temperature detected by the first temperature sensor 31b, and the temperature detected by the second temperature sensor 34. It is possible to cover by controlling so that the difference between the two is kept at the target value.
  • the outlet temperature of the heat exchanger related to heat medium 15 either the temperature of the first temperature sensor 31a or the first temperature sensor 31b may be used, or the average temperature thereof may be used.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 ensure a flow path that flows to both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b.
  • the intermediate opening is set.
  • FIG. 6 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the heating only operation mode.
  • the heating only operation mode will be described by taking as an example a case where a thermal load is generated only in the use side heat exchanger 26a and the use side heat exchanger 26b.
  • tube represented by the thick line has shown the piping through which a refrigerant
  • the flow direction of the heat source side refrigerant is indicated by solid line arrows, and the flow direction of the heat medium is indicated by broken line arrows.
  • Table 2 shows operations of the second refrigerant flow switching device 18a, the second refrigerant flow switching device 18b, the opening / closing device 17a, and the opening / closing device 17b in the heating only operation mode.
  • the first refrigerant flow switching device 11 uses the heat source side refrigerant discharged from the compressor 10 without passing through the heat source side heat exchanger 12. It switches so that it may flow into converter 3.
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed.
  • the heat medium circulates between the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b and the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the operations of the second refrigerant flow switching device 18a, the second refrigerant flow switching device 18b, the opening / closing device 17a, and the opening / closing device 17b are as shown in Table 2.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11, conducts through the first connection pipe 4 a, passes through the check valve 13 b, and flows out of the outdoor unit 1.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat medium relay unit 3 is branched and passes through the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b, and the heat exchanger related to heat medium 15a and the heat medium. It flows into each of the intermediate heat exchangers 15b.
  • the high-temperature and high-pressure gas refrigerant flowing into the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b is condensed and liquefied while dissipating heat to the heat medium circulating in the heat medium circulation circuit B, and becomes a high-pressure liquid refrigerant. .
  • the liquid refrigerant flowing out of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b is expanded by the expansion device 16a and the expansion device 16b to become a low-temperature, low-pressure two-phase refrigerant.
  • the two-phase refrigerant flows out of the heat medium relay unit 3 through the opening / closing device 17b, and flows into the outdoor unit 1 through the refrigerant pipe 4 again.
  • the refrigerant flowing into the outdoor unit 1 is conducted through the second connection pipe 4b, passes through the check valve 13c, and flows into the heat source side heat exchanger 12 that functions as an evaporator.
  • the refrigerant that has flowed into the heat source side heat exchanger 12 absorbs heat from the outdoor air by the heat source side heat exchanger 12, and becomes a low-temperature and low-pressure gas refrigerant.
  • the low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the expansion device 16a has a constant subcool (degree of subcooling) obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35b.
  • the opening degree is controlled.
  • the expansion device 16b has an opening degree so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35d is constant. Be controlled.
  • the opening / closing device 17a is closed and the opening / closing device 17b is open.
  • the saturation temperature at the intermediate position of the heat exchanger related to heat medium 15 can be measured, the temperature at the intermediate position may be used instead of the pressure sensor 36, and the system can be configured at low cost.
  • the heat of the heat source side refrigerant is transmitted to the heat medium in both the heat exchanger 15a and the heat exchanger 15b, and the heated heat medium is piped 5 by the pump 21a and the pump 21b.
  • the inside will be allowed to flow.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b.
  • the heat medium radiates heat to the indoor air in the use side heat exchanger 26a and the use side heat exchanger 26b, thereby heating the indoor space 7.
  • the heat medium flows out of the use-side heat exchanger 26a and the use-side heat exchanger 26b and flows into the heat medium flow control device 25a and the heat medium flow control device 25b.
  • the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium flowing out from the heat medium flow control device 25a and the heat medium flow control device 25b passes through the first heat medium flow switching device 22a and the first heat medium flow switching device 22b, and the heat exchanger related to heat medium 15a. And flows into the heat exchanger related to heat medium 15b, and is sucked into the pump 21a and the pump 21b again.
  • the heat medium is directed from the second heat medium flow switching device 23 to the first heat medium flow switching device 22 via the heat medium flow control device 25.
  • the air conditioning load required in the indoor space 7 includes the temperature detected by the first temperature sensor 31a, the temperature detected by the first temperature sensor 31b, and the temperature detected by the second temperature sensor 34. It is possible to cover by controlling so that the difference between the two is kept at the target value.
  • the outlet temperature of the heat exchanger related to heat medium 15 either the temperature of the first temperature sensor 31a or the first temperature sensor 31b may be used, or the average temperature thereof may be used.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 ensure a flow path that flows to both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b.
  • the intermediate opening is set.
  • the usage-side heat exchanger 26a should be controlled by the temperature difference between the inlet and the outlet, but the temperature of the heat medium on the inlet side of the usage-side heat exchanger 26 is detected by the first temperature sensor 31b. By using the first temperature sensor 31b, the number of temperature sensors can be reduced and the system can be configured at low cost.
  • FIG. 7 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the cooling main operation mode.
  • the cooling main operation mode will be described by taking as an example a case where a cooling load is generated in the use side heat exchanger 26a and a heating load is generated in the use side heat exchanger 26b.
  • a pipe represented by a thick line shows a pipe through which the refrigerant (heat source side refrigerant and heat medium) circulates.
  • the flow direction of the heat source side refrigerant is indicated by solid line arrows, and the flow direction of the heat medium is indicated by broken line arrows.
  • Table 3 shows operations of the second refrigerant flow switching device 18a, the second refrigerant flow switching device 18b, the opening / closing device 17a, and the opening / closing device 17b in the cooling main operation mode.
  • the first refrigerant flow switching device 11 is switched so that the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed.
  • the heat medium is circulated between the heat exchanger related to heat medium 15a and the use side heat exchanger 26a, and between the heat exchanger related to heat medium 15b and the use side heat exchanger 26b.
  • the operations of the second refrigerant flow switching device 18a, the second refrigerant flow switching device 18b, the opening / closing device 17a, and the opening / closing device 17b are as shown in Table 3.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11. Then, the heat source side heat exchanger 12 condenses while radiating heat to the outdoor air, and becomes a two-phase refrigerant.
  • the two-phase refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 through the check valve 13a, and flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the two-phase refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchanger related to heat medium 15b that acts as a condenser through the second refrigerant flow switching device 18b.
  • the two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15b is condensed and liquefied while dissipating heat to the heat medium circulating in the heat medium circuit B, and becomes liquid refrigerant.
  • the liquid refrigerant flowing out of the heat exchanger related to heat medium 15b is expanded by the expansion device 16b and becomes a low-pressure two-phase refrigerant. This low-pressure two-phase refrigerant flows into the heat exchanger related to heat medium 15a acting as an evaporator via the expansion device 16a.
  • the low-pressure two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15a absorbs heat from the heat medium circulating in the heat medium circuit B, and becomes a low-pressure gas refrigerant while cooling the heat medium.
  • the gas refrigerant flows out of the heat exchanger related to heat medium 15a, flows out of the heat medium converter 3 via the second refrigerant flow switching device 18a, and flows into the outdoor unit 1 again through the refrigerant pipe 4.
  • the refrigerant flowing into the outdoor unit 1 passes through the check valve 13d and is sucked into the compressor 10 again via the first refrigerant flow switching device 11 and the accumulator 19.
  • the opening degree of the expansion device 16b is controlled so that the superheat obtained as the difference between the temperature detected by the third temperature sensor 35a and the temperature detected by the third temperature sensor 35b becomes constant.
  • the expansion device 16a is fully open, the opening / closing device 17a is closed, and the opening / closing device 17b is closed.
  • the expansion device 16b controls the opening degree so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35d is constant. May be.
  • the expansion device 16b may be fully opened, and the superheat or subcool may be controlled by the expansion device 16a.
  • the heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15b, and the heated heat medium is caused to flow in the pipe 5 by the pump 21b.
  • the cold heat of the heat source side refrigerant is transmitted to the heat medium by the heat exchanger related to heat medium 15a, and the cooled heat medium is caused to flow in the pipe 5 by the pump 21a.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b.
  • the heat medium radiates heat to the indoor air, thereby heating the indoor space 7.
  • the indoor space 7 is cooled by the heat medium absorbing heat from the indoor air.
  • the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium whose temperature has slightly decreased after passing through the use side heat exchanger 26b flows into the heat exchanger related to heat medium 15b through the heat medium flow control device 25b and the first heat medium flow switching device 22b, and again.
  • the heat medium whose temperature has slightly increased after passing through the use side heat exchanger 26a flows into the heat exchanger related to heat medium 15a through the heat medium flow control device 25a and the first heat medium flow switching device 22a, and again. It is sucked into the pump 21a.
  • the warm heat medium and the cold heat medium are not mixed by the action of the first heat medium flow switching device 22 and the second heat medium flow switching device 23, and the use side has a heat load and a heat load, respectively. It is introduced into the heat exchanger 26.
  • the first heat medium flow switching device 22 from the second heat medium flow switching device 23 via the heat medium flow control device 25 on both the heating side and the cooling side.
  • the heat medium is flowing in the direction to
  • the air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31b on the heating side and the temperature detected by the second temperature sensor 34 on the heating side, This can be covered by controlling the difference between the temperature detected by the two temperature sensor 34 and the temperature detected by the first temperature sensor 31a so as to keep the target value.
  • FIG. 8 is a refrigerant circuit diagram showing a refrigerant flow when the air-conditioning apparatus 100 is in the heating main operation mode.
  • the heating main operation mode will be described by taking as an example a case where a thermal load is generated in the use side heat exchanger 26a and a cold load is generated in the use side heat exchanger 26b.
  • a pipe represented by a thick line shows a pipe through which the refrigerant (heat source side refrigerant and heat medium) circulates.
  • the flow direction of the heat source side refrigerant is indicated by solid line arrows, and the flow direction of the heat medium is indicated by broken line arrows.
  • Table 4 shows operations of the second refrigerant flow switching device 18a, the second refrigerant flow switching device 18b, the opening / closing device 17a, and the opening / closing device 17b in the heating only operation mode.
  • the first refrigerant flow switching device 11 uses the heat source side refrigerant discharged from the compressor 10 without passing through the heat source side heat exchanger 12. It switches so that it may flow into converter 3.
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed.
  • the heat medium circulates between the heat exchanger related to heat medium 15a and the use side heat exchanger 26b and between the heat exchanger related to heat medium 15a and the use side heat exchanger 26b.
  • the operations of the second refrigerant flow switching device 18a, the second refrigerant flow switching device 18b, the opening / closing device 17a, and the opening / closing device 17b are as shown in Table 4.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11, conducts through the first connection pipe 4 a, passes through the check valve 13 b, and flows out of the outdoor unit 1.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchanger related to heat medium 15b that acts as a condenser through the second refrigerant flow switching device 18b.
  • the gas refrigerant flowing into the heat exchanger related to heat medium 15b is condensed and liquefied while dissipating heat to the heat medium circulating in the heat medium circuit B, and becomes liquid refrigerant.
  • the liquid refrigerant flowing out of the heat exchanger related to heat medium 15b is expanded by the expansion device 16b and becomes a low-pressure two-phase refrigerant.
  • This low-pressure two-phase refrigerant flows into the heat exchanger related to heat medium 15a acting as an evaporator via the expansion device 16a.
  • the low-pressure two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15a evaporates by absorbing heat from the heat medium circulating in the heat medium circuit B, thereby cooling the heat medium.
  • This low-pressure two-phase refrigerant flows out of the heat exchanger related to heat medium 15a, flows out of the heat medium converter 3 via the second refrigerant flow switching device 18a, and flows again into the outdoor unit 1 through the refrigerant pipe 4. To do.
  • the refrigerant that has flowed into the outdoor unit 1 passes through the check valve 13c and flows into the heat source side heat exchanger 12 that functions as an evaporator. And the refrigerant
  • the low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the expansion device 16b has an opening degree so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35b is constant. Be controlled.
  • the expansion device 16a is fully open, the opening / closing device 17a is closed, and the opening / closing device 17b is closed. Note that the expansion device 16b may be fully opened, and the subcooling may be controlled by the expansion device 16a.
  • the heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15b, and the heated heat medium is caused to flow in the pipe 5 by the pump 21b.
  • the cold heat of the heat source side refrigerant is transmitted to the heat medium by the heat exchanger related to heat medium 15a, and the cooled heat medium is caused to flow in the pipe 5 by the pump 21a.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b.
  • the heat medium absorbs heat from the indoor air, thereby cooling the indoor space 7. Moreover, in the use side heat exchanger 26a, the heat medium radiates heat to the indoor air, thereby heating the indoor space 7.
  • the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium whose temperature has slightly increased after passing through the use side heat exchanger 26b flows into the heat exchanger related to heat medium 15a through the heat medium flow control device 25b and the first heat medium flow switching device 22b, and again.
  • the heat medium whose temperature has slightly decreased after passing through the use side heat exchanger 26a flows into the heat exchanger related to heat medium 15b through the heat medium flow control device 25a and the first heat medium flow switching device 22a, and again. It is sucked into the pump 21a.
  • the warm heat medium and the cold heat medium are not mixed by the action of the first heat medium flow switching device 22 and the second heat medium flow switching device 23, and the use side has a heat load and a heat load, respectively. It is introduced into the heat exchanger 26.
  • the first heat medium flow switching device 22 from the second heat medium flow switching device 23 via the heat medium flow control device 25 on both the heating side and the cooling side.
  • the heat medium is flowing in the direction to
  • the air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31b on the heating side and the temperature detected by the second temperature sensor 34 on the heating side, This can be covered by controlling the difference between the temperature detected by the two temperature sensor 34 and the temperature detected by the first temperature sensor 31a as a target value.
  • the air conditioner 100 has several operation modes. In these operation modes, the heat source side refrigerant flows through the refrigerant pipe 4 that connects the outdoor unit 1 and the heat medium relay unit 3.
  • the high-pressure side pipe is referred to as a high-pressure pipe 40a
  • the low-pressure side pipe is referred to as a low-pressure pipe 40b in FIGS. .
  • a heat medium such as water or antifreeze liquid flows through the pipe 5 connecting the heat medium converter 3 and the indoor unit 2.
  • the unit stop mode described below means a mode for executing stop control of each actuator when the air conditioner 100 is stopped.
  • the operation mode before switching the operation mode is the first operation mode, and the operation mode after switching is the second operation mode.
  • the high-pressure pipe 40a through which the high-pressure refrigerant flows is branched upstream of the switchgear 17a, one is connected to the switchgear 17a, and the other is one of the second refrigerant flow switching device 18.
  • the low-pressure pipe 40 b through which the low-pressure refrigerant flows is connected to one connection port of the second refrigerant flow switching device 18.
  • the second refrigerant flow switching device 18a communicates with the low-pressure pipe 40b in the OFF state and communicates with the high-pressure pipe 40a in the ON state.
  • the second refrigerant flow switching device 18b is in communication with the high-pressure pipe 40a in the OFF state, and in communication with the low-pressure pipe 40b in the ON state.
  • the opening / closing device 17a is maintained in the open state and the second refrigerant flow switching device 18a is maintained in the OFF state (a state communicating with the low-pressure pipe 40b). To do. Further, in the air conditioner 100, when switching from the cooling only operation mode to the unit stop mode, the second refrigerant flow switching device 18b is switched from the ON state (the state communicating with the low pressure pipe 40b) to the OFF state (the communication with the high pressure pipe 40a). In other words, the apertures of the expansion device 16a and the expansion device 16b are made larger than the opening before switching.
  • the opening degree of the expansion device 16 is preferably as large as possible, it is desirable that the opening is fully opened. Then, after a predetermined time has elapsed, the opening of the expansion device 16a and the expansion device 16b is set to the predetermined opening in the unit stop mode, and the opening / closing device 17a is closed.
  • the differential pressure between the expansion device 16a and the expansion device 16b can be reduced. Therefore, when switching from the cooling only operation mode to the unit stop mode, the air-conditioning apparatus 100 can significantly reduce refrigerant noise.
  • Cooling mode (second mode) In the cooling only operation mode, the first refrigerant flow switching device 18a is in an OFF state (a state communicating with the low pressure pipe 40b), and the second refrigerant flow switching device 18b is in an ON state (a state communicating with the low pressure pipe 40b). Yes (see Table 1). On the other hand, in the cooling main operation mode, since the heat exchanger related to heat medium 15b acts as a condenser, the second refrigerant flow switching device 18b is in an OFF state (a state communicating with the high-pressure pipe 40a).
  • the second refrigerant flow switching device 18b is switched from the low pressure pipe 40b to the high pressure pipe 40a.
  • the heat exchanger related to heat medium 15b changes from a low pressure state to a high pressure state all at once, a large pressure difference is generated before and after the expansion device 16b, and a large refrigerant noise is generated.
  • the opening / closing device 17a when switching from the cooling only operation mode to the cooling main operation mode, the opening / closing device 17a is in the open state, and the second refrigerant flow switching device 18a is in the OFF state (a state communicating with the low pressure pipe 40b). maintain. Further, in the air conditioner 100, when switching from the cooling only operation mode to the cooling main operation mode, the second refrigerant flow switching device 18b changes from the ON state (the state communicating with the low pressure pipe 40b) to the OFF state (the high pressure pipe 40a and In this state, the opening of the expansion device 16a and the expansion device 16b is made larger than the opening before switching. Then, after a predetermined time has elapsed, the opening of the expansion device 16a and the expansion device 16b is set to the predetermined opening in the cooling main operation mode, and the opening / closing device 17a is closed.
  • the differential pressure between the expansion device 16a and the expansion device 16b can be reduced. Therefore, when switching from the cooling only operation mode to the cooling main operation mode, the air-conditioning apparatus 100 can significantly reduce refrigerant noise.
  • the first refrigerant flow switching device 18a is in an OFF state (a state communicating with the low pressure pipe 40b), and the second refrigerant flow switching device 18b is also in an OFF state (a state communicating with the high pressure pipe 40a). Yes (see Table 3).
  • the second refrigerant flow switching device 18b changes from an OFF state (a state communicating with the high-pressure pipe 40a) to an ON state (a state communicating with the low-pressure pipe 40b). That is, when the cooling main operation mode is switched to the cooling only operation mode, the connection of the second refrigerant flow switching device 18b is switched from the high pressure pipe 40a to the low pressure pipe 40b.
  • the heat exchanger related to heat medium 15b changes from the high pressure state to the low pressure state all at once, and the refrigerant suddenly flows into the low pressure pipe 40b, generating a large refrigerant sound when flowing through a narrow channel such as a throttling device. Further, since the heat exchanger related to heat medium 15b acts as an evaporator, a large pressure difference is generated before and after the expansion device 16b, and a large refrigerant noise is generated.
  • the opening / closing device 17a is changed from the closed state to the open state, and the second refrigerant flow switching device 18a is in the OFF state (communication with the low pressure pipe 40b). Maintained). Further, in the air conditioner 100, when switching from the cooling main operation mode to the cooling only operation mode, the second refrigerant flow switching device 18b also maintains an OFF state (a state communicating with the high pressure pipe 40a), and the expansion device 16a, The opening of the expansion device 16b is made larger than the opening before switching.
  • the opening of the expansion device 16a and the expansion device 16b is changed to the predetermined opening in the cooling only operation mode, and the second refrigerant flow switching device 18b is in the OFF state (the state communicating with the high-pressure pipe 40a). Switch to the ON state (a state communicating with the low-pressure pipe 40b).
  • the differential pressure at the expansion device 16b can be reduced. Therefore, when the cooling main operation mode is switched to the cooling only operation mode, the refrigerant sound can be significantly reduced in the air conditioning apparatus 100.
  • Heating only operation mode (first operation mode) ⁇ Unit stop mode (second operation mode)
  • the first refrigerant flow switching device 18a is in an ON state (a state communicating with the high-pressure pipe 40a), and the second refrigerant flow switching device 18b is also in an OFF state (a state communicating with the high-pressure piping 40a). Yes (see Table 2).
  • the second refrigerant flow switching device 18a is turned off. That is, when switching from the heating only operation mode to the unit stop mode, the connection of the second refrigerant flow switching device 18a is switched from the high pressure pipe 40a to the low pressure pipe 40b.
  • the heat exchanger related to heat medium 15a changes from the high pressure state to the low pressure state at once, and the refrigerant suddenly flows into the low pressure pipe 40b, and a large refrigerant sound is generated when flowing through a narrow flow path such as a throttle device. Further, since the heat exchanger related to heat medium 15a acts as an evaporator, a large pressure difference is generated before and after the expansion device 16a, and a large refrigerant noise is generated.
  • the opening / closing device 17b when switching from the heating only operation mode to the unit stop mode, the opening / closing device 17b is in an open state, the second refrigerant flow switching device 18a is in an ON state (a state communicating with the high-pressure pipe 40a), The two refrigerant flow switching devices 18b are also maintained in an OFF state (a state communicating with the high-pressure pipe 40a).
  • the opening degree of the expansion device 16a and the expansion device 16b is larger than the opening degree before the switching.
  • the opening of the expansion device 16a and the expansion device 16b is set to the predetermined opening in the unit stop mode, and the second refrigerant flow switching device 18a is turned off (connected to the low pressure pipe 40b).
  • the opening / closing device 17b is closed.
  • the differential pressure at the expansion device 16a can be reduced. Therefore, when switching from the heating only operation mode to the unit stop mode, the air-conditioning apparatus 100 can significantly reduce refrigerant noise.
  • Heating main operation mode (second operation mode)
  • the first refrigerant flow switching device 18a is in an ON state (a state communicating with the high-pressure pipe 40a)
  • the second refrigerant flow switching device 18b is an OFF state (a state communicating with the high-pressure piping 40a).
  • the heat exchanger related to heat medium 15a functions as an evaporator, so that the second refrigerant flow switching device 18a is in an OFF state (a state communicating with the low-pressure pipe 40b). That is, when switching from the heating only operation mode to the heating main operation mode, the second refrigerant flow switching device 18b is switched from the high pressure pipe 40a to the low pressure pipe 40b.
  • the heat exchanger related to heat medium 15a changes from the high pressure state to the low pressure state at once, and the refrigerant suddenly flows into the low pressure pipe 40b, and a large refrigerant sound is generated when flowing through a narrow flow path such as a throttle device. Further, since the heat exchanger related to heat medium 15a acts as an evaporator, a large pressure difference is generated before and after the expansion device 16a, and a large refrigerant noise is generated.
  • the opening / closing device 17b when switching from the heating only operation mode to the heating main operation mode, the opening / closing device 17b is in an open state, the second refrigerant flow switching device 18a is in an ON state (a state communicating with the high-pressure pipe 40a), The second refrigerant flow switching device 18b also maintains an OFF state (a state communicating with the high-pressure pipe 40a).
  • the opening degree of the expansion device 16a and the expansion device 16b is larger than the opening degree before the switching.
  • coolant flow path switching device 18a is made into an OFF state (state connected with the low voltage
  • the differential pressure at the expansion device 16a can be reduced. Therefore, when switching from the heating only operation mode to the heating main operation mode, the air-conditioning apparatus 100 can significantly reduce refrigerant noise.
  • Heating main operation mode (first operation mode) ⁇ All heating operation mode (second operation mode)
  • the first refrigerant flow switching device 18a is in an OFF state (a state communicating with the low-pressure pipe 40b)
  • the second refrigerant flow switching device 18b is also in an OFF state (a state communicating with the high-pressure pipe 40a). Yes (see Table 4).
  • the second refrigerant flow switching device 18a changes from an OFF state (a state communicating with the low pressure pipe 40b) to an ON state (a state communicating with the high pressure pipe 40a).
  • the connection of the second refrigerant flow switching device 18a is switched from the low pressure pipe 40b to the high pressure pipe 40a.
  • the heat exchanger related to heat medium 15a changes from a low pressure state to a high pressure state all at once, and the refrigerant suddenly flows into the heat exchanger related to heat medium 15a, and a large refrigerant sound is generated when flowing through the narrow flow path.
  • the opening / closing device 17b when switching from the heating-main operation mode to the all-heating operation mode, the opening / closing device 17b is in the open state, and the second refrigerant flow switching device 18a is in the OFF state (a state communicating with the low-pressure pipe 40b).
  • the second refrigerant flow switching device 18b also maintains an OFF state (a state communicating with the high-pressure pipe 40a).
  • the opening degree of the expansion device 16a and the expansion device 16b is set larger than the opening degree before the switching.
  • the second refrigerant flow switching device 18a switches from an OFF state (a state communicating with the low pressure pipe 40b) to an ON state (a state communicating with the high pressure pipe 40a). Further, after a predetermined time has elapsed, the opening of the expansion device 16a and the expansion device 16b is set to the predetermined opening in the heating only operation mode.
  • the refrigerant sound can be greatly reduced in the air conditioning apparatus 100.
  • the corresponding first heat medium flow switching device 22 and second heat medium flow switching device 23 are connected.
  • the intermediate opening is set so that the heat medium flows through both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b. Accordingly, both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b can be used for the heating operation or the cooling operation, so that the heat transfer area is increased, and an efficient heating operation or cooling operation is performed. Can be done.
  • the first heat medium flow switching device corresponding to the use side heat exchanger 26 performing the heating operation. 22 and the second heat medium flow switching device 23 are switched to flow paths connected to the heat exchanger related to heat medium 15b for heating, and the first heat medium corresponding to the use side heat exchanger 26 performing the cooling operation.
  • the flow path switching device 22 and the second heat medium flow path switching device 23 By switching the flow path switching device 22 and the second heat medium flow path switching device 23 to a flow path connected to the heat exchanger related to heat medium 15a for cooling, in each indoor unit 2, heating operation and cooling operation are performed. It can be done freely.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 described in the present embodiment can switch a three-way flow path such as a three-way valve, or a two-way flow path such as an on-off valve. What is necessary is just to be able to switch a flow path, such as combining two things that perform opening and closing.
  • the first heat medium can be obtained by combining two things such as a stepping motor drive type mixing valve that can change the flow rate of the three-way flow path and two things that can change the flow rate of the two-way flow path such as an electronic expansion valve.
  • the flow path switching device 22 and the second heat medium flow path switching device 23 may be used. In this case, it is possible to prevent water hammer due to sudden opening and closing of the flow path.
  • the heat medium flow control device 25 is a two-way valve has been described as an example, but with a bypass pipe that bypasses the use side heat exchanger 26 as a control valve having a three-way flow path You may make it install.
  • the heat medium flow control device 25 may be a stepping motor driven type that can control the flow rate flowing through the flow path, and may be a two-way valve or a one-way valve with one end closed. Further, as the heat medium flow control device 25, a device that opens and closes a two-way flow path such as an open / close valve may be used, and the average flow rate may be controlled by repeating ON / OFF.
  • coolant flow path switching device 18 was shown as if it were a four-way valve, it is not restricted to this, A two-way flow-path switching valve and a plurality of three-way flow-path switching valves are used similarly. You may comprise so that a refrigerant
  • the refrigerant that performs a normal two-phase change is condensed and liquefied, and the refrigerant that becomes a supercritical state such as CO2 is super It cools in a critical state, but in both cases the other works the same and has the same effect.
  • the heat medium for example, brine (antifreeze), water, a mixture of brine and water, a mixture of water and an additive having a high anticorrosive effect, or the like can be used. Therefore, in the air conditioning apparatus 100, even if the heat medium leaks into the indoor space 7 through the indoor unit 2, it contributes to the improvement of safety because a highly safe heat medium is used. Become.
  • the air conditioner 100 includes the accumulator 19
  • the accumulator 19 may not be provided.
  • the heat source side heat exchanger 12 and the use side heat exchanger 26 are provided with a blower, and in many cases, condensation or evaporation is promoted by blowing air, but this is not restrictive.
  • the use side heat exchanger 26 may be a panel heater using radiation
  • the heat source side heat exchanger 12 is of a water-cooled type that moves heat by water or antifreeze. Can also be used. That is, the heat source side heat exchanger 12 and the use side heat exchanger 26 can be used regardless of the type as long as they have a structure capable of radiating heat or absorbing heat.
  • the case where there are four use-side heat exchangers 26 has been described as an example, but the number is not particularly limited.
  • the case where the number of heat exchangers between heat mediums 15a and the heat exchangers between heat mediums 15b is two has been described as an example, naturally the present invention is not limited to this, and the heat medium can be cooled or / and heated. If it comprises, you may install how many.
  • the number of pumps 21a and 21b is not limited to one, and a plurality of small-capacity pumps may be connected in parallel.
  • the air conditioner 100 not only improves the safety without circulating the heat source side refrigerant to the indoor unit 2 or the vicinity of the indoor unit 2, but also the piping 5 and each actuator. Since the heat medium leaked from the connection to the heat medium converter 3 can be kept in the heat medium converter 3, the safety is further improved. Moreover, since the air conditioning apparatus 100 can shorten the piping 5, it can achieve energy saving. Furthermore, the air conditioning apparatus 100 can reduce the connection piping (refrigerant piping 4 and piping 5) between the outdoor unit 1 and the heat medium relay unit 3 or the indoor unit 2 and improve workability. In addition, since the air conditioner 100 can reduce the refrigerant temperature sound generated at the time of mode switching, the comfort can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

 運転モード変更時に発生する大きな冷媒音を低減した空気調和装置を提供する。 空気調和装置100は、第1運転モードから第2運転モードに運転を切り替える際、第1運転モードでの運転状態よりも複数の絞り装置の前後における熱源側冷媒の圧力差を小さくする方向に、複数の絞り装置のいずれか又は全部を制御し、複数の第2流路切替装置のいずれか又全部を制御し、第1開閉装置及び第2開閉装置のいずれか又は全部を制御してから、所定時間経過後に第2運転モードとする。

Description

空気調和装置
 この発明は、たとえばビル用マルチエアコン等に適用される空気調和装置に関するものである。
 ビル用マルチエアコンなどの空気調和装置においては、たとえば建物外に配置した熱源機である室外機と建物の室内に配置した室内機との間に冷媒を循環させる。そして、冷媒が放熱、吸熱して、加熱、冷却された空気により空調対象空間の冷房または暖房を行なっていた。冷媒としては、たとえばHFC(ハイドロフルオロカーボン)冷媒が多く使われている。また、二酸化炭素(CO)等の自然冷媒を使うものも提案されている。
 また、チラーと呼ばれる空気調和装置においては、建物外に配置した熱源機にて、冷熱または温熱を生成する。そして、室外機内に配置した熱交換器で水、不凍液等を加熱、冷却し、これを室内機であるファンコイルユニット、パネルヒーター等に搬送して冷房または暖房を行なっていた(たとえば、特許文献1参照)。
 また、排熱回収型チラーと呼ばれる、熱源機と室内機の間に4本の水配管を接続し、冷却、加熱した水等を同時に供給し、室内機において冷房または暖房を自由に選択できるものもある(たとえば、特許文献2参照)。
 また、1次冷媒と2次冷媒の熱交換器を各室内機の近傍に配置し、室内機に2次冷媒を搬送するように構成されているものもある(たとえば、特許文献3参照)。
 また、室外機と熱交換器を持つ分岐ユニット間を2本の配管で接続し、室内機に2次冷媒を搬送するように構成されているものもある(たとえば、特許文献4参照)。
特開2005-140444号公報(第4頁、図1等) 特開平5-280818号公報(第4、5頁、図1等) 特開2001-289465号公報(第5~8頁、図1、図2等) 特開2003-343936号公報(第5頁、図1)
 従来のビル用マルチエアコン等の空気調和装置では、室内機まで冷媒を循環させているため、冷媒が室内等に漏れる可能性があった。一方、特許文献1及び特許文献2に記載されているような空気調和装置では、冷媒が室内機を通過することはない。しかしながら、特許文献1及び特許文献2に記載されているような空気調和装置では、建物外の熱源機において熱媒体を加熱または冷却し、室内機側に搬送する必要がある。このため、熱媒体の循環経路が長くなる。ここで、熱媒体により、所定の加熱あるいは冷却の仕事をする熱を搬送しようとすると、搬送動力等によるエネルギーの消費量が冷媒よりも高くなる。そのため、循環経路が長くなると、搬送動力が非常に大きくなる。このことから、空気調和装置において、熱媒体の循環をうまく制御することができれば省エネルギー化を図れることがわかる。
 特許文献2に記載されているような空気調和装置においては、室内機毎に冷房または暖房を選択できるようにするためには室外側から室内まで4本の配管を接続しなければならず、工事性が悪いものとなっていた。特許文献3に記載されている空気調和装置においては、ポンプ等の2次媒体循環手段を室内機個別に持つ必要があるため、高価なシステムとなるだけでなく、騒音も大きいものとなり、実用的なものではなかった。加えて、熱交換器が室内機の近傍にあるため、冷媒が室内に近い場所で漏れるという危険性を排除することができなかった。
 特許文献4に記載されているような空気調和装置においては、熱交換後の1次冷媒が熱交換前の1次冷媒と同じ流路に流入しているため、複数の室内機を接続した場合に、各室内機にて最大能力を発揮することができず、エネルギー的に無駄な構成となっていた。また、分岐ユニットと延長配管との接続が冷房2本、暖房2本の合計4本の配管でなされているため、結果的に室外機と分岐ユニットとが4本の配管で接続されているシステムと類似の構成となっており、工事性が悪いシステムとなっていた。
 本発明は、上記の課題を解決するためになされたもので、省エネルギー化を図ることができる空気調和装置を提供することを第1の目的としている。本発明のうちのいくつかの態様は、室内機または室内機の近傍まで冷媒を循環させずに安全性の向上を図ることができる空気調和装置を提供することを第2の目的としている。本発明のうちのいくつかの態様は、室外機と分岐ユニット(熱媒体変換機)または室内機との接続配管を減らし、工事性の向上を図るとともに、エネルギー効率を向上させることができる空気調和装置を提供することを第3の目的としている。さらに、本発明のうちのいくつかの態様は、運転モード変更時に発生する大きな冷媒音を低減した空気調和装置を提供することを第4の目的としている。
 本発明に係る空気調和装置は、圧縮機、第1冷媒流路切替装置、熱源側熱交換器、複数の絞り装置、複数の熱媒体間熱交換器の冷媒側流路、複数の第2冷媒流路切替装置、が冷媒配管で接続されて熱源側冷媒を循環させる冷媒循環回路と、ポンプ、利用側熱交換器、及び、複数の熱媒体間熱交換器の熱媒体側流路が熱媒体配管で接続されて熱媒体を循環させる熱媒体循環回路と、を有し、前記複数の熱媒体間熱交換器において前記熱源側冷媒と前記熱媒体とが熱交換する空気調和装置であって、所定の状態で運転させる第1運転モードと、前記第1運転モードとは異なる状態で運転させる第2運転モードと、有し、前記第1運転モードから前記第2運転モードに運転を切り替える際、前記第1運転モードでの運転状態よりも前記複数の絞り装置の前後における前記熱源側冷媒の圧力差を小さくする方向に、前記複数の絞り装置のいずれか又は全部を制御し、前記複数の第2流路切替装置のいずれか又全部を制御してから、所定時間経過後に前記第2運転モードとすることを特徴とする。
 本発明に係る空気調和装置によれば、熱媒体が循環する配管を短くでき、搬送動力が少なくて済むため、安全性を向上させるとともに省エネルギー化を図ることができる。また、本発明に係る空気調和装置によれば、熱媒体の外部への流出が起きた場合でも、少量ですみ、安全性を更に向上できる。さらに、本発明に係る空気調和装置によれば、運転モードを切り替えるとき発生する冷媒音を低減することができ、快適性を向上させることができる。
本発明の実施の形態に係る空気調和装置の設置例を示す概略図である。 本発明の実施の形態に係る空気調和装置の別の設置例を示す概略図である。 本発明の実施の形態に係る空気調和装置の回路構成の一例を示す概略回路構成図である。 本発明の実施の形態に係る空気調和装置の回路構成の別の一例を示す概略回路構成である。 本発明の実施の形態に係る空気調和装置の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態に係る空気調和装置の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態に係る空気調和装置の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態に係る空気調和装置の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。
 以下、図面に基づいて本発明の実施の形態について説明する。
 図1は、本発明の実施の形態に係る空気調和装置の設置例を示す概略図である。図2は、本発明の実施の形態に係る空気調和装置の別の設置例を示す概略図である。図1及び図2に基づいて、空気調和装置の設置例について説明する。この空気調和装置は、冷媒(熱源側冷媒、熱媒体)を循環させる冷凍サイクル(冷媒循環回路A、熱媒体循環回路B)を利用することで各室内機が運転モードとして冷房モードあるいは暖房モードを自由に選択できるものである。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
 図1においては、本実施の形態に係る空気調和装置は、熱源機である1台の室外機1と、複数台の室内機2と、室外機1と室内機2との間に介在する熱媒体変換機3と、を有している。熱媒体変換機3は、熱源側冷媒と熱媒体とで熱交換を行なうものである。室外機1と熱媒体変換機3とは、熱源側冷媒を導通する冷媒配管4で接続されている。熱媒体変換機3と室内機2とは、熱媒体を導通する配管(熱媒体配管)5で接続されている。そして、室外機1で生成された冷熱あるいは温熱は、熱媒体変換機3を介して室内機2に配送されるようになっている。
 図2においては、本実施の形態に係る空気調和装置は、熱源機である1台の室外機1と、複数台の室内機2と、室外機1と室内機2との間に介在する複数に分割した熱媒体変換機3(親熱媒体変換機3a、子熱媒体変換機3b)と、を有している。室外機1と親熱媒体変換機3aとは、冷媒配管4で接続されている。親熱媒体変換機3aと子熱媒体変換機3bとは、冷媒配管4で接続されている。子熱媒体変換機3bと室内機2とは、配管5で接続されている。そして、室外機1で生成された冷熱あるいは温熱は、親熱媒体変換機3a及び子熱媒体変換機3bを介して室内機2に配送されるようになっている。
 室外機1は、通常、ビル等の建物9の外の空間(たとえば、屋上等)である室外空間6に配置され、熱媒体変換機3を介して室内機2に冷熱または温熱を供給するものである。室内機2は、建物9の内部の空間(たとえば、居室等)である室内空間7に冷房用空気あるいは暖房用空気を供給できる位置に配置され、空調対象空間となる室内空間7に冷房用空気あるいは暖房用空気を供給するものである。熱媒体変換機3は、室外機1及び室内機2とは別筐体として、室外空間6及び室内空間7とは別の位置に設置できるように構成されており、室外機1及び室内機2とは冷媒配管4及び配管5でそれぞれ接続され、室外機1から供給される冷熱あるいは温熱を室内機2に伝達するものである。
 図1及び図2に示すように、本実施の形態に係る空気調和装置においては、室外機1と熱媒体変換機3とが2本の冷媒配管4を用いて、熱媒体変換機3と各室内機2とが2本の配管5を用いて、それぞれ接続されている。このように、本実施の形態に係る空気調和装置では、2本の配管(冷媒配管4、配管5)を用いて各ユニット(室外機1、室内機2及び熱媒体変換機3)を接続することにより、施工が容易となっている。
 図2に示すように、熱媒体変換機3を、1つの親熱媒体変換機3aと、親熱媒体変換機3aから派生した2つの子熱媒体変換機3b(子熱媒体変換機3b(1)、子熱媒体変換機3b(2))と、に分けることもできる。このようにすることにより、1つの親熱媒体変換機3aに対し、子熱媒体変換機3bを複数接続できるようになる。この構成においては、親熱媒体変換機3aと子熱媒体変換機3bとを接続する冷媒配管4は、3本になっている。この回路の詳細については、後段で詳細に説明するものとする(図4参照)。
 なお、図1及び図2においては、熱媒体変換機3が、建物9の内部ではあるが室内空間7とは別の空間である天井裏等の空間(以下、単に空間8と称する)に設置されている状態を例に示している。熱媒体変換機3は、その他、エレベーター等がある共用空間等に設置することも可能である。また、図1及び図2においては、室内機2が天井カセット型である場合を例に示してあるが、これに限定するものではなく、天井埋込型や天井吊下式等、室内空間7に直接またはダクト等により、暖房用空気あるいは冷房用空気を吹き出せるようになっていればどんな種類のものでもよい。
 図1及び図2においては、室外機1が室外空間6に設置されている場合を例に示しているが、これに限定するものではない。たとえば、室外機1は、換気口付の機械室等の囲まれた空間に設置してもよく、排気ダクトで廃熱を建物9の外に排気することができるのであれば建物9の内部に設置してもよく、あるいは、水冷式の室外機1を用いる場合にも建物9の内部に設置するようにしてもよい。このような場所に室外機1を設置するとしても、特段の問題が発生することはない。
 また、熱媒体変換機3は、室外機1の近傍に設置することもできる。ただし、熱媒体変換機3から室内機2までの距離が長すぎると、熱媒体の搬送動力がかなり大きくなるため、省エネルギー化の効果は薄れることに留意が必要である。さらに、室外機1、室内機2及び熱媒体変換機3の接続台数を図1及び図2に図示してある台数に限定するものではなく、本実施の形態に係る空気調和装置が設置される建物9に応じて台数を決定すればよい。
 図3は、本実施の形態に係る空気調和装置(以下、空気調和装置100と称する)の回路構成の一例を示す概略回路構成図である。図3に基づいて、空気調和装置100の詳しい構成について説明する。図3に示すように、室外機1と熱媒体変換機3とが、熱媒体変換機3に備えられている熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して冷媒配管4で接続されている。また、熱媒体変換機3と室内機2とも、熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して配管5で接続されている。なお、冷媒配管4については後段で詳述するものとする。
[室外機1]
 室外機1には、圧縮機10と、四方弁等の第1冷媒流路切替装置11と、熱源側熱交換器12と、アキュムレーター19とが冷媒配管4で直列に接続されて搭載されている。また、室外機1には、第1接続配管4a、第2接続配管4b、逆止弁13a、逆止弁13b、逆止弁13c、及び、逆止弁13dが設けられている。第1接続配管4a、第2接続配管4b、逆止弁13a、逆止弁13b、逆止弁13c、及び、逆止弁13dを設けることで、室内機2の要求する運転に関わらず、熱媒体変換機3に流入させる熱源側冷媒の流れを一定方向にすることができる。
 圧縮機10は、熱源側冷媒を吸入し、その熱源側冷媒を圧縮して高温・高圧の状態にするものであり、たとえば容量制御可能なインバータ圧縮機等で構成するとよい。第1冷媒流路切替装置11は、暖房運転モード時(全暖房運転モード時及び暖房主体運転モード時)における熱源側冷媒の流れと冷房運転モード時(全冷房運転モード時及び冷房主体運転モード時)における熱源側冷媒の流れとを切り替えるものである。
 熱源側熱交換器12は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器(または放熱器)として機能し、図示省略のファン等の送風機から供給される空気と熱源側冷媒との間で熱交換を行ない、その熱源側冷媒を蒸発ガス化または凝縮液化するものである。アキュムレーター19は、圧縮機10の吸入側に設けられており、暖房運転モード時と冷房運転モード時の違いによる余剰冷媒、または過渡的な運転の変化に対する余剰冷媒を蓄えるものである。
 逆止弁13dは、熱媒体変換機3と第1冷媒流路切替装置11との間における冷媒配管4に設けられ、所定の方向(熱媒体変換機3から室外機1への方向)のみに熱源側冷媒の流れを許容するものである。逆止弁13aは、熱源側熱交換器12と熱媒体変換機3との間における冷媒配管4に設けられ、所定の方向(室外機1から熱媒体変換機3への方向)のみに熱源側冷媒の流れを許容するものである。逆止弁13bは、第1接続配管4aに設けられ、暖房運転時において圧縮機10から吐出された熱源側冷媒を熱媒体変換機3に流通させるものである。逆止弁13cは、第2接続配管4bに設けられ、暖房運転時において熱媒体変換機3から戻ってきた熱源側冷媒を圧縮機10の吸入側に流通させるものである。
 第1接続配管4aは、室外機1内において、第1冷媒流路切替装置11と逆止弁13dとの間における冷媒配管4と、逆止弁13aと熱媒体変換機3との間における冷媒配管4と、を接続するものである。第2接続配管4bは、室外機1内において、逆止弁13dと熱媒体変換機3との間における冷媒配管4と、熱源側熱交換器12と逆止弁13aとの間における冷媒配管4と、を接続するものである。なお、図3では、第1接続配管4a、第2接続配管4b、逆止弁13a、逆止弁13b、逆止弁13c、及び、逆止弁13dを設けた場合を例に示しているが、これに限定するものではなく、これらを必ずしも設ける必要はない。
[室内機2]
 室内機2には、それぞれ利用側熱交換器26が搭載されている。この利用側熱交換器26は、配管5によって熱媒体変換機3の熱媒体流量調整装置25と第2熱媒体流路切替装置23に接続するようになっている。この利用側熱交換器26は、図示省略のファン等の送風機から供給される空気と熱媒体との間で熱交換を行ない、室内空間7に供給するための暖房用空気あるいは冷房用空気を生成するものである。
 図3では、4台の室内機2が熱媒体変換機3に接続されている場合を例に示しており、紙面下から室内機2a、室内機2b、室内機2c、室内機2dとして図示している。また、室内機2a~室内機2dに応じて、利用側熱交換器26も、紙面下側から利用側熱交換器26a、利用側熱交換器26b、利用側熱交換器26c、利用側熱交換器26dとして図示している。なお、図1及び図2と同様に、室内機2の接続台数を図3に示す4台に限定するものではない。
[熱媒体変換機3]
 熱媒体変換機3には、2つの熱媒体間熱交換器15と、2つの絞り装置16と、2つの開閉装置(第1開閉装置、第2開閉装置)17と、2つの第2冷媒流路切替装置18と、2つのポンプ21と、4つの第1熱媒体流路切替装置22と、4つの第2熱媒体流路切替装置23と、4つの熱媒体流量調整装置25と、が搭載されている。
 2つの熱媒体間熱交換器15(熱媒体間熱交換器15a、熱媒体間熱交換器15b)は、凝縮器(放熱器)または蒸発器として機能し、熱源側冷媒と熱媒体とで熱交換を行ない、室外機1で生成され熱源側冷媒に貯えられた冷熱または温熱を熱媒体に伝達するものである。熱媒体間熱交換器15aは、冷媒循環回路Aにおける絞り装置16aと第2冷媒流路切替装置18aとの間に設けられており、冷房暖房混在運転モード時において熱媒体の冷却に供するものである。また、熱媒体間熱交換器15bは、冷媒循環回路Aにおける絞り装置16bと第2冷媒流路切替装置18bとの間に設けられており、冷房暖房混在運転モード時において熱媒体の加熱に供するものである。
る。
 2つの絞り装置16(絞り装置16a、絞り装置16b)は、減圧弁や膨張弁としての機能を有し、熱源側冷媒を減圧して膨張させるものである。絞り装置16aは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器15aの上流側に設けられている。絞り装置16bは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器15bの上流側に設けられている。2つの絞り装置16は、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。
 2つの開閉装置17(開閉装置17a、開閉装置17b)は、二方弁等で構成されており、冷媒配管4を開閉するものである。開閉装置17aが第1開閉装置、開閉装置17bが第2開閉装置としてそれぞれ機能し、開閉が制御されることで冷媒の流れを切り替えるものである。開閉装置17aは、熱源側冷媒の入口側における冷媒配管4に設けられている。開閉装置17bは、熱源側冷媒の入口側と出口側の冷媒配管4を接続した配管に設けられている。
 2つの第2冷媒流路切替装置18(第2冷媒流路切替装置18a、第2冷媒流路切替装置18b)は、たとえば四方弁等で構成され、運転モードに応じて熱源側冷媒の流れを切り替えるものである。第2冷媒流路切替装置18aは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器15aの下流側に設けられている。第2冷媒流路切替装置18bは、全冷房運転モード時の熱源側冷媒の流れにおいて熱媒体間熱交換器15bの下流側に設けられている。
 第2冷媒流路切替装置18a、第2冷媒流路切替装置18bは、高圧配管40a、低圧配管40bに接続されており、電気のON/OFFで高圧配管40aと連通させたり、低圧配管40bと連通させたりすることができる。本実施の形態では、第1冷媒流路切替装置18aがOFF状態のときは低圧配管40bと連通した状態であり、ON状態のときは高圧配管40aと連通した状態である。一方、第2冷媒流路切替装置18bがOFF状態のときは高圧配管40aと連通した状態であり、ON状態のときは低圧配管40bと連通した状態である。
 2つのポンプ21(ポンプ21a、ポンプ21b)は、配管5を導通する熱媒体を循環させるものである。ポンプ21aは、熱媒体間熱交換器15aと第2熱媒体流路切替装置23との間における配管5に設けられている。ポンプ21bは、熱媒体間熱交換器15bと第2熱媒体流路切替装置23との間における配管5に設けられている。2つのポンプ21は、たとえば容量制御可能なポンプ等で構成し、室内機2における負荷の大きさによってその流量を調整できるようにしておくとよい。
 4つの第1熱媒体流路切替装置22(第1熱媒体流路切替装置22a~第1熱媒体流路切替装置22d)は、三方弁等で構成されており、熱媒体の流路を切り替えるものである。第1熱媒体流路切替装置22は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第1熱媒体流路切替装置22は、三方のうちの一つが熱媒体間熱交換器15aに、三方のうちの一つが熱媒体間熱交換器15bに、三方のうちの一つが熱媒体流量調整装置25に、それぞれ接続され、利用側熱交換器26の熱媒体流路の出口側に設けられている。すなわち、第1熱媒体流路切替装置22は、室内機2に流入させる熱媒体の流路を、熱媒体間熱交換器15aと熱媒体間熱交換器15bとの間で切り替えるものである。
 なお、室内機2に対応させて、紙面下側から第1熱媒体流路切替装置22a、第1熱媒体流路切替装置22b、第1熱媒体流路切替装置22c、第1熱媒体流路切替装置22dとして図示している。また、熱媒体流路の切替には、一方から他方への完全な切替だけでなく、一方から他方への部分的な切替も含んでいるものとする。
 4つの第2熱媒体流路切替装置23(第2熱媒体流路切替装置23a~第2熱媒体流路切替装置23d)は、三方弁等で構成されており、熱媒体の流路を切り替えるものである。第2熱媒体流路切替装置23は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第2熱媒体流路切替装置23は、三方のうちの一つが熱媒体間熱交換器15aに、三方のうちの一つが熱媒体間熱交換器15bに、三方のうちの一つが利用側熱交換器26に、それぞれ接続され、利用側熱交換器26の熱媒体流路の入口側に設けられている。すなわち、第2熱媒体流路切替装置23は、第1熱媒体流路切替装置22とともに、室内機2に流入させる熱媒体の流路を、熱媒体間熱交換器15aと熱媒体間熱交換器15bとの間で切り替えるものである。
 なお、室内機2に対応させて、紙面下側から第2熱媒体流路切替装置23a、第2熱媒体流路切替装置23b、第2熱媒体流路切替装置23c、第2熱媒体流路切替装置23dとして図示している。また、熱媒体流路の切替には、一方から他方への完全な切替だけでなく、一方から他方への部分的な切替も含んでいるものとする。
 4つの熱媒体流量調整装置25(熱媒体流量調整装置25a~熱媒体流量調整装置25d)は、開口面積を制御できる二方弁等で構成されており、配管5に流れる熱媒体の流量を制御するものである。熱媒体流量調整装置25は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。熱媒体流量調整装置25は、一方が利用側熱交換器26に、他方が第1熱媒体流路切替装置22に、それぞれ接続され、利用側熱交換器26の熱媒体流路の出口側に設けられている。すなわち、熱媒体流量調整装置25は、室内機2へ流入する熱媒体の温度及び流出する熱媒体の温度により室内機2へ流入する熱媒体の量を調整し、室内負荷に応じた最適な熱媒体量を室内機2に提供可能とするものである。
 なお、室内機2に対応させて、紙面下側から熱媒体流量調整装置25a、熱媒体流量調整装置25b、熱媒体流量調整装置25c、熱媒体流量調整装置25dとして図示している。また、熱媒体流量調整装置25を利用側熱交換器26の熱媒体流路の入口側に設けてもよい。さらに、室内機2において、停止やサーモOFF等の負荷を必要としていないときは、熱媒体流量調整装置25を全閉にすることにより、室内機2への熱媒体供給を止めることができる。
 また、熱媒体変換機3には、各種検出手段(2つの第1温度センサー31、4つの第2温度センサー34、4つの第3温度センサー35、及び、圧力センサー36)が設けられている。これらの検出手段で検出された情報(温度情報、圧力情報)は、空気調和装置100の動作を統括制御する制御装置(図示省略)に送られ、圧縮機10の駆動周波数、図示省略の送風機の回転数、第1冷媒流路切替装置11の切り替え、ポンプ21の駆動周波数、第2冷媒流路切替装置18の切り替え、熱媒体の流路の切替、室内機2の熱媒体流量の調整等の制御に利用されることになる。
 2つの第1温度センサー31(第1温度センサー31a、第1温度センサー31b)は、熱媒体間熱交換器15から流出した熱媒体、つまり熱媒体間熱交換器15の出口における熱媒体の温度を検出するものであり、たとえばサーミスター等で構成するとよい。第1温度センサー31aは、ポンプ21aの入口側における配管5に設けられている。第1温度センサー31bは、ポンプ21bの入口側における配管5に設けられている。
 4つの第2温度センサー34(第2温度センサー34a~第2温度センサー34d)は、第1熱媒体流路切替装置22と熱媒体流量調整装置25との間に設けられ、利用側熱交換器26から流出した熱媒体の温度を検出するものであり、サーミスター等で構成するとよい。第2温度センサー34は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。なお、室内機2に対応させて、紙面下側から第2温度センサー34a、第2温度センサー34b、第2温度センサー34c、第2温度センサー34dとして図示している。
 4つの第3温度センサー35(第3温度センサー35a~第3温度センサー35d)は、熱媒体間熱交換器15の熱源側冷媒の入口側または出口側に設けられ、熱媒体間熱交換器15に流入する熱源側冷媒の温度または熱媒体間熱交換器15から流出した熱源側冷媒の温度を検出するものであり、サーミスター等で構成するとよい。第3温度センサー35aは、熱媒体間熱交換器15aと第2冷媒流路切替装置18aとの間に設けられている。第3温度センサー35bは、熱媒体間熱交換器15aと絞り装置16aとの間に設けられている。第3温度センサー35cは、熱媒体間熱交換器15bと第2冷媒流路切替装置18bとの間に設けられている。第3温度センサー35dは、熱媒体間熱交換器15bと絞り装置16bとの間に設けられている。
 圧力センサー36は、第3温度センサー35dの設置位置と同様に、熱媒体間熱交換器15bと絞り装置16bとの間に設けられ、熱媒体間熱交換器15bと絞り装置16bとの間を流れる熱源側冷媒の圧力を検出するものである。
 また、図示省略の制御装置は、マイコン等で構成されており、各種検出手段での検出情報及びリモコンからの指示に基づいて、圧縮機10の駆動周波数、送風機の回転数(ON/OFF含む)、第1冷媒流路切替装置11の切り替え、ポンプ21の駆動、絞り装置16の開度、開閉装置17の開閉、第2冷媒流路切替装置18の切り替え、第1熱媒体流路切替装置22の切り替え、第2熱媒体流路切替装置23の切り替え、及び、熱媒体流量調整装置25の駆動等を制御し、後述する各運転モードを実行するようになっている。なお、制御装置は、ユニット毎に設けてもよく、室外機1または熱媒体変換機3に設けてもよい。
 熱媒体を導通する配管5は、熱媒体間熱交換器15aに接続されるものと、熱媒体間熱交換器15bに接続されるものと、で構成されている。配管5は、熱媒体変換機3に接続される室内機2の台数に応じて分岐(ここでは、各4分岐)されている。そして、配管5は、第1熱媒体流路切替装置22、及び、第2熱媒体流路切替装置23で接続されている。第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を制御することで、熱媒体間熱交換器15aからの熱媒体を利用側熱交換器26に流入させるか、熱媒体間熱交換器15bからの熱媒体を利用側熱交換器26に流入させるかが決定されるようになっている。
 そして、空気調和装置100では、圧縮機10、第1冷媒流路切替装置11、熱源側熱交換器12、開閉装置17、第2冷媒流路切替装置18、熱媒体間熱交換器15aの冷媒流路、絞り装置16、及び、アキュムレーター19を、冷媒配管4で接続して冷媒循環回路Aを構成している。また、熱媒体間熱交換器15aの熱媒体流路、ポンプ21、第1熱媒体流路切替装置22、熱媒体流量調整装置25、利用側熱交換器26、及び、第2熱媒体流路切替装置23を、配管5で接続して熱媒体循環回路Bを構成している。つまり、熱媒体間熱交換器15のそれぞれに複数台の利用側熱交換器26が並列に接続され、熱媒体循環回路Bを複数系統としているのである。
 よって、空気調和装置100では、室外機1と熱媒体変換機3とが、熱媒体変換機3に設けられている熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して接続され、熱媒体変換機3と室内機2とも、熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して接続されている。すなわち、空気調和装置100では、熱媒体間熱交換器15a及び熱媒体間熱交換器15bで冷媒循環回路Aを循環する熱源側冷媒と熱媒体循環回路Bを循環する熱媒体とが熱交換するようになっている。
 図4は、本発明の実施の形態に係る空気調和装置(以下、空気調和装置100Aと称する)の回路構成の別の一例を示す概略回路構成図である。図4に基づいて、熱媒体変換機3を親熱媒体変換機3aと子熱媒体変換機3bとに分けた場合の空気調和装置100Aの回路構成について説明する。図4に示すように、熱媒体変換機3は、親熱媒体変換機3aと、子熱媒体変換機3bとで、筐体を分けて構成されている。このように構成することにより、図2に示したように1つの親熱媒体変換機3aに対し、複数の子熱媒体変換機3bを接続することができる。
 親熱媒体変換機3aには、気液分離器14と、絞り装置16cと、が設けられている。その他の構成要素については、子熱媒体変換機3bに搭載されている。気液分離器14は、室外機1に接続する1本の冷媒配管4と、子熱媒体変換機3bの熱媒体間熱交換器15a及び熱媒体間熱交換器15bに接続する2本の冷媒配管4と、に接続され、室外機1から供給される熱源側冷媒を蒸気状冷媒と液状冷媒とに分離するものである。絞り装置16cは、気液分離器14の液状冷媒の流れにおける下流側に設けられ、減圧弁や膨張弁としての機能を有し、熱源側冷媒を減圧して膨張させるものであり、冷房暖房混在運転時に、絞り装置16cの出口を中圧に制御する。絞り装置16cは、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。このように構成することにより、親熱媒体変換機3aに子熱媒体変換機3bを複数接続できるようになる。
 空気調和装置100が実行する各運転モードについて説明する。この空気調和装置100は、各室内機2からの指示に基づいて、その室内機2で冷房運転あるいは暖房運転が可能になっている。つまり、空気調和装置100は、室内機2の全部で同一運転をすることができるとともに、室内機2のそれぞれで異なる運転をすることができるようになっている。なお、空気調和装置100Aが実行する各運転モードについても同様であるので、空気調和装置100Aが実行する各運転モードについては説明を省略する。以下、空気調和装置100には、空気調和装置100Aも含まれているものとする。
 空気調和装置100が実行する運転モードには、駆動している室内機2の全てが冷房運転を実行する全冷房運転モード、駆動している室内機2の全てが暖房運転を実行する全暖房運転モード、暖房負荷よりも冷房負荷の方が大きい冷房暖房混在運転モードとしての冷房主体運転モード、及び、冷房負荷よりも暖房負荷の方が大きい冷房暖房混在運転モードとしての暖房主体運転モードがある。以下に、各運転モードについて、熱源側冷媒及び熱媒体の流れとともに説明する。
[全冷房運転モード]
 図5は、空気調和装置100の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。この図5では、利用側熱交換器26a及び利用側熱交換器26bでのみ冷熱負荷が発生している場合を例に全冷房運転モードについて説明する。なお、図5では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の流れる配管を示している。また、図5では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。さらに、表1に全冷房運転モード時の第2冷媒流路切替装置18a、第2冷媒流路切替装置18b、開閉装置17a、開閉装置17bの動作を示す。
 図5に示す全冷房運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと利用側熱交換器26a及び利用側熱交換器26bとの間を熱媒体が循環するようにしている。また、熱媒体変換機3では、第2冷媒流路切替装置18a、第2冷媒流路切替装置18b、開閉装置17a、開閉装置17bの動作は表1に示す通りである。
Figure JPOXMLDOC01-appb-T000001
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら凝縮液化し、高圧液冷媒となる。熱源側熱交換器12から流出した高圧液冷媒は、逆止弁13aを通って室外機1から流出し、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高圧液冷媒は、開閉装置17aを経由した後に分岐されて絞り装置16a及び絞り装置16bで膨張させられて、低温・低圧の二相冷媒となる。
 この二相冷媒は、蒸発器として作用する熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれに流入し、熱媒体循環回路Bを循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低温・低圧のガス冷媒となる。熱媒体間熱交換器15a及び熱媒体間熱交換器15bから流出したガス冷媒は、第2冷媒流路切替装置18a及び第2冷媒流路切替装置18bを介して熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、逆止弁13dを通って、第1冷媒流路切替装置11及びアキュムレーター19を介して、圧縮機10へ再度吸入される。
 このとき、絞り装置16aは、第3温度センサー35aで検出された温度と第3温度センサー35bで検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。同様に、絞り装置16bは、第3温度センサー35cで検出された温度と第3温度センサー35dで検出された温度との差として得られるスーパーヒートが一定になるように開度が制御される。なお、開閉装置17aは開、開閉装置17bは閉となっている。
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 全冷房運転モードでは、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方で熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21a及びポンプ21bによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。そして、熱媒体が利用側熱交換器26a及び利用側熱交換器26bで室内空気から吸熱することで、室内空間7の冷房を行なう。
 それから、熱媒体は、利用側熱交換器26a及び利用側熱交換器26bから流出して熱媒体流量調整装置25a及び熱媒体流量調整装置25bに流入する。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。熱媒体流量調整装置25a及び熱媒体流量調整装置25bから流出した熱媒体は、第1熱媒体流路切替装置22a及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bへ流入し、再びポンプ21a及びポンプ21bへ吸い込まれる。
 なお、利用側熱交換器26の配管5内では、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、第1温度センサー31aで検出された温度、あるいは、第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を目標値に保つように制御することにより、賄うことができる。熱媒体間熱交換器15の出口温度は、第1温度センサー31aまたは第1温度センサー31bのどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。このとき、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方へ流れる流路が確保されるように、中間的な開度にしている。
 全冷房運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図5においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
[全暖房運転モード]
 図6は、空気調和装置100の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。この図6では、利用側熱交換器26a及び利用側熱交換器26bでのみ温熱負荷が発生している場合を例に全暖房運転モードについて説明する。なお、図6では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の流れる配管を示している。また、図6では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。さらに、表2に全暖房運転モード時の第2冷媒流路切替装置18a、第2冷媒流路切替装置18b、開閉装置17a、開閉装置17bの動作を示す。
 図6に示す全暖房運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12を経由させずに熱媒体変換機3へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと利用側熱交換器26a及び利用側熱交換器26bとの間を熱媒体が循環するようにしている。また、熱媒体変換機3では、第2冷媒流路切替装置18a、第2冷媒流路切替装置18b、開閉装置17a、開閉装置17bの動作は表2に示す通りである。
Figure JPOXMLDOC01-appb-T000002
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を通り、第1接続配管4aを導通し、逆止弁13bを通過し、室外機1から流出する。室外機1から流出した高温・高圧のガス冷媒は、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高温・高圧のガス冷媒は、分岐されて第2冷媒流路切替装置18a及び第2冷媒流路切替装置18bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれに流入する。
 熱媒体間熱交換器15a及び熱媒体間熱交換器15bに流入した高温・高圧のガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら凝縮液化し、高圧の液冷媒となる。熱媒体間熱交換器15a及び熱媒体間熱交換器15bから流出した液冷媒は、絞り装置16a及び絞り装置16bで膨張させられて、低温・低圧の二相冷媒となる。この二相冷媒は、開閉装置17bを通って、熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、第2接続配管4bを導通し、逆止弁13cを通過して、蒸発器として作用する熱源側熱交換器12に流入する。
 そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、第1冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10へ再度吸入される。
 このとき、絞り装置16aは、圧力センサー36で検出された圧力を飽和温度に換算した値と第3温度センサー35bで検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。同様に、絞り装置16bは、圧力センサー36で検出された圧力を飽和温度に換算した値と第3温度センサー35dで検出された温度との差として得られるサブクールが一定になるように開度が制御される。また、開閉装置17aは閉、開閉装置17bは開となっている。なお、熱媒体間熱交換器15の中間位置の飽和温度が測定できる場合は、その中間位置での温度を圧力センサー36の代わりに用いてもよく、安価にシステムを構成できる。
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 全暖房運転モードでは、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方で熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21a及びポンプ21bによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。そして、熱媒体が利用側熱交換器26a及び利用側熱交換器26bで室内空気に放熱することで、室内空間7の暖房を行なう。
 それから、熱媒体は、利用側熱交換器26a及び利用側熱交換器26bから流出して熱媒体流量調整装置25a及び熱媒体流量調整装置25bに流入する。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。熱媒体流量調整装置25a及び熱媒体流量調整装置25bから流出した熱媒体は、第1熱媒体流路切替装置22a及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bへ流入し、再びポンプ21a及びポンプ21bへ吸い込まれる。
 なお、利用側熱交換器26の配管5内では、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、第1温度センサー31aで検出された温度、あるいは、第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を目標値に保つように制御することにより、賄うことができる。熱媒体間熱交換器15の出口温度は、第1温度センサー31aまたは第1温度センサー31bのどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。
 このとき、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方へ流れる流路が確保されるように、中間的な開度にしている。また、本来、利用側熱交換器26aは、その入口と出口の温度差で制御すべきであるが、利用側熱交換器26の入口側の熱媒体温度は、第1温度センサー31bで検出された温度とほとんど同じ温度であり、第1温度センサー31bを使用することにより温度センサーの数を減らすことができ、安価にシステムを構成できる。
 全暖房運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図6においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
[冷房主体運転モード]
 図7は、空気調和装置100の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。この図7では、利用側熱交換器26aで冷熱負荷が発生し、利用側熱交換器26bで温熱負荷が発生している場合を例に冷房主体運転モードについて説明する。なお、図7では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の循環する配管を示している。また、図7では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。さらに、表3に冷房主体運転モード時の第2冷媒流路切替装置18a、第2冷媒流路切替装置18b、開閉装置17a、開閉装置17bの動作を示す。
 図7に示す冷房主体運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15aと利用側熱交換器26aとの間を、熱媒体間熱交換器15bと利用側熱交換器26bとの間を、それぞれ熱媒体が循環するようにしている。また、熱媒体変換機3では、第2冷媒流路切替装置18a、第2冷媒流路切替装置18b、開閉装置17a、開閉装置17bの動作は表3に示す通りである。
Figure JPOXMLDOC01-appb-T000003
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら凝縮し、二相冷媒となる。熱源側熱交換器12から流出した二相冷媒は、逆止弁13aを通って室外機1から流出し、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した二相冷媒は、第2冷媒流路切替装置18bを通って凝縮器として作用する熱媒体間熱交換器15bに流入する。
 熱媒体間熱交換器15bに流入した二相冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら凝縮液化し、液冷媒となる。熱媒体間熱交換器15bから流出した液冷媒は、絞り装置16bで膨張させられて低圧二相冷媒となる。この低圧二相冷媒は、絞り装置16aを介して蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した低圧二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低圧のガス冷媒となる。このガス冷媒は、熱媒体間熱交換器15aから流出し、第2冷媒流路切替装置18aを介して熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、逆止弁13dを通って、第1冷媒流路切替装置11及びアキュムレーター19を介して、圧縮機10へ再度吸入される。
 このとき、絞り装置16bは、第3温度センサー35aで検出された温度と第3温度センサー35bで検出された温度との差として得られるスーパーヒートが一定になるように開度が制御される。また、絞り装置16aは全開、開閉装置17aは閉、開閉装置17bは閉となっている。なお、絞り装置16bは、圧力センサー36で検出された圧力を飽和温度に換算した値と第3温度センサー35dで検出された温度との差として得られるサブクールが一定になるように開度を制御してもよい。また、絞り装置16bを全開とし、絞り装置16aでスーパーヒートまたはサブクールを制御するようにしてもよい。
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 冷房主体運転モードでは、熱媒体間熱交換器15bで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21bによって配管5内を流動させられることになる。また、冷房主体運転モードでは、熱媒体間熱交換器15aで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。
 利用側熱交換器26bでは熱媒体が室内空気に放熱することで、室内空間7の暖房を行なう。また、利用側熱交換器26aでは熱媒体が室内空気から吸熱することで、室内空間7の冷房を行なう。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。利用側熱交換器26bを通過し若干温度が低下した熱媒体は、熱媒体流量調整装置25b及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15bへ流入し、再びポンプ21bへ吸い込まれる。利用側熱交換器26aを通過し若干温度が上昇した熱媒体は、熱媒体流量調整装置25a及び第1熱媒体流路切替装置22aを通って、熱媒体間熱交換器15aへ流入し、再びポンプ21aへ吸い込まれる。
 この間、暖かい熱媒体と冷たい熱媒体とは、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26へ導入される。なお、利用側熱交換器26の配管5内では、暖房側、冷房側ともに、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、暖房側においては第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を、冷房側においては第2温度センサー34で検出された温度と第1温度センサー31aで検出された温度との差を目標値に保つように制御することにより、賄うことができる。
 冷房主体運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図7においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
[暖房主体運転モード]
 図8は、空気調和装置100の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。この図8では、利用側熱交換器26aで温熱負荷が発生し、利用側熱交換器26bで冷熱負荷が発生している場合を例に暖房主体運転モードについて説明する。なお、図8では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の循環する配管を示している。また、図8では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。さらに、表4に全暖房運転モード時の第2冷媒流路切替装置18a、第2冷媒流路切替装置18b、開閉装置17a、開閉装置17bの動作を示す。
 図8に示す暖房主体運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12を経由させずに熱媒体変換機3へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15aと利用側熱交換器26bとの間を、熱媒体間熱交換器15aと利用側熱交換器26bとの間を、それぞれ熱媒体が循環するようにしている。また、熱媒体変換機3では、第2冷媒流路切替装置18a、第2冷媒流路切替装置18b、開閉装置17a、開閉装置17bの動作は表4に示す通りである。
Figure JPOXMLDOC01-appb-T000004
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を通り、第1接続配管4aを導通し、逆止弁13bを通過し、室外機1から流出する。室外機1から流出した高温・高圧のガス冷媒は、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高温・高圧のガス冷媒は、第2冷媒流路切替装置18bを通って凝縮器として作用する熱媒体間熱交換器15bに流入する。
 熱媒体間熱交換器15bに流入したガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら凝縮液化し、液冷媒となる。熱媒体間熱交換器15bから流出した液冷媒は、絞り装置16bで膨張させられて低圧二相冷媒となる。この低圧二相冷媒は、絞り装置16aを介して蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した低圧二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで蒸発し、熱媒体を冷却する。この低圧二相冷媒は、熱媒体間熱交換器15aから流出し、第2冷媒流路切替装置18aを介して熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。
 室外機1に流入した冷媒は、逆止弁13cを通って、蒸発器として作用する熱源側熱交換器12に流入する。そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、第1冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10へ再度吸入される。
 このとき、絞り装置16bは、圧力センサー36で検出された圧力を飽和温度に換算した値と第3温度センサー35bで検出された温度との差として得られるサブクールが一定になるように開度が制御される。また、絞り装置16aは全開、開閉装置17aは閉、開閉装置17bは閉となっている。なお、絞り装置16bを全開とし、絞り装置16aでサブクールを制御するようにしてもよい。
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 暖房主体運転モードでは、熱媒体間熱交換器15bで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21bによって配管5内を流動させられることになる。また、暖房主体運転モードでは、熱媒体間熱交換器15aで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。
 利用側熱交換器26bでは熱媒体が室内空気から吸熱することで、室内空間7の冷房を行なう。また、利用側熱交換器26aでは熱媒体が室内空気に放熱することで、室内空間7の暖房を行なう。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。利用側熱交換器26bを通過し若干温度が上昇した熱媒体は、熱媒体流量調整装置25b及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15aに流入し、再びポンプ21aへ吸い込まれる。利用側熱交換器26aを通過し若干温度が低下した熱媒体は、熱媒体流量調整装置25a及び第1熱媒体流路切替装置22aを通って、熱媒体間熱交換器15bへ流入し、再びポンプ21aへ吸い込まれる。
 この間、暖かい熱媒体と冷たい熱媒体とは、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26へ導入される。なお、利用側熱交換器26の配管5内では、暖房側、冷房側ともに、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、暖房側においては第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を、冷房側においては第2温度センサー34で検出された温度と第1温度センサー31aで検出された温度との差を目標値として保つように制御することにより、賄うことができる。
 暖房主体運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図8においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
[冷媒配管4]
 以上説明したように、本実施の形態に係る空気調和装置100は、幾つかの運転モードを具備している。これらの運転モードにおいては、室外機1と熱媒体変換機3とを接続する冷媒配管4には熱源側冷媒が流れている。なお、第2冷媒流路切替装置18と接続する冷媒配管4のうち、高圧側の配管を高圧配管40a、低圧側の配管を低圧配管40b、と称して図3~図8では図示している。
[配管5]
 本実施の形態に係る空気調和装置100が実行する幾つかの運転モードにおいては、熱媒体変換機3と室内機2を接続する配管5には水や不凍液等の熱媒体が流れている。
[冷媒音について]
 空気調和装置100では、運転モードを切り替えたり、運転を停止したりする場合、第2冷媒流路切替装置18a、第2冷媒流路切替装置18bが切り替わる。そのため、回路中(冷媒循環回路A中)の圧力が急激に変化し、それに伴い冷媒音が発生する。加えて、回路中の圧力が大きく変化したことによって、絞り装置(絞り装置16)のような狭い流路を冷媒が急激に流れるときに、大きな冷媒音が発生する。大きな冷媒音は、ユーザーに不快感を与える。空気調和装置においては、冷媒音を低減させることが要求される。冷媒音を低減するためには、冷媒が流れる流路断面を大きくしたり、絞り装置の前後差圧を小さくしたりすればよい。
 空気調和装置100では、回路中の圧力変化に応じて発生する冷媒音を低減させるようにしている。以下に、冷媒音の低減させるアクチュエーターの動作手順の具体例を場合を分けて説明する。なお、以下で説明するユニット停止モードとは、空気調和装置100を運転停止する際における各アクチュエーターの停止制御を実行するモードを意味している。運転モードを切り替える前の運転モードが第1運転モードであり、切り替え後の運転モードが第2運転モードである。
 空気調和装置100では、高圧状態の冷媒が流れる高圧配管40aは、開閉装置17aの上流で分岐されており、一方が開閉装置17aに接続され、他方が第2冷媒流路切替装置18の一つの接続口に接続されている。また、空気調和装置100では、低圧状態の冷媒が流れる低圧配管40bは、第2冷媒流路切替装置18の一つの接続口に接続されている。上述したように、第2冷媒流路切替装置18aは、OFF状態において低圧配管40bと連通され、ON状態において高圧配管40aと連通されるようになっている。また、第2冷媒流路切替装置18bは、OFF状態において高圧配管40aと連通され、ON状態において低圧配管40bと連通されるようになっている。
[全冷房運転モード(第1運転モード⇒ユニット停止モード(第2運転モード)]
 全冷房運転モード時においては、第1冷媒流路切替装置18aはOFF状態(低圧配管40bと連通した状態)、第2冷媒流路切替装置18bはON状態(低圧配管40bと連通した状態)である(表1参照)。この状態からユニット停止モードとした場合、第2冷媒流路切替装置18bはOFF状態になる。すなわち、全冷房運転モードからユニット停止モードに切り替えた場合、第2冷媒流路切替装置18bは低圧配管40bから高圧配管40aに接続が切り替わる。このとき、熱媒体間熱交換器15bは低圧状態から一気に高圧状態に変化し、絞り装置16bの前後で大きな圧力差が発生し、大きな冷媒音が発生する。
 そこで、空気調和装置100においては、全冷房運転モードからユニット停止モードに切り替える際、開閉装置17aは開状態、第2冷媒流路切替装置18aはOFF状態(低圧配管40bと連通した状態)を維持する。また、空気調和装置100においては、全冷房運転モードからユニット停止モードに切り替える際、第2冷媒流路切替装置18bはON状態(低圧配管40bと連通した状態)からOFF状態(高圧配管40aと連通した状態)にし、絞り装置16a、絞り装置16bの開度は切替前の開度より大きくする。絞り装置16の開度は、できるだけ大きい方がよいので、全開とするのが望ましい。そして、所定時間経過後、絞り装置16a、絞り装置16bの開度をユニット停止モード時の所定開度に、開閉装置17aを閉状態にする。
 このような順序でアクチュエーターを動作させることで、絞り装置16a、絞り装置16bでの差圧を小さくすることができる。したがって、全冷房運転モード時からユニット停止モードに切り替えた際、空気調和装置100においては、冷媒音を大幅に低減することが可能になる。
[全冷房運転モード(第1運転モード)⇒冷房主体運転モード(第2運転モード)]
 全冷房運転モード時においては、第1冷媒流路切替装置18aはOFF状態(低圧配管40bと連通した状態)、第2冷媒流路切替装置18bはON状態(低圧配管40bと連通した状態)である(表1参照)。一方、冷房主体運転モード時においては、熱媒体間熱交換器15bが凝縮器として作用するので、第2冷媒流路切替装置18bはOFF状態(高圧配管40aと連通した状態)になる。すなわち、全冷房運転モードから冷房主体運転モードに切り替えた場合、第2冷媒流路切替装置18bは低圧配管40bから高圧配管40aに切り替わる。このとき、熱媒体間熱交換器15bは低圧状態から一気に高圧状態に変化し、絞り装置16bの前後で大きな圧力差が発生し、大きな冷媒音が発生する。
 そこで、空気調和装置100においては、全冷房運転モードから冷房主体運転モードに切り替える際、開閉装置17aは開状態、第2冷媒流路切替装置18aはOFF状態(低圧配管40bと連通した状態)を維持する。また、空気調和装置100においては、全冷房運転モードから冷房主体運転モードに切り替える際、第2冷媒流路切替装置18bはON状態(低圧配管40bと連通した状態)からOFF状態(高圧配管40aと連通した状態)にし、絞り装置16a、絞り装置16bの開度は切替前の開度より大きくする。そして、所定時間経過後、絞り装置16a、絞り装置16bの開度を冷房主体運転モード時の所定開度に、開閉装置17aを閉状態にする。
 このような順序でアクチュエーターを動作させることで、絞り装置16a、絞り装置16bでの差圧を小さくすることができる。したがって、全冷房運転モードから冷房主体運転モードに切り替えた際、空気調和装置100においては、冷媒音を大幅に低減することが可能になる。
[冷房主体運転モード(第1運転モード)⇒全冷房運転モード(第2運転モード)]
 冷房主体運転モード時においては、第1冷媒流路切替装置18aはOFF状態(低圧配管40bと連通した状態)、第2冷媒流路切替装置18bもOFF状態(高圧配管40aと連通した状態)である(表3参照)。この状態から全冷房運転モードになった場合、第2冷媒流路切替装置18bはOFF状態(高圧配管40aと連通した状態)からON状態(低圧配管40bと連通した状態)になる。すなわち、冷房主体運転モードから全冷房運転モードに切り替えた場合、第2冷媒流路切替装置18bは高圧配管40aから低圧配管40bに接続が切り替わる。
 このとき、熱媒体間熱交換器15bは高圧状態から一気に低圧状態に変化し、低圧配管40bに冷媒が急激に流れ、絞り装置のような細い流路を流れるときに大きな冷媒音が発生する。また、熱媒体間熱交換器15bが蒸発器として作用するため、絞り装置16bの前後で大きな圧力差が発生し、大きな冷媒音が発生する。
 そこで、空気調和装置100においては、冷房主体運転モードから全冷房運転モードに切り替える際、開閉装置17aは閉状態から開状態にし、第2冷媒流路切替装置18aはOFF状態(低圧配管40bと連通した状態)を維持する。また、空気調和装置100においては、冷房主体運転モードから全冷房運転モードに切り替える際、第2冷媒流路切替装置18bもOFF状態(高圧配管40aと連通した状態)を維持し、絞り装置16a、絞り装置16bの開度は切替前の開度より大きくする。そして、所定時間経過後、絞り装置16a、絞り装置16bの開度を全冷房運転モード時の所定開度に、第2冷媒流路切替装置18bはOFF状態(高圧配管40aと連通した状態)からON状態(低圧配管40bと連通した状態)に切り替える。
 このような順序でアクチュエーターを動作させることで、絞り装置16bでの差圧を小さくすることができる。したがって、冷房主体運転モードから全冷房運転モードに切り替えた際、空気調和装置100においては、冷媒音を大幅に低減することが可能になる。
[全暖房運転モード(第1運転モード)⇒ユニット停止モード(第2運転モード)]
 全暖房運転モード時においては、第1冷媒流路切替装置18aはON状態(高圧配管40aと連通した状態)、第2冷媒流路切替装置18bもOFF状態(高圧配管40aと連通した状態)である(表2参照)。この状態からユニット停止モードにした場合、第2冷媒流路切替装置18aはOFF状態になる。すなわち、全暖房運転モードからユニット停止モードに切り替えた場合、第2冷媒流路切替装置18aは高圧配管40aから低圧配管40bに接続が切り替わる。
 このとき、熱媒体間熱交換器15aは高圧状態から一気に低圧状態に変化し、低圧配管40bに冷媒が急激に流れ、絞り装置のような細い流路を流れるときに大きな冷媒音が発生する。また、熱媒体間熱交換器15aが蒸発器として作用するため、絞り装置16aの前後で大きな圧力差が発生し、大きな冷媒音が発生する。
 そこで、空気調和装置100においては、全暖房運転モードからユニット停止モードに切り替える際、開閉装置17bは開状態、第2冷媒流路切替装置18aはON状態(高圧配管40aと連通した状態)、第2冷媒流路切替装置18bもOFF状態(高圧配管40aと連通した状態)を維持する。また、空気調和装置100においては、全暖房運転モードからユニット停止モードに切り替える際、絞り装置16a、絞り装置16bの開度は切替前の開度より大きくする。そして、所定時間経過後、絞り装置16a、絞り装置16bの開度をユニット停止モード時の所定開度に、第2冷媒流路切替装置18aをOFF状態(低圧配管40bと連通した状態)に、開閉装置17bを閉状態にする。
 このような順序でアクチュエーターを動作させることで、絞り装置16aでの差圧を小さくすることができる。したがって、全暖房運転モード時からユニット停止モードに切り替えた際、空気調和装置100においては、冷媒音を大幅に低減することが可能になる。
[全暖房運転モード(第1運転モード)⇒暖房主体運転モード(第2運転モード)]
 全暖房運転モード時においては、第1冷媒流路切替装置18aはON状態(高圧配管40aと連通した状態)、第2冷媒流路切替装置18bはOFF状態(高圧配管40aと連通した状態)である(表2参照)。一方、暖房主体運転モード時においては、熱媒体間熱交換器15aが蒸発器として作用するので、第2冷媒流路切替装置18aはOFF状態(低圧配管40bと連通した状態)になる。すなわち、全暖房運転モードから暖房主体運転モードに切り替えた場合、第2冷媒流路切替装置18bは高圧配管40aから低圧配管40bに切り替わる。
 このとき、熱媒体間熱交換器15aは高圧状態から一気に低圧状態に変化し、低圧配管40bに冷媒が急激に流れ、絞り装置のような細い流路を流れるときに大きな冷媒音が発生する。また、熱媒体間熱交換器15aが蒸発器として作用するため、絞り装置16aの前後で大きな圧力差が発生し、大きな冷媒音が発生する。
 そこで、空気調和装置100においては、全暖房運転モードから暖房主体運転モードに切り替える際、開閉装置17bは開状態、第2冷媒流路切替装置18aはON状態(高圧配管40aと連通した状態)、第2冷媒流路切替装置18bもOFF状態(高圧配管40aと連通した状態)を維持する。また、空気調和装置100においては、全暖房運転モードから暖房主体運転モードに切り替える際、絞り装置16a、絞り装置16bの開度は切替前の開度より大きくする。そして、所定時間経過後、第2冷媒流路切替装置18aをOFF状態(低圧配管40bと連通した状態)に、開閉装置17bを閉状態にする。また、所定時間経過後、絞り装置16a、絞り装置16bの開度を暖房主体運転モード時の所定開度にする。
 このような順序でアクチュエーターを動作させることで、絞り装置16aでの差圧を小さくすることができる。したがって、全暖房運転モード時から暖房主体運転モードに切り替えた際、空気調和装置100においては、冷媒音を大幅に低減することが可能になる。
[暖房主体運転モード(第1運転モード)⇒全暖房運転モード(第2運転モード)]
 暖房主体運転モード時においては、第1冷媒流路切替装置18aはOFF状態(低圧配管40bと連通した状態)、第2冷媒流路切替装置18bもOFF状態(高圧配管40aと連通した状態)である(表4参照)。この状態から全暖房運転モードになった場合、第2冷媒流路切替装置18aはOFF状態(低圧配管40bと連通した状態)からON状態(高圧配管40aと連通した状態)になる。すなわち、暖房主体運転モードから全暖房運転モードに切り替えた場合、第2冷媒流路切替装置18aは低圧配管40bから高圧配管40aに接続が切り替わる。このとき、熱媒体間熱交換器15aは低圧状態から一気に高圧状態に変化し、熱媒体間熱交換器15aに冷媒が急激に流れ、細い流路を流れるときに大きな冷媒音が発生する。
 そこで、空気調和装置100においては、暖房主体運転モードから全暖房運転モードに切り替える際、開閉装置17bは開状態にし、第2冷媒流路切替装置18aはOFF状態(低圧配管40bと連通した状態)を、第2冷媒流路切替装置18bもOFF状態(高圧配管40aと連通した状態)を維持する。また、空気調和装置100においては、暖房主体運転モードから全暖房運転モードに切り替える際、絞り装置16a、絞り装置16bの開度は切替前の開度より大きくする。そして、所定時間経過後、第2冷媒流路切替装置18aはOFF状態(低圧配管40bと連通した状態)からON状態(高圧配管40aと連通した状態)に切り替える。また、所定時間経過後、絞り装置16a、絞り装置16bの開度を全暖房運転モード時の所定開度にする。
 このような順序でアクチュエーターを動作させることで、空気調和装置100においては、冷媒音を大幅に低減することが可能になる。
 空気調和装置100では、利用側熱交換器26にて暖房負荷または冷房負荷のみが発生している場合は、対応する第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を中間的な開度にし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方に熱媒体が流れるようにしている。これにより、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方を暖房運転または冷房運転に使用することができるため、伝熱面積が大きくなり、効率のよい暖房運転または冷房運転を行なうことができる。
 また、利用側熱交換器26にて暖房負荷と冷房負荷とが混在して発生している場合は、暖房運転を行なっている利用側熱交換器26に対応する第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を加熱用の熱媒体間熱交換器15bに接続される流路へ切り替え、冷房運転を行なっている利用側熱交換器26に対応する第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を冷却用の熱媒体間熱交換器15aに接続される流路へ切り替えることにより、各室内機2にて、暖房運転、冷房運転を自由に行なうことができる。
 なお、本実施の形態で説明した第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、三方弁等の三方流路を切り替えられるもの、開閉弁等の二方流路の開閉を行なうものを2つ組み合わせる等、流路を切り替えられるものであればよい。また、ステッピングモーター駆動式の混合弁等の三方流路の流量を変化させられるもの、電子式膨張弁等の二方流路の流量を変化させられるものを2つ組み合わせる等して第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23として用いてもよい。この場合は、流路の突然の開閉によるウォーターハンマーを防ぐこともできる。さらに、本実施の形態では、熱媒体流量調整装置25が二方弁である場合を例に説明を行なったが、三方流路を持つ制御弁とし利用側熱交換器26をバイパスするバイパス管と共に設置するようにしてもよい。
 また、熱媒体流量調整装置25は、ステッピングモーター駆動式で流路を流れる流量を制御できるものを使用するとよく、二方弁でも三方弁の一端を閉止したものでもよい。また、熱媒体流量調整装置25として、開閉弁等の二法流路の開閉を行うものを用い、ON/OFFを繰り返して平均的な流量を制御するようにしてもよい。
 また、第2冷媒流路切替装置18が四方弁であるかのように示したが、これに限るものではなく、二方流路切替弁や三方流路切替弁を複数個用い、同じように冷媒が流れるように構成してもよい。
 また、利用側熱交換器26と熱媒体流量調整装置25とが1つしか接続されていない場合でも同様のことが成り立つのは言うまでもなく、更に熱媒体間熱交換器15及び絞り装置16として、同じ動きをするものが複数個設置されていても、当然問題ない。さらに、熱媒体流量調整装置25は、熱媒体変換機3に内蔵されている場合を例に説明したが、これに限るものではなく、室内機2に内蔵されていてもよく、熱媒体変換機3と室内機2とは別体に構成されていてもよい。
 熱源側冷媒としては、たとえばR-22、R-134a等の単一冷媒、R-410A、R-404A等の擬似共沸混合冷媒、R-407C等の非共沸混合冷媒、化学式内に二重結合を含む、CF3 CF=CH2 等の地球温暖化係数が比較的小さい値とされている冷媒やその混合物、あるいはCO2 やプロパン等の自然冷媒を用いることができる。加熱用として動作している熱媒体間熱交換器15aまたは熱媒体間熱交換器15bにおいて、通常の二相変化を行う冷媒は、凝縮液化し、CO2 等の超臨界状態となる冷媒は、超臨界の状態で冷却されるが、どちらでも、その他は同じ動きをし、同様の効果を奏する。
 熱媒体としては、たとえばブライン(不凍液)や水、ブラインと水の混合液、水と防食効果が高い添加剤の混合液等を用いることができる。したがって、空気調和装置100においては、熱媒体が室内機2を介して室内空間7に漏洩したとしても、熱媒体に安全性の高いものを使用しているため安全性の向上に寄与することになる。
 本実施の形態では、空気調和装置100にアキュムレーター19を含めている場合を例に説明したが、アキュムレーター19を設けなくてもよい。また、一般的に、熱源側熱交換器12及び利用側熱交換器26には、送風機が取り付けられており、送風により凝縮あるいは蒸発を促進させる場合が多いが、これに限るものではない。たとえば、利用側熱交換器26としては放射を利用したパネルヒーターのようなものを用いることもできるし、熱源側熱交換器12としては、水や不凍液により熱を移動させる水冷式のタイプのものを用いることもできる。つまり、熱源側熱交換器12及び利用側熱交換器26としては、放熱あるいは吸熱をできる構造のものであれば種類を問わず、用いることができる。
 本実施の形態では、利用側熱交換器26が4つである場合を例に説明したが、個数を特に限定するものではない。また、熱媒体間熱交換器15a、熱媒体間熱交換器15bが2つである場合を例に説明したが、当然、これに限るものではなく、熱媒体を冷却または/及び加熱できるように構成すれば、幾つ設置してもよい。さらに、ポンプ21a、ポンプ21bはそれぞれ一つとは限らず、複数の小容量のポンプを並列に並べて接続してもよい。
 以上のように、本実施の形態に係る空気調和装置100は、室内機2または室内機2の近傍まで熱源側冷媒を循環させずに安全性の向上を図るだけでなく、配管5と各アクチュエータとの接続から漏れてしまった熱媒体を熱媒体変換機3内に留めておくことができるので、安全性を更に向上させたものとなる。また、空気調和装置100は、配管5を短くできるので省エネルギー化を図ることができる。さらに、空気調和装置100は、室外機1と熱媒体変換機3または室内機2との接続配管(冷媒配管4、配管5)を減らし、工事性を向上できる。加えて、空気調和装置100は、モード切り替え時に発生する冷媒温度音を低減することを可能としているので、快適性の向上が可能になる。
 1 室外機、2 室内機、2a 室内機、2b 室内機、2c 室内機、2d 室内機、3 熱媒体変換機、3a 親熱媒体変換機、3b 子熱媒体変換機、4 冷媒配管、4a 第1接続配管、4b 第2接続配管、5 配管、6 室外空間、7 室内空間、8 空間、9 建物、10 圧縮機、11 第1冷媒流路切替装置、12 熱源側熱交換器、13a 逆止弁、13b 逆止弁、13c 逆止弁、13d 逆止弁、14 気液分離器、15 熱媒体間熱交換器、15a 熱媒体間熱交換器、15b 熱媒体間熱交換器、16 絞り装置、16a 絞り装置、16b 絞り装置、16c 絞り装置、17 開閉装置、17a 開閉装置、17b 開閉装置、18 第2冷媒流路切替装置、18a 第2冷媒流路切替装置、18b 第2冷媒流路切替装置、19 アキュムレーター、21 ポンプ、21a ポンプ、21b ポンプ、22 第1熱媒体流路切替装置、22a 第1熱媒体流路切替装置、22b 第1熱媒体流路切替装置、22c 第1熱媒体流路切替装置、22d 第1熱媒体流路切替装置、23 第2熱媒体流路切替装置、23a 第2熱媒体流路切替装置、23b 第2熱媒体流路切替装置、23c 第2熱媒体流路切替装置、23d 第2熱媒体流路切替装置、25 熱媒体流量調整装置、25a 熱媒体流量調整装置、25b 熱媒体流量調整装置、25c 熱媒体流量調整装置、25d 熱媒体流量調整装置、26 利用側熱交換器、26a 利用側熱交換器、26b 利用側熱交換器、26c 利用側熱交換器、26d 利用側熱交換器、31 第1温度センサー、31a 第1温度センサー、31b 第1温度センサー、34 第2温度センサー、34a 第2温度センサー、34b 第2温度センサー、34c 第2温度センサー、34d 第2温度センサー、35 第3温度センサー、35a 第3温度センサー、35b 第3温度センサー、35c 第3温度センサー、35d 第3温度センサー、36 圧力センサー、40a 高圧配管、40b 低圧配管、100 空気調和装置、100A 空気調和装置、A 冷媒循環回路、B 熱媒体循環回路。

Claims (9)

  1.  圧縮機、第1冷媒流路切替装置、熱源側熱交換器、複数の絞り装置、複数の熱媒体間熱交換器の冷媒側流路、複数の第2冷媒流路切替装置、が冷媒配管で接続されて熱源側冷媒を循環させる冷媒循環回路と、
     ポンプ、利用側熱交換器、及び、複数の熱媒体間熱交換器の熱媒体側流路が熱媒体配管で接続されて熱媒体を循環させる熱媒体循環回路と、を有し、
     前記複数の熱媒体間熱交換器において前記熱源側冷媒と前記熱媒体とが熱交換する空気調和装置であって、
     所定の状態で運転させる第1運転モードと、
     前記第1運転モードとは異なる状態で運転させる第2運転モードと、有し、
     前記第1運転モードから前記第2運転モードに運転を切り替える際、
     前記第1運転モードでの運転状態よりも前記複数の絞り装置の前後における前記熱源側冷媒の圧力差を小さくする方向に、前記複数の絞り装置のいずれか又は全部を制御し、前記複数の第2流路切替装置のいずれか又全部を制御してから、所定時間経過後に前記第2運転モードとする
     ことを特徴とする空気調和装置。
  2.  冷媒循環回路に開閉装置を設け、
     所定の状態で運転させる第1運転モードと、
     前記第1運転モードとは異なる状態で運転させる第2運転モードと、有し、
     前記第1運転モードから前記第2運転モードに運転を切り替える際、
     前記第1運転モードでの運転状態よりも前記複数の絞り装置の前後における前記熱源側冷媒の圧力差を小さくする方向に、前記複数の絞り装置のいずれか又は全部を制御し、前記複数の第2流路切替装置のいずれか又全部を制御し、前記開閉装置を制御してから、所定時間経過後に前記第2運転モードとする
     ことを特徴とする請求項1に記載の空気調和装置。
  3.  冷媒循環回路に第1開閉装置、第2開閉装置を設け、
     所定の状態で運転させる第1運転モードと、
     前記第1運転モードとは異なる状態で運転させる第2運転モードと、有し、
     前記第1運転モードから前記第2運転モードに運転を切り替える際、
     前記第1運転モードでの運転状態よりも前記複数の絞り装置の前後における前記熱源側冷媒の圧力差を小さくする方向に、前記複数の絞り装置のいずれか又は全部を制御し、前記複数の第2流路切替装置のいずれか又全部を制御し、前記第1開閉装置及び前記第2開閉装置を制御してから、所定時間経過後に前記第2運転モードとする
     ことを特徴とする請求項1に記載の空気調和装置。
  4.  前記第1運転モードが、前記第1開閉装置を開状態、前記第2開閉装置を閉状態に制御して前記複数の熱媒体間熱交換器全部に低温低圧の熱源側冷媒を流す全冷房運転モードであり、
     前記第2運転モードが運転を停止させる際のユニット停止モードであり、
     前記全冷房運転モードから前記ユニット停止モードに切り替える際、
     前記第1開閉装置の状態を維持し、前記第2冷媒流路切替装置のいずれか1つを低圧配管と連通された状態から高圧配管と連通された状態に切り替え、前記複数の絞り装置の開度を前記全冷房運転転モード時の開度より大きくし、
     所定時間経過後、前記複数の絞り装置の開度を前記ユニット停止モード時の開度にし、前記第1開閉装置を閉状態にして前記ユニット停止モードとする
     ことを特徴とする請求項3に記載の空気調和装置。
  5.  前記第1運転モードが、前記第1開閉装置を開状態、前記第2開閉装置を閉状態に制御して前記複数の熱媒体間熱交換器全部に低温低圧の熱源側冷媒を流す全冷房運転モードであり、
     前記第2運転モードが、前記第1開閉装置を閉状態、前記第2開閉装置を閉状態に制御して前記複数の熱媒体間熱交換器の一部に高温高圧の熱源側冷媒を流して熱媒体を加熱し、前記複数の熱媒体間熱交換器の他の一部に低温低圧の熱源側冷媒を流して熱媒体を冷却する冷房暖房混在運転モードのうち暖房負荷よりも冷房負荷の方が大きい冷房主体運転モードであり、
     前記全冷房運転モードから前記冷房主体運転モードに切り替える際、
     前記第1開閉装置の状態を維持し、前記第2冷媒流路切替装置のいずれか1つを低圧配管と連通された状態から高圧配管と連通された状態に切り替え、前記複数の絞り装置の開度を前記全冷房運転転モード時の開度より大きくし、
     所定時間経過後、前記複数の絞り装置の開度を前記冷房主体運転モード時の開度にし、前記第1開閉装置を閉状態にして前記冷房主体運転モードとする
     ことを特徴とする請求項3に記載の空気調和装置。
  6.  前記第1運転モードが、前記第1開閉装置を閉状態、前記第2開閉装置を閉状態に制御して前記複数の熱媒体間熱交換器の一部に高温高圧の熱源側冷媒を流して熱媒体を加熱し、前記複数の熱媒体間熱交換器の他の一部に低温低圧の熱源側冷媒を流して熱媒体を冷却する冷房暖房混在運転モードのうち暖房負荷よりも冷房負荷の方が大きい冷房主体運転モードであり、
     前記第2運転モードが、前記第1開閉装置を開状態、前記第2開閉装置を閉状態に制御して前記複数の熱媒体間熱交換器全部に低温低圧の熱源側冷媒を流す全冷房運転モードであり、
     前記冷房主体運転モードから前記全冷房運転モードに切り替える際、
     前記第1開閉装置を閉状態から開状態にし、前記複数の第2冷媒流路切替装の状態を維持し、前記複数の絞り装置の開度を前記冷房主体運転転モード時の開度より大きくし、
     所定時間経過後、前記複数の絞り装置の開度を前記全冷房運転モード時の開度にし、高圧配管と連通されている前記第2冷媒流路切替装置を低圧配管と連通された状態に切り替えて前記全冷房運転モードとする
     ことを特徴とする請求項3に記載の空気調和装置。
  7.  前記第1運転モードが、前記第1開閉装置を閉状態、前記第2開閉装置を開状態に制御して前記複数の熱媒体間熱交換器全部に高温高圧の熱源側冷媒を流す全暖房運転モードであり、
     前記第2運転モードが運転を停止させる際のユニット停止モードであり、
     前記全暖房運転モードから前記ユニット停止モードに切り替える際、
     前記第2開閉装置の状態を維持し、前記複数の第2冷媒流路切替装の状態を維持し、前記複数の絞り装置の開度を前記全暖房運転モード時の開度より大きくし、前記第2冷媒流路切替装置のいずれか1つを低圧配管と連通された状態から高圧配管と連通された状態に切り替え、前記複数の絞り装置の開度を前記全冷房運転転モード時の開度より大きくし、
     所定時間経過後、前記複数の絞り装置の開度を前記ユニット停止モード時の開度にし、前記第2開閉装置を閉状態にして前記ユニット停止モードとする
     ことを特徴とする請求項3に記載の空気調和装置。
  8.  前記第1運転モードが、前記第1開閉装置を閉状態、前記第2開閉装置を開状態に制御して前記複数の熱媒体間熱交換器全部に高温高圧の熱源側冷媒を流す全暖房運転モードであり、
     前記第2運転モードが、前記第1開閉装置を閉状態、前記第2開閉装置を閉状態に制御して前記複数の熱媒体間熱交換器の一部に高温高圧の熱源側冷媒を流して熱媒体を加熱し、前記複数の熱媒体間熱交換器の他の一部に低温低圧の熱源側冷媒を流して熱媒体を冷却する冷房暖房混在運転モードのうち冷房負荷よりも暖房負荷の方が大きい暖房主体運転モードであり、
     前記全暖房運転モードから前記暖房主体運転モードに切り替える際、
     前記第2開閉装置の状態を維持し、前記複数の第2冷媒流路切替装の状態を維持し、前記複数の絞り装置の開度を前記全暖房運転モード時の開度より大きくし、
     所定時間経過後、高圧配管と連通されている前記第2冷媒流路切替装置を低圧配管と連通された状態に切り替え、前記第2開閉装を閉状態にしてから、前記複数の絞り装置の開度を前記暖房主体運転モード時の開度にして前記暖房主体運転モードとする
     ことを特徴とする請求項3に記載の空気調和装置。
  9.  前記第1運転モードが、前記第1開閉装置を閉状態、前記第2開閉装置を閉状態に制御して前記複数の熱媒体間熱交換器の一部に高温高圧の熱源側冷媒を流して熱媒体を加熱し、前記複数の熱媒体間熱交換器の他の一部に低温低圧の熱源側冷媒を流して熱媒体を冷却する冷房暖房混在運転モードのうち冷房負荷よりも暖房負荷の方が大きい暖房主体運転モードであり、
     前記第2運転モードが、前記第1開閉装置を閉状態、前記第2開閉装置を開状態に制御して前記複数の熱媒体間熱交換器全部に高温高圧の熱源側冷媒を流す全暖房運転モードであり、
     前記暖房主体運転モードから前記全暖房運転モードに切り替える際、
     前記第1開閉装置を閉状態から開状態にし、前記複数の第2冷媒流路切替装の状態を維持し、前記複数の絞り装置の開度を前記暖房主体運転転モード時の開度より大きくし、
     所定時間経過後、低圧配管と連通されている前記第2冷媒流路切替装置を高圧配管と連通された状態に切り替え、前記複数の絞り装置の開度を前記全暖房運転モード時の開度にして前記全暖房運転モードとする
     ことを特徴とする請求項3に記載の空気調和装置。
PCT/JP2010/002104 2010-03-25 2010-03-25 空気調和装置 WO2011117922A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES10848317T ES2785060T3 (es) 2010-03-25 2010-03-25 Dispositivo acondicionador de aire
JP2012506665A JP5312681B2 (ja) 2010-03-25 2010-03-25 空気調和装置
EP10848317.3A EP2551611B1 (en) 2010-03-25 2010-03-25 Air conditioning device
PCT/JP2010/002104 WO2011117922A1 (ja) 2010-03-25 2010-03-25 空気調和装置
US13/581,776 US9335072B2 (en) 2010-03-25 2010-03-25 Air-conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/002104 WO2011117922A1 (ja) 2010-03-25 2010-03-25 空気調和装置

Publications (1)

Publication Number Publication Date
WO2011117922A1 true WO2011117922A1 (ja) 2011-09-29

Family

ID=44672522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002104 WO2011117922A1 (ja) 2010-03-25 2010-03-25 空気調和装置

Country Status (5)

Country Link
US (1) US9335072B2 (ja)
EP (1) EP2551611B1 (ja)
JP (1) JP5312681B2 (ja)
ES (1) ES2785060T3 (ja)
WO (1) WO2011117922A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5677571B2 (ja) * 2011-06-16 2015-02-25 三菱電機株式会社 空気調和装置
JP6012756B2 (ja) * 2012-11-21 2016-10-25 三菱電機株式会社 空気調和装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011117922A1 (ja) * 2010-03-25 2011-09-29 三菱電機株式会社 空気調和装置
EP2927612B1 (en) * 2012-11-30 2021-06-09 Mitsubishi Electric Corporation Air conditioning device
US20230194131A1 (en) * 2020-08-03 2023-06-22 Mitsubishi Electric Corporation Air-conditioning apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05280818A (ja) 1992-04-01 1993-10-29 Matsushita Refrig Co Ltd 多室冷暖房装置
JP2001289465A (ja) 2000-04-11 2001-10-19 Daikin Ind Ltd 空気調和装置
JP2003240391A (ja) * 2002-02-21 2003-08-27 Mitsubishi Electric Corp 空気調和機
JP2003343936A (ja) 2002-05-28 2003-12-03 Mitsubishi Electric Corp 冷凍サイクル装置
JP2005140444A (ja) 2003-11-07 2005-06-02 Matsushita Electric Ind Co Ltd 空気調和機およびその制御方法
WO2005095868A1 (ja) * 2004-03-31 2005-10-13 Daikin Industries, Ltd. 調湿装置
WO2009133640A1 (ja) * 2008-04-30 2009-11-05 三菱電機株式会社 空気調和装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754217B2 (ja) * 1989-10-06 1995-06-07 三菱電機株式会社 空気調和装置
US5237833A (en) * 1991-01-10 1993-08-24 Mitsubishi Denki Kabushiki Kaisha Air-conditioning system
EP1275913A3 (en) * 2001-06-26 2003-08-13 Mitsubishi Heavy Industries, Ltd. Multiform gas heat pump type air conditioning system
WO2003078903A1 (fr) * 2002-03-18 2003-09-25 Daikin Industries, Ltd. Dispositif de commande pression d'un climatiseur et climatiseur equipe de ce dispositif
AU2003220985B2 (en) * 2002-03-29 2006-01-19 Daikin Industries, Ltd. Heat source unit of air conditioner and air conditioner
KR100437804B1 (ko) * 2002-06-12 2004-06-30 엘지전자 주식회사 2배관식 냉난방 동시형 멀티공기조화기 및 그 운전방법
KR100437802B1 (ko) * 2002-06-12 2004-06-30 엘지전자 주식회사 냉난방 동시형 멀티공기조화기
KR100447204B1 (ko) * 2002-08-22 2004-09-04 엘지전자 주식회사 냉난방 동시형 멀티공기조화기 및 그 제어방법
CN1695034B (zh) * 2002-10-30 2010-11-17 三菱电机株式会社 空调装置
KR100504498B1 (ko) * 2003-01-13 2005-08-03 엘지전자 주식회사 공기조화기용 과냉확보장치
KR100504509B1 (ko) * 2003-01-16 2005-08-03 엘지전자 주식회사 차단 가능한 다중 분배기를 갖는 냉난방 동시형멀티공기조화기
KR20050075976A (ko) * 2004-01-19 2005-07-26 삼성전자주식회사 공기 조화 시스템 및 그 제어방법
BRPI0520239A2 (pt) * 2005-06-03 2009-09-15 Springer Carrier Ltda sistema de refrigerante, e, sistema de bomba de calor de circuito refrigerante
CN101233375B (zh) * 2005-06-06 2011-09-14 开利公司 用于在热泵中防止溢流起动的方法和热泵
JP4596426B2 (ja) * 2005-09-21 2010-12-08 日立アプライアンス株式会社 熱源装置
WO2007049506A1 (ja) * 2005-10-26 2007-05-03 Matsushita Electric Industrial Co., Ltd. 膨張機を用いたヒートポンプ応用機器
DE102006005035B3 (de) * 2006-02-03 2007-09-27 Airbus Deutschland Gmbh Kühlsystem
JP4592617B2 (ja) * 2006-02-27 2010-12-01 三洋電機株式会社 冷却加熱装置
US8074459B2 (en) * 2006-04-20 2011-12-13 Carrier Corporation Heat pump system having auxiliary water heating and heat exchanger bypass
KR101175385B1 (ko) * 2006-06-16 2012-08-20 엘지전자 주식회사 지열을 이용한 공기조화기
JP4811167B2 (ja) * 2006-07-24 2011-11-09 ダイキン工業株式会社 空気調和システム
US20090241577A1 (en) * 2008-03-26 2009-10-01 Sanyo Electric Co., Ltd. Chiller unit, refrigeration system having chiller unit and air conditioner having chiller unit
WO2011117922A1 (ja) * 2010-03-25 2011-09-29 三菱電機株式会社 空気調和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05280818A (ja) 1992-04-01 1993-10-29 Matsushita Refrig Co Ltd 多室冷暖房装置
JP2001289465A (ja) 2000-04-11 2001-10-19 Daikin Ind Ltd 空気調和装置
JP2003240391A (ja) * 2002-02-21 2003-08-27 Mitsubishi Electric Corp 空気調和機
JP2003343936A (ja) 2002-05-28 2003-12-03 Mitsubishi Electric Corp 冷凍サイクル装置
JP2005140444A (ja) 2003-11-07 2005-06-02 Matsushita Electric Ind Co Ltd 空気調和機およびその制御方法
WO2005095868A1 (ja) * 2004-03-31 2005-10-13 Daikin Industries, Ltd. 調湿装置
WO2009133640A1 (ja) * 2008-04-30 2009-11-05 三菱電機株式会社 空気調和装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5677571B2 (ja) * 2011-06-16 2015-02-25 三菱電機株式会社 空気調和装置
JP6012756B2 (ja) * 2012-11-21 2016-10-25 三菱電機株式会社 空気調和装置
JPWO2014080463A1 (ja) * 2012-11-21 2017-01-05 三菱電機株式会社 空気調和装置

Also Published As

Publication number Publication date
JPWO2011117922A1 (ja) 2013-07-04
ES2785060T3 (es) 2020-10-05
US9335072B2 (en) 2016-05-10
US20120324932A1 (en) 2012-12-27
EP2551611A1 (en) 2013-01-30
JP5312681B2 (ja) 2013-10-09
EP2551611A4 (en) 2014-02-26
EP2551611B1 (en) 2020-03-25

Similar Documents

Publication Publication Date Title
JP5279919B2 (ja) 空気調和装置
JP5188629B2 (ja) 空気調和装置
JP5377653B2 (ja) 空気調和装置
JP5236080B2 (ja) 空気調和装置
WO2012070083A1 (ja) 空気調和装置
JP5595521B2 (ja) ヒートポンプ装置
JP5490245B2 (ja) 空気調和装置
WO2011099065A1 (ja) 空気調和装置
WO2011030429A1 (ja) 空気調和装置
WO2012172613A1 (ja) 空気調和装置
WO2011052046A1 (ja) 空気調和装置
JP6000373B2 (ja) 空気調和装置
JP5420057B2 (ja) 空気調和装置
JP5312606B2 (ja) 空気調和装置
WO2014083652A1 (ja) 空気調和装置
JP5312681B2 (ja) 空気調和装置
JP5752135B2 (ja) 空気調和装置
WO2011052050A1 (ja) 空気調和装置
JP6062030B2 (ja) 空気調和装置
WO2011030420A1 (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848317

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012506665

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13581776

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010848317

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE