WO2011116675A1 - 回程链路上的控制信令发送及检测方法、系统和设备 - Google Patents

回程链路上的控制信令发送及检测方法、系统和设备 Download PDF

Info

Publication number
WO2011116675A1
WO2011116675A1 PCT/CN2011/072000 CN2011072000W WO2011116675A1 WO 2011116675 A1 WO2011116675 A1 WO 2011116675A1 CN 2011072000 W CN2011072000 W CN 2011072000W WO 2011116675 A1 WO2011116675 A1 WO 2011116675A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
resource sub
control signaling
area
pdcch resource
Prior art date
Application number
PCT/CN2011/072000
Other languages
English (en)
French (fr)
Inventor
沈祖康
王立波
潘学明
孙韶辉
张文健
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to EP11758785.7A priority Critical patent/EP2552159A4/en
Priority to US13/582,025 priority patent/US8553609B2/en
Publication of WO2011116675A1 publication Critical patent/WO2011116675A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/15542Selecting at relay station its transmit and receive resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a control signaling transmission and detection method, system and device on a backhaul link. Background technique
  • a Relay Node In the Long Term Evolution-Advanced (LTE-A) system, in order to improve system throughput and increase network coverage, a Relay Node (RN) is introduced.
  • the Evolved NodeB (eNB) is connected to the core network (Core) through a wired interface, and the RN is connected to the eNB through a radio interface; the User Equipment (UE) is connected to the RN or the eNB through a radio interface.
  • the Evolved NodeB eNB
  • Core core network
  • UE User Equipment
  • the link between the RN and the base station is called a backhaul link, and the link between the RN and the UE is called an access link.
  • the relay physical downlink control channel (R-PDCCH) on the backhaul link and the relay physical downlink shared channel (the relay physical downlink link) on the backhaul link.
  • R-PDSCH relay physical downlink shared channel
  • the eNB transmits the relevant control signaling to the RN by using the time-frequency resource occupied by the R-PDCCH, and the RN performs blind detection in the time-frequency resource range occupied by the R-PDCCH to obtain corresponding control signaling.
  • FIG. 2 shows the complex of Time Division Multiplexing (TDM) + Frequency Division Multiplexing (FDM) for R-PDCCH and R-PDSCH. Schematic diagram of the mode;
  • FIG. 3 is a schematic diagram of the FDM multiplexing mode of the R-PDCCH and the R-PDSCH.
  • the eNB uses the time-frequency resource occupied by the R-PDCCH to transmit control signaling to the RN, and the RN needs to perform blind detection in the entire time-frequency resource range occupied by the R-PDCCH to obtain the control signaling, so that the eNB passes the eNB.
  • the time-frequency resources occupied by the R-PDCCH transmission control signaling are large, and the complexity of detecting the R-PDCCH by the RN is also high.
  • the embodiment of the present invention provides a method for transmitting control signaling on a backhaul link of a relay system, and a base station, which is used to save time-frequency resources occupied by a base station by using R-PDCCH to send control signaling.
  • a method for transmitting control signaling on a backhaul link of a relay system comprising:
  • the base station determines, in the multiple R-PDCCH resource sub-areas divided by the resource region occupied by the R-PDCCH, the control signal to be sent according to the correspondence between the preset control signaling and the R-PDCCH resource sub-region Having a corresponding R-PDCCH resource sub-area;
  • the base station transmits the to-be-sent control signaling to the relay node by using the time-frequency resource in the determined R-PDCCH resource sub-area.
  • a base station comprising:
  • a signaling determining unit configured to determine a to-be-transmitted control signaling on a relay physical downlink control channel R-PDCCH on a current backhaul link;
  • a region determining unit configured to determine, according to a correspondence between a preset control signaling and an R-PDCCH resource sub-region, in a plurality of R-PDCCH resource sub-regions that are allocated in a resource region occupied by the R-PDCCH
  • the signaling sending unit is configured to send the to-be-sent control signaling to the relay node by using the time-frequency resource in the determined R-PDCCH resource sub-area.
  • the base station determines the to-be-sent control signaling on the current R-PDCCH; the base station in the multiple R-PDCCH resource sub-areas divided by the resource region occupied by the R-PDCCH, according to preset control signaling and R - Corresponding relationship of the PDCCH resource sub-area, determining the control message to be sent And corresponding to the R-PDCCH resource sub-area; and then sending the to-be-transmitted control signaling to the relay node by using the time-frequency resource in the determined R-PDCCH resource sub-area.
  • the resource region occupied by the R-PDCCH is divided into multiple R-PDCCH resource sub-regions, and the control signaling to be sent is sent in the R-PDCCH resource sub-region corresponding to the control signaling to be sent.
  • the control signaling to be sent is not transmitted in the entire resource area occupied by the R-PDCCH, which saves time-frequency resources occupied by the base station by using the R-PDCCH to transmit control signaling.
  • the embodiment of the present invention further provides a control signaling detection method on a backhaul link of a relay system, a relay node device, and an LTE-A communication system, which are used to reduce the complexity of detecting an R-PDCCH by the RN.
  • a method for detecting a control signaling on a backhaul link of a relay system comprising:
  • the relay node acquires location information of one or more relay physical downlink control channel R-PDCCH resource sub-regions; the R-PDCCH resource sub-region is an R-PDCCH resource formed by dividing the resource region occupied by the R-PDCCH Subregion
  • a relay node device, the relay node device includes:
  • a configuration information acquiring unit configured to acquire location information of one or more relay physical downlink control channel R-PDCCH resource sub-regions;
  • the R-PDCCH resource sub-region is an R formed by dividing a resource region occupied by the PDCCH - PDCCH resource sub-area;
  • the signaling detection unit is configured to determine, according to a preset correspondence between the preset R-PDCCH resource sub-region and the control signaling, for each R-PDCCH resource sub-region in the one or more R-PDCCH resource sub-regions The control signaling corresponding to the R-PDCCH resource sub-area, and detecting the control signaling in the R-PDCCH resource sub-area according to the location information of the R-PDCCH resource sub-area.
  • a long-term evolution upgrade LTE-A communication system includes:
  • a base station configured to determine a relay physical downlink control channel R-PDCCH on the current backhaul link
  • the control signaling to be sent is determined; in the multiple R-PDCCH resource sub-areas divided by the resource region occupied by the R-PDCCH, the correspondence between the preset control signaling and the R-PDCCH resource sub-region is determined.
  • the R-PDCCH resource sub-region corresponding to the transmission control signaling is sent; the to-be-sent control signaling is sent to the relay node by using the time-frequency resource in the determined R-PDCCH resource sub-region; The location information of the R-PDCCH resource sub-area is detected, and the to-be-sent control signaling is detected in the R-PDCCH resource sub-area according to the location information.
  • the relay node when performing the control signaling detection, first acquires the location information of the one or more R-PDCCH resource sub-regions in which the resource region occupied by the pre-configured R-PDCCH is divided; a PDCCH resource sub-area, determining, according to a preset correspondence between the R-PDCCH resource sub-area and the control signaling, the control signaling corresponding to the R-PDCCH resource sub-area, and according to the location information of the R-PDCCH resource sub-area The control signaling is detected within the R-PDCCH resource sub-area.
  • the relay node detects the control signaling in the R-PDCCH resource sub-region corresponding to the control signaling according to the configuration information, instead of detecting the control signaling in the entire resource region occupied by the R-PDCCH, effectively The complexity of the R-PDCCH detection by the relay node is reduced.
  • FIG. 1 is a schematic structural diagram of an LTE-A system in the prior art
  • FIG. 2 is a schematic diagram of a TDM+FDM multiplexing mode in the prior art
  • FIG. 3 is a schematic diagram of a FDM multiplexing mode in the prior art
  • FIG. 4 is a schematic flowchart of a method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of resource area division according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of resource area division according to Embodiment 2 of the present invention.
  • Figure ⁇ is a schematic structural diagram of a system provided by an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of an RN according to an embodiment of the present invention. detailed description
  • the present invention provides a control signaling transmission and detection on a backhaul link of a relay system, in order to save the time-frequency resources occupied by the base station by using the R-PDCCH to transmit control signaling, and reduce the complexity of detecting the R-PDCCH by the RN.
  • the resource region occupied by the R-PDCCH is divided into multiple R-PDCCH resource sub-regions, and when the control signaling is sent to the RN, only the R-PDCCH resource sub-region corresponding to the control signaling is used. The resource sends control signaling.
  • a method for sending and detecting control signaling on a backhaul link of a relay system includes the following steps:
  • Step 41 The base station determines a to-be-transmitted control signaling on a relay physical downlink control channel (R-PDCCH) on the current backhaul link.
  • R-PDCCH relay physical downlink control channel
  • Step 42 The base station determines, according to the corresponding relationship between the preset control signaling and the R-PDCCH resource sub-area, the plurality of R-PDCCH resource sub-areas divided by the resource region occupied by the R-PDCCH, Transmitting an R-PDCCH resource sub-region corresponding to the control signaling;
  • a plurality of R-PDCCH resource sub-areas are formed by dividing the resource area occupied by the R-PDCCH, and a correspondence relationship between each R-PDCCH resource sub-area and control signaling is preset.
  • Step 43 The base station sends the to-be-sent control signaling to the relay node by using the time-frequency resource in the determined R-PDCCH resource sub-area;
  • Step 44 The relay node acquires location information of the R-PDCCH resource sub-area.
  • Step 45 The relay node detects the to-be-sent control signaling in the R-PDCCH resource sub-area according to the obtained location information.
  • the R-PDCCH occupies a resource area, and the specific implementation may be as follows: divide multiple control signaling into multiple types; and divide the resource area occupied by the R-PDCCH into multiple
  • R-PDCCH resource sub-area where the number of R-PDCCH resource sub-areas included in the resource area is the same as the number of classes of multiple control signaling; Correspondingly, the correspondence between the control signaling and the R-PDCCH resource sub-area is set, and the specific implementation can be as follows:
  • control signaling For each class that divides multiple control signaling into multiple classes, establish a correspondence between the class and R-PDCCH resource sub-regions in multiple R-PDCCH resource sub-regions; for each of multiple control signaling The control signaling establishes a correspondence between the control signaling and the R-PDCCH resource sub-region corresponding to the class to which the control signaling belongs.
  • the multiple control signaling is divided into two types, which may be divided into two types, and the demodulation delay requirement of the first type of control signaling in the two types is higher than that of the second type of control signaling.
  • the first type of control signaling includes: downlink scheduling signaling (DL Grant) and the like; and the second type of control signaling includes: uplink scheduling signaling (UL Grant) and the like.
  • the resource area occupied by the R-PDCCH is divided into multiple R-PDCCH resource sub-areas, and the specific implementation may be as follows:
  • the resource region occupied by the R-PDCCH is divided into two R-PDCCH resource sub-regions, and the first R-PDCCH resource sub-region in the two R-PDCCH resource sub-regions is located in the second R-PDCCH resource sub-region in the time domain. prior to.
  • all time units occupied by the first R-PDCCH resource sub-area are before all time units occupied by the second resource sub-area; or, the start time unit of the first resource sub-area and the start of the second resource sub-area
  • the time units are the same, and the end time unit of the first resource sub-area precedes the end time unit of the second resource sub-area.
  • the R-PDCCH may be divided into the first R-PDCCH resource sub-area in the resource area occupied by the sub-frame, and the area of the resource unit located in the first time slot of the sub-frame; In the resource region occupied by the subframe, the R-PDCCH is divided into the second R-PDCCH resource sub-region by the resource unit located in the second slot of the subframe. That is, the first R-PDCCH resource sub-area is located in the first time slot of the subframe in the time domain, and the second R-PDCCH resource sub-area is located in the second time slot of the subframe in the time domain.
  • the base station may further send time domain location information and/or frequency domain location information of the divided plurality of R-PDCCH resource sub-regions to the relay node.
  • the base station may also send the corresponding relationship between the control signaling and the R-PDCCH resource sub-area to the relay node, or the corresponding relationship between the control signaling and the R-PDCCH resource sub-area may be agreed by the base station and the relay node.
  • the resource multiplexing of the R-PDCCH and the R-PDSCH may be performed by using the FDM method or the TDM+FDM method.
  • the relay node acquires the location information of the one or more R-PDCCH resource sub-regions that are pre-configured; the R-PDCCH resource sub-region is the R-PDCCH resource that is formed by dividing the resource region occupied by the PDCCH.
  • the relay node determines, according to the correspondence between the preset R-PDCCH resource sub-area and the control signaling, the control signaling corresponding to the R-PDCCH resource sub-area for each R-PDCCH resource sub-area, and The control signaling is detected in the R-PDCCH resource sub-area according to the location information of the R-PDCCH resource sub-area. Since the correspondence between the R-PDCCH resource sub-area of the base station side and the relay node side and the control signaling is consistent, the relay node can detect the control signaling sent in step 42 in a certain R-PDCCH resource sub-area.
  • the multiple R-PDCCH resource sub-regions may be two R-PDCCH resource sub-regions, and the RN first determines two Rs according to a preset correspondence between the R-PDCCH resource sub-region and the control signaling.
  • the first R-PDCCH resource sub-region in the PDCCH resource sub-region corresponds to the first type of control signaling
  • the second R-PDCCH resource sub-region in the two R-PDCCH resource sub-regions corresponds to the second type of control signaling
  • the first R-PDCCH resource sub-area is located before the second R-PDCCH resource sub-area in the time domain.
  • the first R-PDCCH resource sub-area and the second R-PDCCH resource sub-area satisfy the following condition: All time units occupied by the PDCCH resource sub-area are in the second Before all the time units occupied by the R-PDCCH resource sub-area, or the start time unit of the first R-PDCCH resource sub-area is the same as the start time unit of the second R-PDCCH resource sub-area, and the first R-PDCCH resource The end time unit of the sub-area precedes the end time unit of the second R-PDCCH resource sub-area.
  • the demodulation delay requirement of the first type of control signaling is higher than the demodulation delay requirement of the second type of control signaling;
  • the RN detects the first type of control signaling in the first R-PDCCH resource sub-area according to the acquired location information of the first R-PDCCH resource sub-area; and according to the acquired second R-PDCCH resource sub-area
  • the location information detects a second type of control signaling in the second R-PDCCH resource sub-area.
  • the first type of control signaling is detected in the first R-PDCCH resource sub-area, where the R-PDCCH is in the resource area occupied by the subframe, and the resource unit located in the time slot 1 of the subframe is first.
  • the R-PDCCH resource sub-area detecting the first type of control signaling; in the resource area occupied by the R-PDCCH in the subframe, the second R-PDCCH resource sub-member formed by the resource unit of the time slot 2 of the subframe In the area, the second type of control signaling is detected.
  • the first type of control signaling includes DL Grant signaling and the like; the second type of control signaling includes UL Grant signaling and the like.
  • the relay node may obtain the location information of the pre-configured R-PDCCH resource sub-area from the semi-static signaling or the dynamic signaling sent by the base station.
  • the base station configures two sets of control signaling time-frequency resources S1 and S2 for each relay node, that is, the resource area occupied by the R-PDCCH is divided into two R-PDCCH resource sub-areas of S1 and S2.
  • the relay node detects the corresponding control information on the corresponding two sets of time-frequency resources.
  • the control signaling can be divided into two types, one is control signaling A which is sensitive to the demodulation delay of the control channel, that is, the demodulation delay is high, and the class is insensitive to the demodulation delay of the control channel.
  • the control delay B requires low control signaling B.
  • the control signaling A sensitive to the control channel demodulation delay is transmitted on the time-frequency resource SI, and the control signaling B insensitive to the control channel demodulation delay is transmitted on the time-frequency resource S2.
  • the control information A sensitive to the control channel demodulation delay may be DL grant signaling.
  • the control signaling B that is insensitive to the control channel demodulation delay may be UL grant signaling or other control signaling.
  • Time The frequency resource SI or S2 includes the corresponding frequency domain resource and time domain resource.
  • the frequency domain resource includes a set of at least one resource block (RB).
  • the time domain resource includes a plurality of time transmission units, such as OFDM (Orthogonal Frequency Division Multiplexing) symbols.
  • the frequency domain resources or time domain resources corresponding to SI and S2 may be the same or different.
  • the frequency domain resource corresponding to S1 may be RB 1-3
  • the time domain resource corresponding to S1 may be OFDM symbol 5-7.
  • the frequency domain resource corresponding to S2 may be RB 4-6, and the time domain resource corresponding to S2 may be OFDM symbol 5-13.
  • the frequency resource corresponding to S1 may be the physical resource block PRB 1-3, and the time domain resource corresponding to S1 may be the OFDM symbol 5-7.
  • the frequency domain resource corresponding to S2 may be PRB 1-3, and the time domain resource corresponding to S2 may be OFDM symbol 8-13.
  • the OFDM symbol number within one subframe is 1-14.
  • the location of its time domain resource or frequency domain resource may be fixed.
  • the base station only needs to indicate to the RN the variable portion of the resource location of S1 or S2 through dynamic signaling. For example, if the time domain resource location of S1 is fixed to OFDM symbols 5-7 and the time domain resource location of S2 is fixed to OFDM symbols 5-13, then the base station only needs to indicate the frequency domain resource locations of S1 and S2 to the RN through dynamic signaling.
  • the time domain resource location of S1 is fixed to OFDM symbols 5-7
  • the time domain resource location of S2 is fixed to OFDM symbols 8-13
  • the frequency domain resource locations of S1 and S2 are the same
  • the base station only needs to dynamically signal to
  • the RN indicates the frequency domain resource locations of S1 and S2.
  • the base station needs to indicate to the RN in advance through semi-static signaling.
  • the two R-PDCCH resource sub-areas may be divided according to the sensitivity of the control signaling to the demodulation delay.
  • the sensitivity to the demodulation delay is high, and the solution should be solved as soon as possible.
  • the scheduled uplink subframe is not in the current subframe, but is the subsequent uplink subframe, so its sensitivity to demodulation delay is relatively weak.
  • the blind detection of the R-PDCCH will be performed in two R-PDCCH resource sub-areas, that is, the blind detection is sensitive to demodulation delay in one R-PDCCH resource sub-area. Signaling, detecting control signaling that is insensitive to demodulation delay in another R-PDCCH resource sub-area.
  • FIG. 5 is a schematic diagram showing the search space of two types of control signaling in the case where the R-PDCCH and the R-PDSCH use the FDM multiplexing mode in the LTE-A system.
  • the specific process is as follows:
  • Step S01 The base station divides multiple control signaling into two types according to demodulation delay requirements of multiple control signalings transmitted by the R-PDCCH, and the first type is control signaling requiring high demodulation delay.
  • the second type is control signaling with low demodulation delay requirement; the resource area occupied by the R-PDCCH is divided into two R-PDCCH resource sub-areas, as shown in FIG. 5, the control signal with high demodulation delay requirement is required.
  • the corresponding R-PDCCH resource sub-area is the area in which the R-PDCCH is located in the resource area occupied by the sub-frame in the sub-frame, and is called the first R-PDCCH resource sub-area;
  • the R-PDCCH resource sub-region corresponding to the relatively low control signaling required for the demodulation delay is the region of the resource unit occupied by the slot 2 of the subframe in the resource region occupied by the subframe in the R-PDCCH, a second R-PDCCH resource sub-region; the base station sends resource location information of the first R-PDCCH resource sub-region and the second R-PDCCH resource sub-region to the RN;
  • Step S02 The base station sends the first type of control signaling to the RN by using the resources in the first R-PDCCH resource sub-area, for example, DL Grant signaling, and the base station sends the second type of control to the RN by using the resources in the second R-PDCCH resource sub-area.
  • Signaling such as UL Grant signaling;
  • Step S03 N obtains location information of the first R-PDCCH resource sub-region and the second R-PDCCH resource sub-region sent by the base station, and detects the first type of control information in the first R-PDCCH resource sub-region according to the location information. For example, DL Grant signaling, detecting a second type of control signaling, such as UL Grant signaling, in a second R-PDCCH resource sub-area.
  • the control signal sensitive to the demodulation delay is transmitted in the first time slot, so that the corresponding demodulation can be performed after the end of the first time slot, and thus can be performed as soon as possible.
  • Demodulation of the data portion in the second time slot For example, downlink resource scheduling signaling, these signaling needs to be demodulated as soon as possible, so that the specific R-PDSCH location and MCS content can be clarified, and the R-PDSCH demodulation can be performed as soon as possible.
  • the demodulation delay-insensitive signaling it is configured in the second time slot of the R-PDCCH, so that the demodulation time of these signalings is the same as the data part R-PDSCH, but due to the signaling of this part, the demodulation The content of the current subframe has no relationship, such as uplink resource scheduling information. Therefore, the demodulation time can be relatively long.
  • the RN-specific high-level signaling may be used to notify the RN of the location information of the R-PDCCH resource sub-area; or the broadcast signaling may be used to notify the RN of the location information of the R-PDCCH resource sub-area.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • Figure 6 shows the search space of two types of control signaling in the case of R-PDCCH and R-PDSCH using TDM+FDM multiplexing in LTE-A system.
  • the specific process is as follows:
  • Step 1 The base station divides the multiple control signaling into two types according to the demodulation delay requirements of the multiple control signalings transmitted by the R-PDCCH, and the first type is the control signaling that requires high demodulation delay.
  • the second type is control signaling with low demodulation delay requirement; the resource area occupied by the R-PDCCH is divided into two R-PDCCH resource sub-areas, as shown in FIG. 6, the control for high demodulation delay is required.
  • the R-PDCCH resource sub-region corresponding to the signaling is an area that is located in the resource region occupied by the R-PDCCH in the slot of the subframe, and is referred to as a first R-PDCCH resource sub-region;
  • the R-PDCCH resource sub-region corresponding to the control signaling with low demodulation delay requirement is the region where the R-PDCCH is located in the resource region occupied by the subframe and is located in the resource unit of the slot 2 of the subframe.
  • a second R-PDCCH resource sub-region transmitting resource location information of the first R-PDCCH resource sub-region and the second R-PDCCH resource sub-region to the RN;
  • Step S12 The base station sends a first type of control signaling, such as DL Grant signaling, to the RN in the first R-PDCCH resource sub-area, where the base station sends a second type of control signaling to the RN in the second R-PDCCH resource sub-area, for example UL Grant signaling;
  • a first type of control signaling such as DL Grant signaling
  • a second type of control signaling to the RN in the second R-PDCCH resource sub-area, for example UL Grant signaling
  • Step S13 The RN obtains location information of the first R-PDCCH resource sub-region and the second R-PDCCH resource sub-region sent by the base station, and detects the first type of control information in the first R-PDCCH resource sub-region according to the location information. For example, DL Grant signaling, detecting a second type of control signaling, such as UL Grant signaling, in a second R-PDCCH resource sub-area.
  • DL Grant signaling detecting a second type of control signaling, such as UL Grant signaling, in a second R-PDCCH resource sub-area.
  • an embodiment of the present invention further provides an LTE-A communication system, where the system includes: a base station 70, configured to determine control signaling to be sent on an R-PDCCH on a current backhaul link; Determining the to-be-sent control signaling according to a correspondence between a preset control signaling and an R-PDCCH resource sub-area in a plurality of R-PDCCH resource sub-areas divided by a resource region occupied by the R-PDCCH Corresponding R-PDCCH resource sub-region; transmitting the to-be-sent control signaling to the relay node by using the time-frequency resource in the determined R-PDCCH resource sub-region;
  • the relay node 71 is configured to acquire pre-configured location information of the R-PDCCH resource sub-area, and detect the to-be-transmitted control signaling in the R-PDCCH resource sub-area according to the location information.
  • the base station 70 is also used to:
  • the resource region occupied by the R-PDCCH is divided into two R-PDCCH resource sub-regions; the first R-PDCCH resource sub-region of the two R-PDCCH resource sub-regions is located in the second R-PDCCH resource region in the time domain. Before the area.
  • the base station 70 is also used to:
  • the base station 70 is configured to:
  • the R-PDCCH is divided into the first R-PDCCH resource sub-area by the resource unit located in the first time slot of the subframe in the resource area occupied by the subframe;
  • the R-PDCCH is divided into the second R-PDCCH resource sub-area by the resource unit located in the second slot of the subframe in the resource area occupied by the subframe.
  • an embodiment of the present invention further provides a base station, which can be applied to an LTE-A communication system, where the base station includes:
  • the signaling determining unit 80 is configured to determine, to be sent, the control signaling to be sent on the R-PDCCH on the current backhaul link;
  • the area determining unit 81 is configured to determine, according to a correspondence between the preset control signaling and the R-PDCCH resource sub-area, in the multiple R-PDCCH resource sub-areas divided by the resource area occupied by the R-PDCCH.
  • the signaling sending unit 82 is configured to send the to-be-sent control signaling to the relay node by using the time-frequency resource in the determined R-PDCCH resource sub-area.
  • the base station also includes:
  • the resource region dividing unit 83 is configured to divide the resource region occupied by the R-PDCCH into two R-PDCCH resource sub-regions; the first R-PDCCH resource sub-region of the two R-PDCCH resource sub-regions is in the time domain Located before the second R-PDCCH resource sub-area.
  • the base station also includes:
  • the correspondence relationship setting unit 84 is configured to establish a correspondence between the first type of control signaling and the first R-PDCCH resource sub-area, and establish a second type of control signaling and the second R-PDCCH resource sub-area Corresponding relationship;
  • the demodulation delay requirement of the first type of control signaling is higher than the demodulation delay requirement of the second type of control signaling.
  • the resource area dividing unit 83 is configured to:
  • the R-PDCCH is divided into the first R-PDCCH resource sub-area by the resource unit located in the first time slot of the subframe in the resource area occupied by the subframe;
  • the R-PDCCH is divided into the second R-PDCCH resource sub-area by the resource unit located in the second slot of the subframe in the resource area occupied by the subframe.
  • the base station also includes:
  • the configuration information sending unit 85 is configured to send time domain location information and/or frequency domain location information of the multiple R-PDCCH resource sub-regions to the relay node.
  • the configuration information sending unit 85 is further configured to:
  • an embodiment of the present invention further provides a relay node, which can be applied to an LTE-A communication system, where the relay node includes:
  • the configuration information acquiring unit 90 is configured to acquire location information of one or more R-PDCCH resource sub-regions that are configured in advance, where the R-PDCCH resource sub-region is formed by dividing a resource region occupied by the R-PDCCH. PDCCH resource sub-area;
  • a signaling detecting unit 91 configured to be in the one or more R-PDCCH resource sub-regions And determining, according to a preset correspondence between the R-PDCCH resource sub-region and the control signaling, a control signaling corresponding to the R-PDCCH resource sub-region, and determining, according to the R-PDCCH resource sub-region, the R-PDCCH resource sub-region
  • the location information is detected in the R-PDCCH resource sub-area.
  • the signaling detecting unit 91 includes:
  • a determining unit configured to determine, according to a preset correspondence between a preset R-PDCCH resource sub-region and control signaling, when the multiple R-PDCCH resource sub-regions are two R-PDCCH resource sub-regions
  • the first R-PDCCH resource sub-region in the R-PDCCH resource sub-region corresponds to the first type of control signaling
  • the second R-PDCCH resource sub-region in the two R-PDCCH resource sub-regions corresponds to the second type of control
  • the first R-PDCCH resource sub-area is located before the second R-PDCCH resource sub-area in the time domain; the demodulation delay requirement of the first type of control signaling is higher than the second type of control Demodulation delay requirements for signaling;
  • a detecting unit configured to detect, according to the acquired location information of the first R-PDCCH resource sub-region, a first type of control signaling in the first R-PDCCH resource sub-region; and according to the acquired second R-PDCCH resource sub- The location information of the region detects the second type of control signaling in the second R-PDCCH resource sub-region.
  • the detecting unit is used to:
  • the first type of control signaling is detected in the first resource sub-area formed by the resource unit of the first time slot of the subframe in the resource region occupied by the subframe in the R-PDCCH;
  • the second type of control signaling is detected in the second resource sub-area formed by the resource unit located in the second slot of the subframe in the resource region occupied by the subframe in the R-PDCCH.
  • the detecting unit is used to:
  • the beneficial effects of the present invention include:
  • the base station determines the control signaling of the current R-PDCCH to be sent; and determines according to the correspondence between the preset control signaling and the R-PDCCH resource sub-area.
  • the resource region occupied by the R-PDCCH is divided into multiple R-PDCCH resource sub-regions, and the control signaling to be sent is sent in the R-PDCCH resource sub-region corresponding to the control signaling to be sent.
  • the control signaling to be sent is not transmitted in the entire resource area occupied by the R-PDCCH, which saves time-frequency resources occupied by the base station by using the R-PDCCH to transmit control signaling.
  • the relay node when performing the control signaling detection, the relay node first acquires the location information of the one or more R-PDCCH resource sub-regions in which the resource region occupied by the pre-configured R-PDCCH is divided; and then, for each R-PDCCH The resource sub-area determines the control signaling corresponding to the R-PDCCH resource sub-area according to the preset correspondence between the R-PDCCH resource sub-area and the control signaling, and according to the location information of the R-PDCCH resource sub-area The control signaling is detected in the R-PDCCH resource sub-area.
  • the relay node detects the control signaling in the R-PDCCH resource sub-region corresponding to the control signaling according to the configuration information, instead of detecting the control signaling in the entire resource region occupied by the R-PDCCH, effectively The complexity of the R-PDCCH detection by the relay node is reduced.
  • the scheme proposed in this patent classifies the content of the R-PDCCH according to whether the information is sensitive to the delay of the demodulation.
  • the two types of information are separately configured in the search space, and combined with the multiplexing method, the demodulation delay can be ensured, and the standardization complexity is simplified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

回程链路上的控制信令发送及检测方法、 系统和设备 本申请要求在 2010年 3月 22日提交中国专利局、 申请号为 201010130981 .3、 发明名称为
"回程链路上的控制信令发送及信令检测方法、 系统和设备"的中国专利申请的优先权, 其全部 内容通过引用结合在本申请中。 技术领域
本发明涉及无线通信领域, 尤其涉及一种回程链路上的控制信令发送及 检测方法、 系统和设备。 背景技术
在长期演进升级(Long Term Evolution-Advanced, LTE-A ) 系统中, 为了 提高系统吞吐量和增加网络覆盖, 引入了中继节点设备 ( Relay Node, RN ), 如图 1所示,演进基站(Evolved NodeB , eNB )通过有线接口连到核心网( Core Network, CN ), RN通过无线接口连到 eNB; 用户终端( User Equipment, UE ) 通过无线接口连到 RN或 eNB。
RN与基站之间的链路称为回程( backhaul )链路, RN与 UE之间的链路 称为接入链路。
在回程链路中, 存在两种信道, 即回程链路上的中继物理下行控制信道 ( elay Physical Downlink Control Channel , R-PDCCH )和回程链路上的中继 物理下行共享信道( Relay Physical Downlink Shared Channel, R-PDSCH )。 eNB 使用 R-PDCCH 占用的时频资源向 RN 传输相关的控制信令, RN 则在 R-PDCCH占用的时频资源范围内进行盲检测以获得相应的控制信令。
R-PDCCH和 R-PDSCH的复用方式有两种:图 2为 R-PDCCH和 R-PDSCH 采用时分复用 (Time Division Multiplexing, TDM ) +频分复用 (Frequency Division Multiplexing, FDM )的复用方式示意图;图 3为 R-PDCCH和 R-PDSCH 釆用 FDM复用方式的示意图。
在实现本发明的过程中, 发明人发现现有技术中存在以下技术问题: 在目前的方案中 , eNB使用 R-PDCCH占用的时频资源向 RN传输控制信 令, RN需要在 R-PDCCH占用的整个时频资源范围内进行盲检测以获得该控制 信令, 使得 eNB通过 R-PDCCH发送控制信令所占用的时频资源较多, 同时 RN 检测 R-PDCCH的复杂度也较高。 发明内容
本发明实施例提供一种中继系统回程链路上的控制信令发送方法和一种 基站, 用于节省基站通过 R-PDCCH发送控制信令所占用的时频资源。
一种中继系统回程链路上的控制信令发送方法, 该方法包括:
基站确定当前回程链路上的中继物理下行控制信道 R-PDCCH 上的待发 送控制信令;
基站在 R-PDCCH 占用的资源区域划分出的多个 R-PDCCH 资源子区域 中,根据预先设定的控制信令与 R-PDCCH资源子区域的对应关系,确定出与 所述待发送控制信令对应的 R-PDCCH资源子区域;
基站利用确定的 R-PDCCH 资源子区域中的时频资源向中继节点发送所 述待发送控制信令。
一种基站, 该基站包括:
信令确定单元, 用于确定当前回程链路上的中继物理下行控制信道 R-PDCCH上的待发送控制信令;
区域确定单元, 用于在 R-PDCCH 占用的资源区域划分出的多个 R-PDCCH资源子区域中, 根据预先设定的控制信令与 R-PDCCH资源子区域 的对应关系, 确定出与所述待发送控制信令对应的 R-PDCCH资源子区域; 信令发送单元,用于利用确定的 R-PDCCH资源子区域中的时频资源向中 继节点发送所述待发送控制信令。
本发明中, 基站确定当前 R-PDCCH 上的待发送控制信令; 基站在 R-PDCCH占用的资源区域划分出的多个 R-PDCCH资源子区域中 , 根据预先 设定的控制信令与 R-PDCCH资源子区域的对应关系,确定出与待发送控制信 令对应的 R-PDCCH资源子区域; 然后利用确定的 R-PDCCH资源子区域中的 时频资源向中继节点发送待发送控制信令。 可见, 本发明中通过将 R-PDCCH 占用的资源区域划分为多个 R-PDCCH资源子区域,并在待发送控制信令所对 应的 R-PDCCH资源子区域发送该待发送控制信令, 而不是在 R-PDCCH占用 的整个资源区域内发送该待发送控制信令,节省了基站通过 R-PDCCH发送控 制信令所占用的时频资源。
本发明实施例还提供一种中继系统回程链路上控制信令检测方法、 一种 中继节点设备和一种 LTE-A通信系统, 用于降低 RN检测 R-PDCCH的复杂 度。
一种中继系统回程链路上的控制信令检测方法, 该方法包括:
中继节点获取一个或多个中继物理下行控制信道 R-PDCCH 资源子区域 的位置信息; 所述 R-PDCCH资源子区域是将 R-PDCCH占用的资源区域进行 划分后形成的 R-PDCCH资源子区域;
对于所述一个或多个 R-PDCCH 资源子区域中的各 R-PDCCH 资源子区 域, 根据预先设定的 R-PDCCH 资源子区域与控制信令的对应关系, 确定该 R-PDCCH资源子区域对应的控制信令, 并根据该 R-PDCCH资源子区域的位 置信息在该 R-PDCCH资源子区域内检测该控制信令。
一种中继节点设备, 该中继节点设备包括:
配置信息获取单元, 用于获取一个或多个中继物理下行控制信道 R-PDCCH资源子区域的位置信息;所述 R-PDCCH资源子区域是将 -PDCCH 占用的资源区域进行划分后形成的 R-PDCCH资源子区域;
信令检测单元, 用于对于所述一个或多个 R-PDCCH 资源子区域中的各 R-PDCCH资源子区域, 根据预先设定的 R-PDCCH资源子区域与控制信令的 对应关系,确定该 R-PDCCH资源子区域对应的控制信令,并根据该 R-PDCCH 资源子区域的位置信息在该 R-PDCCH资源子区域内检测该控制信令。
一种长期演进升级 LTE-A通信系统, 该系统包括:
基站,用于确定当前回程链路上的中继物理下行控制信道 R-PDCCH上的 待发送控制信令; 在 R-PDCCH占用的资源区域划分出的多个 R-PDCCH资源 子区域中,根据预先设定的控制信令与 R-PDCCH资源子区域的对应关系,确 定出与所述待发送控制信令对应的 R-PDCCH 资源子区域; 利用确定的 R-PDCCH资源子区域中的时频资源向中继节点发送所述待发送控制信令; 中继节点, 用于获取所述 R-PDCCH资源子区域的位置信息,根据该位置 信息在所述 R-PDCCH资源子区域内检测所述待发送控制信令。
本发明中, 中继节点在进行控制信令检测时, 首先获取预先配置的 R-PDCCH占用的资源区域被划分后的一个或多个 R-PDCCH资源子区域的位 置信息; 然后对于各 R-PDCCH资源子区域, 根据预先设定的 R-PDCCH资源 子区域与控制信令的对应关系, 确定该 R-PDCCH 资源子区域对应的控制信 令,并根据该 R-PDCCH资源子区域的位置信息在该 R-PDCCH资源子区域内 检测该控制信令。 可见, 本发明中中继节点根据配置信息在控制信令对应的 R-PDCCH资源子区域内检测该控制信令, 而不是在 R-PDCCH占用的整个资 源区域内检测该控制信令,有效地降低了中继节点进行 R-PDCCH检测的复杂 度。 附图说明
图 1为现有技术中 LTE-A系统的结构示意图;
图 2为现有技术中 TDM+FDM复用方式示意图;
图 3为现有技术中 FDM复用方式示意图;
图 4为本发明实施例提供的方法流程示意图;
图 5为本发明实施例一中资源区域划分示意图;
图 6为本发明实施例二中资源区域划分示意图;
图 Ί为本发明实施例提供的系统结构示意图;
图 8为本发明实施例提供的基站结构示意图;
图 9为本发明实施例提供的 RN结构示意图。 具体实施方式
为了节省基站通过 R-PDCCH发送控制信令所占用的时频资源,以及降低 RN检测 R-PDCCH的复杂度, 本发明实施例提供一种中继系统回程链路上的 控制信令发送及检测检测方法, 本方法中, 将 R-PDCCH占用的资源区域划分 为多个 R-PDCCH资源子区域, 在向 RN发送控制信令时, 仅利用该控制信令 对应的 R-PDCCH资源子区域内资源发送控制信令。
参见图 4,本发明实施例提供的中继系统回程链路上的控制信令发送及检 测方法, 具体包括以下步骤:
步骤 41:基站确定当前回程链路上的中继物理下行控制信道( R-PDCCH ) 上的待发送控制信令;
步骤 42: 基站根据预先设定的控制信令与 R-PDCCH资源子区域的对应 关系, 在 R-PDCCH占用的资源区域划分出的多个 R-PDCCH资源子区域中 , 确定出与所述待发送控制信令对应的 R-PDCCH资源子区域;
即: 将 R-PDCCH占用的资源区域进行划分后形成了多个 R-PDCCH资源 子区域, 并预先设定每一个 R-PDCCH 资源子区域和控制信令之间的对应关 系。
步骤 43: 基站利用确定的 R-PDCCH资源子区域中的时频资源向中继节 点发送所述待发送控制信令;
步骤 44: 中继节点获取 R-PDCCH资源子区域的位置信息;
步骤 45: 中继节点根据获取到的位置信息, 在 R-PDCCH资源子区域内 检测所述待发送控制信令。
在基站侧:
将 R-PDCCH占用的资源区域进行划分, 其具体实现可以如下: 将多种控制信令划分为多类; 将 R-PDCCH 占用的资源区域划分为多个
R-PDCCH资源子区域, 划分后该资源区域所包含的 R-PDCCH资源子区域的 个数与多种控制信令的类数相同; 相应的,设定控制信令与 R-PDCCH资源子区域的对应关系, 其具体实现 可以 ^下:
对于将多种控制信令划分为多类后的每一类, 建立该类与多个 R-PDCCH 资源子区域中的 R-PDCCH资源子区域的对应关系;对于多种控制信令中的每 种控制信令,建立该控制信令与该控制信令所属类所对应的 R-PDCCH资源子 区域间的对应关系。
具体的, 将所述多种控制信令划分为多类可以是划分为两类, 该两类中 第一类控制信令的解调时延要求高于第二类控制信令的解调时延要求; 第一 类控制信令包括: 下行调度信令(DL Grant )等; 第二类控制信令包括: 上行 调度信令(UL Grant )等。
相应的,将 R-PDCCH占用的资源区域划分为多个 R-PDCCH资源子区域, 其具体实现可以如下:
将 R-PDCCH占用的资源区域划分为两个 R-PDCCH资源子区域,该两个 R-PDCCH 资源子区域中第一 R-PDCCH 资源子区域在时域上位于第二 R-PDCCH资源子区域之前。 比如, 第一 R-PDCCH资源子区域占用的所有时 间单元均在第二资源子区域占用的所有时间单元之前; 或者, 第一资源子区 域的起始时间单元与第二资源子区域的起始时间单元相同, 且第一资源子区 域的结束时间单元在第二资源子区域的结束时间单元之前。
相应的, 建立每一类控制信令与多个 R-PDCCH 资源子区域中的 R-PDCCH资源子区域的对应关系, 其具体实现可以如下:
建立第一类控制信令与第一 R-PDCCH资源子区域的对应关系,以及第二 类控制信令与第二 R-PDCCH资源子区域的对应关系; 或者,
建立第一类控制信令与第一 R-PDCCH资源子区域的对应关系、以及第二 类控制信令与第一 R-PDCCH资源子区域和第二 R-PDCCH资源子区域的对应 关系。
具体的, 可以将 R-PDCCH在子帧内占用的资源区域中,位于该子帧的第 一个时隙的资源单元构成的区域, 划分为第一 R-PDCCH 资源子区域; 将 R-PDCCH在子帧内占用的资源区域中, 位于该子帧的第二个时隙的资源单元 构成的区域, 划分为第二 R-PDCCH资源子区域。 即, 第一 R-PDCCH资源子 区域在时域上位于子帧的第一个时隙,第二 R-PDCCH资源子区域在时域上位 于子帧的第二个时隙。
基站还可以将划分后的多个 R-PDCCH资源子区域的时域位置信息和 /或 频域位置信息发送给中继节点。基站还可以将控制信令与 R-PDCCH资源子区 域的对应关系发送给中继节点, 或者,控制信令与 R-PDCCH资源子区域的对 应关系可以是由基站与中继节点进行约定的。
本发明中, R-PDCCH与 R-PDSCH的资源复用可以釆用 FDM方式, 或 者采用 TDM+FDM方式。
在终端侧:
步骤 43中, 中继节点获取预先配置的一个或多个 R-PDCCH资源子区域 的位置信息; 该 R-PDCCH资源子区域是将 -PDCCH占用的资源区域进行划 分后形成的 R-PDCCH资源子区域;
步骤 44 中, 中继节点对于各 R-PDCCH 资源子区域, 根据预先设定的 R-PDCCH资源子区域与控制信令的对应关系, 确定该 R-PDCCH资源子区域 对应的控制信令,并根据该 R-PDCCH资源子区域的位置信息,在该 R-PDCCH 资源子区域内检测该控制信令。由于基站侧和中继节点侧的 R-PDCCH资源子 区域与控制信令的对应关系一致, 因此, 中继节点可以在某个 R-PDCCH资源 子区域检测到步骤 42中发送的控制信令。
具体的,所述多个 R-PDCCH资源子区域可以为两个 R-PDCCH资源子区 域,则 RN首先根据预先设定的 R-PDCCH资源子区域与控制信令的对应关系, 确定两个 R-PDCCH资源子区域中的第一 R-PDCCH资源子区域对应第一类控 制信令, 以及两个 R-PDCCH资源子区域中的第二 R-PDCCH资源子区域对应 第二类控制信令; 第一 R-PDCCH资源子区域在时域上位于第二 R-PDCCH资 源子区域之前, 例如, 第一 R-PDCCH资源子区域与第二 R-PDCCH资源子区 域满足以下条件: 第一 R-PDCCH 资源子区域占用的所有时间单元均在第二 R-PDCCH资源子区域占用的所有时间单元之前, 或者第一 R-PDCCH资源子 区域的起始时间单元与第二 R-PDCCH资源子区域的起始时间单元相同,且第 一 R-PDCCH资源子区域的结束时间单元在第二 R-PDCCH资源子区域的结束 时间单元之前。 并且第一类控制信令的解调时延要求高于第二类控制信令的 解调时延要求;
然后, RN根据获取到的第一 R-PDCCH资源子区域的位置信息, 在第一 R-PDCCH资源子区域内检测第一类控制信令; 根据获取到的第二 R-PDCCH 资源子区域的位置信息, 在第二 R-PDCCH 资源子区域内检测第二类控制信 令。
在第一 R-PDCCH 资源子区域内检测第一类控制信令, 具体可以是在 R-PDCCH在子帧内占用的资源区域中, 位于该子帧的时隙 1的资源单元构成 的第一 R-PDCCH资源子区域内, 检测第一类控制信令; 在 R-PDCCH在子帧 内占用的资源区域中, 位于该子帧的时隙 2的资源单元构成的第二 R-PDCCH 资源子区域内,检测第二类控制信令。 第一类控制信令包括 DL Grant信令等; 第二类控制信令包括 UL Grant信令等。
中继节点可以从基站发来的半静态信令或动态信令中, 获取预先配置的 R-PDCCH资源子区域的位置信息。
下面以具体实施例对本发明进行说明。
本实施例中基站为每个中继节点配置两套控制信令的时频资源 S1和 S2, 即将 R-PDCCH占用的资源区域划分为 S1和 S2两个 R-PDCCH资源子区域。 中继节点在相应的两套时频资源上分别检测所对应的控制信息。 更进一步, 控制信令可以分为两类, 一类是对控制信道解调时延敏感即解调时延要求高 的控制信令 A, —类是对控制信道解调时延不敏感即解调时延要求低的控制 信令 B。 对控制信道解调时延敏感的控制信令 A在时频资源 SI上传输, 对控 制信道解调时延不敏感的控制信令 B在时频资源 S2上传输。
对控制信道解调时延敏感的控制信息 A可以是 DL grant信令。 对控制信 道解调时延不敏感的控制信令 B可以是 UL grant信令或者别的控制信令。 时 频资源 SI或 S2包括所对应的频域资源和时域资源。 频域资源包括至少一个 资源块(resource block, RB ) 的集合。 时域资源包括多个时间传输单位, 例 如 OFDM ( Orthogonal Frequency Division Multiplexing, 正交频分复用)符号。 SI和 S2所对应的频域资源或时域资源可以相同或不同。 例如, S1所对应的 频域资源可以是 RB 1-3, S1 所对应的时域资源可以是 OFDM符号 5-7。 S2 所对应的频域资源可以是 RB 4-6, S2所对应的时域资源可以使 OFDM符号 5-13。 再例如, S1所对应的频^ ^资源可以是物理资源块 PRB 1-3 , S1所对应 的时域资源可以是 OFDM符号 5-7。 S2所对应的频域资源可以是 PRB 1-3 , S2所对应的时域资源可以使 OFDM符号 8-13。 在以上实例中, 一个子帧内 的 OFDM符号序号为 1-14。
对于 S1或 S2,其时域资源或者频域资源的位置可以是固定的。在此情况 下, 基站只需通过动态信令向 RN指示 S1或 S2的资源位置的可变部分。 例 如, S1 的时域资源位置固定为 OFDM符号 5-7, S2 的时域资源位置固定为 OFDM符号 5-13 , 那么基站只需通过动态信令向 RN指示 S1和 S2的频域资 源位置。 例如, S1的时域资源位置固定为 OFDM符号 5-7, S2的时域资源位 置固定为 OFDM符号 8-13 , 且 S1和 S2的频域资源位置相同, 那么基站只需 通过动态信令向 RN指示 S1和 S2的频域资源位置。 对于固定的时域资源或 者频域资源的位置信息, 基站需要预先通过半静态信令指示给 RN。
可以按照控制信令对解调时延的敏感程度来划分两个 R-PDCCH 资源子 区域。 比如在 LTE系统中, 对于 DL grant信令, 由于该信令中包含了对当前 子帧中数据信道解调的相关控制信息, 因此其对解调时延的敏感程度较高, 应该尽快进行解调; 而对于 UL grant信令来说, 其调度的上行子帧并不是当 前子帧中的, 而是后续的上行子帧, 因此其对解调时延的敏感程度相对较弱。 这样, 对于中继节点来说, 其对 R-PDCCH的盲检将分别在两个 R-PDCCH资 源子区域进行,即在一个 R-PDCCH资源子区域内盲检对解调时延敏感的控制 信令, 在另外一个 R-PDCCH 资源子区域内检测对解调时延不敏感的控制信 令。 实施例一:
图 5给出了在 LTE-A系统中, R-PDCCH和 R-PDSCH釆用 FDM复用方 式的情况下, 两类控制信令的搜索空间示意图。 具体流程如下:
步骤 S01: 基站根据 R-PDCCH传输的多种控制信令的解调时延要求, 将 多种控制信令划分为两类, 第一类是对解调时延要求高的控制信令, 第二类 是对解调时延要求低的控制信令; 将 R-PDCCH 占用的资源区域划分为两个 R-PDCCH 资源子区域, 如图 5 所示, 对解调时延要求高的控制信令对应的 R-PDCCH资源子区域为, R-PDCCH在子帧内占用的资源区域中位于该子帧 的时隙 1的资源单元构成的区域, 称为第一 R-PDCCH资源子区域; 对解调时 延要求相对较低的控制信令对应的 R-PDCCH资源子区域为 , R-PDCCH在子 帧内占用的资源区域中位于该子帧的时隙 2 的资源单元构成的区域, 称为第 二 R-PDCCH资源子区域;基站将第一 R-PDCCH资源子区域和第二 R-PDCCH 资源子区域的资源位置信息发送给 RN;
步骤 S02: 基站利用第一 R-PDCCH资源子区域内资源向 RN发送第一类 控制信令, 例如 DL Grant信令, 基站利用第二 R-PDCCH资源子区域内资源 向 RN发送第二类控制信令, 例如 UL Grant信令;
步骤 S03 : N 获得基站发来的第一 R-PDCCH 资源子区域和第二 R-PDCCH资源子区域的位置信息, 根据该位置信息在第一 R-PDCCH资源子 区域内检测第一类控制信令, 例如 DL Grant信令, 在第二 R-PDCCH资源子 区域内检测第二类控制信令, 例如 UL Grant信令。
从图 5 中可以看出, 将对解调时延敏感的控制信令放在第一个时隙中发 送, 这样就能够在第一个时隙结束后进行相应的解调, 进而可以尽快进行第 二个时隙中数据部分的解调。 例如下行资源调度信令, 这些信令需要尽快进 行解调, 这样就才能够明确具体的 R-PDSCH的位置和 MCS等内容, 尽快进 行 R-PDSCH的解调。 对于解调时延不敏感的信令, 配置在 R-PDCCH的第二 个时隙内, 这样这些信令的解调时间和数据部分 R-PDSCH相同, 但是由于这 个部分的信令对于解调当前子帧的内容没有关系, 比如上行的资源调度信息, 因此其解调时间可以比较长。
在 FDM复用情况下,可以釆用 RN专属的高层信令向 RN通知 R-PDCCH 资源子区域的位置信息;也可以使用广播信令向 RN通知 R-PDCCH资源子区 域的位置信息。
实施例二:
图 6给出了在 LTE-A系统中, R-PDCCH和 R-PDSCH釆用 TDM+FDM 复用方式的情况下, 两类控制信令的搜索空间示意图。 具体流程如下:
步骤 SI 1: 基站根据 R-PDCCH传输的多种控制信令的解调时延要求, 将 多种控制信令划分为两类, 第一类是对解调时延要求高的控制信令, 第二类 是对解调时延要求低的控制信令; 将 R-PDCCH 占用的资源区域划分为两个 R-PDCCH 资源子区域, 如图 6 所示, 对解调时延要求高的控制信令对应的 R-PDCCH资源子区域为, R-PDCCH在子帧内占用的资源区域中位于该子帧 的时隙 1的资源单元构成的区域, 称为第一 R-PDCCH资源子区域; 对解调时 延要求低的控制信令对应的 R-PDCCH资源子区域为, R-PDCCH在子帧内占 用的资源区域中位于该子帧的时隙 2 的资源单元构成的区域, 称为第二 R-PDCCH资源子区域; 将第一 R-PDCCH资源子区域和第二 R-PDCCH资源 子区域的资源位置信息发送给 RN;
步骤 S12: 基站在第一 R-PDCCH资源子区域内向 RN发送第一类控制信 令, 例如 DL Grant信令, 基站在第二 R-PDCCH资源子区域内向 RN发送第 二类控制信令, 例如 UL Grant信令;
步骤 S13 : RN 获得基站发来的第一 R-PDCCH 资源子区域和第二 R-PDCCH资源子区域的位置信息, 根据该位置信息在第一 R-PDCCH资源子 区域内检测第一类控制信令, 例如 DL Grant信令, 在第二 R-PDCCH资源子 区域内检测第二类控制信令, 例如 UL Grant信令。 参见图 7 , 本发明实施例还提供一种 LTE-A通信系统, 该系统包括: 基站 70, 用于确定当前回程链路上的 R-PDCCH上的待发送控制信令; 在 R-PDCCH占用的资源区域划分出的多个 R-PDCCH资源子区域中,根据预 先设定的控制信令与 R-PDCCH资源子区域的对应关系,确定出与所述待发送 控制信令对应的 R-PDCCH资源子区域; 利用确定的 R-PDCCH资源子区域中 的时频资源向中继节点发送所述待发送控制信令;
中继节点 71, 用于获取预先配置的所述 R-PDCCH资源子区域的位置信 息, 根据该位置信息在所述 R-PDCCH 资源子区域内检测所述待发送控制信 令。
所述基站 70还用于:
将 R-PDCCH占用的资源区域划分为两个 R-PDCCH资源子区域; 所述两个 R-PDCCH资源子区域的第一 R-PDCCH资源子区域在时域上位 于第二 R-PDCCH资源子区域之前。
所述基站 70还用于:
建立第一类控制信令与所述第一 R-PDCCH资源子区域的对应关系; 建立第二类控制信令与所述第二 R-PDCCH资源子区域的对应关系; 第一类控制信令的解调时延要求高于第二类控制信令的解调时延要求。 所述基站 70用于:
将 R-PDCCH在子帧内占用的资源区域中位于该子帧的第一个时隙的资 源单元构成的区域, 划分为第一 R-PDCCH资源子区域;
将 R-PDCCH在子帧内占用的资源区域中位于该子帧的第二个时隙的资 源单元构成的区域, 划分为第二 R-PDCCH资源子区域。
参见图 8, 本发明实施例还提供一种基站, 可以应用于 LTE-A通信系统 中, 该基站包括:
信令确定单元 80, 用于确定当前回程链路上的 R-PDCCH上的待发送控 制信令;
区域确定单元 81 , 用于在 R-PDCCH 占用的资源区域划分出的多个 R-PDCCH资源子区域中, 根据预先设定的控制信令与 R-PDCCH资源子区域 的对应关系, 确定出与所述待发送控制信令对应的 R-PDCCH资源子区域; 信令发送单元 82, 用于利用确定的 R-PDCCH资源子区域中的时频资源 向中继节点发送所述待发送控制信令。
该基站还包括:
资源区域划分单元 83 , 用于将 R-PDCCH 占用的资源区域划分为两个 R-PDCCH资源子区域; 所述两个 R-PDCCH资源子区域的第一 R-PDCCH资 源子区域在时域上位于第二 R-PDCCH资源子区域之前。
该基站还包括:
对应关系设定单元 84, 用于建立第一类控制信令与所述第一 R-PDCCH 资源子区域的对应关系;建立第二类控制信令与所述第二 R-PDCCH资源子区 域的对应关系; 第一类控制信令的解调时延要求高于第二类控制信令的解调 时延要求。
所述资源区域划分单元 83用于:
将 R-PDCCH在子帧内占用的资源区域中位于该子帧的第一个时隙的资 源单元构成的区域, 划分为第一 R-PDCCH资源子区域;
将 R-PDCCH在子帧内占用的资源区域中位于该子帧的第二个时隙的资 源单元构成的区域, 划分为第二 R-PDCCH资源子区域。
该基站还包括:
配置信息发送单元 85, 用于将所述多个 R-PDCCH资源子区域的时域位 置信息和 /或频域位置信息发送给所述中继节点。
所述配置信息发送单元 85还用于:
将控制信令与 R-PDCCH资源子区域的对应关系发送给所述中继节点。 参见图 9, 本发明实施例还提供一种中继节点, 可以应用于 LTE-A通信 系统中, 该中继节点包括:
配置信息获取单元 90, 用于获取预先配置的一个或多个 R-PDCCH资源 子区域的位置信息; 所述 R-PDCCH资源子区域是将 R-PDCCH占用的资源区 域进行划分后形成的 R-PDCCH资源子区域;
信令检测单元 91 , 用于对于所述一个或多个 R-PDCCH资源子区域中的 各 R-PDCCH资源子区域,根据预先设定的 R-PDCCH资源子区域与控制信令 的对应关系, 确定该 R-PDCCH 资源子区域对应的控制信令, 并根据该 R-PDCCH资源子区域的位置信息在该 R-PDCCH资源子区域内检测该控制信 令。
所述信令检测单元 91包括:
确定单元,用于在所述多个 R-PDCCH资源子区域为两个 R-PDCCH资源 子区域时,根据预先设定的 R-PDCCH资源子区域与控制信令的对应关系,确 定所述两个 R-PDCCH资源子区域中的第一 R-PDCCH资源子区域对应第一类 控制信令, 所述两个 R-PDCCH资源子区域中的第二 R-PDCCH资源子区域对 应第二类控制信令; 所述第一 R-PDCCH 资源子区域在时域上位于第二 R-PDCCH资源子区域之前; 所述第一类控制信令的解调时延要求高于所述第 二类控制信令的解调时延要求;
检测单元, 用于根据获取到的第一 R-PDCCH资源子区域的位置信息,在 第一 R-PDCCH 资源子区域内检测第一类控制信令; 根据获取到的第二 R-PDCCH资源子区域的位置信息, 在第二 R-PDCCH资源子区域内检测第二 类控制信令。
所述检测单元用于:
在 R-PDCCH在子帧内占用的资源区域中位于该子帧的第一个时隙的资 源单元构成的第一资源子区域内, 检测第一类控制信令;
在 R-PDCCH在子帧内占用的资源区域中位于该子帧的第二个时隙的资 源单元构成的第二资源子区域内, 检测第二类控制信令。
所述检测单元用于:
在第一 R-PDCCH资源子区域内检测 DL Grant信令; 在第二 R-PDCCH 资源子区域内检测 UL Grant信令。
综上, 本发明的有益效果包括:
本发明实施例提供的方案中, 基站确定当前 R-PDCCH 的待发送控制信 令; 根据预先设定的控制信令与 R-PDCCH 资源子区域的对应关系, 确定 R-PDCCH占用的资源区域被划分后的多个 R-PDCCH资源子区域中与待发送 控制信令对应的 R-PDCCH资源子区域; 然后利用确定的 R-PDCCH资源子区 域中的时频资源向中继节点发送待发送控制信令。 可见, 本发明中通过将 R-PDCCH占用的资源区域划分为多个 R-PDCCH资源子区域, 并在待发送控 制信令所对应的 R-PDCCH 资源子区域发送该待发送控制信令, 而不是在 R-PDCCH 占用的整个资源区域内发送该待发送控制信令, 节省了基站通过 R-PDCCH发送控制信令所占用的时频资源。
相应的, 中继节点在进行控制信令检测时, 首先获取预先配置的 R-PDCCH占用的资源区域被划分后的一个或多个 R-PDCCH资源子区域的位 置信息; 然后对于各 R-PDCCH资源子区域, 根据预先设定的 R-PDCCH资源 子区域与控制信令的对应关系, 确定该 R-PDCCH 资源子区域对应的控制信 令,并根据该 R-PDCCH资源子区域的位置信息在该 R-PDCCH资源子区域内 检测该控制信令。 可见, 本发明中中继节点根据配置信息在控制信令对应的 R-PDCCH资源子区域内检测该控制信令, 而不是在 R-PDCCH占用的整个资 源区域内检测该控制信令,有效地降低了中继节点进行 R-PDCCH检测的复杂 度。
同时, 本专利提出的方案对 R-PDCCH内容进行分类, 其分类依据是看该 信息是否对解调的时延敏感。 将两类信息分别进行搜索空间的配置, 同时与 复用方式相结合, 能够在保证解调时延的同时, 简化标准化的复杂度。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种中继系统回程链路上的控制信令发送方法, 其特征在于, 该方法 包括:
基站确定当前回程链路上的中继物理下行控制信道 R-PDCCH 上的待发 送控制信令;
基站在 R-PDCCH 占用的资源区域划分出的多个 R-PDCCH 资源子区域 中,根据预先设定的控制信令与 R-PDCCH资源子区域的对应关系,确定出与 所述待发送控制信令对应的 R-PDCCH资源子区域;
基站利用确定的 R-PDCCH 资源子区域中的时频资源向中继节点发送所 述待发送控制信令。
2、 如权利要求 1所述的方法, 其特征在于, 将 R-PDCCH占用的资源区 域进行划分包括:
将 R-PDCCH占用的资源区域划分为两个 R-PDCCH资源子区域; 所述两个 R-PDCCH资源子区域中的第一 R-PDCCH资源子区域,在时域 上位于第二 R-PDCCH资源子区域之前。
3、 如权利要求 2所述的方法, 其特征在于, 设定控制信令与 R-PDCCH 资源子区域的对应关系包括:
建立第一类控制信令与所述第一 R-PDCCH资源子区域的对应关系; 建立第二类控制信令与所述第二 R-PDCCH资源子区域的对应关系; 第一类控制信令的解调时延要求高于第二类控制信令的解调时延要求。
4、 如权利要求 3所述的方法, 其特征在于,
所述第一类控制信令包括: 下行调度信令 DL grant;
所述第二类控制信令包括: 上行调度信令 UL grant。
5、 如权利要求 2所述的方法, 其特征在于, 在满足如下关系时, 确定第 一 R-PDCCH资源子区域在时域上位于第二 R-PDCCH资源子区域之前: 第一 R-PDCCH资源子区域占用的所有时间单元均在第二 R-PDCCH资源 子区域占用的所有时间单元之前; 或者,
第一 R-PDCCH资源子区域的起始时间单元与第二 R-PDCCH资源子区域 的起始时间单元相同, 且第一 R-PDCCH 资源子区域的结束时间单元在第二 R-PDCCH资源子区域的结束时间单元之前。
6、 如权利要求 5所述的方法, 其特征在于,
所述第一 R-PDCCH资源子区域在时域上位于子帧的第一个时隙; 所述第二 R-PDCCH资源子区域在时域上位于子帧的第二个时隙,或者所 述第二 R-PDCCH资源子区域在时域上位于子帧的第一个时隙和第二个时隙。
7、 如权利要求 1-6中任一所述的方法, 其特征在于, 该方法进一步包括 步骤 A和 /或步骤 B:
步骤 A, 基站将所述多个 R-PDCCH资源子区域的时域位置信息和 /或频 域位置信息发送给所述中继节点;
步骤 B,基站将控制信令与 R-PDCCH资源子区域的对应关系发送给所述 中继节点。
8、 一种中继系统回程链路上的控制信令检测方法, 其特征在于, 该方法 包括:
中继节点获取一个或多个中继物理下行控制信道 R-PDCCH 资源子区域 的位置信息; 所述 R-PDCCH资源子区域是将 R-PDCCH占用的资源区域进行 划分后形成的 R-PDCCH资源子区域;
对于所述一个或多个 R-PDCCH 资源子区域中的各 R-PDCCH 资源子区 域, 根据预先设定的 R-PDCCH 资源子区域与控制信令的对应关系, 确定该 R-PDCCH资源子区域对应的控制信令, 并根据该 R-PDCCH资源子区域的位 置信息在该 R-PDCCH资源子区域内检测该控制信令。
9、 如权利要求 8所述的方法, 其特征在于, 所述多个 R-PDCCH资源子 区域为两个 R-PDCCH资源子区域,对于所述一个或多个 R-PDCCH资源子区 域中的各 R-PDCCH资源子区域,根据预先设定的 R-PDCCH资源子区域与控 制信令的对应关系,确定该 R-PDCCH资源子区域对应的控制信令, 并根据该 R-PDCCH资源子区域的位置信息在该 R-PDCCH资源子区域内检测该控制信 令包括:
根据预先设定的 R-PDCCH资源子区域与控制信令的对应关系,确定所述 两个 R-PDCCH资源子区域中的第一 R-PDCCH资源子区域对应第一类控制信 令,所述两个 R-PDCCH资源子区域中的第二 R-PDCCH资源子区域对应第二 类控制信令; 所述第一 R-PDCCH资源子区域在时域上位于第二 R-PDCCH资 源子区域之前; 所述第一类控制信令的解调时延要求高于所述第二类控制信 令的解调时延要求;
根据获取到的第一 R-PDCCH资源子区域的位置信息, 在第一 R-PDCCH 资源子区域内检测第一类控制信令;根据获取到的第二 R-PDCCH资源子区域 的位置信息, 在第二 R-PDCCH资源子区域内检测第二类控制信令。
10、 如权利要求 9 所述的方法, 其特征在于, 所述在第一资源子区域内 检测第一类控制信令包括:
在 R-PDCCH在子帧内占用的资源区域中位于该子帧的第一个时隙的资 源单元构成的第一 R-PDCCH资源子区域内, 检测第一类控制信令;
在 R-PDCCH在子帧内占用的资源区域中位于该子帧的第二个时隙的资 源单元构成的第二 R-PDCCH 资源子区域内, 检测第二类控制信令, 或者在 R-PDCCH 在子帧内占用的资源区域中位于该子帧的第一时隙和第二个时隙 的资源单元构成的第二 R-PDCCH资源子区域内, 检测第二类控制信令。
11、 如权利要求 9或 10所述的方法, 其特征在于,
所述检测第一类控制信令包括: 检测下行调度信令 DL Grant;
所述检测第二类控制信令包括: 检测上行调度信令 UL Grant。
12、 一种基站, 其特征在于, 该基站包括:
信令确定单元, 用于确定当前回程链路上的中继物理下行控制信道 R-PDCCH上的待发送控制信令;
区域确定单元, 用于在 R-PDCCH 占用的资源区域划分出的多个 R-PDCCH资源子区域中, 根据预先设定的控制信令与 R-PDCCH资源子区域 的对应关系, 确定出与所述待发送控制信令对应的 R-PDCCH资源子区域; 信令发送单元,用于利用确定的 R-PDCCH资源子区域中的时频资源向中 继节点发送所述待发送控制信令。
13、 如权利要求 12所述的基站, 其特征在于, 该基站还包括: 资源区域划分单元, 用于将 R-PDCCH 占用的资源区域划分为两个 R-PDCCH资源子区域; 所述两个 R-PDCCH资源子区域的第一 R-PDCCH资 源子区域在时域上位于第二 R-PDCCH资源子区域之前。
14、 如权利要求 13所述的基站, 其特征在于, 该基站还包括: 对应关系设定单元,用于建立第一类控制信令与所述第一 R-PDCCH资源 子区域的对应关系;建立第二类控制信令与所述第二 R-PDCCH资源子区域的 对应关系; 第一类控制信令的解调时延要求高于第二类控制信令的解调时延 要求。
15、 如权利要求 13所述的基站, 其特征在于, 所述资源区域划分单元用 于:
将 R-PDCCH在子帧内占用的资源区域中位于该子帧的第一个时隙的资 源单元构成的区域, 划分为第一 R-PDCCH资源子区域; 将 R-PDCCH在子帧 内占用的资源区域中位于该子帧的第二个时隙的资源单元构成的区域, 划分 为第二 R-PDCCH资源子区域,或者将 R-PDCCH在子帧内占用的资源区域中 位于该子帧的第一时隙和第二个时隙的资源单元构成的区域, 划分为第二 R-PDCCH资源子区域。
16、 如权利要求 12-15中任一所述的基站, 其特征在于, 该基站还包括配 置信息发送单元和 /或对应关系发送单元:
配置信息发送单元,用于将所述多个 R-PDCCH资源子区域的时域位置信 息和 /或频域位置信息发送给所述中继节点;
对应关系发送单元,将控制信令与 R-PDCCH资源子区域的对应关系发送 给所述中继节点。
17、 一种中继节点, 其特征在于, 该中继节点包括: 配置信息获取单元, 用于获取一个或多个中继物理下行控制信道
R-PDCCH资源子区域的位置信息;所述 R-PDCCH资源子区域是将 -PDCCH 占用的资源区域进行划分后形成的 R-PDCCH资源子区域;
信令检测单元, 用于对于所述一个或多个 R-PDCCH 资源子区域中的各 R-PDCCH资源子区域, 根据预先设定的 R-PDCCH资源子区域与控制信令的 对应关系,确定该 R-PDCCH资源子区域对应的控制信令,并根据该 R-PDCCH 资源子区域的位置信息在该 R-PDCCH资源子区域内检测该控制信令。
18、 如权利要求 17所述的中继节点, 其特征在于, 所述信令检测单元包 括:
确定单元,用于在所述多个 R-PDCCH资源子区域为两个 R-PDCCH资源 子区域时,根据预先设定的 R-PDCCH资源子区域与控制信令的对应关系,确 定所述两个 R-PDCCH资源子区域中的第一 R-PDCCH资源子区域对应第一类 控制信令, 所述两个 R-PDCCH资源子区域中的第二 R-PDCCH资源子区域对 应第二类控制信令; 所述第一 R-PDCCH 资源子区域在时域上位于第二 R-PDCCH资源子区域之前; 所述第一类控制信令的解调时延要求高于所述第 二类控制信令的解调时延要求;
检测单元, 用于根据获取到的第一 R-PDCCH资源子区域的位置信息,在 第一 R-PDCCH 资源子区域内检测第一类控制信令; 根据获取到的第二 R-PDCCH资源子区域的位置信息, 在第二 R-PDCCH资源子区域内检测第二 类控制信令。
19、 如权利要求 18所述的中继节点, 其特征在于, 所述检测单元用于: 在 R-PDCCH在子帧内占用的资源区域中位于该子帧的第一个时隙的资 源单元构成的第一资源子区域内, 检测第一类控制信令;
在 R-PDCCH在子帧内占用的资源区域中位于该子帧的第二个时隙的资 源单元构成的第二资源子区域内,检测第二类控制信令,或者在 R-PDCCH在 子帧内占用的资源区域中位于该子帧的第一时隙和第二个时隙的资源单元构 成的第二资源子区域内, 检测第二类控制信令。
20、 一种长期演进升级 LTE-A通信系统, 其特征在于, 该系统包括: 基站, 用于利用权利要求 1~7任一所述中继系统回程链路上的控制信令 发送方法向中继节点发送所述待发送控制信令;
中继节点, 用于利用权利要求 8〜: 11任一所述中继系统回程链路上的控制 信令检测方法检测所述待发送控制信令。
PCT/CN2011/072000 2010-03-22 2011-03-21 回程链路上的控制信令发送及检测方法、系统和设备 WO2011116675A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11758785.7A EP2552159A4 (en) 2010-03-22 2011-03-21 METHOD, SYSTEM AND DEVICE FOR TRANSMITTING AND DETECTING CONTROL SIGNALS IN A BACKHAUL LINK
US13/582,025 US8553609B2 (en) 2010-03-22 2011-03-21 Method, system and device for transmitting and detecting control signaling in backhaul link

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010130981.3A CN102083096B (zh) 2010-03-22 2010-03-22 回程链路上的控制信令发送及信令检测方法、系统和设备
CN201010130981.3 2010-03-22

Publications (1)

Publication Number Publication Date
WO2011116675A1 true WO2011116675A1 (zh) 2011-09-29

Family

ID=44088807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072000 WO2011116675A1 (zh) 2010-03-22 2011-03-21 回程链路上的控制信令发送及检测方法、系统和设备

Country Status (4)

Country Link
US (1) US8553609B2 (zh)
EP (1) EP2552159A4 (zh)
CN (1) CN102083096B (zh)
WO (1) WO2011116675A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201000449D0 (en) 2010-01-12 2010-02-24 Nec Corp Relay communication system
EP3706494A1 (en) * 2011-04-29 2020-09-09 Samsung Electronics Co., Ltd. Apparatus and method of resource allocation for data and control channels in a wireless communication system
US9699771B2 (en) * 2011-05-04 2017-07-04 Lg Electronics Inc. Method for enabling terminal to transmit ACK/NACK response in wireless communication system and apparatus therefor
CN108112035A (zh) * 2012-01-27 2018-06-01 三菱电机株式会社 移动通信系统
CN102594513B (zh) * 2012-03-20 2015-01-07 电信科学技术研究院 一种增强的下行控制信道的传输方法及装置
CN102624489B (zh) * 2012-03-20 2015-05-27 电信科学技术研究院 一种增强的控制信道传输的方法、装置及系统
CN103782644B (zh) * 2012-09-03 2018-03-06 华为技术有限公司 回程链路的信息传输方法及系统、代理设备、接入设备
CN105763290B (zh) * 2014-12-16 2019-06-14 中国移动通信集团公司 一种数据传输方法和装置
CN107079306B (zh) * 2015-02-06 2021-06-01 松下电器(美国)知识产权公司 无线通信方法、eNode B和用户设备
WO2017018761A1 (ko) * 2015-07-24 2017-02-02 엘지전자 주식회사 제어 정보 수신 방법 및 사용자기기와, 제어 정보 수신 방법 및 기지국
CN107294688B (zh) * 2016-03-31 2021-01-15 华为技术有限公司 数据传输的方法以及基站

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070177545A1 (en) * 2006-01-30 2007-08-02 Natarajan Kadathur S System and method for allocating sub-channels in a network
CN101374015A (zh) * 2007-08-20 2009-02-25 中兴通讯股份有限公司 一种支持中继模式的无线传输方法及物理层帧结构
CN101442755A (zh) * 2007-11-19 2009-05-27 大唐移动通信设备有限公司 一种支持Relay的无线通信系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4887358B2 (ja) * 2006-03-20 2012-02-29 パナソニック株式会社 無線通信システム、無線送信装置、およびリソース割当方法
US8929303B2 (en) * 2009-04-06 2015-01-06 Samsung Electronics Co., Ltd. Control and data channels for advanced relay operation
US8649281B2 (en) * 2009-04-27 2014-02-11 Samsung Electronics Co., Ltd. Control design for backhaul relay to support multiple HARQ processes
US20110194511A1 (en) * 2010-02-10 2011-08-11 Qualcomm Incorporated Multi-user control channel assignment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070177545A1 (en) * 2006-01-30 2007-08-02 Natarajan Kadathur S System and method for allocating sub-channels in a network
CN101374015A (zh) * 2007-08-20 2009-02-25 中兴通讯股份有限公司 一种支持中继模式的无线传输方法及物理层帧结构
CN101442755A (zh) * 2007-11-19 2009-05-27 大唐移动通信设备有限公司 一种支持Relay的无线通信系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2552159A4 *

Also Published As

Publication number Publication date
US20120327842A1 (en) 2012-12-27
CN102083096A (zh) 2011-06-01
EP2552159A1 (en) 2013-01-30
US8553609B2 (en) 2013-10-08
CN102083096B (zh) 2014-06-04
EP2552159A4 (en) 2013-05-01

Similar Documents

Publication Publication Date Title
US11956707B2 (en) Communications device, infrastructure equipment, and methods
WO2011116675A1 (zh) 回程链路上的控制信令发送及检测方法、系统和设备
JP5292589B2 (ja) 無線通信システム内の中継動作におけるリソース共有
CN111988122B (zh) 无线通信系统中的终端和基站及其执行方法
US9832800B2 (en) Method and apparatus for device to device communication
WO2016163509A1 (ja) 通信端末
JP4876104B2 (ja) 多重ホップ中継方式を使用する広帯域無線アクセス通信システムにおいて中継局により構成されたブロードキャストメッセージの送信情報を処理するための装置及び方法
CA3042571C (en) User equipment, base station, wireless communication network, data signal and method to provide enhanced sps control and continuous sps after handover
EP3284290A1 (en) Mobile communications system, communications terminals and methods
KR101430491B1 (ko) 중계기의 기준 신호 전송 방법
WO2010105536A1 (zh) 一种中继链路控制信道传输方法及系统
US11405895B2 (en) Method and apparatus for configuring feedback signal for sidelink communication in wireless communication system
JP6829208B2 (ja) 無線端末及び基地局
JP6224743B2 (ja) 無線通信システムにおける中継方法およびノード
US20160338035A1 (en) Mobile communication system and user terminal
WO2015064443A1 (ja) 無線基地局、ユーザ端末および無線通信方法
KR102293597B1 (ko) 단말 간 직접 통신 방법 및 장치
WO2019059707A1 (ko) 무선 통신 시스템에서 사이드링크 통신을 위한 방법 및 장치
WO2011134387A1 (zh) 回程链路上的控制信令发送及检测方法、系统和设备
WO2010083714A1 (zh) 基站向中继站下发控制信息及传输控制信息的方法及系统
WO2009119854A1 (ja) 割当方法およびそれを利用した基地局装置
US20230053135A1 (en) Method and apparatus for radio resource allocation to support ue-to-network relaying in a wireless communication system
KR20120068061A (ko) 무선통신 시스템에서 중계국을 통한 상향링크 통신 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11758785

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13582025

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011758785

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE