WO2011116685A1 - 下行反馈信息的传输方法、基站及中继节点 - Google Patents

下行反馈信息的传输方法、基站及中继节点 Download PDF

Info

Publication number
WO2011116685A1
WO2011116685A1 PCT/CN2011/072044 CN2011072044W WO2011116685A1 WO 2011116685 A1 WO2011116685 A1 WO 2011116685A1 CN 2011072044 W CN2011072044 W CN 2011072044W WO 2011116685 A1 WO2011116685 A1 WO 2011116685A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
acknowledgment signal
relay node
feedback information
downlink feedback
Prior art date
Application number
PCT/CN2011/072044
Other languages
English (en)
French (fr)
Inventor
毕峰
袁明
梁枫
杨瑾
吴栓栓
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011116685A1 publication Critical patent/WO2011116685A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays

Definitions

  • the present invention relates to the field of communications, and in particular to a method for transmitting downlink feedback information, a base station, and a relay node.
  • LTE Long-Term Evolution
  • LTE-Advance Long-Term Evolution Advance
  • IMT International Mobile Telecommunication Advanced
  • is based on Orthogonal Frequency Division Multiplexing (OFDM) technology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • a resource block is defined as an OFDM symbol in one slot in a time domain.
  • a resource block mapping is called a physical resource block on a physical resource.
  • FIG. 1 is an architectural diagram of an LTE-A system. As shown in FIG.
  • the system includes: a base station (eNode-B), a relay node (RN), and a user equipment (User Equipment, UE for short), and a link between the eNode-B and the RN is called a backhaul link.
  • a backhaul link the link between the UE and the RN is called an access link, and the link between the eNode-B and the UE is called a direct link.
  • R-PHICH relay link-Physical Hybrid Automatic Repeat Request Indicator Channel
  • R-PHICH is used to transmit downlink feedback information corresponding to uplink relay link service data.
  • This method can implement non-adaptive uplink hybrid automatic repeat request (Hybrid Automatic Repeat). Request, abbreviated as HARQ) Retransmission mechanism.
  • HARQ hybrid Automatic Repeat request
  • This method needs to introduce a new physical channel although the signaling overhead is small.
  • the other way is to use the relay link-uplink grant (referred to as R).
  • the new data indicator (NDI) in the -UL grant) can implement an adaptive HARQ retransmission mechanism, but the signaling overhead is large.
  • There are a plurality of downlink ⁇ grants, UL grants, R-DL grants, and R-UL grants in the system which are mainly bearer control information.
  • the present invention has been made in view of the problem of the signaling overhead of implementing the HARQ retransmission mechanism in the related art or the need to introduce a new physical channel.
  • the main object of the present invention is to provide an improved downlink feedback information.
  • the transmission method, the base station and the relay node are to solve at least one of the above problems.
  • a method of transmitting downlink feedback information is provided.
  • the method for transmitting the downlink feedback information includes: the base station multiplexes the downlink feedback information corresponding to the relay node in the acknowledgment signal/non-acknowledgement signal authorization message, where the downlink feedback information is set to indicate the corresponding relay link Whether the uplink service data needs to be re-uploaded; the base station sends an acknowledgment signal/non-acknowledgement signal authorization message to the relay node.
  • the acknowledgment signal/non-acknowledgment signal authorization message is a single, and the acknowledgment signal/non-acknowledgement signal authorization message carries the downlink feedback information corresponding to all the relay nodes.
  • the acknowledgment signal/non-acknowledgement signal authorization message is multiple, and each acknowledgment signal/non-acknowledgement signal authorization message carries downlink feedback information corresponding to a part of the relay node.
  • the downlink feedback information corresponding to the relay node is bit information processed by logical operation or bit information repeated a predetermined number of times.
  • the base station multiplexes the downlink feedback information in the acknowledgment signal/non-acknowledgement signal grant message by arranging the downlink feedback information in the acknowledgment signal/non-acknowledgement signal grant message according to the index number of each downlink feedback information.
  • the method further includes: the base station notifying the relay node acknowledgment signal/non-acknowledgment signal ⁇ acknowledgment signal corresponding to the acknowledgment signal/non-acknowledgment signal radio network temporary identifier, and using the acknowledgment signal/non-confirmation signal
  • the line network temporarily identifies the cyclic redundancy check bits in the scrambling acknowledgement signal/non-acknowledgement signal grant message.
  • the above-mentioned acknowledgment signal/non-confirmation signal wireless network temporary identifier has a value range of one of the following: 0001-003C, 003D-FFF3, FFF4-FFFD.
  • the method further includes the base station using the pre-agreed acknowledgment signal/non-acknowledgement signal radio network temporary identification of the cyclic redundancy check bit in the scrambling acknowledgement signal/non-acknowledgement signal grant message.
  • the pre-agreed acknowledgement signal/non-confirmation signal wireless network temporary identifier has a value range of FFF4-FFFD.
  • the method further includes: the base station buffering the cyclic redundancy check bit in the acknowledgement signal/non-acknowledgment signal grant message in the following manner: the base station verifies the corresponding bit and the cyclic redundancy of the acknowledgement signal/non-acknowledgement signal radio network temporary identifier The parity bit is XORed.
  • the downlink feedback information corresponding to each relay node has the same bit length.
  • the base station sends the index number of the downlink feedback information corresponding to each relay node to the relay node.
  • the base station sends the bit offset index information of the downlink feedback information corresponding to each relay node to the relay node.
  • the bit length of the downlink feedback information corresponding to each relay node is different.
  • the base station sends the bit offset index information of the downlink feedback information corresponding to each relay node to the relay node.
  • the number of bits of the above acknowledgement/non-acknowledgment signal grant message is a custom positive integer.
  • the acknowledgment signal/non-acknowledgment signal grant message is the same as the bit number of any one of the uplink grant messages, or the acknowledgment signal/non-acknowledgement signal grant message is the same as the bit number of any of the relay link uplink grant messages, or is confirmed.
  • the signal/non-acknowledgment signal grant message has the same number of bits as any of the downlink grant messages, or the acknowledgment signal/non-acknowledgement signal grant message has the same number of bits as any of the relay link downlink grant messages.
  • the unoccupied bits in the above acknowledgment signal/non-acknowledgement signal grant message are reserved bits.
  • the method further includes: the relay node receives the acknowledgement signal/non-acknowledgment signal grant message; the relay node uses the acknowledgement signal/non-acknowledgement signal wireless network temporary identifier Perform blind detection on the received acknowledgment signal/non-acknowledgement signal authorization message, and obtain an acknowledgment signal/non-acknowledgement signal authorization message corresponding to each relay node; each relay node uses one of an index number and a bit offset index information.
  • a base station includes: a multiplexing unit, configured to multiplex the downlink feedback information corresponding to the relay node in the acknowledgment signal/non-acknowledgement signal authorization message, where the downlink feedback information is set to indicate its corresponding relay link Whether to re-upload the uplink service data; the sending unit is configured to send the acknowledgment signal/non-acknowledgement signal authorization message to the relay node.
  • the base station further includes: a scrambling unit, configured to use a cyclic redundancy check bit in the acknowledgment signal/non-acknowledgement signal radio network temporary identification scrambling acknowledgment signal/non-acknowledgement signal grant message.
  • the foregoing base station further includes: a first notification unit, configured to notify the relay node of the acknowledgement signal/non-acknowledgment signal authorization message corresponding to the acknowledgement signal/non-acknowledgement signal wireless network temporary identifier.
  • the foregoing base station further includes: a second notification unit, configured to: when the bit length of the downlink feedback information corresponding to each relay node is the same, send the index number or the bit offset index information of the downlink feedback information corresponding to each relay node To the relay node.
  • the foregoing base station further includes: a second notification unit, configured to: when the bit length of the downlink feedback information corresponding to each relay node is different, send the bit offset index information of the downlink feedback information corresponding to each relay node to Following the node.
  • a relay node is provided.
  • the relay node includes: a receiving unit configured to receive an acknowledgment signal/non-acknowledgement signal authorization message from the base station; and a detecting unit configured to use the acknowledgment signal/non-acknowledgement signal to identify the received acknowledgment of the wireless network temporary identifier
  • the signal/non-acknowledgment signal authorization message is blindly detected, and an acknowledgment signal/non-acknowledgement signal authorization message corresponding to the relay node is obtained; the obtaining unit is set to use one of the index number and the bit offset index information, or only use the bit offset Move the index information to the corresponding confirmation letter
  • the number/non-acknowledgment signal authorization message is detected, and the downlink feedback information corresponding to the relay node is obtained, and the corresponding acknowledgement signal/non-acknowledgment signal authorization message is detected, and the downlink feedback information corresponding to the relay node is obtained.
  • the base station carries the downlink feedback information of the multiple relay nodes in the acknowledgment signal/non-acknowledgement signal authorization message and sends it to the relay node, which solves the problem that the signaling overhead existing in the implementation of the HARQ retransmission in the related art is large or needs
  • the problem of introducing a new physical channel can further implement the HARQ retransmission mechanism without adding a new physical channel, and the signaling overhead is low.
  • FIG. 1 is a structural diagram of an LTE-A system
  • FIG. 2 is a flowchart of a method for transmitting downlink feedback information according to an embodiment of the present invention
  • FIG. 3 is a single stream or multiple streams according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic diagram of dual-flow feedback according to Embodiment 2 of the present invention
  • FIG. 5 is a schematic diagram of hybrid feedback according to Embodiment 3 of the present invention
  • FIG. 6 is a schematic diagram of a hybrid base station according to Embodiment 3 of the present invention
  • FIG. 7 is a structural block diagram of a base station according to a preferred embodiment of the present invention
  • FIG. 8 is a structural block diagram of a relay node according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for transmitting downlink feedback information according to an embodiment of the present invention. As shown in FIG.
  • the method for transmitting downlink feedback information includes the following steps: Step S202: The base station multiplexes downlink feedback information corresponding to the relay node in an acknowledgement signal/non-acknowledgement signal authorization message, where The downlink feedback information is set to indicate whether the corresponding relay link needs to re-upload the uplink service data; Step S204: The base station sends an acknowledgment signal/non-acknowledgement signal authorization message to the relay node.
  • Step S202 The base station multiplexes downlink feedback information corresponding to the relay node in an acknowledgement signal/non-acknowledgement signal authorization message, where The downlink feedback information is set to indicate whether the corresponding relay link needs to re-upload the uplink service data
  • Step S204 The base station sends an acknowledgment signal/non-acknowledgement signal authorization message to the relay node.
  • the base station needs to send downlink feedback information to the relay node, but there is a problem that the signaling overhead is large or a new physical channel needs to be introduced.
  • the relay node may be one or more, and the downlink feedback information corresponding to the relay node is multiplexed in the acknowledgement signal/non-acknowledgement signal authorization message for transmission, and may be On the basis of adding a new physical channel, the HARQ retransmission mechanism is implemented, and the signaling overhead is low.
  • the acknowledgement signal/non-acknowledgement signal grant message is a single, and the acknowledgement signal/non-acknowledgement signal grant message carries downlink feedback information corresponding to all relay nodes.
  • the acknowledgement signal/non-acknowledgement signal authorization message is multiple, and each acknowledgement signal/non-acknowledgement signal authorization message carries downlink feedback information corresponding to a part of the relay node.
  • the downlink feedback information corresponding to the multiple relay nodes is multiplexed in one or more acknowledgment signals/non-acknowledgment signal grant messages, which can effectively save signaling overhead and implement retransmission of uplink service data.
  • the base station multiplexes the downlink feedback information in the acknowledgment signal/non-acknowledgement signal grant message by: arranging the downlink feedback information in the acknowledgment signal/non-acknowledgement signal grant message according to the index number of each downlink feedback information.
  • the base station performs an acknowledgement signal/non-confirmation corresponding to each relay node according to an index number (ACK/NACK-index) of the downlink feedback information (ie, an acknowledgment signal/non-acknowledgement signal, represented by ACK/NACK).
  • ACK/NACK-index an index number of the downlink feedback information
  • the signal (ACK/NACK) is arranged in one or more acknowledgment signal/non-acknowledgement signal authorization information (ACK/NACK-grant), and the ACK/NACK bit length corresponding to each relay node in the ACK/NACK-grant is the same or different Specifically, when the ACK/NACK corresponding to each relay node can be arranged in an ACK/NACK-grant, the system uses one
  • the method further includes: the base station notifying the acknowledgment signal/non-acknowledgement signal corresponding to the relay node acknowledgment signal/non-acknowledgement signal authorization message, and using the acknowledgment signal/non-confirmation signal wireless network temporary identifier scrambling The cyclic redundancy check bit in the acknowledge/non-acknowledgement grant message.
  • the acknowledgment signal/non-confirmation signal wireless network temporary identifier has a value range of one of the following:
  • the base station uses the pre-agreed acknowledgment signal/non-acknowledgement signal radio network temporary identification scrambling acknowledgment signal/cyclic acknowledgment signal in the non-acknowledgment signal grant message.
  • the pre-agreed acknowledgment signal/non-confirmation signal wireless network temporary identifier has a value range of
  • the base station may notify the relay node of the acknowledgement signal/non-acknowledgement signal radio network temporary identifier (ACK/NACK-RNTI), and the relay node may determine its corresponding acknowledgement signal according to the ACK/NACK-RNTI.
  • ACK/NACK-RNTI acknowledgement signal/non-acknowledgement signal radio network temporary identifier
  • the base station may also not notify the relay node acknowledgment signal/, non-acknowledgement signal radio network temporary identity (ACK/NACK-RNTI
  • ACK/NACK-RNTI The RNTI can be specified in advance as any one of hexadecimal FFF4-FFFD or any number of hexadecimal values as the RNTI. In this case, the base station does not need to signal ACK/NACK-grant- i corresponding ACK/NACK-RNTI, each relay node uses one or more specified ACK/NACK-RNTIs to blindly detect the corresponding ACK/N ACK-grant-i.
  • the base station can use the following method to add 4 acknowledgment signals.
  • /Non-confirmation signal ⁇ The cyclic redundancy check bit in the weighted message: The base station performs an exclusive OR operation on the bit corresponding to the acknowledgment signal/non-acknowledgment signal radio network temporary identifier and the cyclic redundancy check bit.
  • the acknowledgement signal/non-acknowledgement signal authorization message the downlink feedback information corresponding to each relay node has the same bit length. When the bit length of the downlink feedback information corresponding to each relay node is the same, the base station needs to connect each relay node. The index number of the corresponding downlink feedback information is sent to the relay node.
  • the base station may also use the bit offset index of the downlink feedback information corresponding to each relay node.
  • the information (ie the number of bits offset or different from the first bit of the ACK/NACK signal) is sent to the relay node.
  • each relay node pair The downlink feedback information has the same bit length, so each relay node can obtain the downlink feedback information corresponding to the relay node according to the index number or the bit offset index information of the downlink feedback information.
  • the acknowledgement signal/non- In the acknowledgement signal authorization message the bit length of the downlink feedback information corresponding to each relay node is different.
  • the base station sends downlink feedback information corresponding to each relay node.
  • the bit offset index information is sent to the relay node.
  • each relay node cannot use the index number of the downlink feedback information.
  • the downlink feedback information corresponding to the relay node is obtained.
  • the downlink feedback information corresponding to the relay node may be obtained according to the bit offset index information.
  • the downlink feedback information corresponding to the relay node may also be logically processed.
  • Bit information (for example, logical "and,, arithmetic, etc.” or repeated pre- Times (e.g., repeated 3 times) the bit information.
  • bit information “0” indicates that retransmission is required
  • the downlink feedback information corresponding to a relay node is dual-stream feedback information, and “[00]” needs to be sent, but after logical AND operation, only feedback "0" is needed.
  • the relay node receives "0", and both uplink service data flows perform a retransmission operation, thereby saving downlink instruction overhead.
  • the downlink feedback information of the uplink service data corresponding to the RN is "1"
  • the number of bits of the acknowledgment signal/non-acknowledgment signal grant message may be a custom positive integer.
  • the number of bits of the acknowledgment signal/non-acknowledgment signal grant message may also be used.
  • UL grant uplink grant message
  • R-UL grant the same number of bits as the number of bits of any downlink grant message
  • R-DL grant downlink ⁇ grant message
  • the unoccupied bits in the acknowledgment signal/non-acknowledgement signal grant message are reserved bits.
  • ACK/NACK-RNTI-i plus 4 ACK/NACK-grant-i corresponding cyclic redundancy-risk bits; within ACK/NACK-grant-i, the base station signals each relay node differently
  • each relay node corresponds within the ACK/NACK-grant
  • the number of ACK/NACK-grants, when the system uses an ACK/NACK-grant, m l, the base station uses
  • the base station signals a different bit offset for each relay node
  • ACK/NACK-bit-of set-j , j l , 2, ..., ⁇ , where ⁇ The number of the largest relay nodes in the ACK/NACK-grant-i.
  • the base station After the base station sends the acknowledgment signal/non-acknowledgement signal grant message to the relay node, the following processing may be included:
  • the relay node receives an acknowledgment signal/non-acknowledgement signal authorization message
  • the relay node uses the acknowledgment signal/non-acknowledgment signal radio network temporary identifier to perform blind detection on the received acknowledgment signal/non-acknowledgement signal authorization message, and obtains an acknowledgment signal/non-acknowledgement signal authorization message corresponding to each relay node.
  • Each relay node detects the corresponding acknowledgment signal/non-acknowledgement signal authorization message by using the index number or the bit offset index information, and obtains downlink feedback information corresponding to the relay node.
  • each relay node uses ACK/NACK-RNTI-i to blindly detect the corresponding ACK/NACK-grant-i, and then according to the respective ACK/NACK-index-j or
  • ACK/NACK-bit-offset-j detects the respective ACK/NACK. Specifically, when the ACK/NACK bit length corresponding to each relay node is the same in the ACK/NACK-grant, each relay node may use the ACK/NACK-index-j or ACK/NACK-bit sent by the base station.
  • One of -offset-j detects the corresponding acknowledgment signal/non-acknowledgement signal authorization message, acquires downlink feedback information corresponding to the relay node, and detects the corresponding acknowledgment signal/non-acknowledgement signal authorization message, and obtains a corresponding relay node. Downstream feedback information.
  • each relay node uses the bit offset index information to perform the corresponding acknowledgment signal/non-acknowledgement signal authorization message. Detecting, obtaining the downlink feedback information corresponding to the relay node, detecting the corresponding acknowledgment signal/non-acknowledgment signal authorization message, and acquiring downlink feedback information corresponding to the relay node. It should be noted that the foregoing method for transmitting downlink feedback information may be applicable not only between the base station and the relay node, but also between the relay node and the user terminal, or between the base station and the user terminal, that is, without conflict.
  • FIG. 3 is a schematic diagram of single-stream or multi-stream bundling or multi-subframe bundling feedback according to Embodiment 1 of the present invention.
  • the system includes multiple UL grants or R-UL grants. It is assumed that the system uses one ACK/NACK-grant, and each eNB has the same ACK/NACK bit length, and ACK/NACK-grant. The number of bits is the same as one of the UL grant or R-UL grant, such as 3 lbits.
  • the base station signals the same ACK/NACK-RNTI-1 of the relay node included in the ACK/NACK-grant-1, such as 4-bit hexadecimal "0006", which is equivalent to the 16-bit binary ACK/NACK-RNTI.
  • -1 is "0000000000000110”
  • ACK/NACK-RNTI-1 force port 4 especially ACK/NACK-grant-1 corresponding cyclic redundancy-risk bit
  • uplink service data is single-stream or multi-stream binding or more
  • subframe binding single stream or multi-stream binding or multi-subframe binding is the same as LTE concept
  • ACK/NACK-grant- 1 can reuse up to 31 relay nodes, if there are 31 in the system at this time.
  • the relay node needs the base station to feed back the downlink acknowledgement signal/non-acknowledgement signal of the uplink service data, and the base station signaling notifies each relay node of different
  • ACK/NACK-index-2, ..., RN31 corresponds to ACK/NACK-index-31. If the 3 lbits binary ACK/NACK-grant-1 delivered by the base station is
  • each lbit corresponds to one index, corresponding to ACK/NACK-index-1 to ACK/NACK-index-31, respectively, there is no reserved bit, and each relay node uses ACK/NACK-RNTI-1 blind Detecting the corresponding ACK/NACK-grant-1, RN1 detects that its own lbit ACK/NACK is """ according to ACK/NACK-index-1, and RN2 detects that it belongs to ACK/NACK-index-2. If its own lbit ACK/NACK is "0", the RN31 detects that its own lbit ACK/NACK is "1" according to ACK/NACK-index-31.
  • Embodiment 2 FIG.
  • the system includes multiple DL grants or R-DL grants, and the system uses one ACK/NACK-grant, and each eNB has the same ACK/NACK bit length.
  • the number of bits in the ACK/NACK-grant is the same as one of the DL grant or R-DL grant, such as 3 lbits.
  • the base station signaling port ACK/NACK-grant-1 contains the same relay node.
  • ACK/NACK-RNTI-1 such as 4-digit hexadecimal "FFFD”, which is equivalent to 16bits binary ACK/NACK-RNTI-1 is "1111111111111101", and uses ACK/NACK-grant-1 corresponding cyclic redundancy-risk bits; when the uplink service data is dual-stream or multi-stream (Double stream means that the uplink service data stream is equal to 2, and the multi-stream means that the uplink service data stream is greater than or equal to 2.
  • Double stream means that the uplink service data stream is equal to 2
  • the multi-stream means that the uplink service data stream is greater than or equal to 2.
  • ACK/NACK-grant-1 can be reused at most 15
  • RN2 corresponds to ACK/NACK-index-2, ..., and RN 14 corresponds to ACK/NACK-index- 14. If the 3 lbits binary ACK/NACK-grant-1 delivered by the base station is
  • each 2bits corresponds to one index, corresponding to ACK/NACK-index-1 to ACK/NACK-index- 14, respectively, at which time 3 bits retain bits "000”
  • each relay node uses ACK/NACK- RNTI-1 blindly detects the corresponding ACK/NACK-grant-1
  • RN1 detects that its own 2bits ACK/NACK is "10” according to ACK/NACK-index-1
  • RN2 detects according to ACK/NACK-index-2.
  • the 2bits ACK/NACK of its own is "11", ...
  • the RN14 detects its own 2bits according to ACK/NACK-index- 14
  • FIG. 5 is a schematic diagram of hybrid feedback according to Embodiment 3 of the present invention. As shown in FIG. 5, it is assumed that the system includes multiple UL grants or R-UL grants, and the system uses one ACK/NACK-grant, and each WTRU has a different ACK/NACK bit length, ACK/NACK-grant. The number of internal bits is the same as one of the UL grant or R-UL grant, such as 3 lbits. At this time, the base station signaling port ACK/NACK-grant-1 contains the same relay node.
  • ACK/NACK-bit-offset-1 offset Obit corresponding ACK/NACK is 2bits
  • ACK/NACK-bit-of set-2 offset is 2bits
  • corresponding ACK/NACK is lbit
  • Each eNB uses ACK/NACK-RNTI-1 to detect the corresponding ACK/NACK-grant-1
  • RN 1 detects its own 2bits ACK/NACK according to ACK/NACK-bit-offset-1.
  • Embodiment 4 includes multiple DL grants or R-DLs in the system. Grant, the use of multiple systems
  • the number of bits in the ACK/NACK-grant is the same size as one of the DL grant or R-DL grant, such as 3 lbits.
  • the base station signaling that the relay node included in the ACK/NACK-grant-1 is the same.
  • ACK/NACK-RNTI-1 port 4 hexadecimal "0006”, which is equivalent to 16bits binary ACK/NACK-RNTI-1 is "0000000000000110”, and uses ACK/NACK-RNTI-1 force ACK/ACK Cyclic redundancy check bit corresponding to NACK-grant-1, base station signaling
  • ACK/NACK-RNTI-2 of the relay node included in ACK/NACK-grant-2 such as 4-bit hexadecimal "0005", is equivalent to 16bits binary ACK/NACK-RNTI-2
  • RNl is based on ACK/NACK-RNTI-1
  • RN2 is based on ACK/NACK-RNTI-2 blind detection
  • the ACK/NACK corresponding to each relay node may be a repeated ACK/NACK. For example, if the feedback information of the uplink service data corresponding to the RN is "1", the feedback information of the uplink service data corresponding to the RN is "1", and then "[111],;; assume the uplink service data corresponding to the RN.
  • FIG. 6 is a structural block diagram of a base station according to an embodiment of the present invention. As shown in FIG. 6, the base station includes a multiplexing unit 60 and a transmitting unit 62.
  • the multiplexing unit 60 is configured to multiplex the downlink feedback information corresponding to the relay node in the acknowledgment signal/non-acknowledgment signal authorization message, where the downlink feedback information is set to indicate whether the corresponding relay link needs to re-upload the uplink service.
  • Data a sending unit 62, configured to send an acknowledgment signal/non-acknowledgement signal authorization message to the relay node.
  • the base station is configured to multiplex the downlink feedback information corresponding to the relay node in the acknowledgment signal/non-acknowledgement signal authorization message for transmission, and may not add a new physical channel, and can save signaling overhead.
  • multiplexing unit 60 follows the acknowledgment signal/non-acknowledgment signal index
  • ACK/NACK is arranged in one or more acknowledgment signals/non-acknowledgement signal authorization information
  • the ACK/NACK bit length corresponding to each relay node in the ACK/NACK-grant is the same or different. Specifically, when the ACK/NACK corresponding to each relay node can be arranged in an ACK/ When NACK-grant is used, the system uses one ACK/NACK-grant; when the ACK/NACK corresponding to each relay node cannot be arranged in one ACK/NACK-grant, the system uses multiple ACK/NACK-grants.
  • the base station may further include: adding a special unit 64, configured to use the acknowledgment signal/non-acknowledgement signal, the wireless network temporary identifier, the scrambling acknowledgement signal, and the non-acknowledgement signal authorization message. Check bits.
  • the base station may further include: a first notification unit 66, configured to notify the relay node of the acknowledgment signal/non-acknowledgement signal authorization message corresponding to the acknowledgment signal/non-confirmation signal wireless network temporary label i.
  • the base station may notify the relay node of the acknowledgement signal/non-acknowledgement signal radio network temporary identifier (ACK/NACK-RNTI), and the relay node may determine its corresponding acknowledgement signal according to the ACK/NACK-RNTI. / Non-acknowledgement signal grant message, ie which acknowledgment signal/non-acknowledgement signal grant message.
  • the base station may not include the first notification unit 66, that is, the base station does not need to notify the acknowledgment signal/non-acknowledgment signal corresponding to the acknowledgment signal/non-acknowledgment signal authorization message, and the wireless network temporary identifier may be used, and the pre-agreed wireless may be used. Network temporary identification.
  • the base station may further include: a second notification unit 68, configured to: when the bit length of the downlink feedback information corresponding to each relay node is the same, the downlink feedback corresponding to each relay node The index number or bit offset index information of the information is sent to the relay node.
  • the second notification unit is further configured to: when the bit length of the downlink feedback information corresponding to each relay node is different, send the bit offset index information of the downlink feedback information corresponding to each relay node to the relay node.
  • the foregoing relay node mainly includes: a receiving unit 80, a detecting unit 82, and an obtaining unit 84.
  • the receiving unit 80 is configured to receive an acknowledgment signal/non-acknowledgement signal authorization message from the base station; and the detecting unit 82 is configured to use the acknowledgment signal/non-acknowledgement signal wireless network temporary identifier to receive the acknowledgment signal/non-acknowledgement signal authorization message.
  • the obtaining unit 84 is configured to use one of the index number and the bit offset index information, or only use the bit offset index information pair corresponding to The acknowledgment signal/non-acknowledgment signal authorization message is detected, and the downlink feedback information corresponding to the relay node is obtained, and the corresponding acknowledgment signal/non-acknowledgment signal authorization message is detected, and the downlink feedback information corresponding to the relay node is obtained.
  • the relay node is processed by the receiving unit 80, the detecting unit 82, and the obtaining unit 84 to obtain downlink feedback information sent by the base station to the relay node, and then the retransmission mechanism of the uplink service data can be implemented.
  • the base station needs to send the index number or the bit offset index information of the downlink feedback information corresponding to each relay node to the relay node when the bit lengths of the downlink feedback information corresponding to each of the relay nodes are the same.
  • the obtaining unit 84 may detect the acknowledgment signal/non-acknowledgment signal authorization message corresponding to the relay node by using the index number or the bit offset index information, and obtain downlink feedback information corresponding to the relay node.
  • the base station needs to send the bit offset index information of the downlink feedback information corresponding to each relay node to the relay node when the bit length of the downlink feedback information corresponding to each relay node is different.
  • the obtaining unit 84 may detect the acknowledgment signal/non-acknowledgment signal authorization message corresponding to the relay node according to the bit offset index information, and obtain downlink feedback information corresponding to the relay node.
  • the method for transmitting downlink feedback information, the base station, and the relay node provided by the foregoing embodiments of the present invention can implement the HARQ retransmission mechanism without adding a new physical channel.
  • the signaling overhead is low, and backward compatibility is ensured (for example, compatible with the LTE system).
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
  • they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or they may be Multiple modules or steps are made into a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

发明公开了一种下行反馈信息的传输方法、基站及中继节点。上述方法包括:基站将中继节点对应的下行反馈信息复用在确认信号/非确认信号授权消息中,其中,下行反馈信息用于指示其对应的中继链路是否需要重新上传上行业务数据;基站将确认信号/非确认信号授权消息发送至中继节点。根据本发明提供的上述技术方案,可以在不增加新的物理信道基础上,实现HARQ重传机制,并且信令开销较低。

Description

下^ f亍反赍信息的传输方法、 基站及中继节点 技术领域 本发明涉及通信领域, 具体而言, 涉及一种下行反馈信息的传输方法、 基站及中继节点。 背景技术 长期演进 ( Long-Term Evolution , 简称为 LTE ) 系统、 高级长期演进系 统 ( Long-Term Evolution Advance, 简称为 LTE- Advance ) 系统、 高级的国际 移动通信系统 ( International Mobile Telecommunication Advanced, 简称为 IMT- Advanced ) 啫 是以正交频分复用 ( Orthogonal Frequency Division Multiplexing, 简称为 OFDM )技术为基础发展起来的, 在 OFDM系统中, 主要是时频两维的数据形式,在 LTE系统、 LTE-A系统中, 资源块(Resource Block, 简称为 RB ) 定义为在时间域上连续 1个时隙 (slot ) 内的 OFDM符 号, J¾外, 资源块映射在物理资源上则称为物理资源块 ( Physical Resource
Block )。由于在频率域上连续有 12或 24个子载波,所以 1个 RB由 N xN 个资源单元 ( Resource Element, 简称为 RE ), 其中, Nsymb表示 1个 slot内的 OFDM符号的个数, N 表示资源块在频率域上连续子载波的个数。 在 LTE-A系统中引入中继节点 ( Relay Node , 简称为 RN ) 之后, 增加 了新的链路。 具体可以参见图 1。 图 1为 LTE-A系统的架构图。 如图 1所示, 该系统包括:基站( eNode-B ), 中继节点( RN )和用户设备 ( User Equipment, 简称为 UE ) , eNode-B与 RN之间的链路称为回程链路或中继链路 ( backhaul link ), UE与 RN之间的链路称为接入链路 ( access link ), eNode-B与 UE之 间的链路称为直传链路( direct link )。 相关技术中, 为了实现 HARQ重传机制, 对于中继链路是否引入中继链 路的物理混合自动重传请求指示信道 ( Relay link-Physical Hybrid Automatic Repeat Request Indicator Channel , 简称为 R-PHICH ) 的研究是一个热点, 例 如, 釆用 R-PHICH传输上行中继链路业务数据对应的下行反馈信息, 该方 式可以实现非自适应的上行混合自动重复请求 ( Hybrid Automatic Repeat Request, 简称为 HARQ )重传机制, 此方式虽然信令开销小, 但是需要引入 新的物理信道; 另外一种方式釆用中继链路的上行授权信息 ( Relay link-Uplink grant , 简称为 R-UL grant ) 中的新数据指示 ( New data indicator , 简称为 NDI ) , 该 种方式可以实现自适应的 HARQ重传机制, 但是, 信令开销大。 系统中存在 多种下上行 ·ί受权信息 DL grant、 UL grant、 R-DL grant、 R-UL grant , 主要是 承载控制信息。 发明内容 针对相关技术中实现 HARQ重传机制的方案存在的信令开销大或者需 要引入新的物理信道的问题而提出本发明, 为此, 本发明的主要目的在于提 供一种改进的下行反馈信息的传输方法、 基站及中继节点, 以解决上述问题 至少之一。 根据本发明的一个方面, 提供了一种下行反馈信息的传输方法。 根据本发明的下行反馈信息的传输方法包括: 基站将中继节点对应的下 行反馈信息复用在确认信号 /非确认信号授权消息中, 其中, 下行反馈信息设 置为指示其对应的中继链路是否需要重新上传上行业务数据; 基站将确认信 号 /非确认信号授权消息发送至中继节点。 上述确认信号 /非确认信号授权消息为单个, 上述确认信号 /非确认信号 授权消息携带有全部中继节点对应的下行反馈信息。 上述确认信号 /非确认信号授权消息为多个, 每个确认信号 /非确认信号 授权消息携带有部分中继节点对应的下行反馈信息。 上述中继节点对应的下行反馈信息为经过逻辑运算处理的比特信息或者 重复预定次数的比特信息。 上述基站通过以下方式将下行反馈信息复用在确认信号 /非确认信号授 权消息中:根据各个下行反馈信息的索引号将下行反馈信息排列在确认信号 / 非确认信号授权消息中。 上述方法还包括:基站通知中继节点确认信号 /非确认信号 ·ί受权消息对应 的确认信号 /非确认信号无线网络临时标识, 并釆用确认信号 /非确认信号无 线网络临时标识加扰确认信号 /非确认信号授权消息中的循环冗余校验比特 位。 上述确认信号 /非确认信号无线网络临时标识的取值范围为以下之一: 0001-003C, 003D-FFF3 , FFF4-FFFD。 上述方法还包括:基站釆用预先约定的确认信号 /非确认信号无线网络临 时标识加扰确认信号 /非确认信号授权消息中的循环冗余校验比特位。 上述预先约定的确认信号 /非确认信号无线网络临时标识的取值范围为 FFF4-FFFD。 上述方法还包括:基站釆用以下方式加扰确认信号 /非确认信号授权消息 中的循环冗余校验比特位:基站将确认信号 /非确认信号无线网络临时标识对 应的比特位与循环冗余校验比特位进行异或运算。 上述确认信号 /非确认信号授权消息中,每个中继节点对应的下行反馈信 息的比特长度相同。 当每个中继节点对应的下行反馈信息的比特长度相同时, 基站将每个中 继节点对应的下行反馈信息的索引号发送至中继节点。 当每个中继节点对应的下行反馈信息的比特长度相同时, 基站将每个中 继节点对应的下行反馈信息的比特偏移索引信息发送至中继节点。 上述确认信号 /非确认信号授权消息中,每个中继节点对应的下行反馈信 息的比特长度不同。 当每个中继节点对应的下行反馈信息的比特长度不同时, 基站将每个中 继节点对应的下行反馈信息的比特偏移索引信息发送至中继节点。 上述确认信号 /非确认信号授权消息的比特位数为自定义的正整数。 上述确认信号 /非确认信号授权消息与任一种上行授权消息的比特位数 相同,或者确认信号 /非确认信号授权消息与任一种中继链路上行授权消息的 比特位数相同,或者确认信号 /非确认信号授权消息与任一种下行授权消息的 比特位数相同,或者确认信号 /非确认信号授权消息与任一种中继链路下行授 权消息的比特位数相同。 上述确认信号 /非确认信号授权消息中未被占用的比特位为预留比特位。 在上述基站将确认信号 /非确认信号授权消息发送至中继节点之后,还包 括: 中继节点接收确认信号 /非确认信号授权消息; 中继节点釆用确认信号 / 非确认信号无线网络临时标识对接收到的确认信号 /非确认信号授权消息进 行盲检测, 获取每个中继节点对应的确认信号 /非确认信号授权消息; 每个中 继节点釆用索引号和比特偏移索引信息之一、 或者仅釆用比特偏移索引信息 对对应的确认信号 /非确认信号 ·ί受权消息进行检测,获取该中继节点对应的下 行反馈信息。 根据本发明的另一方面, 提供了一种基站。 根据本发明的基站包括: 复用单元, 设置为将中继节点对应的下行反馈 信息复用在确认信号 /非确认信号授权消息中, 其中, 下行反馈信息设置为指 示其对应的中继链路是否需要重新上传上行业务数据; 发送单元, 设置为将 确认信号 /非确认信号授权消息发送至中继节点。 上述基站还包括: 加扰单元, 设置为釆用确认信号 /非确认信号无线网络 临时标识加扰确认信号 /非确认信号授权消息中的循环冗余校验比特位。 上述基站还包括: 第一通知单元, 设置为通知中继节点确认信号 /非确认 信号授权消息对应的确认信号 /非确认信号无线网络临时标识。 上述基站还包括: 第二通知单元, 设置为在每个中继节点对应的下行反 馈信息的比特长度相同时, 将每个中继节点对应的下行反馈信息的索引号或 者比特偏移索引信息发送至中继节点。 上述基站还包括: 第二通知单元, 还设置为在每个中继节点对应的下行 反馈信息的比特长度不同时, 将每个中继节点对应的下行反馈信息的比特偏 移索引信息发送至中继节点。 根据本发明的又一方面, 提供了一种中继节点。 根据本发明的中继节点包括: 接收单元, 设置为接收来自于基站的确认 信号 /非确认信号授权消息; 检测单元, 设置为釆用确认信号 /非确认信号无 线网络临时标识对接收到的确认信号 /非确认信号授权消息进行盲检测,获取 中继节点对应的确认信号 /非确认信号授权消息; 获取单元, 设置为釆用索引 号和比特偏移索引信息之一、 或者仅釆用比特偏移索引信息对对应的确认信 号 /非确认信号授权消息进行检测,获取该中继节点对应的下行反馈信息对对 应的确认信号 /非确认信号授权消息进行检测,获取中继节点对应的下行反馈 信息。 通过本发明,基站将多个中继节点的下行反馈信息携带在确认信号 /非确 认信号授权消息中发送至中继节点,解决了相关技术中实现 HARQ重传时存 在的信令开销大或者需要引入新的物理信道的问题, 进而可以在不增加新的 物理信道基础上, 实现 HARQ重传机制, 并且信令开销较低。 本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说 明书中变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优 点可通过在所写的说明书、 权利要求书、 以及附图中所特别指出的结构来实 现和获得。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1为 LTE-A系统的架构图; 图 2为根据本发明实施例的下行反馈信息的传输方法的流程图; 图 3为 居本发明实施例一的单流或多流绑定或多子帧绑定反馈示意 图; 图 4为根据本发明实施例二的双流反馈示意图; 图 5为根据本发明实施例三的混合反馈示意图; 图 6为根据本发明实施例的基站的结构框图; 图 7为根据本发明优选实施例的基站的结构框图; 图 8为 居本发明实施例的中继节点的结构框图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特 征可以相互组合。 下面将参考附图并结合实施例来详细说明本发明。 在包括基站, 中继节点的系统(例如, LTE-A系统)中, 为了实现 HARQ 重传机制, 基站需要向中继节点发送上行中继链路业务数据对应的下行反馈 信息。 但是, 釆用相关技术中的传输方式, 信令开销大或者需要引入新的物 理信道, 因此, 需要提供一种下行反馈信息的传输方法。 图 2为根据本发明实施例的下行反馈信息的传输方法的流程图。 如图 2 所示, 根据本发明实施例的下行反馈信息的传输方法包括以下步骤: 步骤 S202: 基站将中继节点对应的下行反馈信息复用在确认信号 /非确 认信号授权消息中, 其中, 下行反馈信息设置为指示其对应的中继链路是否 需要重新上传上行业务数据; 步骤 S204: 基站将确认信号 /非确认信号授权消息发送至中继节点。 相关技术中, 为了实现 HARQ重传机制, 基站需要向中继节点发送下行 反馈信息, 但是存在信令开销大或者需要引入新的物理信道的问题。 根据上 述实施例提供的下行反馈信息的传输方法,上述中继节点可以是一个或多个, 将中继节点对应的下行反馈信息复用在确认信号 /非确认信号授权消息进行 发送, 可以在不增加新的物理信道基础上, 实现 HARQ重传机制, 并且信令 开销较低。 优选地, 确认信号 /非确认信号授权消息为单个, 确认信号 /非确认信号 授权消息携带有全部中继节点对应的下行反馈信息。 优选地, 确认信号 /非确认信号授权消息为多个, 每个确认信号 /非确认 信号授权消息携带有部分中继节点对应的下行反馈信息。 将多个中继节点对应的下行反馈信息复用在一个或多个确认信号 /非确 认信号授权消息中, 可以有效节省信令开销, 实现上行业务数据的重传。 优选地,基站通过以下方式将下行反馈信息复用在确认信号 /非确认信号 授权消息中: 根据各个下行反馈信息的索引号将下行反馈信息排列在确认信 号 /非确认信号授权消息中。 按照索引号排序进行复用, 可以便于中继节点获取其对应的下行反馈信 息。 在优选实施过程中, 基站按照下行反馈信息 (即确认信号 /非确认信号, 用 ACK/NACK表示) 的索引号 ( ACK/NACK-index ) 4巴每个中继节点对应 的确认信号 /非确认信号 ( ACK/NACK )排列在一个或多个确认信号 /非确认 信号授权信息 ( ACK/NACK-grant ) 内, ACK/NACK-grant内每个中继节点 对应的 ACK/NACK比特长度相同或不同, 具体的, 当每个中继节点对应的 ACK/NACK能排列在一个 ACK/NACK-grant内时, 系统使用一个
ACK/NACK-grant; 当每个中继节点对应的 ACK/NACK不能排列在一个 ACK/NACK-grant内时, 系统使用多个 ACK/NACK-grant。 优选地, 还可以包括以下处理: 基站通知中继节点确认信号 /非确认信号 授权消息对应的确认信号 /非确认信号无线网络临时标识, 并釆用确认信号 / 非确认信号无线网络临时标识加扰确认信号 /非确认信号授权消息中的循环 冗余校验比特位。 其中, 确认信号 /非确认信号无线网络临时标识的取值范围为以下之一:
0001-003C, 003D-FFF3 , FFF4-FFFD。 优选地, 还可以包括以下处理: 基站釆用预先约定的确认信号 /非确认信 号无线网络临时标识加扰确认信号 /非确认信号授权消息中的循环冗余校验 比特位。 其中,预先约定的确认信号 /非确认信号无线网络临时标识的取值范围为
FFF4-FFFD。 在优选实施过程中,基站可以通知中继节点确认信号 /非确认信号无线网 络临时标识( ACK/NACK-RNTI ),该中继节点可以才艮据该 ACK/NACK-RNTI 确定其对应的确认信号 /非确认信号授权消息, 即哪一个确认信号 /非确认信 号授权消息; 在优选实施过程中, 基站也可以不通知中继节点确认信号 /,非确认信号 无线网络临时标识 ( ACK/NACK-RNTI ),即可以预先指定该 RNTI的取值范 围为十六进制 FFF4-FFFD中的任意一个或任意多个十六进制数值作为 RNTI , 此时基站不需要信令通知 ACK/NACK-grant-i对应的 ACK/NACK-RNTI , 每个中继节点使用一个或多个指定的 ACK/NACK-RNTI 盲检测对应的 ACK/N ACK-grant-i„ 优选地,基站可以釆用以下方式加 4尤确认信号 /非确认信号 ·ί受权消息中的 循环冗余校验比特位:基站将确认信号 /非确认信号无线网络临时标识对应的 比特位与循环冗余校验比特位进行异或运算。 优选地, 确认信号 /非确认信号授权消息中, 每个中继节点对应的下行反 馈信息的比特长度相同。 当每个中继节点对应的下行反馈信息的比特长度相同时, 基站需要将每 个中继节点对应的下行反馈信息的索引号发送至中继节点。 当每个中继节点对应的下行反馈信息的比特长度相同时, 基站也可以将 每个中继节点对应的下行反馈信息的比特偏移索引信息 (即与 ACK/NACK 信号的第一比特相偏移或相差的比特数) 发送至中继节点。 在优选实施过程中, 因为每个中继节点对应的下行反馈信息的比特长度 相同, 所以每个中继节点只要根据下行反馈信息的索引号或者比特偏移索引 信息就可以获取到该中继节点对应的下行反馈信息。 优选地, 确认信号 /非确认信号授权消息中, 每个中继节点对应的下行反 馈信息的比特长度不同。 当每个中继节点对应的下行反馈信息的比特长度不同时, 基站将每个中 继节点对应的下行反馈信息的比特偏移索引信息发送至中继节点。 在优选实施过程中, 因为每个中继节点对应的下行反馈信息的比特长度 不同, 所以每个中继节点无法才艮据下行反馈信息的索引号获取到该中继节点 对应的下行反馈信息。 可以根据比特偏移索引信息获取到该中继节点对应的 下行反馈信息。 优选地, 中继节点对应的下行反馈信息也可以为经过逻辑运算处理的比 特信息 (例如, 逻辑"与,,运算等) 或者重复预定次数 (例如, 重复 3次) 的 比特信息。 例如, 比特信息" 0"表示需要重传, 某个中继节点对应的下行反馈信息为 双流反馈信息, 需要发送" [00]", 但是经过逻辑 "与"运算, 只需要反馈 "0"即 可, 中继节点接收到" 0", 两个上行业务数据流均执行重传操作, 由此节省了 下行指令开销。 例如, RN对应的上行业务数据的下行反馈信息为" 1", 则重复 3次后 为" [111],,; 假设该 RN对应的上行业务数据的反馈信息为 "10", 则重复 3次 后为" [111000],,, 或重复 3次后为 "[101010],,。 通过将上述下行反馈信息的比特信息经过重复处理, 可以确保中继节点 更可靠地接收到该信息。 提高了系统的可靠性。 优选地,上述确认信号 /非确认信号授权消息的比特位数可以为自定义的 正整数。 优选地,上述确认信号 /非确认信号授权消息的比特位数也可以釆用与任 一种上行授权消息 (UL grant ) 的比特位数相同的比特位数, 或者釆用与任 一种中继链路上行授权消息 (R-UL grant ) 的比特位数相同的比特位数, 或 者釆用与任一种下行授权消息 (DL grant ) 的比特位数相同的比特位数, 或 者釆用与任一种中继链路下行 ·ί受权消息 (R-DL grant ) 的比特位数相同的比 特位数。 优选地,确认信号 /非确认信号授权消息中未被占用的比特位为预留比特 位。 在优选实施过程中, 在 ACK/NACK-grant内当每个中继节点对应的 ACK/NACK比特长度相同时,基站信令通知 ACK/NACK-grant-i内包含的中 继节点相同的 ACK/NACK-RNTI-i , 1=1 , 2, . . . , 111,其中111为 ACK/NACK-grant 的数量, 当系统使用一个 ACK/NACK-grant时, m=l , 基站使用
ACK/NACK-RNTI-i加 4尤 ACK/NACK-grant-i对应的循环冗余校-险比特; 在 ACK/NACK-grant-i内, 基站信令通知每个中继节点不同的
ACK/NACK-index-j , j=l , 2, ... , η, 其中 η为 ACK/NACK-grant-i内最大 中继节点的数量。 在优选实施过程中, 在 ACK/NACK-grant内每个中继节点对应的
ACK/NACK比特长度不同时,基站信令通知 ACK/NACK-grant-i内包含的中 继节点相同的 ACK/NACK-RNTI-i, 1=1 , 2, . . . , 111,其中111为 ACK/NACK-grant 的数量, 当系统使用一个 ACK/NACK-grant时, m=l , 基站使用
ACK/NACK-RNTI-i加 4尤 ACK/NACK-grant-i对应的循环冗余校-险比特; 在 ACK/NACK-grant-i内, 基站信令通知每个中继节点不同的比特偏移索 | ACK/NACK-bit-of set-j , j=l , 2, ... , η, 其中 η为 ACK/NACK-grant-i内最 大中继节点的数量。 对于作为接收方的中继节点而言,在基站将确认信号 /非确认信号授权消 息发送至中继节点之后, 可以包括以下处理:
( 1 ) 中继节点接收确认信号 /非确认信号授权消息;
( 2 ) 中继节点釆用确认信号 /非确认信号无线网络临时标识对接收到的 确认信号 /非确认信号授权消息进行盲检测,获取每个中继节点对应的确认信 号 /非确认信号授权消息; ( 3 ) 每个中继节点釆用索引号或者比特偏移索引信息对对应的确认信 号 /非确认信号授权消息进行检测, 获取该中继节点对应的下行反馈信息。 在优选实施过程中, 每个中继节点使用 ACK/NACK-RNTI-i盲检测对应 的 ACK/NACK-grant-i, 再根据各自的 ACK/NACK-index-j或者
ACK/NACK-bit-offset-j检测出各自的 ACK/NACK。 具体地, 在 ACK/NACK-grant内当每个中继节点对应的 ACK/NACK比 特长度相同时, 每个中继节点可以釆用基站发送的 ACK/NACK-index-j或者 ACK/NACK-bit-offset-j之一对对应的确认信号 /非确认信号授权消息进行检 测,获取该中继节点对应的下行反馈信息对对应的确认信号 /非确认信号授权 消息进行检测, 获取中继节点对应的下行反馈信息。 具体地, 在 ACK/NACK-grant内当每个中继节点对应的 ACK/NACK比 特长度不同时,每个中继节点釆用比特偏移索引信息对对应的确认信号 /非确 认信号授权消息进行检测, 获取该中继节点对应的下行反馈信息对对应的确 认信号 /非确认信号授权消息进行检测, 获取中继节点对应的下行反馈信息。 需要注意的是, 上述下行反馈信息的传输方法不仅可以适用于基站和中 继节点之间, 还可以适用于中继节点与用户终端之间, 或者基站与用户终端 之间, 即在不冲突的情况下, 可以适用于上层节点与下层节点之间。 以下结合五个实施例对上述优选实施方法进行详细描述。 实施例一 图 3为 居本发明实施例一的单流或多流绑定或多子帧绑定反馈示意 图。 如图 3所示, 假设系统中包括多种 UL grant或 R-UL grant, 假设系统使 用一个 ACK/NACK-grant, 每个中继节点对应的 ACK/NACK比特长度相同, ACK/NACK-grant内比特数釆用和其中一种 UL grant或 R-UL grant相同的大 小, 如 3 lbits。 此时基站信令通知 ACK/NACK-grant- 1 内包含的中继节点相 同的 ACK/NACK-RNTI- 1 , 如 4位十六进制 "0006" , 即等同于 16bits二进制 ACK/NACK-RNTI-1为" 0000000000000110", 并使用 ACK/NACK-RNTI-1力口 4尤 ACK/NACK-grant- 1对应的循环冗余校-险比特; 上行业务数据为单流或多流绑定或多子帧绑定时 (单流或多流绑定或多 子帧绑定和 LTE概念相同), ACK/NACK-grant- 1最多可复用 31个中继节点 的, 如果此时系统中有 31个中继节点需要基站反馈上行业务数据的下行确 认信号 /非确认信号, 则基站信令通知每个中继节点不同的
ACK/NACK-index-j , j=l , 2, ... , η, 其中 η为 ACK/NACK-grant-i内最大 中继节点的数量, 如 RN 1对应 ACK/NACK-index- 1 , RN2对应
ACK/NACK-index-2 , ... , RN31对应 ACK/NACK-index-31。 如果基站下发的 3 lbits二进制 ACK/NACK-grant- 1为
"1011011111111111011011111111111", 其中每 lbit对应 1个索引, 分别对应 ACK/NACK-index- 1到 ACK/NACK-index-31 , 此时没有保留比特, 每个中继 节点使用 ACK/NACK-RNTI-1盲检测对应的 ACK/NACK-grant- 1 , RN1才艮据 ACK/NACK-index- 1检测出属于自己的 lbit ACK/NACK为" Γ,, RN2才艮据 ACK/NACK-index-2检测出属于自己的 lbit ACK/NACK为 "0" , RN31 才艮据 ACK/NACK-index-31检测出属于自己的 lbit ACK/NACK为" 1"。 实施例二 图 4为才艮据本发明实施例二的双流反馈示意图。 如图 4所示, 假设系统 中包括多种 DL grant或 R-DL grant, £设系统使用一个 ACK/NACK-grant, 每个中继节点对应的 ACK/NACK比特长度相同, ACK/NACK-grant内比特 数釆用和其中一种 DL grant或 R-DL grant相同的大小, 如 3 lbits。 此时基站 信令通 口 ACK/NACK-grant- 1 内包含的中继节点相同的
ACK/NACK-RNTI- 1 , 如 4位十六进制" FFFD", 即等同于 16bits二进制 ACK/NACK-RNTI- 1为" 1111111111111101" , 并使用 ACK/NACK-RNTI- 1加 4尤 ACK/NACK-grant-1对应的循环冗余校-险比特; 上行业务数据为双流或多流时 (双流是指上行业务数据流等于 2, 多流 是指上行业务数据流大于等于 2, 这里仅以双流为例进行说明, 多流同理), ACK/NACK-grant- 1最多可复用 15个中继节点的, 如果此时系统中有 14个 中继节点需要基站反馈上行业务数据的下行确认信号 /非确认信号,则基站信 令通知每个中继节点不同的 ACK/NACK-index-j , j=l , 2, ... , η, 其中 η为 ACK/NACK-grant-i内最大中继节点的数量, 如 RN 1对应
ACK/NACK-index- 1 , RN2对应 ACK/NACK-index-2 , ... , RN 14对应 ACK/NACK-index- 14。 如果基站下发的 3 lbits二进制 ACK/NACK-grant-1为
"1011011111111111011011111111000", 其中每 2bits对应 1个索引, 分别对应 ACK/NACK-index- 1到 ACK/NACK-index- 14 , 此时有 3bits保留比特" 000", 每个中继节点使用 ACK/NACK-RNTI-1盲检测对应的 ACK/NACK-grant-1 , RN1才艮据 ACK/NACK-index- 1检测出属于自己的 2bits ACK/NACK为" 10", RN2根据 ACK/NACK-index-2检测出属于自己的 2bits ACK/NACK为 "11", ... , RN14才艮据 ACK/NACK-index- 14检测出属于自己的 2bits
ACK/NACK为 "11"。 实施例三 图 5为根据本发明实施例三的混合反馈示意图。 如图 5所示, 假设系统 中包括多种 UL grant或 R-UL grant, £设系统使用一个 ACK/NACK-grant, 每个中继节点对应的 ACK/NACK比特长度不同, ACK/NACK-grant内比特 数釆用和其中一种 UL grant或 R-UL grant相同的大小, 如 3 lbits。 此时基站 信令通 口 ACK/NACK-grant-1 内包含的中继节点相同的
ACK/NACK-RNTI- 1 , 口 4位十六进制 "0006" , 即等同于 16bits二进制
ACK/NACK-RNTI- 1为" 0000000000000110", 并使用 ACK/NACK-RNTI-1加 4尤 ACK/NACK-grant-1对应的循环冗余校-险比特; 基站信令通知每个中继节点不同的 ACK/NACK-比特 (bit ) -偏移量 ( offset ) -j , j=l , 2, ... , η, 其中 η为 ACK/NACK-grant-i内最大中继节点 的数量, 如 RN1对应 ACK/NACK-bit-offset-1 , RN2对应
ACK/NACK-bit-of set-2 , ―.。 如果基站下发的 31bits二进制 ACK/NACK-grant-1为
"1011011111111111011011111111111", ACK/NACK-bit-offset- 1偏移 Obit, 对 应的 ACK/NACK为 2bits, ACK/NACK-bit-of set-2偏移 2bits, 对应的 ACK/NACK为 lbit, ... , 每个中继节点使用 ACK/NACK-RNTI-1盲检测对 应的 ACK/NACK-grant- 1 , RN 1才艮据 ACK/NACK-bit-offset- 1检测出属于自己 的 2bits ACK/NACK为 "Γ,0, RN2才艮据 ACK/NACK-index-2检测出属于自己 的 lbit ACK/NACK为" 1" , ...。 实施例四 £设系统中包括多种 DL grant或 R-DL grant, 支设系统使用多个
ACK/NACK-grant ( £设使用 2个 ACK/NACK-grant ), ACK/NACK-grant 内比特数釆用其中一种 DL grant或 R-DL grant相同的大小, 如 3 lbits。 此时 基站信令通知 ACK/NACK-grant-1内包含的中继节点相同的
ACK/NACK-RNTI- 1 , 口 4位十六进制 "0006" , 即等同于 16bits二进制 ACK/NACK-RNTI-1为" 0000000000000110", 并使用 ACK/NACK-RNTI-1力口 扰 ACK/NACK-grant-1对应的循环冗余校验比特, 基站信令通知
ACK/NACK-grant-2内包含的中继节点相同的 ACK/NACK-RNTI-2 , 如 4位 十六进制 "0005" , 即等同于 16bits二进制 ACK/NACK-RNTI-2为
"0000000000000101", 并使用 ACK/NACK-RNTI-2加 4尤 ACK/NACK-grant-2 对应的循环冗余校验比特; 每个中继节点使用被通知的 ACK/NACK-RNTI盲检测对应的
ACK/NACK-grant, RNl才艮据 ACK/NACK-RNTI- 1盲检测对应的
ACK/NACK-grant-1 , RN2才艮据 ACK/NACK-RNTI-2盲检测对应的
ACK/NACK-grant-2 , RN才艮据 ACK/NACK-index或 ACK/NACK-bit-offset检 测属于自己的 ACK/NACK, 其过程同实施例一、 二、 三, jt匕处不再累述。 实施例五 每个中继节点对应的 ACK/NACK可以是重复后的 ACK/NACK。 例如, 系统中统一釆用重复 3次的方式, 假设 RN对应的上行业务数据的反馈信息 为" 1", 则重复 3次后为 "[111],,; 假设该 RN对应的上行业务数据的反馈信息 为" 10", 则重复 3次后为 "[111000]", 或重复 3次后为 "[101010]"。 如果系统 使用 ACK/NACK-index检测属于自己的 ACK/NACK, 则 4巴整个重复后的比 特看作 1个 index, 其过程同实例一、 二, 这里不再累述; 如果系统使用 ACK/NACK-bit-offset检测属于自己的 ACK/NACK, 其过程同实施例三, 此 处不再累述。 图 6为根据本发明实施例的基站的结构框图。 如图 6所示, 该基站包括 复用单元 60和发送单元 62。 复用单元 60, 设置为将中继节点对应的下行反馈信息复用在确认信号 / 非确认信号授权消息中, 其中, 下行反馈信息设置为指示其对应的中继链路 是否需要重新上传上行业务数据; 发送单元 62 , 设置为将确认信号 /非确认信号授权消息发送至中继节点。 釆用上述基站,将中继节点对应的下行反馈信息复用在确认信号 /非确认 信号授权消息中进行发送,可以不增加新的物理信道, 并能够节省信令开销。 在优选实施过程中, 复用单元 60按照确认信号 /非确认信号索引
( ACK/NACK-index ) 把每个中继节点对应的确认信号 /非确认信号
( ACK/NACK )排列在一个或多个确认信号 /非确认信号授权信息内
( ACK/NACK-grant ), ACK/NACK-grant内每个中继节点对应的 ACK/NACK 比特长度相同或不同, 具体地, 当每个中继节点对应的 ACK/NACK能排列 在一个 ACK/NACK-grant内时, 系统使用一个 ACK/NACK-grant; 当每个中 继节点对应的 ACK/NACK不能排列在一个 ACK/NACK-grant内时, 系统使 用多个 ACK/NACK-grant。 优选地, 如图 7所示, 该基站还可以包括: 加 4尤单元 64, 设置为釆用确 认信号 /非确认信号无线网络临时标识加扰确认信号 /非确认信号授权消息中 的循环冗余校验比特位。 优选地, 如图 7所示, 该基站还可以包括: 第一通知单元 66, 设置为通 知中继节点确认信号 /非确认信号授权消息对应的确认信号 /非确认信号无线 网络临时标 i只。 在优选实施过程中,基站可以通知中继节点确认信号 /非确认信号无线网 络临时标识( ACK/NACK-RNTI ),该中继节点可以才艮据该 ACK/NACK-RNTI 确定其对应的确认信号 /非确认信号授权消息, 即哪一个确认信号 /非确认信 号授权消息。 可选地, 基站也可以不包括第一通知单元 66 , 即基站不需要通知继节点 确认信号 /非确认信号授权消息对应的确认信号 /非确认信号无线网络临时标 识, 可以釆用预先约定的无线网络临时标识。 优选地, 如图 7所示, 该基站还可以包括: 第二通知单元 68 , 设置为在 每个中继节点对应的下行反馈信息的比特长度相同时, 将每个中继节点对应 的下行反馈信息的索引号或者比特偏移索引信息发送至中继节点。 优选地, 第二通知单元, 还设置为在每个中继节点对应的下行反馈信息 的比特长度不同时, 将每个中继节点对应的下行反馈信息的比特偏移索引信 息发送至中继节点。 上述基站向中继节点发送下行反馈信息的优选工作方案, 可以参见上述 图 2以及实施例一至实施例五的描述。 此处不再赞述。 图 8为根据本发明实施例的中继节点的结构框图。 如图 8所示, 上述中 继节点主要包括: 接收单元 80、 检测单元 82及获取单元 84。 接收单元 80 , 设置为接收来自于基站的确认信号 /非确认信号授权消息; 检测单元 82 , 设置为釆用确认信号 /非确认信号无线网络临时标识对接 收到的确认信号 /非确认信号授权消息进行盲检测,获取中继节点对应的确认 信号 /非确认信号授权消息; 获取单元 84 , 设置为釆用索引号和比特偏移索引信息之一、 或者仅釆用 比特偏移索引信息对对应的确认信号 /非确认信号授权消息进行检测,获取该 中继节点对应的下行反馈信息对对应的确认信号 /非确认信号授权消息进行 检测, 获取中继节点对应的下行反馈信息。 上述中继节点, 经过接收单元 80、 检测单元 82和获取单元 84的处理, 获取基站发送给该中继节点的下行反馈信息, 继而可以实现上行业务数据的 重传机制。 其中, 在每个中继节点对应的下行反馈信息的比特长度相同时, 基站需 要将每个中继节点对应的下行反馈信息的索引号或者比特偏移索引信息发送 至中继节点。 获取单元 84可以 居索引号或者比特偏移索引信息对该中继 节点对应的确认信号 /非确认信号授权消息进行检测,获取该中继节点对应的 下行反馈信息。 其中, 在每个中继节点对应的下行反馈信息的比特长度不同时, 基站需 要将每个中继节点对应的下行反馈信息的比特偏移索引信息发送至中继节 点。 获取单元 84可以根据比特偏移索引信息对该中继节点对应的确认信号 / 非确认信号授权消息进行检测, 获取该中继节点对应的下行反馈信息。 综上所述,通过本发明的上述实施例,提供的下行反馈信息的传输方法、 基站及中继节点,在不增加新的物理信道基础上,可以实现 HARQ重传机制。 并且可以很好地适用于基站与中继节点之间的传输链路, 信令开销低, 保证 了后向兼容性 (例如, 兼容 LTE系统)。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或 者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制 作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软 件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种下行反馈信息的传输方法, 包括:
基站将中继节点对应的下行反馈信息复用在确认信号 /非确认信 号授权消息中, 其中, 所述下行反馈信息设置为指示其对应的中继链 路是否需要重新上传上行业务数据;
所述基站将所述确认信号 /非确认信号授权消息发送至所述中继 节点。
2. 根据权利要求 1所述的方法, 其中, 所述确认信号 /非确认信号授权消 息为单个, 所述确认信号 /非确认信号授权消息携带有全部所述中继节 点对应的下行反馈信息。
3. 根据权利要求 1所述的方法, 其中, 所述确认信号 /非确认信号授权消 息为多个, 每个所述确认信号 /非确认信号授权消息携带有部分所述中 继节点对应的下行反馈信息。
4. 根据权利要求 2或 3所述的方法, 其中, 所述中继节点对应的下行反 馈信息为经过逻辑运算处理的比特信息或者重复预定次数的比特信 息。
5. 根据权利要求 2或 3所述的方法, 其中, 所述基站通过以下方式将所 述下行反馈信息复用在所述确认信号 /非确认信号授权消息中: 根据各 个所述下行反馈信息的索引号将所述下行反馈信息排列在所述确认信 号 /非确认信号授权消息中。
6. 根据权利要求 2或 3所述的方法, 其中, 还包括: 所述基站通知所述 中继节点所述确认信号 /非确认信号授权消息对应的确认信号 /非确认 信号无线网络临时标识, 并釆用所述确认信号 /非确认信号无线网络临 时标识加扰所述确认信号 /非确认信号授权消息中的循环冗余校验比 特位。
7. 根据权利要求 6所述的方法, 其中, 所述确认信号 /非确认信号无线网 络临时标识的取值范围为以下之一:
0001-003C, 003D-FFF3 , FFF4-FFFD„
8. 根据权利要求 2或 3所述的方法, 其中, 还包括: 所述基站釆用预先 约定的确认信号 /非确认信号无线网络临时标识加扰所述确认信号 /非 确认信号授权消息中的循环冗余校验比特位。
9. 根据权利要求 8所述的方法, 其中, 所述预先约定的确认信号 /非确认 信号无线网络临时标识的取值范围为 FFF4-FFFD。
10. 根据权利要求 6或 8所述的方法, 其中, 还包括: 所述基站釆用以下 方式加扰所述确认信号 /非确认信号授权消息中的所述循环冗余校验 比特位: 所述基站将所述确认信号 /非确认信号无线网络临时标识对应 的比特位与循环冗余校验比特位进行异或运算。
11. 根据权利要求 6或 8所述的方法, 其中, 所述确认信号 /非确认信号授 权消息中, 每个所述中继节点对应的下行反馈信息的比特长度相同。
12. 根据权利要求 11所述的方法, 其中, 当每个所述中继节点对应的下行 反馈信息的比特长度相同时, 所述基站将每个所述中继节点对应的下 行反馈信息的索引号发送至所述中继节点。
13. 根据权利要求 11所述的方法, 其中, 当每个所述中继节点对应的下行 反馈信息的比特长度相同时, 所述基站将每个所述中继节点对应的下 行反馈信息的比特偏移索引信息发送至所述中继节点。
14. 根据权利要求 6或 8所述的方法, 其中, 所述确认信号 /非确认信号授 权消息中, 每个所述中继节点对应的下行反馈信息的比特长度不同。
15. 根据权利要求 14所述的方法, 其中, 当每个所述中继节点对应的下行 反馈信息的比特长度不同时, 所述基站将每个所述中继节点对应的下 行反馈信息的比特偏移索引信息发送至所述中继节点。
16. 根据权利要求 1至 3中任一项所述的方法, 其中, 所述确认信号 /非确 认信号授权消息的比特位数为自定义的正整数。
17. 根据权利要求 1至 3中任一项所述的方法, 其中, 所述确认信号 /非确 认信号授权消息与任一种上行授权消息的比特位数相同, 或者所述确 认信号 /非确认信号授权消息与任一种中继链路上行授权消息的比特 位数相同, 或者所述确认信号 /非确认信号授权消息与任一种下行授权 消息的比特位数相同, 或者所述确认信号 /非确认信号授权消息与任一 种中继链路下行授权消息的比特位数相同。
18. 根据权利要求 1至 3中任一项所述的方法, 其中, 所述确认信号 /非确 认信号授权消息中未被占用的比特位为预留比特位。
19. 根据权利要求 12或 13或 15所述的方法, 其中, 在所述基站将所述确 认信号 /非确认信号授权消息发送至所述中继节点之后, 还包括: 所述中继节点接收所述确认信号 /非确认信号授权消息; 所述中继节点釆用所述确认信号 /非确认信号无线网络临时标识 对接收到的所述确认信号 /非确认信号授权消息进行盲检测, 获取每个 所述中继节点对应的确认信号 /非确认信号授权消息;
每个所述中继节点釆用所述索引号和所述比特偏移索引信息之 一、或者仅釆用所述比特偏移索引信息对所述对应的确认信号 /非确认 信号授权消息进行检测, 获取该中继节点对应的下行反馈信息。
20. 一种基站, 包括:
复用单元, 设置为将中继节点对应的下行反馈信息复用在确认信 号 /非确认信号授权消息中, 其中, 所述下行反馈信息设置为指示其对 应的中继链路是否需要重新上传上行业务数据;
发送单元, 设置为将所述确认信号 /非确认信号授权消息发送至所 述中继节点。
21. 根据权利要求 20所述的基站, 其中, 还包括:
加扰单元, 设置为釆用所述确认信号 /非确认信号无线网络临时标 识加扰所述确认信号 /非确认信号授权消息中的循环冗余校验比特位。
22. 根据权利要求 21所述的基站, 其中, 还包括:
第一通知单元, 设置为通知所述中继节点所述确认信号 /非确认信 号授权消息对应的确认信号 /非确认信号无线网络临时标识。
23. 根据权利要求 21所述的基站, 其中, 还包括: 第二通知单元, 设置为在每个所述中继节点对应的下行反馈信息 的比特长度相同时, 将每个所述中继节点对应的下行反馈信息的索引 号或者比特偏移索引信息发送至所述中继节点。
24. 根据权利要求 23所述的基站, 其中, 还包括:
所述第二通知单元, 还设置为在每个所述中继节点对应的下行反 馈信息的比特长度不同时, 将每个所述中继节点对应的下行反馈信息 的比特偏移索引信息发送至所述中继节点。
25. 一种中继节点, 包括:
接收单元, 设置为接收来自于基站的确认信号 /非确认信号授权消 息;
检测单元, 设置为釆用确认信号 /非确认信号无线网络临时标识对 接收到的所述确认信号 /非确认信号授权消息进行盲检测, 获取所述中 继节点对应的确认信号 /非确认信号授权消息;
获取单元,设置为釆用所述索引号和所述比特偏移索引信息之一、 或者仅釆用所述比特偏移索引信息对所述对应的确认信号 /非确认信 号授权消息进行检测, 获取该中继节点对应的下行反馈信息对所述对 应的确认信号 /非确认信号授权消息进行检测, 获取所述中继节点对应 的下行反馈信息。
PCT/CN2011/072044 2010-03-26 2011-03-22 下行反馈信息的传输方法、基站及中继节点 WO2011116685A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010140485.6A CN102201902B (zh) 2010-03-26 2010-03-26 下行反馈信息的传输方法、基站及中继节点
CN201010140485.6 2010-03-26

Publications (1)

Publication Number Publication Date
WO2011116685A1 true WO2011116685A1 (zh) 2011-09-29

Family

ID=44662311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072044 WO2011116685A1 (zh) 2010-03-26 2011-03-22 下行反馈信息的传输方法、基站及中继节点

Country Status (2)

Country Link
CN (1) CN102201902B (zh)
WO (1) WO2011116685A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107689848B (zh) * 2016-08-05 2021-11-30 中兴通讯股份有限公司 信息指示方法及装置、系统
CN108365934A (zh) * 2017-01-26 2018-08-03 索尼公司 无线通信方法和无线通信设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1936853A1 (en) * 2006-12-20 2008-06-25 Matsushita Electric Industrial Co., Ltd. Avoidance of feedback collision in mobile communications
CN101594205A (zh) * 2009-06-22 2009-12-02 中兴通讯股份有限公司 一种高级长期演进系统的下行控制信令发送方法
CN101662833A (zh) * 2009-09-29 2010-03-03 中兴通讯股份有限公司 上行混合重传反馈信息分量载波的选择方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1936853A1 (en) * 2006-12-20 2008-06-25 Matsushita Electric Industrial Co., Ltd. Avoidance of feedback collision in mobile communications
CN101594205A (zh) * 2009-06-22 2009-12-02 中兴通讯股份有限公司 一种高级长期演进系统的下行控制信令发送方法
CN101662833A (zh) * 2009-09-29 2010-03-03 中兴通讯股份有限公司 上行混合重传反馈信息分量载波的选择方法及装置

Also Published As

Publication number Publication date
CN102201902B (zh) 2015-10-21
CN102201902A (zh) 2011-09-28

Similar Documents

Publication Publication Date Title
JP6577096B2 (ja) Harqプロトコルの方法及びシステム
EP3364585B1 (en) Method and arrangement in a mobile telecommunications network for harq with tti bundling and with incremental redundancy
JP5539496B2 (ja) Macメッセージの信頼性を高める方法及び装置
JP6629336B2 (ja) グループ肯定応答/否定応答、およびgack/チャネル状態情報をトリガすること
AU2009211412B2 (en) DTX detection when ACK/NACK is transmitted with scheduling request
EP2651067B1 (en) Method and arrangement in a communication system
JP5208272B2 (ja) 通信ネットワークにおける方法および装置
KR20180058597A (ko) 무선 셀룰라 통신 시스템에서 부분 재전송 방법 및 장치
EP3641180B1 (en) Base station device, terminal device, wireless communication system, and communication method
WO2018228578A1 (zh) 一种通信方法及其装置
WO2008000190A1 (fr) Procédé et système et station relais pour la mise en oeuvre de harq
KR20100002114A (ko) 상향링크 신호 전송 방법
CN108988983A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US11683128B2 (en) Receiver, transmitter, communication network, data signal and method improving a retransmission process in a communication network
JP6668482B2 (ja) 下りリンク送信方法、基地局及び端末
WO2012068953A1 (zh) 中继链路子帧配置切换时确认信息的反馈方法及装置
EP3903436B1 (en) Communications devices, infrastructure equipment and methods
WO2020224532A1 (zh) 一种重传数据的发送方法、接收方法及装置
JP5061128B2 (ja) 基地局装置、移動局、無線通信システム及び通信制御方法
WO2014075272A1 (zh) 信道传输方法、装置、基站及终端
KR20200013768A (ko) 통신 방법, 네트워크 장치 및 단말
CN102148673A (zh) 下行确认/非确认信息处理方法及系统
WO2020238845A1 (zh) 一种重传数据的发送方法、接收方法及装置
WO2011116685A1 (zh) 下行反馈信息的传输方法、基站及中继节点
WO2012065525A1 (zh) 混合自动重传请求的传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11758795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11758795

Country of ref document: EP

Kind code of ref document: A1